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A construction of hyperkähler metrics

through Riemann-Hilbert problems II

César Garza

We develop the theory of Riemann-Hilbert problems necessary for
the results in [3]. In particular, we obtain solutions for a family of
non-linear Riemann-Hilbert problems through classical contraction
principles and saddle-point estimates. We use compactness argu-
ments to obtain the required smoothness property on solutions. We
also consider limit cases of these Riemann-Hilbert problems where
the jump function develops discontinuities of the first kind together
with zeroes of a specific order at isolated points in the contour. So-
lutions through Cauchy integrals are still possible and they have
at worst a branch singularity at points where the jump function is
discontinuous and a zero for points where the jump vanishes.

1. Introduction

This article presents the analytic results needed in [3]. As stated in said
article, in order to construct complete hyperkähler metrics g on a special
case of complex integrable systems (where moduli spaces of Higgs bundles
constitute the prime example of this), one must obtain solutions to a par-
ticular infinite-dimensional, nonlinear family of Riemann-Hilbert problems.
The analytical methods used to obtain these solutions and the smoothness
results can be studied separately from the geometric motivations and so we
present them in this article.

For limiting values of the parameter space, the Riemann-Hilbert problem
degenerates in the sense that discontinuities appear in the jump function
G(ζ) at ζ = 0 and ζ = ∞ in the contour Γ. Moreover, G(ζ) may vanish at
isolated pairs of points in Γ. We study the behavior of the solutions to this
boundary value problem near such singularities and we obtain their general
form, proving that these functions do not develop singularities even in the
presence of these pathologies, thus proving the existence of the hyperkähler
metrics in [3].

The paper is organized as follows:

2639



✐

✐

“6-Garza” — 2024/1/2 — 18:33 — page 2640 — #2
✐

✐

✐

✐

✐

✐

2640 César Garza

In Section 2 we state the Riemann-Hilbert problems to be considered. As
shown in [3], this arises from certain complex integrable systems satisfying
a set of axioms motivated by the theory of moduli spaces of Higgs bundles,
but we shall not be concerned about the geometric aspects in this paper.

In Section 3 we solve the Riemann-Hilbert problem by iterations run-
ning estimates based on saddle-point analysis. Under the right Banach space,
these estimates show that we have a contraction, proving that solutions exist
and are unique. We then apply the Arzela-Ascoli theorem and uniform esti-
mates to show that the solutions are smooth with respect to the parameter
space.

In Section 4 we consider the special case when the parameter a ap-
proaches 0 yielding a Riemann-Hilbert problem whose jump function has
discontinuities and zeroes along the contour. We apply Cauchy integral tech-
niques to obtain the behavior of the solutions near the points on the contour
with these singularities. We show that a discontinuity of the jump function
induces a factor ζη in the solutions, where η is determined by the discon-
tinuities of the jump function G. A zero of order k at ζ0 induces a factor
(ζ − ζ0)

k on the left-side part of the solutions. The nature of these solutions
are exploited in [3] to reconstruct a holomorphic symplectic form ϖ(ζ) and,
ultimately, a hyperkähler metric.

Acknowledgment. The author would like to thank Professor Alexan-
der Its for many illuminating conversations that greatly improved the
manuscript.

2. Formulation of the Riemann-Hilbert problem

2.1. Monodromy data

We state the monodromy data we will use in this paper. For a more geometric
description of the assumptions we make, see [3].

Since we will only consider the manifolds M in [3] from a local point
of view, we can consider it as a trivial torus fibration. With that in mind,
here are the key ingredients we need in order to define our Riemann-Hilbert
problem:

(1) A neighborhood U of 0 in C with coordinate a. On U we have a trivial
torus fibration U × T 2 := U × (S1)2 with θ1, θ2 the torus coordinates.
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(2) Γ ∼= Z2 is a lattice equipped with an antisymmetric integer-valued pair-
ing ⟨, ⟩. We also assume we can choose primitive elements γ1, γ2 in Γ
forming a basis for the lattice and such that ⟨γ1, γ2⟩ = 1.

(3) A homomorphism Z from Γ to the space of holomorphic functions on
U .

(4) A function Ω : Γ → Z such that Ω(γ) = Ω(−γ), γ ∈ Γ and such that,
for some K > 0,

(1)
|Zγ(a)|
∥γ∥ > K

for a positive definite norm on Γ and for all a ∈ U and γ for which
Ω(γ) ̸= 0.

For the first part of this paper we work with the extra assumption

(5) Zγ1
(a), Zγ2

(a) ̸= 0 for any a in U .

Later in this paper we will relax this condition.
Observe that the torus coordinates θ1, θ2 induce a homomorphism θ from

Γ to the space of functions on T 2 if we assign γk 7→ θk, k = 1, 2. We denote
by θγ , γ ∈ Γ the result of this map.

We consider a different complex plane C with coordinate ζ. Let R > 0 be
an extra real parameter that we consider. We define the “semiflat” functions
Xγ : U × T 2 × C× → C× for any γ ∈ Γ as

(2) X sf
γ (a, θ1, θ2, ζ) = exp

(

πR
Zγ(a)

ζ
+ iθγ + πRζZγ(a)

)

.

As in the case of the map θ, it suffices to define X sf
γ1

and X sf
γ2
.

For each a ∈ U and γ ∈ Γ such that Ω(γ) ̸= 0, the function Zγ defines a
ray ℓγ(a) in C given by

ℓγ(a) = {ζ ∈ C : ζ = −tZγ(a), t > 0}.

Given a pair of functions Xk : U × T 2 × C× → C, k = 1, 2, we can extend
this with the basis {γ1, γ2} as before to a collection of functions Xγ , γ ∈ Γ.
Each element γ in the lattice also defines a transformation Kγ for these
functions in the form

KγXγ′ = Xγ′(1−Xγ)
⟨γ′,γ⟩.



✐

✐

“6-Garza” — 2024/1/2 — 18:33 — page 2642 — #4
✐

✐

✐

✐

✐

✐

2642 César Garza

For each ray ℓ from 0 to ∞ in C we can define a transformation

(3) Sℓ =
∏

γ:ℓγ(u)=ℓ

KΩ(γ)
γ .

Observe that all the γ’s involved in this product are multiples of each other,
so the Kγ commute and the order for the product is irrelevant.

We can now state the main type of Riemann-Hilbert problem we consider
in this paper. We seek to obtain two functions Xk : U × T 2 × C× → C×, k =
1, 2 with the following properties:

1) Each Xk depends piecewise holomorphically on ζ, with discontinuities
only at the rays ℓγ(a) for which Ω(γ) ̸= 0. The functions are smooth
on U × T 2.

2) The limits X±
k as ζ approaches any ray ℓ from both sides exist and are

related by

(4) X+
k = S−1

ℓ ◦ X−
k .

3) X obeys the reality condition

X−γ(−1/ζ) = Xγ(ζ).

4) For any γ ∈ Γ, lim
ζ→0

Xγ(ζ)/X sf
γ (ζ) exists and is real.

2.2. Isomonodromic Deformation

It will be convenient for the geometric applications to move the rays to
a contour that is independent of a. Even though the rays ℓγ defining the
contour for the Riemann-Hilbert problem above depend on the parameter
a, we can assume the open set U ⊂ C is small enough so that there is a pair
of rays r,−r such that for all a ∈ U , half of the rays lie inside the half-plane
Hr of vectors making an acute angle with r; and the other half of the rays lie
in H−r. We call such rays admissible rays. We are allowing the case that r is
one of the rays ℓγ , as long as it satisfies the above condition. For γ ∈ Γ, we
define γ > 0 (resp. γ < 0) as ℓγ ∈ Hr (resp. ℓγ ∈ H−r). Our Riemann-Hilbert
problem will have only two anti-Stokes rays, namely r and −r. In this case,
the Stokes factors are the concatenation of all the Stokes factors S−1

ℓ in (3)
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Figure 1: Admissible rays as the new contours for Riemann-Hilbert problems

in the counterclockwise direction:

Sr =

↶
∏

γ>0

KΩ(γ;a)
γ

S−r =

↶
∏

γ<0

KΩ(γ;a)
γ

Thus, we reformulate the Riemann-Hilbert problem in terms of two functions
Yk : U × T 2 × C× → C×, k = 1, 2 with discontinuities at the admissible rays
r,−r by replacing condition 4 above with

(5)
Y+
k = Sr ◦ Y−

k , along r
Y+
k = S−r ◦ Y−

k , along −r.

The other conditions remain the same:

1) The functions Yk are smooth on U × T 2.

2) Y obeys the reality condition

Y−γ(−1/ζ) = Yγ(ζ).

3) For any γ ∈ Γ, lim
ζ→0

Yγ(ζ)/X sf
γ (ζ) exists and is real.

In the following section we will prove the main theorem of this paper:



✐

✐

“6-Garza” — 2024/1/2 — 18:33 — page 2644 — #6
✐

✐

✐

✐

✐

✐

2644 César Garza

Theorem 2.1. There exists a pair of functions Yk : U × T 2 × C× →
C×, k = 1, 2 satisfying (5) and conditions (1), (2), (3). These functions are

unique up to multiplication by a real constant.

3. Solutions

As in the classical scalar Riemann-Hilbert problems, we obtain the solutions
Yk of Theorem 2.1 by solving the integral equation

Yk(a, ζ) = X sf
γk
(a, ζ) exp

(

1

4πi

{∫

r
K(ζ, ζ ′) log(SrYk)+

∫

−r
K(ζ, ζ ′) log(S−rYk)

})

, k = 1, 2(6)

where we abbreviated
dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
as K(ζ ′, ζ). The dependence of Yk on the

torus coordinates θ1, θ2 has been omitted to simplify notation. We will write
Yγ to denote the function resulting from the (multiplicative) homomorphism
from Γ to nonzero functions on U × T 2 × C× induced by Yk, k = 1, 2.

It will be convenient to write

(7) Yγ(a, ζ, θ) = X sf
γ (a, ζ,Θ),

for Θk : U × T 2 × C× → C, k = 1, 2. We write θ for (θ1, θ2), as we do with
Θ.

If we take the power series expansion of log(SrYk), log(S−rYk) and de-
compose the terms into their respective components in each γ ∈ Γ, we can
rewrite the integral equation (6) as

Yγ(a, ζ) = X sf
γ (a, ζ) exp

(

1

4πi







∑

γ′>0

fγ′

∫

r
K(ζ, ζ ′)Yγ′(a, ζ ′)

+
∑

γ′<0

fγ′

∫

−r
K(ζ, ζ ′)Yγ′(a, ζ ′)









(8)

where

fγ′

= cγ′

〈

γ, γ′
〉

,

cγ′ a rational constant obtained by power series expansion.
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Example 3.1 (The Pentagon case). As our main example of these fam-
ilies of Riemann-Hilbert problems, we have the Pentagon case, studied in
more detail in [3]. Here the jump functions Sr, S−r are of the form

Y1 7→ Y1(1− Y2)
Y2 7→ Y2(1− Y1(1− Y2))

−1

}

Sr(9)

and, similarly

Y1 7→ Y1(1− Y−1
2 )−1

Y2 7→ Y2(1− Y−1
1 (1− Y−1

2 ))

}

S−r(10)

If we expand log(SrYk), k = 1, 2 etc. we obtain

f iγ1+jγ2 =



















−1

j
⟨γ, γ2⟩ if i = 0

(−1)j

i

(|i|
|j|

)

⟨γ, γ1⟩ if 0 ≤ j ≤ i or i ≤ j ≤ 0

0 otherwise.

Back in the general case, our approach for a solution to (8) is to work
with iterations. For ν ∈ N:

Y(ν+1)
γ (a, ζ) = X sf

γ (a, ζ) exp

(

1

4πi







∑

γ′>0

fγ′

∫

r
K(ζ, ζ ′)Y(ν)

γ′ (a, ζ ′)

+
∑

γ′<0

fγ′

∫

−r
K(ζ, ζ ′)Y(ν)

γ′ (a, ζ ′)







)

(11)

Formula (11) requires an explanation. Assuming Y(ν−1)
γ′ , γ′ ∈ Γ has been

constructed, by definition, Y(ν)
γ′ has jumps at r and −r. By abuse of notation,

Y(ν)
γ′ in (11) denotes the analytic continuation to the ray r (resp. −r) along

Hr (resp. H−r) in the case of the first (resp. second) integral.
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By using (7), we can write (8) as an additive Riemann-Hilbert problem
where we solve the integral equation

eiΘγ = eiθγ exp

(

1

4πi







∑

γ′>0

fγ′

∫

r
K(ζ, ζ ′)X sf

γ′(a, ζ ′,Θ)

+
∑

γ′<0

fγ′

∫

−r
K(ζ, ζ ′)X sf

γ′(a, ζ ′,Θ)







)

(12)

As in (11), the solution of (12) is obtained through iterations:

(13) Θ(0)(ζ, θ) = θ,

eiΘ
(ν+1)
γ = eiθγ exp

(

1

4πi







∑

γ′>0

fγ′

∫

r
K(ζ, ζ ′)X sf

γ′(a, ζ ′,Θ(ν))

+
∑

γ′<0

fγ′

∫

−r
K(ζ, ζ ′)X sf

γ′(a, ζ ′,Θ(ν))







)

(14)

We need to show that Θ(ν) = (Θ
(ν)
1 ,Θ

(ν)
2 ) converges uniformly in a to

well defined functions Θk : U × T 2 × P1 → C, k = 1, 2 with the right smooth
properties on a and ζ. Define X as the completion of the space of bounded
functions of the form Φ : U × T 2 × P1 → C2 that are smooth on U × T 2

under the norm

(15) ∥Φ∥ = sup
ζ,θ,a

∥Φ(ζ, θ, a)∥
C2 ,

where C2 is assumed to have as norm the maximum of the Euclidean norm of
its coordinates. Notice that we have not put any restriction on the functions
Φ in the P1 slice, except that they must be bounded. Our strategy will be
to solve the Riemann-Hilbert problem in X and show that for sufficiently
big (but finite) R, we can get uniform estimates on the iterations yielding
such solutions and any derivative with respect to the parameters a, θ. The
Arzela-Ascoli theorem will give us that the solution Φ not only lies in X ,
but it preserves all the smooth properties. The very nature of the integral
equation will guarantee that its solution is piecewise holomorphic on ζ, as
desired.
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We’re assuming as in [1] that Γ has a positive definite norm satisfying
the Cauchy-Schwarz property

∣

∣

〈

γ, γ′
〉∣

∣ ≤ ∥γ∥
∥

∥γ′
∥

∥

as well as the “Support property” (1). For any Φ ∈ X , let Φk denote the
composition of Φ with the kth projection πk : C2 → C, k = 1, 2. Instead of
working with the full Banach space X , let X ∗ be the collection of Φ ∈ X

in the closed ball

(16) ∥Φ− θ∥ ≤ ϵ,

for an ϵ > 0 so small that

(17) sup
ζ,θ,a

∣

∣eiΦk

∣

∣ ≤ 2,

for k = 1, 2. In particular, X ∗ is closed, hence complete. Note that by (17),
if Φ ∈ X ∗, then eiΦ ∈ X . Furthermore, by (14), the transformation in ζ is
only as an integral transformation, so Θ(ν) is holomorphic in either of the
half planes Hr or H−r.

3.1. Saddle-point Estimates

We will prove the first of our uniform estimates on Θ(ν).

Lemma 3.2. Θ(ν) ∈ X ∗
k for all ν.

Proof. We follow [1], using induction on ν. The statement is clearly true for
ν = 0 by (13). Assuming Θ(ν) ∈ X ∗, take the log in both sides of (14):

Θ
(ν+1)
k − θk = − 1

4π







∑

γ′>0

fγ′

∫

r
K(ζ, ζ ′)X sf

γ′(a, ζ ′,Θ(ν))

+
∑

γ′<0

fγ′

∫

−r
K(ζ, ζ ′)X sf

γ′(a, ζ ′,Θ(ν))







, k = 1, 2(18)

For general Φ ∈ X ∗, Φ can be very badly behaved in the P1 slice, but by our
inductive construction, Θ(ν+1) is even holomorphic in Hr and H−r. Consider
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the integral

(19)

∫

r
K(ζ, ζ ′)X sf

γ′(a, ζ ′,Θ(ν)).

The function Θ(ν) can be analytically extended along the ray r so that it
is holomorphic on the sector V bounded by r and ℓγ′ , γ′ > 0 (see Figure 2).
By Cauchy’s theorem, we can move (19) to one along the ray ℓγ′ , possibly
at the expense of a residue of the form

Figure 2: Translating the integral to the ray ℓγ′

(20) 4πi exp

[

iΘ
(ν)
γ′ + πR

(

Zγ′

ζ
+ Zγ′ζ

)]

if ζ lies in V . This residue is in control. Indeed, by the induction hypothesis,
∣

∣

∣
eiΘ

(ν)

γ′

∣

∣

∣
< 2∥γ

′∥, independent of ν. Moreover, we pick a residue only if ζ lies

in the sector S bounded by the first and last ℓγk
, γk ∈ {γ1, γ2} included in

Hr traveling in the counterclockwise direction. This sector is strictly smaller
than Hr (see Figure 3), so argZγ′ − arg ζ ∈ (−π, π) and, since r makes an
acute angle with all rays ℓγ′ , γ′ > 0:

| argZγ′ − arg ζ| > const >
π

2
for all γ′ > 0, ζ ∈ S.

In particular,

(21) cos(argZγ′ − arg ζ) < −const < 0 for all γ′ > 0, ζ ∈ S.
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Figure 3: A residue appears only if ζ lies in S

Using the fact that inf
ζ
(|ζ|+ 1/|ζ|) = 2, the sum of residues of the form (20)

is bounded by:

(22)
∑

γ′>0

∣

∣

∣
fγ′

∣

∣

∣
2∥γ

′∥e−constR|Zγ′ |.

Recall that ∥γ′∥ < const|Zγ′ |, so (22) can be simplified to

(23)
∑

γ′>0

∣

∣

∣
fγ′

∣

∣

∣
e(−constR+δ)|Zγ′ |

for a constant δ. We’re assuming that Ω(γ′) does not grow too quickly with
γ′, by the support property (1), so

∣

∣fγ′
∣

∣ is dominated by the exponential
term and the above sum can be made arbitrarily small if R is big enough.
This bound can be chosen to be independent of ν, ζ and the basis element γk
(by choosing the maximum among the γ1, γ2). The exact same argument can
be used to show that the residues of the integrals along −r are in control.
In fact, let ϵ > 0 be given. By (20), we can choose R > 0 so that the total
sum of residues Res(ζ) is less than ϵ/2.

Thus, we can assume the integrals are along ℓγ′ and consider

∫

ℓγ′

K(ζ, ζ ′)X sf
γ′(a, ζ ′,Θ(ν))

The next step is to do a saddle point analysis and obtain the asymptotics
for large R. Since this type of analysis will be of independent interest to us,
we leave these results to a separate Lemma at the end of this section.
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By (17),
∣

∣

∣
exp

(

iΘ
(ν)
γ′ (ζ0)

)∣

∣

∣
≤ 2∥γ

′∥. Thus, by Lemma 3.3, for ζ away from

the saddle ζ0, we can bound the contribution from the integral by

(24) const
∣

∣

∣
fγ′

∣

∣

∣
2∥γ

′∥ e
−2πR|Zγ′ |

√

R|Zγ′ |

if R is big enough.
The case of ζ = ζ0 is, by Lemma 3.3, as in (24) except without the

√
R

term in the denominator. In any case, by (27), and since exp
(

iΘ
(ν)
γ′ (ζ0)

)

≤
2∥γ

′∥ by (17) and by (24),

(25)

∣

∣

∣

∣

∣

∣

∑

γ′

fγ′

∫

ℓγ′

K(ζ, ζ ′)X sf
γ′(a, ζ ′,Θ(ν))

∣

∣

∣

∣

∣

∣

< const
∑

γ′

∣

∣

∣
fγ′

∣

∣

∣
e(−2πR+δ)|Zγ′ |.

The δ constant is the same appearing in (23). This sum is convergent by the
tameness condition on the Ω(γ′) coefficients, and can be made arbitrarily
small if R is big enough. Putting everything together:

sup
ζ,θ

∣

∣

∣
Θ(ν+1)

γ − θγ

∣

∣

∣
= const

∑

γ′

∣

∣

∣
fγ′

∣

∣

∣
e(−2πR+δ)|Zγ′ | +Res(ζ)

<
ϵ

2
+

ϵ

2
= ϵ.

Therefore
∥

∥Θ(ν+1) − θ
∥

∥ < ϵ. In particular,
∥

∥Θ(ν+1)
∥

∥ < ∞, so Θ(ν+1) ∈ X ∗.

Since ϵ was arbitrary, Θ(ν+1) satisfies the side condition (17) and thus Θ(ν) ∈
X ∗ for all ν if R is big enough. □

We finish this subsection with the proof of some saddle-point analysis
results used in the previous lemma.

Lemma 3.3. For every ν consider an integral of the form

(26) F (ζ) =

∫

ℓγ′

K(ζ, ζ ′)X sf
γ′(a, ζ ′,Θ(ν)).

Let ζ0 = −ei argZγ′ . Then, for ζ ̸= ζ0, we can estimate the above integral as

F (ζ) = −ζ0 + ζ

ζ0 − ζ
exp

(

iΘ(ν)(ζ0)
) 1
√

R|Zγ′ |
e−2πR|Zγ′ |

+O

(

e−2πR|Zγ′ |

R

)

, as R → ∞(27)
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For ζ = ζ0,

(28) F (ζ0) = O

(

e−2πR|Zγ′ |

R

)

, as R → ∞.

Proof. Equation (26) is of the type

(29) h(R) =

∫

ℓγ′

g(ζ ′)eπRf(ζ′)

where

g(ζ ′) =
ζ ′ + ζ

ζ ′(ζ ′ − ζ)
, f(ζ ′) =

Zγ′

ζ ′
+ ζ ′Zγ′ .

The function f has a saddle point ζ0 = −ei argZγ′ at the intersection of the
ray ℓγ′ with the unit circle. Moreover, f(ζ0) = −2|Zγ′ |. The ray ℓγ′ and the
unit circle are the locus of Im f(ζ ′) = Im f(ζ0) = 0. It’s easy to see that
in ℓγ′ , f(ζ ′) < f(ζ0) if ζ ′ ̸= ζ0, so ℓγ′ is the path of steepest descent (see
Figure 4).

Figure 4: Paths of steepest descent and ascent

Introduce τ by

1

2
(ζ ′ − ζ0)

2f ′′(ζ0) +O((ζ ′ − ζ0)
3) = −τ2

and so
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(30) ζ ′ − ζ0 =

{ −2

f ′′(ζ0)

} 1

2

τ +O(τ2)

for an appropriate branch of {f ′′(ζ0)}1/2. Let α = arg f ′′(ζ0) = −2 argZγ′ +
π. The branch of {f ′′(ζ0)}1/2 is chosen so that τ > 0 in the part of the
steepest descent path outside the unit disk in Figure 4. That is, τ > 0 when
arg(ζ ′ − ζ0) =

1
2π − 1

2α, and so {f ′′(ζ0)}1/2 = i
√

2|Zγ′ |e−i argZγ′ . Thus (30)
simplifies to

ζ ′ − ζ0 =
−ζ0

√

|Zγ′ |
τ +O(τ2)

We expand g(ζ ′(τ)) as a power series1:

(31) g(ζ ′(τ)) = g(ζ0) + g′(ζ0)

{ −2

f ′′(ζ0)

} 1

2

τ +O(τ2).

As in [4],

h(R) ∼ eRf(ζ0)g(ζ0)

{ −2

f ′′(ζ0)

} 1

2
∫ ∞

−∞
e−Rτ2

dτ + . . .

and so

h(R) =

√

2π

R|f ′′(ζ0)|
g(ζ0)e

Rf(ζ0)+(i/2)(π−α) +O

(

eRf(ζ0)

R

)

in our case, and since ζ0 = −ei argZγ′

= −ζ0 + ζ

ζ0 − ζ
exp

(

iΘ(ν)(ζ0)
) 1
√

R|Zγ′ |
e−2πR|Zγ′ |

+O

(

e−2πR|Zγ′ |

R

)

, as R → ∞

This shows (27).
If ζ → ζ0, we take a different path of integration, consisting of 3 parts

ℓ1, ℓ2, ℓ3 (see Figure 5).

1In our case, g depends also on the parameter R, so this is an expansion on ζ ′
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Figure 5: If ζ → ζ0, a modification of the path is required

If we parametrize the ℓγ′ ray as ζ ′ = −et+i argZγ′ = −etζ0,−∞ < t < ∞,
the ℓ2 part is a semicircle around t = −ϵ and t = ϵ, for small ϵ. The contri-
bution from ℓ2 is clearly (up to a factor of 2πi) half of the residue of the
function in (26). As in (22), this residue is:

(32) 2πi exp
(

iΘ(ν)(ζ0)− 2πR|Zγ′ |
)

.

If we denote by exp
(

iΘ(ν)(t)
)

the evaluation exp
(

iΘ(ν)(−tζ0)
)

, the con-
tributions from ℓ1 and ℓ3 in the integral are of the form

lim
ϵ→0

{ ∫ −ϵ

−∞
dt
−et + 1

−et − 1
exp

(

iΘ(ν)(t)
)

exp
(

πR(et + e−t)
)

+

∫ ∞

ϵ
dt
−et + 1

−et − 1
exp

(

iΘ(ν)(t)
)

exp
(

πR(et + e−t)
)

}

(33)

If we do the change of variables t 7→ −t in the first integral, (33) simplifies
to

(34)

∫ ∞

0
dt
−et + 1

−et − 1

[

exp
(

iΘ(ν)(t)
)

− exp
(

iΘ(ν)(−t)
)]

exp
(

πR(et + e−t)
)

.

(34) is of the type (29), with

g(ζ ′) =
ζ ′ + ζ0

ζ ′(ζ ′ − ζ0)

[

exp
(

iΘ(ν)(ζ ′)
)

− exp
(

iΘ(ν)(1/ζ ′)
)]

Since ζ0 = 1/ζ0, the apparent pole at ζ0 of g(ζ ′) is removable and the
integral can be estimated by the same steepest descent methods as in (26).
The only difference is that the saddlepoint now lies at one of the endpoints.
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This only introduces a factor of 1/2 in the estimates (see [4]). If g(ζ0) ̸= 0
in this case, the integral is just

(35)
g(ζ0)

2
√

R|Zγ′ |
e−2πR|Zγ′ |+i argZγ′ +O

(

e−2πR|Zγ′ |

R

)

.

If g(ζ0) = 0, then the estimate is at least of the order O
(

e
−2πR|Z

γ′ |

R

)

. This

finishes the proof of (28). □

3.2. Uniform Estimates on Derivatives

Now let β = (β1, β2, β3, β4) be a multi-index in N4, and let Dβ be a differ-
ential operator acting on the iterations Θ(ν):

(36) DβΘ(ν)
γ =

∂

∂θβ1

1 ∂θβ2

2 ∂aβ3∂aβ4

Θ(ν)
γ .

We need to uniformly bound the partial derivatives of Θ(ν) on compact
subsets:

Lemma 3.4. Let K be a compact subset of U × T 2. Then

sup
P1×K

∥

∥

∥
DβΘ(ν)

∥

∥

∥
< Cβ,K

for a constant Cβ,K independent of ν.

Proof. Lemma 3.2 is the case |β| :=
∑

βi = 0, with ϵ as C0,K . To simplify
notation, we’ll drop the K subindex in these constants. Assume by induc-
tion we already did this for |β| = k − 1 derivatives and for the first ν ≥ 0
iterations, the case ν = 0 being trivial. Take partial derivatives with respect
to θs, for s = 1, 2 in (18). This introduces a factor of the form

(37) i
∂

∂θs
Θ

(ν)
γ′ .

By induction on ν, the above can be bounded by ∥γ′∥Cβ′ , where β′ is
(1, 0, 0, 0) or (0, 1, 0, 0), depending on the index s. When we take the partial
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derivatives with respect to a in (18), we add a factor of

(38)
πR

ζ ′
∂

∂a
Zγ′(a) + i

∂

∂a
Θ

(ν)
γ′

in the integrals (18). Similarly, a partial derivative with respect to a adds a
factor of

(39) πRζ ′
∂

∂a
Zγ′(a) + i

∂

∂a
Θ

(ν)
γ′ .

As in (37), the second term in (38) and (39) can be bounded by ∥γ′∥Cβ′

for |β′| = 1. Since Zγ′ is holomorphic on U ⊂ C, and since K ⊂ U × T 2 is
compact,

(40)

∣

∣

∣

∣

∂k

∂ak
Zγ′

∣

∣

∣

∣

≤ k!
∥

∥γ′
∥

∥C

for all k and some constant C, independent of k and a. Likewise for a, Z ′
γ .

Thus if we take DβΘ
(ν+1)
γ in (18) for a multi-index β with |β| = k, the right

side of (18) becomes:

− 1

4π







∑

γ′>0

fγ′

∫

r
K(ζ, ζ ′)X sf

γ′(a, ζ ′,Θ(ν))Pγ′(a, ζ ′, θ)

+
∑

γ′<0

fγ′

∫

−r
K(ζ, ζ ′)X sf

γ′(a, ζ ′,Θ(ν))Qγ′(a, ζ ′, θ)







,(41)

where each Pγ′ or Qγ′ is a polynomial obtained as follows:
Each X sf

γ′(a, ζ ′,Θ(ν)) is a function of the type eg, for some g(a, ā, θ1, θ2).
If {x1, . . . , xk} denotes a choice of k of the variables a, ā, θ1, θ2 (possibly with
multiplicities), then by the Faà di Bruno Formula:

(42)
∂k

∂x1 · · · ∂xk
eg = eg

∑

π∈Π

∏

B∈π

∂|B|g
∏

j∈B ∂xj
:= egPγ′

where

• π runs through the set Π of all partitions of the set {1, . . . , k}.
• B ∈ π means the variable B runs through the list of all of the “blocks”
of the partition π, and
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• |B| is the size of the block B.

The resulting monomials in Pγ′ (same thing holds for Qγ′) are products
of the variables given by (37), (38), (39) or their subsequent partial deriva-
tives in θ, a, a. For each monomial, the sum of powers and total derivatives
of terms must add up to k by (42). For instance, when computing

∂3

∂θ1∂a2
X sf
γ′(a, ζ ′,Θ(ν)) =

∂3

∂θ1∂a2
eg,

a monomial that appears in the expansion is:

∂g

∂θ1

[

∂g

∂a

]2

= i
∂

∂θ1
Θ

(ν)
γ′

[

πR

ζ ′
∂

∂a
Zγ′(a) + i

∂

∂a
Θ

(ν)
γ′

]2

.

There are a total of (possibly repeated) Bk monomials in Pγ′ , where Bk is
the Bell number, the total number of partitions of the set {1, . . . , k} and
Bk ≤ k!. We can assume, without loss of generality, that any constant Cβ

is considerably larger than any of the Cβ′ with |β′| < |β|, by a factor that
will be made explicit. First notice that since there is only one partition
of {1, . . . , k} consisting of 1 block, the Faà di Bruno Formula (42) shows
that Pγ′ contains only one monomial with the factor DβΘ(ν). The other
monomials have factors Dβ′

Θ(ν) for |β′| < |β|. We can do a saddle point
analysis for each integrand of the form

∫

r
K(ζ, ζ ′)X sf

γ′(a, ζ ′,Θ(ν))P i
γ′(a, ζ ′, θ),

for P i
γ′ (or Qi

γ′) one of the monomials of Pγ′ (Qγ′). The saddle point analysis

and the induction step for the previous Θ(ν) give the estimate

Cβ · const
∑

γ′

∣

∣

∣

〈

γ, fγ′
〉∣

∣

∣
e(−2πR+δ)|Zγ′ |

for the only monomial with DβΘ(ν) on it. The estimates for the other mono-
mials contain the same exponential decay term, along with powers s of Cβ′ , C
such that s · |β′| ≤ |β|, and constant terms. By making Cβ significantly big-
ger than the previous Cβ′ , we can bound the entire (41) by Cβ , completing
the induction step. □

Example 3.5. To see better the estimates we obtained in the previous
proof, let’s consider the particular case k = |β| = 3. If k = 3, there are a total
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of
(

4+3−1
3

)

= 20 different third partial derivatives for each Θ(ν+1). There are
a total of 5 different partitions of the set {1, 2, 3} and correspondingly

∂3

∂x1∂x2∂x3
eg = eg

[

∂3

∂x1∂x2∂x3
g +

(

∂2

∂x1∂x2
g

)(

∂

∂x3
g

)

+

(

∂2

∂x1∂x3
g

)(

∂

∂x2
g

)

+

(

∂2

∂x2∂x3
g

)(

∂

∂x1
g

)

+

(

∂

∂x1
g

)(

∂

∂x2
g

)(

∂

∂x3
g

)]

If x1 = x2 = x3 = a,

∂3

∂a3
X sf
γ′(a, ζ ′,Θ(ν)) = X sf

γ′(a, ζ ′,Θ(ν))

[

πR

ζ ′
∂3

∂a3
Zγ′ + i

∂3

∂a3
Θ

(ν)
γ′

+ 3

(

πR

ζ ′
∂2

∂a2
Zγ′ + i

∂2

∂a2
Θ

(ν)
γ′

)(

πR

ζ ′
∂

∂a
Zγ′ + i

∂

∂a
Θ

(ν)
γ′

)

+

(

πR

ζ ′
∂

∂a
Zγ′ + i

∂

∂a
Θ

(ν)
γ′

)3
]

= X sf
γ′(a, ζ ′,Θ(ν))P (Θ

(ν)
γ′ )

There is one and only one term containing ∂3

∂a3Θ
(ν)
γ′ . By induction on ν,

| ∂3

∂a3Θ
(ν)
γ′ | < ∥γ′∥Cβ . For the estimates of

ifγ′

∫

r
K(ζ, ζ ′)X sf

γ′(a, ζ ′,Θ(ν))
∂3

∂a3
Θ

(ν)
γ′ ,

we do exactly the same as in the proof of Lemma 3.2. Namely, move the
ray r to the corresponding BPS ray ℓγ′ , possibly at the expense of gaining
a residue bounded by

(43) Cβ · const
∣

∣

∣
fγ′

∣

∣

∣
e(−2πR+δ)|Zγ′ |.

The sum of all these residues over those γ′ such that ⟨γ, γ′⟩ ≠ 0 is just a
fraction of Cβ . After moving the contour we estimate

ifγ′

∫

ℓγ′

K(ζ, ζ ′)X sf
γ′(a, ζ ′,Θ(ν))

∂3

∂a3
Θ

(ν)
γ′ .
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As in (25), we run a saddle point analysis and obtain a similar estimate (43)
as in Lemma 3.2. The result is that the estimate for this monomial is an
arbitrarily small fraction of Cβ .

If we take other monomials, like say

P 1
γ′ = 3

(

πR

ζ ′

)2 ∂2

∂a2
Zγ′

∂

∂a
Zγ′

and estimate

3fγ′ ∂2

∂a2
Zγ′

∂

∂a
Zγ′

∫

r

(

πR

ζ ′

)2

K(ζ, ζ ′)X sf
γ′(a, ζ ′,Θ(ν)),

we do as before, computing residues and doing saddle point analysis. The
difference with these terms is that partial derivatives of Zγ′ are bounded
by (40), and at most second derivatives of Θ(ν) (for this specific monomial,
there are no such terms) appear. The extra powers of πR

ζ′ that appear here

don’t affect the estimates, since X sf
γ′ has exponential decay on πR

ζ′ . The end
result is an estimate of the type

(44) Cs1
β′
1
· · ·Csm

β′
m
Cj · const

∣

∣

∣
fγ′

∣

∣

∣
e(−2πR+δ)|Zγ′ |

with all si · |β′
i| and j ≤ |β|. By induction on |β|, we can make Cβ big enough

so that (44) is just a small fraction of Cβ . This completes the illustration of
the previous proof for β = (0, 0, 3, 0) of the fact that sup |DβΘ(ν+1)| < Cβ

on the compact set K.

Now we’re ready to prove the main part of Theorem 2.1, that of the
existence of solutions to the Riemann-Hilbert problem.

Theorem 3.6. The sequence {Θ(ν)} converges in X to a limit Θ which is

piecewise holomorphic on ζ, with jumps along the rays r,−r and continuous

on the closed half-planes determined by these rays. Furthermore, Θ is C∞

on a, a, θ1, θ2.

Proof. We first show the contraction of the Θ(ν) in the Banach space X

thus proving convergence. We will use the fact that ex is locally Lipschitz
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and the Θ(ν) are arbitrarily close to θ if R is big. In particular,

sup
ζ,θ,a

∣

∣

∣
eiΘ

(ν)
γ − eiΘ

(ν−1)
γ

∣

∣

∣
< const · sup

ζ,θ,a

∣

∣

∣
Θ(ν)

γ −Θ(ν−1)
γ

∣

∣

∣

≤ const
∥

∥

∥
Θ(ν) −Θ(ν−1)

∥

∥

∥
,

for γ one of the basis elements γ1, γ2. For arbitrary γ′, recall that if γ′ =

c1γ1 + c2γ2, then Θ
(ν)
γ′ = c1Θ

(ν)
γ1 + c2Θ

(ν)
γ2 . It follows from the last inequality

that

(45) sup
ζ,θ

∣

∣

∣
eiΘ

(ν)

γ′ − eiΘ
(ν−1)

γ′

∣

∣

∣
< const∥γ

′∥
∥

∥

∥
Θ(ν) −Θ(ν−1)

∥

∥

∥
.

We estimate
∥

∥

∥
Θ(ν+1) −Θ(ν)

∥

∥

∥

=
1

4π

∥

∥

∥

∥

∥

∥

∑

γ′>0

fγ′

∫

r
K(ζ, ζ ′)

[

X sf
γ′(a, ζ ′,Θ(ν))−X sf

γ′(a, ζ ′,Θ(ν−1))
]

+
∑

γ′<0

fγ′

∫

−r
K(ζ, ζ ′)

[

X sf
γ′(a, ζ ′,Θ(ν))−X sf

γ′(a, ζ ′,Θ(ν−1)
]

∥

∥

∥

∥

∥

∥

≤ 1

4π

∥

∥

∥

∥

∥

∥

∑

γ′>0

fγ′

∫

r
K(ζ, ζ ′)

∣

∣

∣
X sf
γ′(a, ζ ′, θ)

∣

∣

∣

∣

∣

∣
eiΘ

(ν)

γ′ − eiΘ
(ν−1)

γ′

∣

∣

∣

∥

∥

∥

∥

∥

∥

+
1

4π

∥

∥

∥

∥

∥

∥

∑

γ′<0

fγ′

∫

r
K(ζ, ζ ′)

∣

∣

∣
X sf
γ′(a, ζ ′, θ)

∣

∣

∣

∣

∣

∣
eiΘ

(ν)

γ′ − eiΘ
(ν−1)

γ′

∣

∣

∣

∥

∥

∥

∥

∥

∥

As in the proof of Lemma 3.2, we can move the integrals to the rays ℓγ′ in-
troducing an arbitrary small contribution from the residues. The differences
of the form

∣

∣

∣
eiΘ

(ν)

γ′ − eiΘ
(ν−1)

γ′

∣

∣

∣

can be expressed in terms of
∥

∥Θ(ν) −Θ(ν−1)
∥

∥ by (45).
The sum of the resulting integrals can be made arbitrarily small if R is

big by a saddle point analysis as from (29) onward. By (45):

∥

∥

∥
Θ(ν+1) −Θ(ν)

∥

∥

∥
< const

∥

∥

∥

∥

∥

∥

∑

γ′

fγ′

e(−2πR+δ)|Zγ′ |

∥

∥

∥

∥

∥

∥

∥

∥

∥
Θ(ν) −Θ(ν−1)

∥

∥

∥
,
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By making R big, we get the desired contraction in X and the convergence
is proved.

The holomorphic properties of Θ on ζ are clear since Θ solves the integral
equation (12) and the right side of it is piecewise holomorphic, regardless of
the integrand.

Finally, by Lemma 3.4, {DβΘ(ν)} is an equicontinuous and uniformly
bounded family on compact sets K for any differential operator Dβ as in
(36). By Arzela-Ascoli, a subsequence converges uniformly and hence its
limit is of type Ck for any k. Since we just showed that Θ(ν) converges, this
has to be the limit of any subsequence. Thus such limit Θ must be of type
C∞ on U × T 2, as claimed. □

By Theorem 3.6, the functions Yk(a, ζ, θ) := X sf
k (a, ζ,Θ), k = 1, 2 satisfy

(5) and condition (1). It remains to show that the functions also satisfy the
reality conditions.

Lemma 3.7. For Yk(a, ζ, θ) defined as above and with γ = c1γ1 + γ2 ∈ Γ,
we define Yγ = Yc1

1 Yc2
2 . Then

Y−γ(−1/ζ) = Yγ(ζ).

Proof. Ignoring the parameters a, θ1, θ2 for the moment, it suffices to show

(46) Θk(−1/ζ) = Θk(ζ), k = 1, 2.

We show that this is true for all Θ(ν) defined as in (18) by induction on ν.
For ν = 0, Θ(0) = (θ1, θ2) which are real torus coordinates and independent
of ζ, so (46) is true.

Assuming (46) is true for ν, we obtain Θ(ν+1) as in (18). If we write ζ
as teiφ, t > 0 for some angle φ, and if we parametrize the admissible ray r
as seiρ, s > 0, then (46) for ν + 1 follows by induction and by rewriting the
integrals in (18) after the reparametrization s → 1

s . An essential part of the
proof is the form of the symmetric kernel

K(ζ, ζ ′) =
dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ

which inverts the roles of 0 and ∞ after the reparametrization. □

To verify the last property of Yk, we prove
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Lemma 3.8. For Yk(a, ζ, θ) defined as above

lim
ζ→0

Yγ(ζ)/X sf
γ (ζ)

exists and is real.

Proof. Write Θ0
k for lim

ζ→0
Θk. In a similar way we can define Θ∞

k . It suffices

to show that Θ0
k − θk is imaginary. This follows from Lemma 3.7 by letting

ζ → 0. □

Observe that this and the reality condition give

Θ0
k = Θ∞

k .

To finish the proof of Theorem 2.1, we apply the classical arguments:
given two solutions Yk,Zk satisfying the conditions of the theorem, the func-
tions YkZ−1

k are entire functions bounded at ∞, so this must be a constant.
By the reality condition 3, this constant must be real. This finishes the proof
of Theorem 2.1.

4. Special Cases

In our choice of admissible rays r,−r, observe that due to the exponential
decay of X sf

k , k = 1, 2 along these rays (see (2)) and the rays ℓγ , the jumps
Sℓ or Sr, S−r are asymptotic to the identity transformation as ζ → 0 or
ζ → ∞ along these rays. Thus, one can define a Riemann-Hilbert problem
whose contour is a single line composed of the rays r,−r, the latter with
orientation opposite to the one in the previous section. The jump S along
the contour decomposes as Sr, S

−1
−r in the respective rays and we can proceed

as in the previous section with a combined contour.

4.1. Jump Discontinuities

In [3], we will be dealing with a modification of the Riemann-Hilbert problem
solved in §3. In particular, that paper deals with the new condition

(5’) Zγ2
(0) ̸= 0 for any a in U but Zγ1

attains its unique zero at a = 0.

Because of this condition, the jumps loose the exponential decay along
those rays and they are no longer asymptotic to identity transformations.
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In fact, in [3] we show that this causes the jump function S(ζ) to develop a
discontinuity of the first kind along ζ = 0 and ζ = ∞.

In this paper we obtain the necessary theory of scalar boundary-value
problems to obtain solutions to this special case of Riemann-Hilbert prob-
lems appearing in [3]. We consider a general scalar boundary value problem
consisting in finding a sectionally analytic function X(ζ) with discontinu-
ities at an oriented line ℓ passing through the origin. If X+(t) (resp. X−(t))
denotes the limit from the left-hand (resp. right-hand) side of ℓ, for t ∈ ℓ,
they must satisfy the boundary condition

(47) X+(t) = G(t)X−(t), t ∈ ℓ

for a function G(t) that is Hölder continuous on ℓ except for jump disconti-
nuities at 0 and ∞. We require a symmetric condition on these singularities:
if ∆i, i = 0 or ∞ represents the jump of the function G near any of these
points,

∆0 = lim
t→0+

G(ζ)− lim
t→0−

G(ζ), etc.

Then we assume

(48) ∆0 = −∆∞.

Near 0 or ∞, we require for the analytic functions X+(ζ), X−(ζ) to have
only one integrable singularity of the form

(49) |X±(ξ)| < C

|ξ|η , (0 ≤ η < 1).

For ξ a coordinate of P1 centered at either 0 or ∞. By (49), each function
X± is asymptotic to 0 near the other point in the set {0,∞}.

Lemma 4.1. There exists functions X+(ζ), X−(ζ), analytic on opposite

half-planes on C determined by the contour ℓ and continuous on the closed

half-planes such that, along ℓ, the functions obey (47) and (49), with

a Hölder continuous jump function G(t) satisfying (48). The functions

X+(ζ), X−(ζ) are unique up to multiplication by a constant.

Proof. We follow [2] for the solution of this exceptional case. As seen above,
we only have jump discontinuities at 0 and∞. For any point t0 in the contour
ℓ, and a function f with discontinuities of the first kind on ℓ at t0, we denote
by f(t0 − 0) (resp. f(t0 + 0)) the left (resp. right) limit of f at t0, according
to the given orientation of ℓ.
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Let

η0 =
1

2πi
log

G(0− 0)

G(0 + 0)
.

Similarly, define

η∞ =
1

2πi
log

G(∞− 0)

G(∞+ 0)
.

SinceG obeys condition (48), η0 = −η∞. Observe that by definition, |η0| < 1,
and hence the same is true for η∞.

Let D+ be the region in P1 bounded by ℓ with the positive, counter-
clockwise orientation. Denote by D− the region where ℓ as a boundary has
the negative orientation. We look for solutions of the homogeneous bound-
ary problem (47) . To solve this, pick a point ζ0 ∈ D+ and introduce two
analytic functions

(ζ − ζ0)
η0 , ζη0 .

Make a cut in the ζ-plane from the point ζ0 to ∞ through 0, with the
segment of the cut from ζ0 to 0 wholly in D+. Consider the functions

ω+(ζ) = ζη0 , ω− =

(

ζ

ζ − ζ0

)η0

Due to our choice of cut, ω+ is analytic in D+ and ω− is analytic in D−.
Introduce new unknown functions Y ± setting

(50) X±(ζ) = ω±(ζ)Y ±(ζ).

The boundary condition (47) now takes the form

(51) Y +(t) = G1(t)Y
−(t), t ∈ ℓ

where

G1(t) =
ω−(t)

ω+(t)
G(t) = (t− ζ0)

−η0G(t), t ∈ ℓ

By the monodromy of the function (ζ − ζ0)
−η0 around 0 and infinity and

since η∞ = −η0, it follows that G1 is continuous in the entire line ℓ. Hence,
we reduced the problem (47) to a problem (51) with continuous coefficient,
which can be solved with classical Cauchy integral methods.

By assumption, we seek solutions of (47) with only one integrable singu-
larity i.e. estimates of the form (49). The notion of index (winding number)
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for G(t) in the contour ℓ is given by (see [2]) κ = ⌊η0⌋+ ⌊η∞⌋+ 1 = 0, so
the usual method of solution of (51) as

Y = exp

(

1

2πi

∫

ℓ
K(ζ ′, ζ) logG1(ζ

′)

)

(for a suitable kernel K(ζ ′, ζ) that makes the integral along ℓ convergent)
needs no modification. We can also see from (50) that X± has an integrable
singularity at 0 (resp. ∞) if η0 is negative (resp. positive).

We need to show that for different choices of ζ0 ∈ D+ the solutions X
only differ by a constant. To see this, by taking logarithms in (47) it suf-
fices to show uniqueness of solutions to the homogeneous additive boundary
problem

(52) Φ+(t)− Φ−(t) = 0, t ∈ ℓ

and with the assumption that Φ vanishes at a point and at the points of
discontinuity of G(ζ), Φ± satisfies an estimate as in (49). The relation (52)
indicates that the functions Φ+,Φ− are analytically extendable through the
contour ℓ and, consequently, constitute a unified analytic function in the
whole plane. This function has, at worst, isolated singularities but accord-
ing to the estimates (49), these singularities cannot be poles or essential
singularities, and hence they can only be branch points. But a single valued
function with branch points must have lines of discontinuity, which contra-
dicts the fact that Φ+ = Φ− is analytic (hence continuous) on the entire
plane except possibly at isolated points. Therefore, the problem (52) has
only the trivial solution. □

4.2. Zeroes of the boundary function

Because of condition 4.1, yet another special kind of Riemann-Hilbert prob-
lem arises in [3]. We still want to find a sectionally analytic function X(ζ)
satisfying the conditions (47) with G(t) having jump discontinuities at 0,∞
with the properties (48) and (49). In this subsection, we allow the case of
G(t) having zeroes of integer order on finitely many points α1, . . . , αµ along
ℓ. Thus, we consider a Riemann-Hilbert problem of the form

(53) X+(t) =

µ
∏

j=1

(t− αj)
mjG1(t)X

−(t), t ∈ ℓ
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where mj are integers and G1(t) is a non-vanishing function as in §4.1, still
with discontinuities at 0 and ∞ as in (48).

Lemma 4.2. For a scalar Riemann-Hilbert problem as in (53) and with

G1(t) a non-vanishing function with discontinuities of the first kind at 0 and

∞ obeying (48), there exist solutions X±(ζ) unique up to multiplication by

a constant. At all points αj as above, both analytic functions X+(ζ), X−(ζ)
are bounded and X+ has a zero of order mj.

Proof. By Lemma 4.1, there exists non-vanishing analytic functions Y +(ζ)
and Y −(ζ) on opposite half-planes D+, D− determined by ℓ and continuous
along the boundary such that

G1(t) =
Y +(t)

Y −(t)
, t ∈ ℓ

We can define

X+(ζ) =

µ
∏

j=1

(ζ − αj)
mjY +(ζ)(54)

X−(ζ) = Y −(ζ)(55)

This clearly satisfies (53) and, since Y + is non-vanishing on D+, it shows
that X+ has a zero of order mj at αj ∈ ℓ. To show uniqueness of solutions,
note that if X+, X− are any solutions to the Riemann-Hilbert problem, we
can write the boundary condition (53) in the form

X+(t)

Y +(t)

µ
∏

j=1

(t− αj)
mj

=
X−(t)

Y −(t)
, t ∈ ℓ

The last relation indicates that the functions

X+(ζ)

Y +(ζ)

µ
∏

j=1

(ζ − αj)
mj

,
X−(ζ)

Y −(ζ)

are analytic in the domains D+, D− respectively and they constitute the
analytical continuation of each other through the contour ℓ. The points αj

cannot be singular points of this unified analytic function, since this would
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contradict the assumption of boundedness of X+ or X−. The behavior of
X± at 0 or ∞ is that of Y ±, so by Liouville’s Theorem,

X+(ζ)

Y +(ζ)

µ
∏

j=1

(ζ − αj)
mj

=
X−(ζ)

Y −(ζ)
= C

for C a constant. This forces X+(ζ), X−(ζ) to be of the form (54), (55). □
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