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constructions
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There is a large number of different ways of constructing Calabi-
Yau manifolds, as well as related non-geometric formulations, rele-
vant in string compactifications. Showcasing this diversity, we dis-
cuss explicit deformation families of discretely distinct Hirzebruch
hypersurfaces in P

n×P
1 and identify their toric counterparts in

detail. This precise isomorphism is then used to investigate some
of their special divisors of interest, and in particular the secondary
deformation family of their Calabi-Yau subspaces. Moreover, most
of the above so called Hirzebruch scrolls are non-Fano, and their
(regular) Calabi-Yau hypersurfaces are Tyurin-degenerate, but ad-
mit novel (Laurent) deformations by special rational sections as
well as a sweeping generalization of the transposition construc-
tion of mirror models. This bi-projective embedding also reveals
a novel deformation connection between distinct toric spaces, and
so also the various divisors of interest including their Calabi-Yau
subspaces.
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1. Introduction, rationale and summary

Constructing complex algebraic varieties as complete intersections of holo-
morphic hypersurfaces within a well-understood “ambient” space, A, has
recently been generalized so as to include cases where some of those hyper-
surfaces have a negative degree over some factors in A [1]. The diffeomor-
phism class and cohomology of such generalized complete intersections (gCI,
gCICY if c1=0) have been studied [2, 3], and they were soon provided with
a rigorous scheme-theoretic definition [4]. Such constructions of immediate
physics interest are anticanonical (Calabi-Yau) hypersurfaces in non-Fano
varieties, their toric models and their Laurent deformations were further ex-
plored in [5], extending the already immense database [6] to include infinitely
many, though not necessarily distinct, constructions.

The purpose of this article, in part, is to provide a bridge between these
different approaches, aiming to further explore the generalization [5] of the
transposition mirror model construction [7–9] and Batyrev’s toric construc-
tion [10]; see also [11] and references therein. To this end, we follow suit
from the earlier work [2, 5] and continue to examine the generalized com-
plete intersection Calabi-Yau models in the “proof of concept” showcasing
the infinite sequence of deformation families

[

P
n 1 n

P
1 m 2−m

]

and their toric ren-
dition. The bi-projective embedding is the (generalized when m⩾3) com-
plete intersection of two hypersurfaces of bi-degrees ( 1

m) and( n
2−m), were the

latter hypersurface is for m⩾3 well defined only within the former. This
ordered approach reveals a detailed structure in this deformation family of
Calabi-Yau models.

In particular, we first focus on the deformation families
[

P
n 1

P
1 m

]

of Hirze-
bruch scrolls, and provide explicit, coordinate-level isomorphisms between
such hypersurfaces [2, 12] and their toric rendition [5]; see also [13–15].
This naturally maps their cohomology data, as well as their special sub-
spaces of interest, including the hallmark divisor of maximally negative self-
intersection (dubbed directrix [16]), and then also their Calabi-Yau sub-
spaces, as detailed in § 2. The remainder of that section shows that the
deformation family of Hirzebruch scrolls,

[

P
n 1

P
1 m

]

, contains besides the cen-
tral F (n)

m;0 also a hierarchy of its diffeomorphic but discretely different com-
plex deformations, F (n)

m;⃗ϵ , each harboring less negative (sub-)directrices. This
extends our comparisons across a detailed web of bi-projective and toric
constructions — both the infinite hierarchy of Hirzebruch scrolls, and then
also their Calabi-Yau subspaces.

Section 3 shows that the regular Calabi-Yau hypersurfaces,
X (n−1)

m ⊂F (n)

m;0, are for m⩾3 always Tyurin-degenerate, their codimension-1
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singularity itself Calabi-Yau. While generic scrolls F (n)

m;⃗ϵ admit smoothing

such hypersurfaces by regular sections, those in the central F (n)

m;0 can only
be desingularized by Laurent deformations [5]. The latter require special
attention to the putative pole singularities, detailed in § 3.2, but are shown
in §§ 3.3–3.4 to admit a straightforward extension of the transposition
mirror model construction [5, 7]. Finally, § 3.5 discusses such Laurent
deformations as virtual varieties (Weil divisors), as well as a recasting in
terms of desingularized finite quotients of ramified multiple covers.

The inclusion of these ideas and results in the gauged linear sigma mod-
els (GLSMs) [17, 18] are discussed in § 4, and our concluding remarks are
collected in § 5. The technically more detailed material is deferred to the
appendices. As indicated throughout, the results presented herein indicate
several avenues for further study, the pursuit of which is however beyond
the scope of such a “proof of concept” article.

2. Hirzebruch scrolls

Following Hirzebruch’s original definition [12], we identify the particular
hypersurface

(2.1)
F (n)

m;0 :=
{
p0(x, y) = 0

}
∈
[
P
n 1

P
1 m

]
,

p0(x, y) := x0y0
m+x1y1

m

as the central member of the deformation family of degree-( 1
m) hypersurfaces

in P
n×P

1:

(2.2)

F (n)

m;ϵ := {pϵ⃗ (x, y)=0} ∈
[
P
n 1

P
1 m

]
,

pϵ⃗ (x, y) := p0(x, y) +

n∑

a=0

m−1∑

ℓ=1

ϵaℓ xa y0
m−ℓy1

ℓ,

explicitly (and coarsely) parametrized by the ϵaℓ∈C. The gradient
∂p0=(y0

m, y1
m, . . . ) of even the central model (2.1) cannot vanish anywhere

on P
1 since y0, y1 cannot both vanish: even p0(x, y) is transverse (basepoint

free), so F (n)

m;0 :=p
−1
0 (0) is nonsingular, not just the generic F (n)

m;ϵ :=p
−1
ϵ (0).

Again following Hirzebruch [12], we identify F (n)

m;0 also with the m-twisted

P
n−1-bundle over P1 as well as the projectivization P

(
OP1 ⊕OP1(m)⊕(n−1)

)
.

A key feature of deformation families such as (2.2) is that although
the smooth hypersurfaces in the families with a fixed m≃m (mod n) are
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all diffeomorphic to each other, they form a discrete collection of distinct
complex manifolds — and these distinctions also pertain to the Calabi-Yau
hypersurfaces therein.

2.1. Topological characteristics

As usual, Hr(F (n)

m ,Z) = Hr(Pn×P
1,Z) without torsion [2], and with

J n+1
1 , J 2

2 , J
n
1 J2=0,

(2.3) c(F (n)

m ) =
(1 + J1)

n+1(1 + J2)
2

1 + J1 +mJ2
= (1+J1−mJ2)(1+J1)n−1(1+J2)

2.

The simplification owes to the identity (1+J1)2

1+J1+mJ2
=(1+J1−mJ2) insured by

the nilpotence of J2. Standard (Bézout’s theorem) computations then pro-
vide the n-tuple intersection numbers [19]:

(2.4)

[J1
n] =

[
P
n 1 1 · · · 1

P
1 m 0 · · · 0

]
= m,

[J1
n−1J2] =

[
P
n 1 1 · · · 1 0

P
1 m 0 · · · 0 1

]
= 1,

and all other intersections vanish again owing to J 2
2 =0. Also, powers of

(aJ1+bJ2) may be evaluated against complementary Chern classes to yield,
e.g., for n=4:

C 3
1 [aJ1+bJ2] = 16[6a+ (4b+ma)],

C1·C2[aJ1+bJ2] = 2[22a+ 3(4b+ma)],
(2.5a)

C3[aJ1+bJ2] = 12a+ (4b+ma),

C 2
1 [(aJ1+bJ2)

2] = 8a[2a+ (4b+ma)],
(2.5b)

C2[(aJ1+bJ2)
2] = a(8a+ 3(4b+ma)],

C1[(aJ1+bJ2)
3] = a2(2a+ 3(4b+ma)].

(2.5c)

Finally, the Chern numbers are m-independent:

C 4
1 = 512, C 2

1 ·C2 = 224,

C1·C3 = 56, C 2
2 = 96, C4 = χ

E
= 8.

(2.5d)

Jointly, (2.5) indicate an [m (mod n)]-dependence of these topological in-
variants for n=4, verified by the integral basis change, J̃1 :=J1−kJ2 and
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J̃2 :=J2:

(2.6) [J̃1
n] = (m−kn) and [J̃1

n−1J̃2] = 1, k∈Z,

This implies that F (n)

m ≈RF
(n)

m−kn for integral k are all diffeomorphic to each
other [20]: they are the same real manifold, and so are then the Calabi-Yau
hypersurfaces, X (n−1)

m ≈RX
(n−1)

m−kn∈F (n)

m [c1]; for details, see [2].
The entire infinite m-sequence of deformation families of hypersur-

faces (2.2) thus harbors precisely n distinct real manifolds, distinguished
only by [m (mod n)]. In particular, all transverse (and so smooth) scrolls in
the deformation families

[

P
n 1

P
1 m

]

for any fixed m≃m (mod n) are the same
real manifold.

2.2. Holomorphic characteristics

The m-sequence of deformation families of hypersurfaces (2.2) however ad-
mits infinitely many complex manifolds, distinguished by m, unreduced:
The hallmark holomorphic characteristic of Hirzebruch’s original [12, 21],
F (2)

m = F (2)

m := P
(
O⊕O(m)

)
, is its exceptional irreducible curve, Sm, a holo-

morphic hypersurface of self-intersection −m, the directrix [16, p. 525]. Cor-
respondingly, each Hirzebruch n-fold F (n)

m contains an exceptional irreducible
(holomorphic) hypersurface Sm⊂CF

(n)

m of self-intersection −(n−1)m. Addi-
tional relevant holomorphic distinctions are discussed in Appendix A, in-
cluding the result

(2.7a) dimH0(F (n)

m , T ) = n2+2 +∆(n)

m and dimH1(F (n)

m , T ) = ∆(n)

m ,

where the number of exceptional contributions is, using the step-function
ϑba :={1 if a⩽b, 0 otherwise}:

∆(n)

m;0 = ϑm1 (n−1)(m−1), for F (n)

m,0 = {x0 ym
0 +x1 y

m
1 =0} ∈

[

P
n

1
P
1

m

]

,(2.7b)

∆(n)

m;ϵ ̸=0 < ∆(n)

m;0; for generic cases, ∆(n)

m;ϵ ̸=0 = 0.(2.7c)

As there always exist more local reparametrizations than local deformations
of the complex structure, dimH0(F (n)

m , T )> dimH1(F (n)

m , T ), the scrolls F (n)

m

are effectively rigid: their space of complex structure deformations modulo
reparametrizations is discrete [2].

This “jumping” (2.7) in the dimensions of H∗(F (n)

m;ϵ, T ) depending on
the concrete choice of the defining equation (2.1)–(2.2) again illustrates the
variability of complex manifolds provided by even a simple deformation fam-
ily such as

[

P
n 1

P
1 m

]

. Even the simplest (F (2)

2 ⇝F (2)

0 , see [22] and [19, § 3.1.2])



✐

✐

“3-Hubsch” — 2024/1/2 — 18:27 — page 2546 — #6
✐

✐

✐

✐

✐

✐

2546 P. Berglund and T. Hübsch

of such discrete deformations has been known to affect string compactifica-
tions [23, 24]. Another, phenomenologically relevant effect of such discrete
deformations was explored in [25–27].

The directrix. The homology class of the directrix is easy to represent
as [Sm] = [J1]−[mJ2], so indeed

(2.8) [Sm]n =

[
P
n 1 1 · · · 1

P
1 m −m · · · −m

]
= m+ n(−m) = −(n−1)m.

An irreducible holomorphic submanifold representative of [Sm] must be the
zero-locus of a degree-

(
1

−m

)
global holomorphic section. No such section exist

on A=P
n×P

1, but there does exist a unique such section on F (n)

m =F (n)

m;0

and is easily constructed following the techniques introduced in [1, 2, 4].
To highlight the novelty and more general uses of this explicit construction,
we adapt from [2]: The key point is to identify sections s(x, y) on the zero-
locus {pϵ⃗ =0} ⊂ A with the restriction of the equivalence class of sections1,
[s(x, y) (mod pϵ⃗ )], on all of A. For example, a total degree-

(
1

−m

)
multiple of

p0(x, y) is of the form

(2.9)
p0(x, y)

(y0 y1)m
=

( x0
y1m

+
x1
y0m

)
, deg =

(
1

−m

)
,

which serves as the r0=r1=m case of the more general:

Construction 1. Given a degree-( 1
m) hypersurface {pϵ⃗ (x, y)0} ⊂ P

n×P
1

as in (2.2), construct
(2.10)

deg =
(

1
m−r0−r1

)
: sϵ⃗ (x, y;λ) := Flip

y0

[ 1

y0r0 y1r1
pϵ⃗ (x, y)

]
(mod pϵ⃗ (x, y)),

progressively decreasing r0+r1=2m, 2m−1, · · · , and keeping only those Lau-
rent polynomials that contain both y0- and y1-denominators but no y0, y1-
mixed ones. The “Flipyi

” operator changes the relative sign of the rational
monomials with yi-denominators. For algebraically independent such sec-
tions, restrict to a subset with maximally negative degrees that are not overall
(y0, y1)-multiples of each other.

1In physics, gauge potentials are a prime example, being defined only up to
gauge transformations: Aµ≃Aµ+∂µλ. This enables the Wu-Yang construction of
a magnetic monopole [28].
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In particular, the r0=r1=m and p0(x, y)= limϵ⃗!0 pϵ⃗ (x, y) case produces
the degree-

(
1

−m

)
directrix:

s(x, y)=s0(x, y) =
[( x0
y1m

− x1
y0m

)
+

λ

(y0 y1)m
p0(x, y)

]
(2.11)

=

{
+2 x0

y1
m if y1 ̸= 0, λ = +1,

−2 x1

y0
m if y0 ̸= 0, λ = −1.

Designed to generalize this patch-wise feature, the mod-pϵ⃗ equivalence
class of sections has a well-defined and holomorphic local representa-
tive everywhere on A. Since the difference sϵ⃗ (x, y;λ)−sϵ⃗ (x, y;λ

′) van-
ishes where pϵ⃗ (x, y)=0, the two local representatives such as (2.11) de-
fine a single well-defined holomorphic section (2.10) on the zero-locus
F (n)

m;⃗ϵ
:={pϵ⃗ (x, y)=0}. Moreover, ∂s0=

(
1

y1
m ,− 1

y0
m , . . .

)
cannot vanish any-

where on P
1 since y0, y1<∞; the analogous is true of sϵ⃗ (x, y) for generic

ϵ⃗. The section sϵ⃗ (x, y)|F (n)
m;⃗ϵ

is thereby transverse (basepoint free) and the
holomorphic hypersurface

(
Sm;⃗ϵ :=s

−1
ϵ⃗ (0)

)
⊂F (n)

m;⃗ϵ is nonsingular and so irre-
ducible. Away from {pϵ⃗ (x, y)=0}, sϵ⃗ (x, y) can only define an equivalence
class of subspaces corresponding to [Sm;⃗ϵ ]∈H∗(A). If r0=r1 and pϵ⃗ (x, y) is
y0↔y1 symmetric, Flipy0

evidently flips the sign in pϵ⃗ (x, y) itself, but not
so more generally; see § 2.5 for examples.

The Czech cohomology framework was explicitly shown to provide such
constructions with a rigorous scheme-theoretic definition [4]. Technically,
the putative poles in (2.11) are evaded by clearing the denominators and
connecting the patch-wise defined sections by the Mayer-Vietoris sequence.
Reassured by the existence of this formal-foundational framework, here we
continue the analysis following [2, 5]. Also, the toric framework reached in
the next subsection will reveal that these technical complexities are not
intrinsic, but a property of the embedding.

It should be clear that mod-pϵ⃗ equivalence classes of sections more neg-
ative than (2.10) cannot have a well-defined holomorphic representative ev-
erywhere on A. In turn, any multiple of sϵ⃗ (x, y) by a regular x, y-polynomial
is also a holomorphic mod-pϵ⃗ equivalence class of sections, of a correspond-
ingly less negative degree, but is clearly not algebraically independent.
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2.3. Toric rendition

Let’s focus first on the central, ϵ⃗=0 case, where the explicitly complementary
form of (2.1) and (2.11) suggests the reparametrization

(2.12a)

(x0, x1, x2, · · · ; y0, y1)! ( p0 , s , x2, · · · ; y0, y1),

det
[∂( p0 , s , x2, · · · ; y0, y1)
∂(x0, x1, x2, · · · ; y0, y1)

]
=−2,

which leaves the p0=0 hypersurface parametrized by (s, x2, · · · ; y0, y1). The
new variables inherit the P

n×P
1 degrees, and are identified with the Cox

variables of the toric rendition of F (n)

m as given in [5]:

(2.12b)

x0 x1 x2 · · · xn y0 y1

P
n 1 1 1 · · · 1 0 0

P
1 0 0 0 · · · 0 1 1

(2.12a)
−−−!

p0 s x2 · · · xn y0 y1

1 1 1 · · · 1 0 0
m −m 0 · · · 0 1 1

p0=0
−−−!

X1 X2 · · · Xn Xn+1 Xn+2

1 1 · · · 1 0 0
−m 0 · · · 0 1 1

The P
n×P

1-inherited degrees form the Mori vectors (given in the rows
of the right-hand side tabulation), i.e., the GLSM gauge charges [17, 18],
Qa

i :=Q
a(Xi): Q

1 = (1, 1, · · · , 1, 0, 0) and Q2 = (−m, 0, · · · , 0, 1, 1).
The n-space orthogonal to these two (n+2)-vectors is spanned by n

integral (n+2)-vectors νκi (with κ=1, . . . , n and i=1, . . . , n+2), a choice of
which is shown in the upper n rows:
(2.13)

In turn, the columns in the tabulation (2.13) specify: (1) Below the divide are
the 2-vector generators, Q⃗i, of the secondary fan, shown at right in (2.13) for
n=3 and m=4. (2) Above the horizontal divide are the n-vector generators,
ν⃗i <− ΣF (n)

m
, of the (primary) fan defining the toric variety F (n)

m . The so-called
spanning polytope [14], ∆⋆

F (n)
m

, is shown at left: its faces are the bases of the
cones in ΣF (n)

m
, denoted “∆⋆

F (n)
m
>−ΣF (n)

m
.” For m⩾3, ∆⋆

F (n)
m

is non-convex (ν1
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is a saddle-point), reflecting that F (n)

m not Fano. This fan also shows F (n)

m to
be a P

n−1-fibration (encoded by ν1, · · · , νn) over the base-P1 (encoded by
νn+1, νn+2).

The mutually defining relation,

(2.14)

n+2∑

i=1

Qa
i ν

κ
i = 0,

{ a=1, 2;
κ=1, · · ·, n.

specifies the integral components νκi only up to linear combinations νκi ≃∑
λ c

κ
λ ν

λ
i , so the integral n-vectors ν⃗i are defined only up to overall GL(n;Z)

transformations. Analogously, the GLSM gauge charges Qa
i are defined only

up to linear combinations Qa
i ≃

∑
bC

a
bQ

b
i , so the secondary fan generators

Q⃗i are defined only up to GL(2;Z) transformations. Verifying certain addi-
tional conditions [29], the Qa-vectors are identified as the Mori vectors for
the toric variety specified in (2.13).

The toric specification (2.13) is detailed [13–15, 30, 31]: Each top-
dimensional cone σI ∈ΣF (n)

m
(over a facet of ∆⋆

F (n)
m

) encodes a C
n-like chart of

F (n)

m , glued together as per their intersection, σI ∩σJ ⊂ΣF (n)
m

. The complete
hierarchy of these mutual intersections, down to the 1-cones νi, fully speci-
fies not only the space F (n)

m but also its toric holomorphic submanifolds and
their mutual intersections [31]. In particular, each of these 1-cones specifies
a divisor defined as the zero locus of a (Cox) variable, such as the νi 7!Xi

in (2.13), which in turn generate the homogeneous coordinate ring of the
toric space [32].

2.4. The anticanonical system

Another key holomorphic characteristic of the ambient space in which we
seek Calabi-Yau hypersurfaces,

(2.15)

(
X (n−1)

m ⊂
(
F (n)

m :={p0(x, y)=0}
))

∈
[
P
n 1 n

P
1 m 2−m

]
,

p0(x, y)=x0y0
m+x1y1

m,

are the anticanonical sections Γ
(
K∗

F (n)
m

=O( n
2−m)

∣∣
F (n)

m

)
, i.e., degree-( n

2−m)

defining equations q(x, y)=0. For m=0 and 1, all 3
(
2n−1
n

)
such sec-

tions are regular (x, y)-polynomials on A=P
n×P

1, while for m=2 only
2
(
2n−1
n

)
=
(
2n
n

)
are regular, global polynomials. The remaining

(
2n−1
n

)
sec-

tions are non-polynomial [19, 33], and stem from certain 1-forms on
A=P

n×P
1. In the general, m⩾3 cases, those 1-forms are the sole source
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of K∗
F (n)

m
-sections, as evident from the Koszul resolution of the restriction

OA(
n

2−m)!O( n
2−m) |F (n)

m
[1, 2].

For the required total degree-( n
2−m) and m⩾3, we list products of non-

negative powers of the variables (2.12) except p0, all of which must have at
least one s(x, y)-factor:
(2.16)

q(x, y;λ) :=

n−1∑

k=0

km+2∑

ℓ=0

c(n−k−1)

ℓ (x2, · · · , xn)︸ ︷︷ ︸
deg=

(

n−k−1
0

)

(
y0

km+2−ℓy1
ℓ
)

︸ ︷︷ ︸
+

(

0
2+km

)

s(x, y;λ)k+1

︸ ︷︷ ︸
+ (k+1)

(

1
−m

)

.

where the c(n−k−1)

ℓ are regular polynomials of their arguments, and the mod-
p0 equivalence is inherited from the s-factor. This may be seen as a gener-
alization of Construction 1 and (2.10).

The toric rendition encodes the anticanonical sections by the polar [13–
15] of the spanning polytope, ∆⋆

F (n)
m
>−ΣF (n)

m
(such as in (2.13), left and mid-

dle):

(2.17) (∆⋆
F (n)

m
)◦ def= {u: ⟨v, u⟩+1⩾0, v∈∆⋆

F (n)
m

}.

These regular anticanonical sections are then all of the form [10]:

H0(F (n)

m ,K∗) ∋
∑

µ∈M∩(∆⋆F (n)
m

)◦

aµ

( ∏

νi<−∆⋆F (n)
m

X
⟨νi,µ⟩+1

i

)
(2.18)

where νi<−∆⋆
X are the vertices of ∆⋆

X , i.e., the 1-cone generators of ΣX , with
N -lattice co-prime coordinates specifying the Cox variables Xi, and M is
the lattice dual to N . This yields

(2.19) H0(F (2)

m ,K∗) ∋ X1X2

(
c10X3

2 + c11X3X4 + c12X4
2
)

+X1
2
(
c00X3

m+2 + c01X3
m+1X4 + · · ·+ c0m+1X3X4

m+1 + c0m+2X4
m+2

)
,

exactly matching the n=2 case of (2.16) after renaming the variables as
in (2.12b) and having simplified, e.g., c10(X2) = c10X2 and c00(X2) = c00, so
the coefficients cn−k−1

i in (2.19) are plain constants. These regular polyno-
mials indeed all have an overall factor of X1↔s(x, y), and so fully agree
with (2.16).

The “tuning” of q(x, y;λ) in (2.16) to (2.1) builds the moduli space of
generalized complete intersections such as (2.15) over the deformation space
(even if discrete) of the general type ambient spaces such as (2.1). While we
defer a detailed study of this hierarchy, let us consider a few examples.
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2.5. Discrete deformations

Consider the Hirzebruch scroll F (3)

5;0={x0 y05+x1 y15} ∈
[

P
3 1

P
1 5

]

, with its

Figure 1: The toric specification of F (3)

5 (left) and its spanning polytope
(middle and right)

unique degree-
(

1
−5

)
directrix, s(x, y); see (2.11). The reparametriza-

tion (2.12a) leads to the toric rendition in Figure 1, its spanning polytope,
∆⋆

F
(3)

(5,0,0)
, depicted to the right of the tabulation from two vantage points

for clarity. It is non-convex at the saddle-point, ν1. The horizontal polygon
spans the fan of the fibre-P2 and −

∑3
i=1Q

2(Xi)=5 is the total twist in this
P
2-bundle over P1.

A simple deformation. Consider deforming the n=3, m=5 central
case (2.1) in the

[

P
3 1

P
1 5

]

deformation family, which corresponds to the toric

specification of F (3)

5 in Figure 1:

p1(x, y) = x0 y0
5 + x1 y1

5 + x2 y1
4y0

1.(2.20a)

It admits two algebraically independent directrices:

(
1

−4

)
: s1,1(x, y) =

x0 y0
y51

+
x2
y41

− x1
y40

(mod p1),(2.20b)

(
1

−1

)
: s1,2(x, y) =

x0
y1

− x2
y0

− x1 y
4
1

y50
(mod p1).(2.20c)

As above, the reparametrization

(2.21)

(x0, x1, x2, · · ·; y0, y1)! (p1, s1,1, s1,2, · · ·; y0, y1),

det
[∂(p1, s1,1, s1,2, · · ·; y0, y1)
∂(x0, x1, x2, · · ·; y0, y1)

]
= 4
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again has a constant Jacobian, and produces the toric rendition:
(2.22)

where the Cox variables are X1=s1,1, X2=s1,2, X3=x3, X4=y0 and
X5=y1.

Another simple deformation. Another simple deformation within the
[

P
3 1

P
1 5

]

deformation family,

(15) : p2(x, y) = x0 y0
5 + x1 y1

5 + x2 y1
3 y0

2(2.23a)

admits two algebraically independent directrices:

(
1

−3

)
: s2,1(x, y) =

x0 y
2
0

y51
+
x2
y31

− x1
y30

(mod p2),(2.23b)

(
1

−2

)
: s2,2(x, y) =

x0
y21

− x2
y20

− x1y
3
1

y50
(mod p2).(2.23c)

As above, the reparametrization

(2.24)

(x0, x1, x2, · · ·; y0, y1)! (p2, s2,1, s2,2, · · ·; y0, y1),

det
[∂(p2, s2,1, s2,2, · · ·; y0, y1)
∂(x0, x1, x2, · · ·; y0, y1)

]
= 4

again has a constant Jacobian and produces the toric rendition:
(2.25)
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where the Cox variables are X1=s2,1, X2=s2,2, X3=x3, X4=y0 and
X5=y1.

A double deformation. Consider a further, P1-symmetrizing deforma-
tion of (2.23a):

deg =(15) : p3(x, y) = x0 y0
5 + x1 y1

5 + x2 y1
3 y0

2 + x3 y1
2 y0

3(2.26a)

and admits three algebraically independent directrices:

deg =
(

1
−2

)
: s3,1(x, y) =

x0
y12

− x2
y02

− x3 y1
y03

− x1 y1
3

y05
(mod p3),(2.26b)

deg =
(

1
−2

)
: s3,2(x, y) =

x0 y
3
0

y51
+
x2 y0
y31

+
x3
y21

− x1
y20

(mod p3),(2.26c)

deg =
(

1
−1

)
: s3,3(x, y) =

x0 y
2
0

y31
+
x2
y1

− x3
y0

− x1 y
2
1

y30
(mod p3).(2.26d)

These s3,i(x, y) have four monomials instead of just two in (2.12a). As before,
the reparametrization

(2.27) (x0, x1, x2, x3, · · ·; y0, y1)! (p3, s3,1, s3,2, s3,3, · · ·; y0, y1),

has a constant Jacobian, det
[∂(p3,s3,1,s3,2,s3,3,···;y0,y1)

∂(x0,x1,x2,x3,···;y0,y1)

]
=8. The 3-dimensional

hypersurface p3(x, y)=0 has the straightforward toric rendition with the
Cox variables Xi=s3,i(x, y), X4=y0 and X5=y1:
(2.28)

where the choice of Q-charges on the far left (bottom two rows) follows from
the change of variables (2.27) with (2.26), which simplifies to Q2 = Q̃2+Q1,
reflecting the F (3)

5 ≈RF
(3)

2 diffeomorphism of Hirzebruch scrolls. In turn,
the ΣF

(3)
5;ϵ3

<−∆⋆
F

(3)

(1,1,0)
specification (2.28) unambiguously specifies this latter

choice of 5-vectors, (Q1, Q2), as the correct Mori vectors [29], consistent
with a star-triangulation of the spanning polytope and the corresponding
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simplicial unit subdivision of the fan. This type of discrete deformations
F (n)

m ⇝F (n)

m (mod n) have been seen to affect string compactifications since early

on, notably in the simplest form, F (2)

2 ⇝F (2)

0 [23, 24]. By effectively reduc-
ing the negativity of X1, X2 and the total twist from 5 to 2, the resulting
toric specification F (3)

(1,1,0) in (2.28) no longer features directrices as negative
as (2.26b)–(2.26c), and deforms the non-Fano hypersurface (2.26d) into the
almost Fano F (3)

(1,1,0).

A comparison. Two rather distinct-looking members of this deformation
family of 3-folds, the y0↔y1-symmetrized versions of (2.20a), and an asym-
metric deformation of (2.23a):
(2.29)

[
P
3 1

P
1 5

]
∋
x0 y0

5+x1 y1
5 +x2 y0

4 y1+x3 y0 y1
4 = 0

x0 y0
5+x1 y1

5 +x2 y0
4 y1+x3 y0

3 y1
2 = 0

⇒
{
Q̃1(x0, · · · , y1) = (1, 1, 1, 0, 0)

Q̃2(x0, · · · , y1) = (−3,−1,−1, 1, 1)

⇒

X1 X2 X3 X4 X5

Σ
F

(
3
)

(
2
,0

,0
) −1 1 0 0 −2

−1 0 1 0 −2
0 0 0 1 −1

Q1 1 1 1 0 0
Q2 −2 0 0 1 1

Each of them admits a (different) collection of one degree-
(

1
−3

)
and two in-

dependent degree-
(

1
−1

)
directrices. Via analogous constant-Jacobian changes

of variables, they both lead to the same toric F (3)

(3,1,1)≈RF
(3)

(2,0,0), where the

last equivalence is again the toric rendition of Wall’s diffeomorphism [20].
This shows that there exist rather nontrivial identifications within the coarse
parameter space of

[

P
3 1

P
1 5

]

. For each n⩾2, F (n)

(2,0,··· ) is almost Fano: both its

spanning and its Newton polytope is convex and reflexive, although ∆⋆
F

(n)

(2,0··· )

has a degree-2 edge, which is polar to a double (n−2)-face in ∆F
(n)

(2,0··· )
.

By modifying the spanning polytope and its central fan, ∆⋆
F

(n)
−!
m

>−ΣF
(n)
−!
m

,
these and other deformations also modify the Newton polytope, both its
regular part and the extension, and thereby also the entire anticanonical
system.

The general picture. The hypersurfaces (2.20a), (2.23a) and (2.26a) are
evidently deformations of the n=3,m=5 case of (2.1). Consequently, F (3)

(4,1,0),
F (3)

(3,2,0) and F
(3)

(2,2,1)≈RF
(3)

(1,1,0) are all explicit (discrete) deformations of F (3)

5 . The
evident generalizations of these explicit constructions suggest:

Claim 1. For any integral n-tuple −!m with
∑n

i=1mi=m, the −!m-twisted
P
n−1-bundle over P

1 may be identified with toric variety F (n)
−!
m

, specified by

the two Mori (n+2)-vectors, Q1=(1, · · · , 1; 0, 0) and Q2=(−−!m; 1, 1). They
are all (discrete) deformations of F (n)

m , specified by Q2=(−m, 0, · · · , 0; 1, 1),
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and may all be located in specific regions of
[

P
n 1

P
1 m

]

, the full deformation

family of simple degree-( 1
m) hypersurfaces in P

n×P
1. Equivalently, F (n)

−!
m

≈
P
(
OP1 ⊕

⊕
iOP1(mi)

)
.

Recall that h1(F (n)

m , T )<h0(F (n)

m , T ) implies that all F (n)

m are effectively rigid,
so that their space of complex structures is discrete, which suggests the gen-
eral situation illustrated in Figure 2. The concrete examples (2.20a), (2.23a),

Figure 2: A rough sketch of the full deformation family of degree-( 1
m) hyper-

surfaces in P
n×P

1

(2.26a) and (2.29) do not have any explicit coefficients shown since those
are easily absorbed by (x, y)-rescaling. However, writing them out explicitly
shows that for each parameter, only ϵaℓ ̸=0 vs. ϵaℓ=0 is distinguished: all
these models are infinitesimally near each other. For a related but differently
constructed explicit deformation family containing F (2)

2 and F (2)

0 see [19, 22].
Either way, the result of (2.29) shows that the coarse ϵaℓ-parameter space
in (2.2) is subject to highly nontrivial identifications.

3. Calabi-Yau subspaces

We now turn to Calabi-Yau hypersurfaces in the central hypersurface in
the deformation family

[

P
n 1

P
1 m

]

; see Figure 2. Less special cases then include
deformations such as discussed in the previous section, and the deformation
space of Calabi-Yau hypersurfaces therein builds atop the effectively discrete
one in Figure 2.
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3.1. Tyurin degeneration: Calabi-Yau matryoshke

The explicit expansions (2.16)≈(2.19) show that for m⩾3, every anticanon-
ical section of F (n)

m factorizes:

H0(F (n)

m ,K∗) ∋ q(x, y) = c(x, y)·s(x, y),
deg(s)=

(
1

−m

)
, deg(c)=

(
n−1
2

)
,

(3.1)

c(x, y) :=

n−1∑

k=0

km+2∑

ℓ=0

c(n−k−1)

ℓ (x2, · · · , xn)
(
y0

km+2−ℓy1
ℓ
)
s
k(x, y).(3.2)

Thus, all anticanonical (Calabi-Yau) hypersurfaces reduce to a union of two
components:
(3.3)
m⩾3, F (n)

m ⊃
(
X (n−1)

m :=q−1(0)
)
=

(
Cm :=c

−1(0)
)
∪
(
Sm :=s

−1(0)
)
.

As divisors in F (n)

m , [X (n−1)

m ] = [Cm]+[Sm]. With generic coefficient polyno-
mials c(n−k−1)

i (x2, · · · , xn), the component c−1(0)⊂F (n)

m is non-singular and
holomorphic, and so irreducible. With s−1(0) having been named the direc-
trix [16], we call c−1(0) the complementrix.

Singularity. Being reducible for m⩾3, the generic Calabi-Yau (n−1)-fold
X (n−1)

m ⊂ F (n)

m is singular precisely at the intersection of its components:

(3.4) SingX (n−1)

m = Cm ∩ Sm ∈
[
P
n 1 1 n−1

P
1 m −m 2

]
.

The row-wise sum of degrees shows that SingX (n−1)

m is itself a Calabi-Yau
subspace, now of codimension-2 in F (n)

m — a Calabi-Yau matryoshka2, a
Calabi-Yau-within-Calabi-Yau. The reducible Calabi-Yau hypersurface (3.3)
and its codimension-1 singular set are sketched in Figure 3; it fits within the
framework of “Constructive Calabi-Yau manifolds” [34] and exhibits the
so-called Tyurin degeneration [35].

2We have recently learned that C. Doran has been independently using the same
term and metaphor for such iteratively nested chains of Calabi-Yau subspaces in
presentations.
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Figure 3: The generic Calabi-Yau hypersurface X (n−1)

m ⊂ F (n)

m for m⩾3 and
its codimension-1 singularity

Owing to the simple forms of p0(x, y) and s(x, y) and the reparametriza-
tion (2.12), it follows that
(3.5)

(x0 y0
m+x1 y1

m)=:p0(x, y) = 0 = s(x, y) :=
( x0
y1m

− x1
y0m

)
⇔ x0=0=x1,

which is not surprising, given the constant-Jacobian reparametrization
equivalence (p0, s, . . . ) ≈ (x0, x1, . . . ) found in (2.12a). This in turn leaves

♯X (n−2)

m = SingX (n−1)

m(3.6)

=
{ 2∑

ℓ=0

c(n−1)

ℓ (x2, · · · , xn)(y02−ℓy1
ℓ) = 0

}
∈
[
P
n−2 n−1
P
1 2

]
,

which is nonsingular for generic choices of the coefficient functions
c(n−1)

ℓ (x2, · · · , xn) — and is a regular anticanonical (Calabi-Yau) hypersur-
face.

Order matters. The left-to-right ordering of the hypersurfaces in
[

P
n 1 1 n−1

P
1 m −m 2

]

(3.4) is relevant within the framework of generalized com-
plete intersections [1, 2, 4] and the |-separation signifies this: The 2nd,
degree-

(
1

−m

)
degree hypersurface s−1(0) is well defined only within the 1st,

degree-( 1
m) hypersurface F (n)

m :=p−1
0 (0). Away from p−1

0 (0), the equivalence
class (2.11) is holomorphic, but its zero-locus s−1(0) is not well defined.
In the toric rendition (2.13), p0(x, y)=0 and this “tuning” hold by the
definition of F (n)

m ; see (2.12b). In contrast, the 3rd, degree-
(
n−1
2

)
defining

polynomial (3.2) of the complementrix is regular on all of A=P
n×P

1, and
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the zero-locus c−1(0) is well defined everywhere on A, including p−1
0 (0) and

s−1(0).
Owing to (3.5) and the reduction (3.4)⇝(3.6), the common zero-locus

p−1
0 (0)∩s−1(0) is equivalent to the x0=0=x1 subspace, Pn−2×P

1⊂A. In-
deed, for the n=2 case, the original Hirzebruch surface, the directrix is
equivalent to P

0×P
1 — the simple (algebraic) line of self-intersection −m

within F (2)

m [12, 16]. Therein, the complementrix is the anticanonical hyper-
surface, which is indeed two points — the Calabi-Yau 0-fold:
(3.7)[

P
2 1 1 1

P
1 m −m 2

]
(3.5)≈

[
P
0 1

P
1 2

]
: c(x, y)=x2 y0 y1 where x2 ≃ λx2 ̸=0,

which is the singularity, SingX (1)

m . Thus, X (1)

m ∈
[

P
2 1 2

P
1 m 2−m

]

is a twice-

pinched torus; see Figure 4.

Figure 4: The general, m⩾3, case of the Calabi-Yau subspaces in a Hirze-
bruch surface, F (2)

m

Being exceptional. The foregoing constructions explicitly depend on the
central choice (2.1) within the deformation family

[

P
n 1

P
1 m

]

, and cannot be
completed for the deformed choices (2.2). In particular, the total degree-(

1
−m

)
multiple of pϵ⃗ (x, y) is

(3.8)
pϵ⃗ (x, y)

(y0 y1)m
=

( x0
y1m

+
x1
y0m

)
+

n∑

a=0

m−1∑

ℓ=1

ϵaℓ xa y0
−ℓy1

ℓ−m.

The ϵaℓ-expansion contains rational monomials with mixed denominators
and a y0, y1-independent numerator when ϵaℓ ̸=0, each of which has a pole
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in both coordinate charts in P
1 and so cannot be holomorphic in the manner

of (2.11)3.
This proves the central hypersurface (2.1) to be the unique one in the de-

formation family
[

P
n 1

P
1 m

]

that has an irreducible directrix with the maximally
negative self-intersection, [Sm]n = −(n−1)m. Consequently, the anticanon-
ical hypersurfaces X (n−1)

m ⊂F (n)

m are necessarily singular only for this central
case. The smooth Calabi-Yau 3-folds of the form (2.15) reported in [1] refer4

to non-central cases (2.2), some of which were discussed in § 2.5.
The above facts add to the connectivity among (generalized) complete

intersection Calabi-Yau n-folds. Suffice it here to provide an example, de-
ferring a more detailed analysis to a separate effort:

1) The generic Calabi-Yau 3-folds in the deformation family
[

P
4 1 4

P
1 5 −3

]

are

smooth and are diffeomorphic to generic members in
[

P
4 1 4

P
1 1 1

]

of regular

complete intersections. This then connects at least some gCICYs into
the “web of Calabi-Yau 3-folds” [36–39].

2) The special Calabi-Yau 3-folds in the deformation family
[

P
4 1 4

P
1 5 −3

]

us-

ing the central, Hirzebruch-like defining equation (2.1) are all singular
(Tyurin-degenerate, see below), but their singular set is itself a smooth
Calabi-Yau (K3) 2-fold, thus connecting to the web of Calabi-Yau 2-
folds.

Tyurin degeneration. By reducing for m⩾3 to a union
X (n−1)

m =(Cm∪Sm) (3.3) where X :=(Cm∩Sm) is a codimension-2 Calabi-
Yau space (3.4), each Calabi-Yau X (n−1)

m hypersurface in the central
Hirzebruch scroll (2.1),

(
F (n)

m :=p−1
0 (0)

)
, is Tyurin degenerate [35]. In the

bi-projective embedding and restricting to X := ♯X (n−2)

m ∈ [

P
n 1 1 n−1

P
1 m −m 2

]

,
the adjunction relations

(3.9) TX !֒ TCm

∣∣
X
↠ OA

(
n−1
2

) ∣∣
X
, and TX !֒ TSm

∣∣
X
↠ OA

(
1

−m

) ∣∣
X

identify the two rightmost sheaves as the normal sheaves of X⊂Cm and
X⊂Sm, respectively. Then,

(3.10) OA

(
n−1
2

) ∣∣
X
⊗OA

(
1

−m

) ∣∣
X
= OA(

n
2−m)

∣∣
X
= K∗

F (n)
m

∣∣
X⊂X

(n−1)
m ⊂F

(n)
m

is the restriction to X := ♯X (n−2)

m ⊂X (n−1)

m ⊂F (n)

m of the anticanonical sheaf
of F (n)

m , a section of which defines X (n−1)

m ⊂F (n)

m , so K∗
X(n−1)

m
=OX(n−1)

m
.

3With a total degree
(

1
−m

)
and poles of order ℓ at y0=0 and m−ℓ at y1=0 with

ℓ∈ [1,m−1], such monomials cannot be split into sums of two partial fractions (nor
any change of variables), each with a single pole.

4We thank James Gray for confirming this detail.
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In fact, both Sm and Cm are quasi-Fano by the n-dimensional gen-
eralization of definition [35, Def. 2.2]: They both contain the smooth
codimension-2 ♯X (n−2)

m , and their structure sheaf cohomology vanishes except
H0≈C, so hq(Cm,O)=δq,0=h

q(Sm,O), reproducing the defining property,
χ(OCm

)=1=χ(OSm
); see Appendix A.3. The mirror-pair constructions be-

low, in § 3.3, should then provide a testing ground for the so-called DHT con-
jecture [40–46].

3.2. Laurent deformations and intrinsic limit

Since the entire anticanonical system (2.16), i.e., (2.19) factorizes for m⩾3,
the necessarily Tyurin-degenerate Calabi-Yau hypersurfaces X (n−1)

m ⊂F (n)

m in
the central Hirzebruch scroll (2.1), i.e., (2.13) cannot be smoothed by regular
deformations. However, the rational sections encoded by the extended New-
ton polytope [5] make the anticanonical system of F (n)

m transverse, and so af-
ford a Laurent smoothing of X (n−1)

m ⊂F (n)

m . The simple, n=2 case in Figure 4
certainly suggests that the singularity should have a crepant smoothing, i.e.,
without changing the (vanishing) canonical class.

Laurent deformations. The Calabi-Yau models in [5] deform the re-
ducible hypersurface (3.3) by including certain very specific rational mono-
mials in the defining section (2.16), i.e., (2.19). Suffice it here to showcase
the X (1)

3 ⊂F (2)

3 example in its toric rendition, and focus on the cornerstone
(extremal) polynomial

(3.11) f(x; a) = a1x1
2x3

5 + a2x1
2x4

5 + a3
x2

2

x4
+ a4

x2
2

x3
∈ Γ(K∗

F
(2)
3

).

This particular choice of rational monomials will be explained below;
see (3.28). Identifying F (2)

3 with the MPCP-desingularization of P
2
(3:1:1)

prepends x1≃λ0x1 to (x2, x3, x4)≃(λ3x2, λx3, λx4). Thus, (x1, x2) are
the homogeneous coordinates of the exceptional P

1, so identified by the
(x1, x2, x3, x4)≃(λ̃1x1, λ̃

1x2, x3, x4) symmetry. These two C
∗-rescalings are

equivalent to the n=2, m=3 case of (2.13).
While a1a4

5 ̸=a2a35, the polynomial (3.11) is transverse: The gradient
∂if(x; a) cannot vanish without setting x1=0=x2 — which cannot happen
in the exceptional P1 in F (2)

3 . In the toric specification (2.13), the 1-cones
ν1, ν2 do not form a 2-cone in ΣF

(2)
3

, ⟨x1x2⟩ is in the Stanley-Reisner ideal,
and the exceptional set

(3.12) Z(ΣF
(2)
3

) = {x1=0=x2}×C
2
x3,x4

∪ C
2
x1,x2

×{x3=0=x4}



✐

✐

“3-Hubsch” — 2024/1/2 — 18:27 — page 2561 — #21
✐

✐

✐

✐

✐

✐

Hirzebruch surfaces, Tyurin degenerations and toric mirrors 2561

is excised from F (2)

3 =
(
C
4
∖ Z(ΣF

(2)
3

)
)
/(C∗)2 [15]. (Parts of this base locus

are included, appropriately and self-consistently, in the Landau-Ginzburg
and the so-called hybrid phases of the GLSM model [5].) For this same
reason, x2 ̸=0 and so f(x; a) ̸=0 at {x1=0}, so that

(3.13)
(
Sm={x1=0}

)
∩ {f(x; a)=0} = ∅.

For any a3, a4 ̸=0, the zero-locus {f(x; a)=0} is moved away from the di-
rectrix, and thus also from the singular set (3.6). This effectively smoothes
the Tyurin-degenerate model, as illustrated in the series of plots in Figure 5,
where a3!ϵ and a4!0, and an additional regular monomial (x1x2x3

2) is
added,

(3.14) f(x; a)⇝ F (x; ϵ) = x1
2x3

5 + x1
2x4

5 − x1x2x3
2 + ϵ

x2
2

x4
,

to allow for real solutions in the real (S1×S1) “slice” within
P
1
fibre
!֒F (2)

3 ↠P
1
base

. Already for ϵ = 1|40, the red-plotted slice segment is visi-

Figure 5: Several plots of x1
2x3

5+x1
2x4

5−x1x2x32+ϵx
2
2

x4
=0, restricted

to the real circles x1!y∈ [−1, 1≃−1], x2!
√

1−y2, x3!
√
1−x2 and

x4!x∈ [−1, 1≃−1]; {y=0} is the directrix, {x=0} is the pole-locus; the
putative pole-in-zero-locus at (x, y) = (0,±1), filled by the intrinsic limit
(below), is marked by the ◦⋆ symbol

bly deformed away from the directrix, S3={x1=0} (the horizontal mid-line
in Figure 5), and this separation only increases as ϵ does. In turn, the pres-
ence of the rational deformations (3.11) includes a 0

0 -like putative pole in
the defining section, which requires special attention.

Intrinsic limit. The main concern with a Laurent defining polynomial
such as (3.14) is that the unqualified limits of the rational terms, limx3!0

x2
2

x3

and limx4!0
x2

2

x4
, are not well defined. The zero-locus of the defining equa-

tion at hand is of course well defined away from the putative pole-location,
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{x4=0}∪{x3=0}, which then defines the required qualification: approach
the putative pole-locations from within the desired zero-locus, thus defining
the intrinsic limit. For the case at hand, {F (x; ϵ)=0} with (3.14), we solve:

(3.15) F (x; ϵ)=0, x4 ̸=0 ⇒ x2 = x1
x4x

2
3 ±

√
x4

√
x4x43 − 4ϵ(x53 + x54)

2ϵ
.

Substituting this in F (x; ϵ) but keeping the summands separately produces

0=F (x; ϵ) = x1
2x3

5+x1
2x4

5−x12x32
x4x

2
3±

√
x4

√
x4x43−4ϵ(x53+x

5
4)

2ϵ
(3.16)

+x1
2

(
x23

√
x4±

√
x4x43−4ϵ(x53+x

5
4)
)2

4ϵ
,

x4!0
−−−! x21x

5
3 + 0− 0 + (−x21x53),

making it clear that each monomial is seprately well defined in the so qual-
ified x4!0 limit. Effectively, the a priori independent (Cox) variable x2 is
replaced with the function x2=x2(x1, x3, x4) that guarantees the vanishing
of F (x; ϵ) everywhere, including the intersection of this subspace with the
pole-locus of concern, {x4=0}. In this sense, the evaluation of the limit of
the rational summand

(3.17) lim
x4!0

[
ϵ

(
x2=x2(x1, x3, x4)

)2

x4

]
= −x12x35

is an application of L’Hopital’s rule, and extends straightforwardly to poles
of higher order.

With the so-resolved putative pole-locus and at least as real manifolds,
we expect the transversal Laurent deformation (3.11) of the Tyurin degen-
eration (3.3) to be no different than other nonsingular models in the defor-
mation family

[

P
n 1 n

P
1 m 2−m

]

, built over the effectively discrete family
[

P
n 1

P
1 m

]

in Figure 2. These Laurent-deformed Calabi-Yau models are then expected
to have the same Betti and Euler numbers, b2=2, b3=174 and χ=−168,
and then also to admit a Hodge decomposition with h11=2 and h21=86.
However, we are not aware of a rigorous proof — or correction.

Alternative. The additional care required to specify the nature of the
limit-points such as x4!0 in the zero-locus of the Laurent defining func-
tion (3.14) stems from the fact that the pole-locus of concern, {x4=0},
intersects the zero-locus of interest, {F (x) = 0}. This situation is amenable
to the following sequence of standard algebro-geometric operations:
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Procedure 1. For a Laurent polynomial F (x) such as (3.14) over an ambi-
ent space A, let P ⊂A denote the pole-locus of F (x), Z⊂A the well-defined
open (non-compact) zero-locus of F (x), and let x∗ be a common point of
(limiting sequences in) P and Z. Then:

1) Let Â be a blowup of A at x∗, possibly iterated so the closure of Ẑ,
identified as the zero-locus {F̂ (x) = 0} ⊂ Â, is well defined and sepa-
rate from the proper transform of the pole-locus, P̂ .

2) The blowdown (along x̂∗) of the zero-locus {F̂ (x) = 0} ⊂ Â is then a
well-defined subspace of A.

(3.18)

This separates the limiting sequences within the zero-locus from those within
the pole-locus, and so conceptually corroborates the above-defined intrinsic
limit. It also seems to suggest a reformulation wherein coincident points are
separated based on limiting sequences that lead to them, perhaps not too
dissimilar from the framework of Ref. [4].

An overview. In the footsteps of § 2.5, consider the triply deformed 4-fold

(3.19)

[
P
4 1

P
1 5

]
∋ x0 y0

5+x1 y1
5 + x2 y0

4 y1+x3 y0
3 y1

2+x4 y0
2 y1

3 = 0,

which admits a collection of one degree-
(

1
−2

)
and three algebraically indepen-

dent degree-
(

1
−1

)
directrices. Via the analogous constant-Jacobian change of

variables, this leads to the toric F (4)

(2,1,1,1)≈RF
(4)

(1,0,0,0). For each n⩾2, F (n)

(1,0,··· )
is Fano: both its spanning and its Newton polytope is convex and reflexive.

So, (2.2) is an explicitly constructed deformation family that includes
both Fano and non-Fano Hirzebruch scrolls, all of which (for any given n,m)
are diffeomorphic to each other. This then induces a deformation connec-
tion between the (secondary deformation families of) respective Calabi-Yau
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hypersurfaces, such as:
(3.20)

smooth︷ ︸︸ ︷
F (4)

(1,0,0,0)
[c1] ֒

q=0
−−−!F (4)

(1,0,0,0)

︸ ︷︷ ︸
generic

ϵ!0
−−−! F (4)

(5,0,0,0)

q=0
 −−−֓

Tyurin-degenerate︷ ︸︸ ︷
F (4)

(5,0,0,0)
[c1]

︸ ︷︷ ︸
central

⊃
matryoshka︷ ︸︸ ︷

Sing
(
X (3)

(5,0,0,0)

)
︸ ︷︷ ︸

♯X
(2)

(5,0,0,0) =K3

The (irreducible) degree-
(

1
−5

)
directrix in the central Hirzebruch scroll F (n)

5

thus serves as an obstruction to regular smoothing of the Tyurin-degenerate
Calabi-Yau hypersurface, which disappears away from the central scroll.
That is, we have the same real 8-dimensional manifold on the two sides of the
ϵ!0 arrow, equipped however with discretely different complex structures:

1) The anticanonical sections that are holomorphic with respect to a
generic choice of the complex structure are transverse and can define
smooth Calabi-Yau hypersurfaces.

2) The anticanonical sections that are holomorphic with respect to the
central choice of the complex structure factorize and can define only
Tyurin-degenerate Calabi-Yau hypersurfaces.

That is, there always exist smooth defining equations of the correct degree
to define a smooth and Ricci-flat zero locus, they are just not holomorphic
with respect to the choice of the complex structure in which the smooth
directrix is also holomorphic. It is then tempting to conclude:

Conjecture 1. The Laurent deformations of the Calabi-Yau hypersurface
in the central Hirzebruch scroll are ϵ!0 limit-images of the regular smooth-
ing deformations in the Calabi-Yau hypersurface within the generic Hirze-
bruch scrolls.

3.3. Mirror pairs

We now turn to our primary motivation, the Laurent generalization of the
transposition mirror model construction [7–9] and Batyrev’s toric construc-
tion [10]; see also [11] and references therein.

Transpose mirror. The standard anticanonical cornerstone polynomial
of F (2)

3 (green outline in Figure 6, below),

x1
2x3

5+x1
2x4

5+x1x2x3
2+x1x2x4

2(3.21)

= x1
(
x1x3

5+x1x4
5+x2x3

2+x2x4
2
)
,
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is not transverse, but its Laurent analogue [5],

(3.11′) f(x) = a1x1
2x3

5 + a2x1
2x4

5 + a3
x2

2

x4
+ a4

x2
2

x3
, a1 a4

5 ̸=a2 a35,

is transverse away from the indicated discriminant locus. The matrix of
exponents of (3.11) is

(3.22) E[f(x)] =



2 0 5 0
2 0 0 5
0 2 0 −1
0 2 −1 0


 , detE[f(x)] = 0, rankE[f(x)] = 3,

so that (3.11) is not invertible in the sense defined in [9] (see also [47, 48]),
which would seem to prevent constructing the mirror model. Nevertheless,
the transpose [5, 7] of the defining equation (3.11) is straightforward:

(3.23) f(x)T = g(y) = b1y1
2y2

2 + b2y3
2y4

2 + b3
y1

5

y4
+ b4

y2
5

y3
, b1

5 ̸=b2 b32 b42,

and is homogeneous for continuously5 many choices of yi-degrees:
(3.24)
deg[g(y)] = 1 ⇒ q(y1)=

1
5+

1
5q(y4), q(y2)=

3
10−1

5q(y4), q(y3)=
1
2−q(y4),

all of which automatically satisfy the Calabi-Yau condition,
∑4

j=1 q(yj) = 1.
Choosing a rational value for q(y4) and clearing denominators, one finds
suitable linearly independent 4-vectors Q(yi), reconstructs the fan of the
toric space for which g(y) in (3.23) is an anticanonical section, and then
refines6 the choice of Q(yi) to proper Mori vectors [29]. To this end:

q(y4)= −1
q(y4)=

3
2

}
⇒

[
Q̃1(yi)

Q̃2(yi)

]
=

[
1 0 −2 3
0 1 3 −2

]
(3.25)

⇒
[
1 0 −2 3
0 1 3 −2

]
·
[

−3 2
2 −3
0 1
1 0

]
(2.14)

= 0
⋆
⇝

[−1 −1
−1 4
1 −2
1 −0

]

5This continuousness of scaling symmetry choices correlates with the reduced
rank of the matrix of exponents (3.22).

6The procedure in [29] yields more than two 4-vectors. Among these, we selects
the two of which integral linear combinations reproduce all others. For brevity, we
display only this final choice. In turn, the columns formed from the components of
this pair of 4-vectors Q(yi) are 2-vectors with co-prime components; see (3.27).
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where Q̃1(yj) = 2 q(yj)|q(y4)=−1 and Q̃2(yj) = 2 q(yj)|q(y4)=
3

2
are linearly in-

dependent integral choices. The null-space of their matrix-stack is spanned
by µ̃1j = (−3, 2, 0, 1) and µ̃2j = (2,−3, 1, 0), given in the two columns of the
2×4 right-hand side (blue) matrix in the middle. These two 4-vectors, µ̃κj for

κ=1, 2, define via the ⋆-labeled arrow (3.25) the final 4-vectors, µ1j = µ̃1j+µ̃
2
j

and µ2j = −µ̃1j−2µ̃2j , given here by the columns of the right-most matrix
in (3.25). Each of these pairs of 4-vectors, µ̃κj and µκj , defines a 4-tuple of
2-vectors, for which the ⋆-labeled transformation (3.25) is simply a GL(2;Z)
basis change:

(3.26)
µ1j = µ̃1j+µ̃

2
j

µ2j =−µ̃1j−2µ̃2j

}
⇒

[
1 1

−1 −2

]
·
[
−3 2 0 1
2 −3 1 0

]
∗
=

[
−1 −1 1 1
−1 4 −2 −1

]

Using this last 4-tuple of 2-vectors as generators of a fan we have, akin
to (2.13):
(3.27)

The secondary fan (far left) was read from the columns of the Q̃-matrix
in (3.25); the corresponding tabulated toric specification and fan generators
on the right are read from the indicated columns in (3.26). The blue line links
the µ̃- and µ-vertices in their order determined by (3.25) and (3.26), and the
result outlines precisely the self-crossing polygon that is the transpolar [5]
(roughly, iteratively face-wise polar (2.17)) of the non-convex VEX polygon
that spans the ΣF

(2)
3

fan:
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(3.28)

The flip-folded polygon at the right-hand side of both (3.27) and (3.28)
spans a multifan that, with the dashed unit-degree subdivisions, specifies a
smooth toric space in much the same way as does the fan ΣF

(2)
3

, depicted
mid-right in (3.28)[5, 49, 50].

Toric précis. The foregoing then demonstrates that the straightforward
generalization [5] of the transposition mirror models [7–9] illustrated in Fig-
ure 6 for F (2)

3 [c1] and its mirror, where “∆⋆
V >−ΣV ” means that the polytope

Figure 6: The transpolar pair of VEX polygons used in transposition-mirror
fashion: one to define the Cox variables, the other to define anticanonical
monomials — and then the other way around

(multitope) ∆⋆
V spans the (multi)fan ΣV , i.e., ΣV star-subdivides ∆⋆

V . The
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evident relations

(3.29) ΣF
(2)
3
<− ∆⋆

F
(2)
3

= ∆▽F
(2)
3

▽
 −!

[5]
∆F

(2)
3

= ∆⋆
▽F

(2)
3
>− Σ▽F

(2)
3

provide the unit-subdivided (multi)fans, ΣF
(2)
3

and Σ▽F
(2)
3

, which specify the
atlas of smooth local charts for the ambient toric spaces, F (2)

3 and ▽F (2)

3 ,
respectively, as each others’ transpolar toric space. Also, the Cox (homoge-
neous) variables, displayed in the column-heading rows in (3.28) and (3.27),
were used to express the polynomials (3.11) and (3.23), respectively:

g(y)T = f(x) = a1x1
2x3

5 + a2x1
2x4

5 + a3
x2

2

x4
+ a4

x2
2

x3
(3.30a)

=
∑

µj<−∆F
(2)
3

aj
∏

νi<−∆⋆F (2)
3

x
⟨µj ,νi⟩+1
i ;

f(x)T = g(y) = b1y1
2y2

2 + b2y3
2y4

2 + b3
y1

5

y4
+ b4

y2
5

y3
(3.30b)

=
∑

νi<−∆⋆F (2)
3

bi
∏

µj<−∆F
(2)
3

y
⟨µj ,νi⟩+1
j ,

where the symbol “<−” stands for “is a vertex of” the polytope, i.e., a 1-
cone generator of the fan spanned by that polytope. This generalizes the
transposition prescription [7–9] and [10], in Cox variables [32], to transpolar
pairs of VEX polytopes [5].

For all n⩾2 and m⩾3, the fan ΣF (n)
m

is spanned by a non-convex poly-
tope, ∆⋆

F (n)
m

, reflecting that F (n)

m is not Fano. In turn, the transpolar polytope
∆F (n)

m
is flip-folded and spans a multifan Σ▽F (n)

m
, which when unit-subdivided

encodes ▽F (n)

m as a (smooth) toric manifold [49, 50].

Laurent deformations rationale. The specific choice of the rational
monomials included as Laurent deformations of the anticanonical sections,
such as in (3.11), is then specified by the following:

• As indicated (red-ink dashed arrow) in Figure 6, the rational mono-
mials,

{
x2

2

x4
, x2

2

x3

}
, form the flip-folded edge in ∆F

(2)
3

, which is polar to
the concave (MPCP-desingularizing [10]) vertex ν1∈∆⋆

F
(2)
3

. The Cox
variables in the denominators are defined by the vertices delimiting
the concavity in ∆⋆

F
(2)
3

.
• Through the looking glass, the rational monomials

{y1
5

y4
, y2

5

y3

}
corre-

spond to vertices that delimit the concavity in ∆▽F
(2)
3

, and the Cox
variables in their denominators are defined by vertices that form the
flip-folded edge in∆⋆

▽F
(2)
3

, the one that is polar to the non-convex vertex
in ∆▽F

(2)
3

.
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Thus, the rational monomials included both in (3.30a) and in (3.30b) are
precisely those that correspond to the concave subset in ∆⋆

F
(2)
3

=∆▽F
(2)
3

and
flip-folded subset in ∆F

(2)
3

=∆⋆
▽F

(2)
3

— precisely the features by which VEX
polytopes [5] generalize the by now familiar reflexive polytopes [10, 51]. Such
self-crossing polygons have been used to encode (pre)symplectic spaces [52],
which correlates with mirror symmetry relating complex and symplectic
structures [53, 54]; of course, each Calabi-Yau space admits both structures.

Thus, the Newton polygons ∆F
(2)
3

and ∆▽F
(2)
3

(Figure 6 far left and mid-
bottom, respectively), both non-convex but VEX [5], specify the (Laurent-
deformed) sections for the defining equation of the Calabi-Yau hypersurfaces:

(3.31) F (2)

3 [c1] ∋ {f(x)=0} mirror
 −−!

pair
{g(y)=0} ∈ ▽F (2)

3 [c1].

Incidentally, the standard Newton polytope of F (2)

3 is highlighted in green in
the leftmost illustration in Figure 6 and specifies the non-transverse poly-
nomial (3.21); for a 3-dimensional example, see [5].

The above computations (3.11′)–(3.31) are fairly routine for (convex)
reflexive polytopes [10, 51]. With the standard polar operation generalized
to the transpolar — they continue to also hold for VEX polytopes [5]. In fact,
suffice it here to mention that numerous combinatorial formulae generalizing
the “12-theorem” [15, Theorem 10.5.10] and various results about Chern
and other characteristic classes [31] continue to hold provided all polytopes
and (multi)fans are taken with orientation-dependent multiplicity. In turn,
the so-called A-discriminants for both the complex structure and the Kähler
class moduli, as well as the Yukawa couplings continue to be computable and
conform to general mirror symmetry expectations. Details of these results
will be reported separately.

Specific mirror models. Since the polynomials (3.11) and (3.23) and the
matrix of exponents (3.22) are not invertible, a direct relation to the original
transposition prescription [7–9] is provided by particular complementary
reducing deformations of (3.30a) and (3.30b), such as:

x1 ! 1 & a4! 0 ⇒ fR(x) = a1x3
5 + a2x4

5 + a3
x2

2

x4
;(3.32)

b1 ! 0 & y4! 1 ⇒ gR(y) = b2y3
2 + b3y1

5 + b4
y2

5

y3
.(3.33)

This reduces the matrix (3.22) to an invertible 3×3 matrix, and may be
depicted in terms of the toric data in Figure 6 as shown in Figure 7. Both
diagrams here serve both as Newton polygons (∆R and ∆▽R, respectively)
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Figure 7: The toric data of the reduced mirror pair (3.32)–(3.33)

with the cornerstone (extreme) monomials indicated, as well as spanning the
fans (∆⋆

▽R>−Σ▽R and ∆⋆
R>−ΣR, respectively) that identify the Cox variables,

and specify the indicated weighted projective spaces identified by the degrees
(lattice areas) of the three major cones. Here, R=P

2
(3:1:1) is identified as the

blowdown (by un-subdividing at the MPCP-smoothing ν1=(−1, 0) 1-cone
generator) of F (2)

3 . Analogously, ▽R=P
2
(2:3:5) is identifiable as a blowdown of

▽F (2)

3 by omitting the µ4=(1,−2) 1-cone generator of the multifan.
Finally, the columns of E

−1 specify the discrete symmetries of fR(x)
in (3.32), while its rows analogously pertain to gR(y) in (3.33) [9]:

fR(x) = a1x3
5 + a2x4

5 + a3
x2

2

x4
,(3.34)

{
Q=

(
Z5:

3
5 ,

1
5 ,

1
5

)
,

G=
(
Z10:

1
10 , 0,

1
5

)
,

(x2, x3, x4) ∈ P
2
(3:1:1);

gR(y) = b2y3
2 + b3y1

5 + b4
y2

5

y3
,(3.35)

{
Q̃=

(
Z10:

2
10 ,

3
10 ,

5
10

)
,

G̃=
(
Z5:

1
5 ,

1
5 , 0

)
,

(y1, y2, y3) ∈ P
2
(2:3:5).

The action of the “quantum symmetry” Q (resp., Q̃) on the indicated ho-
mogeneous coordinates is specified by the sum of the columns (resp., rows)
of E−1, and of course coincides with the (rescaled) weights of P2

(3:1:1) (resp.,

P
2
(2:3:5)). The action of the “geometric” symmetry is specified by linear com-

binations of the columns (resp., rows) independent of Q (resp., Q̃), and can
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here be chosen to be generated by the 2nd column (resp., 2nd+3rd row) of
E
−1. The total degree of discrete symmetries being

(3.36) |Q||G| = det[E]=50 = |Q̃||G̃|

verifies that the (Z5,Z10) pair exhausts the options.

The general case. The above computations are straightforward to follow
through for F (2)

m , for all m:

fR(x;m) = a1x3
m+2 + a2x4

m+2 + a3
x2

2

x4m−2
,(3.37a)

(x2, x3, x4) ∈ P
2
(m:1:1);

gR(y;m) = b2y3
2 + b3y1

m+2 + b4
y2

m+2

y3m−2
,(3.37b)

(y1, y2, y3) ∈ P
2
(2:m:m+2).

The symmetries depend on the parity of m, but are as straightforward to
find from E

−1:

(3.38)

Q(F (2)

m )=
(
Zm+2:

m
m+2 ,

1
m+2 ,

1
m+2

)
,

G(F (2)

m )=

{(
Z2(m+2):

m−2
2(m+2) , 0,

1
m+2

)
, m odd;

(
Zm+2:

m/2−1
(m+2) , 0,

1
m+2

)
×
(
Z2:

1
2 , 0, 0

)
, m even

The symmetries of gR(y;m) are of course flipped:

(3.39)
Q(▽F (2)

m )=

{(
Z2(m+2):

1
m+2 ,

m
2(m+2) ,

1
2

)
, m odd;

(
Zm+2:

1
m+2 ,

m/2
m+2 ,

1
2

)
×
(
Z2: 0,

1
2 ,

1
2

)
, m even;

G(▽F (2)

m )=
(
Zm+2:

1
m+2 ,

1
m+2 , 0

)
.

The total Hilbert space in a Landau-Ginzburg orbifold[55, 56] or the cor-
responding phase of the gauged linear sigma model [17] is a direct sum of the
“untwisted” and several “twisted” sectors, which span representations of the
“geometric” and “quantum” symmetries, respectively. The hallmark flipped
identifications Q≈G̃ and Q̃≈G therefore insure [7] that the “untwisted”
and “twisted” sectors of the fR(x)-model match those of the “twisted” and
“untwisted” sectors of the gR(y)-model — as required by mirror symmetry.
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3.4. Multiple mirrors

The 3-dimensional case was analyzed in some detail in [5] and we adapt some
of that specification in Figure 8; see also the display (2.13). Defining the Cox

Figure 8: The Newton polytope∆F (3)
m

specification (top, left), with them=3
case depicted at right; the reduced polytopes are the convex hulls of a min-
imal subset of the vertices of the original polytope indicated

variables by the vertices of the non-convex polytope ∆⋆
F (3)

m
that spans the

fan of F (3)

m and limiting to the vertices of the (extended) Newton polytope,
∆F (3)

m
, to specify the cornerstone (extremal) monomials — and then the

other way around, produces the 3-dimensional analogue of the transposition
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mirror pair (3.30):

g(y)T=f(x) = a1 x1
3 x4

2m+2 + a2 x1
3 x5

2m+2(3.40a)

+ a3
x2

3

x4m−2
+ a4

x2
3

x5m−2
+ a5

x3
3

x4m−2
+ a6

x3
3

x5m−2
,

f(x)T=g(y) = b1 y1
3 y2

3 + b2 y3
3 y4

3 + b3 y5
3 y6

3(3.40b)

+ b4
y 2m+2
1

(y3 y5)m−2
+ b5

y 2m+2
2

(y4 y6)m−2
.

For simplicity, we focus on the m=3 case. The 5×6 matrix of exponents
is shown in Figure 8 and has rank 4. The bottom-central two diagrams
illustrate two inequivalent cornerstone (extremal) reductions of the New-
ton polytope, whereas only ν1 may be omitted from ∆⋆

F
(3)
3

while retaining
the origin inside the polytope. This results in two inequivalent, though still
extremal, reductions of the matrix of exponents to an invertible 4×4 sub-
matrix. With its many lattice points, the Newton polytope can be reduced
in many other ways, leading to a web of mirror models — all “generated”
from the transpolar pair (∆⋆

F (3)
m
,∆F (3)

m
).

Mirror-pair #1. The first of these two pairs

(
Red
1;3,5

g(y)
)T

= Red
1;3,5

f(x) = a1 x4
8 + a2 x5

8 + a4
x2

3

x5
+ a6

x3
3

x5
(3.41a)

∈ P
3
(3:3:1:1)[8],

(
Red
1;3,5

f(x)
)T

= Red
1;3,5

g(y) = b2 y4
3 + b3 y6

3 + b4 y1
8 + b5

y2
8

y4 y6
(3.41b)

∈ P
3
(3:5:8:8)[24],

corresponds to Conv
(
∆⋆

F
(3)
3

∖ ν1
)
and Conv

(
∆F

(3)
3

∖ {µ3, µ5}
)
. For a generic

choice of the coefficients, the polynomials (3.41) are ∆-regular, and are each
other’s transpose. The so-reduced matrix of exponents is regular:

(3.41) ⇒ Red
1;3,5

E(F (3)

3 ) =




0 0 8 0
0 0 0 8
3 0 0 −1
0 3 0 −1


 ,(3.42)

(
Red
1;3,5

E(F (3)

3 )
)−1

=




0 1
24

1
3 0

0 1
24 0 1

3
1
8 0 0 0
0 1

8 0 0


 ,
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and the discrete symmetries of the polynomials (3.41) are read off from the
inverse matrix:

a1 x4
8 + a2 x5

8 + a4
x2

3

x5
+ a6

x3
3

x5
:(3.43a)





(
Z3:

1
3 ,

2
3 , 0, 0

)
(
Z24:

1
24 ,

1
24 , 0,

1
8

)
(
Z8:

3
8 ,

3
8 ,

1
8 ,

1
8

)

[x2
x3
x4
x5

]
:

{
G=Z3×Z24,

Q=Z8.

b2 y4
3 + b3 y6

3 + b4 y1
8 + b5

y2
8

y4 y6
:(3.43b)





(
Z8:

1
8 , 0, 0, 0

)
(
Z3: 0, 0,

1
3 ,

2
3

)
(
Z8:

5
24 ,

3
24 ,

1
3 ,

1
3

)



y1
y2
y4
y6


 :

{
G▽ =Z8 × Z3,

Q▽ =Z24.

To insure the geometric and quantum symmetry swap, we may consider the
models

(3.44)
(
(3.43a)/Z3 , (3.43b)

)
and

(
(3.43a) , (3.43b)/Z3

)

for two possible mirror pairs, in each case using the traceless Z3-action
indicated in (3.43a) and (3.43b), respectively. Finally, notice the factor “3”
in the relation d(Red3,5[∆F

(3)
3

]) = 3d(∆⋆
P

3
(8:8:5:3)

), correlating to the order of
the Z3 group in (3.44), which was called H in Ref. [7].

Mirror-pair #2. On the other hand,

(
Red
1;4,5

g(y)
)T

= Red
1;4,5

f(x;F (3)

3 )(3.45a)

= a1 x4
8 + a2 x5

8 + a3
x2

3

x4
+ a6

x3
3

x5
∈ P

3
(3:3:1:1)[8],

(
Red
1;4,5

f(x)
)T

= Red
1;4,5

g(y; ▽F (3)

3 )(3.45b)

= b2 y3
3 + b3 y6

3 + b4
y1

8

y3
+ b5

y2
8

y6
∈ P

3
(1:1:2:2)[6],

corresponds to Conv
(
∆⋆

F
(3)
3

∖ {ν1}
)

and Conv
(
∆F

(3)
3

∖ {µ4, µ5}
)
. For a

generic choice of the coefficients, the polynomials (3.45) are again ∆-regular,
and are each other’s transpose. The so-reduced matrix of exponents is again
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regular:

(3.45a) & (3.45b) ⇒ Red
1;4,5

E(F (3)

3 ) =




0 0 8 0
0 0 0 8
3 0 −1 0
0 3 0 −1


 ,(3.46)

(
Red
1;4,5

E(F (3)

3 )
)−1

=




1
24 0 1

3 0
0 1

24 0 1
3

1
8 0 0 0
0 1

8 0 0


 ,

and the discrete symmetries of the polynomials (3.41) are read off from the
inverse matrix:

a1 x4
8 + a2 x5

8 + a4
x2

3

x5
+ a5

x3
3

x4
:(3.47)





(
Z3:

1
3 ,

1
3 , 0, 0

)
(
Z24:

1
24 ,

23
24 ,

1
8 ,

7
8

)
(
Z8:

3
8 ,

3
8 ,

1
8 ,

1
8

)

[x2
x3
x4
x5

]
:

{
G=Z3×Z24,

Q=Z8.

b2 y4
3 + b3 y5

3 + b4
y1

8

y5
+ b5

y2
8

y4
:(3.48)





(
Z4:

1
4 ,

1
4 , 0, 0

)
(
Z24:

1
24 ,

23
24 ,

1
3 ,

2
3

)
(
Z6:

1
6 ,

1
6 ,

1
3 ,

1
3

)



y1
y2
y3
y6


 :

{
G▽ =Z4 × Z24,

Q▽ =Z6.

The desired swap of “geometric” and “quantum” symmetries can be achieved
following [7]: we should consider instead the quotient models (3.47)/Z4 and
(3.48)/Z3 for a mirror pair. To this end, we may use the

(
Z4:

1
4 ,

3
4 ,

1
4 ,

3
4

)

generated by the 6-fold difference between the two leftmost columns, and the(
Z3:

1
3 ,

2
3 ,

2
3 ,

1
3

)
generated by the 8-fold difference between the two topmost

rows in (Red1;4,5 E(F
(3)

3 ))−1. For the so-defined models,

(3.49) (3.47)/Z4

{ G̃=Z3×Z6,

Q̃=Z8×Z4;
vs.

G̃▽ =Z4×Z8,

Q̃▽ =Z6×Z3;

}
(3.48)/Z3.

Fractional relation. Finally, (3.41b) and (3.45b) are, respectively, trans-
poses of (3.41a) and (3.45a), which are evidently related by deformation
— a variation in the coefficient space of the aI’s in (3.40a). It then follows
that (3.41b) and (3.45b) should be related by a corresponding, dual transfor-
mation, in the yI-space. Indeed, the requisite (constant-Jacobian) fractional



✐

✐

“3-Hubsch” — 2024/1/2 — 18:27 — page 2576 — #36
✐

✐

✐

✐

✐

✐

2576 P. Berglund and T. Hübsch

change of variables (à la [57–62]) is

(3.50) (3.41b) : P
3
(3:5:8:8) ∋ (y1, y2, y4, y6)!

( y1
8
√
y6
, y2 8

√
y6, y4, y6

)

7! (y1, y2, y4, y5) ∈ P
3
(1:1:2:2) : (3.45b),

which also turns the Z24 Q▽-action from (3.43b) into the Z6 Q▽-action
in (3.48):

Red
1;3,5

y1 y2 y4 y6

Z24
5
24

3
24

1
3

1
3

7!

y1/ 8
√
y6 y2 8

√
y6 y4 y6

Z24
5−1
24

3+1
24

1
3

1
3

(3.51)

≃
Red
1;4,5

y1 y2 y4 y5

Z6
1
6

1
6

1
3

1
3

Since this assignment involves the 8th root, the mapping also involves a
Z8-orbifold quotient, indicating that the models (3.41b) and (3.45b) are
birational to each other: they are so-called “multiple mirrors” [63–66].

We take this as further evidence that the wide selection of K3 surfaces
one can define with the pair of polynomials (3.40), their deformations and
after requisite complementary finite quotients as in (3.49), and so ultimately
with the transpolar pair of polytopes ∆⋆

F
(3)
3

and ∆F
(3)
3

=∆⋆
▽F

(3)
3

, indeed form
mirror pairs — after appropriate MPCP-desingularization encoded by the
unit star-subdivisions. In turn, as shown in § 2, this collection stems merely
from the central member of the deformation family

[

P
3 1

P
1 3

]

, which leaves

many other open avenues for further exploration; see Figure 2.

Tyurin degenerations, again. The straightforward transposition mirror
pair of polynomials, such as explicitly given in (3.40) for F (3)

m , include rational
monomials for m≥3 and are both transverse.

Consider now the limit in which the rational monomials are omitted.
For the anticanonical system of F (n)

m (2.18), this amounts to omitting the
extension of the Newton polytope, ∆F (n)

m
(e.g., Figure 8) reducing it at a

(green-outlined) new facet that includes the origin. This regular part of the
Newton polytope, reg[∆F (n)

m
], spans an incomplete fan that covers only a

half-space; each anticanonical section,

reg[f(x)] =
∑

µ∈M∩ reg[∆F
(n)
m

]

aµ

( ∏

νi<−∆⋆F (n)
m

x
⟨νi,µ⟩+1
i

)
,(3.52)

reg[∆F (n)
m

]=
(
Conv[∆⋆

F (n)
m

]
)
◦,
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factorizes, and has a Tyurin degenerate zero locus. In turn, direct com-
putation shows that the regular part of the transpose of the full Laurent
polynomial,

reg
[
f(x)T =

∑

ν∈N∩∆⋆F (n)
m

bν

( ∏

µi<−∆F
(n)
m

y
⟨µi,ν⟩+1

i

)
= g(y)

]
,(3.53)

does not factorize but fails to be transverse only at isolated points. Finally,
the transpose of reg[f(x)],

(
reg[f(x)]

)
T =

∑

ν∈N∩∆⋆F (n)
m

bν

( ∏

µ′

i<−reg[∆F
(n)
m

]

η
⟨µ′

i,ν⟩+1
i

)
= g(η),(3.54)

consists of the same sections as the complete Laurent g(y), but is re-
expressed in terms of the Cox variables η, defined by the vertices of
reg[∆F (n)

m
]. This g(η) does not factorize either, but fails to be transverse

at a 1-dimensional curve. The increase in the singularity,

(3.55) dim
[ {

d reg
[
f(x)T=g(y)

]
=0

} ]
=0

⇝ dim
[ {

d
(
reg[f(x)]T=g(η)

)
=0

} ]
=1,

thus seems to stem from the use of Cox variables that correspond to the
incomplete fan Σ′<− reg[∆F (n)

m
].

For the various deformations of the central Hirzebruch scroll, such as dis-
cussed in § 2.5, the regular part of the anticanonical systems is less singular.
For example, both the generic reg[∆F

(n)

(3,2,··· )
]-sections and their transposes

are transverse. Here, Tyurin degenerations both in the “original” and in
the transpose mirror model are smoothable by regular sections. In turn,
the generic reg[∆F

(n)

(4,1,··· )
]-sections have isolated singular points, while their

transposes are transverse. Here, Tyurin degenerations of the transpose mir-
ror model is fully smoothable by regular sections, while the singularity of
the “original” may be reduced by regular sections to isolated singular points,
but needs rational sections for full smoothing.

3.5. Algebro-geometric avenues

The discussion of § 3.2 involved the notion of the intrinsic limit, which is
ostensibly not part of the standard tool-set in algebraic geometry. Although
Procedure 1 provides an alternative formulation that involves decidedly more
familiar algebro-geometric operations, it seems worth indicating two more
alternative formulations of these Laurent models.
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Weil divisors. Consider the ai!1 special case of the particular Laurent
polynomial (3.34):

(3.56) fR(x) = x3
5 + x4

5 +
x2

2

x4
=
x3

5x4 + x4
6 + x2

2

x4
, ∈ P

2
(3:1:1)[5].

The factorization of the regular anticanonical sections (3.1) of F (n)

m for m⩾3
implies that their zero-locus (3.3) reduces to a union of two hypersurfaces,
i.e., to a sum, [c−1(0)] + [s−1(0)], of the corresponding divisors. The formal
factorization (3.56) analogously corresponds to7:

(3.57a)
[
f−1

R
(0)

]
=
[{
n(x)/d(x)=0

}]
=
[
n
−1(0)

]
−
[
d
−1(0)

]
,

where

n(x) := x3
5x4 + x4

6 + x2
2, n

−1(0) ∈ P
2
(3:1:1)[6],(3.57b)

d(x) := x4, d
−1(0) ∈ P

2
(3:1:1)[1](3.57c)

are the (sextic) numerator and (linear) denominator divisors in P
2
(3:1:1).

Formal integral differences of divisors (in this case, zero-loci of otherwise
regular sections) such as (3.57a) are Weil divisors [13–15], introduced a
century ago as virtual varieties by F. Severi [67]. These then provide a
standard algebro-geometric framework for the Calabi-Yau zero-locus f−1

R
(0)

— and in fact all the Laurent-deformed codimension-1 Calabi-Yau models
of in non-Fano varieties [5].

Owing to their respective degrees, n(x) and d(x) differ significantly: Reg-
ular sextic polynomials such as n(x) on P

2
(3:1:1) freely involve all three quasi-

homogeneous coordinates and are sections of the line bundle O(6). By con-
trast, regular linear polynomials such as the denominator, d(x), on P

2
(3:1:1)

can involve only the latter two quasi-homogeneous coordinates, x3, x4, and
are sections of the sheaf O(1). This then implies that fR(x) also is a section
of the O(5) sheaf on P

2
(3:1:1). For most of the physics-motivated computa-

tions the precise distinction between sheaves and bundles does not seem to
matter in the intended physics applications [19], but the distinction exists
and may well be worth a formally more rigorous analysis.

This reformulation (3.57a) of the Laurent model (3.56) as the formal dif-
ference of two regular divisors (3.57) then opens another avenue of studying
such subspaces of well-understood “ambient” spaces, X⊂A. Of particular
interest are of course methods for computing their numerical characteristics

7We thank Amin Gholampour for alerting us to this formulation and avenue for
further study.
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such as the Euler number, Hodge numbers, and then also (topological) in-
tersection numbers of their own divisors and other subspaces, i.e., various
Yukawa couplings. It is worth noticing that the contributions of the denom-
inator divisor, [d−1(0)], to such numerical characteristics typically subtract
from those of the numerator divisor, [n−1(0)] — and this resonates with the
overall structure of results in [5].

Fractional mapping. Having already seen fractional coordinate changes
such as (3.50) above, it is perhaps no surprise that another fractional coor-
dinate change may simplify — indeed, regularize8 — the Laurent defining
equation (3.34):

f(x) = x3
5 + x4

5 +
x2

2

x4
(x2, x3, x4) ∈ P

2
(3:1:1)[5](3.34)

(x2, x3, x4) 7!(z3
√
z2, z1

2, z2)(3.58a)

h(z) = z1
10 + z2

5 + z3
2 (z1, z2, z3) ∈ P

2
(1:2:5)[10].(3.58b)

This effectively re-renders the Laurent model as a regular algebraic variety
— at a price: The indicated mapping9 involves

√
z2 and so a double cover

that is branched over the z2=0 locus; it also maps x1 7! z1
2 and so involves

a Z2 quotient (with respect to z1!−z1) with the z1=0 fixed-point set.
This then relates the Calabi-Yau Laurent model P2

(1:1:3)[5] with the decic

hypersurface P
2
(1:2:5)[10] — a variety of the general-type (c1<0) — via this

Z2-quotient of a branched double covering map; the reverse mapping is no
simpler. While this makes the analysis fairly convoluted (cf. [19, § 5.4–5.5])
it does show that the original Laurent model P2

(1:1:3)[5] is closely related to
a regular algebraic variety, and in a way that involves standard and more
familiar algebro-geometric operations.

The mapping (3.58) might appear to be a fortuitous fluke. However,
it does have a generalization that is applicable not only to the (rationally
extended) anticanonical system of P

2
(3:1:1), but in fact to the entire anti-

canonical system of F (2)

3 from whence (3.34) originally stems, and also ex-
tends straightforwardly to higher-twisted Hirzebruch scrolls. Using the toric

8We are grateful to David Cox for providing this proof-of-concept example and
Hal Schenck for communicating it to us.

9The direction of the left-hand side dashed arrows in (3.58) and (3.59) follows the
coordinate assignment, which is dual — and so of opposite direction of the mapping
between the underlying spaces, shown on the right-hand side.
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rendition of these monomials, we have:

f(x) = x1
2
(x3 ⊕ x4)

5 ⊕ x1 x2(x3 ⊕ x4)
2 ⊕ x2

2
( 1

x4

⊕
1

x3

)

F
(2)
3

[ 2
−1

]

=

[

P
2

1 2
P
1

3 −1

]

(3.59a)

(x1, x2, x3, x4) 7! (z1
√
z3, z2

√
z3 z

3
4 , z3, z4)(3.59b)

h(z) = z1
2 (

z3(z3 ⊕ z4)
5) ⊕ z1 z2

(

z3(z3 ⊕ z4)
2
z4

3) ⊕ z2
2 (

(z3 ⊕ z4) z4
5)

F
(2)
0

[

2
6

]

=

[

P
1

2
P
1

6

]

,(3.59c)

deg(x1, x2, x3, x4)=
( 1
−3 , 1

0 , 0
1 , 0

1

)

, deg(z1, z2, z3, z4)=
(

1
0 , 1

0 , 0
1 , 0

1

)

(3.59d)

While it looks a little more involved than (3.58), the (dash-arrow) map-
ping (3.59) now also includes (1) the hallmark directrix {x1=0}⊂F (2)

3 , and
(2) the “untwisted” Hirzebruch scroll, F (2)

0 — all while staying at the same
level of conceptual complexity in mapping the Calabi-Yau subspace: The
(presumably desingularized) finite quotient of a branched multiple cover
mapping (3.59) relates the Calabi-Yau hypersurface (2-torus) X (1)

3 ⊂F (2)

3 in
the non-Fano Hirzebruch scroll F (2)

3 (a 3-twisted P
1-bundle over P

1) to a
regular degree-(26) hypersurface in F

(2)

0 =P
1×P

1 (the “untwisted” plain prod-
uct), which is of (semi-)general type: c1=0 over one P1-factor, but c1<0 over
the other.

This “un/twisting” fractional mapping (see footnote 9) between F (2)

0 and
F (2)

3 is most definitely not the classical diffeomorphism, F (n)

m ≈RF
(n)

m (mod n).
Also, we note that this (dash-arrow) mapping of defining polynomials is
injective but most definitely not surjective: only 10 of the 21 monomials
from the full deformation family

[

P
1 2

P
1 6

]

turn up in the image (3.59c). That

is, this (dash-arrow) mapping exists only over the special subset in the full
deformation family

[

P
1 2

P
1 6

]

, specified by the particular degree-(26) polynomi-

als (3.59c). Qualitatively, this reminds of the situation illustrated in Figure 2.
While more precise details of such mappings are needed to effectively com-
pute numerical characteristics of Laurent models in general, suffice it here
to establish their existence and state their general nature.

Infinite pools of constructions. The numerator divisor,[
n−1(0)∈P

2
(3:1:1)[6]

]
in (3.57), has a negative 1st Chern class, and so

is a subvariety of general type, as is the regular variety, P2
(1:2:5)[10], in (3.58).

More generally, such “regularizing” mappings involve a variety with a
partially negative 1st Chern class: for F (2)

0

[
2
6

]
=

[

P
1 2

P
1 6

]

in (3.59c), c1 vanishes

over the first (upper) P
1-factor and is negative over the second (lower)

factor.
The a priori infinite number of algebraic varieties of general type to

serve in such “regularizing” mappings correlates with the infinite number of
VEX polytopes usable in encoding the Calabi-Yau models of [5]. Also, this
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supports the possibility that the pool of (g)CICYs connects to all Calabi-
Yau models — including all toric models [6], which resonates with the second
part of [36] (and closing paragraph of [19, Ch.D]) that discusses conifold
transitions to branched multiple covers.

4. Gauged linear sigma model aspects

Each Cox variable in a toric model is identified 1–1 with a chiral superfield of
the the gauged linear sigma model (GLSM) [17, 18]. In turn, each toric, i.e.,
projective space projectivization transformation corresponds to a twisted-
chiral, U(1;C)-gauge superfield. Then, the constant-Jacobian changes of
variables such as (2.12a), (2.21), (2.24) and (2.27) correspond to those same
superfield redefinitions. In fact, even the non-constant Jacobian changes of
variables (3.58) and (3.59) nevertheless turn out to provide supersymmetry-
preserving mappings of superfields. This provides a direct “translation” of
the toric computations discussed herein into the GLSM framework.

To this end, we focus on worldsheet supersymmetry as needed in the
usual application of GLSMs, and note that all superfields are formal power-
series such as Φ = ϕ(ξ)+θαψα(ξ)+θ

2F (ξ) . . . [68–70]. Here, ξ denotes the
ordinary (bosonic, commuting) coordinates on the worldsheet, and θα, θ̄α̇

with α=1, 2, . . . , p and α̇=1, 2, . . . , q denote Grassmann (fermionic, anti-
commuting) coordinates of the (p, q)-superspace extension of the worldsheet;
routinely, θ2 := 1

2(θ
αθβ−θβθα), etc. In this θ, θ̄-expansion, coefficient func-

tions of even (vs. odd) order, ϕ(ξ), F (ξ), . . . (vs. ψα(ξ), . . . ), have the same
(vs. opposite) boson/fermion parity as the superfield Φ itself. Owing to the
nilpotence and anticommutativity of θ, θ̄, all superfields in fact terminate
into order-(p, q) polynomials in θ, θ̄.

Focusing now on (2, 2)-supersymmetry and using the customary labels
α, α̇ = −,+ [71], the particular class of chiral (Φ) and twisted-chiral (Σ)
superfields are specified by the 1st-order superdifferential conditions

(4.1) D̄±Φ=0 and D̄−Σ=0=D+Σ.

It is immediate that such superfields form a ring under ordinary multiplica-
tion and all analytic functions of superfields are also superfields. Moreover,
even division by a superfield is well defined as long as division by its leading
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(“lowest-component”) coefficient function, ϕ(ξ), is:

(4.2)
f(Φ1,Φ2, . . . )

Φ

= f(Φ1,Φ2, . . . )
( 1

ϕ
−
(
θ±ψ± + θ2F

) 1

ϕ2
+ θ2ψ−ψ+

1

ϕ3
+ . . .

)
.

Similar θ, θ̄-expansions are just as well defined for fractional powers10, such
as needed in (3.58) and (3.59). Since chiral superfields in a GLSM are as-
signed to the Cox variables in the corresponding toric model, the various
rational expressions involving chiral superfields are well defined as long as
their Cox variable counterparts are. As discussed in § 3.2, this is true in all
the cases of interest here.

Finally, it remains to ascertain that the Laurent polynomials of chiral
superfields as used herein are themselves chiral superfields — as required
of the superpotential in the GLSM. In particular, the superpotentials of
interest are all of the general form W (X) = X0 f(Xi) for i=1, 2, . . . , as we
check:

D̄±

(
X0 f(Xi)

)
=

(
D̄±X0︸ ︷︷ ︸

=0

)
f(Xi) +X0

∑

i>0

∂f

∂Xi

(
D̄±Xi︸ ︷︷ ︸

=0

)
,(4.3a)

= 0 precisely if
∣∣f(Xi)

∣∣,
∣∣∣X0

∂f

∂Xi

∣∣∣ <∞,(4.3b)

whatever the functional form of f(Xi). The analogous expansion checks that
the so-called twisted superpotential itself remains a twisted chiral superfield.

Now, every quantum field can be expanded about a given vacuum expec-
tation value (vev), which is also known as the background field expansion.
The vev of every fermionic component field in every superfield must vanish to
preserve Lorentz symmetry, and the vev of every auxiliary field must vanish
to preserve supersymmetry [68–70]. It then follows that the vev of any chiral
(and also twisted-chiral) superfield reduces to the vev of its lowest compo-
nent field, ⟨Φ⟩ = ⟨ϕ⟩ — which for every “θ, θ̄-expandable” function f(Xi) is
the value of that function of the corresponding Cox variable, f(Xi).

Thus, as long as the vevs of the lowest components of the superfield
expressions appearing in the condition of (4.3b) are finite, the superpoten-
tial is indeed a chiral superfield. Reduced to the lowest components in the
θ, θ̄-expansion, these expressions include precisely the defining (regular or

10In fact, logarithms of superfields are quite commonplace in this type of analysis
also in the original works [17, 18], and are defined by analogous θ, θ̄-expansions.
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Laurent) section, f(Xi), its gradient components, ∂f
∂Xi

, and the Lagrange
multiplier-like field, X0, interpretable as the fibre coordinate of the canon-
ical bundle. As discussed in § 3.2, all of these quantities are required to re-
main finite in all the toric models considered herein, thus verifying that the
GLSM superpotential (as well as the twisted superpotential) remain chiral
(twisted-chiral) superfields. This then guarantees the various by now stan-
dard non-renormalization arguments, insuring that the usual computational
framework of supersymmetric GLSMs remains valid.

Finally, the various choices of the Mori vectors as discussed in § 2
correspond in the GLSM model to specific choices of generators for the
U(1;C)×U(1;C) gauge symmetry. As discussed in [18] and traced in full
detail in [5], the particular choices are distinguished by leaving some of
the Cox variables invariant, and so allowing them to acquire nonzero ex-
pectation values. The appearance of at least one neutral Cox variable in
every such assignment of the U(1;C)×U(1;C) charges precisely reflects one
of the requirements in the determination of candidate Mori vectors [29].
This then reinterprets the secondary fan as encoding the phases of the
GLSM and its possible phase transitions [17, 18]. While illustrated in (2.13),
(3.27) and (3.28) for the simplest cases11, this semiclassical characteristic
of GLSMs is just as computable for all n⩾2 and all m∈Z and all their
discrete deformations discussed in § 2.5. These semiclassical phase diagrams
exhibit a detailed m-dependence — unreduced by the Wall isomorphism,
m≃m (mod n), and so indicate an unreduced sequence of novel Calabi-Yau
GLSM models.

5. Concluding remarks

Every configuration of (generalized) complete intersections in products of
projective spaces [19, 72, 73] represents a continuous deformation family
of multi-projective complete intersections. We have shown herein that even
the very simplest (2.15) among their generalizations [1–4] contain many
discretely related toric models. It is tempting and at least logically possible
that the pool of gCICYs in fact includes many (if not all) toric constructions
as variously sub-generic and even singular models as well as their various
smoothings — including the (infinitely many) VEX models with Laurent
deformations [5], far exceeding the already immense database [6]. Of course,

11The Calabi-Yau hypersurfaces in all n=2 cases are of course 2-tori, which
exceptionally have a single Kähler class, and for which the shown 2-dimensional
secondary fans collapse to a 1-dimensional one.
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toric constructions tend to be computationally more approachable, partly
because that is where much of the recent computer-aided technology has
been developed. We should like to hope that the explicit relations of the kind
explored herein will provide for a sinergy between these different approaches,
for the benefit of all, including the somewhat more familiar albeit also more
involved renditions discussed in § 3.5.

The inclusion of singular models such as the Tyurin degenerations
(§ 3.1) also raises an issue, a resolution of which will require further study:
Standard methods of cohomology computations on F (n)

m [c1] for m⩾3 are
ambiguous: singular spaces admit even different notions of cohomology,
e.g., [74, 75], with no a priori obvious preference from string theory in these
circumstances; see however [76–81]. The reduction X (n−1)

m =Cm∪Sm with
SingX (n−1)

m =Cm∩Sm being very much akin to the so-called “infinite com-
plex structure” limiting form of the Dwork pencil of quintics [58] suggests
that Tyurin-degenerate models have an application in string compactifica-
tions, the details of which we defer to a future study.
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Appendix A. Holomorphic distinctions

Besides the directrix, the Hirzebruch scrolls (2.1) also exhibit both an
m-dependent number of exceptional anticanonical sections, H0(F (n)

m ,K∗),
and also an m-dependent number of exceptional local reparametrizations,
H0(F (n)

m , T ) — exactly matching the number of local deformations of the
complex structure, H1(F (n)

m , T ). We discuss these in turn, and then also the
quasi-Fano components in Tyurin degeneration.
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A.1. Exceptional anticanonical sections

While there exist exceptional anticanonical sections in H0
(
F (n)

m;0,K∗
)
for all

n⩾2 and m⩾4 [2], for notational simplicity we illustrate this here with the
lowest-n, lowest-m non-trivial example. Consider the simple deformation of
Hirzebruch’s original hypersurface [12]:

F (2)

4;ϵ =
{
(x, y) ∈ P

2×P
1 : p(x, y) := x0 y0

4 + x1 y1
4 + ϵ x2 y0

2 y1
2 = 0

}
,(A.1a)

so that p(x, y)=pa(ijkl)xa yiyjykyl simplifies:

p(x, y) : p0(0000) = 1, p1(1111) = 1, p2(0011) = ϵ(A.1b)

The anticanonical sections are determined by the Koszul resolution of
K∗=O

(
1

−2

) ∣∣
F

(2)
4;ϵ

, where we stack the cohomology groups underneath the

corresponding bundles and write the explicit tensor coefficients [19]:
(A.2)

O
(

1
−6

)
֒
p
−! O

(
2

−2

) ρF
↠ K∗=O

(
1

−2

) ∣∣
F

(2)
4;ϵ

0 0 H0(F (2)

4;ϵ,K∗)
d

{φi(jk1···k4)
a } p

−! {εijϕ(ab)} ↠ H1(F (2)

4;ϵ,K∗)

0 0 H2(F (2)

4;ϵ,K∗)=0

0 0 —

H0(F (2)

2;ϵ,K∗)∼ ker
[
{φi(jk1···k4)

a︸ ︷︷ ︸
dim=15

} p
−! {εijϕ(ab)︸ ︷︷ ︸

dim=6

}
]
,

H1(F (2)

2;ϵ,K∗)∼ coker
[
{
︷ ︸︸ ︷
φi(jk1···k4)
a } p

−! {
︷ ︸︸ ︷
εijϕ(ab)}

]
,

where φi(jk1···k4)≈εi(jφk1···k4) is totally symmetric in (jk1 · · · k4), but van-
ishes on total symmetrization of all indices, φ(i(jk1···k4))=0.

With the choice (A.1), the kernel of the p-mapping in (A.2),

φ
i(jk1···k4)
(a pb)(k1···k4) 7! εijϕ(ab), is spanned by the non-zero solutions of the

system

(A.3)

{
φ
i(jk1···k4)
(a pb)(k1···k4)

= 0
}

φi(jk1···k4)≈εi(jφk1···k4)

=

{
φ1111
1 = 0, φ0000

1 + φ1111
0 = 0, φ0000

0 = 0
6ϵ φ0011

1 + φ1111
2 = 0, 6ϵ φ0011

0 + φ0000
2 = 0, ϵ φ0011

2 = 0

}

When ϵ ̸=0, all six equations (A.3) constrain, and H0(F (2)

2;ϵ,K∗) is spanned
by the dimker(p) = 15−6 = 9 coefficients:

(A.4) φ0000
1 , φ0011

0 , φ0011
1 , and φ0001

a , φ0111
a for a = 0, 1, 2.

However, on Hirzebruch’s original hypersurface ϵ=0, the very last of the
six equations (A.3) is vacuous, and φ0011

2 is additionally left unconstrained.
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This leaves now a total of ten free coefficients to parametrize anticanonical
sections via the general formula [2],

(A.5) q(x, y) = φ
i(j1···j5)
(a pb)(i j3···j5)

xa xb

h(j1j2)(y)
,

and the exceptional contribution parametrized by φ0011
2 is no different. This

not only confirms the counting based on F (2)

4 := P
(
O⊕O(4)

)
provided in [2],

but explicitly constructs this exceptional anticanonical section. The by now
standard argument [1, 2] as well as the general scheme-theoretic frame-
work [3, 4] verify that all so-constructed exceptional anticanonical sections
are also holomorphic on F (2)

4 .
In turn, the cokernel of the p-mapping in (A.2), {εijϕ(ab)

(mod ε
i(j
φ
k1···k4)
(a pb)(k1···k4)

)} has all
(
2+2
2

)
=6 parameters ϕ(ab) gauged away

if ϵ ̸=0, leaving nothing to parametrize H1(F (2)

2;ϵ,K∗) = 0. In particu-

lar, εijϕ(22) is gauged away by ε
i(j
φ
k1···k4)
(2 p2)(k1···k4)

= ϵ ε
i(j
φ
0011)
2 , since

p2(k1···k2) = p2(0011) = ϵ. However, on Hirzebruch’s original hypersurface
when ϵ=0, the contribution ϕ(22) 7! H1(F (2)

2;ϵ,K∗) is not gauged away, leaving

dimH1(F (2)

2;ϵ,K∗) = 1.
These computations generalize straightforwardly to allm ⩾ 4 and n ⩾ 2,

and verify the result [2] for these sub-generic hypersurfaces:

dimH0(F (n)

m;ϵ,K∗) = 3
(
2n−1
n

)
+ δ̂(n)

m;ϵ(A.6a)

and dimH1(F (n)

m;ϵ,K∗) = δ̂(n)

m;ϵ,

where the number of exceptional contributions is

δ̂(n)

m;0 = ϑm3
(
2n−2

2

)
(m−3),(A.6b)

for F (n)

m,0 = {x0 ym
0 +x1 y

m
1 =0} ∈

[

P
n

1
P
1

m

]

,

δ̂(n)

m;ϵ ̸=0 < δ̂(n)

m;0; for generic cases, δ̂(n)

m;ϵ ̸=0 = 0.(A.6c)

Between Hirzebruch’s central, maximally non-generic hypersurface (2.1) and
the maximally generic deformations (2.2), there may well exist intermedi-
ately sub-generic hypersurfaces for which the number of exceptional anti-
canonical sections is also nonzero, depends on the ϵ’s, but does not reach
the maximal value ϑm3

(
2n−2

2

)
(m−3).

This “jumping” (A.6a) in the dimensions of H∗(F (n)

m;ϵ,K∗) depending on
the concrete choice of the defining equation (2.1)–(2.2) illustrates the fact
that a deformation family of even simple hypersurfaces such as

[

P
n 1

P
1 m

]

easily
contain discretely different complex manifolds.
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A.2. Exceptional local reparametrizations

Another consequence of this complex structure subtlety is the exis-
tence of the exceptional local reparametrizations of F (n)

m , parametrized by
H0(F (n)

m , T ). As a holomorphic cohomology computation, this again show-
cases the subtle dependence on the complex structures.

Suffices it again to consider but the simplest, n=2 cases, and com-
pute the cohomology groups H∗(F (2)

m;ϵ, T ) for deformed hypersurfaces such
as (2.2) and (A.1), parametrizing the complex structures of those hypersur-
faces F (2)

m;ϵ ∈
[

P
2 1

P
1 m

]

. To this end, we use the adjunction formula combined

with the Koszul resolution of the restriction to F (2)

m;ϵ of requisite bundles:
(A.7)

TA ⊗OA

(
−1
−m

)
OA!֒

p

!֒

p

TA OA( 1
m)↠

ρ

↠

ρ

TF (2)
m;ϵ
!֒ TA|F (2)

m;ϵ
↠ OF (2)

m;ϵ
( 1
m)

i.e.

( 0 0 1
m 0 )⊕

(
1 0 0

m−1 1

)
(0 0 0
0 0 )

!֒

p

!֒

p(
−1 0 1
0 0

)
⊕
(

0 0 0
−1 1

) (
−1 0 0
−m 0

)

↠

ρ

↠

ρ

TF (2)
m;ϵ
!֒ TA|F (2)

m;ϵ
↠ OF (2)

m;ϵ
( 1
m)

where “(a|b1b2)” encodes bundles on P
2= U(3)

U(1)×U(2) in terms of U(1)×U(2)-

representations: a is the U(1) charge, and (b1b2) encodes the U(2)-
representation by means of the Young tableau with br boxes in the
rth row. Analogously, P

1= U(2)
U(1)×U(1) , and “

(
a b1 b2
c d

)
” encodes bundles on

P
2×P

1 [19, 82, 83].
The central column in (A.7) produces

( 0 0 1
m 0 )⊕

(
1 0 0

m−1 1

) (
−1 0 1
0 0

)
⊕
(

0 0 0
−1 1

)
TA|F (2)

m;ϵ

0. ϑ0m{φa}31
p
−! {λba}81 ⊕ {κji}13 H0(F (2)

m;ϵ, TA)

1.
d

ϑm2 {φi(j2···im)a}3m−1 0 0
...

...
...

...

(A.8)

H0(F (2)

m;ϵ, TA) ∼ {λba/(ϑ0mφapb)} ⊕ {κji} ⊕> {ϑm2 κj
i}(A.9)

where “1|0 0” indicates no cohomology, ϑba :={1 if a⩽b, 0 otherwise}, the
“directed sum” A⊕>B = C denotes the extension of B by A, i.e., abbreviates
the exact sequence A !֒ C ↠ B, and where

(A.10) yj κj
i ∂

∂yi
, with κj

i := φi(k2···km)a pa(jk2···km),
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is the minimal form of this contribution to reparametrizations, con-
structed by maximally contracting the tensor coefficients12. This gives
dimH0(F (2)

m;ϵ, TA) = (8−ϑ0m3) + 3 + ϑm2 3(m−1) = 3m+8.
The right-hand column in (A.7) produces

(0 0 0
0 0 )

(
−1 0 0
−m 0

)
O( 1

m) |F (2)
m;ϵ

0. {ϑ}11
p
−!{ϕa(i1,··· ,im)}3m+1 H0

(
F (2)

m;ϵ,O( 1
m)

)

1. 0 0 0
...

...
...

...

(A.11)

H0
(
F (2)

m;ϵ,O( 1
m)

)
∼ {ϕa(i1,··· ,im)/ϑ pa(i1,··· ,im)}3m+2.(A.12)

Finally, the long exact sequence from the bottom-row short exact se-
quence in (A.7) reduces to:

H0(F (2)

m;ϵ, T ) !֒ {λba/(ϑ0mφapb)} ⊕ {κji} ⊕> {ϑm2 κj
i}︸ ︷︷ ︸

3m+8

(A.13)

dp
−! {ϕa(i1,··· ,im)/ϑ pa(i1,··· ,im)}︸ ︷︷ ︸

3m+2

↠ H1(F (2)

m;ϵ, T ).

This leaves dimH0(F (2)

m;ϵ, T ) = 6 +∆m reparametrizations and
dimH1(F (2)

m;ϵ, T ) = ∆m (Kodaira-Spencer) deformations of the com-
plex structure. The quantity ∆m = dim(coker(dp)) measures the corank of
the dp-mapping, i.e., ∆m = 0 if dp is of maximal rank.

As the simplest concrete and non-trivial example, consider the m=2=n
family

(A.14)
F (2)

2;ϵ := {pϵ⃗ (x, y)=0} ∈
[
P
2 1

P
1 2

]
,

pϵ⃗ (x, y) := x0 y0
2 + x1 y1

2 + ϵ x2 y0y1

for which we have:
(A.15)
H0(F (2)

m;ϵ, T ) !֒ {λba} ⊕ {κji} ⊕> {κj
i} dp
−! {ϕa(ij)/φ pa(ij)}↠ H1(F (2)

m;ϵ, T ),

∈ ∈(
λa

b pb(ij) + pa k(i κj)
k + pa k(i κj)

k
)
=: ϕ̂a(ij).

12Iteratively “un-contracting” this expression, φ···i)ap
···j) δi

j
! φ···i)ap

···j)
yj

yi !

etc., generalizes the representatives and enables a detailed and complete match
with the direct Czech cohomology computations à la Ref. [4].
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With (A.14) and so p0(00) = 1 = p1(11) and p2(01)=ϵ, the definition (A.10)

of κj
k specifies

(A.16) κ0
1 = −φ0, κ1

0 = φ1, and κ0
0 = ϵ φ2 = −κ1

1.

H0(F (2)

m;ϵ, T ) = ker(dp) is spanned by the variables {λba, κji,κj
i} omitted in

the assignment (A.15) in the target spanned by elements of the equivalence
class [ϕa(ij) ≃ ϕa(ij) + φpa(ij)]:

(A.17) λa
b pb(ij) + pa k(i κj)

k + pa k(i κj)
k
7! [ϕa(ij) ≃ ϕa(ij) + φpa(ij)].

While ϕa(ij) has
(
1+2
2

)(
2+1
1

)
= 9 components, the mod pϵ⃗ (x, y)-equivalence

class on the right-hand side has 9−1=8, so that (A.17) encodes only 8
equations, not 9. With the choice (A.14),

(A.18) [ϕa(ij) ≃ ϕa(ij) + φpa(ij)] ∼
{ ϕ0(01), ϕ0(11), ϕ1(00), ϕ1(01), ϕ2(00), ϕ2(11),
ϕ0(00) ≃ ϕ0(00) + φ, ϕ1(11) ≃ ϕ1(11) + φ, ϕ2(01) ≃ ϕ2(01) + ϵ φ

}
.

The φ=−ϕ0(00) “gauge” renders the ϕ̂0(00) = 0 equation vacuous, and re-
places

(A.19) ϕ̂1(11) ! (ϕ̂1(11) − ϕ̂0(00)) and ϕ̂2(01) ! (ϕ̂2(01) − ϵ ϕ̂0(00)),

turning the system of assignments (A.15) into:
(A.20)
a (ij)=(00) (ij)=(01) (ij)=(11)

0 —— 2ϵ λ0
2+(κ1

0+κ1
0) 7! 2ϕ0(01) λ0

1
7! ϕ0(11)

1 λ1
0
7! ϕ1(00) 2ϵ λ1

2+(κ0
1+κ0

1) 7! 2ϕ1(01) λ0
0−λ11+2(κ0

0+κ0
0) 7! ϕ1(11)

2 λ2
0+ϵ(κ0

1+κ0
1) 7! ϕ2(00) −ϵ

(
2λ0

0+λ1
1+(κ0

0+κ0
0)
)
7! 2ϕ2(01) λ2

1+ϵ(κ1
0+κ1

0) 7! ϕ2(11)

For ϵ ̸=0, the system is solved by assigning, e.g.:

κ0
0
7!

(
1
2ϵϕ2(01)+λ1

1
)
−1

2ϕ1(11)−κ0
0, λ0

0
7! −

(
1
ϵϕ2(01)−λ1

1
)
,

λ0
1
7! ϕ0(11), λ1

0
7! ϕ1(00),

(A.21a)

κ0
1
7! 2ϕ1(01)−κ01−2ϵλ1

2, λ2
0
7! ϕ2(00)+2ϵ2λ1

2−2ϵϕ1(01),(A.21b)

κ1
0
7! 2ϕ0(01)−κ10−2ϵλ0

2,

λ2
1
7! ϕ2(11)−ϵ(2ϕ0(01)+1

2ϕ1(11))+
1
2ϵ(λ0

0+λ1
1)+2ϵ2λ0

2,
(A.21c)
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which leaves six linearly independent local reparametrization generator rep-
resentatives

(A.22) H0(F (2)

m;ϵ, T ) ∼{
x1λ1

1 ∂

∂x1
, x0λ0

2 ∂

∂x2
, x1λ1

2 ∂

∂x2
, y0κ0

0 ∂

∂y0
, y1κ1

0 ∂

∂y0
, y0κ0

1 ∂

∂y1

}
.

At ϵ!0, the (middle-column, bottom-row) ϕ2(01)-assignment becomes
vacuous, reducing the system from eight equations to seven, increasing
dimH0(F (2)

m;ϵ, T )=6!7 and dimH1(F (2)

m;ϵ, T )=0!1. The ϵ!0 limit of the
system (A.20) is solved by the straightforward ϵ!0 limit of the replace-
ments (A.21) except that now

(A.23) ϵ!0: κ0
0
! −1

2ϕ1(11)+
1
2(λ1

1−λ00)−κ00, λ0
0 free,

adding x0λ0
0 ∂
∂x0 to H0(F (2)

m;0, T ), and leaving ϕ2(01)∈H1(F (2)

m;0, T ) for the
central, ϵ=0 member of the deformation family, the original Hirzebruch
surface.

This explicit (if tedious) construction generalizes to all m,n ⩾ 2, and
produces the above-quoted results (2.7), and is in full agreement with the
SAGE result for the automorphism group of the toric realization of F (n)

m . As
withH∗(F (n)

m ,K∗), the deformation family (2.2) may well contain sub-generic
hypersurfaces for which the number of exceptional reparametrizations is
also nonzero, depends on the ϵ’s, but does not reach the maximal value
ϑm1 (n−1)(m−1).

A.3. Quasi-Fano components

The cohomology of the components
(
Sm=s−1(0)

)
,
(
Cm=c−1(0)

)
⊂F (n)

m is
readily computed, as we show here using the bi-projective embedding (2.1).
The results,

(A.24) dimHr(Sm,O) = δr,0 = dimHr(Cm,O), χ(OSm
) = 1 = χ(OCm

)

and the fact that Sm∩Cm= ♯X (n−2)

m is a smooth Calabi-Yau space for generic
choices of c(x, y) satisfies the definition [35, Def. 2.2] of a quasi-Fano space.

The directrix. Consider first the hallmark directrix hypersurface
Sm⊂F (n)

m . Its structure sheaf cohomology is computed from the network
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of Koszul resolutions:

(A.25)

OA

(
−2
0

)
s
9֒9K OA

(
−1
−m

)

!֒

p0

!֒

p0

OA(−1
m ) s

9֒9K OA↠ ↠

OF (n)
m

(−1
m ) ֒

s
−! OF (n)

m
↠ OSm

where the mapping induced from multiplication by s(x, y) becomes regular
on F (n)

m (in the bottom row), while elsewhere on A it involves multiplica-
tion by the equivalence class of Laurent polynomials (2.11). The vertical se-
quences are however induced from multiplication by the polynomial p0(x, y),
which is regular everywhere on A. We compute the associated cohomology
from those first, using again the Young tableau notation as above [19]:

(A.26)

(2 0 ··· 0
0 0 ) ֒

p0
−!

(
1 0 ··· 0

−m 0

)
↠ OF

(n)
m

(−1
m )

0. 0 0 H0=0
1. 0 0 H1=0
...

...
...

...

and

( 1 0 ··· 0
m 0 ) ֒

p0
−!(0 0 ··· 0

0 0 ) ↠ OF
(n)
m

0. 0 (0 0 ··· 0
0 0 ) ≈ H0

1. 0 0 H1=0
...

...
...

...

Combining these results for the bottom, horizontal sequence in (A.25) yields

(A.27)

OF (n)
m

(−1
m ) ֒

s
−! OF (n)

m
↠ OSm

0. 0 (0 0 ··· 0
0 0 ) ≈H0 ≈ C

1. 0 0 H1=0
...

...
...

...

so χ(OSm
)=1.

The complemetrix. The analogous computation for the complementrix,
(Cm⊂F (n)

m )∈ [

P
n 1 n−1

P
1 m 2

]

, is:
(A.28)
OA

(
−n

−2−m

)
֒
c
−!OA

(
−1
−m

)
↠ OC′

m

(
−1
−m

)

!֒

p0

!֒

p0

!֒

p0

OA

(
1−n
−2

)
֒
c
−! OA ↠ OC′

m↠ ↠ ↠

OF (n)
m

(
1−n
−2

)
֒
c
−! OF (n)

m
↠ OCm

where

{
C ′
m ∈ [

P
n n−1

P
1 2

]

,

C ′
m :=

{
c(x, y)=0

}
⊂A.
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Since both p0(x, y) and c(x, y) are regular polynomials on A=P
n×P

1, both
the horizontal and the vertical mappings are well defined over all of A, and
we short-cut the cohomology computation using the spectral sequence [19]:
(A.29)

(
n 0 ··· 0

2+m 0

) c

p0

( 1 0 ··· 0
m 0 )(

n−1 0 ··· 0
2 0

)
p0

c

(0 0 ··· 0
0 0 ) ↠ OCm

0. 0 0 (0 0 ··· 0
0 0 ) ≈ H0 ≈ C

1. 0 0 0 H1=0
...

...
...

...
...

so χ(OCm
)=1.
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