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A system of billiard and its application to

information-theoretic entropy

Supriyo Dutta and Partha Guha

In this article, we define an information-theoretic entropy based
on the Ihara zeta function of a graph which is called the Ihara
entropy. A dynamical system consists of a billiard ball and a set of
reflectors correspond to a combinatorial graph. The reflectors are
represented by the vertices of the graph. Movement of the billiard
ball between two reflectors is represented by the edges. The prime
cycles of this graph generate the bi-infinite sequences of the cor-
responding symbolic dynamical system. The number of different
prime cycles of a given length can be expressed in terms of the
adjacency matrix of the oriented line graph. It also constructs the
formal power series expansion of Ihara zeta function. Therefore,
the Ihara entropy has a deep connection with the dynamical sys-
tem of billiards. As an information-theoretic entropy, it fulfils the
generalized Shannon-Khinchin axioms. It is a weakly decompos-
able entropy whose composition law is given by the Lazard formal
group law.

1. Introduction

In information theory, entropy is a measure of information. The informa-
tion is the uncertainty which is inherent in a probability distribution. Shan-
non entropy is a well-known measure of information. The idea of entropy
is diversely studied in the literature of thermodynamics, information the-
ory, dynamical system, graph theory, and social science. The community
of mathematical physics is interested to generalize the concept of entropy
due to its emerging applications in economics, astrophysics, and informat-
ics. In recent years, the generalization of entropy is a crucial topic for the
investigations in mathematics.

There are different approaches to generalize entropy, in literature. An en-
tropy is a function S : {P} → R

+ ∪ {0} over the set of all probability distri-
bution {P} satisfying the Shannon-Khincin axioms or their generalizations.
The function is independent of the probability distributions. The literature
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of generalized entropy is concerned with the foundation and properties of
the entropy functions. To define new entropy functions we introduce a num-
ber of parameters in the expression of Shannon entropy. These parameters
may not have any physical significance. The Tsallis entropy is a generalized
entropy with a single parameter q. Given a discrete probability distribution

P = {pi}
W
i=1 the Tsallis entropy is defined by Sq(P) = 1

q−1

(

1−
∑W

i=1 p
q
i

)

.

Observe that limq→1 Sq(P) = S(P) = −
∑W

i=1 pi log(pi), which is the Shan-
non entropy. Entropy with more than two parameters is also investigated
in the literature. Note that, there is no dependence between the parameter
q and probability distribution. Therefore, different values of q generate dif-
ferent measures of information for a particular P. Another formulation for
generalizing the Shannon entropy is replacing the logarithm with varieties
of generalized logarithms, such as deformed logarithms, formal group loga-
rithms, poly-logarithms etc. In this scenario also, the literature is relevant
to the properties and the structure of the entropy function.

Following similar ideas, we introduce the Ihara entropy in this article.
The Ihara zeta function [1, 2] of a combinatorial graph G is defined by

(1.1) ζG(z) =
∏

P

(

1− zγ(P )
)−1

,

where P is a prime cycle in the graph G of length γ(P ). The Ihara zeta
function is defined on a class of graphs satisfying a number of particular
characteristics. In this article, we present a physical meaning of these char-
acteristics. Consider the vertices of the graph as reflectors and edges as the
movement of a billiard ball between them. It helps us to present the dynam-
ical system as a symbolic dynamical system. The Ihara zeta function acts
as a Ruelle zeta function for this system. There are invertible formal power
series [3] which can be expressed in terms of Ihara zeta function. We con-
sider one of them as a formal group logarithm, which replaces the natural
logarithm for Shannon entropy. The new generalized entropy of probability
distributions is mentioned as Ihara entropy, which depends on the structure
of graphs. We then prove that this entropy fulfills the Shannon-Khinchin ax-
ioms. A number of formal group-theoretic entropy are recently introduced
in literature [4–6]. This article is the first one in this direction to discuss
the dynamical system theoretic nature of this entropy. The entropy function
depends on the prime cycles of a graph, which are induced by the movement
of billiard ball between reflectors. Therefore, the billiard dynamics inherent
in the entropy function. Another important characteristic is that the new
entropy is a member of the one-parameter class of entropy. This parameter
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scales a probability distribution in the domain of Ihara zeta function. In ad-
dition, this entropy is a measure of uncertainty in a probability distribution
and different from the graph entropy or the dynamical entropy.

This article is distributed into four sections. In section 2, we present
a model of billiard dynamics. This section describes a combinatorial graph
associated with a billiard dynamical system. It also introduces a symbolic
dynamical system where the symbols are the edges of the graph. The bi-
infinite sequences of symbols represent the bi-infinite walks, which can be
decomposed into prime cycles. The next section is dedicated to the Ihara
zeta function and its formal power series representations. Here we define the
Ihara entropy and discuss its characteristics. Then we conclude this article.

2. A model of billiard dynamics

This article considers a particular model of the motion of a billiard ball on a
smooth plane. At least four round shaped reflectors are placed at arbitrarily
chosen positions on a smooth plain, such that, they are not arranged on a
single straight line. A billiard ball moves between the reflectors and reflected
elastically when it collides with a reflector. The ball can not be reflected on
the same reflector consecutively. We are not interested in the radius of the
reflectors, their internal distance, initial and terminal position of the ball,
as well as initial speed and angles of reflections of the billiard.

To associate a combinatorial graph with this system we assume the re-
flectors as the vertices. There is an edge between two vertices if a ball can
be reflected between the corresponding reflectors. A ball can move in any
directions, between two reflectors. Therefore, each edge has two opposite
orientations. It is assumed that the ball can not be consequently reflected
on the same reflector. Thus, there is no loop on the vertices. The reflectors
do not form a straight line. Hence, the path graphs are excluded from our
consideration. This assumption also indicates that there is no vertex in these
graphs which is adjacent to only one vertex. A cycle is also excluded from our
discussion. We can arrange the reflectors in a cycle. In this arrangement, if
a ball moves from the reflectors a to another reflector b, then it has a chance
to move towards another reflector c which is located nearly b. Combining all
these observations, we find that a graph G = (V (G), E(G)) describing the
dynamics of billiard under our consideration, is a simple, finite, connected,
and undirected graph without any vertex of degree one. In addition, G is
neither a cycle graph nor a path graph. We call them admissible graphs. Dif-
ferent arrangements of the reflectors are represented by different admissible
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(a) System of reflectors
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(b) Representation with a graph

Figure 1. Reflectors and the corresponding graph

graphs. As an example, consider figure 1a which contains a set of reflec-
tors which are represented by circles. This system can be represented as the
combinatorial graph depicted in figure 1b.

Let a particular billiard system be represented by a graph G with n
vertices and m edges. As every edge has two opposite orientations the set of
all orientations can be collected as

(2.1) E = {e(1), e(2), . . . e(m), e(m+1) = (e(1))−1, . . . e(2m) = (e(m))−1}.

Here, e(k) = (u, v) is a directed edge with initial and terminating vertices
i(e(k)) = u and t(e(k)) = v, respectively. Every directed edge e(k) has an in-
verse e(m+k) = (e(k))−1 = (v, u) in E for k = 1, 2, . . .m.

The movement of a ball between the reflectors generates a directed path,
which is a sequence of directed edges, in the graph. We are not interested
in the initial and terminal position of the billiard ball. Hence, we assume
that the sequence of directed edges forms a bi-infinite, directed walk on
the graph. Two directed edges e(i) and e(j) consecutively arise on a walk
if v = t(e(i)) = i(e(j)). It indicates that a ball which is moving along the
direction of e(i) will follow the direction of e(j) after getting reflected at
v. We describe that the edges e(i) and e(j) ∈ E are composeble and the
composition is represented by e(i)e(j). Note that, the set E forms a col-
lections of symbols, that is an alphabet [7] of a symbolic dynamic system.
Symbolically, we write a bi-infinite walk w =

∏

i∈Z ei = . . . e−2e−1e0e1e2 . . . ,
such that, any two constitutive edges ei and ei+1 are composeble for all
i ∈ Z. The set of all such walks is a full E-shift, which is denoted by EZ.
A block over E is a walk Q = e1e2 . . . eγ(Q) of finite length γ(Q). The ball
rarely reflects between two reflectors repeatedly. Therefore, we neglect sit-
uation ei+1 = (ei)

−1, in a bi-infinite walk. Now we define a set of forbid-
den blocks F = {e(i)(e(i))−1 : e(i) ∈ E}. Let XF be the subset of EZ which
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does not contain any block in F . Note that, XF is a shift space of fi-
nite type. A cycle W = e1e2 . . . ek of length k is a closed finite walk, such
that, i(e1) = t(ek). Two cyclesW1 = e1,1e1,2 . . . e1,k andW2 = e2,1e2,2 . . . e2,k
are equivalent if e2,1 = e1,r, e2,2 = e1,(r+1), . . . e2,(k−r+1) = e1,k, e2,(k−r+2) =
e1,1, . . . e2,k = e1,(r−1) for some r ∈ {1, 2, . . . k}. The set of equivalence classes
of cycles are called prime cycles. The length of a prime cycle P is de-
noted by γ(P ). Two primes P1 = e1,1e1,2 . . . e1,k1

and P2 = e2,1e2,2 . . . e2,k2

are composable if t(e1,k1
) = i(e2,k2

), and the composition is denoted by
P (1)P (2) = e1,1e1,2 . . . e1,k1

e2,1e2,2 . . . e2,k2
. In a similar fashion, we define

product of a prime P and a finite walk Q, or product of two finite walks
Q1 and Q2. A simple observation indicates that any bi-infinite walk w ∈ EZ

can be expressed as w =
∏

i∈Z P
pi

i Qi, where pi is the number of consecutive
repetitions of the prime Pi and Qi is the finite walk after the repetition of
prime Pi.

3. Ihara zeta function and entropy

Recall from the last section that the movement of the billiard ball in the
system of reflectors generates bi-infinite walks on a graph G. To illustrate
the properties of these walks we consider the oriented edges as the vertices of
a new graph, which is called the oriented line graph. Formally, the oriented
line graph G = (V (G), E(G)) of the graph G is represented by V (G) = E
and

(3.1) E(G) = {(e(i), e(j)) ∈ E × E : t(e(i)) = i(e(j)) and i(e(i)) ̸= t(e(j))}.

It is known that the number of prime cycles of length k starting and
ending at the vertex e is expressed as the e-th element of the T k, where
T = (t(e(i),e(j)))2m×2m is the adjacency matrix of the graph G defined by,

(3.2) t(e(i),e(j)) =

{

1 if (e(i), e(j)) ∈ E(G), and

0 if (e(i), e(j)) /∈ E(G).

Therefore, tr(T k) represents the number of all cycles of length k, which is a
non-negative integer. Now the generating function for the number of cycles

in a graph is given by f(z) =
∑

∞

k=1
tr(T k)

k
zk. The Ihara zeta function for the

graph G is alternatively represented by the formal power series

(3.3) ζG(z) = exp

(

∞
∑

k=1

tr(T k)

k
zk

)

,
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where |z| < 1
λ
[8]. Here, λ is the greatest eigenvalue of T , which is a positive

number.
In this work, we are interested in entropy of a probability distribution

depending on the billiard dynamics. As probability is a positive real number,
we restrict ζG(z) to the real interval [0, 1

λ
). The restricted function ζG(x) =

exp
(

∑

∞

k=1
tr(T k)

k
xk
)

, such that, ζG(x) : [0,
1
λ
) → R can be expressed as

ζG(x) = 1 +

∞
∑

k=1

tr(T k)

k
xk +

1

2!

(

∞
∑

k=1

tr(T k)

k
xk

)2

+
1

3!

(

∞
∑

k=1

tr(T k)

k
xk

)3

+ . . .

= 1 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + . . . .

(3.4)

In the above expression, c1 = tr(T ) = 0, since T is an adjacency matrix of a

graph without a loop. Also, c2 =
tr(T 2)

2 , c3 =
trT 3

3 , c4 =
tr(T 4)

4 + (tr(T 2))2

8 , c5 =
tr(T 5)

5 + tr(T 2) tr(T 3)
6 . As, trT k is non-negative for all k, and the coeffi-

cients c2, c3, . . . of ζG(x) in equation (3.4) are all positive. Hence, for all
x ∈ [0, 1

λ
) ζG(x) > 0, as well as all its derivatives exists and positive. Clearly,

ζG(x), ζ
′
G(x), ζ

′′
G(x), . . . are all monotone increasing functions.

Given two formal power series [9] S =
∑

∞

i=1 six
i and T =

∑

∞

i=1 tix
i the

composition S ◦ T (x) is defined by another power series S ◦ T (x) = S(T (x)).
The power series S is said to be the compositional inverse of T if S(T (x)) = x
holds. The power series T has an inverse with respect to the composition if
and only if t1 = 1. The coefficients in equation (3.4) suggest that the formal
power series of ζG(x) has no compositional inverse.

The formal group entropy [4] of a discrete probability distribution

P = {pi}
W
i=1 is given by S(P) =

∑W
i=1 piG

(

log
(

1
pi

))

, where G is an invert-

ible formal power series. Let t = log(1
p
), which refers p = e−t. Now, the equa-

tion (3.4) indicates that

(3.5) ζG(ae
−t) = 1 + c2(ae

−t)2 + c3(ae
−t)3 + c4(ae

−t)4 + . . . .

Here, a is a non-zero scaling factor, such that, 0 ≤ ae−t < 1
λ
. In addition,

(3.6) ζG(a) = 1 + c2a
2 + c3a

3 + c4a
4 + . . . .
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Hence,

ζG(ae
−t)− ζG(a) = c2a

2(e−2t − 1) + c3a
3(e−3t − 1)

+ c4a
4(e−4t − 1) + . . .

(3.7)

Note that, e−t − 1 = −t+ t2

2! −
t3

3! + . . . . Now,

ζG(ae
−t)− ζG(a) + e−t − 1

= (e−t − 1) + c2a
2(e−2t − 1)

+ c3a
3(e−3t − 1) + c4a

4(e−4t − 1) + . . .

(3.8)

Clearly, ζG(ae
−t)− ζG(a) + e−t − 1 has no constant term. The coefficient of

t in the power series of ζG(ae
−t)− ζG(a) + e−t − 1 is

d

dt

[

ζG(ae
−t)− ζG(a) + e−t − 1

]

|t=0

=
[

−ae−tζ ′G(ae
−t)− e−t

]

|t=0 = −
[

1 + aζ ′G(a)
]

.
(3.9)

Hence, the formal power series corresponding to

(3.10) G(t) =
ζG(ae

−t)− ζG(a) + e−t − 1

−(1 + aζ ′G(a))

has zero constant coefficient as well as the coefficient for t is 1. Therefore,
there exists a formal power series F(s), such that, F(G(t)) = G(F(t)) = t.
Now, replacing t = log(1

p
) in the expression of G(t) we find

(3.11) G

(

log

(

1

p

))

=
ζG(a) + 1− (ζG(ap) + p)

1 + aζ ′G(a)
.

As ζG(x) is a monotone increasing function, ζG(a) ≥ ζG(ap) > 0. Therefore,

G
(

log
(

1
p

))

≥ 0. It leads us to construct the formal group theoretic entropy

associated to the Ihara zeta function, which is defined below.

Definition 1. Given a graph G the Ihara entropy of a discrete probability
distribution P = {pi}

W
i=1 is defined by

SG(P) =

W
∑

i=1

piG

(

log

(

1

pi

))

=

W
∑

i=1

pi
ζG(a) + 1− (ζG(api) + pi)

1 + aζ ′G(a)
,

where 0 < a < 1
λ
. Here, λ is the largest eigenvalue of G, which is the oriented

line graph of G.
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In information theory, an entropy S(P) of a probability distribution P
satisfies the Shannon-Khinchin axioms [10, 11] which are mentioned below:

1) The function S([P]) is continuous with respect to all its arguments pi,
where [P] = {pi}

W
i=1 is a discrete probability distribution.

2) Adding a zero probability event to a probability distribution does not
alter its entropy, that is S([P1]) = S([P]) where [P1] = {pi}

W
i=1 ∪ {0}.

3) The function S([P]) is maximum for the uniform distribution [P] =
{ 1
W
}Wi=1.

4) Given two independent subsystems A,B of a statistical system, S(A+
B) = S(A) + S(B).

Define a function s : [0, 1] → R, such that,

(3.12) s(p) = p×
ζG(a) + 1− (ζG(ap) + p)

1 + aζ ′G(a)
.

Therefore, the Ihara entropy SG(P) =
∑W

i=1 s(p). Clearly, s(p) is a contin-
uous function of p, that is, SG(P) is also continuous with respect to all its
arguments pi for i = 1, 2, . . .W . Thus, SG(P) satisfies the axiom 1. The ax-
iom 2 also trivially satisfied as s(0) = 0, that is 0 probability alters nothing
in S(P). The axiom 3 and axiom 4 are non-trivial which are illustrated in
the following two theorems.

Theorem 3.1. There exists a global maxima of s(p) in (0, 1), where s(p)
is defined in equation (3.12).

Proof. We have

(3.13) s′(p) =
1 + ζG(a)− 2p− ζG(ap)− apζ ′G(ap)

1 + aζ ′G(a)
.

Now s′(p) = 0 holds if and only if

(3.14) h(p) = 1 + ζG(a)− 2p− ζG(ap)− apζ ′G(ap)

has a root in (0, 1). Equation (3.4) suggests that for any graph G we have
ζG(0) = 1. Therefore, h(0) = ζG(a) > 0 and h(1) = −1− aζ ′G(a) < 0. As h is
a continuous function of p there is at least one point p = c in (0, 1), such that,
h(c) = 0 that is s′(c) = 0. Also, h′(p) = −2− 2aζ ′G(ap)− a2pζ ′′G(ap) < 0 for
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all p. Therefore, h is strictly monotone decreasing function, that is c is the
unique point in (0, 1) such that s′(c) = 0. Now,

(3.15) s′′(p) =
−2− 2aζ ′G(ap)− a2pζ ′′G(ap)

1 + aζ ′G(a)
< 0,

for all p. Hence, c is a global maxima of s(p) in (0, 1). □

The theorem 3.1 leads us to the conclusion that the entropy SG(P)
considers the maximum value if s(pi) is maximum for all pi ∈ P. Thus, to
maximize SG(P) we need pi = c for all i, which is the uniform distribution
after a normalization. Therefore, the Ihara entropy mentioned in definition
1 fulfills the axiom 3 of the Shannon-Khinchin axioms.

We generalize the axiom 4 of the Shannon-Khinchin axioms by utilize the
Lazard formal group law. Recall that, a commutative one-dimensional formal
group law over R is a formal power series Φ(x, y) with two indeterminates
x and y of the form Φ(x, y) = x+ y+ higher order terms, such that

Φ(x, 0) = Φ(0, x) = x,

Φ(Φ(x, y), z) = Φ(x,Φ(y, z)),

Φ(x, y) = Φ(y, x).

(3.16)

Recall from equation (3.10) that we have considered the F(s) as the com-
positional inverse of G(t). Now, the Lazard formal group law [12] is defined
by the formal power series

(3.17) Φ(s1, s2) = G (F(s1) + F(s2)) .

Theorem 3.2. Let PA =
{

p
(A)
i

}WA

i=1
and PB =

{

p
(B)
j

}WB

j=1
be two indepen-

dent probability distributions. Then the Ihara entropy of the joint probability
distribution is given by

SG(PAPB) =

WA
∑

i=1

WB
∑

j=1

p
(A)
i p

(B)
j Φ

(

G

(

log

(

1

p
(A)
i

))

,G

(

log

(

1

p
(B)
j

)))

,

where Φ is Lazard formal group law given by Φ(s1, s2) = G (F(s1) + F(s2)).
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Proof. The joint probability distribution PAPB is given by p
(A∪B)
ij =

p
(A)
i p

(B)
j . Now,

SG(PAPB) =

WA
∑

i=1

WB
∑

j=1

p
(A∪B)
ij G

(

log

(

1

p
(A∪B)
ij

))

=

WA
∑

i=1

WB
∑

j=1

p
(A)
i p

(B)
j G

(

log

(

1

p
(A)
i

)

+ log

(

1

p
(B)
j

))

.

(3.18)

Denote log
(

1
p
(A)
i

)

= t
(A)
i and log

(

1
p
(B)
j

)

= t
(B)
j . It leads us to write

SG(PAPB) =

WA
∑

i=1

WB
∑

j=1

p
(A)
i p

(B)
j G

(

t
(A)
i + t

(B)
j

)

=

WA
∑

i=1

WB
∑

j=1

p
(A)
i p

(B)
j G

(

F
(

s
(A)
i

)

+ F
(

s
(B)
j

))

,

(3.19)

where F is the compositional inverse of G as well as F
(

s
(A)
i

)

= t
(A)
i and

F
(

s
(B)
j

)

= t
(B)
j . Applying Lazard formal group law we have

SG(PAPB) =

WA
∑

i=1

WB
∑

j=1

p
(A)
i p

(B)
j Φ

(

s
(A)
i , s

(B)
j

)

=

WA
∑

i=1

WB
∑

j=1

p
(A)
i p

(B)
j Φ

(

F−1
(

t
(A)
i

)

,F−1
(

t
(B)
j

))

=

WA
∑

i=1

WB
∑

j=1

p
(A)
i p

(B)
j Φ

(

G

(

log

(

1

p
(A)
i

))

,G

(

log

(

1

p
(B)
j

)))

.

(3.20)

□

The axiom 4 is generalised by the composition law of the Lazard formal
group law mentioned in equation (3.17) [5, theorem 1].
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4. Conclusion

This article is at the interface of the dynamical system, information and
graph theory. It focuses on the information-theoretic entropy of a discrete
probability distribution. This article has a two-fold significance. It presents a
physical significance for selecting a particular class of graphs in the literature
of the Ihara zeta function. We begin with a dynamical system consists of a
billiard ball moving between the reflectors. We describe the reflectors as the
vertices of a combinatorial graph. An edge between two vertices represents
the possibility of movement of the ball between the corresponding reflectors.
A bi-infinite path generated by the movement of the ball represents a bi-
infinite walk in the graph. Every bi-infinite walk can be decomposed into
prime cycles in the graph. The number of prime cycles of finite length can be
expressed in terms of the adjacency matrix of an oriented line graph. We can
represent this system in terms of symbolic dynamics over the corresponding
graph. The Ihara zeta function is the dynamical zeta function for this system.
It can be represented as a formal power series. Note that, this formal power
series depends on the distribution of reflectors in the system. Now the idea
of Ihara entropy is introduced. It is a single parameter entropy in terms
of the Ihara zeta function. The composition law of this entropy is induced
by the Lazard formal group law. It also satisfy the other properties of the
Shannon-Khinchin axioms.
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