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We study the reduction scheme in the whole LP category, intro-
duced in [7] to perform Lagrangian reduction by stages. We answer
affirmatively the open question of whether reduction can be done
in the whole category. Furthermore, we analyze the Noether theo-
rem on LP-bundles, the relationship with Hamiltonian reduction
by stages and some geometric aspects of the definition of this cat-
egory.
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1. Introduction

Symmetries are a central topic in Mechanics. In particular, they provide
tools to simplify the dynamics of the problem under study and they are
associated to conservation laws. In this sense, the outlook provided by Ge-
ometric Mechanics has been successfully exploited to build a framework
within the language of actions of Lie groups on manifolds (just to mention
some essential pieces of literature, we refer the reader to [1, 2, 15] as well

2497
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as their references). The key point is the introduction of the quotient of the
phase spaces of the dynamical problems, a picture that is commonly known
as reduction. For example, in the Lagrangian formulation of Mechanics, we
consider a Lie group G of symmetries acting (freely and properly) on the
configuration manifold Q so that a reduced Lagrangian and variational prin-
ciple are defined in the the quotient (TQ)/G under the lift of the action on
the tangent bundle. A similar situation is defined on the Hamiltonian side of
the picture, where the Poisson structure and the Hamiltonian are projected
to (T ∗Q)/G.

There are many occasions when the Lie groupG of symmetries of the sys-
tem contains transformations of remarkably distinct nature. More precisely,
in some occasions, there is a normal subgroup of symmetries N encoding one
type of information different (in terms of physical or mathematical reasons)
to the remaining symmetries in G/N . The action of the global symmetry
group is split and the reduction process can be organized as a concatenation
of simpler steps, first by N and then by the quotient G/N . A prototypi-
cal example is present in the geometric models of underwater vehicles with
rotors (see [12]). Nonetheless, since the quotient of a tangent or cotangent
bundle is not necessarily a bundle of that type, the iteration of the reduction
process implies reducing Lagrangians or Hamiltonians defined in a different
kind of phase spaces, included in a wider category of manifolds that, in
particular, contains tangent or cotangent bundles.

This problem was tackled (for the Lagrangian side) in the celebrated
article [7], where the authors introduced a new category LP of Lagrange–
Poincaré bundles that is stable under reduction of actions of Lie groups. In
this situation, we can perform reduction several times and, if we reduce by N
and afterward by K = G/N , the final result is equivalent to a direct reduc-
tion by G, provided some auxiliary connections used along the process are
conveniently chosen. Apparently, the double reduction seems to be a longer
way but, with it, one keeps control of the double nature of the symmetries
mentioned above, which can be specially useful in the study of stability or
conservation laws, for instance. Since then, many articles have followed and
applied that seminal work (for example, some few references are [3], [8], [9],
[10]).

However, the work in [7] restricted its main results to the subcategory
RI of Lagrange–Poincaré bundles coming from reducing an initial tangent
bundle, so that the question whether the reduction procedure could be done
in the whole category was left as an open problem.

In this paper, we complete the reduction scheme in the whole LP cat-
egory. In addition, we provide some additional geometrical insight about
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the elementes of the category and the structure of their variational equa-
tions. On one hand, we provide a characterization of the Lie bracket on the
sections of an LP-bundle in geometric terms. This is particularly useful to
understand the naturality of that bracket. On the other hand, the Noether
theorem on LP-bundles is analyzed. Here, the usual notion of the conser-
vation law is now transformed into a drift equation, a fact consistent with
other theories with non-holonomic constraints, but with the supplementary
property that the drift equations fits into the variational equations of the
reduced LP-bundle when reduction is performed (see a similar situation in
Field Theories in [4]). We also go deeper in the relationship between reduc-
tion in the Lagrange-Poincaré category and Poisson reduction with a more
detailed analysis of the relationship of the LP Lie bracket with the one in
Hamiltonian reduction by stages.

We complete the work with some examples. Even though [7] already
contains an indication of examples outside RI (in terms of non-orientable
manifolds), we provide a bigger class by using non-trivial flat bundles. As we
know, these bundles play an important role in many geometrical situations.
Choosing a convenient Lagrangian, we are able to include dynamics as simple
as parallel transport within the LP category developed in the article. Finally,
we also present an alternative way, with respect to the classical approaches
as in [5, 11], of studying systems depending on parameters.

2. Preliminaries

2.1. Fiber bundles

Let G be a Lie group acting freely and properly on a manifold Q. The action
ρ : G×Q→ Q will be assumed to be on the left, although all the results
in this article can be stated in a similar way for right actions. The natural
projection π : Q→ Q/G is a principal G-bundle such that the fibers are
exactly the orbits of the action. Therefore, if we denote by

VqQ = {v ∈ TqQ|dqπ(v) = 0}, q ∈ Q,

the vertical tangent vectors, there is a natural identification between the
vertical subbundle V Q ⊂ TQ and Q× g given by

Q× g ∋ (q, ξ) 7→ ξQq =
d

dt

∣

∣

∣

∣

t=0

exp(tξ) · q ∈ TQ,
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where the dot stands for the action and g is the Lie algebra of G. We denote
by g̃→ Q/G the adjoint bundle to Q→ Q/G, that is, the associated bundle
(Q× g)/G by the adjoint action of G on g. Its elements will be denoted by
[q, ξ]G, q ∈ Q, ξ ∈ g. We recall that g̃→ Q/G is a Lie algebra bundle, that
is, a vector bundle equipped with a fiberwise Lie algebra given by

[[q, ξ1]G, [q, ξ2]G] = [q, [ξ1, ξ2]]G, [q, ξ1]G, [q, ξ2]G ∈ g̃x, x = π(q).

There is a bijection between sections ξ̄ : Q/G→ g̃ of the adjoint bundle and
π-vertical G-invariant vector fields Xξ̄ on Q by setting (Xξ̄)q = ξQq for any
q ∈ Q where ξ̄(x) = [q, ξ]G and x = π(q).

A principal connection A on Q→ Q/G is a g-valued 1-form on Q such
that A(ξQq ) = ξ, for any ξ ∈ g, q ∈ Q, and ρ∗gA = Adg ◦A, where ρg : Q→ Q
denotes the (left) action by g ∈ G. The form A splits the tangent spaces as
TqQ = HqQ⊕ VqQ, for all q ∈ Q, where

HqQ = kerAq = {v ∈ TqQ|Aq(v) = 0}, q ∈ Q,

is called the horizontal subspace. The collection of all HqQ, constitute a
distribution HQ. Note that each HqQ can be identified with the tangent
space, Tx(Q/G), x = π(q), through dqπ.

The curvature of a connection A is a g-valued 2-form given by

B(v, w) = dA(Hor(v),Hor(w)),

where v, w ∈ TqQ and Hor(v) is the horizontal part of v according to the
decomposition TqQ = HqQ⊕ VqQ. Intuitively, the curvature is the obstruc-
tion to the Frobenius integrability of HQ. We note that the curvature can
be also regarded as a 2-form on Q/G with values in the adjoint bundle as

B̃(X,Y ) = [q,B(Xh, Y h)]G,

for any X,Y ∈ Tx(Q/G), where X
h, Y h ∈ HqQ, is the horizontal lift with

respect to the connection to any point q of the fiber of x.
Given a vector bundle τ : V → Q, an affine connection is a map

∇ : X∞(Q)× Γ(V )→ Γ(V )

(X, s) 7→ ∇Xs,

which is C∞(Q)-linear in the first entry and for all s1, s2 ∈ Γ(V ),X ∈ X∞(Q)
and f1, f2 ∈ C

∞(Q) satisfies,

∇X(f1s1 + f2s2) = X[f1]s1 + f1∇Xs1 +X[f2]s2 + f2∇Xs2,
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where X[f ] denotes the derivative of f in the direction of the field X. An
affine connection ∇ splits TvV = HvV ⊕ VvV , v ∈ V , with HvV = ds(TqQ)
for a (local) section s : Q→ V such that (∇Xs)q = 0 for all X ∈ TqQ. Fur-
thermore, an affine connection defines a covariant derivative for curves
v(t) ∈ V as

Dv(t)

dt
= ∇q̇(t)s,

where q(t) = (τ ◦ v)(t) and s is a local section around a neighborhood of q(t)
such that v(t) = s(q(t)). It can be proved that there is a bijection between
affine connections and covariant derivatives on V .

We denote by Ωp(Q, V ) = Γ(
∧p T ∗Q⊗ V ) the space of V -valued p-

differential forms on Q. Unlike real-valued differential forms on Q, the space

Ω(Q, V ) =
⊕

p

Ωp(Q, V ),

of V -valued differential forms on Q is not an algebra with respect to the
wedge product. Yet, it is a Ω(Q)-module with the following wedge product

ω ∧ η(X1, . . . , Xp+q)

=
∑

σ

sign(σ)ω(Xσ(1), . . . , Xσ(p))η(Xσ(p+1), . . . , Xσ(p+q)),

where ω ∈ Ωp(Q), η ∈ Ωq(Q, V ) and the sum is over all permutations σ of
p+ q elements.

Given an affine connection ∇, there is a unique operator

d∇ : Ωp(Q, V )→ Ωp+1(Q, V ),

such that d∇ acting on s ∈ Ω0(Q, V ) = Γ(V ) coincides with ∇s ∈ Ω1(Q, V ),
and satisfies the Leibniz identity d∇(ω ∧ η) = (dω) ∧ η + (−1)deg(ω)ω ∧
(d∇η), ω ∈ Ω•(Q), η ∈ Ωq(Q, V ). In fact, there is a one to one correspondence
between affine connections and linear operators d∇ defined on Ω•(Q, V ), in-
creasing the degree by one and satisfying the Leibniz identity. As usual,
there is a an intrinsic formula given as

d∇(η)(X1, . . . , Xq+1)

=
∑

i<j

(−1)(i+j)η([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xq+1)

+

q+1
∑

i=1

(−1)(i+1)∇Xi
(η(X1, . . . , X̂i, . . . , Xq+1)),
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where X̂i means that Xi is omitted. In general, d2∇ = d∇ ◦ d∇ ̸= 0. The cur-
vature of an affine connection k∇ ∈ Ω2(Q,End(V )), defined as

k∇(X,Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

for all X,Y ∈ X(Q) and all s ∈ Γ(V ), can be seen as the failure to get that
property since

d2∇(s)(X,Y ) = k∇(X,Y )(s).

Let E = Q×G F be a bundle associated to the G-principal bundle π :
Q→ Q/G and defined by the action of G on a manifold F . A principal
connection A on π : Q→ Q/G defines a horizontal distribution HE ⊂ TE
complementary to the vertical bundle

T[q,f ]GE = V[q,f ]GE ⊕H[q,f ]GE, [q, f ]G ∈ E,

by the condition

H[q,f ]GE = dqψf (HqQ),

where ψf : q ∈ Q 7→ [q, f ]G ∈ E. In case E is a vector bundle, the distribu-
tion hereby obtained gives rise to an affine connection on E, and hence, a
covariant derivative.

Given a vector bundle V → Q, an action ρ of a Lie group G on V is
called a vector bundle action if the maps ρg : V → V , g ∈ G, are vector
bundle isomorphisms and the action induced in the base is free and proper.
The rules

[vq]G + [wq]G = [vq + wq] and λ[vq]G = [λvq]G,

where [vq]G, [wq]G ∈ V/G stand for the equivalence classes of vq, wq ∈ Vq and
λ ∈ R, define a vector bundle structure on V/G over Q/G with projection
τG : V/G→ Q/G given by τG([v]G) = [τ(v)]G. The projection πV,G : V →
V/G is a surjective vector bundle homomorphism covering π : Q→ Q/G

V V/G

Q/GQ

πV,G

τ

π

τG

whose restriction to each fiber is a linear isomorphism. There is a bijection
between the space Γ(V/G) of sections of V/G and the space ΓG(V ) of G-
invariant sections of V . If Γ(V ) has a Lie algebra structure invariant by the
action, ΓG(V ) is a Lie subalgebra which makes Γ(V/G) a Lie algebra.



✐

✐

“2-CastrillonLopez” — 2024/1/2 — 18:26 — page 2503 — #7
✐

✐

✐

✐

✐

✐

Reduction in the whole Lagrange–Poincaré category 2503

2.2. Lagrange–Poincaré reduction

The action defined by a Lagrangian function L : TQ→ R on the set
Ω(Q; q0, q1) of curves q(t) with endpoints q0, q1 ∈ Q is defined as

S(q(t)) =

∫ t1

t0

L(q̇(t))dt,

where q̇(t) denotes the natural lift of q(t) to TQ. A curve q(t) ∈ Ω(Q; q0, q1)
is said to be critical with respect to the action if for any smooth deformation
{qλ(t)}λ∈R of curves in Ω(Q; q0, q1), with q0(t) = q(t), we have

d

dλ

∣

∣

∣

∣

λ=0

S(qλ(t)) = 0.

The vector field δq = d/dλ|λ=0qλ is called a variation, and the set of them
is denoted by ∆q. Note that any vector field along q(t) with vanishing end-
points is a variation. Critical curves satisfy the renowned Euler–Lagrange
equations, which in standard coordinates (q1, . . . , qn, q̇1, . . . , q̇n) on TQ can
be written as

∂L

∂qi
(q, q̇)−

d

dt

(

∂L

∂q̇i
(q, q̇)

)

= 0, ∀i = 1, . . . , n.

It is sometimes useful to regard the tangent bundle TQ as the space
J1(R, Q), the jet bundle of classes of curves from R to Q. The class of a
curve γ(t) is denoted by [γ(t)](1) and the curve q̇(t) in TQ is just the curve
[q](1)(t). Similarly, for k ≥ 2, we understand the k-th order tangent bundle
T (k)Q as the k-order jet bundle Jk(R, Q). The lift of a curve q(t) to T (k)Q
is denoted by [q](k)(t).

Given an affine connection ∇ on TQ→ Q, the Euler–Lagrange operator
is the bundle map

EL(L) : T (2)Q→ T ∗Q

[q](2) 7→
∂L

∂q
(q̇(t))−

D

dt

(

∂L

∂q̇
(q̇(t))

)

,

where ∂L/∂q and ∂L/∂q̇ are respectively the horizontal and vertical part
of ∂L/∂[q](1) with respect to ∇, and D

dt is the covariant derivative defined
by ∇ on the dual bundle T ∗Q. It is not hard to prove that the Euler–
Lagrange operator is independent of the chosen ∇. In addition, it provides
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an intrinsic description of the local Euler–Lagrange equations above so that
a curve q(t) ∈ Ω(Q; q0, q1) is critical if and only if EL(L)([q](2)) = 0.

We now consider a Lie group G acting freely and properly on the configu-
ration manifold Q as well as the natural induced action on TQ. If we assume
that the Lagrangian L is invariant with respect to this action,it drops to a
function

l : TQ/G→ R

called the reduced Lagrangian. The unreduced variational problem can also
be dropped to the quotient as follows. On one hand, the set of curves are
[q̇]G, for q ∈ Ω(Q; q0, q1), or using jet notation [q(1)]G. On the other, the set
of admissible variations, denoted ∆ℓ

q, are the projection [δq̇]G = [δq(1)]G of
variations δq ∈ ∆q. This process is known as the Lagrange–Poincaré reduc-
tion. However, the projection of these curves and variations requires a better
understanding of the bundle (TQ)/G→ Q/G. For any choice of a principal
connection A on Q→ Q/G we define the map

αA : TQ/G→ T (Q/G)⊕ g̃

[vq]G 7→ Tπ(vq)⊕ [q, A(vq)]G.

This map is a vector bundle diffeomorphism. Given a curve q ∈ Ω(Q; q0, q1),
we consider the curves

ẋ(t) = Tπ(q̇(t)), ξ̄(t) = [q(t), A(q̇(t))]G,

so that the admissible curves [q̇]G(t) = [q̇(t)]G of the reduced variational
problem on TQ/G are identified with ẋ(t)⊕ ξ̄(t) via αA. As the notation sug-
gests, ẋ(t) coincides with the tangent lift of x(t) = π(q(t)). In other words,
the set of curves for the variational problem of the reduced Lagrangian l lies
in

Ω(Q/G;x0, x1)⊕ Ω(g̃;x0, x1),

where x0 = π(q0), x1 = π(q1) and Ω(g̃;x0, x1) is the space of curves in g̃ with
endpoints whose projections are x0, x1. In fact, the curve in Ω(g̃;x0, x1) is
the main object, since the projection of ξ̄(t) to Q/G is x(t). We can thus say
that the set of admissible reduced curves is exactly Ω(g̃;x0, x1). However,
we will keep below the notation x(t)⊕ ξ̄(t) for the admissible curves to keep
track of the curve in the reduced configuration manifold Q/G.

With respect to the set of admissible variations, we have that the first
factor of the projection of δq(1) is simply δx(1), the lift of the variation of x(t).
However, the induced variation of ξ̄(t) is more involved. For that, one studies
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the cases where δq is vertical or horizontal with respect to the projection
π : Q→ Q/G and the connection. One can prove that (see [7]), when δq is
vertical, that is, δq(t) = η(t)Qq(t) with η : I → g and η(t0) = η(t1) = 0, then

δξ̄ is given by

δξ̄(t) =
D

dt
η̄(t) + [ξ̄(t), η̄(t)]G,

where η̄(t) = [q(t), η(t)]G. For horizontal variations δq, that is, A(δq) = 0,
the variation δξ̄ is given by

δξ̄(t) = δx(t)hξ̄(t) + B̃x(δx(t), ẋ(t)).

It is worth noting that, despite δq being horizontal, δξ̄ is not horizontal, since
there is a vertical summand coming from the curvature of the connection.

As any variation δq can be decomposed as the sum of a vertical and
horizontal components, we can conclude that the set of admissible variations
of the reduced variational problem for a curve x(t)⊕ ξ̄(t) ∈ Ω(Q/G;x0, x1)⊕
Ω(g̃;x0, x1) are

δẋ⊕

(

D

dt
η̄ + [ξ̄, η̄]G + B̃x(δx, ẋ)

)

where δẋ is the lift of a free variation δx ∈ ∆x and η̄(t) is a curve in g̃ such
that τ(η̄(t)) = x(t) and η̄(t0) = η̄(t1) = 0.

Once we understand both the set of admissible curves and variations, the
criticality of curves for the reduced variational principle can be written by
means of the vanishing of a bundle morphism, called the Lagrange–Poincaré
morphism,

LP(l) : T (2)Q/G ≃ T (2)(Q/G)⊕ 2g̃→ T ∗(Q/G)⊕ g̃∗,

which can be split in two components as

LP(l) = Hor(LP)(l)⊕Ver(LP)(l) : T (2)(Q/G)⊕ 2g̃→ T ∗(Q/G)⊕ g̃∗,

with

Hor(LP)(l) : T (2)(Q/G)⊕ 2g̃→ T ∗(Q/G)

[x](2) ⊕ [ξ̄](1) 7→
∂l

∂x
(ẋ, ξ̄)−

D

dt

∂l

∂ẋ
(ẋ, ξ̄)−

〈

∂l

∂ξ̄
(ẋ, ξ̄), B̃q(ẋ, ·)

〉

,

Ver(LP)(l) : T (2)(Q/G)⊕ 2g̃→ g̃∗

[x](2) ⊕ [ξ̄](1) 7→ ad∗ξ̄
∂l

∂ξ̄
(ẋ, ξ̄)−

D

dt

∂l

∂ξ̄
(ẋ, ξ̄).
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2.3. Noether Current and Vertical Equations

Given a Lagrangian L : TQ→ R invariant under the action of a Lie group
G, we define the Noether current as the map

J : TQ→g∗

q̇ 7→J(q̇)(η) =

〈

∂L

∂q̇
(q̇), ηQq

〉

.

The Noether Theorem states that a solution q(t) of the Euler–Lagrange
equations of L satisfies ⟨dJ(q̇(t))/dt, η⟩ = 0 for all η ∈ g. Since,

J(gq̇)(Adgη) =

〈

∂L

∂q̇
(gq̇(t)), (Adgη)

Q
gq

〉

=
d

ds

∣

∣

∣

∣

s=0

L(gq̇ + s
d

dλ

∣

∣

∣

∣

λ=0

g exp(λη)g−1 · gq̇)

=
d

ds

∣

∣

∣

∣

s=0

L(q̇ + g−1s
d

dλ

∣

∣

∣

∣

λ=0

g exp(λη)g−1 · gq̇)

=
d

ds

∣

∣

∣

∣

s=0

L(q̇ + sηQq ) =

〈

∂L

∂q̇
(q̇(t)), ηQq

〉

= J(q̇)(η),

J is G-equivariant with respect to the lifted action on TQ and the co-adjoint
action on g∗. Then,

J̃ : TQ× g→R

(q̇, η) 7→J̃(q̇, η) =

〈

∂L

∂q̇
(q̇(t)), ηQq

〉

.

is a G-invariant real function which can be reduced to the quotient bundle,
(TQ× g)/G ∼= (TQ)/G⊕ g̃ ∼= T (Q/G)⊕ g̃⊕ g̃, as follows

j̃ : T (Q/G)⊕ g̃⊕ g̃→R

(ẋ, ξ̄, η̄) 7→J̃(ẋhq + ξQq , η).

This reduced function coincides with the vertical derivative of the reduced
Lagrangian in the sense that

j̃(ẋ, ξ̄, η̄) = J̃(ẋhq + ξQq , η) =
d

ds

∣

∣

∣

∣

s=0

L(ẋhq + ξQq + sηQq )

=
d

ds

∣

∣

∣

∣

s=0

l(ẋ⊕ ξ̄ + s(0⊕ η̄) =

〈

∂l

∂ξ̄
, η̄

〉

.
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As a consequence,
〈

d

dt
J(q̇(t)), η

〉

=
d

dt
⟨J(q̇(t)), η⟩ =

d

dt
J̃(q̇(t), η)

=
d

dt
j̃(ẋ(t), ξ̄(t), η̄(t)) =

d

dt

〈

∂l

∂ξ̄
(ẋ(t)⊕ ξ̄(t)), η̄(t)

〉

.

From the definition of covariant derivative on a dual bundle

d

dt

〈

∂l

∂ξ̄
(ẋ(t)⊕ ξ̄(t)), η̄(t)

〉

=

〈

D

dt

(

∂l

∂ξ̄

)

(ẋ(t)⊕ ξ̄(t)), η̄(t)

〉

+

〈

∂l

∂ξ̄
(ẋ(t)⊕ ξ̄(t)),

Dη̄(t)

dt

〉

,

and from the definition of associated affine connection

Dη̄(t)

dt
= [q(t),−[A(q̇), η(t)] + η̇]G = [q(t),−[ξ(t), η(t)]]G = −[ξ̄(t), η̄(t)]

Finally, from the last three equations, we get
〈

d

dt
J(q̇(t)), η

〉

=

〈

D

dt

(

∂l

∂ξ̄

)

(ẋ(t)⊕ ξ̄(t)), η̄(t)

〉

+

〈

∂l

∂ξ̄
(ẋ(t)⊕ ξ̄(t)),

Dη̄(t)

dt

〉

=

〈

D

dt

(

∂l

∂ξ̄

)

(ẋ(t)⊕ ξ̄(t)), η̄(t)

〉

−

〈

ad∗ξ̄(t)
∂l

∂ξ̄
(ẋ(t)⊕ ξ̄(t)), η̄(t)

〉

= Ver(LP)(l)η̄(t).

We have proved the following result.

Proposition 1. A curve q(t) in Q preserves the Noether current of a G-
invarianf Lagrangian L : TQ→ R if and only if the curve [q̇]G in TQ/G ∼=
T (Q/G)⊕ g̃ satisfies the vertical Lagrange–Poincaré equation.

3. Reduction of variations in the LP category

3.1. The Lagrange–Poincaré Category, LP

Iteration of the Lagrange–Poincaré reduction process has an immediate dif-
ficulty: the original Lagrangian L is defined on TQ, the tangent bundle of
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the configuration space Q, while the reduced Lagrangian l is defined on
TQ/G ∼= T (Q/G)⊕ g̃ which need not be a tangent bundle itself. Hence, re-
duction of l involves the formulation of Lagrangian Mechanics in a wider
category of bundles stable by the action of groups and consistent with the
Lagrange-Poincaré reduction analyzed in the previous section.

The category of Lagrange–Poincaré bundles is denoted by LP and is
defined as follows:

1) The objects of LP are vector bundles τQ ⊕ τ : TQ⊕ V → Q where
τQ : TQ→ Q is the tangent bundle of a manifold Q, and τ : V → Q is
a vector bundle with the following additional structure:
a) a Lie algebra on each fiber of V , denoted by [, ], such that V is a

Lie algebra bundle;
b) a V valued 2-form ω on Q;
c) a covariant derivative D/dt for curves in V or equivalently a con-

nection ∇ on V ;
d) the bilineal operator defined by

[X1 ⊕ w1, X2 ⊕ w2](1)

= [X1, X2]⊕ (∇X1
w2 −∇X2

w1 − ω(X1, X2) + [w1, w2]),

is a Lie bracket on sectionsX ⊕ w ∈ Γ(TQ⊕ V ). Note that [X1, X2]
denotes the Lie bracket of vector fields while [w1, w2] denotes the
Lie bracket in the fibers of V .

2) The morphisms between two Lagrange–Poincaré bundles TQi ⊕ Vi,
i = 1, 2 with structures [, ]i, ωi and Di/dt are vector bundle morphisms
f : TQ1 ⊕ V1 → TQ2 ⊕ V2 such that:
a) f(TQ1) ⊂ TQ2 and f |TQ1

= Tf0, where f0 : Q1 → Q2 is the func-
tion induced by f in the base spaces;

b) f(V1) ⊂ V2 and f |V1
commutes with the additional structure, that

is, given v, v′ ∈ (τ1)
−1(q), X,X ′ ∈ (τQ1

)−1(q) and a curve v(t) in
V1:

f([v, v′]1) = [f(v), f(v′)]2,

f(ω1(X,X
′)) = ω2(f(X), f(X ′)),

f

(

D1v(t)

dt

)

=
D2f(v(t))

dt
.

Tangent bundles are a special case of Lagrange–Poincaré bundles for
which V = 0 is the trivial vector bundle. The Lie bracket on Γ(TQ) is simply
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the Jacobi-Lie bracket for vector fields, and the morphisms between two
tangent bundles are the tangent lift of functions. Another example of LP-
bundle is T (Q/G)⊕ g̃ with the Lie bracket on g̃ defined in section 2.1, the
curvature B̃ as the 2-form on Q/G and the covariant derivative induced
by ∇A, the affine connection on g̃ obtained from the connection A of Q→
Q/G as an associated bundle. Furthermore, given two sections Xi ⊕ ξ̄i in
Γ(T (Q/G)⊕ g̃) ≡ X∞(Q/G)⊕ Γ(g̃) the expression

[X1 ⊕ ξ̄1, X2 ⊕ ξ̄2] = [X1, X2]⊕ (∇A
X1
ξ̄2 −∇

A
X2
ξ̄1 − B̃(X1, X2) + [ξ̄1, ξ̄2]),

where the bracket on the first summand is the Jacobi-Lie bracket for tangent
fields on Q/G, coincides with the quotient Lie bracket on Γ((TQ)/G).

One may think that condition 1.(d) can be deduced from the previous
three condition and hence it is superflous. This is not the case. In fact, this
condition can be rewritten in a less intriguing way imposing geometrical
relations between [, ], ω, and ∇ as follows.

Proposition 2. Let τQ ⊕ τ : TQ⊕ V → Q, where τQ : TQ→ Q is the tan-
gent bundle of a manifold Q and τ : V → Q is a vector bundle, satisfying
properties 1.(a),1.(b), and 1.(c). Then, the expression

[X1 ⊕ w1, X2 ⊕ w2] = [X1, X2]⊕ (∇X1
w2 −∇X2

w1 − ω(X1, X2) + [w1, w2])

defines a Lie bracket on sections X ⊕ w ∈ Γ(TQ⊕ V ) if and only if

(d’) d∇ω = 0;

(e’) ∇X [v, w] = [∇Xv, w] + [v,∇Xw] for all X ∈ X(Q) and all v, w ∈
Γ(V );

(f’) k∇(X,Y )v = −[ω(X,Y ), v] for all X,Y ∈ X(Q) and all v ∈ Γ(V ).

Proof. The expression [X1, X2]⊕ (∇X1
w2 −∇X2

w1 − ω(X1, X2) + [w1, w2])
is clearly R-bilinear on Γ(TQ⊕ V ) and its skew symmetry is straightforward
since

[X ⊕ w,X ⊕ w] = [X,X]⊕ (∇Xw −∇Xw − ω(X,X) + [w,w]) = 0.
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Thus, the expression defines a Lie Bracket if and only if it satisfies the Jacobi
identity, that is, if the expression

[X1 ⊕ w1, [X2 ⊕ w2, X3 ⊕ w3]]

= [X1 ⊕ w1, [X2, X3]⊕ (∇X2
w3 −∇X3

w2 − ω(X2, X3) + [w2, w3])]

= [X1, [X2, X3]]⊕
(

∇X1
∇X2

w3 −∇X1
∇X3

w2

−∇X1
ω(X2, X3) +∇X1

[w2, w3]−∇[X2,X3]w1 − ω(X1, [X2, X3])

+ [w1,∇X2
w3 −∇X3

w2 − ω(X2, X3) + [w2, w3]]
)

is cyclic. This is equivalent to ask if

C(X1, w1, X2, w2, X3, w3)

= ∇X2
∇X3

w1 −∇X3
∇X2

w1 −∇X1
ω(X2, X3)

+∇X1
[w2, w3]−∇[X2,X3]w1 − ω(X1, [X2, X3])

+ [w3,∇X1
w2]− [w2,∇X1

w3]− [w1, ω(X2, X3)]

is cyclic. Assume that C(X1, w1, X2, w2, X3, w3) is cyclic. For w1 = w2 =
w3 = 0 and arbitrary X1, X2, X3 ∈ X(Q), we have

C(Xi, 0, Xj , 0, Xk, 0) = −∇Xi
ω(Xj , Xk)− ω(Xi, [Xj , Xk]),

for all i, j, k ∈ {1, 2, 3}. Hence,

0 = C(X1, 0, X2, 0, X3, 0) + C(X2, 0, X3, 0, X1, 0) + C(X3, 0, X1, 0, X2, 0)

= −∇X1
ω(X2, X3)− ω(X1, [X2, X3])−∇X2

ω(X3, X1)− ω(X2, [X3, X1])

−∇X3
ω(X1, X2)− ω(X3, [X1, X2])

= −d∇ω(X1, X2, X3),

and we have condition 1.(d’).
For w1 = X2 = X3 = 0, we have

C(X1, 0, 0, w2, 0, w3) = [w3,∇X1
w2]− [w2,∇X1

w3] +∇X1
[w2, w3],

and C(0, w3, X1, 0, 0, w2) = C(0, w2, 0, w3, X1, 0) = 0. Hence,

0 = C(X1, 0, 0, w2, 0, w3) + C(0, w3, X1, 0, 0, w2) + C(0, w2, 0, w3, X1, 0)

= ∇X1
[w2, w3]− [∇X1

w2, w3]− [w2,∇X1
w3],

from where 1.(e’) follows.
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For X1 = w2 = w3 = 0, we have

C(0, w1, X2, 0, X3, 0) = ∇X2
∇X3

w1 −∇X3
∇X2

w1

−∇[X2,X3]w1 − [w1, ω(X2, X3)],

and C(X3, 0, 0, w1, X2, 0) = C(X2, 0, X3, 0, 0, w1) = 0. Hence,

0 = C(0, w1, X2, 0, X3, 0) + C(X3, 0, 0, w1, X2, 0) + C(X2, 0, X3, 0, 0, w1)

= ∇X2
∇X3

w1 −∇X3
∇X2

w1 −∇[X2,X3]w1 − [w1, ω(X2, X3)]

= k∇(X2, X3)w1 + [ω(X2, X3), w1]

from where 1.(f’) follows.
Conversely, conditions 1.(d’), 1.(e’) and 1.(f’) imply that

C(X1, 0, X2, 0, X3, 0), C(X1, 0, 0, w2, 0, w3), and C(0, w1, X2, 0, X3, 0)
are cyclic. Hence,

C(X1, w1, X2, w2, X3, w3) = C(X1, 0, X2, 0, X3, 0) + C(X1, 0, 0, w2, 0, w3)

+ C(0, w1, X2, 0, X3, 0)

is cyclic. □

An action in the category LP of a Lie group G on an object TQ⊕ V
of LP is a vector bundle action ρ : G× TQ⊕ V → TQ⊕ V such that for
all g ∈ G, ρg : TQ⊕ V → TQ⊕ V is a LP isomorphism. As a consequence,
the additional structures [, ], ω, ∇ are invariant by ρ and quotient structures
can be defined in the sense specified below.

A Lie bracket [, ] on V is said to be invariant if for all g ∈ G and all
v1, v2 ∈ V such that τ(v1) = τ(v2) it follows g[v1, v2] = [gv1, gv2]. Then, the
expression

[[v1]G, [v2]G]G = [[v1, v2]]G

defines a quotient Lie bracket on V/G.
A V -valued 2-form ω on Q is said to be invariant if for all g ∈ G and all

X,Y ∈ TQ such that τQ(X) = τQ(Y ) we have that gω(X,Y ) = ω(gX, gY ).
An invariant form defines a quotient generalized form as

[ω]G([X]G, [Y ]G) = [ω(X,Y )]G

for all X,Y ∈ TQ such that τQ(X) = τQ(Y ). Observe that [ω]G is not a form
on Q/G since it is a skew-symmetric bilineal form on the fibers of TQ/G
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rather than on the fibers of T (Q/G). In fact, we identify [X]G ≡ Tπ(X)⊕ ξ̄,
[Y ]G ≡ Tπ(Y )⊕ η̄ via the isomorphism αA and obtain

[ω]G([X]G, [Y ]G) = [ω]G(Tπ(X), Tπ(Y )) + [ω]G(Tπ(X), η̄)

+ [ω]G(ξ̄, Tπ(Y )) + [ω]G(ξ̄, η̄).

Only the term [ω]G(Tπ(X), Tπ(Y )) is a 2-form on Q/G.
Let Z = X ⊕ ξ̄ ∈ Γ(TQ/G) = Γ(T (Q/G))⊕ Γ(g̃) and [v]G ∈ Γ(V/G)

with v ∈ ΓG(V ). There is a unique Z̄ ∈ ΓG(TQ) identified with Z. Fur-
thermore, Z̄ = Xh ⊕ Y with Xh ∈ X(TQ) the horizontal lift of X and Y
the unique π-vertical G-invariant vector field such that for all x ∈ Q/G,
ξ̄(x) = [q, A(Y (q))]G with q ∈ π−1(x). Then the quotient connection is de-
fined by

[

∇(A)
]

G,X⊕ξ̄
[v]G = [∇Z̄v]G,

the vertical quotient connection is defined by

[

∇(A,V )
]

G,X⊕ξ̄
[v]G = [∇Y v]G,

and the horizontal quotient connection is defined by

[

∇(A,H)
]

G,X⊕ξ̄
[v]G = [∇Xhv]G.

Note that quotient connections are not connections in the usual sense since
derivation is carried along a section of TQ/G intead of a section of T (Q/G).
In particular, this is called a (TQ)/G-connection in the context of Lie al-
gebroids [13]. Yet, the horizontal quotient connection can be thought as a
usual connection on T (Q/G) since it only depends on T (Q/G) ⊂ TQ/G.

Using this quotient structures, it is proved in [7] that the LP category
is stable by reduction:

Theorem 3. Let τQ ⊕ τ : TQ⊕ V → Q be an object of LP with additional
structures [, ], ω, ∇. Let ρ : G× (TQ⊕ V )→ TQ⊕ V be an action in the
category LP and A a principal connection on Q→ Q/G. Then, the vector
bundle

T (Q/G)⊕ g̃⊕ (V/G)
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with additional structures [, ]g̃, ωg̃ and ∇g̃ in g̃⊕ (V/G) given by

∇g̃

X(ξ̄ ⊕ [v]G) = ∇
A
X ξ̄ ⊕

(

[∇(A,H)]G,X [v]G − [ω]G(X, ξ̄)
)

,

ωg̃(X1, X2) = B̃A(X1, X2)⊕ [ω]G(X1, X2),

[ξ̄1 ⊕ [v1]G, ξ̄2 ⊕ [v2]G]
g̃ = [ξ̄1, ξ̄2]

⊕
(

[∇(A,V )]G,ξ̄1 [v2]G − [∇(A,V )]G,ξ̄2 [v1]G − [ω]G(ξ̄1, ξ̄2) + [[v1]G, [v2]G]G

)

is an object of the LP category, the reduced bundle with respect to the group
G and the connection A.

3.2. Lagrangian mechanics in the LP category

Let TQ⊕ V ∈ LP and let

L : TQ⊕ V → R

be a function, the Lagrangian. We denote by ℓΩ(Q)⊕ Ω(V ) the space
of curves in TQ⊕ V of the form q̇(t)⊕ v(t) where v(t) is a curve in V ,
q(t) = τ(v(t)) is a curve in Q and q̇(t) the lift of q(t) to TQ. In addi-
tion, ℓΩ(Q; q0, q1)⊕ Ω(V ; q0, q1) denotes the curves within Ω(Q)⊕ Ω(V )
such that q(t) has endpoints q0, q1. The action of L : TQ⊕ V → R is de-
fined on ℓΩ(Q; q0, q1)⊕ Ω(V ; q0, q1) as

S(L)(q̇ ⊕ v) =

∫ t1

t0

L(q̇(t), v(t))dt.

Let ∆ℓ
q⊕v ⊂ ∆q̇⊕v be the set of variations of the form δq̇ ⊕ δv with δq̇ ∈ ∆ℓ

q

and

δv =
Dw

dt
+ [v, w] + ωq(δq, q̇),

where w(t) is a curve in V with zero endpoints and τ(w(t)) = q(t). A curve
q̇(t)⊕ v(t) ∈ ℓΩ(Q; q0, q1)⊕ Ω(V ; q0, q1) satisfies the variational principle in
LP defined by L : TQ⊕ V → R if for any δ(q̇ ⊕ v) ∈ ∆ℓ

q⊕v we have that

0 = dS(L) · (δq̇ ⊕ δv) =
d

dλ

∣

∣

∣

∣

λ=0

S(L)((q̇ ⊕ v)(t, λ)),

where (q̇ ⊕ v)(t, λ) is a deformation of q̇ ⊕ v inducing δq̇ ⊕ δv.
This variational principle for Lagrangians defined on LP bundles can be

translated into equations.
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Theorem 4. Let L : TQ⊕ V → R a Lagrangian and

S(L)(q̇ ⊕ v) =

∫ t1

t0

L(q̇(t), v(t))dt

its action on curves q̇(t)⊕ v(t) within ℓΩ(Q; q0, q1)⊕ Ω(V ; q0, q1). There ex-
ists a unique bundle map

LP(L) : T (2)Q⊕ 2V → T ∗Q⊕ V ∗

such that, for each variation δq̇ ⊕ δv in ∆ℓ
q⊕v, it satisfies

dS(L) · (δq̇ ⊕ δv) =

∫ t1

t0

LP(L)([q](2) ⊕ [v](1)) · (δq ⊕ δv).

The bundle map LP(L) is called Lagrange–Poincaré operator and since it
takes values in a direct sum, it can be decomposed into two terms: the hori-
zontal Lagrange–Poincaré operator Hor(LP)(L) and the vertical Lagrange–
Poincaré operator Ver(LP)(L). Their expressions are

VerLP(L) : T (2)Q⊕ 2V → T ∗Q

[q](2) ⊕ [v](1) 7→
∂L

∂q
−
D

dt

∂L

∂q̇
−

〈

∂L

∂v
, ωq(q̇, ·)

〉

,

HorLP(L) : T (2)Q⊕ 2V → V ∗

[q](2) ⊕ [v](1) 7→ ad∗v
∂L

∂v
−
D

dt

∂L

∂v
.

Proof. The proof is analogous to the explicit deduction of the usual
Lagrange–Poincaré equations. We apply the chain rule to the factorization,

R −→ TQ⊕ V −→ R

λ 7−→ (q̇ ⊕ v)(t, λ) 7−→ L((q̇ ⊕ v)(t, λ))

to obtain
dL(q̇ ⊕ v)(t, λ)

dλ
=

∂L

∂(q̇ ⊕ v)

∂(q̇ ⊕ v)(t, λ)

∂λ
,

where

∂q̇ ⊕ v(t, λ)/∂λ : R→ Tq̇⊕v(t,λ)(TQ⊕ V ),

∂L/∂(q̇ ⊕ v) : Tq̇⊕v(t,λ)(TQ⊕ V )→ R.
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We chose an arbitrary connection on TQ→ Q which, together with the con-
nection ∇ on V , defines a connection on TQ⊕ V . This connection provides
a split of Tq̇⊕v(t,λ)(TQ⊕ V ) into

Horq̇⊕v(t,λ)(TQ⊕ V )⊕Ver1q̇⊕v(t,λ)(TQ⊕ V )⊕Ver2q̇⊕v(t,λ)(TQ⊕ V )
∼= Tq(t,λ)Q⊕ Tq(t,λ)Q⊕ Vq(t,λ)

Then,

dS(L) · (δq̇ ⊕ δv) =
d

dλ

∣

∣

∣

∣

λ=0

S(L)((q̇ ⊕ v)(t, λ))

=
d

dλ

∣

∣

∣

∣

λ=0

(
∫ t1

t0

L((q̇ ⊕ v)(t, λ))dt

)

=

∫ t1

t0

d

dλ

∣

∣

∣

∣

λ=0

L((q̇ ⊕ v)(t, λ))dt

=

∫ t1

t0

(

∂L

∂q

∂q

∂λ

∣

∣

∣

∣

λ=0

+
∂L

∂q̇

Dq̇

dλ

∣

∣

∣

∣

λ=0

+
∂L

∂v

Dv

dλ

∣

∣

∣

∣

λ=0

)

dt.

Performing integration by parts as in the usual Euler-Lagrangé proof gives

dS(L) · (δq̇ ⊕ δv) =

∫ t1

t0

((

∂L

∂q
−
D

dt

(

∂L

∂q̇

))

∂q

∂λ

∣

∣

∣

∣

λ=0

+
∂L

∂v

Dv

dλ

∣

∣

∣

∣

λ=0

)

dt.

As δq̇ ⊕ δv ∈ ∆ℓ
q⊕v, we have that

Dv

dλ
=
Dw

dt
+ [v, w] + ωq(δq, q̇),

where w(t) is a curve in V with null endpoints and τ(w(t)) = q(t). Hence;

dS(L) · (δq̇ ⊕ δv)

=

∫ t1

t0

((

∂L

∂q
−
D

dt

(

∂L

∂q̇

))

δq +
∂L

∂v

(

Dw

dt
+ [v, w] + ωq(δq, q̇)

))

dt
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=

∫ t1

t0

(

(

∂L

∂q
−
D

dt

(

∂L

∂q̇

))

δq +
d

dt

(

∂L

∂v
w

)

−
D

dt

(

∂L

∂v

)

w +
∂L

∂v
[v, w] +

∂L

∂v
ωq(δq, q̇)

)

dt

=

[

∂L

∂v
w

]t1

t0

+

∫ t1

t0

(

(

∂L

∂q
−
D

dt

(

∂L

∂q̇

))

δq

−
D

dt

(

∂L

∂v

)

w + ad∗v
∂L

∂v
w −

∂L

∂v
ωq(q̇, δq)

)

dt

=

∫ t1

t0

(

(

∂L

∂q
−
D

dt

(

∂L

∂q̇

))

δq −
∂L

∂v
ωq(q̇, δq)

+

(

ad∗v
∂L

∂v
−
D

dt

(

∂L

∂v

))

w

)

dt

=

∫ t1

t0

LP(L)([q](2) ⊕ [v](1)) · (δq ⊕ δv),

and the proof is complete. □

Therefore a curve q̇(t)⊕ v(t) of ℓΩ(Q; q0, q1)⊕ Ω(V, q0, q1) satisfies the
variational principle if and only if it satisfies the Lagrange–Poincaré equa-
tions

∂L

∂q
−
D

dt

∂L

∂q̇
−

〈

∂L

∂v
, ωq(q̇, ·)

〉

= 0,(2)

ad∗v
∂L

∂v
−
D

dt

(

∂L

∂v

)

= 0.(3)

3.3. Reduction of Variations

Given an action of a Lie group G on an element TQ⊕ V in the category
LP, there is a reduction process analogous to the reduction of Lagrangians
defined on tangent bundles. This process is established for RI, the smallest
subcategory of LP that contains tangent bundles and is closed under the
quotiening operation in [7]. The extension of this procedure to the whole
LP category given below.
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We choose a connection A in the principal bundle Q→ Q/G and we
consider the identification

αTQ⊕V
A : (TQ⊕ V )/G→ T (Q/G)⊕ g̃⊕ (V/G)

[q̇ ⊕ v]G = αA(q̇)⊕ [v]G.

Furthermore, αTQ⊕V
A applied to sections is a Lie algebra homomorphism be-

tween Γ((TQ⊕ V )/G) equipped with the quotient Lie bracket of Γ(TQ⊕ V )
and Γ(T (Q/G)⊕ g̃⊕ (V/G)) with the Lie bracket induced by the additional
structures of Theorem 3.

For a Lagrangian L : TQ⊕ V → R invariant by the action of G, with
the identification above, we define a reduced Lagrangian

L(G) : T (Q/G)⊕ g̃⊕ (V/G)→ R.

First, we recall a lemma of reconstruction of curves from [7]:

Lemma 5. Let πG be the projection of TQ⊕ V to (TQ⊕ V )/G, the map

Ω(αTQ⊕V
A ◦ πG) : Ω(TQ⊕ V )→Ω(T (Q/G)⊕ g̃⊕ V/G)

γ(t) 7→(αTQ⊕V
A ◦ πG)(γ(t))

restricted to ℓΩ(Q; q0)⊕ Ω(V ; q0) is inyective and the image of its restriction
is

ℓΩ(Q/G;x0)⊕ Ω(g̃;x0)⊕ Ω(V/G;x0).

As a corollary of this lemma, Ω(αTQ⊕V
A ◦ πG) is a bijection

between ℓΩ(Q; q0, q1)⊕ Ω(V ; q0, q1) and ℓΩ(Q/G;x0, x1)⊕ Ω(g̃;x0, x1)⊕
Ω(V/G;x0, x1), that is, the sets of curves considered in both variational
problems. A similar result for allowed variations requires a careful study of
the geometry of the reduced variations in g̃⊕ V/G as follows.

Theorem 6. Let q̇ ⊕ v be a curve in ℓΩ(Q; q0, q1)⊕ Ω(V ; q0, q1) and ẋ⊕
ξ̄ ⊕ [v]G = αTQ⊕V

A ◦ πG(q̇ ⊕ v). Then the map

Tq̇⊕vΩ(α
TQ⊕V
A ◦ πG) : ∆

ℓ
q⊕v → ∆x⊕ξ̄⊕[v]G

δq̇ ⊕ δv 7→
d

dλ

∣

∣

∣

∣

λ=0

(αTQ⊕V
A ◦ πG)(q̇(t, λ)⊕ v(t, λ)),

where q̇(t, λ)⊕ v(t, λ) is any deformation of q̇ ⊕ v inducing the variation
δq̇ ⊕ δv, is a linear isomorphism from ∆ℓ

q⊕v onto ∆ℓ
x⊕ξ̄⊕[v]G

.
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Proof. We separate this argument in different steps.
(1). First, we write explicitly the variations ∆ℓ

x⊕ξ̄⊕[v]G
, that is, the al-

lowed variations of a curve ẋ⊕ ξ̄ ⊕ [v]G in T (Q/G)⊕ (g̃⊕ V/G) with addi-
tional structures [, ]g̃, ωg̃ and∇g̃. Whereas δx is free, the variation δξ̄ ⊕ δ[v]G
is given by

δξ̄ ⊕ δ[v]G =
Dg̃

dt
(η̄ ⊕ [w]G) + [ξ̄ ⊕ [v]G, η̄ ⊕ [w]G]

g̃ − ωg̃(ẋ, δx),

where η̄ ⊕ [w]G is a curve in g̃⊕ V/G with null endpoints such that τG(η̄(t)⊕
[w]G(t)) = x(t) . From the explicit expression of the additional structures in
Theorem 3,

Dg̃

dt
(η̄ ⊕ [w]G) = ∇

g̃

ẋ(η̄ ⊕ [w]G)

= ∇ẋη̄ ⊕ ([∇(A,H)]G,ẋ[w]G − [ω]G(ẋ, η̄));

[ξ̄ ⊕ [v]G, η̄ ⊕ [w]G]
g̃ = [ξ̄, η̄]⊕ ([∇(A,V )]G,ξ̄[w]G − [∇(A,V )]G,η̄[v]G

− [ω]G(ξ̄, η̄) + [[v]G, [w]G]G);

ωg̃(ẋ, δx) = B̃A(ẋ, δx)⊕ [ω]G(ẋ, δx)

Hence, the variation of ξ̄ is given by

δξ̄ =
Dη̄

dt
+ [ξ̄, η̄]− B̃A(ẋ, δx)

and the variation of [v]G is given by

δ[v]G = [∇(A,H)]G,ẋ[w]G − [ω]G(ẋ, η̄) + [∇(A,V )]G,ξ̄[w]G − [∇(A,V )]G,η̄[v]G

− [ω]G(ξ̄, η̄) + [[v]G, [w]G]G − [ω]G(ẋ, δx).

(2). We now prove that

Tq̇⊕vΩ(α
TQ⊕V
A ◦ πG)(∆

ℓ
q⊕v) ⊂ ∆ℓ

x⊕ξ̄⊕[v]G
.

A variation in ∆ℓ
q⊕v is obtained as the derivative at λ = 0 of a deforma-

tion q̇(t, λ)⊕ v(t, λ) of q̇(t)⊕ v(t) such that for each λ, q̇λ(t)⊕ vλ(t) is a
curve belonging to ℓΩ(Q; q0, q1)⊕ Ω(V ; q0, q1). We study the variation in
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T (Q/G)⊕ g̃⊕ V/G obtained from the deformation

ẋ(t, λ)⊕ ξ̄(t, λ)⊕ [v(t, λ)]G = αTQ⊕V
A ◦ πG(q̇(t, λ)⊕ v(t, λ)).

As seen in subsection 2.2, the variation δx is free and δẋ ∈ ∆ℓ
x. Furthermore,

observe that the horizontal part of

d

dλ

∣

∣

∣

∣

λ=0

(

ξ̄(t, λ)⊕ [v(t, λ)]G
)

coincides with the horizontal lift of δx. Consequently, we calculate directly
the covariant derivative with respect to the connection ∇g̃ of g̃⊕ V/G. In
turn, this derivative can be expressed in terms of the connection as

Dg̃

dλ

∣

∣

∣

∣

λ=0

(

ξ̄(t, λ)⊕ [v(t, λ)]G
)

= ∇g̃

δx(ξ̄ ⊕ [v]G).

Since

∇g̃

δx(ξ̄ ⊕ [v]G) = ∇
A
δxξ̄ ⊕ ([∇(A,H)]G,δx[v]G − [ω]G(δx, ξ̄))

= ∇A
δxξ̄ ⊕ ([∇(A)]G,δx⊕η̄[v]G − [∇(A,V )]G,η̄[v]G − [ω]G(δx, ξ̄))

= ∇A
δxξ̄ ⊕ ([∇(A)]G,δq[v]G − [∇(A,V )]G,η̄[v]G − [ω]G(δx, ξ̄)),

where η̄ is a curve in g̃ such that δq = δx⊕ η̄, we conclude that for λ = 0

Dg̃

dλ

(

ξ̄(t, λ)⊕ [v(t, λ)]G
)

=
Dξ̄

dλ
⊕

([

D

dλ
v(t, λ)

]

G

− [∇(A,V )]G,η̄[v]G − [ω]G(δx, ξ̄)

)

.

Similarly as in section 2.2

D

dλ

∣

∣

∣

∣

λ=0

ξ̄ =
Dη̄

dt
+ [ξ̄, η̄]− B̃A(ẋ, δx).

As δq ⊕ δv is an allowed variation of TQ⊕ V ,

δv =
D

dλ

∣

∣

∣

∣

λ=0

v =
Dw

dt
+ [v, w] + ωq(δq, q̇),
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where w(t) is a curve in V such that w(t0) = w(t1) = 0 and τ ◦ w = q. We
study now the projection to V/G of each of the terms of δv:

[

Dw

dt

]

G

= [∇A
q̇ w]G = [∇A

ẋ⊕ξ̄w]G = [∇(A)]G,ẋ⊕ξ̄[w]G

= [∇(A,H)]G,ẋ[w]G + [∇(A,V )]G,ξ̄[w]G;

[[v, w]]G = [[v]G, [w]G]G;

[ω(q̇, δq)]G = [ω]G([q̇]G, [δq]G) = [ω]G(ẋ⊕ ξ̄, δx⊕ η̄)

= [ω]G(ẋ, δx) + [ω]G(ξ̄, δx) + [ω]G(ẋ, η̄) + [ω]G(ξ̄, η̄).

Consequently,

[

Dv

dλ

∣

∣

λ=0

]

G

= [∇(A,H)]G,ẋ[w]G + [∇(A,V )]G,ξ̄[w]G + [[v]G, [w]G]G

− [ω]G(ẋ, δx) + [ω]G(δx, ξ̄)− [ω]G(ẋ, η̄)− [ω]G(ξ̄, η̄).

Finally, we substitute this expression into the covariant derivative of ξ̄(t, λ)⊕
[v(t, λ)]G and obtain the variation δξ̄ ⊕ δ[v]G.

δξ̄ ⊕ δ[v]G =
Dg̃

dλ

(

ξ̄(t, λ)⊕ [v(t, λ)]G
)

=

(

Dη̄

dt
+ [ξ̄, η̄]− B̃A(ẋ, δx)

)

⊕
(

[∇(A,H)]G,ẋ[w]G + [∇(A,V )]G,ξ̄[w]G

− [∇(A,V )]G,η̄[v]G + [[v]G, [w]G]G

− [ω]G(ẋ, δx)− [ω]G(ẋ, η̄)− [ω]G(ξ̄, η̄)
)

.

The variation obtained via αTQ⊕V
A ◦ πG coincides with the variation of

ξ̄(t, λ)⊕ [v(t, λ)]G obtained from η̄ ⊕ [w]G in T (Q/G)⊕ g̃⊕ V/G.
(3). The map Tq̇⊕vΩ(α

TQ⊕V
A ◦ πG) does not depend on the chosen defor-

mation and is clearly linear. Then, it only remains to prove its bijectivity.
Let

ẋ(t, λ)⊕ ξ̄(t, λ)⊕ [v]G(t, λ)

be an allowed deformation of ẋ(t)⊕ ξ̄(t)⊕ [v]G(t). From Lemma 5, for
each λ there is a unique curve q̇λ(t)⊕ vλ(t) in ℓΩ(Q; q0, q1)⊕ Ω(V, q0, q1)
such that its image by Ω(αA ◦ πG) is ẋ(t, λ)⊕ ξ̄(t, λ)⊕ [v]G(t, λ). Since
ẋ(t, 0)⊕ ξ̄(t, 0)⊕ [v]G(t, 0) = ẋ(t)⊕ ξ̄(t)⊕ [v]G(t), uniqueness implies that
q̇0(t)⊕ v0(t) = q̇(t)⊕ v(t) and q(t, λ) = qλ(t) is a deformation of q̇(t)⊕ v(t).
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This allows to define an inverse function of Tq̇Ω(αA ◦ πG) deriving with re-
spect to λ at λ = 0. □

The reduction in the LP category can be now stated as follows.

Theorem 7. Given G-invariant Lagrangian L : TQ⊕ V → R and a curve
q̇(t)⊕ v(t) in ℓΩ(Q; q0, q1)⊕ Ω(V ; q0, q1), the following are equivalent

(i) The curve q̇(t)⊕ v(t) is a critical point of the action
∫ t1
t0
L(q̇(t), v(t))dt

with allowed variations ∆ℓ
q⊕v.

(ii) The curve q̇(t)⊕ v(t) satisfies the Lagrange–Poincaré equations
LP(L)(q̇ ⊕ v) = 0.

(iii) The curve

ẋ(t)⊕ ξ̄(t)⊕ [v]G(t) = αTQ⊕V
A ◦ πG(q̇(t)⊕ v(t))

in ℓΩ(Q/G;x0, x1)⊕ Ω(g̃;x0, x1)⊕ Ω(V/G;x0, x1) is a critical point
of the action

∫ t1
t0
L(G)(ẋ(t), ξ̄(t), [v]G(t))dt with allowed variations

∆ℓ
x⊕ξ̄⊕[v]G

.

(iv) The curve ẋ(t)⊕ ξ̄ ⊕ [v]G(t) satisfies the Lagrange–Poincaré equations
LP(L(G))(ẋ⊕ ξ̄ ⊕ [v]G) = 0.

3.4. Reduction by Stages in the LP category

Next, we specify how an isomorphism in the category LP induces an equiv-
alence of variational principles. Afterwards we shall see that this implies
that reduction by stages is equivalent to direct reduction in the whole LP

category.

Proposition 8. Let TQ1 ⊕ V1 and TQ2 ⊕ V2 be Lagrange–Poincaré bun-
dles and f : TQ1 ⊕ V1 → TQ2 ⊕ V2 an isomorphism in the LP category. Let
L1 and L2 be Lagrangians defined respectively in these bundles such that
L1 = L2 ◦ f . Then a curve q̇1 ⊕ v1 satisfies the variational principle for L1

if and only if f(q̇1 ⊕ v1) satisfies the variational principle for L2.

Proof. It is enough to see that f induces a bijection between the sets of
curves

ℓΩ(Q1; q0, q1)⊕ Ω(V1; q0, q1) and ℓΩ(Q2; f0(q0), f0(q1))⊕ Ω(V2; f0(q0), f0(q1)),

and between the sets of variations ∆ℓ
q⊕v and ∆ℓ

f0(q)⊕f(v).
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On one hand, observe that

f(q̇ ⊕ v) = f(q̇)⊕ f(v) = Tf0(q̇)⊕ f(v).

Since both, Tf0(q̇) and f(v), project to f0(q), we conclude that f(q̇ ⊕ v) is
an allowed curve in TQ2 ⊕ V2 and

ℓΩ(Q1; q0, q1)⊕ Ω(V1; q0, q1) →֒ ℓΩ(Q2; f0(q0), f0(q1))⊕ Ω(V2; f0(q0), f0(q1)).

On the other hand, let δq̇ ⊕ δv ∈ ∆ℓ
q⊕v, that is,

δv =
D1w

dt
+ [v, w]1 − ω1,q(q̇, δq)

and let q(t, λ)⊕ v(t, λ) be a deformation producing this variation, we write

d

dλ

∣

∣

∣

∣

λ=0

f(q̇(t, λ)) = Tf0

(

d

dλ

∣

∣

∣

∣

λ=0

q̇(t, λ)

)

= Tf0(δq) = f(δq),

D2

dλ

∣

∣

∣

∣

λ=0

f(v(t, λ)) = f

(

D1

dλ

∣

∣

∣

∣

λ=0

v(t, λ)

)

= f

(

D1w

dt
+ [v, w]1 − ω1,q(q̇, δq)

)

=
D2(f(w))

dt
+ [f(v), f(w)]2 − ω2,f(q)(f(q̇), f(δq)),

where we have used that f commutes with the additional structures of
TQ1 ⊕ V1 and TQ2 ⊕ V2. The variation found lies in ∆ℓ

f0(q)⊕f(v) and, conse-
quently,

∆ℓ
q⊕v →֒ ∆ℓ

f0(q)⊕f(v).

Finally, as f is an isomorphism, the opposite injections are obtained
analogously from f−1. □

We now suppose that L : TQ⊕ V is a Lagrangian invariant by the action
of G in TQ⊕ V , N is a normal subgroup of G, and K = G/N is the quotient
group. Since the LP category is closed under reduction, it is possible to
reduce L by the group N and afterwards reduce by the groupK. The natural
question is whether this is equivalent to directly reduce by G or not. Let
AN be a principal connection on Q→ Q/N , AG/N be a principal connection
on Q/N → (Q/N)/(G/N), and AG be a principal connection on Q→ Q/G.
These connections are said to be compatible if for all vq ∈ TqQ and all q ∈ Q

AG(vq) = 0⇔ AN (vq) = 0 and AG/N (TπN (vq)) = 0.
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Proposition 9. [7] (Section 6.3) If the connections AG, AN and AG/N are
compatible, the map

βTQ⊕V
(AN ,AG/N ,AG) = α

T (Q/N)⊕ñ⊕(V/N)
AG/N

◦ [αTQ⊕V
AN

]G/N ◦ i
TQ⊕V
(G/N) ◦ (α

TQ⊕V
AG

)−1,

where iTQ⊕V
(G/N) : (TQ⊕ V )/G→ ((TQ⊕ V )/N)/(G/N) denotes the natural

identification, is a LP isomorphism from T (Q/G)⊕ g̃⊕ (V/G) onto

T ((Q/N)/(G/N))⊕ k̃⊕ (ñ⊕ (V/N))/(G/N),

where n is the Lie algebra of N and k is the Lie algebra of K.

Clearly,

L(G) = (L(N))(K) ◦ βTQ⊕V
(AN ,AG/N ,AG)

and Proposition 8 concludes that L(G) and (L(N))(K) pose equivalent prob-
lems. More accurately,

Theorem 10. Let N < G be a normal subgroup and K = G/H. Given
G-invariant Lagrangian L : TQ⊕ V → R and a curve q̇(t)⊕ v(t) in
ℓΩ(Q; q0, q1)⊕ Ω(V ; q0, q1), the following are equivalent:

(i) The curve

ẏ(t)⊕ η̄(t)⊕ [v]N (t) = αTQ⊕V
AN

◦ πN (q̇(t)⊕ v(t))

in ℓΩ(Q/N ; y0, y1)⊕ Ω(ñ; y0, y1)⊕ Ω(V/N ; y0, y1) is a critical point
of the action

∫ t1
t0
L(N)(ẏ(t), η̄(t), [v]N (t))dt with allowed variations

∆ℓ
y⊕η̄⊕[v]N

.

(ii) The curve ẏ(t)⊕ η̄(t)⊕ [v]N (t) satisfies the Lagrange–Poincaré equa-
tions LP(L(N))(ẏ ⊕ η̄ ⊕ [v]N ) = 0.

(iii) The curve

ż(t)⊕ κ̄(t)⊕ [η̄]K(t)⊕ [[v]N ]K(t)

= α
T (Q/N)⊕ñ⊕V/N
AG/N

◦ πG/N (ẏ(t)⊕ η̄(t)⊕ [v]N (t))

in ℓΩ((Q/N)/K; z0, z1)⊕ Ω(k̃; z0, z1)⊕ Ω(ñ/K; z0, z1)⊕
Ω((V/N)/K; z0, z1) is a critical point of the action

∫ t1

t0

(L(N))(K)(ż(t), κ̄(t), [η̄]K(t), [[v]N ]K(t))dt
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with allowed variations ∆ℓ
z⊕κ⊕[η̄]K ,[[v]N ]K

.

(iv) The curve ż(t)⊕ κ̄(t)⊕ [η̄]K(t)⊕ [[v]N ]K(t) satisfies the Lagrange–
Poincaré equations LP((L(N))(K))(ż ⊕ κ̄⊕ [η̄]K ⊕ [[v]N ]K) = 0.

4. Noether current and vertical equations

In this section, we prove that the standard Noether current is not a constant
of motion for Lagrangians defined on LP-bundles. Yet, the drift of this
current reduces to the new vertical equation appearing in each step of the
reduction.

Definition 11. Let L : TQ⊕ V → R be a Lagrangian defined on an object
of the LP category on which a Lie group G acts. We define the Noether
current as the function J : TQ⊕ V → g∗

(4) J(q̇ ⊕ v)(η) =

〈

∂L

∂q̇
(q̇ ⊕ v), ηQq

〉

,

for any q̇ ⊕ v ∈ TQ⊕ V and any η ∈ g.

Proposition 12. Let L : TQ⊕ V → R be a Lagrangian invariant under the
action of a Lie group G in the Lagrange–Poincaré category, and q̇(t)⊕ v(t)
be a curve in TQ⊕ V satisfying the Lagrange–Poincaré equations. Then the
derivative of the Noether current along the critical curve satisfies

(5)
d

dt
J(q̇(t)⊕ v(t))(η) = −

〈

∂L

∂v
(q̇(t)⊕ v(t)), ω(q̇(t), ηQq(t)) + ηVv(t)

〉

for all η ∈ g.

Proof. Since L is invariant, choosing exp(sη) ∈ G, we have L(q̇ ⊕ v) =
L(exp(sη)q̇ ⊕ exp(sη)v) for all s ∈ R. Differentiating, we obtain

0 =

〈

∂L

∂q
,Hor(ηTQ⊕V

q̇⊕v )

〉

+

〈

∂L

∂q̇
,Ver1(ηTQ⊕V

q̇⊕v )

〉

+

〈

∂L

∂v
,Ver2(ηTQ⊕V

q̇⊕v )

〉

=

〈

∂L

∂q
, ηQq

〉

+

〈

∂L

∂q̇
, ηTQ

q̇

〉

+

〈

∂L

∂v
, ηVv

〉
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Then, the evolution of the Noether current along q̇(t)⊕ v(t) is

d

dt
J(q̇(t)⊕ v(t))(η) =

d

dt

〈

∂L

∂q̇
, ηQq(t)

〉

=

〈

D

dt

(

∂L

∂q̇

)

, ηQq(t)

〉

+

〈

∂L

∂q̇
,
DηQq(t)

dt

〉

=

〈

D

dt

(

∂L

∂q̇

)

, ηQq(t)

〉

+

〈

∂L

∂q̇
, ηTQ

q̇(t)

〉

=

〈

D

dt

(

∂L

∂q̇

)

, ηQq(t)

〉

−

〈

∂L

∂q
, ηQq(t)

〉

−

〈

∂L

∂v
, ηVv(t)

〉

=−

〈

∂L

∂v
(q̇(t)⊕ v(t)), ω(q̇(t), ηQq(t)) + ηVv(t)

〉

,

where it has been used that Hor(LP)(L)(q̇(t)⊕ v(t))(ηQq(t)) = 0. □

Remark 13. The proof of Proposition 12 does not make use of the vertical
equation Ver(LP)(L)(q̇(t)⊕ v(t)) = 0. That is, the evolution of the Noether
current described aboved can be applied to any curve q̇(t)⊕ v(t) satisfying
only the horizontal equation, Hor(LP)(L)(q̇(t)⊕ v(t)) = 0.

Definition 14. The Noether current defined by an invariant Lagrangian is
G-equivariant. Hence, one can define the reduced Noether current

j : T (Q/G)⊕ g̃⊕ V/G→ g̃∗

as

j(ẋ, ξ̄, [v]) = [q, J(q̇, v)]G,

where (ẋ, ξ̄, [v]) is any element of T (Q/G)⊕ g̃⊕ V/G, and (q̇, v) projects to
(ẋ, ξ̄, [v]) by the projection from TQ⊕ V to T (Q/G)⊕ g̃⊕ V/G.

The drift (5) of the Noether current J in TQ⊕ V projects to T (Q/G)⊕
g̃⊕ (V/G) to the condition

(6)
d

dt
j(ẋ, ξ̄, [v])η̄ = −

〈

∂L(G)l

∂[v]
, [ω]G(ẋ⊕ ξ̄, η̄) + [ηVv(t)]G

〉

along a solution curve (ẋ, ξ̄, [v]) and η̄ = [q(t), η]G, η ∈ g. We want to re-
late this reduced drift to the vertical equation on T (Q/G)⊕ g̃⊕ V/G. The
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vertical equation for the reduced lagrangian L(G) is

〈

Dg̃

dt

(

∂L(G)

∂ξ̄
⊕
∂L(G)

∂[v]

)

; η̄, [u]

〉

=

〈

ad∗ξ̄⊕[v]

(

∂L(G)

∂ξ̄
⊕
∂L(G)

∂[v]

)

; η̄, [u]

〉

,

where (η̄, [u]) ∈ g̃⊕ V/G, can be rewritten using the explicit expressions of
Theorem 3

〈

D

dt

(

∂L(G)

∂ξ̄

)

, η̄

〉

+

〈[

D(A,H)

dt

](

∂L(G)

∂[v]

)

, [u]

〉

+

〈

∂L(G)

∂[v]
, [ω]G(ẋ, η̄)

〉

=

〈

∂L(G)

∂ξ̄
, [ξ̄, η̄]

〉

+

〈

∂L(G)

∂[v]
, [∇(A,V )]G,ξ̄[u]− [∇(A,V )]G,η̄[v]− [ω]G(ξ̄, η̄) + [[v], [u]]

〉

.

Taking alternatively, [u] = 0 and η̄ = 0, the vertical Lagrange–Poincaré
equation splits into two: A new vertical equation coming from the reduc-
tion step

〈

D

dt

(

∂L(G)

∂ξ̄

)

, η̄

〉

=

〈

ad∗ξ̄
∂L(G)

∂ξ̄
, η̄

〉

(7)

+

〈

∂L(G)

∂[v]
,−[∇(A,V )]G,η̄[v]− [ω]G(ẋ⊕ ξ̄, η̄)

〉

and an equation coming from the unreduced vertical equation in TQ⊕ V ,

〈[

D(A,H)

dt

](

∂L(G)

∂[v]

)

, [u]

〉

=

〈

ad∗[v]
∂L(G)

∂[v]
, [u]

〉

+

〈

∂L(G)

∂[v]
, [∇(A,V )]G,ξ̄[u])

〉

.

Proposition 15. The evolution of the reduced current given in (6) is
equivalent to the group (7) of the vertical Lagrange–Poincaré equation in
T (Q/G)⊕ g̃⊕ V/G defined by the reduction step.

Proof. As in section 2.3, given a curve q̇(t)⊕ v(t) in TQ⊕ V and its reduced
curve ẋ(t)⊕ ξ̄(t)⊕ [v](t) in T (Q/G)⊕ g̃⊕ V/G, we have

〈

d

dt
J(q̇(t)), η

〉

=
d

dt

〈

j(ẋ(t), ξ̄(t)), η̄(t)
〉

=

〈

D

dt

(

∂L(G)

∂ξ̄

)

, η̄(t)

〉

−

〈

ad∗ξ̄(t)
∂L(G)

∂ξ̄
, η̄(t)

〉

.
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It is known that for any curve [v](t) in V/G, there exists a curve x(t) =
τG([v](t)) in Q/G. For a fixed t0, denote x0 = x(t0) and choose q0 ∈ π

−1(x0).
There exist a unique curve vhq0(t) in V such that τ(vhq0(t)) = xhq0(t), the hori-

zontal lift of x(t) at q0, and πV,G(v
h
q0(t)) = [v](t). According to the definition

of quotient covariant derivative on T (Q/G)⊕ g̃⊕ V/G,

[

D(A)

dt

]

ξ̄

[v](t) =

[

D(A)

dt

∣

∣

∣

∣

t=t0

exp((t− t0)ξ)v
h
q0(t)

]

=

[

D(A)

dt

∣

∣

∣

∣

t=t0

exp((t− t0)ξ)v
h
q0(t0)

]

+

[

D(A)

dt

∣

∣

∣

∣

t=t0

vhq0(t)

]

= [ξVv ] +

[

D(A,H)

dt

]

[v](t)

Thus
[

D(A,V )

dt

]

ξ̄
[v](t) = [ξVv ] and the drift equation

d

dt
J(q̇(t)⊕ v(t))(η) = −

〈

∂L(G)

∂v
(q̇(t)⊕ v(t)), ω(q̇(t), ηQq(t)) + ηVv(t)

〉

reduces to

〈

D

dt

(

∂L(G)

∂ξ̄

)

, η̄(t)

〉

−

〈

ad∗ξ̄(t)
∂L(G)

∂ξ̄
, η̄(t)

〉

= −

〈

∂L(G)

∂[v]
, [ω]G(ẋ⊕ ξ̄, η̄) + [∇(A,V )]G,η̄[v]

〉

,

which is the new vertical equation obtained in the reduction process. □

5. The Poisson category LP∗

The objects of the category LP∗ are bundles τ̄Q ⊕ τ̄ : T ∗Q⊕ V ∗ → Q, such
that V ∗ → Q is the dual of a Lie algebra vector bundle V → Q, equipped
with a linear connection ∇, and Q has a 2-form ω taking values in V . An
element T ∗Q⊕ V ∗ → Q ∈ LP∗ can be thought as the dual of a vector bundle
TQ⊕ V → Q ∈ LP, with the same structures ω, [·, ·] and∇ (we use the same
notation for a linear connection and its dual).

Elements of LP∗ are Poisson manifolds as we now describe.
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Proposition 16. [7] If τ̄Q ⊕ τ̄ : T ∗Q⊕ V ∗ → Q is dual to an element
TQ⊕ V → Q ∈ LP, then there is a unique Poisson bracket

{, } : C∞(T ∗Q⊕ V ∗)× C∞(T ∗Q⊕ V ∗)→ C∞(T ∗Q⊕ V ∗)

characterized by its restriction to affine functions as

{f̄ , ḡ} = 0 for all f, g ∈ C∞(Q)

{f̄ , P (X ⊕ w)} = X[f ]

{P (X1 ⊕ w1), P (X2 ⊕ w2)} = −P ([X1 ⊕ w1, X2 ⊕ w2])

where

• for f in C∞(Q), we define f̄ = f ◦ τ̄Q ⊕ τ̄

• for X ⊕ w ∈ Γ(TQ⊕ V ) we define

P (X ⊕ w)(p⊕ ν) = ⟨p,X⟩+ ⟨ν, w⟩.

for all p⊕ ν ∈ T ∗Q⊕ V ∗

This Poisson bracket behaves well under reduction by stages, in partic-
ular we have:

Proposition 17. [7] A LP action of a Lie group on an element TQ⊕ V ∈
LP naturally induces an action on T ∗Q⊕ V ∗ ∈ LP∗ such that the projec-
tion T ∗Q⊕ V ∗ → T ∗(Q/G)⊕ g̃∗ ⊕ V ∗ is a Poisson map with respect to the
Poisson brackets defined in Proposition 16.

The explicit expression of the Poisson bracket of Proposition 16 was
given for Lagrange–Poincaré bundles of the type T (Q/G)⊕ g̃ in [6]. The
generalization to the whole LP category is given hereunder:

Proposition 18. If τ̄Q ⊕ τ̄ : T ∗Q⊕ V ∗ → Q is an element of the LP∗ cat-
egory dual to an element TQ⊕ V → Q ∈ LP, then the Poisson bracket char-
acterized in Proposition 16 is the following

{f, g} =
∂f

∂q

∂g

∂p
−
∂g

∂q

∂f

∂p
+

〈

ν, ω

(

∂f

∂p
,
∂g

∂p

)〉

+

〈

ν,

[

∂g

∂ν
,
∂f

∂ν

]〉

.

Proof. It is necessary to prove that this expression defines a Poisson bracket
on T ∗Q⊕ V ∗ and that it has the required properties for affine functions.
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Skew-symmetry and alternativity of {, } are a consequence of the skew-
symmetry and alternativity of ω and the Lie bracket on V . Proving the Ja-
cobi identity for general functions f, g ∈ C∞(T ∗Q⊕ V ∗) directly from the
formula can be excruciating, yet, since {, } does only depend on the differ-
ential of f, g it suffices to prove it for affine funtions.

We first prove that {, } has the required properties for affine func-
tions in order to coincide with the bracket above. Since for any f̄ , with

f ∈ C∞(Q), ∂f̄
∂p = ∂f̄

∂ν = 0 then {f̄ , ḡ} = 0 for all f, g ∈ C∞(Q). For any

P (X ⊕ w), ∂P (X⊕w)
∂p = X and ∂P (X⊕w)

∂ν = w. Thus,

{f̄ , P (X ⊕ w)} =
∂f

∂q

∂P (X ⊕ w)

∂p
= X[f̄ ] = X[f ].

Finally, to obtain {P (X1 ⊕ w1), P (X2 ⊕ w2)} is necessary to calculate
∂P (X⊕w)

∂q . This can be done using local coordinates in T ∗Q⊕ V ∗,

P (X ⊕ w) = Xi(q1 . . . qn)pi + wα(q1 . . . qn)να,

where (qi, pi), i = 1 . . . n = dimQ are coordinates in T ∗Q and να, α = 1 . . .m
are independent local sections on V . Then,

∂P (X ⊕ w)

∂qj
=
∂Xi

∂qj
pi +

(

∂wα

∂qj
+ Γα

βjw
β

)

να.

From where it follows that

〈

∂P (X1 ⊕ w1)

∂q
,X2

〉

= P (X1 ◦X2) + P (∇X2
w1).

Hence,

{P (X1 ⊕ w1), P (X2 ⊕ w2)}

=

〈

∂P (X1 ⊕ w1)

∂q
,X2

〉

−

〈

∂P (X2 ⊕ w2)

∂q
,X1

〉

+ ⟨ν, ω(X1, X2)− [w1, w2]⟩

= −P ([X1, X2])(p, ν) + P (∇X2
w1 −∇X1

w2)(p, ν)

+ P (ω(X1, X2)− [w1, w2])(p, ν)

= −P ([X1 ⊕ w1, X2 ⊕ w2])
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These properties imply the Jacobi identity for affine functions, and
hence, for all. In fact

{f̄ , {ḡ, h̄}}+ {ḡ, {h̄, f̄}}+ {h̄, {f̄ , ḡ}} = 0 + 0 + 0 = 0;

{f̄ , {ḡ, P (X ⊕ w)}}+ {ḡ, {P (X ⊕ w), f̄}}+ {P (X ⊕ w), {f̄ , ḡ}}

= {f̄ , X[g]}+ {ḡ,−X[f ]}+ 0 = 0;

{f̄ , {P (X1 ⊕ w1), P (X2 ⊕ w2)}}+ {P (X1 ⊕ w1), {P (X2 ⊕ w2), f̄}}

+ {P (X2 ⊕ w2), {f̄ , P (X1 ⊕ w1)}}

= {f̄ ,−P ([X1 ⊕ w1, X2 ⊕ w2])}

+ {P (X1 ⊕ w1),−X2[f ]}+ {P (X2 ⊕ w2), X1[f ]}

= −[X1, X2][f ] +X1[X2[f ]]−X2[X1[f ]] = 0;

For three functions P (Xi ⊕ wi), the Jacobi identity is based on the Jacobi
identity for the Lie bracket on Γ(TQ⊕ V )

{P (X1 ⊕ w1), {P (X2 ⊕ w2), P (X3 ⊕ w3)}}

= −{P (X1 ⊕ w1), P ([X2 ⊕ w2, X3 ⊕ w3])}

= P ([X1 ⊕ w1, [X2 ⊕ w2, X3 ⊕ w3]])

At last, the Leibniz identity is easily obtained from the expression. □

From this last result we can give an intrinsic definition of the LP∗ with-
out an explicit notion of duality with respect to the Lagrange–Poincaré
category. More precisely:

Definition 19. The objects of LP∗ are bundles T ∗Q⊕ V ∗ → Q, such that
V ∗ → Q is the dual of a Lie algebra vector bundle V → Q, equipped with a
linear connection ∇, Q has a 2-form ω taking values in V , and the bracket
given in (18) is a Poisson bracket.

From this definition, it is not difficult to see that T ∗Q⊕ V ∗ → Q ∈ LP∗

if and only if TQ⊕ V ∈ LP with the same structures.
We finally study the dynamical equations defined by the Poisson bracket

in the dual Lagrange–Poincaré category. Let H : T ∗Q⊕ V ∗ → R be a
Hamilltonian on an element of LP∗. A simple computation shows that the
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Hamiltonian field defined by the bracket (18) is given by

XH =

(

∂H

∂p
,−

∂H

∂q
+

〈

ν, ω

(

·,
∂H

∂p

)〉

, ad∗∂H

∂ν

ν

)

A curve (p(t), ν(t)) in T ∗Q⊕ V ∗, projecting to a curve q(t), is an integral
of XH if and only if

q̇ =
∂H

∂p
Dp

dt
= −

∂H

∂q
+

〈

ν, ω

(

·,
∂H

∂p

)〉

∇ν

dt
= ad∗∂H

∂ν

ν.

These equations are called the Hamilton-Poincaré equations for H.
Given a Lagrangian L : TQ⊕ V → R in the Lagrange–Poincaré cate-

gory, we define the Legendre map FL : TQ⊕ V → T ∗Q⊕ V ∗ in the usual
way as the fiber derivative of L. We write this as

(q, q̇, v) 7→ (q, p = ∂L/∂q̇, ν = ∂L/∂v).

If FL is a diffeomorphism, we define the Hamiltonian H : T ∗Q⊕ V ∗ → R as

H : T ∗Q⊕ V ∗ →R

(p, ν) 7→⟨p, q̇⟩+ ⟨ν, v⟩ − L(q̇ ⊕ v),

where (q̇, v) = FL−1(p, ν). Then Lagrange–Poincaré equations and
Hamilton-Poincaré equations are equivalent. Reduction using momen-
tum techniques as in [14], that is, tracking the symplectic leaves structure,
should be a subject of future work. Specially, under the light of results in
Section 4.

6. Examples

6.1. Examples outside of RI

Let Z be an abelian Lie group, z be its abelian Lie algebra, and P →M be
a Z-principal bundle. Since the adjoint action is trivial, the adjoint bundle
z̃→M is a trivial Lie algebra vector bundle. Let V →M be a non-trivial
vector bundle equipped with a trivial fiberwise Lie bracket. Then the bundle
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TM ⊕ V cannot belong to the subcategory RI of reduced tangent bundles.
However, it can be seen as an object in LP, considering the adequate triple
[, ], ω and∇. Firstly, we choose a flat connection∇ on V . There are instances
of non-trivial vector bundles with flat connections, all of them over non-
simply connected manifolds. As ∇ is flat and the Lie bracket on the fibers
is trivial, conditions 1.(e′) and 1.(f ′) are clearly satisfied. With respect to
1.(d′), we take any closed 2-form ω with respect to the covariant derivative
defined by ∇ (that is, a representative of the cohomology with values in V
defined by the covariant differential). In particular, we can even choose ω =
0. In short, the problems posed in TM ⊕ V with trivial [, ], flat connection
∇ and a form ω chosen as above are set in LP and not in the subcategory
RI.

We specify an example within this context. Let L : TM ⊕ V → R be the
Lagrangian given by

L(q, q̇, v) = g(q̇, q̇) + h(v, v),

where g is a Riemannian metric on M and h is a vector bundle metric on
V . The Lagrange–Poincaré equations are

∇q̇

dt
= h(v, ω(q̇, ·)),

∇v

dt
= 0.

The first equation provides the Newtonian dynamics of a particle on M un-
der a force defined by v and ω. This equation reduces to the simple geodesic
equation when ω = 0. The second equation is just the parallel transport of
v along q(t).

A similar construction can be given in a wider class of fiber bundles. Let
G be any non-abelian Lie group, g be its Lie algebra, and z be the center of
g. If P →M is a G-principal bundle, then the adjoint bundle g̃→M has a
trivial subbundle with fiber dimension equal to the dimension of the center.
Indeed, the subbundle

z̃ = {[p,B]G : p ∈ P,B ∈ z}

can be identified with M × z as the adjoint action in the center is trivial.
In addition, at each point, the subbundle is the center of the Lie algebra
on the fibers of g̃. Furthermore, suppose that g is a reductive Lie algebra,
that is, g = z⊕ s where s is semisimple. Accordingly, the adjoint bundle can
be decomposed as g̃ = z̃⊕ s̃. If we replace z̃ by a non-trivial vector bundle
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V →M equipped with a trivial bracket, the bundle TQ⊕ V ⊕ s̃→M does
not belong to the subcategory RI even though it is an element of LP with
a convenient choice of connection ∇ and 2-form ω.

6.2. Lagrangian Depending on a Parameter

Let L : T (G×Q)× V ∗ → R be a Lagrangian function where G is a Lie
group, Q is a manifold, and V ∗ is the dual of a vector space V , for which the
variable V ∗ is understood as a parameter. More precisely, for each a0 ∈ V

∗,
we are looking for curves (g(t), q(t), a0) in G×Q× V ∗ which are critical
points of the action

∫ t1

t0

L([g](1), [q](1), a0)dt

with restrictions on variations given by δg(ti) = δq(ti) = 0 for i = 0, 1 and
a0 fixed (δa0 = 0). For the sake of simplicity, hereafter [g](1) and [q](1) will
be respectively denoted (g, ġ) and (q, q̇). We note that we are in a similar
setting to the semi-direct product Lagrangian in [11].

We consider a representation of G on V as well as the induced dual
representation on V ∗, so that G acts on T (G×Q)× V ∗ as follows

h(g, q, ġ, q̇, a0) = (hg, q, hġ, q̇, ha0)

for all h ∈ G and (g, q, ġ, q̇, a0) ∈ T (G×Q)× V ∗. We assume that L is in-
variant with respect to that action and we define a reduced Lagrangian

l : g× TQ× V ∗ →R

(ξ, q, q̇, a) 7→l(ξ, q, q̇, a) = L(e, q, ξ, q̇, a)

Therefore, for all g ∈ G, all q ∈ Q and all a0 ∈ V
∗,

L(g, q, ġ, q̇, a0) = l(ξ, q, q̇, a),

where ξ = g−1ġ and a = g−1a0.
The reduction of the variational problem of L defined above is as follows.

Solutions of the reduced problem are curves (ξ(t), q(t), a(t)) in g× TQ× V ∗,
whith ξ(t) = g−1(t)ġ(t) and a(t) = g−1(t)a0, that are critical elements for the
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action defined by l with restricted variations

δξ = η̇ + [ξ, η]

where η is a curve in g such that δη(ti) = 0 for i = 0, 1; δq(ti) = 0, for i = 0, 1;
and

δa = −ηV
∗

a ,

satisfying the additional condition

(8) ȧ+ ηV
∗

a = 0

coming from ȧ0 = 0. This equivalence of principles inmediately leads to equa-
tions

−
D

dt

(

∂l

∂ξ

)

+ ad∗ξ
∂l

∂ξ
+
∂l

∂a
⋄ a = 0,(9)

∂l

∂q
−
D

dt

(

∂l

∂q̇

)

= 0,(10)

where we define (b ⋄ a)(η) = −⟨ηV
∗

a , b⟩, for all η ∈ g, a ∈ V ∗, and b ∈ V .
Thus, these Lagrange–Poincaré equations together with condition, ȧ+
ηV

∗

a = 0 solve, directly from the variational principle, the problem of an
invariant Lagrangian depending on a parameter.

However, it is interesting to obtain these equations from different per-
spectives. For example, in [11], Euler-Poincaré reduction is performed when
Q is a point and L : TG× V ∗ → R. In general, the equations can be also
obtained combining Lagrange–Poincaré reduction and Lagrange multiplyers
(see [7] and [5]) for Lagrangians

LV : T (G×Q× V ∗ × V )→R

(g, q, a, b, ġ, q̇, ȧ, ḃ) 7→L(g, q, ġ, q̇, a) + ⟨ȧ+ g−1ġa, b⟩.

We are going to give here a different approach within the Lagrange–Poincaré
category LP.

For that, we define the Lagrangian

L̄ : T (G×Q)⊕ Ṽ ∗ ⊕ Ṽ →R

(g, q, ġ, q̇, a0, b0) 7→L(g, q, ġ, q̇, a0) + ⟨a0, b0⟩,

where Ṽ = (G×Q)× V is a trivial vector bundle endowed with the cor-
respondingly trivial connection, ∇; and a trivial Lie bracket, [·, ·] = 0, in
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the fibers. Furthermore, Ṽ ∗ accounts for the dual of this bundle similarly
equipped with a trivial Lie bracket. This, together with the null Ṽ ∗ ⊕ Ṽ -
valued 2-form on G×Q makes T (G×Q)⊕ Ṽ ∗ ⊕ Ṽ a Lagrange–Poincaré
bundle and, hence, there is a notion of Lagrange–Poincaré equations for L̄.

Since the 2-form of this LP-bundle is zero, the horizontal Lagrange–
Poincaré equation of L̄ depends only on horizontal derivatives of L̄. These
coincide with the horizontal derivatives of L, and consequently, the hori-
zontal Lagrange–Poincaré equation of L̄ coincide with the Euler–Lagrange
equations for the original Lagrangian L. On the other part, there are two ver-
tical Lagrange–Poincaré equations as Ṽ ∗ ⊕ Ṽ has two factors. The vertical
equation coming from Ṽ imposes that a0 is a fixed parameter

0 =
D

dt

(

∂L̄

∂b0

)

= ȧ0,

while the vertical Lagrange–Poincaré equation coming from Ṽ ∗ gives the
evolution of the auxiliary variable b0:

0 =
D

dt

(

∂L̄

∂a0

)

=
D

dt

(

∂L

∂a0

)

+ ḃ0,

To reduce the Lagrange–Poincaré equations of L̄ to equations (8), (9),
and (10), we first discuss the action of G on T (G×Q)⊕ Ṽ ∗ ⊕ Ṽ and the re-
sulting quotient LP-bundle. Since T (G×Q)⊕ Ṽ ∗ ⊕ Ṽ ∼= T (G×Q)⊕ (G×
Q× V ∗)⊕ (G×Q× V ) the action of h ∈ G can be explicited as

h · ((g, q, ġ, q̇)⊕ (g, q, b0)⊕ (g, q, a0))

= (hg, q, hġ, q̇)⊕ (hg, q, hb0)⊕ (hg, q, ha0).

On the other hand, we have the isomorphism for the quotient bundle

TQ⊕ g̃⊕ Ṽ ∗/G⊕ Ṽ /G ∼= TQ⊕ (Q× g)⊕ (Q× V ∗)⊕ (Q× V )

(q, q̇)⊕ [(e, q), ξ]G ⊕ [g, q, b0]G ⊕ [g, q, a0]G ←→ (q, q̇)⊕ (q, ξ)⊕ (q, b)⊕ (q, a),

where b = g−1b0, and a = g−1a0.
The bundle G×Q→ Q is equipped with the trivial connection that

induces in the adjoint bundle g̃ ∼= Q× g the trivial covariant derivative

D

dt
(q(t), ξ(t)) = (q(t), ξ̇(t)).
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This connection is flat, that is, B̃ = 0, and Q× g has a fiber-wise Lie
bracket given by [(q, ξ1), (q, ξ2)] = (q, [ξ1, ξ2]). The factor (Q× V ∗)⊕ (Q×
V ) ∼= Q× V × V ∗ has null Lie bracket and (Q× V × V ∗)-valued 2 form on
Q coming from the respective structures in Ṽ ∗ ⊕ Ṽ . However, reducing the
trivial connection of Ṽ ∗ ⊕ Ṽ ,

D

dt
(g(t), q(t), a0(t), b0(t)) = (g(t), q(t), ȧ0(t), ḃ0(t)).

to a connection in Ṽ ∗/G⊕ Ṽ /G ∼= (Q× V ∗)⊕ (Q× V ) is somewhat trickier:
It requires to separate the horizontal and vertical component as explained
in section 3.1. The explicit calculation of the vertical component of the
covariant derivative of a curve v(t) = (g(t), q(t), a0(t), b0(t)) in Ṽ ∗ ⊕ Ṽ is
done as in [7]. For a fixed t0, τ(v(t)) = (g(t), q(t)) = h(t)(g0, q(t)) where
g0 = g(t0) and h(t) = g(t)g−1

0 , then the horizontal component of Dv(t)/dt is

DH

dt

∣

∣

∣

∣

t=t0

v(t) =
D

dt

∣

∣

∣

∣

t=t0

(h(t)−1v(t)) =
D

dt

∣

∣

∣

∣

t=t0

(g0, q(t), g0a(t), g0b(t))

= (g0, q(t), g0ȧ(t0), g0ḃ(t0))

= (g(t), q(t), g(t)ȧ(t), g(t)ḃ(t))|t=t0 .

Differenciating a = g−1a0, we obtain ȧ+ ξV
∗

a = g−1ȧ0, and consequently,

DV

dt
v(t) =

D

dt
v(t)−

DH

dt
v(t) = (g(t), q(t), ȧ0(t)− g(t)ȧ(t), ḃ0(t)− g(t)ḃ(t))

= (g(t), q(t), g(t)ξVa(t), g(t)ξ
V ∗

b(t)).

It follows that for a section [v]G = (q, a(q), b(q)) of Q× V × V ∗ → Q, the
horizontal quotient connection is

[

∇(H)
]

G,(q,q̇,ξ)
[v]G = (q, q̇[a], q̇[b]),

and the vertical quotient connection is

[

∇(V )
]

G,(q,q̇,ξ)
[v]G = (q, ξVa(q), ξ

V
b(q)).

Direct application of Theorem 3 gives the LP-bundle structure on the quo-
tient bundle,

TQ⊕ (Q× g)⊕ (Q× V ∗)⊕ (Q× V ) ∼= TQ⊕ (Q× g× V ∗ × V ));
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determined by

∇g̃

(q,q̇)(q, ξ, a, b) = ∇
A
(q,q̇)(q, ξ)⊕

[

∇(H)
]

G,(q,q̇)
(q, a, b) = (q, q̇[ξ], q̇[a], q̇[b]);

ωg̃ = B̃ ⊕ [ω]G = 0;

[(q, ξ1, a1, b1), (q, ξ2, a2, b2)]
g̃ = (q, [ξ1, ξ2], (ξ1)

V ∗

a2
− (ξ2)

V ∗

a1
, (ξ1)

V
b2 − (ξ2)

V
b1).

Finally, since L is G-invariant and ⟨ga0, gb0⟩ = ⟨a0, b0⟩, L̄ is G-invariant
and the reduced Lagrangian is

l̄ : TQ⊕ (Q× g× V ∗ × V ))→R

(q, q̇, ξ, a, b) 7→l(q, q̇, ξ, a) + ⟨a, b⟩.

Its horizontal Lagrange–Poincaré equation is

0 =
D

dt

(

∂l̄

∂q̇

)

−
∂l̄

∂q
=
D

dt

(

∂l

∂q̇

)

−
∂l

∂q
,

which coincides with equation (10), while its vertical Lagrange–Poincaré
equation is

0 = −
D

dt

(

∂l̄

∂(ξ, a, b)

)

+ ad(ξ,a,b)

(

∂l̄

∂(ξ, a, b)

)

Applying this expression to any variation (δξ, δa, δb) ∈ g× V ∗ × V we have

0 =

〈

−
D

dt

(

∂l̄

∂(ξ, a, b)

)

+ ad(ξ,a,b)

(

∂l̄

∂(ξ, a, b)

)

; δξ, δa, δb

〉

= −

〈

D

dt

(

∂l̄

∂ξ

)

, δξ

〉

−

〈

D

dt

(

∂l̄

∂a

)

, δa

〉

−

〈

D

dt

(

∂l̄

∂b

)

, δb

〉

+

〈

∂l̄

∂(ξ, a, b)
; [ξ, δξ], (ξ)V

∗

δa − (δξ)V
∗

a , (ξ)Vδb − (δξ)Vb

〉
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=−

〈

D

dt

(

∂l

∂ξ

)

, δξ

〉

−

〈

D

dt

(

∂l

∂a

)

, δa

〉

−
〈

ḃ, δa
〉

−

〈

D

dt

(

∂l

∂b

)

, δb

〉

+

〈

∂l

∂ξ
, [ξ, δξ]

〉

+

〈

∂l

∂a
, (ξ)V

∗

δa − (δξ)V
∗

a

〉

+
〈

b, (ξ)V
∗

δa − (δξ)V
∗

a

〉

+

〈

∂l

∂b
, (ξ)Vδb − (δξ)Vb

〉

=

〈

−
D

dt

(

∂l

∂ξ

)

+ adξ

(

∂l

∂ξ

)

−
∂l

∂a
⋄ a, δξ

〉

+

〈

−
D

dt

(

∂l

∂a

)

− ḃ− ξV∂l

∂a

− ξVb , δa

〉

−
〈

ȧ+ ξVa , δb
〉

where it has been repeatedly used that ⟨a, ξVb ⟩+ ⟨ξ
V ∗

a , b⟩ = 0 for all ξ ∈ g

and the abuse of notation ⟨a, b⟩ = ⟨b, a⟩. As the variations δξ, δa, δb are free,
we recover (8), (9) as well as the evolution of the auxiliary variable b.
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