
✐

✐

“7-Gunara” — 2024/1/2 — 18:34 — page 2667 — #1
✐

✐

✐

✐

✐

✐

ADV. THEOR. MATH. PHYS.
Volume 26, Number 8, 2667–2695, 2022

Static black holes of higher dimensional

Einstein-Skyrme system with

general couplings

Bobby Eka Gunara∗, Emir Syahreza Fadhilla,
and Ardian Nata Atmaja

We construct hairy static black holes of higher dimensional general
coupling Einstein-Skyrme theories with the scalar potential turned
on and the cosmological constant is non-positive in which the scalar
multiplets satisfy O(d+ 1) model constraint where d is the spatial
dimension of the spacetime and d ≥ 3. Some physical properties of
solutions near the boundaries, namely, near the (event) horizon and
in the asymptotic region are discussed. Then, we prove that these
black hole solutions exist globally which may have finite energy for
non-positive cosmological constant. Finally, we use perturbative
method to perform a linear dynamical stability analysis and then,
show the existence of stable and unstable solutions in the model.

1. Introduction

Black holes in Einstein-Skyrme model are the evidence of counterexamples
to the no-hair conjecture for black holes which states that a black hole can
only be characterized by its mass and its electric and magnetic charges.
These objects up to now have been studied mostly in four dimensions where
the Skyrme field is an SU(2) valued. In particular, several models admitting
asymptotically flat spacetimes exist in the literature, see for example, [1]. We
have only few models with asymptotically anti-de Sitter spacetimes [2–4],
while there is only a model with de Sitter background [5].

There are some higher dimensional models which can be mentioned
as follows. A five dimensional Einstein-Skyrme model has been considered
which can be thought of as an O(5) sigma model coupled to gravity [6].
In the model, we have some universality properties that can be adopted to
any dimension higher than five. For example, a topological charge is glob-
ally defined on the spacetime. The second model is a seven dimensional
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Skyrme branes [7] which provides a brane world scenario. The authors set
that the skyrmion field defines on a warped spherically symmetric three di-
mensional submanifold of a seven-dimensional spacetime which is conformal
to IR3+1 × S3 where IR3+1 and S3 are four-Minkowski spacetime and three-
conformally flat geometries, respectively. Another example of black holes in
higher dimensional Einstein-Skyrme theories is studied in [8]. In this latter
model, the authors study the Einstein-Skyrme theory with the cosmologi-
cal constant Λ ≤ 0 on a d+ 1-dimensional nontrivial static spacetime Md+1

which is conformal to M3+1 ×N d−3 where M3+1 and N d−3 are the four
dimensional spacetime and the compact (d− 3)-dimensional submanifold,
respectively. The theory that the authors considered is up to the fourth
term and the Skyrme field is still an SU(2) valued. Then, they construct a
family of static black holes and prove the existence of such solutions with
finite energy if Λ = 0.

The purpose of this paper is to provide the analysis of static black hole
solutions of higher dimensional Einstein-Skyrme models with general cou-
plings including the scalar potential V (ϕ) and the cosmological constant
Λ ≤ 0. In particular, we set the spacetime Md+1 with d ≥ 3 to be static
and conformal to M1+1 × Sd−1 where M1+1 and Sd−1 are the two dimen-
sional spacetime and the compact (d− 1)-dimensional sphere, respectively,
with the metric functions δ(r) and m(r). We also have an O(d+ 1) valued
Skyrme field which is locally defined on the submanifold Sd ⊆ Md+1, where
Sd is conformal to IR+ × Sd−1 with IR+ being positive real number. This
Skyrme field can further be simplified into a form that can be expressed in
terms of a profile function ξ ≡ ξ(r) where r is the radial coordinate [9].

We write down some consequences of the above as follows. First, the
covariant topological current such as baryon number lives locally on the
submanifold Sd. Second, to obtain physical black hole, we have to specify the
behavior of the functions δ(r), m(r), and ξ(r) on the boundaries, namely, at
the (event) horizon and the outer boundary, together with their local-global
existence and their linear stability. Finally, we want to mention that since
our model consists of general couplings in diverse dimension (d ≥ 3) which
is a complicated structure, it is not necessary to use the notion of branches
related to the value of ξ(r) on the horizon. Instead, we just need the value of
ξ(r) on the horizon to be regular (or finite) which will be useful to establish
the local-global existence of solutions.

In order to have a well-defined model, we first have to analyze the func-
tions δ(r), m(r), and ξ(r) near the boundaries. Near the (event) horizon, all
the function can be linearly expanded such that these functions become fixed
on the horizon. At this region, the spacetime Md+1 breaks into T 1+1 × Sd−1
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where the 2-surface T 1+1 could be either a flat Minkowski surface IR1+1 or
an anti-de Sitter surface AdS2 [10]. Analysis on the Ricci scalar implies that
the value of ξ(r) on the horizon has to satisfy an inequality in order to have
a consistent solution. In the asymptotic limit, we set the decay rate of all
the functions δ(r), m(r), and ξ(r) to be of the form O(r−n) with n ≥ 1
such that the lowest order of these functions are constants implying that
the black hole spacetime converges Einstein geometry.

Next, we construct local-global existence and uniqueness of this
skyrmionic black hole solution. By employing Picard’s iteration and the
contraction mapping properties, we firstly show local existence and unique-
ness of the solutions. Then, using the uniqueness property we argue that
the local solution can be extended to the maximal solution by gluing some
of the local solutions. Since we have particularly the decay properties of the
functions δ(r), m(r), and ξ(r) of the form O(r−n) with n ≥ 1 in the asymp-
totic region, it can be established a family of global solutions whose energy
is finite by taking the values of both the field ξ(r) and the scalar potential
to be vanished in this region for arbitrary Λ ≤ 0.

Finally, we discuss the so called linear dynamical stability of solutions us-
ing perturbation method to obtain a linear equation called Sturm-Liouville
equation in which the problem is reduced to an eigenvalue problem. It is im-
portant to notice that the stability here is in the context of Sturm-Liouville
theory. Using the behavior of the functions δ(r), m(r), and ξ(r) in the
asymptotic region and applying so called the fixed point theorem [11], it can
be shown the existence of both stable and unstable solutions for any Λ ≤ 0.

We organize this paper as follows. In Section 2 we discuss shortly the
Skyrme model in diverse dimension. The static solutions in the theory are
considered in Section 3. We perform the analysis of the solutions near the
boundaries, namely, the (event) horizon and the asymptotic region in Sec-
tion 4. In Section 5 we prove that there exists a family of unique global
solutions with finite energy in the model. In Section 6 we consider the dy-
namical linear stability of solutions and show the existence of stable and
unstable solutions.

Conventions and Notations. In this paper we use alphabets, a, b, c, . . .,
as scalar multiplets indices and mid alphabets, i, j, k, . . . as spacetime in-
dices. Both indices sets take value from 0 to d with d+ 1is the spacetime
dimensionality. A one-form component is represented by ωi with lower index
and its dual is represented by ωi with upper index. The spacetime coordi-
nates are denoted by xi and its derivative operator is ∂

∂xi , or sometimes
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written as ∂i. The multiple scalar index is written as an upper index and
the square bracket [. . . ] on indices represents antisymmetrization.

2. Skyrme Model in Diverse Dimension

In this section we shortly discuss the Skyrme model in d ≥ 3 spatial dimen-
sions. The starting point is to consider the standard Skyrme model in 3 + 1
dimension whose action is of the form

(2.1) S4 =

∫

d4x
√−g

(

γ1g
ij Tr(LiLj) + γ2g

ijgkl Tr([Li, Lk][Lj , Ll])
)

,

with Li = U †∂iU where U = ϕ0I2 + iϕ⃗.σ⃗ is an SU(2) valued chiral field orig-
inally proposed by T. Skyrme [12, 13]. The vector σ⃗ = (σ1, σ2, σ3) are the
Pauli matrices, while (ϕ0, ϕ⃗) are real scalar field satisfying O(4) model con-
dition, ϕaϕa = 1, see also for example, [6, 14].

In fact, one can work another way to construct such functional by intro-
ducing a so called strain tensor D = JJT where J is the Jacobian matrix
of the map [15]. The energy functional of static Skyrme model can be con-
structed from the invariants of the strain tensor D which are the combina-
tions of its eigenvalues. Then, the Lagrangian from (2.1) can be expressed
to be the sum of these two terms

ϕai ϕ
a
j g

ij ,(2.2)

ϕa[iϕ
b
j]ϕ

a
[kϕ

b
l]g

ijgkl ,(2.3)

where ϕai ≡ ∂ϕa

∂xi and gij are the components of the inverse of metric tensor.
This construction of Skyrme model can be employed to generalize (2.1)
either for including the higher order terms [16] or for extending the Skyrme
model in five dimensions [6].

Now, let us consider the eigenvalues of Dij from a d+ 1 dimensional
Skyrme model, that is, λ21, λ

2
2, . . . , λ

2
d. The most general Lagrangian can be

written as

(2.4) L = −γ0V −
d
∑

n=1

γnL2n ,

where γp ≥ 0, p = 0, ..., d, are the coupling constants, V ≡ V (ϕ) is a scalar
potential, and L2n have the form
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L2 ∝ λ21 + · · ·+ λ2d ,

L4 ∝ λ21λ
2
2 + λ21λ

2
3 + · · ·+ λ2d−1λ

2
d ,

...

L2d ∝ λ21λ
2
2 . . . λ

2
d .(2.5)

In four dimensional case (d = 3), we have the standard Skyrme model with
additional BPS-Skyrme term (L6 ∝ λ21λ

2
2λ

2
3) proposed in [17].

Using the above prescription and identifying

(2.6) L2n =
1

(n!)2
ϕa1

[i1
. . . ϕan

in]
ϕa1

[j1
. . . ϕan

jn]
gi1j1 . . . ginjn ,

the Lagrangian of the model has the form

(2.7) L = γ0V +

d
∑

n=1

γn

(n!)2
ϕa1

[i1
. . . ϕan

in]
ϕa1

[j1
. . . ϕan

jn]
gi1j1 . . . ginjn ,

which is just an O(d+ 1) model proposed in [6].

3. Static Solutions in Einstein-Skyrme Model

We can now couple the above Skyrme to gravity via Einstein-Hilbert La-
grangian

Lg =
1

2
(R− 2Λ)− γ0V(3.1)

−
d
∑

n=1

γn

(n!)2
ϕa1

[i1
. . . ϕan

in]
ϕa1

[j1
. . . ϕan

jn]
gi1j1 . . . ginjn ,

where R and Λ are the Ricci scalar and the cosmological constant, respec-
tively, defined on (d+ 1)-dimensional spacetime Md+1. Throughout the pa-
per, we take Λ ≤ 0. In order to be compatible with the discussion in the
preceding section, we take the ansatz metric to be static spherical symmet-
ric

(3.2) ds2 = −e2δf dt2 + dr2

f
+ r2R2

0 dΩ
2
d−1 ,
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where δ ≡ δ(r), f ≡ f(r), and dΩ2
d−1 is the metric of (d− 1)-dimensional

sphere Sd−1 with radius R0 > 0. For the Skyrme field, we use generalized
hedgehog ansatz [9] which has the following form

(3.3) ϕ = (cos ξ, n⃗ sin ξ)

with n⃗.n⃗ = 1, n⃗ is a vector in Rd. In fact, the ansatz (3.3) is a natural
choice for a spherically symmetric system. We can motivate this as follows:
such ansatz is a coordinate system on target space with the following metric
ds2target = dξ2 + sin2 ξdΩ2

d−1 where n⃗.n⃗ = 1 directly represents Sd−1 mani-
fold with metric dΩ2

d−1. For a spherically symmetric spacetime with metric
of the form ds2 = −A(r)dt2 + 1

f(r)dr
2 + r2dΩ2

d−1 we can immediately ob-
serve that both manifold have the same submanifold because both contain
Sd−1 manifold on which the spherical symmetry applies. Furthermore, if we
chose the field ξ to be ξ(r), the map ϕ simply become a coordinate trans-
formation r → ξ(r). From this point of view we expect that the angular
dependencies of ϕ are decoupled in the full field equations, hence leaves only
a single spherical symmetric field equation for ξ.

Here, we show the details on how we can calculate the effective la-
grangian by utilizing eigenvalues of strain tensor D with Di

j = gikϕakϕ
a
j as

its components. The component of tensor D in mixed form for the ansatz
mentioned above is given by

(3.4) Di
j = gik∂kξ∂jξ + sin2 ξgik∂kn⃗ · ∂jn⃗

To make the calculation simpler, we can choose a spatial coordinate on which
the strain tensor become diagonal. Firstly, we choose the same parameteri-
zation for both Sd−1 submanifold of spacetime and target space of ϕ. Hence,
suppose that Sd−1 submanifold of spacetime has the following metric

(3.5) dΩ2
d−1 = dθ21 +

d−1
∑

p=2

p−1
∏

q=1

sin2 θq dθ
2
p

then the vector n must be a function of θ1, . . . , θd−1 and ∂kn⃗ · ∂jn⃗ is metric
tensor component of Sd−1 except ∂1n⃗ · ∂1n⃗. Now, let us define the metric
tensor on Sd−1 as hθpθq and choose ξ to be ξ ≡ ξ(r). We can immediately
observe that the spherical components of spacetime metric gθpθq is related
to the metric of sphere manifold by gθpθq = r2hθpθq . Therefore, our strain
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tensor components become

D1
1 = g11ξ′2 = fξ′2,(3.6)

D
θp
θq

= sin2 ξ
hθpθs

r2
hθsθq =

sin2 ξ

r2
δ
θp
θq

(3.7)

The resulting tensor is diagonal, thus we can directly identify all the eigen-
values, namely

λ21 = fξ′2,(3.8)

λ2 = · · · = λd =
sin2 ξ

r2
(3.9)

The next step is to formulate each invariant from combinations of eigenval-
ues. We know that for L2n there are Cd

n terms. Because only one eigenvalue
is different, which is λ21 = fξ′2, then there are Cd−1

n−1 terms which have fξ′2

as their factor. From this we can further conclude that there are Cd
n − Cd−1

n−1

terms with no factor of fξ′2, hence the invariant L2n is given by

(3.10) L2n =
sin2(n−1) ξ

r2(n−1)

(

Cd−1
n−1f(ξ

′)2 +
(

Cd
n − Cd−1

n−1

) sin2 ξ

r2

)

.

This formulation can be used in a more general Dθi
θj

which represents a non-
trivial map to the target space n⃗ · n⃗ = 1. The field equations for Skyrmion
can be found by substituting ansatz (3.3) to the dynamical equations of the
Skyrme model, namely

(3.11)
(

δcb − ϕcϕb
)

×
[

∇k

(

d
∑

n=1

2γn

(n!)2
gi1j1 . . . ginjnϕa1

[i1
. . . ϕan

in]

∂

∂ϕbk
ϕa1

[j1
. . . ϕan

jn]

)

− ∂

∂ϕb
γ0V

]

= 0 .

The dynamical field equations above can be simplified by exploiting Levi-
Civita symbol and strain tensor, leading to the following expression of field
equations

(3.12)
(

δcb − ϕcϕb
)

[

d
∑

n=1

2nγn
n!(d− n)!

∇j

(

ϕb,iHj
i (n, d)

)

− ∂

∂ϕb
γ0V

]

= 0 ,
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where we have defined the tensor

(3.13) Hj
i (n, d) ≡ εi i2...inkn+1...kd

εj j2...jnkn+1...kd∇j1

n
∏

m=2

Dim
jm

for computational purpose. Hj
i (n, d) has special features, namely, it is a

diagonal tensor if the strain tensor is diagonal and only depends on radial
coordinate if we substitute hedgehog ansatz in (3.3) to ϕ. Upon substitution
of ansatz (3.3), the resulting field equations (3.12) is effectively reduced into
a single field equation (as expected, because n⃗ decouples) for ξ where all of
the equations only differ by some angular factors, namely

(3.14) ξ′′ +

(

d− 1

r
+ δ′ +

f ′

f
+

1

u
∂ru

)

ξ′ +
(ξ′)2

2u

∂u

∂ξ
=

1

2uf
∂ξv ,

with ∂ru ≡ ∂u
∂r and ∂ξv ≡ ∂v

∂ξ . where we have defined

u ≡
d
∑

n=1

γnC
d−1
n−1

sin2(n−1) ξ

(rR0)2(n−1)
,

v ≡ γ0V +

d
∑

n=1

γnC
d
n

(

1− n

d

) sin2n ξ

(rR0)2n
,(3.15)

and we assume V = V (ξ) for the rest of this paper. On the metric (3.2), the
effective static energy functional for the Skyrme model has the form

(3.16) E =

∫

ddx

√

−g(d+1)
(

uf(ξ′)2 + v
)

,

Varying the energy (3.16) with respect to ξ, leads to the same field equation
of ξ given by (3.14).

Next, the dynamics of the metric functions δ(r) and f(r) are governed
by the Einstein field equation coming from the variation of the action related
to Lagrangian (3.1). The components of the Einstein field equation can be
simplified into the following equations

(3.17) (d− 1)
f

2

(

f ′

rf
+
d− 2

r2

)

− (d− 1)(d− 2)

2r2R2
0

+ Λ = −uf(ξ′)2 − v ,

(3.18) (d− 1)
f

2

(

2δ′f + f ′

rf
+
d− 2

r2

)

− (d− 1)(d− 2)

2r2R2
0

+ Λ = uf(ξ′)2 − v ,
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f

2

(

2δ′′ + 2(δ′)2 +
f ′′ + 3δ′f ′

f

)

+
d− 2

r

(

f ′ + δ′f
)

(3.19)

− (d− 2)(d− 3)

2r2R2
0

(

1− fR2
0

)

+ Λ

=
1

d(d− 1)

d
∑

n=1

γnC
d
n n (2n− d− 1)

sin2(n−1) ξ

(rR0)2(n−1)
f(ξ′)2

− 1

d(d− 1)

d
∑

n=1

γnC
d
n

(

2n2 − 3nd+ n− d+ d2
) sin2n ξ

(rR0)2n
− γ0V .

Additionally, we write down the Ricci scalar of the metric (3.2)

R =
1

r2R2
0

(d− 2)(d− 1)− 2

r
(d− 1)(f ′ + δ′f)(3.20)

−
[

2f(δ′′ + δ′2) + 3δ′f ′ + f ′′
]

− (d− 2)(d− 1)
f

r2
.

which will be useful in the next section discussion.
Now, we take a particular for of the metric function f(r) as

(3.21) f =
1

R2
0

− 2m

(d− 2)rd−2
− 2Λ

d(d− 1)
r2 ,

where m ≡ m(r). Using (3.21), (3.17) and (3.18) become simply

m′ =
(d− 2)

(d− 1)
rd−1

(

uf(ξ′)2 + v
)

,

δ′ =
2

(d− 1)
u(ξ′)2r .(3.22)

We will discuss the properties of m(r), δ(r), and ξ(r) near the boundaries,
namely, near the horizon (r → rh) and around the asymptotic region (r →
+∞) in the next section.

4. Near Boundary Properties

In this section we discuss the properties of solutions of the Einstein field
equation (3.19), (3.22), and the equation of motions (3.14) near the bound-
aries. The first part of discussion is to consider the properties of m(r), δ(r),
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and ξ(r) near the horizon and then, we continue it in the asymptotic region
as r → +∞.

Let us first consider the behavior of m(r), δ(r), and ξ(r) in the horizon
limit. Suppose there exists a horizon at the radius r = rh such that f(rh) = 0
implying

(4.1) m(rh) =
(d− 2)rd−2

h

2R2
0

− (d− 2)

d(d− 1)
Λrdh .

Near the region, we can expand the metric functions as

ξ = ξh + ξ1(r − rh) +O((r − rh)
2) ,

δ = δh + δ1(r − rh) +O((r − rh)
2) ,

m = m(rh) +m1(r − rh) +O((r − rh)
2) ,(4.2)

where ξh and δh are positive constants, while ξ1, δ1, and m1 are real con-
stants. Inserting (4.2) into (3.22) and (3.14), it then yields

δ1 =
2

(d− 1)

(

d
∑

n=1

γnC
d−1
n−1

sin2(n−1) ξh
(rhR0)2(n−1)

)

ξ21rh ,

m1 =
(d− 2)

(d− 1)
rd−1
h

(

γ0V (ξh) +

d
∑

n=1

γnC
d
n

(

1− n

d

) sin2n ξh
(rhR0)2n

)

,

ξ1 =
γ0 ∂ξV (ξh) +

sin(2ξh)
(rhR0)2

∑d
n=1 γnC

d−1
n−1(d− n) sin2(n−1) ξh

(rhR0)2(n−1)

2
(

d−2
R2

0rh
− 2Λrh

(d−1) − 2m1

(d−2)rd−2
h

)(

∑d
m=1 γnC

d−1
m−1

sin2(m−1) ξh
(rhR0)2(m−1)

) ,(4.3)

which show that we have a (d+ 4)-dimensional parameter space spanned
by ξh, δh, M , and γp with p = 0, ..., d. From the last equation in (4.3), it is
straightforward to see that among γp, we should have at least one of them
to be non-zero.

The second expression in (4.3) and (3.19) can be used to find the form
of Ricci scalar on the horizon which takes the form

R|rh =
(d− 1)(d− 2)

r2hR
2
0

+ Λe(4.4)

+ 2

d
∑

n=1

γnC
d
n

(

2n2 − 3nd− n+ d+ d2

d(d− 1)

)

sin2n ξh
(R0rh)2n

,
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with

(4.5) Λe =
2(d+ 1)

(d− 1)
(Λ + γ0V (ξh))−

(d− 1)(d− 2)

r2hR
2
0

.

Around this region, the spacetime topology changes to T 2 × Sd−1 where T 2

is a 2-surface T 2 which could be either T 2 ≃ IR2 or T 2 ≃ AdS2 [10]. Thus,
the second term and the third term in the right hand side of (4.4) should be

(4.6) Λe + 2

d
∑

n=1

γnC
d
n

(

2n2 − 3nd− n+ d+ d2

d(d− 1)

)

sin2n ξh
(R0rh)2n

≤ 0 .

Next, we consider the behavior of m(r), δ(r), and ξ(r) in the asymptotic
region. In order to have a finite and regular solution, the metric functions
δ(r) and m(r) should be decreasing functions whose form are

δ(r) =
δ̃1
rn1

+O
(

r−(n1+1)
)

,

m(r) =M +
m̃1

rn2
+O

(

r−(n2+1)
)

,(4.7)

where M > 0 is the ADM mass which will be discussed below, whereas
δ̃1,m1 ∈ IR, n1 ≥ 1, and n2 ≥ 1. Moreover, the skyrmionic scalar ξ(r) would
have the form

(4.8) ξ(r) = ξ∞ +
ξ̃1
rn3

+O
(

r−(n3+1)
)

,

where n3 ≥ 1 and ξ∞, ξ̃1 ∈ IR showing that ξ(r) will be frozen as r → +∞.
Inserting (4.7) and (4.8) to the constraints (3.22), we obtain

(4.9) n1 ≥ d+ 1 , n2 ≥ 1 , n3 ≥
1

2
(d+ 1) ,

with either γ0 = 0 or γ0 > 0 and

(4.10) V (ξ∞) = 0 .

We also have

δ̃1 = −n
2
3

n1
γ1ξ̃

2
1 ,

m̃1 =
n23 Λ

d(d− 1)n2
γ1ξ̃

2
1 .(4.11)
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The equation of motions (3.14) gives us the condition

(4.12) γ0 ∂ξV (ξ∞) =
4γ2Λ

d(d− 1)R2
0

sin ξ∞ cos ξ∞ ,

where we have used the ansatze (4.7) and (4.8).
Now, we write down the trace of the Einstein field equation

R =
2(d+ 1)

(d− 1)
(Λ + γ0V )

+
2

d(d− 1)

d
∑

n=1

γnC
d
n

(

2n2 − 3nd− n+ d+ d2
) sin2n ξ

(rR0)2n

− 2

d(d− 1)

d
∑

n=1

γnC
d
nn (2n− d− 1)

sin2(n−1) ξ

(rR0)2(n−1)
f(ξ′)2 .(4.13)

In this region the geometry converges to Einstein such that (4.13) should be
simplified to

(4.14) R =
2(d+ 1)Λ

(d− 1)
+O

(

r−n
)

,

with cosmological constant 2Λ/(d− 1) (or Ricci-flat with Λ = 0) such that
if we subtitute (4.7) and (4.8) to (4.13), we find either the case without the
scalar potential, that is, γ0 = 0 or (4.10) with γ0 > 0. As we will see in the
next section, the finiteness of the energy functional (3.16) constrains the
value of ξ∞ and the bound of n3.

Let us now discuss how to obtain the mass of the black hole. This can
be done by considering the Komar integral [18, 19]

(4.15) K =

∫

∂Σ
dSij

(

∇iζj + ωij
)

,

where ∂Σ is the boundary of a spatial hypersurface of the spacetime Md+1.
We have a Killing vector ζi of Md+1 and an antisymmetric tensor ωij sat-
isfying [20]

(4.16) ∇iω
ij = Rj

i ζ
i .
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In the case at hand, the vector ζi is time-like with ζi = (1, 0, ..., 0) such that
the non-zero solution of (4.16) has to be

(4.17) ω10 = −1

2
(f ′ + 2δ′f) +

M

Vol(Sd−2)
e−δr−(d−1)R

−(d−1)
0 ,

while

(4.18) ∇1ζ0 =
1

2
(f ′ + 2δ′f) ,

where Vol(Sd−2) is the volume of the unit sphere Sd−2. The infinitesimal
volume dS10 has the form

(4.19) dS10 =
1

2
eδrd−1Rd−1

0 dVol(Sd−2) .

Thus, we obtain the mass of our black hole

(4.20) MBH = lim
r→+∞

M =M .

Finally, the topological charge called baryon number B for such a system
is

B =
1

Vol(Sd)

∫

sind−1 ξ

(

d−2
∏

k=1

sind−1−k θk

)

dξdθ1 . . . dθd−1

=
Vol(Sd−1)

Vol(Sd)

∫

sind−1 ξ dξ = B(ξh)− B(ξ∞) ,(4.21)

where B(ξ) is defined by

B(ξ) ≡ Γ
(

d+1
2

)

√
πΓ
(

d
2

)







































Cd−1
d−1

2

ξ
2d−1 + 1

2d−2

d−3

2
∑

k=0

Cd−1
k (−1)k+1 sin((d−2k−1)ξ)

d−2k−1 ,

for d = 3, 5, 7, . . .

1
2d−2

d−2

2
∑

k=0

Cd−1
k (−1)k cos((d−2k−1)ξ)

(d−2k−1) ,

for d = 2, 4, 6, . . .

(4.22)

We have used the definition of topological charge given in [6]. A vacuum
solution can be obtained if we take ξh = ξ∞.
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Let us consider an example as follows. Suppose we have ξh = π and
ξ∞ = 0, then Λe ≤ 0, (4.3) becomes

δ1 =
2γ1

(d− 1)
ξ21rh ,

m1 =
(d− 2)

(d− 1)
rd−1
h γ0V (π) ,

ξ1 =
γ0 ∂ξV (π)

2γ1

(

d−2
R2

0rh
− 2rh

(d−1) (Λ− γ0V (π))
) ,(4.23)

with γ1 > 0, and the topological charge (4.21) take a unit value i.e. B = 1. It
is easy to see that we have black hole solutions if γ0 > 0 with either V (π) ̸= 0
or ∂ξV (π) ̸= 0. In other words, the presence of the scalar potential term γ0V
plays an important role in determining the existence of black hole solutions
in this theory. For example, in a model with generalized pion-mass scalar
potential

(4.24) V (ξ) = (1− cos ξ)n , n ≥ 1 ,

we may have a black hole solution since V (π) = 2n and ∂ξV (π) = 0. More-
over, in the asymptotic region this model admits (4.10) and ∂ξV (0) = 0
which shows that these correspond to finite energy solutions as we shall see
in the next section.

In a case of γ0 = 0 (or V (ϕ) ≡ 0), we might have a smooth regular so-
lution which is not a black hole. This latter situation has been observed in
four dimensional Einstein-Skyrme theory [2].

5. Local-Global Existence of Finite Energy Solutions

In this section we establish local-global existence and uniqueness of black
hole solutions of the theory. By employing the Picard’s iteration and the
contraction mapping properties, we prove the local existence and the unique-
ness. Then, using maximal solution technique we construct the global ex-
istence. We use the expansions (4.7) and (4.8) to show the finiteness of
solutions. Finally, the finite energy solutions are discussed.
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5.1. Local Existence and Smoothness

Let us define a set of dynamical variables w ≡ (ξ, pξ) where pξ ≡ ξ′. We
write down the constraints (3.22) in the integral form

m = mh +
(d− 2)

(d− 1)
r−

2

d−1

∫

rd−1+ 2

d−1

((

1

R2
0

− 2Λ

d(d− 1)
r2
)

up2ξ + v

)

dr ,

(5.1)

δ = δh +
2

(d− 1)

∫

rup2ξ dr ,

where u ≡ u(ξ, r) and v ≡ v(ξ, r) given in (3.15). Suppose I ≡ [r, r + ε]
where r ̸= rh, ε > 0, and U ⊂ IR2 be an open set.

Lemma 1. Suppose the scalar potential V in (3.1) is at least a C2-real
function. Then, the metric functions δ(w, r) and m(w, r) in (5.1) are locally
Lipschitz with respect to w.

Proof. First, we have

|m|U ≤ (d− 2)

(d− 1)
r−

2

d−1

∫ r+ϵ

r
rd−1+ 2

d−1

∣

∣

∣

∣

(

1

R2
0

− 2Λ

d(d− 1)
r2
)

up2ξ + v

∣

∣

∣

∣

dr

≤ (d− 2)

(d− 1)
Crd−1

∣

∣

∣

∣

(

1

R2
0

− 2Λ

d(d− 1)
r2
)

up2ξ + v

∣

∣

∣

∣

,(5.2)

for C > ϵ which is bounded since the function ξ(r) is at least a C2-real
function. Using similar argument, we can show that δ is also bounded. Then,
for w, w̃ ∈ U

|δ(w, r)− δ(w̃, r)|U ≤ 2r

(d− 1)
C
∣

∣

∣
u(ξ, r)p2ξ − u(ξ̃, r)p̃2ξ

∣

∣

∣
,

|m(w, r)−m(w̃, r)|U(5.3)

≤ (d− 2)

(d− 1)
Crd−1

∣

∣

∣

∣

(

1

R2
0

− 2Λ

d(d− 1)
r2
)

(

u(ξ, r)p2ξ − u(ξ̃, r)p̃2ξ

)

∣

∣

∣

∣

+
(d− 2)

(d− 1)
Crd−1

∣

∣

∣
v(ξ, r)− v(ξ̃, r)

∣

∣

∣
.

Using the fact that for any smooth function F(f), we have locally

(5.4) F(f)−F(f̃) ≤ sup
s∈[0,1]

[

F ′(f + s(f̃ − f))
]

(f − f̃) ,
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on U , we get that δ and m indeed satisfy the local Lipschitz condition

|δ(w, r)− δ(w̃, r)|U ≤ Cδ(|w|, |w̃|)|w − w̃| ,
|m(w, r)−m(w̃, r)|U ≤ Cm(|w|, |w̃|)|w − w̃| ,(5.5)

on an open set U ⊂ IR2 where Cδ(|w|, |w̃|) and Cm(|w|, |w̃|) are bounded
positive-valued functions . □

Next, we rewrite (3.14) into

(5.6)
dw

dr
= J (w, r) ,

where

(5.7) J (w, r) ≡
(

pξ
Jξ

)

,

where

Jξ ≡ −
(

d− 1

r
+ δ′ +

f ′

f
+

1

u

∂u

∂r

)

pξ −
(

1

2u

∂u

∂ξ

)

p2ξ +
1

2uf

∂v

∂ξ
,(5.8)

with the constraint (5.1). We can now state the result of the local existence
and the uniqueness of (5.6) as follows.

Lemma 2. The operator J defined in (5.7) is locally Lipschitz with respect
to w.

Proof. From (5.7), we obtain the following estimate

|Jξ|U ≤
∣

∣

∣

∣

d− 1

r
+ δ′ +

f ′

f
+

1

u

∂u

∂r

∣

∣

∣

∣

|pξ|+
∣

∣

∣

∣

1

2u

∂u

∂ξ

∣

∣

∣

∣

|pξ|2 +
∣

∣

∣

∣

1

2uf

∂v

∂ξ

∣

∣

∣

∣

.(5.9)

Since ξ(r) belongs at least to a class of C2-real functions, then its values is
bounded on any closed interval I. Thus, |J (w, r)|U is bounded on U .
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Moreover, for w, w̃ ∈ U , we also have

|J (w, r)− J (w̃, r)|U(5.10)

≤ d− 1

r
|pξ − p̃ξ|+

∣

∣δ′(w, r)pξ − δ′(w̃, r)p̃ξ
∣

∣

+

∣

∣

∣

∣

f ′

f
(w, r)pξ −

f ′

f
(w̃, r)p̃ξ

∣

∣

∣

∣

+

∣

∣

∣

∣

1

u

∂u

∂r
(w, r)pξ −

1

u

∂u

∂r
(w̃, r)p̃ξ

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2u

∂u

∂ξ
(w, r)p2ξ −

1

2u

∂u

∂ξ
(w̃, r)p̃2ξ

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2uf

∂v

∂ξ
(w, r)− 1

2uf

∂v

∂ξ
(w̃, r)

∣

∣

∣

∣

.

Employing some computations using the result in Lemma 1 and the local
property (5.4) on U , it can be shown J is locally Lipshitz with respect to
u satisfying

(5.11) |J (w, r)− J (w̃, r)|U ≤ CJ (|w|, |w̃|)|w − w̃| .

□

It is useful for the next analysis to write down (5.6) in the integral form

(5.12) w(r) = w(rh) +

∫ r

rh

J (w(s), s) ds .

By introducing a Banach space

(5.13) X ≡ {w ∈ C(I, IR2) : w(rh) = w0, sup
r∈I

|w(r)| ≤ L0} ,

endowed with the norm

(5.14) |w|X = sup
r∈I

|w(r)| ,

where L0 is a positive constant, we define an operator K

(5.15) K(w(r)) = w0 +

∫ r

rh

ds J (s,w(s)) .

Then, Lemma 2 implies the uniqueness result proving that the differential
equation (5.6) has a unique local solution.
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Corollary 1. [21] The operator K defined in (5.15) is a mapping from X

to itself and K is a contraction mapping on I = [r, r + ε] with r ̸= rh, ε > 0
,and

(5.16) ε ≤ min

(

1

CL0

,
1

CL0
L0 + ∥J (r)∥

)

.

Then, the operator K is a contraction mapping on X.

Finally, a maximal solution can be constructed as follows. Let w(r) be
a solution defined on the interval (rh, rm) with rm > 0. Then, we repeat the
above arguments of the local existence with the initial condition w(r − r0)
for some rh < r0 < r and use the uniqueness condition to glue the solutions
to get the maximal solution. It is straightforward that we have a global
solution by taking rm → +∞.

5.2. Global Existence

The second part of this section we show that a regular global solution of (5.6)
on I∞ ≡ [rh,+∞) does exist satisfying the expansions (4.7) and (4.8). As
expected, these establish the finiteness of (5.12) on I∞.

First of all, we introduce two intervals, namely, IL ≡ [rh + ε, L] with
ε > 0 and IA ≡ (L,+∞) for finite and large L≫ rh. On IA, all the functions
δ(r), m(r), and f(r) can be expanded as in (4.7), and (4.8). Equation (5.12)
can be written down as

(5.17) w(L) = w(rh) +

∫ L

rh+ε
J (w(s), s) ds +

∫ +∞

L
J (w(s), s) ds.

In order to suppress the third term in the right hand side in (5.17), we
should set: 1. γ1 > 0 which means that the kinetic term must be non-zero,
2. ∂ξV (ξ∞) must be well-defined. The latter condition follows from the fact
that the scalar potential V should at least a C2-real function as stated in
Lemma 2 and it has a value given in (4.12). Then, we have a finite and
globally well-defined solution of (5.12) since the function ξ(r) is at least a
C2-function.

Next, we want to prove the finite energy solutions of (5.12) by analyzing
the estimate of the energy functional (3.16). Then, using the expansions
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(4.7) and (4.8), and taking first Λ < 0, we obtain an inequality

E ≤ A(Sd−1)Rd−1
0 sup

r∈IL

∣

∣

∣

∣

∫ L

rh

eδrd−1
(

uf(ξ′)2 + v
)

dr

∣

∣

∣

∣

(5.18)

+
A(Sd−1)

d(d− 1)
2γ1|Λ|n23ξ̃21Rd−1

0

∣

∣

∣

∣

∫ +∞

L

dr

r2n3−d+1

∣

∣

∣

∣

+A(Sd−1)R2d−2
0

∣

∣

∣

∣

∣

∫ +∞

L
rd−1

(

−γ0V (ξ+∞)

+

d
∑

n=1

γnC
d
n

(

1− n

d

) sin2n ξ+∞

(rR0)2n

)

dr

∣

∣

∣

∣

∣

.

The first term in the right hand side of (5.18) is finite since all C2-functions,
namely, f(r) and ξ(r) are bounded on the closed interval IL. In order to
control the second and the third terms in (5.18) on the open interval IA,
one has to set ξ+∞, the scalar potential V (ξ+∞), and the order n3 in (4.8)
to be ξ∞ = 0, V (ξ∞) = 0, and n3 >

d
2 for finite ξ̃1, respectively. In the case

of Λ = 0, we just replace Λ by 1/R2
0 in (5.18). One regains the same results.

Comparing this energy estimate analysis with the result (4.9), we conclude

ξ∞ = 0 , V (ξ∞) = 0 , n3 ≥
1

2
(d+ 1) .(5.19)

Moreover, in order to have a consistent result, since we have the Ein-
stein’s field equation, one has to check the estimate

(5.20)

∫ +∞

rh

eδrd−1

(

R0
0 −

1

2
δ00R+ δ00Λ

)

dr

=
1

2

∫ +∞

rh

eδrd−1

(

(d− 1)

(

f ′

r
+

(d− 2)

r2
f

)

− (d− 1)(d− 2)

r2R2
0

+ 2Λ

)

dr .

Applying the expansions (4.7) and (4.8), and repeating similar steps as
in (5.18), we obtain that the integral (5.20) is finite. In other words, the
finite energy black holes do exist.

Thus, we could state

Theorem 1. Suppose w(r) be a solution of (5.6) with the initial value wh

and Λ ≤ 0. Then, we have a family of global solutions with finite energy
satisfying (4.2), (4.7), (4.8), (4.9), and (5.19) that connects two boundaries,
namely the horizon and the asymptotic regions.
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6. Linear Dynamical Stability Analysis

In this section, we will discuss the linear dynamical stability analysis of
the models using similar method as in [2]. First, we take in advance the
metric functions in the preceding sections to be time dependent, namely,
δt ≡ δ(r, t), mt ≡ m(r, t), and ξt ≡ ξ(r, t). Then, we expand them around
δ(r), m(r), and ξ(r) where δ(r), m(r), and ξ(r) are the static solutions
of (3.14), (3.19), and (3.22).

Let us write down the energy functional of the models in which we have
δ(r, t), m(r, t), and ξ(r, t)

(6.1) E(t) =

∫

ddx

√

−g(d+1)

(

ut

(

(ξ̇t)
2

e2δtft
+ ft(ξ

′
t)
2

)

+ vt

)

,

where ut and vt have the same form as defined in (3.15) but we replace ξ by
ξt. The variation of (6.1) with respect to ξt gives the Skyrmion equation of
motions

(

ξ′′t − ξ̈t
e2δtf2t

)

+

(

δ′tft + f ′t
ft

+
d− 1

r
+

1

ut

∂ut
∂r

)

ξ′t +

(

δ̇tft + ḟt
e2δtf3t

)

ξ̇t

+

(

1

2ut

∂ut
∂ξt

)

(

(ξ′t)
2 − (ξ̇t)

2

e2δtf2t

)

=
1

2utft

∂vt
∂ξt

.(6.2)

In this case, the components of the Einstein field equations in (3.17)–
(3.19) are modified, that is,

(d− 1)
ft
2

(

f ′t
rft

+
d− 2

r2

)

− (d− 1)(d− 2)

2(rR0)2
+ Λ(6.3)

= −ut
(

(ξ̇t)
2

e2δtft
+ ft(ξ

′
t)
2

)

− vt ,

(d− 1)
ft
2

[

2δ′tft + f ′t
rft

+
d− 2

r2

]

− (d− 1)(d− 2)

2(rR0)2
+ Λ(6.4)

= ut

(

(ξ̇t)
2

e2δtft
+ ft(ξ

′
t)
2

)

− vt ,
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(6.5)
e−2δt

2f3t

(

ftf̈t − 2(ḟt)
2 − ftḟtδ̇t

)

+
ft
2

(

2δ′′t + 2(δ′t)
2 +

f ′′t + 3δ′tf
′
t

ft

)

+
d− 2

r

(

f ′t + δ′tft
)

− (d− 2)(d− 3)

2(rR0)2
(

1− ftR
2
0

)

+ Λ

=
1

d(d− 1)

d
∑

n=1

γnC
d
n n (2n− d− 1)

sin2(n−1) ξt

(rR0)2(n−1)

(

− (ξ̇t)
2

e2δtft
+ ft(ξ

′
t)
2

)

− 1

d(d− 1)

d
∑

n=1

γnC
d
n

(

2n2 − 3nd+ n− d+ d2
) sin2n ξt
(rR0)2n

− γ0V .

Equations (6.3) and (6.4) can further be simplified into

m′
t =

(d− 2)

(d− 1)
rd−1

(

ut

(

(ξ̇t)
2

e2δtft
+ ft(ξ

′
t)
2

)

+ vt

)

,

δ′t =
2utr

(d− 1)

(

(ξ̇t)
2

e2δtf2t
+ (ξ′t)

2

)

.(6.6)

Then, there are small fluctuation of δt(r, t), mt(r, t), and ξt(r, t) around the
static classical solutions such that we have the expansion

mt(r, t) = m(r) + ε ml(r, t) ,

δt(r, t) = δ(r) + ε δl(r, t) ,

ξt(r, t) = ξ(r) + ε ξl(r, t) ,(6.7)

where ε > 0 is a small parameter. First, substituting the first and the second
equations in (6.7) to (6.6) and taking the first order approximation on ε, it
yields

ml =
d− 2

d− 1
2rd−1feδξ′u ξl ,

δ′l =
2r

d− 1

(

(ξ′)2
∂u

∂ξ
ξl + 2uξ′ ξ′l

)

,(6.8)

where u ≡ ut(ξ),
∂u
∂ξ ≡ ∂ut

∂ξ (ξ), and we have used (3.14) in the computation
to get the first equation in (6.8).

Again, substituting the last equation in (6.7) to (6.2) and employing the
computation up to the first order of ε, we get

(6.9)
u

eδf
ξ̈l =

1

rd−1

(

ufrd−1eδξ′l

)′

+K(ξ,m, δ, r)ξl ,
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with

K(ξ,m, δ, r) ≡ 4

d− 1
reδ(ξ′)3

∂u

∂ξ
uf +

1

rd−1

(

rd−1eδfξ′
(

∂u

∂ξ
− 4

d− 1
u2
))′

− eδ

2

(

f
∂2u

∂ξ2
(ξ′)2 +

∂2v

∂ξ2

)

.(6.10)

Taking

(6.11) ξl(r, t) =
(

ufeδrd−1
)−1/2

ψ(r)eiωt ,

we can cast (6.9) into Sturm-Liouville equation

ψ′′ +

(

−1

2

(

ufeδrd−1
)′′

+

(

(ufeδrd−1)′
)2

4ufeδrd−1
(6.12)

+ rd−1 e
δf

u
K(ξ,m, δ, r) + ω2

)

ψ = 0 .

The solution ψ(r) is said to be stable if the eigenvalue ω2 > 0 and ψ(r) > 0
for rh < r < +∞. However, to have unstable solutions, it is sufficient to show
that there exists an eigenvalue with ω2 < 0. In other words, we have stability
properties of the solutions in the context of Sturm-Liouville theory.

It is straightforward to show that there exists a unique local solution
of (6.12) in an arbitrary interval I ⊂ I∞ using the same procedure as in
subsection 5.1. Then, we apply the uniqueness condition to get a global
solution in I∞ by gluing all of these local solutions.

Let us first discuss the behavior of (6.12) in the asymptotic region where
r ∈ IA. First of all, we take the case of Λ < 0. Employing the expansion (4.7)
and (4.8), eq. (6.12) can be simplified to

(6.13) ψ′′ +
Λγ0

d(d− 1)γ1

∂2V

∂ξ2
(ξ∞)rd+1ψ = 0 ,

where we have set n3 = d− 1 implying d ≥ 3. At the lowest order of the
expansion, we could have either ω2 ∈ IR for ξ̃1 ∈ IR, or

(6.14) ω2 = − 16Λ2ξ̃1γ1
d2(d− 1)2

,
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for ξ̃1 ∈ IR. Assuming

(6.15)
∂2V

∂ξ2
(ξ∞) > 0 ,

the solution of (6.13) has the form

(6.16) ψ(r,Λ) = A0

(

d+ 3

k
1/2
Λ r

d+1

2

)1/2

exp

(

−2k
1/2
Λ

d+ 3
r

d+3

2

)

(

1 +O
(

r−
d+3

2

))

,

which is the asymptotic form of the modified Bessel of the second kind,
where

(6.17) kΛ ≡ |Λ|γ0
d(d− 1)γ1

∂2V

∂ξ2
(ξ∞) ,

and A0 > 0. It is easy to see that ψ(r) in (6.16) is a positive definite function
on IA. In the Λ = 0 case, we have a similar equation as (6.13) with ω2 ∈ IR
whose solution is given by

(6.18) ψ(r, 0) = A0

(

d+ 1

k
1/2
0 r

d−1

2

)1/2

exp

(

−2k
1/2
0

d+ 1
r

d+1

2

)

(

1 +O
(

r−
d+1

2

))

,

which has positive value on IA with

(6.19) k0 ≡
γ0

2γ1R2
0

∂2V

∂ξ2
(ξ∞) ,

satisfying (6.15).
Next, we show that the existence of positive definite solutions of (6.12)

on IL. In our proof, we use the Fixed Point Theorem:

Theorem 2. [11] Let us consider E to be a Banach space in which we have
a cone K ⊂ E. Assuming both Ω1 and Ω2 to be open subsets of E with 0 ∈ Ω1

and Ω̄1 ⊂ Ω2, and let Ĥ be a completely continuous operator satisfying

(6.20) Ĥ : K ∩
(

Ω̄2⧹Ω1

)

→ K ,

such that either

i) ∥Ĥψ∥ ≤ ∥ψ∥, ψ ∈ K ∩ Ω1, and ∥Ĥψ∥ ≥ ∥ψ∥, ψ ∈ K ∩ Ω2;

or
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ii) ∥Ĥψ∥ ≥ ∥ψ∥, ψ ∈ K ∩ Ω1, and ∥Ĥψ∥ ≤ ∥ψ∥, ψ ∈ K ∩ Ω2.

Then, we have a fixed point of Ĥ in K ∩
(

Ω̄2⧹Ω1

)

.

In addition, the logic of some following steps follow closely [22]. The
first step is to consider ψ(r) in (6.12) in the interval [r1, r2] with boundary
conditions

a0ψ(r1)− a1ψ
′(r1) = 0 ,

b0ψ(r2)− b1ψ
′(r2) = 0 ,(6.21)

where a0, a1, b0, b1 ≥ 0. Suppose we have a solution of (6.12)

(6.22) ψ(r) =

∫ r2

r1

G(r, s)F (s)ψ(s)ds ≡ Ĥψ(r) , ψ ∈ C[r1, r2] ,

where

F (r) ≡ −1

2

(

ufeδrd−1
)′′

+

(

(ufeδrd−1)′
)2

4ufeδrd−1
(6.23)

+ rd−1 e
δf

u
K(ξ,m, δ, r) + ω2 ,

and G(r, s) is the Green’s function of

(6.24) ψ′′ = 0 ,

with boundary conditions (6.21) whose form is given by

(6.25) G(r, s) =

{

1
ρX(r)Y (s) ; r1 ≤ s ≤ r ≤ r2 ,
1
ρX(s)Y (r) ; r1 ≤ r ≤ s ≤ r2 ,

where ρ > 0,

(6.26) X(r) ≡ b0 (r2 − r) + b1 , Y (r) ≡ a0r + a1 , [r1, r2] .

Suppose we have a cone K in C[r1, r2] given by

(6.27) K ≡
{

ψ ∈ C[r1, r2] : ψ(r) ≥ 0, min
[r5/4,r7/4]

ψ(r) ≥ CG∥ψ∥
}

,
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where r5/4 > r1, r7/4 < r2, ∥ψ∥ ≡ sup
[r1,r2]

|ψ(r)|,

(6.28) CG ≡ min

{

(r2 − r7/4)b0 + b1

r2(b0 + b1)
,
r1a0 + a1
r2(a0 + a1)

}

.

Since G(r, s) ≤ G(s, s) for r1 ≤ r, s ≤ r2, if ψ ∈ K, then we have

(6.29) Ĥψ(r) =

∫ r2

r1

G(r, s)F (s)ψ(s)ds ≤
∫ r2

r1

G(s, s)F (s)ψ(s)ds ,

implying

(6.30) ∥Ĥψ(r)∥ ≤
∫ r2

r1

G(s, s)F (s)ψ(s)ds .

Moreover, since

(6.31) G(r, s) ≥ CG G(s, s) , [r5/4, r7/4] ,

it follows

(6.32) min
[r5/4,r7/4]

Ĥψ(r) ≥ CG∥Ĥψ∥ .

Thus, ĤK ⊂ K which implies that the mapping Ĥ : K → K is completely
continuous.

Suppose there is a constant C1 > 0 and 0 < ψ ≤ C1 such that

(6.33)

∫ r2

r1

G(s, s)F (s)ds ≤ 1 .

If ψ ∈ K and ∥ψ∥ = C1, then from (6.29) and (6.33) it follows

(6.34) Ĥψ(r) ≤
∫ r2

r1

G(s, s)F (s)ψ(s)ds ≤ ∥ψ∥ .

Defining

(6.35) Ω1 ≡ {ψ ∈ E : ∥ψ∥ < C1} ,

(6.34) implies

(6.36) ∥Ĥψ∥ ≤ ∥ψ∥ , ψ ∈ K ∩ ∂Ω1 .
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Next, we also have C2 > 0 and ψ ≥ C2 such that

(6.37) CG

∫ r7/4

r5/4

G(r3/2, s)F (s)ds ≥ 1 ,

where r5/4 < r3/2 < r7/4. Introducing C3 ≡ max
{

C1

r7/4−r5/4
, C2

CG

}

and

(6.38) Ω2 ≡ {ψ ∈ E : ∥ψ∥ < C3} ,

if ψ ∈ K and ∥ψ∥ = C3, then

(6.39) min
[r5/4,r7/4]

ψ(r) ≥ CG∥ψ∥ ≥ ∥ψ∥ ,

such that

Ĥψ(r3/2) =

∫ r2

r1

G(r3/2, s)F (s)ψ(s)ds(6.40)

≥ CG∥ψ∥
∫ r7/4

r5/4

G(r3/2, s)F (s)ds ≥ ∥ψ∥ .

So, we obtain

(6.41) ∥Ĥψ∥ ≥ ∥ψ∥ , ψ ∈ K ∩ ∂Ω2 .

To conclude, using i) of Theorem 2, the operator Ĥ has a fixed point in
K ∩

(

Ω̄2⧹Ω1

)

with C1 ≤ ∥ψ∥ ≤ C3. Moreover, the fact G(r, s) > 0 implies
ψ(r) > 0 in the interval [r1, r2]. It is worth mentioning that by interchanging
Ω1 → Ω2 and Ω2 → Ω1 in the above computation, and using ii) of Theorem 2,
we will obtain the same results.

Since we have proved that ψ(r) > 0 in an arbitrary interval [r1, r2] ⊂ IL
which is also unique and ψ(r) is at least C2-function, we could extend the
proof by gluing all of these solutions to have ψ(r) > 0 in IL. Again, by gluing
ψ(r) > 0 in IL with (6.16), we can finally obtain ψ(r) > 0 in I∞.

So, we have

Theorem 3. There exists dynamically stable and unstable static spheri-
cal symmetric solutions of higher dimensional Einstein-Skyrme system with
general couplings (3.1) and Λ ≤ 0.
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