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Singularities of 1/2 Calabi–Yau 4-folds

and classification scheme for

gauge groups in four-dimensional F-theory

Yusuke Kimura

In a previous study, we constructed a family of elliptic Calabi–Yau
4-folds possessing a geometric structure that allowed them to be
split into a pair of rational elliptic 4-folds. In the present study, we
introduce a method of classifying the singularity types of this class
of elliptic Calabi–Yau 4-folds. In brief, we propose a method to
classify the non-Abelian gauge groups formed in four-dimensional
(4D) N = 1 F-theory for this class of elliptic Calabi–Yau 4-folds.

To demonstrate our method, we explicitly construct several el-
liptic Calabi–Yau 4-folds belonging to this class and study the 4D
F-theory thereupon. These constructions include a 4D model with
two U(1) factors.

1. Introduction

U(1) gauge symmetry has been a subject of intensive study in F-theory.
Compactifications spaces used in the formulation of F-theory [1–3] admit a
genus-one fibration, enabling the axio-dilaton to exhibit an SL(2,Z) mon-
odromy. When a genus-one fibration possesses a global section 1, the set of
global sections that the genus-one fibration admits form a group, known in
mathematics as the “Mordell–Weil group.” The rank of the Mordell–Weil
group is known to yield the number of U(1) gauge group factors formed in
F-theory when compactified on that elliptic fibration [3].

A family of elliptically fibered Calabi–Yau 4-folds, possessing a structure
such that they can be split into a pair of rational elliptic 4-fold building
blocks, was constructed in [42]. The rational elliptic 4-fold building blocks
of such a family of Calabi–Yau 4-folds are referred to as “1/2 Calabi–Yau

1F-theory models of elliptic fibrations possessing a global section have been ana-
lyzed. Recent studies of such models can be found, e.g., in [4–49]. F-theory model
constructions where one or more U(1) factors are formed are discussed, for example,
in [4, 7, 8, 10, 12, 18, 22, 26, 33, 35, 40, 42, 44, 47, 50–60].
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4-folds” [42]. One motivation for introducing 1/2 Calabi–Yau 4-folds in [42]
was that various numbers of U(1) gauge group factors 2 are formed in four-
dimensional (4D) F-theory on the elliptically fibered Calabi–Yau 4-folds
built as double covers of the 1/2 Calabi–Yau 4-folds. The general structures
of the 1/2 Calabi–Yau 4-folds and the Calabi–Yau 4-folds built as their
double covers, as well as the numbers of U(1) factors formed in 4D F-theory
on the Calabi–Yau 4-fold double covers, have been analyzed in [42]. However,
analyses of the non-Abelian gauge groups and matter spectra formed in 4D
F-theory, as well as the classification of 1/2 Calabi–Yau 4-folds, were left for
future studies.

Explicit constructions of 1/2 Calabi–Yau 4-folds with no ADE singu-
larity type were given in [42]. At least six U(1) factors are formed in 4D
N = 1 F-theory on the Calabi–Yau 4-folds built as the double covers of 1/2
Calabi–Yau 4-folds with no ADE singularity, and the resulting theories do
not possess a non-Abelian gauge group factor [42].

There are two motivations for this study:
i) Constructions of F-theory models discussed in [42] provide a series of 4D
theories with various numbers of U(1) gauge group factors. However, as we
mentioned previously an approach to classify the non-Abelian gauge groups
formed in the theories was not discussed in [42]. In this study, we would like
to provide a method to classify them.
ii) We aim to introduce a technique to determine the structure of a 1/2
Calabi–Yau 4-fold, when its singularity type is given. Concretely, four (1,1)
hypersurfaces in P

2
× P

2 control the structure of a 1/2 Calabi–Yau 4-fold.
We provide a method to deduce the equations of the four hypersurfaces from
the singularity type of a 1/2 Calabi–Yau 4-fold 3. This also determines, in
principle, the structure of the Calabi–Yau 4-fold double cover. This approach
can aid in deducing the non-Abelian gauge groups formed in 4D F-theory,
as well as the matter spectra localized at the intersections of the 7-branes,
and Yukawa couplings.

Here, we develop a method of extracting information of the non-Abelian
gauge groups formed in 4D F-theory on the Calabi–Yau 4-fold double covers
of 1/2 Calabi–Yau 4-folds. In this paper, we provide a classification scheme
for the singularity types of 1/2 Calabi–Yau 4-folds. We also provide some ex-
plicit constructions of 1/2 Calabi–Yau 4-folds with ADE singularity types.

2See, e.g., [61, 62] for explicit constructions of four-dimensional N = 1 F-theory
models without a U(1) gauge group.

3This also works in the reversed direction. Namely, our method can also be ap-
plied to deduce the singularity type of a 1/2 Calabi–Yau 4-fold when the equations
of four (1,1) hypersurfaces are given.
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A 1/2 Calabi–Yau 4-fold and the Calabi–Yau 4-fold constructed as its double
cover possess identical singularity types [42]; this yields a method of classi-
fying the singularity types of the Calabi–Yau 4-folds built as double covers
of the 1/2 Calabi–Yau 4-folds. In the language of string theory, this provides
a method of classifying the types of non-Abelian gauge groups formed on
the 7-branes [3, 63] in 4D F-theory on the Calabi–Yau 4-folds constructed
as double covers of the 1/2 Calabi–Yau 4-folds. The number of U(1) factors
formed in 4D F-theory can be deduced from the ranks of the singularity
types, using the method discussed in [42].

To classify the singularity types of the 1/2 Calabi–Yau 4-folds (and those
of their Calabi–Yau 4-fold double covers), we apply the techniques discussed
in the elegant and interesting work of Shigeru Mukai [64–66]. With these
techniques, the classification of the singularity types of the 1/2 Calabi–Yau
4-folds reduces to that of cubic hypersurfaces in P

3. Furthermore, we use
blow-ups to analyze the structures of the singular fibers 4 corresponding to
the singularity types. These can be used to study the matter fields localized
at the intersections of the 7-branes, as well as the Yukawa couplings.

The ranks of the singularity types of the 1/2 Calabi–Yau 4-folds vary
from zero to six. The singularity rank and Mordell–Weil rank of any 1/2
Calabi–Yau 4-fold sum to six. The Mordell–Weil rank of a Calabi–Yau 4-
fold double cover is greater than or equal to the Mordell–Weil rank of the
original 1/2 Calabi–Yau 4-fold. These properties have been proved in [42].
Owing to these properties of the 1/2 Calabi–Yau 4-folds, the number of
U(1) gauge group factors formed in 4D F-theory on the Calabi–Yau 4-fold
double covers can be deduced [42]. While it was demonstrated in [42] that
the singularity types of an original 1/2 Calabi–Yau 4-fold and its Calabi–Yau
4-fold double cover are identical, the ADE classification of the singularity
types was not given in [42]; in this work, we demonstrate that applying the
techniques presented in [64–66] yields a method to classify them, and that
the types of the non-Abelian gauge groups formed in 4D F-theory can be
deduced.

Our classification scheme can be used to study the gauge groups in a
series of 4DN = 1 F-theory models, in which various numbers of U(1) factors
are formed.

4We utilize Kodaira’s notation [67, 68] to denote the types of the singular fibers.
The classification of the types of the singular fibers of elliptically fibered surfaces
can be found in [67, 68], and techniques that determine the fiber types of elliptically
fibered surfaces are discussed in [69, 70].
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To explicitly demonstrate our method, we construct Calabi–Yau 4-fold
double covers of 1/2 Calabi–Yau 4-folds, possessing 3A2 andD4 singularities.

We identify the “puzzling problem” of whether a 1/2 Calabi–Yau 4-fold
with an E6 singularity exists or not. While this does not suggest a mathe-
matical inconsistency, the existence is left undetermined owing to technical
issues. Consequently, the question of whether an elliptic Calabi–Yau 4-fold
with an E6 singularity (fibered over a Fano 3-fold of degree-two) exists is
left open. We discuss this “puzzle” at length in section 2.4.

Local models of F-theory model constructions [71–74] have been em-
phasized in recent studies. However, the global aspects of the compactifica-
tion geometry need to be analyzed before discussing the issues pertaining
to gravity and the early universe. In this work, we study the geometry of
Calabi–Yau 4-folds from the global perspective.

The four-form flux [75–79] contributes several effects that can alter the
gauge groups and matter spectra in 4D F-theory [51]. However, when four-
form flux is turned on in our 4D F-theory constructions, the cohomology
groups of the Calabi–Yau 4-folds built as the double covers of the 1/2 Calabi–
Yau 4-folds need to be analyzed to study the effects of the four-form flux.
In this study, we do not discuss the situation in which the four-form flux is
turned on.

One of the problems raised in section 3 can be possibly related to the
swampland conditions. The problem possibly related to the swampland con-
ditions mentioned in section 3 is concerning the number of gauge group
factors formed in 4D F-theory constructions 5. Reviews of recent studies
on the swampland conditions can be found in [81, 82]. The notion of the
swampland was discussed in [83–85].

This paper is structured as follows. A summary of the results obtained
in the study is provided in section 2.1. Our strategy for classifying the sin-
gularity types of the 1/2 Calabi–Yau 4-folds and their Calabi–Yau 4-fold
double covers are also discussed. Explicit constructions of 1/2 Calabi–Yau
4-folds with rank-six and rank-four singularities are given in sections 2.2
and 2.3, respectively. The existence of the 1/2 Calabi–Yau 4-fold with an
E6 singularity is left undetermined owing to some technical issues; this case
is discussed in section 2.4. 4D F-theory models on the Calabi–Yau 4-folds
constructed as double covers of the 1/2 Calabi–Yau 4-folds with singularities

5The numbers of gauge group factors formed in 4D F-theory on elliptic Calabi–
Yau 4-folds over toric 3-folds were discussed in [80]
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are studied in section 3. In section 4, we state our concluding remarks and
highlight the problems that remain unresolved.

2. Classification scheme

2.1. A general strategy

1/2 Calabi–Yau 4-folds are constructed as blow-ups of the product of the
complex projective planes P2

× P
2 at the six intersection points of four (1,1)

hypersurfaces:H1, H2, H3, H4 [42]. (The intersection points are counted with
multiplicity; the actual number of intersection points can be less than six.)
Taking double covers of the 1/2 Calabi–Yau 4-folds, ramified along a degree-
six polynomial in the variables of H1, H2, H3, H4, yields elliptically fibered
Calabi–Yau 4-folds [42].

The general construction of the 1/2 Calabi–Yau 4-folds, as well as some
of their characteristic properties (such as that the rank of the singularity type
and the Mordell–Weil rank always sum to six), and those of the Calabi–Yau
4-folds constructed as their double covers, were studied in [42]; however, the
classification of ADE singularities of the 1/2 Calabi–Yau 4-folds was not
discussed in [42]. The singularity types of the 1/2 Calabi–Yau 4-folds and
their double covers are necessary for deducing the non-Abelian gauge groups
formed in 4D N = 1 F-theory on the resulting Calabi–Yau 4-folds.

We propose a method to classify the singularity types, employing the
techniques described in [64–66]. Because the singularity types of an original
1/2 Calabi–Yau 4-fold and its Calabi–Yau 4-fold double cover are identical
[42], it is only necessary to classify the singularity types of the 1/2 Calabi–
Yau 4-folds. Several pairs of “projective dual” del Pezzo manifolds were
studied in [66]. We used one such pair, (X3, Y6). Here, X3 denotes a cubic
hypersurface in P

8, and Y6 is a Segre variety P
2
× P

2 embedded inside P8. We
can consider four hypersurfaces, F1, F2, F3, and F4, in P

8 in such a way that
when they are restricted to Y6, they yield (1,1) hypersurfaces in P

2
× P

2.
The blow-up of P2

× P
2 at the intersection points of the four restricted hy-

persurfaces yields a 1/2 Calabi–Yau 4-fold, as previously mentioned. On the
dual X3 side, the projective duals of the four hypersurfaces yield four points
in P

8, spanning a P
3 [66]. Therefore, on the X3 side, the four hypersurfaces

correspond to a cubic hypersurface in P
3.

This means that the configuration of the intersection points of four (1,1)
hypersurfaces in P

2
× P

2, which yields a 1/2 Calabi–Yau 4-fold when the
intersection points are blown up, corresponds to a cubic hypersurface in P

3

via “projective duality.”
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Based on an argument similar to that given in [45], and by utilizing
properties of projective duality and the techniques described in [64–66], we
conclude that the singularity types of the 1/2 Calabi–Yau 4-folds are iden-
tical to those of the cubic hypersurfaces in P

3.
The classification of the singularity types of cubic hypersurfaces in P

3

can be found in [86]. Based on this classification, in principle, we can classify
the singularity types of the 1/2 Calabi–Yau 4-folds.

However, there is a subtlety in this “equivalence” of singularity types.
Given a cubic hypersurface in P

3, we need a matrix representation of the
cubic hypersurface to ensure that there exists a corresponding 1/2 Calabi–
Yau 4-fold with an identical singularity type. Thus, the question of whether
a 1/2 Calabi–Yau 4-fold with an E6 exists or not is left undetermined. We
discuss this problem in section 2.4.

When the matrix representation of a given cubic hypersurface in P
3 can

be determined, the equations of the four (1,1) hypersurfaces, H1, H2, H3,

and H4, in P
2
× P

2 that yield a 1/2 Calabi–Yau 4-fold corresponding to the
cubic hypersurface can be deduced from the matrix representation.

The structures of the singular fibers of the 1/2 Calabi–Yau 4-folds can
be analyzed from the deduced equations of the four (1,1) hypersurfaces.
In the analysis, a blow-up (or even multiple stages of them) need to be
performed. Because the singularity types of an original 1/2 Calabi–Yau 4-
fold and the Calabi–Yau 4-fold constructed as its double cover are identical
[42], the structures of the singular fibers of the Calabi–Yau 4-fold double
cover can also be deduced in this manner. As a result, we obtain the types
of the non-Abelian gauge groups formed in 4D F-theory on the Calabi–Yau
4-fold double covers. The analysis of the singular fibers described here may
be used to study matter spectra at the intersections of the 7-branes.

To demonstrate our method, we explicitly study the 1/2 Calabi–Yau
4-folds with rank-six 6 and rank-four singularities in sections 2.2 and 2.3,
respectively.

According to the classification results in [86], there are three rank-six
singularity types for cubic hypersurfaces in P

3: 3A2, A5A1, and E6. A 1/2
Calabi–Yau 4-fold possessing the first singularity type is constructed in sec-
tion 2.2 7. We identify a “puzzle” concerning whether 1/2 Calabi–Yau 4-folds

6The singularity types of rank six are the highest of the 1/2 Calabi–Yau 4-folds
[42].

71/2 Calabi–Yau 4-fold with an A5A1 singularity type can be constructed in a
similar manner using our method.
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Figure 1: Image of a cubic hypersurface in P
3 with three A2 singularities.

with an E6 singularity type exist or not, and this “puzzle” is discussed in
section 2.4.

We also explicitly construct a 1/2 Calabi–Yau 4-fold with a D4 singu-
larity type in section 2.3.

The Calabi–Yau 4-folds constructed as double covers of these 1/2 Calabi–
Yau 4-folds, as well as the 4D N = 1 F-theory on the Calabi–Yau 4-fold
double covers, are studied in section 3.

2.2. 3A2 singularity

We construct 1/2 Calabi–Yau 4-fold with a 3A2 singularity to demonstrate
our method. After some consideration, we find that a dual cubic hypersurface
with 3A2 singularity in P

3 is given by the following equation:

(2.1) x34 + x1x2x3 = 0,

where we used [x1 : x2 : x3 : x4] to denote the homogeneous coordinates of
P
3. It can be explicitly seen that the cubic hypersurface (2.1) actually pos-

sesses three A2 singularities. The derivation is as follows. We set x3 = 1;
then, the equation (2.1) becomes x34 + x1x2 = 0. This hypersurface has an
A2 singularity at the origin (x1, x2, x4) = (0, 0, 0). In a similar way, the other
two A2 singularities can be found by setting x1 = 1 and x2 = 1. An image
of the cubic hypersurface with a 3A2 singularity is given in Figure 1.
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Then, we proceed to the determinantal representation of the cubic hy-
persurface (2.1); this is given by a 3 × 3 matrix 8 as follows:

(2.2)





x4 x1 0
0 x4 x2
x3 0 x4



 .

The equations of the four (1,1) hypersurfaces yielding the 1/2 Calabi–Yau
4-fold with 3A2 singularity can be deduced from the matrix representation
(2.2). We use [x : y : z] and [s : t : u] to denote the homogeneous coordinates
of the first and second P

2s in P
2
× P

2, respectively. Entries in the matrix
representation correspond to monomials of the (1,1) polynomial in P

2
× P

2.
For example, the (2,2)th entry of the matrix representation corresponds to
yt, and the (1,2)th entry corresponds to xt. The entries where xi appears
correspond to the ith (1,1) hypersurface Hi, where i = 1, 2, 3, 4. Therefore,
we find that the equations of the (1,1) hypersurfaces are given as follows:

H1 = xt(2.3)

H2 = yu

H3 = zs

H4 = xs+ yt+ zu.

A blow-up of P2
× P

2 at the base points of the hypersurfaces (2.3) yields the
1/2 Calabi–Yau 4-fold with a 3A2 singularity.

In section 3, we discuss the 4D F-theory on the Calabi–Yau 4-fold double
covers of the 1/2 Calabi–Yau 4-folds considered in this section.

Furthermore, we attempt to analyze the structure of the singular fibers
by performing blow-ups; when the double cover of the 1/2 Calabi–Yau 4-
fold is considered, this information is relevant to the non-Abelian gauge
group factor formed in 4D F-theory and the matter fields localized at the
intersections of the 7-branes.

The four hypersurfaces (2.3) have three base points: ([1 : 0 : 0], [0 : 0 : 1]),
([0 : 1 : 0], [1 : 0 : 0]), and ([0 : 0 : 1], [0 : 1 : 0]).

The equation for the singular fibers of the resulting 1/2 Calabi–Yau 4-
fold corresponding to the A2 singularity of a dual cubic hypersurface (2.1)

8The matrix representation of a cubic hypersurface in P
3 need not be symmetric,

whereas the matrix representation of a quartic plane curve as the dual of a 1/2
Calabi–Yau 3-fold [45, 47] must be symmetric.
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at the point [0 : 0 : 1 : 0] is given as follows:

zs = 0(2.4)

b xt− a yu = 0

c xt− a (xs+ yt+ zu) = 0.

Here, a, b, c denote the parameters of the discriminant component in the
base of the 1/2 Calabi–Yau 4-fold over which the fibers become singular,
corresponding to an A2 singularity at [0 : 0 : 1 : 0] in the cubic hypersurface.

Because the first equation in (2.4) is reducible into two linear factors
(z and s), the equations in (2.4) describe two P

1s meeting at two points.
One of the two intersection points is one of the three base points of the four
(1,1) hypersurfaces, ([1 : 0 : 0], [0 : 0 : 1]). When this point is blown up, the
two P

1s are separated at the point ([1 : 0 : 0], [0 : 0 : 1]), and P
1 arises at this

point as a result of the blow-up. The resulting structure of the singular fiber
is given by three P

1s, any pair of which meet at one point; that is, a type
I3 fiber. The situation is analogous to the appearance of the type I3 fiber
described in [47].

By a similar argument, it can be found that the other singular fibers
corresponding to the remaining two A2 singularities of the dual cubic hy-
persurface (2.1) are type I3 fibers.

One can also construct a cubic hypersurface with an A5A1 singularity in
P
3. By computing the matrix representation of this cubic hypersurface, the

equations of the four (1,1) hypersurfaces can be deduced, yielding the dual
1/2 Calabi–Yau 4-fold with an A5A1 singularity type.

Therefore, the existence of “extremal” 1/2 Calabi–Yau 4-folds with 3A2

and A5A1 singularity types 9 can be confirmed constructively. However,
the case of the E6 singularity type is more complicated, as we discuss in
section 2.4.

2.3. D4 singularity

A cubic hypersurface with a D4 singularity in P
3 is given by the following

equation:

(2.5) x21x3 + x33 − x22x4 = 0.

9We refer to these 1/2 Calabi–Yau 4-folds as “extremal” 1/2 Calabi–Yau 4-folds,
in the sense that they have the highest singularity rank.
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The D4 singularity is located at [0 : 0 : 0 : 1] 10. By a standard argument it
can be found that this is a unique singularity of the cubic hypersurface (2.5).

Through calculation, we learn that the determinantal representation of
the cubic hypersurface with a D4 singularity (2.5) is given as follows:

(2.6)





0 −x2 x3 − i x1
x2 x3 0

x3 + i x1 0 x4



 .

By using the determinantal representation (2.6) and using a similar method
to that employed in section 2.2, we can derive the equations of the four (1,1)
hypersurfaces yielding the dual 1/2 Calabi–Yau 4-fold. We deduce that the
equations of these four hypersurfaces are given as follows:

H1 = −i xu+ i zs(2.7)

H2 = −xt+ ys

H3 = xu+ yt+ zs

H4 = zu.

The base points consist of three points: ([1 : 0 : 0], [1 : 0 : 0]), ([0 : 1 :
0], [0 : 0 : 1]), and ([0 : 0 : 1], [0 : 1 : 0]). Blow-ups at the base points yield
the 1/2 Calabi–Yau 4-fold with a D4 singularity as the “dual” of the cubic
hypersurface (2.5).

Because the resulting 1/2 Calabi–Yau 4-fold has a singularity rank of
four, its Mordell–Weil rank is two.

2.4. A puzzle

As discussed in [86], the rank-six singularity types of cubic hypersurfaces
in P

3 are: 3A2, A5A1, and E6. We constructed a 1/2 Calabi–Yau 4-fold
corresponding to the first singularity type. The 1/2 Calabi–Yau 4-fold with
an A5A1 singularity type can be constructed using a method similar to that
given in section 2.2.

There is a subtlety concerning the last singularity type, E6. While a
cubic hypersurface with an E6 singularity in P

3 exists, it does not allow
for a matrix representation (Table 9.2 in [86]). Therefore, our method does
not (at least directly) apply to the E6 singularity and does not determine
whether a 1/2 Calabi–Yau 4-fold with an E6 singularity exists or not.

10This can be found by setting x4 = 1 and comparing the equation (2.5) with the
(local) equation of D4 singularity given in, e.g., [87].
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All other singularity types for cubic hypersurfaces in P
3 have matrix rep-

resentations [86]; therefore, our method applies to the remaining singularity
types, including the singularity types of ranks lower than six. The method
shows that the corresponding 1/2 Calabi–Yau 4-folds do indeed exist. The
E6 singularity is an exception. If a 1/2 Calabi–Yau 4-fold with an E6 singu-
larity exists, a construction that does not rely on the matrix representation
is needed.

Is there a physical reason behind the E6 singularity’s “special” status?
The existence of an elliptically fibered Calabi–Yau 4-fold with an E6 sin-
gularity over a degree-two Fano 3-fold as base 3-fold is also undetermined.
It may be interesting to study whether such 1/2 Calabi–Yau 4-folds and
elliptic Calabi–Yau 4-folds over a degree-two Fano 3-fold possessing an E6

singularity exist, and these topics are left for future studies.

3. Applications to 4D F-theory

Taking the double covers of 1/2 Calabi–Yau 4-folds, ramified over a degree-
six polynomial in the variables of four (1,1) hypersurfaces, H1, H2, H3, and
H4, yields elliptically fibered Calabi–Yau 4-folds [42]. The base 3-folds of the
resulting Calabi–Yau 4-folds are isomorphic to degree-two Fano 3-folds. F-
theory compactifications on the Calabi–Yau 4-folds yield 4D N = 1 theories.

Because the singularity types of the Calabi–Yau 4-folds constructed as
double covers are identical to those of the original 1/2 Calabi–Yau 4-folds,
the types of non-Abelian gauge group factors formed in 4D F-theory can be
derived from the singularity types of the 1/2 Calabi–Yau 4-folds. Particu-
larly, F-theory on the Calabi–Yau 4-fold double covers of the 1/2 Calabi–Yau
4-folds constructed in sections 2.2 and 2.3 possess non-Abelian gauge group
factors corresponding to 3A2 and D4 singularity types. Owing to the equal-
ity that holds for 1/2 Calabi–Yau 4-folds (which states that the singularity
rank and Mordell–Weil rank always sum to six [42]), the Mordell–Weil rank
of the 1/2 Calabi–Yau 4-folds constructed in section 2.2 is zero. Utilizing the
property [42] that the Calabi–Yau 4-fold double cover of a 1/2 Calabi–Yau
4-fold has Mordell–Weil rank greater than or equal to that of the original
1/2 Calabi–Yau 4-fold does not provide any new information concerning the
number of U(1) factors formed in 4D F-theory on the Calabi–Yau 4-fold as
the double cover of the 1/2 Calabi–Yau 4-fold constructed in section 2.2.

1/2 Calabi–Yau 4-fold with a D4 singularity (as constructed in sec-
tion 2.3) has Mordell–Weil rank two; thus, the double cover of this 1/2
Calabi–Yau 4-fold yields an elliptic Calabi–Yau 4-fold with Mordell–Weil
rank greater than or equal to two. Therefore, at least two U(1) factors are
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formed in the 4D F-theory on the Calabi–Yau 4-fold as the double cover of
the 1/2 Calabi–Yau 4-fold constructed in section 2.3.

Our method also applies to 1/2 Calabi–Yau 4-folds with singularity ranks
lower than six, without a modification of the argument; thus, a 4D F-theory
with one or more U(1) factors is obtained when our method is applied to
construct elliptic Calabi–Yau 4-folds as double covers of 1/2 Calabi–Yau
4-folds with singularity ranks (strictly) lower than six.

The double covers of 1/2 Calabi–Yau 4-folds constructed as “duals” of
the cubic hypersurfaces with singularity types D5, A4A1, and A4 in P

3 yield
Calabi–Yau 4-folds with singularity types D5, A4A1, and A4. F-theory com-
pactified on such Calabi–Yau 4-folds can yield theories whose gauge groups
are relevant to a grand unified theory (GUT). However, it is necessary to de-
termine whether the singular fibers corresponding to these singularity types
are split/semi-split/non-split, to confirm whether an SU(5) or SO(10) gauge
group is formed in 4D F-theory [63]. It may be interesting to investigate fur-
ther details of these models in future studies.

The family of Calabi–Yau 4-folds constructed in [42] as the double covers
of 1/2 Calabi–Yau 4-folds generate non-Abelian gauge group factors of ranks
up to six. Are there Calabi–Yau 4-folds whose bases are isomorphic to Fano
3-folds of degree two, on which F-theory compactifications generate non-
Abelian gauge group factors of ranks higher than six? The condition that
the base 3-fold of an elliptic Calabi–Yau 4-fold is isomorphic to a Fano 3-fold
of degree two does not seem to preclude this, based on reasoning that the
condition imposed on the geometry of base 3-fold is not much strong; thus,
it seems natural to expect that there are Calabi–Yau 4-folds on which F-
theory compactification provides 4D theories with non-Abelian gauge groups
of ranks greater than six. Do the geometric properties of the Calabi–Yau 4-
folds that permit their being split into building blocks of rational elliptic 4-
folds also impose constraints on the ranks of the (non-Abelian) gauge groups
formed in F-theory? Studying this can assist in analyzing the structure of
4D N = 1 F-theory moduli in relation to the swampland conditions.

The method that we employed in this work provided a means of deduc-
ing the configurations of the base points that can be blown up to yield 1/2
Calabi–Yau 4-folds, as well as the equations of the four (1,1) hypersurfaces
that specify the base points. Our method can be used to classify the singular-
ity types of the 1/2 Calabi–Yau 4-folds. Furthermore, the blow-up technique
that we utilized in section 2.2 can be used to analyze the non-Abelian gauge
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groups formed in 4D F-theory on the Calabi–Yau 4-folds constructed as dou-
ble covers. This technique might also be useful in studying matter spectra at
the intersections of the 7-branes, as well as Yukawa couplings. However, the
presence of four-form flux influences the gauge groups and matter spectra in
4D F-theory [51]. A future study might focus upon the matter spectra gen-
erated in 4D F-theory when applied to the Calabi–Yau 4-folds constructed
as the double covers of 1/2 Calabi–Yau 4-folds.

4. Concluding remarks and open problems

In this work, we introduced a method of classifying the singularity types of
1/2 Calabi–Yau 4-folds. This method also classifies the singularity types of
the Calabi–Yau 4-folds constructed as the double covers of the 1/2 Calabi–
Yau 4-folds. The types of non-Abelian gauge groups formed on the 7-branes
in 4D F-theory on such Calabi–Yau 4-folds can be deduced from the singu-
larity types.

We explicitly analyzed 3A2 and D4 singularity types as a demonstration
of our method. The case of the E6 singularity is complicated, and the ques-
tion of whether 1/2 Calabi–Yau 4-folds with an E6 singularity exist or not
remains undetermined.

Our method applies equally well to 1/2 Calabi–Yau 4-folds with sin-
gularity ranks other than six and four. Analyzing 1/2 Calabi–Yau 4-folds
with singularity types besides 3A2 and D4, as well as those with Calabi–
Yau 4-folds as their double covers, represents a future research direction. 4D
F-theory on the double covers of 1/2 Calabi–Yau 4-folds with singularity
types D5, A4A1, and A4 may be relevant to GUT models.

If the matrix representations of dual cubic hypersurfaces in P
3 of 1/2

Calabi–Yau 4-folds are determined, then the equations of the four (1,1)
hypersurfaces yielding 1/2 Calabi–Yau 4-folds can be deduced from these
matrix representations. The blow-up operation reveals the structures of the
singular fibers. Taking the double covers of the studied 1/2 Calabi–Yau 4-
folds yields Calabi–Yau 4-folds, on which F-theory compactifications provide
4D N = 1 theories.

When one can construct a 1/2 Calabi–Yau 4-fold whose singularity rank
is less than or equal to five, 4D F-theory construction on the Calabi–Yau
double cover has at least one U(1) factor [42].

The blow-ups discussed in section 2.2 describe sections that a 1/2
Calabi–Yau 4-fold possesses. The sections arising from blow-ups at the base
points of four (1,1) hypersurfaces generate the Mordell–Weil group [40, 42].
Because a base change of the sections of the 1/2 Calabi–Yau 4-folds yields
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sections of the Calabi–Yau 4-fold double cover [42], the method of blow-up
discussed in section 2.2 can be used to study the U(1) gauge group formed
in 4D F-theory on a Calabi–Yau 4-fold constructed as the double cover.

Studies of matter spectra and Yukawa couplings in 4D F-theory on the
Calabi–Yau 4-fold double covers of 1/2 Calabi–Yau 4-folds are left for future
studies. The Weierstrass equations of 1/2 Calabi–Yau 4-folds (and those of
the Calabi–Yau 4-folds constructed as their double covers) assist in analyzing
these; however, deducing the Weierstrass equation from the given equations
of the four (1,1) hypersurfaces that yield a 1/2 Calabi–Yau 4-fold is in most
cases considerably difficult. In analyzing gauge groups and matter fields
arising in 4D F-theory, it is beneficial to find an algorithm to deduce the
Weierstrass equation from the given equations of the four (1,1) hypersurfaces
in P

2
× P

2.
The splitting of a Calabi–Yau 4-fold into a pair of 1/2 Calabi–Yau 4-folds

can be viewed as a 4D analogue of the stable degeneration limit [88, 89]. In
the moduli of elliptically fibered Calabi–Yau 4-folds, do those that permit
splitting into a pair of rational elliptic 4-folds correspond to some special
limits of physical meaning? When the base degree-two Fano 3-fold of the
Calabi–Yau 4-fold (constructed as the double cover of a 1/2 Calabi–Yau 4-
fold) admits a conic fibration, it is natural to expect that the Calabi–Yau
4-fold also has a K3 fibration that is compatible with the elliptic fibration,
as hypothesized in [42]. If this is true, then because 4D F-theory on a K3-
fibered elliptic Calabi–Yau 4-fold has a heterotic dual [1–3, 88, 90], the
splitting limit can also be analyzed from the dual heterotic perspective.
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[18] M. Cvetič, D. Klevers, H. Piragua and W. Taylor, General U(1)×U(1)
F-theory compactifications and beyond: geometry of unHiggsings and
novel matter structure, JHEP 1511 (2015) 204.



✐

✐

“8-Kimura” — 2024/1/2 — 18:35 — page 2712 — #16
✐

✐

✐

✐

✐

✐

2712 Yusuke Kimura
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