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Existence and uniqueness of rotating fluid bodies in equilibrium
is still poorly understood in General Relativity (GR). Apart from
the limiting case of infinitely thin disks, the only known global re-
sults in the stationary rotating case (Heilig [14] and Makino [21])
show existence in GR nearby a Newtonian configuration (under
suitable additional restrictions). In this work we prove existence
and uniqueness of rigidly (slowly) rotating fluid bodies in equi-
librium to second order in perturbation theory in GR. The most
widely used perturbation framework to describe slowly rigidly ro-
tating stars in the strong field regime is the Hartle-Thorne model.
The model involves a number of hypotheses, some explicit, like
equatorial symmetry or that the perturbation parameter is pro-
portional to the rotation, but some implicit, particularly on the
structure and regularity of the perturbation tensors and the con-
ditions of their matching at the surface. In this work, with basis
on the gauge results obtained in [25], the Hartle-Thorne model is
fully derived from first principles and only assuming that the per-
turbations describe a rigidly rotating finite perfect fluid ball (with
no layer at the surface) with the same barotropic equation of state
as the static ball. Rigidly rotating fluid balls are analyzed consis-
tently in second order perturbation theory by imposing only basic
differentiability requirements and boundedness. Our results prove
in particular that, at this level of approximation, the spacetime
must be indeed equatorially symmetric and is fully determined by
two parameters, namely the central pressure and the uniform an-
gular velocity of the fluid.
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1. Introduction

Equilibrium configurations of self-gravitating rotating fluid bodies is an im-
portant and difficult subject in Einstein’s theory of general relativity. From
a physical perspective, they model astrophysical objects of finite size with
strong gravitational fields, such as compact stars. One aspect of the problem
is to construct and study physically realistic examples. Here the main tools
are numerical methods and perturbation approaches. Another important
aspect is to understand structural issues such as existence and uniqueness
properties of the model. Several approaches have considered the exterior
and interior problems separately. Existence results for the Dirichlet problem
for both the interior and the exterior problems on fixed boundaries have
been estalished in [36, 37], while the geometric uniqueness of the exterior
problem given an interior metric has been proved in [26, 41] (see [42] for
the Einstein-Maxwell case). In the perturbative setting (to second order)
the constraints on the Cauchy data coming from the interior problem that
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need to be imposed to guarantee existence and uniqueness of the exterior
are known [20].

Concernig the global problem, static (non rotating) and spherically sym-
metric perfect fluid bodies in General Relativity (GR) are known to exist
and be unique given an equation of state satisfying some mild conditions
and the value of the central pressure [35] (see also [30]). The solution is
either of infinite extent (and then the energy density vanishes at infinity),
or of finite extent so that it can be matched to Schwarzschild. Much less is
known in the rotating case, for which we do not even have a single explicit
solution describing a rotating finite object with its corresponding asymptot-
ically flat exterior, except in the limiting case of infinitely thin disks [18, 28].
In the rotating global problem we only have results on existence of solutions
sufficiently close to Newtonian configurations [14, 21]. In fact, even in the
simpler Newtonian context the problem is highly non-trivial and a subject
of active current research [15, 16, 39, 40]. Existence results for rotating con-
figurations of other matter models have been established for Vlasov matter
[3] and elastic bodies [1].

As a step forward towards establishing an existence and uniqueness proof
of rotating configurations in GR far away from Newtonian regimes we ana-
lyze the problem for “slowly” rotating perfect fluid bodies in the context of
second order perturbation theory in GR. In informal terms our main result
is (see Theorem 7.3 for a precise version)

Theorem 1.1. Given a static and spherically symmetric perfect fluid body
of finite extent in General Relativity with central pressuce Pc, there exists
a solution of the second order perturbed field equations in General Relatity
satisfying:

(a) The perturbation is stationary and axially symmetric.

(b) The interior is a rigidly rotating perfect fluid with central pressure Pc

and with the same barotropic equation of state as the spherical body.

(c) The exterior is vacuum (without cosmological constant) and bounded
at infinity.

(d) The matching conditions (with absence of surface layers) are fulfilled
at the boundary of the body.

Moreover, the solution is uniquely determined by the angular velocity of the
fluid, the configuration is equatorially symmetric and the boundary of the
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body is stationary and axially symmetric. In addition, if the first order per-
turbation is non zero, then the perturbation parameter can be taken to be
proportional to the angular velocity.

This result is interesting in two respects. Firstly, we hope it can pave the
way for applying an implicit function method to show existence of rotating
configurations near any static spherical model in the fully non-linear theory
and in the strong field regime. Secondly, as already mentioned, perturbation
methods are widely used to study slowly rotating fluids. The literature in
the subject is vast and, to a large extent, is based on the perturbation
framework put forward by Hartle [11] and Hartle and Thorne [13] in the 60’s.
Under suitable extra assumptions (some explicit and some implicit) these
works provided plausibility arguments towards the validity of the theorem
above and, in fact, this validity has been taken for granted in the literature
since then (not only in the Hartle-Thorne approach, but also in related or
other perturbation methods, e.g. [6, 8]). Given the importance of the Hartle-
Thorne approach we prove our theorem in their setup and therefore provide
a rigorous proof for its validity, once the relevant correction found in [33] is
incorporated. Thus, our theorem provides a rigorous and firm basis for all the
results based on perturbations à la Hartle-Thorne where either the correction
in [33] is irrelevant, or has already been taken into account. This applies in
particular to the well known scalability property of the perturbative models
widely used in astrophysics (see e.g. [5]).

We have just mentioned explicit and implicit extra assumptions, as well
as plausibility arguments, in the Hartle-Thorne approach. Let us be more
specific on this. By extra explicit assumptions we mean equatorial sym-
metry and that the perturbation parameter is proportional to the angular
velocity. To discuss the extra implicit assumptions, let us review some ba-
sic facts about perturbation theory in GR. Perturbations to second order
around a background spacetime (M, g) are described by two (symmetric
and 2-covariant) tensors on M , K1 and K2, for the first and second order
respectively. The perturbed metric corresponds to the one-parameter family
gε given by

gε = g + εK1 +
1

2
ε2K2 +O(ε3),

where ε is a small parameter, called “perturbation parameter”. Given a
static and spherically symmetric background configuration

g = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdϕ2)
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in static and spherical coordinates, the first part of the classical studies
consisted in restricting a priori the form of the perturbation tensors. Besides
on the condition of stationarity and axial symmetry, this step was based
primarily on physical arguments relying on how different metric components
should be excited at different orders in perturbation theory. This, combined
with a convenient gauge choice (based on a suitable form of stationary and
axisymmetric metrics [12]), was used to write perturbation tensors (see e.g.
[11], [6]) as1

KH
1 = 2ω(r, θ)r2 sin2 θdtdϕ,

KH
2 =

(
−4eν(r)h(r, θ) + 2r2 sin2 θω2(r, θ)

)
dt2 + 4eλ(r)m(r, θ)dr2

+ 4k(r, θ)r2
(
dθ2 + sin2 θdϕ2

)

in terms of four functions {ω, h,m, k}. Moreover, these four “perturbation
functions” were assumed to cover both the interior and the exterior of the
fluid ball and to be continuous (and ω also with continuous first derivatives)
across the boundary of the fluid, located at r = a, a ∈ R. This implicit as-
sumption was combined with some plausibility arguments based on the field
equations for a rigidly rotating perfect fluid and vacuum in order to achieve
an important simplification of the angular structure of the functions, namely,
that ω = ω(r) and that the expansion of the other functions in terms of
Legendre polynomials contains only the ℓ = 0, 1, 2 components. The ℓ = 1
components were made to vanish by assuming equatorial symmetry.

Given this setting, the (perturbed) field equations for a rigidly rotating
perfect fluid with the barotropic equation of state of the background in the
interior and vacuum in the exterior were studied assuming (again implicitly)
that (i) the functions in KH

1 and KH
2 are bounded at the origin r = 0, (ii)

satisfy the aforementioned continuity conditions at r = a, and (iii) are zero at
infinity. Under these assumptions, plus a fixed value of the central pressure,
it is argued that the field equations yield unique solutions depending on
a single scaling parameter that can thus be absorbed in the perturbation
parameter ε.

While point (iii) is justified quite directly by demanding an asymptot-
ically flat metric gε, the rest of implicit assumptions were not rigorously
established as necessary consequences of the problem under consideration.
In addition, the physical and plausibility arguments must be replaced by rig-
orous arguments. These were the tasks we set up ourselves to do. Actually,
our results hold under weaker requirements, since the only global assumption

1The function m here corresponds to eλm/r in [11, 13].
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we shall need is that the perturbation tensors stay bounded. Asymptotic flat-
ness turns out to be a consequence of boundedness and the field equations.

In a first approach to this problem [33] two of us dropped assumption
(ii) regarding the “matching” of the functions at r = a, by resorting to the
general perturbed matching theory to second order developed in [22]. It was
found that the point (ii) is inconsistent with the rest of the setting (this is
the correction alluded to above). More precisely, there is a gauge in which
ω is indeed C1 and h, k are C0 at the surface, but the function m presents
a jump proportional to the value of the energy density at the surface. This
fact has consequences in the computation of the mass in terms of the radius
(see [31, 32]).2

Point (i) above or, more specifically, the issue of existence of a suitable
gauge that transforms a general stationary, axially symmetric and orthogo-
nally transtive (see below for definitions) first and second order perturbation
tensor into a suitable canonical form, while keeping under control their dif-
ferentiability and boundedness properties, turned out to be a much harder
task than originally expected. This problem has been solved in [25], where
we prove that the canonical form can be achieved with the loss of only one
derivative and keeping all the relevant quantities bounded near the origin.
This is the content of Theorem 6.3 in [25] and its Corollary 6.4, which here
we collect together as Theorem 2.2. This result is of a purely geometric na-
ture (i.e. independent of any field equations) and yields a “canonical form”
that is still more general than the form of KH

1 and KH
2 above.

This “canonical form” carries an associated gauge freedom, which is
identified in Proposition 6.9 in [25] and recovered here as Proposition 2.5

The results in [25] are the starting point of the present paper, where
we derive rigorously the Hartle-Thorne model without not only any ad-hoc
or implicit assumption, but also without assuming equatorial symmetry nor
any a priori relationship whatsoever between the perturbation parameter
and the angular velocity.

The proof starts with three basic steps, to be carried out both at first and
second order: (1) obtain the field equations in terms of a set of convenient
functions that encode all the necessary information to solve the interior
and exterior problems, (2) solve the perturbed matching conditions for the
perturbation tensors to first and second order in terms of those functions
together with the functions that describe the deformation of the surface of
the star, and (3) join the interior and exterior problems at the common

2It is worth mentioning that this correction is present, although it was somehow
forgotten, in the original Newtonian approach by Chandrasekhar [9], see [34].
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boundary Σ. Then, using elliptic methods that exploit the regularity and
boundedness properties of the “canonical form”, the analysis of the interior
and exterior problems at each order follows by (a) proving that a number of
relevant homogeneous problems only accept the trivial solution, (b) using the
remaining gauge freedom left (at each stage) to get rid of spurious solutions,
and finally, (c) proving existence and uniqueness of the remaining problems.
We stress that the perturbed matching problem in step (b) is solved without
imposing any a priori condition. In particular, we allow the deformation of
the surface to be non-axially symmetric and time-dependent. It is the global
problem itself that, a posteriori, forces the deformation of the body to be
stationary and axially symmetric.

Although this procedure needs to be applied firstly to the first order
problem and then to the second order, we follow a strategy that allows to
treat both cases at once. This strategy is based on a bootstrap-type ar-
gument based on the fact that a second order perturbation problem with
identically vanishing first order perturbation tensor is formally equivalent
to a first order problem. We thus set up without a priori justification a very
specific form for the first order perturbation tensor (which in fact corre-
sponds to KH

1 with ω(r)) and solve the second order problem under this
assumption. We call this the base global perturbation scheme. The bootstrap
argument closes by showing that this problem, when restricted to an identi-
cally vanishing KH

1 implies that the second order perturbation tensor must
necessarily take the form assumed in the base perturbation scheme. In other
words, the first order global problem is a particular case of the bootstrap
argument, applied with a vanishing first order tensor, while the second order
global problem becomes then the bootstrap argument itself.

1.1. Plan of the paper

The paper is structured as follows. In Section 2 we set up the stage by
recalling the definition of static and spherically symmetric spacetime and
establishing our basic set of global and differentiability assumptions. Next,
we state the two main results of our previous paper [25] concerning the
structure of stationary and axially symmetric perturbations. Theorem 2.2,
establishes the regularity and differentiability properties of the functions
when the perturbation tensors are cast in “canonical form”, while Proposi-
tion 2.5 provides the full class of gauge transformations that preserve the
form of the perturbation tensors in the later base perturbation scheme.
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In Section 3 we establish the background spacetime; a static and spher-
ically symmetric spacetime containing two regions matched across a hy-
persurface that preserves the symmetries. One of the regions solves the
field equations for a perfect fluid with a barotropic equation of state
and non-negative energy-density and pressure, and the other one is just
Schwarzschild. Such a background is called perfect fluid ball configuration
(Definition 3.1).

Section 4 is devoted to writing down the second order perturbed field
equations, derived from the Einstein field equations, first for a general fluid
and then particularizing to the rigidly rotating case. We also recall a well-
known result on the relationship between rigid rotation and orthogonal
transtivity of the group action, which is needed to make contact with the
geometric results in [25]. Finally we find the consequences of the imposition
of a barotropic equation of state (the same as for the background) at the
level of the perturbed field equations.

In Section 5 we set up and ellaborate the global base perturbation scheme,
which lies at the basis of the boostrap-type argument described above. The
section starts with a detailed description of the a priori assumptions that
define the base scheme. All these assumptions are justified later as part of
the bootstrap argument. We split the assumptions into five blocks, B1 to
B5, because several intermediate results only require a subset thereof. The
next step, developed in Subsection 5.1, is to write down the explicit form
of the field equations, both in the interior and in the exterior domains, for
the perturbation tensors of the base scheme. Part of the computation, which
may be of independent interest, is postponed to Appendix A where a fully
covariant expression for the first order perturbations of the Ricci tensor is
obtained (actually for more general background spacetimes). A key step in
this subsection is the introduction of functions ĥ, q̂ and v̂ which are nearly
gauge invariant (Lemma 5.2) and in terms of which the field equations sim-
plify. In particular, this allows us to prove that part of the gauge freedom can
be used to eliminate the ℓ = 1 Legendre sector of the functions (Proposition
5.9). At this point, we will have isolated a set of functions and the corre-
sponding equations that fully characterise the base scheme in the interior
and the exterior regions: {W(r, θ), q̂0(r), v̂0(r), σ(r), v̂2(r), v̂⊥(r, θ), f(r, θ)},
where q̂0(r) and σ(r) are free. The equation of state of the background is im-
posed in Subsection 5.1.1 to provide an algebraic expression for q̂0 in terms
of the rest. So far, no connection between the interior and exterior problems
has been made. Subsection 5.2 is devoted to do this. The geometric match-
ing problem, which is technically rather involved, is left to Appendix B.
The results of this Appendix are independent of any field equations and
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hence may find applications in other situations. In particular no symmetry
assumptions are made on how the matching surface gets perturbed, so they
generalise the matching conditions obtained in [33], where axial symmetry
was imposed. The geometric matching results of the appendix are specialized
to our specific fluid problem in Proposition 5.12.

In Section 6 we tackle the global problem of existence of uniqueness of
the base scheme. The section starts with a core result (Proposition 6.1) that
provides existence of a decomposition in terms of Legendre polynomials
of functions satisfying a sufficiently general elliptic global problem. This,
together with the existence and uniqueness results shown in Appendix D, are
the basic ingredients for this section. Subsection 6.1 is devoted to showing
existence and uniqueness of the angular component W. In Subsection 6.2
we prove that v̂⊥(r, θ) must vanish everywhere and that v̂2(r) is unique
and vanishes if the first order perturbation of the base scheme is zero. The
existence of a barotropic equation of state together with the use of (most
of) the remaining gauge freedom is finally used in Subsection 6.3 to settle
the ℓ = 0 sector and find the existence and uniqueness result of the base
global scheme (Proposition 6.10). This result is the basis of the bootstrap
argument.

In Section 7 we use the bootstrap argument in terms of the base global
scheme to obtain the main result of the paper. After discussing the gauge

behaviour and physical meaning of the integration parameter (P
(2)
c ) intro-

duced in the previous sections, a first use of the bootstrap argument provides
Proposition 7.2, which states the result for the first order problem for the
first order perturbation in “canonical form”. A second use of the bootstrap
argument for the second order problem provides the final and main result of
the paper, Theorem 7.3. In Remark 7.4 we provide the explicit procedure for
the calculation of the global unique solution in a fully fixed gauge. We stress
that when the energy density of the star does not vanish at the boundary,
these expressions correct [33] the standard formulae used in the literature.
In addition, our gauge fixing respects the condition that the perturbation
tensors stay bounded at infinity, something which has been often overlooked
in applications of the Hartle-Thorne model. Finally we exploit the freedom
of re-defining the perturbation parameter in order to write down the one
parameter family of metrics in the familiar form used in the literature, and
discuss the physical interpretation of the only free parameter in the model.
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1.2. Notation

Most of the notation used in this paper will be specified along the way. Here
we only fix the basic objects.

A Cn+1 spacetime (M, g) is a four-dimensional (we never consider other
dimensions in this paper) orientable Cn+2 manifoldM endowed with a time-
oriented Lorentzian metric g of class Cn+1 and signature +2. Our sign con-
ventions for the Riemann and Ricci tensor follow e.g [43]. Scalar products
of two vector fields X, Y with the metric g will be denoted by ⟨X,Y ⟩.
The covector metrically related to a vector X is denoted with boldface,
X := g(X, ·). Throughout the paper, for functions of one argument, a prime
means derivative with respect to the argument. 0m denotes the point at the
origin in Rm.

2. Stationary and axisymmetric perturbation scheme

In this Section we summarize the results in Paper 1 needed below. Specifi-
cally we quote a theorem on the existence of a canonical form for the per-
turbation metric tensors to first and second order and the regularity of the
corresponding coefficient functions, as well as the most general gauge trans-
formation that respects this form (for a specific form of the first order tensor,
since this is all we shall need).

The background is spherically symmetric and satisfying appropriate
global conditions. The definitions are as in [25].

Definition 2.1. A spacetime (M, g) is static and spherically symmetric if it
admits an SO(3) group of isometries acting transitively on spacelike surfaces
(which may degenerate to points), and a Killing vector ξ which is timelike
everywhere, commutes with the generators of SO(3) and is orthogonal to
the SO(3) orbits.

Our global and differentiability requirements on the spacetime are as
follows:

Assumption H1: M ≃ U3 × I where I ⊂ R is an open interval and U3 is
a radially symmetric domain of R3 with the orbits of the Killing ξ along
the I factor and SO(3) acting in the standard way on U3. Moreover, in the
cartesian coordinates {x, y, z, t} of U3 × I, the metric g is

g = −eνdt2 + υ(xidx
i)2 + χδijdx

idxj
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with ν, υ, χ being Cn+1 radially symmetric functions of x, y, z.

We note that the Killing vector ξ = ∂t is hypersurface orthogonal, hence
the name “static and spherically symmetric”. The centre of symmetry C0 ⊂
M is by definition the set of points invariant under SO(3). By the global
diffeomorphism ≃ in assumption H1 we have C0 ≃ {03 ∩ U

3} × I, so C0 is
non-empty if and only if U3 is a ball.

All geometric objects in M will be identified with their image by ≃
and viceversa. This applies for instance to C0, or to the function |x| :=√
x2 + y2 + z2 on U3, which also defines a function on M . The orbits of

the SO(3) action are the spheres Sr := {|x| = r}, which we view again as
subsets of U3 × I or of M depending on the context.

Define two functions λ,R :M → R by

eλ := χ+ υ|x|2, R2 := χ|x|2, R ≥ 0.

Both are well defined because χ and χ+ υ|x|2 are positive everywhere (oth-
erwise g is not a Lorentzian metric). It is clear that λ ∈ Cn+1(M) and
R ∈ Cn+1(M \ C0) ∩ C

0(M), and that both are radially symmetric when
expressed in {x, y, z, t} coordinates.

We shall mostly work in spherical coordinates {r, θ, ϕ, t} defined from
{x, y, z, t} in the standard way. This coordinate system coversM \ A, where
A = {x = 0, y = 0} is the axis of the Killing vector η = ∂ϕ. On this domain
the metric g takes the form

g = −eν(r)dt2 + eλ(r)dr2 +R2(r)
(
dθ2 + sin2 θdϕ2

)
, ξ = ∂t.(2.1)

We make the usual abuse of notation of writing functions in different co-
ordinate systems with the same symbol (the meaning should be clear from
the context). Nevertheless we write explicitly the arguments when we want
to make clear which representation is being used (we have already followed
this convention in (2.1) when writing ν(r) etc.)

We can now quote the main theorem in [25]. To fix the basic notation,
we recall that perturbation tensors are defined through a family of Cn+1

spacetimes (Mε, ĝε), that includes the background (M, g) for ε = 0, diffeo-
morphically identified through some gauge ψε (C

n+2 for each ε). To first and
to second order, the respective perturbation tensors K1 and K2 are defined
as

(2.2) K1 =
dgε
dε

∣∣∣∣
ε=0

, K2 =
d2gε
dε2

∣∣∣∣
ε=0

,
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where gε := ψ∗
ε(ĝε) on (M, g). For the precise notion of “perturbation

scheme”, “inheritance of an orthogonally transitive isometry group action”,
as well as “gauge transformations” and our notation for gauge vectors we
refer to [25]. For completeness, though, we recall here that a perturbation
scheme is said to be of class Cn+1 when the family ĝε is Cn+1 and the
perturbation tensors K1, K2 are, respectively, Cn and Cn−1. We also recall
that a two-dimensional group of isometries, generated by say {ξ, η}, acts
orthogonally transitively when the 2-planes orthogonal to the group orbits
generate surfaces. In four dimensions, this happens if and only if the two
scalars ⋆(ξ ∧ η ∧ dξ) and ⋆(ξ ∧ η ∧ dη), where we use ⋆ for the Hodge dual
operation, vanish identically.

Theorem 2.2 (Canonical form [25]). Let (M, g) be a static and spheri-
cally symmetric background satisfying assumption H1, with g of class Cn+1

with n ≥ 2, given in spherical coordinates by (2.1). Let us be given a Cn+1

maximal perturbation scheme (Mε, ĝε, {ψε}) inheriting the orthogonal tran-
sitive stationary and axisymmetric action generated by {ξ = ∂t, η = ∂ϕ}.
Then, there exists gauge vectors V1 and V2, that commute with η, are tan-
gent to Sr as well as orthogonal to η, and extend continuously to zero
at C0, such that the gauge transformed tensors KΨ

1 and KΨ
2 are of class

Cn−1(M \ C0) and Cn−2(M \ C0) respectively, and such that the functions
defined on M \ C0 by

h(1) := −
1

4
e−νKΨ

1 (∂t, ∂t)(2.3)

k(1) :=
1

4η2
KΨ

1 (η, η)(2.4)

−xχω = KΨ
1 (∂t, ∂y), yχω = KΨ

1 (∂t, ∂x),(2.5)

m(1) :=
1

4

{
KΨ

1
α
α + e−νKΨ

1 (∂t, ∂t)− 8k(1)
}

(2.6)

=
1

4

{
KΨ

1
α
α − 4h(1) − 8k(1)

}

h := −
1

4
e−ν

(
KΨ

2 (∂t, ∂t)− 2η2ω2
)

(2.7)

k :=
1

4η2
KΨ

2 (η, η),(2.8)

−xχW = KΨ
2 (∂t, ∂y), yχW = KΨ

2 (∂t, ∂x),(2.9)

m :=
1

4

{
KΨ

2
α
α + e−νKΨ

2 (∂t, ∂t)− 8k
}

(2.10)

have the following properties:
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(a.1) h(1) extends to a Cn(M) function.

(a.2) ω extends to a Cn−1(M) function.

(a.3) The vector field ωη is Cn(M \ C0).

(a.4) m(1) and k(1) are Cn(M \ C0) and bounded near C0.

(b.1) h is Cn−1(M \ C0) and bounded near C0.

(b.2) W is Cn−2(M \ C0) and bounded near C0.

(b.3) The vector field Wη is Cn−1(M \ C0).

(b.4) m and k are Cn−1(M \ C0) and bounded near C0.

Moreover, there exist two functions f (1) and f defined on M \ C0, invariant
under ξ and η and satisfying

(a.5) f (1) is Cn−1(M \ C0), bounded near C0, C
n(Sr) on all spheres Sr,

∂θf
(1) is Cn−1 outside the axis and extends continuously to A \ C0,

where it vanishes, and both ∂rf
(1) and ∂tf

(1) are Cn−1(Sr) on all
spheres Sr,

(b.5) f is Cn−2(M \ C0), bounded near the origin, Cn−1(Sr) on all spheres
Sr, ∂θf is Cn−2 outside the axis and extends continuously to A \ C0,
where it vanishes, and both ∂rf and ∂tf are Cn−2(Sr) on all spheres
Sr,

so that KΨ
1 and KΨ

2 take the following form on M \ A

KΨ
1 = −4eν(r)h(1)(r, θ)dt2 − 2ω(r, θ)R2(r) sin2 θdtdϕ(2.11)

+ 4eλ(r)m(1)(r, θ)dr2 + 4k(1)(r, θ)R2(r)(dθ2 + sin2 θdϕ2)

+ 4eλ(r)∂θf
(1)(r, θ)R(r)drdθ,

KΨ
2 =

(
−4eν(r)h(r, θ) + 2ω2(r, θ)R2(r) sin2 θ

)
dt2(2.12)

+ 4eλ(r)m(r, θ)dr2 + 4k(r, θ)R2(r)(dθ2 + sin2 θdϕ2)

+ 4eλ(r)∂θf(r, θ)R(r)drdθ − 2W(r, θ)R2(r) sin2 θdtdϕ.

Since the form of the perturbation tensors in Theorem 2.2 is used re-
peatedly in the paper, we put forward the following definition:

Definition 2.3. First and second order perturbation tensors on a static
and spherically symmetric background that have the structure and regularity
properties given in Theorem 2.2 are said to be in canonical form.
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Remark 2.4 ([25]). In the setup of Theorem 2.2, let K1 and K2 be pertur-
bation tensors defined by the perturbation scheme (Mε, ĝε, {ψε}) and KΨ

1 ,
KΨ

2 be the corresponding tensors in canonical form. If the background ad-
mits no further local isometries and the perturbation scheme is restricted
so that the inherited axial Killing vector η̂ε = dψε(η) is independent of the
choice ψε ∈ {ψε}, then the gauge vectors V1 and V2 transforming K1 and
K2 into fixed KΨ

1 and KΨ
2 are unique up to the addition of a Killing vector

of the background that commutes with η. We emphasize that the condition
on η̂ε is no restriction at all if ĝε, ε ̸= 0, admits only one axial symmetry.

As we shall see, the field equations for perturbed fluid balls restrict
strongly the first order metric perturbation tensor. It is an essential ingre-
dient of this paper to understand the full gauge freedom that respects this
restricted form. The following result, proved in [25], achieves this.

Proposition 2.5 (Gauge freedom [25]). Let (M, g) be a static and
spherically symmetric spacetime as in Theorem 2.2. Assume that R′(r) and
ν ′(r) do not vanish identically on open sets and consider the following first
and second order perturbation tensors

K1 = −2ω(r, θ)R2(r) sin2 θdtdϕ,(2.13)

K2 =
(
−4eν(r)h(r, θ) + 2ω2(r, θ)R2(r) sin2 θ

)
dt2 + 4eλ(r)m(r, θ)dr2(2.14)

+ 4k(r, θ)R2(r)
(
dθ2 + sin2 θdϕ2

)
+ 4eλ(r)∂θf(r, θ)R(r)drdθ

− 2W(r, θ)R2(r) sin2 θdtdϕ.

Then a first order gauge vector V1 preserves the form of K1 (i.e. there is ωg

such that Kg
1 := K1 + LV1

g is given by (2.13) with ω −→ ωg) if and only if,
up to the addition of a Killing vector of the background,

V1 = Ct∂ϕ, C ∈ R, and then ωg = ω − C.(2.15)

For V1 as in (2.15), the second order gauge vector V2 preserves the form of
K2 if and only if

V2 = At∂t +Bt∂ϕ + 2Y(r, θ)∂r + 2α(r) sin θ∂θ + ζ,(2.16)

A,B ∈ R, ζ Killing vector of g,
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and Kg
2 := K2 + LV2

g + 2LV1
Kg

1 − LV1
LV1

g takes the form (2.14) with the
coefficients h,m, k, f transformed to

hg = h+
1

2
A+

1

2
Yν ′,(2.17)

kg = k + Y
R′

R
+ α(r) cos θ,(2.18)

mg = m+ Y,r +
1

2
Yλ′,(2.19)

fg = f +
Y

R
−Re−λα′ cos θ + β(r),(2.20)

Wg = W −B,(2.21)

where the arbitrary function β(r) arises because Kg
2 only involves ∂θf

g.

Remark 2.6. It is important to stress that this proposition includes in par-
ticular the full gauge freedom that preserves the first order metric perturba-
tion tensor in canonical form. Indeed, by setting K1 = 0 and V1 = 0, second
order metric perturbation tensors transform under a gauge change in exactly
the same way as the first order perturbation tensors do. Since the tensor K2

in (2.14) is fully general (in the canonical form) it follows that the most
general transformation vector that respects a general K1 in canonical form
is given by V1 = V2, with V2 as given in (2.16) and {h(1),m(1), k(1), f (1), ω}
transform exactly as the corresponding (2.17)–(2.21).

Exploiting the gauge freedom to first and second order in Proposition 2.5
will be an important tool to prove the results of this paper. We will use the
following notation for it.

Notation 2.7. We will denote by {Ψ(C;A,B,Y, α)} the family of gauges
described to second order by the gauge vectors (2.15) and (2.16) and such
that the gauged functions satisfy the regularity properties of the corre-
sponding functions in Theorem 2.2.. When e.g. α(r) has already been fixed,
so that the gauge vectors are restricted to the form (2.15)–(2.16) with
α(r) = 0, the corresponding family will be denoted by {Ψ(C;A,B,Y)} ⊂
{Ψ(C;A,B,Y, α)}. This notation extends naturally to any subset of gauge
parameters in the family.

3. Background spherically symmetric global model

In this section we recall the basic construction of a spherically symmet-
ric spacetime consisting of two regions matched across a hypersurface that
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preserves the symmetries. We distinguish the two regions as “interior” and
“exterior”, but at this point this is merely a convention. We use (+) to
label objects in the interior, and a (−) for the exterior. We denote by
(M, g) the static and spherically symmetric spacetime resulting from the
matching M =M+ ∪M− of two Cn+1 (n ≥ 4) static and spherically sym-
metric spacetimes (M±, g±) with boundaries Σ±. The matching hypersur-
face is M− ∩M+ ≃ Σ+ ≃ Σ−. We will use coordinates {t±, r±, θ±, ϕ±} on
(M±, g±) covering a neighbourhood of the boundaries Σ±, such that the
metrics read

g± = −eν±(r±)dt2± + eλ±(r±)dr2± +R±
2(r±)

(
dθ2± + sin2 θ±dϕ

2
±

)
.

By spherical symmetry and staticity, the hypersurfaces Σ± can be described
by embeddings from an abstract manifold Σ (called the boundary), coordi-
nated by {τ, ϑ, φ}, by means of

Σ+ = {t+ = τ, r+ = a+, θ+ = ϑ, ϕ+ = φ},(3.1)

Σ− = {t− = τ, r− = a−, θ− = ϑ, ϕ− = φ},(3.2)

where a± are constants. We may choose r± so that r+ takes values to the
left of a+ in the real line and r− to the right of a−. Clearly, R±(a±) > 0
(the boundary is a hypersurface). We fix uniquely the unit normals n± so
that n+ points M+ inwards and n− points M− outwards. Thus

(3.3) n+ = −e−
λ+(a+)

2 ∂r+ |Σ+ , n− = −e−
λ−(a−)

2 ∂r− |Σ− .

Σ± are obviousy timelike everywhere and their first and second fundamental
forms read

h±ijdx
idxj = −eν±(a±)dτ2 +R2

±(a±)(dϑ
2 + sin2 ϑdφ2),(3.4)

κ±ijdx
idxj = e−

λ±(a±)

2

(
1

2
eν±(a±)ν ′±(a±)dτ

2(3.5)

−R±(a±)R
′(a±)(dϑ

2 + sin2 ϑdφ2)

)
.

The matching conditions across Σ require that the first and second funda-
mental forms on both sides agree i.e. [h] = [κ] = 0, where for any object
[f ] := f+ − f−. When a quantity f satisfies [f ] = 0 we write f+ = f− := f
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on Σ. From (3.4)–(3.5) the matching conditions are equivalent to

(3.6) [R] = 0, [ν] = 0, [e−λ/2ν ′] = 0, [e−λ/2R′] = 0.

The last two can also be written as [n(ν)] = [n(R)] = 0. So far, no field equa-
tions have been imposed. We summarize the construction with the following
definition.

Definition 3.1. A spacetime (M, g) si called static and spherically
symmetric with two regions if it is composed by (M±, g±,Σ±) as de-
scribed in this section and satisfies the matching conditions (3.6).

3.1. Background field equations

Our background spacetime describes a non-rotating self-gravitating fluid of
finite extent. Thus, it consists of two regions, one solving the gravitational
field equations for a perfect fluid and the other for vacuum. In the context
of General Relativity without cosmological constant, which we assume from
now on, the field equations are Eing = κT , where Eing is the Einstein tensor
of g, κ is the gravitational coupling constant and T is the energy-momentum
tensor of the matter. For a perfect fluid

Tµν = (E + P )uµuν + Pgµν ,

where P is the pressure, E the density and u is the (unit timelike) four-
velocity of the fluid. For the metric (2.1) the perfect-fluid Einstein field
equations hold if and only if, in addition to u = e−

ν

2 ξ and

κP = e−λR
′

R

(
R′

R
+ ν ′

)
−

1

R2
,(3.7)

κE = e−λ

(
−2

R′′

R
−

R′2

R2
+

R′

R
λ′
)
+

1

R2
,(3.8)

the following ODE is satisfied

ν ′′ = −2
R′′

R
+

R′

R

(
2
R′

R
+ λ′ + ν ′

)
+

1

2
ν ′
(
λ′ − ν ′

)
−

2eλ

R2
(3.9)

=⇒ P ′ +
ν ′

2
(E + P ) = 0.

The implication is in fact an equivalence wherever R′ ̸= 0. From (3.7), any
critical value rcrit of R(r) outside the centre(s) of symmetry (i.e. satisfying
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R′(rcrit) = 0, R(rcrit) ̸= 0) must have P |rcrit < 0. The boundary of the fluid
ball (with vacuum exterior) is located at P = 0 (the fact that P |Σ = 0 is
a general consequence of the Israel conditions and in our setup it follows
immediately from (3.7) and (3.6)). Thus, either P > 0 or P < 0 in the inte-
rior of the body, and the physical case is P > 0. Also on physical grounds
it must be that the energy density of the fluid is non-negative and positive
somewhere. We make this assumption explicit:

Assumption H2: The background spacetime has two non-empty regions,
one vacuum and one covered by a self-gravitating fluid satisfying P ≥ 0 and
E ≥ 0. Moreover, there is at least one point in the fluid where E > 0.

The condition P ≥ 0 implies that R(r) is strictly monotonic and we can
set R(r) = r, which we assume from now on. The field equations (3.7)–(3.9)
become

λ′ =
1

r
(1− eλ) + reλκE,(3.10)

ν ′ =
1

r
(eλ − 1) + reλκP,(3.11)

ν ′′ =
1

r

(
2

r
+ λ′ + ν ′

)
+

1

2
ν ′
(
λ′ − ν ′

)
−

2eλ

r2
(3.12)

⇐⇒ P ′ = −
ν ′

2
(E + P ).

Consider the convenient and standard background quantities

j(r) := e−(λ+ν)/2,(3.13)

1−
κM(r)

4πr
:= e−λ.(3.14)

The former satisfies

(3.15)
j′

j
= −

1

2

(
λ′ + ν ′

)
= −

1

2
reλκ(E + P ),

while the latter allows one to replace the variables {λ, ν} by {M,P} as
follows: (3.14) and (3.11) give

ν ′ =
κ

r(4πr − κM)
(M + 4πr3P ),(3.16)
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and the system (3.10)–(3.12) takes the standard form (see (9) and (10) in
[29])

M ′ = 4πr2E,(3.17)

P ′ = −
κ(E + P )(M + 4πr3P )

8πr2(1− κM
4πr )

.(3.18)

These are the well-known TOV equations [29]. These equations are usually
suplemented with a barotropic equation of state (EOS) E(P ) which closes
the system. A substantial portion of the paper does not rely on the existence
of a barotropic EOS. We will make the assumption explicit when needed (in
Section 5.1.1).

The vacuum case is obviously Schwarzschild, for which

M =M
T

∈ R e−λ(r) = eν(r) = 1−
κM

T

4πr
.

The matching conditions (3.6) read, after setting R±(r±) = r±,

(3.19) a+ = a−(= a), [ν] = 0, [λ] = 0, [ν ′] = 0,

and are interpreted as follows: [λ] = 0 is equivalent to the continuity of the
mass M

T
=M(a), [ν] = 0 fixes uniquely the additive integration constant

that arises when solving (3.16) and [ν ′] = 0 corresponds to [P ] = 0, which,
in principle, determines a. Note that [ν ′] = 0 also provides

(3.20) ν ′±(a) =
1

a
(eλ(a) − 1),

where the equality follows directly from (3.11).
Finally, the field equations combined with the matching conditions (3.19)

allow us to express the jumps of higher order derivatives in terms of the fluid
variables (A0 is a constant whose explicit form is not needed)

[
λ′
]
= aeλ(a)κ[E],(3.21)

[
ν ′′
]
=

1

a

(
1 +

aν ′(a)

2

)
[λ′],(3.22)

[
λ′′
]
= aeλ(a)κ[E′] + [λ′2],(3.23)

[
ν ′′′
]
=

1

a

(
1 +

aν ′(a)

2

)
[λ′′] +A0[λ

′].(3.24)

Note that the jumps of [ν ′′] and [λ′] are proportional. All these expressions
are valid also when two perfect fluids are matched.
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Everything we have said so far in this section holds locally near the
boundaries. We now make a global assumption similar in spirit to assump-
tion H1. Since the spacetime (M, g) is now composed of two regions (M±, g±)
with boundaries Σ±, we modify the assumption as follows

Assumption H′
1: The interiors (Int(M±), g±) satisfy assumption H1 with

corresponding diffeomorphisms

Int(M+) ≃ B+ × I, Int(M−) ≃ (R3 \B+)× I,

where B+ is an open ball centered at the origin. Moreover Σ± ≃ (∂B+)× I.

Under assumptions H′
1 and H2, it must be the case that the fluid lies in

the interior M+. Indeed, if M+ were vacuum then M
T
= 0 and one easily

concludes from (3.17)–(3.18) together with E ≥ 0 and P (a) = 0 that P ≤ 0
in the fluid region, which is a contradiction. Consequently the coordinate r
takes values in r ∈ (0, a] in the interior (fluid) region and r ∈ [a,∞) in the
exterior (vacuum) domain. The spacetime is Cn+1 (with n ≥ 4) everywhere
except at Σ, in particular in a neighbourhood of the centre r = 0. Since the
vacuum region is the exterior M− can now write

(3.25) e−λ−(r) = eν−(r) = 1−
κM

T

4πr
=⇒ j−(r) = 1,

where an additive integration constant in ν has been adjusted to zero. This
choice fixes the (otherwise arbitrary) freedom in scaling the static Killing
ξ by a positive constant. Moreover, one has, in addition, [E] = E+(a) and
[E′] = E′

+(a).
We now make use of the following result on the differentiability of radi-

ally symmetric functions (see e.g. [25] or Lemma 3.1 in [2])

Lemma 3.2. Let q : B+ → R be radially symmetric, i.e. such that there
exists trq : [0, a0) → R (the trace of q) with q(x) = trq(|x|). Then q ∈ Cn(B+)
(n ≥ 0) if and only if trq is Cn([0, a0)) (i.e. up to the inner boundary) and
all its odd derivatives up to order n vanish at zero. Equivalently, if and only
if

trq(r) = Pn(r
2) + Φ(n)(r),(3.26)

where Pn is a polynomial of degree [n2 ] and Φ(n) is Cn([0, a0)) and satisfies

Φ(n)(r) = o(rn).
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This Lemma implies that λ(r) and ν(r) in the + region (as functions of
one variable r) are Cn+1 up to boundary, and admit an expansion

(3.27)
λ(r) = λ0 + λ2r

2 + λ4r
4 +Φ

(5)
λ (r),

ν(r) = ν0 + ν2r
2 + ν4r

4 +Φ(5)
ν (r),

with λ0, λ2, λ4, ν0, ν2, ν4 ∈ R, and Φ
(5)
λ (r), Φ

(5)
ν (r) are Cn+1([0, a]) and van-

ish, together with their derivatives up to order five, at r = 0. Combining this
with the field equations (3.10)–(3.11) near r = 0 one finds, in particular,

(3.28) λ0 = 0, λ2 =
κ

3
Ec, ν2 =

κ

6
(Ec + 3Pc) ,

where Ec = E(0) and Pc = P (0) are the values of the energy density and
pressure at the origin, while ν0 will be determined by the matching condition
[ν] = 0. Expressions (3.27)–(3.28) give

eλ(r) = 1 +
κ

3
Ecr

2 +O(r4),(3.29)

eν(r) = eν0

(
1 +

κ

6
(Ec + 3Pc)r

2 +O(r4)
)
.

These expansions together with (3.14) imply that M(r) ∈ O(r3).
Another consequence of assumptions H′

1 and H2 is that ν(r) is free
of critical values outside the origin. First of all, equation (3.17) together
with M ∈ O(r3) and E(r) ≥ 0 implies M(r) ≥ 0. Furthermore, the quan-
tity 4πr − κM(r) is positive for r sufficiently close to zero, so regularity
of the spacetime imposes (by (3.18)) that r > κM(r)/4π for all r ≤ a and
r > κM

T
/4π for r ≥ a (in fact this property holds in much more general

circumstances [23]). With these properties it is clear from (3.16) that ν ′ > 0
away from the origin.

The setup described in this section is summarized in the following defi-
nition.

Definition 3.3. A Cn+1 perfect fluid ball configuration is a static
and spherically symmetric spacetime with two regions, c.f. Definition 3.1,
satisfying assumptions H′

1 and H2.

Whenever this definition is invoked, all the results and notation intro-
duced in this section will be understood.
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4. Perturbed Einstein’s field equations to second order

We review in this section the perturbations of the Ricci tensor in terms of
K1 and K2, and the perturbations of the perfect fluid under the assumption
of rigid rotation. Recall that this means that the fluid 3-velocity, as observed
by the stationary observer, is uniform in both space and time and only has
one component along the axial direction. This precludes, in particular, the
presence of convective motions inside the fluid. We then write down the first
and second order perturbed Einstein field equations under these conditions.
This part, just like the previous one, is a reminder of known things and it
is included to make the paper as self-contained as possible and to fix some
notation.

4.1. First and second order perturbations of the Ricci tensor

Given two metrics g and gε, the respective Riemann tensors, denoted by
Rµ

ανβ and Rε
µ
ανβ , are related by (e.g. [43])

Rε
µ
ανβ = Rµ

ανβ +∇νSε
µ
αβ −∇βSε

µ
αν + Sε

µ
νρSε

ρ
αβ − Sε

µ
βρSε

ρ
αν(4.1)

where ∇ is the Levi-Civita derivative of g and the tensor Sε is the difference
of the respective connections of gε and g, explicitly

Sε
µ
αβ =

1

2
gε

♯µν (∇αgενβ +∇βgενα −∇νgεαβ) =: g♯ε
µνHεναβ

where the last equality defines Hε and the tensor g♯εµν is the contravari-
ant metric associated to gε. Recalling that gε depends differentiably on

ε, that gε=0 = g, and the definitions (2.2), it follows directly from dg♯
ε
αβ

dε =

−g♯εαµg
♯
ε
βν dgεµν

dε that

dg♯εαβ

dε

∣∣∣∣∣
ε=0

= −Kαβ
1 ,

d2g♯εαβ

dε2

∣∣∣∣∣
ε=0

= −Kαβ
2 +Kαµ

1 K1
β

µ .

We emphasize that all objects are defined in (M, g) and that all indices are
raised and lowered with the background metric g. Define also

S(1)
µαβ :=

dHεµαβ

dε

∣∣∣∣
ε=0

=
1

2
(∇αK1µβ +∇βK1µα −∇µK1αβ) ,(4.2)

S(2)
µαβ :=

d2Hεµαβ

dε2

∣∣∣∣
ε=0

=
1

2
(∇αK2µβ +∇βK2µα −∇µK2αβ) ,(4.3)
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from which it follows directly

dSε
µ
αβ

dε

∣∣∣∣∣
ε=0

= S(1)µ
αβ ,

d2Sε
µ
αβ

dε2

∣∣∣∣∣
ε=0

= S(2)µ
αβ − 2Kµν

1 S(1)
ναβ .

Taking the first and second derivative of (4.1) with respect to ε at ε = 0,
and using that Sε|ε=0 = 0, the following expressions are directly obtained

dRε
µ
ανβ

dε

∣∣∣∣∣
ε=0

= ∇νS
(1)µ

αβ −∇βS
(1)µ

αν ,(4.4)

d2Rε
µ
ανβ

dε2

∣∣∣∣∣
ε=0

= ∇ν

(
S(2)µ

αβ − 2Kµρ
1 S(1)

ραβ

)
(4.5)

−∇β

(
S(2)µ

αν − 2Kµρ
1 S(1)

ρνα

)

+ 2S(1)µ
νρS

(1)ρ
αβ − 2S(1)µ

βρS
(1)ρ

αν .

We can elaborate (4.5) by expanding the second terms in the parentheses
and inserting ∇µK1αβ = S(1)

αβµ + S(1)
βαµ. The result is

d2Rε
µ
ανβ

dε2

∣∣∣∣∣
ε=0

= ∇νS
(2)µ

αβ −∇βS
(2)µ

αν(4.6)

+ 2Kµρ
1

(
∇βS

(1)
ρνα −∇νS

(1)
ραβ

)

+ 2S(1)ρ
ναS

(1)
ρ
µ
ν − 2S(1)ρ

βαS
(1)

ρ
µ
ν .

From (4.4) and (4.6), the first and second order perturbations of the Ricci
tensor are obtained by simply contracting the µ and ν indices, namely

R
(1)
αβ :=

dRεαβ

dε

∣∣∣∣
ε=0

= ∇µS
(1)µ

αβ −∇βS
(1)µ

αµ(4.7)

=
1

2

(
∇µ∇αK1

µ
β +∇µ∇βK1

µ
α −∇µ∇

µK1αβ −∇α∇βK1
µ
µ

)
,(4.8)



✐

✐

“9-Mars” — 2024/1/2 — 18:37 — page 2742 — #24
✐

✐

✐

✐

✐

✐

2742 M. Mars, B. Reina, and R. Vera

R
(2)
αβ :=

d2Rεαβ

dε2

∣∣∣∣
ε=0

(4.9)

=
1

2

(
∇µ∇αK2

µ
β +∇µ∇βK2

µ
α −∇µ∇

µK2αβ −∇β∇αK2
µ
µ

)

+
1

2
∇β∇α

(
K1

µρK1µρ

)
− (∇βK1

µρ)
(
∇αK1µρ

)

+K1
µρ
(
∇µ∇ρK1αβ −∇µ∇αK1ρβ −∇µ∇βK1ρα

)

+ 2S(1)ρ
µαS

(1)
ρ
µ
β − 2S(1)ρ

βαS
(1)

ρ
µ
µ,

where we have inserted (4.2)–(4.3) and in the second expression we have
also used

2K1
µρ∇βS

(1)
ρµα = K1

µρ∇β

(
S(1)

ρµα + S(1)
µρα

)

= K1
µρ∇β∇αK1µρ

=
1

2
∇β∇α

(
K1

µρK1µρ

)
− (∇βK1

µρ)
(
∇αK1µρ

)
.

Expression (4.9) is advantageous over alternative forms because it is mani-
festly symmetric in α, β.

4.2. Perfect fluid source

Let us now assume that the matter content of the perturbed scheme is a
perfect fluid, that is, the energy momentum tensor T̂ε at each (Mε, ĝε) has
the form

(4.10) T̂ε −
1

2
(trĝε T̂ε)ĝε = (Êε + P̂ε)ûε ⊗ ûε +

1

2
(Êε − P̂ε)ĝε,

where ûε is the (ĝε-unit) one-form fluid flow, and Êε and P̂ε the mass-energy
density and pressure. These expressions are pullbacked onto (M, g) as

Tε −
1

2
(trgεTε)gε = (Eε + Pε)Uε ⊗Uε +

1

2
(Eε − Pε)gε,(4.11)

where, in particular, Uε := ψ∗
ε(ûε). The vectors (in contravariant form) ûε

are pushforwarded through ψ−1
ε to a family of fluid vectors uε := dψ−1

ε (ûε).
It is immediate that Uε = gε(uε, ·), Uε(uε) = −1 hold.
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The field equations of the perturbed scheme are Êinĝε = κT̂ε, and are
pullbacked onto (M, g), and rearranged, as

Ricε = κ(Tε −
1

2
(trgεTε)gε).(4.12)

Define

E(1) :=
dEε

dε

∣∣∣∣
ε=0

, P (1) :=
dPε

dε

∣∣∣∣
ε=0

, u(1) :=
duε
dε

∣∣∣∣
ε=0

,

E(2) :=
d2Eε

dε2

∣∣∣∣
ε=0

, P (2) :=
d2Pε

dε2

∣∣∣∣
ε=0

, u(2) :=
d2uε
dε2

∣∣∣∣
ε=0

.

From Uε = gε(uε, ·) the perturbations of the fluid velocity one-forms are

dUε

dε

∣∣∣∣
ε=0

= K1(u, ·) + u(1),(4.13)

d2Uε

dε2

∣∣∣∣
ε=0

= K2(u, ·) + 2K1(u
(1), ·) + u(2),(4.14)

where u := uε|ε=0 is the background fluid velocity vector. The normalisation
conditionUε(uε) = −1 implies, upon taking successive ε derivatives at ε = 0,
the two algebraic constraints

2u(u(1)) +K1(u, u) = 0,(4.15)

K2(u, u) + 4K1(u
(1), u) + 2u(1)(u(1)) + 2u(u(2)) = 0,(4.16)

which determine the components of u(1) and u(2) along u. The perturbed
Einstein field equations arise from the ε derivatives of (4.12) with (4.11),
and yield

R
(1)
αβ = κ

(
E(1) + P (1)

)
uαuβ(4.17)

+ κ(E + P )
((
K1αµu

µ + u(1)α
)
uβ +

(
K1βµu

µ + u(1)β
)
uα

)

+
1

2
κ

(
E(1) − P (1)

)
gαβ +

1

2
κ (E − P )K1αβ ,
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after using (4.13) and (4.15). The second order equations are similarly ob-
tained from the second derivative of (4.12) and using (4.13)–(4.16),

R
(2)
αβ = κ

(
E(2) + P (2)

)
uαuβ

(4.18)

+ 2κ(E(1) + P (1))
((
K1αµu

µ + u(1)α
)
uβ +

(
K1βµu

µ + u(1)β
)
uα

)

+ κ(E + P )
((
K2αµu

µ + 2K1αµu
(1)µ + u(2)α

)
uβ

+
(
K2βµu

µ + 2K1βµu
(1)µ + u(2)β

)
uα

+2
(
K1αµu

µ + u(1)α
)(
K1βµu

µ + u(1)β
))

+
1

2
κ

(
E(2) − P (2)

)
gαβ + κ

(
E(1) − P (1)

)
K1αβ +

1

2
κ (E − P )K2αβ .

Let us now assume that the spacetime (M, g) admits a hypersurface or-
thogonal timelike Killing vector ξ and an axial Killing vector η. We assume
further that the perturbation scheme inherits the local symmetry generated
by ξ and η and that for each ε, the spacetime (Mε, ĝε) is a solution of the
Einstein’s field equations for a rigidly rotating perfect fluid, i.e. that there
exists a constant (on each ε) Ωε and a positive function N̂ε ∈ Cn+1(Mε)
such that

(4.19) ûε = N̂ε(ξ̂ε +Ωεη̂ε),

where ξ̂ε := dψε(ξ) and η̂ε := dψε(η). The pullback of the field equations
of the perturbed scheme and the relations (4.19) on M translate into the
spacetime (M, gε) being a solution of the Einstein’s field equations (4.12)
with (4.11) and

uε = Nε (ξ +Ωεη)

for some positive function Nε ∈ Cn+1(M).
Staticity of the background imposes that u is parallel to ξ and then (2.1)

implies

u = e−
ν

2 ξ, ⇐⇒ Nε|ε=0 = e−
ν

2 , Ωε|ε=0 = 0.(4.20)
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In terms of the following quantities

Ω(1) :=
dΩε

dε

∣∣∣∣
ε=0

, Ω(2) :=
d2Ωε

dε2

∣∣∣∣
ε=0

,

u(1)0 :=
dNε

dε

∣∣∣∣
ε=0

, u(2)0 :=
d2Nε

dε2

∣∣∣∣
ε=0

,

the first and second order pertubation fluid velocity vectors are, using (4.20),

u(1) = u(1)0ξ + e−
ν

2Ω(1)η,

u(2) = u(2)0ξ +
(
2u(1)0Ω(1) + e−

ν

2Ω(2)
)
η.

Recall that the components u(1)0 and u(2)0 are determined by the algebraic
constraints (4.15)–(4.16), so we can write u(1) and u(2) in terms of the metric
perturbation tensors and the constants Ω(1) and Ω(2) as

u(1) =
1

2
e−

3ν

2 K1(ξ, ξ)ξ + e−
ν

2Ω(1)η,

(4.21)

u(2) = e−
3ν

2

(
1

2
K2(ξ, ξ) +

3

4
e−νK1(ξ, ξ)

2 + 2Ω(1)K1(ξ, η) + Ω(1)2⟨η, η⟩

)
ξ

(4.22)

+ e−
ν

2

(
e−νK1(ξ, ξ)Ω

(1) +Ω(2)
)
η.

We now exploit a well-known relation between orthogonal transitivity
of the Abelian group action and rigid rotation of the self-gravitating fluid,
forced upon by the Einstein field equations (see e.g. [38, Chapter 19.2]). In
our present set up, the specific result we need is as follows.

Proposition 4.1 (Rigid rotation and orthogonal transitivity). Let
(M, g) be a spacetime with Cn+1 (n ≥ 3) metric that admits an Abelian G2

group of isometries generated by {ξ, η}. Assume also that M is simply con-
nected and that η is an axial symmetry with a non-empty set of fixed points.
Let (Mε, ĝε, {ψε}) be a Cn+1 maximal perturbation scheme inheriting this
group (c.f. Definition 2.1 in [25]). If the matter content of the perturbation
scheme is that of a rigidly rotating perfect fluid (or vacuum), then the back-
ground is orthogonally transitive and the perturbation scheme inherits this
property.

Proof. By assumption, for each ε the spacetime (Mε, ĝε) is a solution
of the Einstein’s field equations with (4.10) and (4.19). Therefore it is
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straightforward to check that the one-forms R̂icε(ξ̂ε, ·) and R̂icε(η̂ε, ·) lie
in span{ξ̂ε, η̂ε}, where η̂ε = ĝε(η̂ε, ·) and ξ̂ε = ĝε(ξ̂ε, ·). Standard curvature
identities (see e.g. [38, Chapter 19.2]) imply that this fact, in addition to the
commutation of ξ and η, implies that the functions O1ε := ⋆(η̂ε ∧ ξ̂ε ∧ dξ̂ε)
and O2ε := ⋆(η̂ε ∧ ξ̂ε ∧ dη̂ε) satisfy [19]

dO1ε = 0, dO2ε = 0.

Simply connectedness implies that O1ε and O2ε are constant (for each ε),
while the existence of points where η vanishes (the axis) implies they must,
in fact, be zero. Therefore the group generated by {ξ̂ε, η̂ε} on (Mε, ĝε) for
each ε is orthogonal transitive. The result follows, in particular for ε = 0. □

Observe that the fluid quantities are gauge dependent in general. In
particular, the perturbed pressure at first and second order transforms as
(see e.g. [7])

(4.23) P (1)g = P (1) + V1(P ), P (2)g = P (2) + V2(P ) + V1(P
(1) + P (1)g).

Eventually, uniqueness of the solutions will rely on one free integration con-
stant associated to the value of the perturbed pressure at the origin. In order
to assign a clear physical meaning to this parameter it is necesary to show
that the perturbed central pressure is a gauge invariant quantity. The next
lemma proves this fact, to second order, within the perturbation scheme
of Theorem 2.2 provided the configuration is equatorially symmetric. Later
on we will show that this symmetry is a necessary consequence of the field
equations.

Lemma 4.2. Within the Cn+1 (n ≥ 3) perturbation scheme introduced in
Theorem 2.2 and with the definitions above, (i) the value P (1)(0) := P (1)|r=0

is gauge invariant and (ii) if the configuration has equatorial symmetry then
P (2)(0) := P (2)|r=0 is also gauge invariant.

Proof. The first order V1 and second order V2 gauge vectors within the
perturbation scheme are Cn+1(M) and Cn(M) respectively (see [25]). On the
other hand, P is Cn−1(M). Note P (1) and P (2) are Cn−2(M) and Cn−3(M)
respectively and therefore both functions are continuous, in particular, at the
origin. First, Lemma 3.2 implies dP vanishes at r = 0. Therefore, the term
V1(P ) ≡ dP (V1) vanishes at r = 0, and the claim (i) follows from (4.23).

The same argument applies to V2(P ), so in order to show gauge in-
variance of P (2) (4.23) it suffices to prove that V1(P

(1) + P (1)g) = 0 at the
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origin. Under the stationary and axisymmetric perturbation scheme of The-
orem 2.2, the functions P (1) and P (1)g are time independent and axially
symmetric. Moreover, by assumption they are equatorially symmetric, i.e.
invariant under z → −z. Let f ∈ C1(M) be any function with these prop-
erties and consider the equatorially invariant hypersurface E := {z = 0}.
The restriction f |E is independent of t and radially symmetric in {x, y}.
Hence Lemma 3.2 implies that d(f |E) vanishes at the origin. We can decom-
pose uniquely V1 = V z

1 + V E
1 , with V z

1 along ∂z and V E
1 tangent to E . By

equatorial symmetry V z
1 (f)|E = 0. Therefore V1(f)|E = V E

1 (f)|E = V E
1 (f |E),

and thus V1(f)|E = d(f |E)(V
E
1 ) vanishes at the origin. Applying this fact to

f = P (1) + P (1)g, the claim (ii) follows. □

So far no equation of state for the perfect fluid has been imposed. We
shall say that the perturbation scheme satisfies a barotropic equation of state
if there exists a C2 function of one variable P (E) such that, for each value of
ε, the pressure and density of the fluid are related by Pε = P (Eε). Note that
we do not allow dependence on ε in the equation of state itself, and thus the
barotropic EOS is that of the background. Taking ε-derivatives at ε = 0, the
perturbed pressures are written in terms of the perturbed densitities as

P (1) −
dP

dE
E(1) = 0,

P (2) −
dP

dE
E(2) −

d2P

dE2
E(1)2 = 0.(4.24)

where the derivatives dP
dE etc. are evaluated at the background density.

5. “Base” global perturbation scheme

In order to tackle the first and second order problems we have to deal with
the first and second order perturbation tensors as given in (2.11) and (2.12).
It is obvious that the problem involves two steps, namely addressing the
first order problem first and dealing with the second order one afterwards.
However, as mentioned in the Introduction, there is a strategy that allows
one to treat both cases at the same time, and this entails a considerable
simplification of the proof.

The underlying idea is that a second order perturbation problem under
the assumption that the first order perturbation tensor vanishes identically is
completely equivalent to a first order problem. This fact is both physically
and geometrically clear, and can be checked explicitly: all the equations,
matching conditions, etc. are identical for the first order perturbation tensor
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and for the second order perturbation tensor after setting the first order
tensor to zero (the only difference is in the differentiability class, which to
second order is one order lower than to first order, but this poses no problem
as the differentiability assumed at second order suffices for the argument).

The idea is then to use a bootstrap type of argument. We assume a
specific form for the first order perturbation tensor which includes zero as a
particular case, and leave the second order tensor completely free (within our
perturbation scheme, naturally). We then analyze the second order problem
in full detail. After this has been done, we set the first order perturbation
tensor to zero and all the conclusions that we find apply immediately to
the first order problem. This will allow us to show that our assumption on
the first order perturbation tensor is in fact a consequence of the first order
problem. This will close the bootstrap and hence all the results obtained
under the scheme will be fully general. We call the restricted second order
problem the “base” perturbation scheme and is built as follows:

The base perturbation scheme: The global manifold consists of an interior
region (M+) and an exterior region (M−) separated by a hypersurface Σ. We
construct a second order perturbation for each region around a background
configuration (we drop ± indices) satisfying items B1-B3 below. We then
construct the global model by solving the most general perturbed matching
problem (item B4). We finally consider a barotropic base scheme (and will
explicitly specify barotropic) when the barotropic EOS of the background is
assumed in the interior, i.e. items B1-B5 below hold.

B1: The background corresponds to a finite perfect fluid ball configuration
according to Definition 3.3 with Ec + Pc ̸= 0.

Remark: In particular, the metric, which we take to be Cn+1 on
each region with n ≥ 4, is given by (2.1) with R(r) = r, and ξ := ∂t,
η := ∂ϕ. Define Sαβ := ξαηβ + ξβηα, so that S = −2eνr2 sin2 θdtdϕ in
those coordinates.

B2: The first order metric perturbation tensors K±
1 are bounded and

B2.1: read (dropping ± indices)

(5.1) K1 = ϖe−νS,

for given functions ϖ+ ∈ Cn+2(M+ \ C0) ∩ C
2(M+) and ϖ− ∈

C∞(M−), both radially symmetric and bounded.
Remark: In spherical coordinates, this assumption translates onto

(5.2) K1 = −2ϖ(r)r2 sin2 θdtdϕ,



✐

✐

“9-Mars” — 2024/1/2 — 18:37 — page 2749 — #31
✐

✐

✐

✐

✐

✐

Compact rotating configurations in GR 2749

where ϖ−(r) is C∞([a,∞)), and, by virtue of Lemma 3.2, ϖ+(r)
is C2([0, a]) ∩ Cn+2((0, a]), and admits the decomposition

(5.3) ϖ+(r) = ϖ0 +ϖ2r
2 +Φ(2)

ϖ (r),

where ϖ0, ϖ2 ∈ R and Φ
(2)
ϖ (r) ∈ C2([0, a]) and o(r2).

B2.2: The functions ϖ±(r) satisfy the equation (we drop the ± signs)

1

r3
d

dr

(
r4j

dϖ

dr

)
+ 4j′(ϖ −Π(1)) = 0 ⇐⇒

ϖ′′ = (λ′ + ν ′)

(
1

2
ϖ′ +

2

r
(ϖ −Π(1))

)
−

4

r
ϖ′(5.4)

where Π
(1)
+ ∈ R in M+ and Π

(1)
− = 0 in M−.

Remark: In M− we have j′ = 0 and thus the value of Π
(1)
− is irrel-

evant, so we fix it to zero for definiteness. The general solution on
M− is given by

ϖ−(r) =
2Jϖ
r3

+ϖ∞, with Jϖ, ϖ∞ ∈ R.

The vector fields r−1η and ξ are smooth and bounded inM−. Thus,
boundedness of K1 demands that K1(ξ, r

−1η) = −ϖ(r)e−νr sin2 θ
is also bounded. This condition clearly requires ϖ∞ = 0 and the
function ϖ is

(5.5) ϖ−(r) =
2Jϖ
r3

, Jϖ ∈ R.

By Proposition 2.5, a first order gauge transformation with V −
1 =

C−t∂ϕ changes ϖ− → ϖ− − C−. Only C− = 0 respects the condi-
tion ϖ∞ = 0 and we conclude that boundedness of K1 fixes the
first order gauge freedom in the exterior completely.
In the interior region M+, equation (5.4) combined with (3.27)
determines

(5.6) ϖ2 =
2

5
(ϖ0 −Π

(1)
+ )(λ2 + ν2).

Clearly, if ϖ+ = 0 then (5.4) implies Π
(1)
+ = 0.
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We introduce an auxiliary number3 m, restricted to n ≥ m ≥ 2, that
prescribes the differentiability of K2, and assume the outcome of The-
orem 2.2.

B3: The second order metric perturbation tensors K±
2 satisfy:

B3.1: K±
2 are Cm (in M+ \ C0 and M−, respectively) and bounded every-

where, and in spherical coordinates (dropping ± indices) have the
form

K2 =
(
−4eν(r)h(r, θ) + 2ϖ2(r)r2 sin2 θ

)
dt2 + 4eλ(r)m(r, θ)dr2(5.7)

+ 4k(r, θ)r2
(
dθ2 + sin2 θdϕ2

)
+ 4eλ(r)∂θf(r, θ)rdrdθ

− 2W(r, θ)r2 sin2 θdtdϕ

=: KH
2 +We−νS,(5.8)

where the functions in (5.7) correspond to the traces (in {x, y}) of
the axially symmetric functions with same name, which satisfy
∗ h+,m+, k+ ∈ Cm+1(M+ \ C0) and bounded near C0,
h−,m−, k− ∈ Cm+1(M−)

∗ W+ ∈ Cm(M+ \ C0) and bounded near C0, W− ∈ Cm(M−),
∗ the vectors Wη± are Cm+1(M+ \ C0) and Cm+1(M−) respec-
tively.

∗ f+ ∈ Cm(M+ \ C0) and bounded near C0, f− ∈ Cm(M−), both
f± are Cm+1(Sr) on all spheres Sr, all ∂rf± and ∂tf± are
Cm(Sr) on all spheres Sr, and finally ∂θf± are Cm outside the
axis A and extend continuously to A \ C0 where they vanish.

B3.2: K−
2 solves the second order field equations (4.18) for vacuum and

K+
2 solves the second order field equations (4.18) for a rigidly ro-

tating perfect fluid (4.22) with Ω(1) = Π
(1)
+ and Ω(2) = Π

(2)
+ ∈ R.

B4: The first and second order perturbed matching conditions (c.f. Ap-
pendix B) hold on Σ. Moreover we assume [ϖ] = 0.

Remark: The first order perturbed matching conditions demand
[ϖ] = b1 ∈ R (see Proposition B.1). By Proposition 2.5 a first or-
der gauge transformation with V +

1 = C+t∂ϕ changes ϖ+ → ϖ+ − C+.
Given that C− has already been fixed to zero, the condition [ϖ] = 0 is
fulfilled if and only if C+ is chosen to be C+ = b1. We conclude that
(i) the assumption [ϖ] = 0 entails no loss of generality, and (ii) that

3This parameter is not to be confused with the function m. The context will
clarify the intended meaning.
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this condition together with boundedness at infinity fixes completely
the gauge freedom at first order, c.f. Proposition 2.5.

B5: The perfect fluid satisfies the background barotropic equation of state.

Some additional remarks are in order. We first stress that we do not
assume equatorial symmetry. The assumption of boundedness on K2 will
not play any role until we tackle the global problems in Section 6. Finally,
proving that B2.1 and B2.2 hold necessarily, and that there exist indeed
solutions of (5.4) in C2([0, a)) ∩ Cn+2((0, a)), will be part of the bootstrap
argument.

Observe that the full set of gauge transformations compatible with the
base scheme is given by Proposition 2.5, restricted to C+ = C− = 0, or, in
the Notation 2.7, the class {Ψ(A,B,Y, α)}.

We introduce at this point some relevant definitions and notation that
will be useful for both the interior (+) and the exterior (−) problems. Let
D = R3 \ {0}, D+ = Ba \ {0} and D− = D \Ba, where Ba is the ball of
radius a > 0 centered at the origin. Since we deal with interior and exterior
functions that take different values at the boundary we also introduce the
disjoint union D̂ := D+ ⊔D− endowed with the disjoint union topology.
Let {r, θ, ϕ} be standard spherical coordinates on D̂. For each r > 0, we
let Sr := {|x| = r}. Observe both D± contain Sa and that D̂ constains two
copies thereof. We shall use the following notation for the geometry of Sr.

Notation 5.1 (Notation in Sr). We endow Sr with the standard metric
of radius one gS2 = dθ2 + sin2 θdϕ2. We fix the orientation of Sr so that
{∂θ, ∂ϕ} is positively oriented and denote by ηS2 the corresponding volume
form. The Hodge dual on p-forms of (Sr, gS2) is denoted by ⋆S2 and we define
η̄ := gS2(η, ·) i.e. the metrically related one-form of η = ∂ϕ. The covariant
derivative associated to gS2 is D, the corresponding Laplacian is ∆S2 and
tensors on (Sr, gS2) carry capital Latin indices A,B, · · · .

We define Pℓ to be the Legendre polynomial of order ℓ on (Sr, gS2).
More precisely, Pℓ is the only solution invariant under η = ∂ϕ of the eigen-
value problem (∆S2 + ℓ(ℓ+ 1))Pℓ = 0, ℓ ∈ N, with the normalization choice∫
S2 PℓPℓ′ηS2 = 4π

2ℓ+1δℓℓ′ and satisfying Pℓ > 0 on the north pole (defined
by θ = 0). The first three Legendre polynomials are P0 = 1, P1 = cos θ,
P2 =

1
2(3 cos

2 θ − 1). Given any function f : D̂ → R we define the following
‘components’

fℓ(r) :=
2ℓ+ 1

4π

∫

Sr

fPℓηS2 .(5.9)
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We emphasize that the integration is on Sr with the volume form of the
standard round metric of radius one (in particular

∫
Sr

ηS2 = 4π). For func-
tions f independent of ϕ, an alternative equivalent definition is fℓ(r) :=
2ℓ+1
2

∫ π
0 f(r, θ)Pℓ(cos θ) sin θdθ. Whenever the ℓ subindices can lead to con-

fusion, we will also use f(0), f(1), f(2) etc.
We will use the same name for objects F± defined respectively on M±

invariant under ξ and the corresponding objects F± defined on D+ and
D−. Any object F defined on D̂ is said to be composed by {F+, F−} when
F |D± = F±. Viceversa, given {F+, F−} defined on D± we will use F to
refer to the object defined on D̂ whose restriction to D± is F±. For scalar
functions, whenever F+ ∈ Cm1(D+) and F− ∈ Cm2(D−) we will equivalently
write F ∈ Cm1(D+) ∩ Cm2(D−). Moreover, if [F ] = 0 then F is also well
defined on D, and if F ∈ C0(D+) ∩ C0(D−) then F ∈ C0(D). Observe this
extends to any function and any of its (partial) derivatives iteratively. This
notation will also translate to the corresponding intervals on the real line
for the coordinate r.

5.1. Field equations for the base perturbation scheme

In this section we write down explicitly the field equations for the second
order of the base perturbation scheme. More specifically, we develop the
point B3.2 of the base perturbation scheme under assumptions B1 and B2.
We use the results introduced in Section 4 combined with Appendix A, where
we derive with covariant methods the first order perturbed Ricci tensor for
a first order perturbation of the form K1 = wS, with w depending on r, θ.

We start with the first order problem. Expression (4.21) andK1(ξ, ξ) = 0
impose u(1) = Π(1)e−

ν

2 η, where the redefinition of constants Ω(1) → Π(1) has
been made. Thus

(5.10) K1αµu
µ + u(1)α = e−ν/2(Π(1) −ϖ)ηα.

By Proposition A.1 and the notation introduced in Remark A.2, the first

order perturbed Ricci tensor of (5.2) (defined in (4.8)) has the form R
(1)
αβ =

R(ϖe−ν)Sαβ . Inserting into (4.17) shows that the first order Einstein field
equations require

(5.11) E(1) = P (1) = 0.

For the second order problem, it is advantageous to split the second

order Ricci tensor R
(2)
αβ of (5.2) and (5.7) into two terms. Define R

(2)H
αβ as
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R
(2)
αβ computed with KH

2 in (5.8), i.e. R
(2)H
αβ := R

(2)
αβ(W = 0). Then, by virtue

of (4.9) and (4.8) together with Proposition A.1 we have

R
(2)
αβ = R

(2)H
αβ +R(We−ν)Sαβ .(5.12)

As for the right hand side of (4.18), we start by computing the second
order perturbation vector u(2). We use K1(ξ, η) = −ϖ⟨η, η⟩ and K2(ξ, ξ) =
−4eνh+ 2ϖ2r2 sin2 θ, so that (4.22) yields, after the redefinition of constants
Ω(2) → Π(2),

u(2) = e−
3ν

2

(
−2eνh+ (ϖ −Π(1))2r2 sin2 θ

)
ξ + e−

ν

2Π(2)η.(5.13)

One immediately finds

KH
2 αµu

µ + 2K1αµu
(1)µ + u(2)α(5.14)

=
(
2e

−ν

2 h− e−
3ν

2

(
ϖ2 −Π(1)2

)
r2 sin2 θ

)
ξα + e−

ν

2Π(2)ηα.

Inserting (5.10), (5.14) and (5.12) into (4.18) and using Sαµu
µ =

−We−ν/2ηα the second order field equations take the form

R
(2)H
αβ +R(We−ν)Sαβ = e−ν

κ

(
E(2) + P (2)

)
ξαξβ(5.15)

+ κ(E + P )
{(

4e−νh− 2e−2ν
(
ϖ2 −Π(1)2

)
r2 sin2 θ

)
ξαξβ

+e−νΠ(2)Sαβ + 2e−ν(ϖ −Π(1))2ηαηβ

}
+

1

2
κ

(
E(2) − P (2)

)
gαβ

+
1

2
κ (E − P )KH

2 αβ −
1

2
κ(E + 3P )We−νSαβ .

Now, an explicit computation shows that R
(2)H
αβ has vanishing ξ(αηβ) com-

ponent so equation (5.15) splits into two, namely the component along S,
which is

−R(We−ν) + κ(E + P )e−νΠ(2) −
1

2
κ(E + 3P )We−ν = 0,(5.16)
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and the rest

0 = (Eq)αβ :=−R
(2)H
αβ + e−ν

κ

(
E(2) + P (2)

)
ξαξβ

+ κ(E + P )
{(

4e−νh− 2e−2ν
(
ϖ2 −Π(1)2

)
r2 sin2 θ

)
ξαξβ

+2e−ν(ϖ −Π(1))2ηαηβ

}

+
1

2
κ

(
E(2) − P (2)

)
gαβ +

1

2
κ (E − P )KH

2 αβ .(5.17)

In principle, these are nine equations (note (Eq)tϕ ≡ 0 holds identically, by
construction). Two of them, (Eqtt) and (Eqrr), determine E(2) and P (2) al-
gebraically. For the moment we are interested in studying a subset of seven
independent linear combinations which do not involve E(2) nor P (2). Intro-
ducing the notation a, b, · · · := {r, θ} and i, j, · · · := {t, ϕ}, one convenient
such subset is

(5.18)

(Eq)a i = 0, (Eq)rθ = 0,

(Eq)ϕϕ
gϕϕ

−
(Eq)θθ
gθθ

= 0,
(Eq)θθ
gθθ

−
(Eq)rr
grr

= 0.

Before writing them down explicitly, let us introduce the following scalar
functions and discuss their properties,

ĥ := h−
1

2
rν ′f,

v̂ := k + ĥ− f = k + h− f

(
1

2
rν ′ + 1

)
,(5.19)

q̂ := m+ ĥ− e−λ/2
(
eλ/2rf

)
,r = m+ h−

1

2
rf
(
λ′ + ν ′

)
− (rf),r.

Given the differentiability and boundedness properties of the original set
{h,m, k, f} (point B3), and that n ≥ m, we have ĥ, v̂ ∈ Cm(D+) ∩ Cm(D−),
Cm+1(Sr) on all spheres Sr, and bounded near C0, and q̂ ∈ Cm−1(D+) ∩
Cm−1(D−) is also Cm(Sr) on all spheres Sr.

The motivation behind these definitions is their very special gauge be-
haviour, as described in the following lemma. Its proof is by explicit calcu-
lation using the results of Proposition 2.5.
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Lemma 5.2. Under the gauge vector V2 given by (2.16) with R = r the
functions ĥ, v̂, q̂ transform as

ĥg = ĥ+
1

2
A+

1

2
rν ′
(
re−λα′ cos θ − β

)
,(5.20)

v̂g = v̂ +
1

2
A+ α cos θ +

(
re−λα′ cos θ − β

)(
1 +

1

2
rν ′
)
,(5.21)

q̂g = q̂ +
1

2
A+ cos θ

(
1

2
r2e−λα′

(
λ′ + ν ′

)
+ (r2e−λα′)′

)
(5.22)

−

(
1

2
rβ(λ′ + ν ′) + (rβ),r

)
,

where β(r) is the arbitrary function that enters f in (2.20).

Note that the gauge function Y has disappeared from these transforma-
tions so that ĥ, v̂ and q̂ go a long way towards being gauge invariant. The
remaining gauge transformation is fully explicit in the variable θ. This will
be important in the following.

We can now write down explicitly equations (5.16) and (5.18). The first
set involves a long computation which has been carried out with the aid
of computer algebra systems. As for the second, its explicit form can be
obtained directly from (A.7) after taking into account that λξ and λη, as
defined in Proposition A.1 take the form

Rαβξ
β = −

κ

2
(E + 3P ) ξα, Rαβη

β =
κ

2
(E − P ) ηα

=⇒ λξ = −
κ

2
(E + 3P ) , λη =

κ

2
(E − P )

=⇒ λξ + λη = −2κP.

The result is

Lemma 5.3. In the setup described above, the field equations (5.16) and
(5.18) take, respectively, the following explicit form

∂

∂r

(
r4j

∂W

∂r

)
+
r2jeλ

sin3 θ

∂

∂θ

(
sin3 θ

∂W

∂θ

)
+ 4r3j′(W −Π(2)) = 0,(5.23)
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and

0 = (Eq)ai ≡ 0,(5.24)

0 = (Eq)rθ ≡
∂

∂θ

(
2

r
q̂ − 2v̂,r + (q̂ − 2ĥ)ν ′

)
,(5.25)

0 =
(Eq)ϕϕ
gϕϕ

−
(Eq)θθ
gθθ

(5.26)

≡ −e−(λ+ν)r sin2 θ
(
rϖ′2 + 2

(
λ′ + ν ′

)
(ϖ −Π(1))2

)

+
2

r2

(
q̂,θθ −

cos θ

sin θ
q̂,θ

)
,

0 =
(Eq)θθ
gθθ

−
(Eq)rr
grr

(5.27)

≡ 2e−λv̂,rr −
2

r2
∆S2 v̂ − e−λ(ν ′ + λ′)v̂,r −

4

r2
v̂

+ 4e−λν ′ ĥ,r − e−λ

(
ν ′ +

2

r

)
q̂,r +

2

r2

(
cos θ

sin θ
q̂,θ + 2q̂

)

− e−(λ+ν)r2 sin2 θϖ′2.

Remark 5.4. Equation (5.23) includes vacuum as a particular case. As in
the remark after B2.2, the constant Π(2) is irrelevant in the vacuum region

M− (where j′ = 0). Without loss of generality, we shall set Π
(2)
− = 0 in M−.

Remark 5.5. The fundamental underlying reason that will allow us to
close the bootstrap argument below is the decoupling of equation (5.23),
which only involves W, and the system (5.24)–(5.27), which only involves
the rest of terms in K2, that is K

H
2 .

Remark 5.6. Since the second order Einstein field equations reduce to the
first order equations when K1 = 0, it follows from this lemma that the field
equations (4.17) for (5.2) are equivalent to (5.4) plus (5.11).

Remark 5.7. The requirement m ≥ 2 in the bootstrap hypothesis B3.1
allows us to work with classical solutions of (5.24)–(5.27) because, as dis-
cussed after (5.19), ĥ±, v̂± are C2(D±), q̂± is C1(D±) and all of them are
C2(Sr) on each sphere Sr.

Remark 5.8. For later use we introduce the notation

fω(r) :=
1

6
e−(λ+ν)r3

(
rϖ′2 + 2

(
λ′ + ν ′

)
(ϖ −Π(1))2

)
,(5.28)
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which arises in the inhomogeneous term in (5.26).

Equation (5.26) is a second order linear ODE in θ for the function q̂ and
can be explicitly integrated. Its general solution is

q̂(r, θ) = q̂0(r) + q̂1(r)P1(cos θ) + fω(r)P2(cos θ),

where q̂0(r) and q̂1(r) are free functions of r. We show next that q̂1(r) is
pure gauge, i.e. that it can be set to zero by a suitable choice of gauge
transformation (5.22). In terms of the functions

b(r) := r2e−λα′, c(r) := rβ,(5.29)

the gauge transformation law of q̂ (5.22) takes the form

q̂g = q̂ +
1

2
A+ P1(cos θ)

(
b

2

(
λ′ + ν ′

)
+ b′

)
−
( c
2
(λ′ + ν ′) + c′

)
.

We impose that b(r) solves the ODE

(5.30)
b

2
(λ′ + ν ′) + b′ = −q̂1,

so that q̂g becomes q̂g = q̂0 + fωP2(cos θ). Dropping the superindex g one
has

(5.31) q̂ = q̂0(r) + fω(r)P2(cos θ),

and we have proved that q̂1(r) can be gauged away, as claimed. The remain-
ing gauge freedom is given by the general solution of the homogeneous part
of (5.30), i.e.

b = b0e
− 1

2
(λ+ν), b0 ∈ R.

which, in terms of α(r) is (by the definition of b(r) in (5.29))

(5.32) α′ =
b0
r2
e

1

2
(λ−ν).

This residual gauge will be used later to simplify v̂.
We now insert q̂ from (5.31) into equations (5.25) and (5.27) and perform

a trivial integration in θ in the first one, which introduces an arbitrary
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function σ(r),

0 =

(
2

r
+ ν ′

)
(q̂0 + fωP2(cos θ))− 2v̂,r − 2ĥν ′ + σ(r)ν ′,(5.33)

0 = 2e−λv̂,rr −
2

r2
∆S2 v̂ − e−λ(ν ′ + λ′)v̂,r −

4

r2
v̂ + 4e−λν ′ ĥ,r(5.34)

− e−λ

(
ν ′ +

2

r

)(
q̂0

′ + fω
′P2(cos θ)

)
+

2

r2
(2q̂0 − fω)

−
2

3
e−(λ+ν)r2ϖ′2(1− P2(cos θ)).

Equation (5.33) determines ĥ algebraically (recall that ν ′ is nowhere zero
outside the centre). Inserting the result into (5.34) yields

r2v̂,rr +
1

2
r2
(
λ′ + ν ′ − 4

ν ′′

ν ′

)
v̂,r + eλ∆S2 v̂ + 2eλv̂(5.35)

= F0(r) + F2(r)P2(cos θ),

where we have introduced

F0(r) := −2q̂0

(
rν ′′

ν ′
+ 1− eλ

)
+ q̂′0

(
r +

1

2
r2ν ′

)
(5.36)

−
1

3
e−νr4ϖ′2 − eλfω + r2σ′ν ′,

F2(r) := fω
′

(
r +

1

2
r2ν ′

)
− 2fω

rν ′′

ν ′
+

1

3
e−νr4ϖ′2 − 2fω,(5.37)

and recall fω is defined in (5.28).
For later use, let us find the most general solution of the homogenous

part of (5.35) (i.e. with F0 = F2 = 0) with the form v̂ =W (r)P1(cos θ). It
is immediate that this will be a solution iff

(5.38) 2W ′′ +

(
λ′ + ν ′ −

4ν ′′

ν ′

)
W ′ = 0.

This is a second order ODE that can be trivially integrated once. However,
finding the general solution is a harder problem, which we address by ex-
ploiting the gauge behaviour of v̂ described in (5.21). Consistency of the
whole construction requires that the gauge transformation (5.21) restricted
to A = β(r) = 0 and α(r) satisfying (5.32) must transform solutions of (5.35)
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into solutions. The ℓ = 1 component of any such solution must solve the ho-
mogeneous PDE. The gauge transformation above preserves the ℓ = 1 char-
acter of the function, so it produces another solution of the same homoge-
neous PDE. In other words, a solution W (r) of (5.38) transforms under this
gauge into another solution W g(r). This is true in particular for W (r) = 0,
which is an obvious solution. Summing up, for any function γ(r) satisfying

γ′ =
b0
r2
e

1

2
(λ−ν)(5.39)

it must be the case that the function

W (r) =

(
γ(r) +

b0
r
e−

1

2
(λ+ν)

(
1 +

1

2
rν ′
))

(5.40)

solves (5.38). It is a matter of direct computation to confirm that this is
indeed the case. We still need to show that (5.40) is the general solution.
Given that the expression involves two arbitrary constants, namely an addi-
tive intregration constant γ0 in (5.39), and b0, we need to make sure that it
contains two linearly independent solutions. One solution is γ(r) = γ0 ∈ R,
b0 = 0, so it suffices to check that the solution with b0 ̸= 0 is not constant.
Computing the derivative of (5.40) and using the background field equa-
tion (3.12) yields

W ′ = −
b0
2
e−

1

2
(λ+ν)(ν ′)2,

which is not identically zero when b0 ̸= 0. We conclude that indeed (5.40) is
the general solution of (5.38), and moreover, that it is regular everywhere.

Take now an arbitrary solution v̂ of (5.35). We define v̂⊥ by means of

v̂(r, θ) := v̂0(r) + v̂1(r)P1(cos θ) + v̂2(r)P2(cos θ) + v̂⊥(r, θ),

where v̂0(r), v̂1(r), v̂2(r) are the components defined as in (5.9). As men-
tioned, v̂1(r)P1(cos θ) necessarily satisfies the homogeneous part of equation
(5.35), so there must exist γ(r) solving (5.39) such that v̂1(r) =W (r) as
given in (5.40). Apply now the gauge transformation (5.21) with α(r) =
−γ(r). The transformed function v̂g reads

v̂g(r, θ) = v̂0(r) + v̂1(r) cos θ + v̂⊥(r, θ) +
1

2
A−W (r)− β

(
1 +

1

2
rν ′
)

= v̂0(r) +
1

2
A− β

(
1 +

1

2
rν ′
)
+ v̂2(r)P2(cos θ) + v̂⊥(r, θ).(5.41)
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To sum up, we have found a gauge transformation of the form (2.16)
that gets rid of the ℓ = 1 terms of both q̂(r, θ) and v̂(r, θ). This choice fixes
completely the function α(r), so the remaining gauge freedom is encoded in
the constants A,B and the functions β(r),Y(r).

So far, we have ignored the perturbed field equations involving P (2)

and E(2). The following proposition summarizes the previous results and
incorporates the information on P (2) and E(2) needed later.

Proposition 5.9. Assume B1-B3 in the base perturbation scheme. Then,
u(2) is given by (5.13) and equation (Eq)tϕ = 0 is equivalent to (5.23). In
addition, there is a class of gauges {Ψ(A,B,Y)}, c.f. Notation 2.7, for which
the remaining Einstein field equations for a perfect fluid (including vacuum)
to second order are satisfied if only if, in terms of the functions defined
in (5.19),

q̂(r, θ) = q̂0(r) + fω(r)P2(cos θ),(5.42)

v̂(r, θ) = v̂0(r) + v̂2(r)P2(cos θ) + v̂⊥(r, θ),(5.43)

ĥ(r, θ) =
1

2
σ(r)−

v̂,r
ν ′

+

(
1

rν ′
+

1

2

)
(q̂0 + fωP2(cos θ)) ,(5.44)

with fω(r) given explicitly by (5.28), where q̂0(r), σ(r) are free functions and
v̂0, v̂2, v̂⊥ satisfy

r2v̂0
′′ +

1

2
r2
(
λ′ + ν ′ − 4

ν ′′

ν ′

)
v̂0

′ + 2eλv̂0 = F0(r),(5.45)

r2v̂2
′′ +

1

2
r2
(
λ′ + ν ′ − 4

ν ′′

ν ′

)
v̂2

′ − 4eλv̂2 = F2(r),(5.46)

r2v̂⊥,rr +
1

2
r2
(
λ′ + ν ′ − 4

ν ′′

ν ′

)
v̂⊥,r + eλ∆S2 v̂⊥ + 2eλv̂⊥ = 0,(5.47)

with F0 and F2 explicitly given by (5.36)–(5.37).
Moreover, the second order perturbed pressure P (2) and energy-density

E(2) are determined algebraically from the previous functions and have the
explicit forms

P (2) = F
(2)
P (r) +

4

ν ′
P ′

(
1

2
frν ′ + ĥ+

1

3
e−νr2(ϖ −Π(1))2P2(cos θ)

)
,(5.48)

E(2) = F
(2)
E (r) +

4

ν ′
E′

(
1

2
frν ′ + ĥ+

1

3
e−νr2(ϖ −Π(1))2P2(cos θ)

)
,(5.49)
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where

F
(2)
P := 2(E + P )

(
I +

1

3
e−νr2(ϖ −Π(1))2

)
,(5.50)

F
(2)
E := −

4

ν ′

{
(E + P )I ′ + E′

(
I +

1

3
e−νr2(ϖ −Π(1))2

)}
,(5.51)

2κ(E + P )I :=
2

r2
q̂0 + κ(E + 3P )σ + e−λσ′ν ′ −

4

r2
fω.

(5.52)

Remark 5.10. Expressions (5.48)–(5.51) also hold in vacuum (i.e. when
E = P = E(2) = P (2) = 0). In this case, (5.48) with (5.50) and (5.52) imply

2

r2
q̂0 + e−λσ′ν ′ −

4

r2
fω = 0.(5.53)

Conversely, one easily checks that if P = E = 0 and (5.53) holds then P (2) =
E(2) = 0.

Proof. All the statements not involving P (2) or E(2) have been already es-
tablished except for (5.44), which is a direct consequence of (5.33), and the
equivalence of the PDE (5.35) with (5.45)–(5.47), which is a direct conse-
quence of the splitting (5.43).

The two remaining field equations in (5.17), namely (Eq)rr and (Eq)tt
provide explicit algebraic expressions for P (2) and E(2). The resulting expres-
sions can be rewritten in the form given in (5.48)–(5.49) with the definitions
below them. □

Remark 5.11. For this proposition the perturbation of the fluid has not
been assumed to satisfy any barotropic equation of state.

5.1.1. Barotropic equation of state. In this subsection we analyse as-
sumption B5, namely that the perfect fluid satisfies the equation of state of
the background. This assumption yields an additional constraint affecting
only the ℓ = 0 sector in the interior region.

The existence of a barotropic equation of state is equivalent to de-
mand (4.24). Since P (1) = E(1) = 0 in the “base” scheme, this is simply

(5.54) P (2)E′ − E(2)P ′ = 0.

Given the expressions (5.48)–(5.49), this, in turn, is equivalent to F
(2)
P E′ −

F
(2)
E P ′ = 0. From the explicit forms (5.50)–(5.51) and recalling that ν ′ =
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−2P ′/(E + P ), see (3.12), it follows that

F
(2)
P E′ − F

(2)
E P ′ = −2(E + P )2I ′.

Thus, the barotropic equation of state yields a first integral I = I0 ∈ R, or
explicitly

2

r2
q̂0 + κ(E + 3P )σ + e−λσ′ν ′ −

4

r2
fω = 2I0κ(E + P ),(5.55)

which provides an algebraic equation for q̂0 in terms of background and first
order quantities as well as the free function σ(r). The derivation has been
done in the interior domain D+. However, by Remark 5.10 this equation
also holds in D− for any constant I−

0 . Following our convention, we set
I0 := {I+

0 , I
−
0 } and work with both domains at the same time.

In terms of I0, expressions (5.50)–(5.51) simplify to

F
(2)
P = 2(E + P )

(
I0 +

1

3
e−νr2(ϖ −Π(1))2

)
,(5.56)

F
(2)
E = −

4

ν ′
E′

(
I0 +

1

3
e−νr2(ϖ −Π(1))2

)
.(5.57)

Observe that these expressions only involve background and first order quan-
tities. Replacing back into (5.50) and (5.51), we can also simplify P (2) and
E(2). It is convenient to write them in terms of the original (non-hatted)
function h (see (5.19)). The result is

P (2) = −2(E + P )

(
h− I0 +

1

3
e−νr2(ϖ −Π(1))2 (P2(cos θ)− 1)

)
,(5.58)

E(2) =
4

ν ′
E′

(
h− I0 +

1

3
e−νr2(ϖ −Π(1))2 (P2(cos θ)− 1)

)
.(5.59)

Under a change of gauge in {Ψ(C;A,B,Y, α)}, i.e. (2.15) and (2.16),
h changes as (2.17), while P (2), taking into account that P (1) = 0, does as
P (2)g = P (2) − Yν ′(E + P ), c.f. (4.23). Substracting equation (5.58) and its
gauged counterpart we thus have

Yν ′(E + P ) = P (2) − P (2)g = 2(E + P ) (hg − h− Ig
0 + I0)

= 2(E + P )

(
1

2
A+

1

2
Yν ′ − Ig

0 + I0

)
.
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Therefore, because Ec + Pc ̸= 0 by assumption, the first integral in the in-
terior I+

0 is gauged transformed by

(5.60) I+
0
g = I+

0 +
1

2
A+.

Since ϖ+(r) ∈ C2([0, a]) and h+ ∈ Cm+1(M+ \ C0) and bounded near
C0, it follows that P (2) is also bounded near the centre and, as long as the
limit of h at r = 0 exists it holds

(5.61) lim
r→0

P (2) = 2(Ec + Pc)
(
I+
0 − lim

r→0
h
)

if lim
r→0

h exists.

Let us advance here the limit of h will exist as a consequence of the field
equations. This will be discussed in Section 6.3.

Tackling the problem for the ℓ = 0 sector means taking care of the func-
tions v̂0(r), q̂0(r) and σ(r). From Proposition 5.9, v̂0, σ must satisfy (5.45)
with (5.36) and the barotropic EOS forces q̂0 to satisfy (5.55) in both do-
mains D±. The key is to introduce a change of unknowns and replace the
pair {v̂0(r), σ(r)} in terms of two functions {δ(r), ς(r)} by means of

v̂0 =
1

2
δ
(
2 + rν ′

)
+ I0,(5.62)

ν ′rσ + 2eλ
(
δ + ς

1

2 + rν ′

)
= I0(rν

′ − 2).(5.63)

This change of functions is invertible because 2 + rν ′ = 1 + eλ(1 + r2κP )
by (3.11) and the right-hand side is everywhere positive.

The function q̂0 is obtained from the barotropic EOS condition (5.55).
In terms of the new variables and replacing also E,P from the background
equations (3.10)–(3.11) this gives

(5.64) q̂0 =
1

2
rδ(λ′ + ν ′) + (rδ)′ + I0 + ς

ν ′2r2 + 2eλ

(2 + rν ′)2
+ ς ′

r

2 + rν ′
+ 2fω.

We now insert this in (5.45) and apply the change (5.62) and (5.63). A long
but straightforward calculation that uses (3.12) and (5.28) gives

r2ς ′′ +
1

2
r2
(
ν ′ + λ′ − 4

ν ′′

ν ′

)
ς ′ + 2eλς(5.65)

= −r3e−ν
(
2(λ′ + ν ′)(ϖ −Π(1))2 −ϖ′2r

)
− 4F2,

where F2 was given in (5.37).
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Equation (5.65) is remarkable for several reasons. First of all it involves
only the unknown function ς(r) (this means that the function δ(r) is com-
pletely unrestricted). Moreover, the homogeneous part of the equation is
identical to the one in (5.45) in terms of v̂0. This is quite unexpected, given
the rather involved change of functions (5.62)–(5.63). Moreover, the inhomo-
geneous term in (5.65) involves only background and first order quantities,
unlike (5.45) which also involves unknowns. It is also interesting that this in-
homogeneous term is directly related to F2(r), which appeared in the ℓ = 2
sector of the equations.

This equation for ς is the key object that will allow us in Section 6.3 to
obtain existence and uniqueness of the barotropic base scheme.

5.2. Matching conditions for the base perturbation scheme

In this section we find the necessary and sufficient conditions that the base
perturbation scheme must satisfy so that the second order perturbed match-
ing conditions at the boundary of the fluid ball are satisfied. The perturbed
matching conditions derived in [4, 27] (first order) and [22] (second order)
are summarized and explained in Appendix B, where we also determine the
most general matching conditions in a spherically symmetric static back-
ground with two regions, as defined in 3.1, for a first perturbation tensor
K1 = −2R2ω(r, θ)dtdϕ and K2 of the general form (5.7). The results are
purely geometric and do not rely on any field equations. Moreover, they
extend the matching conditions obtained in [33] in that the matching hy-
persurface Σ is not assumed to be axially symmetric, and are in turn gener-
alised to a still unfixed function R(r). Throughout this section we use the
notation of Appendix B.

The base perturbation scheme fits into the setup of Appendix B as the
particular case where ω(r, θ) = ϖ(r), R(r) = r and matching hypersurface
Σ located at r+ = r− = a. Proposition B.1 states that ϖ must satisfy

[ϖ] = b1, b1 ∈ R,
[
ϖ′
]
= 0.(5.66)

Let us recall that in the base scheme we have further fixed the first order
gauges so that b1 = 0.

In addition, the first order deformation functions Q±
1 (τ, ϑ, φ) on either

side satisfy the conditions listed in (B.12). The explicit forms of Λ1 and Λ2,
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defined in (B.11), are

Λ1 =
1

2
eν−λ

(
ν ′′ +

1

2
ν ′
(
ν ′ − λ′

))
, Λ2 =

1

2
re−λλ′.

Therefore the conditions (B.12) in our present setup become

[Q1] = 0, Q1[λ
′] = 0 Q1[ν

′′] = 0,(5.67)

after using that n = −e−
λ

2 ∂r and that the background matching conditions
are [r] = [ν] = [λ] = [ν ′] = 0 (see (3.19)). Moreover, by (3.21)–(3.22)) these
equations are equivalent to

(5.68) [Q1] = 0, Q1[E] = 0.

The second order matching conditions for the base perturbation scheme
are obtained from Proposition B.7 with ω(r, θ) = ϖ(r) and R(r) = r. It
follows

Q2
1[n(Λ2)] = Q2

1

[
1

2
e−3λ/2

(
−rλ′′ + λ′(rλ′ − 1)

)]
= −

a

2
e−3λ(a)/2Q2

1[λ
′′],

where we used (5.67) (and the obvious fact that Q2
1[a] = Q2

1[b] = 0 =⇒
Q2

1[ab] = 0). By a slightly longer, but analogous, calculation one finds

Q2
1

[
ν ′

r
n(Λ2) +

2

eν
n(Λ1)

]
= −e−3λ(a)/2Q2

1[ν
′′′].

Using this and rewriting {h, k,m} in terms of {v̂, ĥ, q̂} as defined in (5.19),
all the terms involving f in the matching conditions (B.42)–(B.49) drop out.
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The result is

[Ξ] = aeλ(a)/2 (2c0 + (2c1 +H1) cosϑ) ,(5.69)

[W] = D3,(5.70)

[W,r] = 2e−λ(a)/2Q1[ϖ
′′],(5.71)

[v̂ − ĥ] = c0 + c1 cosϑ,(5.72)

[ĥ] =
1

2

(
H0 + aν ′(a)c0

)
+

1

4
aν ′(a) (H1 + 2c1) cosϑ,(5.73)

[
q̂ + ĥ− 2v̂ − r(v̂ − ĥ),r

]
(5.74)

=

(
H1 −

1

2
eλ(a) (2c1 +H1)

)
cosϑ

+
1

2

[
Ξe−λ/2

(
λ′

2
−

1

r

)]
−

1

4
e−λ(a)Q2

1

[
λ′′
]
,

− [ĥ,r] +
aν ′(a)

2
[v̂,r − ĥ,r] + ν ′(a)

(
1−

aν ′(a)

2

)
[v̂ − ĥ](5.75)

= −
1

2
ν ′(a)

((
1−

aν ′(a)

2

)
H1 −

1

2
eλ(a) (2c1 +H1)

)
cosϑ

−
1

4

[
Ξe−λ/2

(
ν ′′ + ν ′2 −

ν ′

r

)]
+

1

4
e−λ(a)Q2

1

[
ν ′′′
]
.

Specifically, Proposition B.7 states that the matching conditions are satisfied
if and only if there exist constants c0, c1, H0, H1 and D3 and functions Ξ±

on Σ such that (5.69)–(5.75) hold. So far no field equations have been used.
In the next proposition we determine the matching conditions when the field
equations hold.

Proposition 5.12 (Perturbed matching). Assume the setup of the base
perturbation scheme (B1-B3). Restrict to the class of gauges {Ψ(A,B,Y)},
c.f. Notation 2.7, at both sides M+ and M− so that the results of Proposi-
tion 5.9 hold.

Then the second order matching conditions across Σ = {r = a} are sat-
isfied if and only if there exists contants D3, c0, H0 such that

[W] = D3,(5.76)

[W,r] = 0,(5.77)

[v̂] =
H0

2
+

(
1 +

aν ′(a)

2

)
c0,(5.78)
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[v̂,r] =

(
1

a
+
ν ′(a)

2

)(5.79)

×

(
[q̂0]−

H0

2
+

1

3
e−ν(a)a4κE+(a)(ϖ+(a)−Π(1))2P2(cosϑ)

)

−

(
eλ(a)

a
+

1

2
aν ′(a)2

)
c0,

[σ] =

(
1

2
−

1

aν ′(a)

)
H0 −

2eλ(a)

aν ′(a)
c0,(5.80)

[σ′] =
1

2
κQ2

1E
′
+(a)−

2eλ(a)

a2ν ′(a)
[q̂0] provided E+(a) = 0.(5.81)

Remark 5.13. Note that in the case E+(a) = 0 and E′
+(a) ̸= 0, the match-

ing condition (5.81) forces the first order deformation function Q1 to be a
constant on Σ.

Proof. We start by computing the linear combination 2a(5.75) + (2 +
aν ′(a))(5.74). This is advantageous because the factor involving Ξ becomes,
after inserting ν ′′ from the background equation (3.12),

a

2

[
Ξe−λ/2

(
−ν ′

(
1

r
+
ν ′

2

)
+

2eλ − 4

r2

)]

= e−λ/2

(
−
ν ′

2

(
1 +

rν ′

2

)
+
eλ − 2

r

)∣∣∣∣
r=a

[Ξ] ,

the equality being true because the term in parenthesis is continuous across
Σ. Another simplification occurs with the terms involving Q2

1, which become

a

2
e−λ(a)Q2

1

[
ν ′′′ −

(
1

r
+
ν ′

2

)
λ′′
]
,

and this is zero as a consequence of (3.24). The explicit form of the linear
combination is

(2 + aν ′(a))[q̂ − v̂] +
(
2− aν ′(a) + a2ν ′2(a)

)
[ĥ− v̂]− 2a[v̂,r](5.82)

=

((
2 +

r2ν ′2

2

)
H1 − eλ(2c1 +H1)

)∣∣∣∣
r=a

cosϑ

+ e−λ/2

(
−
ν ′

2

(
1 +

rν ′

2

)
+
eλ − 2

r

)∣∣∣∣
r=a

[Ξ].
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Thus, the matching conditions to be satisfied are (5.69)–(5.74) and (5.82).
In all of them ĥ and q̂ are to be understood as short-hands of the explicit
expressions given in (5.42) and (5.44).

We next show the necessity of (5.76)–(5.78). There is nothing to prove
in (5.76). For (5.77) we need to determine [ϖ′′]. Since λ′− + ν ′− = 0 and
[ϖ′] = 0 we compute from (5.4)

[ϖ′′] = (λ′+ + ν ′+)

(
1

2
ϖ′

+ +
2

a
(ϖ+ −Π(1))

)
= [λ′]

(
1

2
ϖ′

+ +
2

a
(ϖ+ −Π(1))

)
.

Since Q1[λ
′] = 0, (5.77) follows at once from (5.71). For the rest of expres-

sions, we first observe that neither v̂ − ĥ nor ĥ have terms ℓ = 1 in the
decompositions (5.43) and (5.44). Thus (5.72) and (5.73) force c1 = H1 = 0.
Expression (5.78) is then an immediate consequence of (5.72) and (5.73).
Concerning (5.79), we substitute (5.69), (5.72), (5.73) into (5.82) to find

[v̂,r] =

(
1

r
+
ν ′

2

)∣∣∣∣
r=a

(
[q̂]−

H0

2

)
−

(
eλ

r
+

1

2
rν ′2

)∣∣∣∣
r=a

c0,

and this transforms into (5.78) after inserting q̂ = q̂0 + fωP2(cos θ)) and
computing the jump of fω from its explicit expression in (5.28) as

[fω] =
1

6
e−(λ(a)+ν(a))a3

(
a[ϖ′2] + 2

[
(λ′ + ν ′)(ϖ −Π(1))2

])

=
1

3
eλ(a)a4κE+(a)(ϖ+(a)−Π(1))2,(5.83)

where in the second equality we used [ϖ′] = 0 as well as the general iden-
tity [AB] = A+[B] +B−[A] applied to A = (ϖ −Π(1))2 and B = λ′ + ν ′, to-
gether with (3.21) and λ′− + ν ′− = 0. Expression (5.80) is obtained directly

from (5.73) after taking into account that ĥ is given by (5.44) and [v̂,r] has
already been computed.

Finally, we establish (5.81). First of all we take the radial derivative of
ĥ defined in (5.44) and replace v̂,rr from (5.34) to obtain

ĥ,r = −
σ′

2
+

eλ

r2ν ′
(∆S2 v̂ + 2v̂)−

v̂,r
2ν ′

(
2ν ′′

ν ′
− (λ′ + ν ′)

)
(5.84)

+
1

rν ′

(
1

r
+
ν ′′

ν ′

)
(q̂0 + fωP2)−

eλ

r2ν ′
(2q0 − fω)

+
e−ν

3ν ′
r2ϖ2

r(1− P2).
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Under the assumption [E] = 0, we have [ν ′′] = 0 and [λ′] = 0 (cf. (3.21) and
(3.22)). This implies that no term in (5.74) involves jumps of products with
two or more discontinuous factors. For instance, the term involving Ξ is

1

2

[
Ξe−λ/2

(
λ′

2
−

1

r

)]
=

(
aλ′(a)

2
− 1

)
c0.

Inserting (5.84) into (5.74) one can solve for [σ′]. A straightforward, if
somewhat long calculation, yields (5.81) after using (5.78)–(5.80), as well as
[λ′′] = aeλ(a)κE ′

+(a), cf. (3.23), and

λ′±(a) = −ν ′±(a) = a−1(1− eλ(a)),

which is a consequence of the background field equations (3.10)–(3.11) under
E+(a) = 0.

This proves the “only if” part of the proposition. To show sufficiency we
only need to care about (5.74) when [E] ̸= 0, as this is the only equation left
out. We now have [λ′] ̸= 0 and hence the term involving Ξ in (5.74) becomes,
after applying again the identity [AB] = A+[B] +B−[A],

1

2

[
Ξe−λ/2

(
λ′

2
−

1

r

)]
=

1

2
[Ξ]e−λ(a)/2

(
λ′+(a)

2
−

1

a

)
+
e−λ(a)/2

4
[λ′]Ξ−.

Thus, equation (5.74) can be solved for Ξ− and hence imposes no additional
restrictions on the matching. This concludes the “if” part of the proposition.

□

6. Existence and uniqueness results of the “base” second

order global problem

We start by proving the following global decomposition result, for which we
use the analytic results discussed in Appendices C and D. This proposition
will be used later in several circumstances.

Proposition 6.1. Let D = R3 \ {0}, D+ = Ba \ {0} and D− = D \Ba,
where Ba is the ball of radius a > 0 centered at the origin. Let {r, θ, ϕ}
be standard spherical coordinates on D. Consider û ∈ C2(D+) ∩ C2(D−) ∩
C1(D), invariant under η = ∂ϕ and satisfying the PDE

r2û,rr + rA(r)û,r + V (r) (∆S2 û+ γ(r)û) = 0(6.1)

on D+ and D−. Assume that the functions V (r), γ(r), A(r) satisfy



✐

✐

“9-Mars” — 2024/1/2 — 18:37 — page 2770 — #52
✐

✐

✐

✐

✐

✐

2770 M. Mars, B. Reina, and R. Vera

(i) V (r) ≥ 0, γ(r) is bounded from above,

(ii) the parts V −(r), γ−(r), A−(r) are C1([a,∞)) functions and V +(r),
γ+(r), A+(r) extend to the origin as C1([0, a]) functions.

(iii) the following limits exist and are finite

lim
r→0

V +(r) = V0, lim
r→∞

V −(r) = V∞,

lim
r→0

A+(r) = a0, lim
r→∞

A−(r) = a∞,(6.2)

lim
r→0

γ+(r) = γ0, lim
r→∞

γ−(r) = γ∞,

with V0 > 0 and V∞ > 0.

Suppose, in addition, that û is bounded in D. Define γ
max

:= supD γ.
Then the following holds:

• If γ
max

< 0 then û = 0.

• If γ
max

≥ 0 define ℓ
max

as the largest natural number satisfying ℓ(ℓ+
1) ≤ γ

max
. Then there exist functions ûℓ(r) ∈ C2((0, a]) ∩ C2([a,∞)) ∩

C1(0,∞) ∩ L∞(0,∞) with ℓ ∈ {0, · · · , ℓ
max

} such that

û(r, θ) =

ℓmax∑

ℓ=0

ûℓ(r)Pℓ(cos θ).(6.3)

Proof. For all ℓ ∈ N ∪ {0} define ûℓ(r) :=
2ℓ+1
4π

∫
S2 ûPℓηS2 . It is clear that this

function is C2 on I+a := (0, a] as well as on I−a := [a,∞). It is also C1 on
(0,∞). On I±a we compute

r2
d2ûℓ
dr2

+ rA(r)
dûℓ
dr

+ V (r) (γ(r)− ℓ(ℓ+ 1)) ûℓ

=
2ℓ+ 1

4π

∫

S2

(
r2û,rr + rA(r)û,r + V (r)(γ(r)− ℓ(ℓ+ 1))û

)
PℓηS2

=
2ℓ+ 1

4π

∫

S2

−V (r) (∆S2 û+ ℓ(ℓ+ 1)û)PℓηS2 = 0,

where in the second equality we used the PDE (6.1) and in the last one we
integrated by parts twice and used ∆S2Pℓ = −ℓ(ℓ+ 1)Pℓ. Thus, ûℓ satisfies
the following ODE on I±a

r2
d2ûℓ
dr2

+ rA(r)
dûℓ
dr

+ V (r) (γ(r)− ℓ(ℓ+ 1)) ûℓ = 0.(6.4)
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Boundedness of û on D implies that ûℓ(r) is bounded on (0,∞). It suffices
to apply Theorem D.3 to the problem for {û+ℓ , û

−
ℓ } with

b0 = V0(γ0 − ℓ(ℓ+ 1), b∞ = V∞(γ∞ − ℓ(ℓ+ 1)),

F± = 0 and d0 = d1 = 0 to ensure that if b0, b∞ < 0 then the only bounded
solution is the trivial one. Restrict ℓ to satisfy ℓ > ℓ

max
. Since, by definition of

supremum, γ
max

≥ γ0 and γ
max

≥ γ∞ it follows ℓ(ℓ+ 1) > γ0 and ℓ(ℓ+ 1) >
γ∞ and thus b0, b∞ < 0 because V0, V∞ > 0 by assumption. To sum up, if
ℓ > ℓ

max
then û±ℓ = 0.

At any r > 0, the function û|Sr
is C2 and invariant under ∂ϕ. Thus, it

can uniquely decomposed as

û|Sr
=

∞∑

ℓ=0

ûℓ(r)Pℓ

where convergence is in L2. All terms after ℓ
max

are zero, so convergence is
also pointwise and we conclude that û takes the form

û(r, θ) :=

ℓmax∑

ℓ=0

ûℓ(r)Pℓ(cos θ)

as claimed in the Proposition. □

Remark 6.2. It is clear from the proof that the condition that û is inde-
pendent of ϕ can be dropped, at the expense that the decomposition in this
case is in terms of all spherical harmonics of order ℓ ≤ ℓ

max
and not just the

Legendre polynomials.

6.1. Global problem for W: existence and uniqueness

In this subsection we study the existence, uniqueness and structural prop-
erties of the function W, which is restricted to be bounded and satisfy the
PDE (5.23) on each side M± together with the matching conditions (5.76)
and (5.77).

By item B3.1 of the base perturbation scheme the one-form Wη̄ ∈
Cm+1(D+) ∩ Cm+1(D−) with m ≥ 2 and hence on each Sr. We use the
terminology introduced in Notation 5.1. By the Hodge decomposition on
the sphere, there exist two functions τ,G on each Sr satisfying (recall that
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Π(2) = 0 on D−)

(W −Π(2))η̄ = dH+ ⋆S2dG.(6.5)

Since DA((W −Π(2))ηA) = η(W) = 0, the function H is constant on each
Sr, and can be set to zero without loss of generality. The potential function
G solves

∆gS2G = −divS2

(
(W −Π(2))η̄

)
,(6.6)

where, as usual, the divergence of a one-form w is divS2w = DAw
A with

indices raised with gS2 . The right-hand side of (6.6) is Cm on each Sr, so G is
Cm+2 as a function on Sr.

4 The solution is unique up to an additive constant
on each Sr, hence up to a radially symmetric function. In the spherical
coordinates {θ, ϕ}, the Hodge decomposition (6.5) takes the explicit form

(W −Π(2)) sin θ = ∂θG.(6.7)

Let G̃ be the unique solution of this PDE satisfying the boundary condition
G̃|θ=0 = 0, i.e. vanishing at the north pole of each sphere Sr. The right-
hand side of (6.6) is Cm as a function of r both on r ∈ (0, a] and on r ∈
[a,∞). Since the boundary condition is differentiable in r, the solution G̃ is
Cm(D+) ∩ Cm(D−). Moreover, W is bounded on D̂, so the same holds for
G̃. It turns out to be convenient to extract the ℓ = 0 component of G̃ and
define

G := G̃ −
1

4π

∫

Sr

G̃ηS2 .

It is clear from this definition that G ∈ Cm(D+) ∩ Cm(D−), bounded on D̂
and satisfies

∫
Sr

GηS2 = 0. Next we obtain the PDE that G must satisfy. We

insert W −Π(2) = (sin θ)−1∂θG into (5.23) and find, after a direct calcula-
tion,

1

sin θ

∂

∂θ

(
∂

∂r

(
r4j

∂G

∂r

)
+ r2jeλ (∆S2G + 2G) + 4r3j′G

)
= 0.

4The problem is one-dimensional and therefore no Hölder requirement is needed.
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Integrating in θ there appears an arbitrary integration function of r which
is then uniquely fixed by the condition

∫
Sr

GηS2 = 0. Thus,

∂

∂r

(
r4j

∂G

∂r

)
+ r2jeλ (∆S2G + 2G) + 4r3j′G = 0(6.8)

on I+a = (0, a] and I−a = [a,∞). We also need to determine the matching
conditions for G. From Proposition 5.12 (specifically from [W] = D3, [W,r] =
0) and (6.7), the jump of G and ∂rG satisfy

(
D3 −Π

(2)
+

)
sin θ = ∂θ[G], 0 = ∂θ[∂rG](6.9)

⇐⇒ [G] = (Π
(2)
+ −D3) cos θ, [∂rG] = 0

where in the integration we have imposed that neither [G] nor [∂rG] have
ℓ = 0 term.

We start with a lemma on existence and uniqueness of bounded solutions
of (6.8).

Lemma 6.3. Let G ∈ Cm(D+) ∩ Cm(D−) (m ≥ 2) be bounded and satisfy∫
Sr

GηS2 = 0 together with (6.8) on D+ and D− and the jumps

[G] = l0 cos θ, [∂rG] = 0, l0 ∈ R.(6.10)

Assume that Ec + Pc ̸= 0. Then, there exists a unique radially symmetric
bounded function G ∈ C2(D

+
) ∩ Cn+2(D+) ∩ C∞(D−) ∩ C1(D) satisfying

G(0) = 1 and a constant Wc ∈ R such that

G(r, θ) =

{
−WcG(r)P1(cos θ) on D+

−(WcG(r) + l0)P1(cos θ) on D−.
(6.11)

Moreover, the function G(r) on D− is given by

G−(r) = −
G′(a)a4

3r3
+G∞, G∞ := G(a) + aG′(a)/3(6.12)

and G′(a) > 0, G∞ > 1. Clearly also limr→∞G = G∞.

Proof. Let us define G⊥ := G − 3
4π

∫
Sr

GP1ηS2 . We want to apply Proposi-
tion 6.1, so we check that all hypotheses are satisfied. By construction G⊥ is
Cm(D+) ∩ Cm(D−), bounded in D̂, and has no ℓ = 0, or ℓ = 1 components.
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By (6.10), it satisfies [G⊥] = [∂rG⊥] = 0, so that G⊥ ∈ C1(D). The PDE (6.8)
in expanded form is

G⊥,rr +

(
4

r
+
j′

j

)
G⊥,r +

eλ

r2

(
∆S2G⊥ +

(
2 +

4re−λj′

j

)
G⊥

)
= 0,(6.13)

so it fits into the general form (6.1) with

V (r) = eλ, γ(r) = 2 +
4re−λj′

j
= 2− 2r2κ(E + P ),(6.14)

A(r) = 4 + r
j′

j
= 4−

1

2
r2eλκ(E + P ),

where (3.15) has been substituted in the last two expressions. These func-
tions are all Cn([0, a]) ∩ Cn([a,∞)). By assumption H2 we have supD̂ γ(r) =
2, and the limit conditions (6.2) are all fullfilled (c.f. (3.29)) with

lim
r→0

V +(r) = 1, lim
r→∞

V −(r) = 1, lim
r→0

A+(r) = 4, lim
r→∞

A−(r) = 4,

lim
r→0

γ+(r) = 2, lim
r→∞

γ−(r) = 2.

All the conditions of Proposition 6.1 are satisfied and ℓ
max

= 1 so we con-
clude that G⊥ must be of the form G⊥ = G0

⊥(r) + G1
⊥(r)P1(cos θ). However,

by construction G⊥ has no such components, hence it vanishes identically.
Consequently, G has only ℓ = 1 component, i.e. takes the form

G(r, θ) = G1(r)P1(cos θ)(6.15)

for some radially symmetric function G1 at either D±. From (6.13) and
(6.14), this function satisfies the ODE

1

r3
d

dr

(
r4j

dG1

dr

)
+ 4j′G1 = 0(6.16)

or, in expanded form,

(6.17) r2G′′
1 + r

(
4−

1

2
r2eλκ(E + P )

)
G′
1 − 2r2eλκ(E + P )G1 = 0,

on I+a = (0, a] and I−a = [a,∞) together with the jumps (from (6.10))

(6.18) [G1] = l0, [G′
1] = 0.
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We now show that (6.17) admits a unique solution, up to scale, which
is C1(a,∞) and bounded. We start with the interior domain I+a . Equa-
tion (6.17) satisfies the requirements of items (ii)–(iii) of Lemma D.2 with

A(r) = 4−
1

2
r2eλκ(E + P ), B(r) = r2Q(r)

with Q(r) = −2eλ+κ(E + P ),

so that a0 = 4, and Q(0) = −2κ(Ec + Pc) ̸= 0 (by assumption of the
lemma). Therefore, Lemma D.2 ensures that there exists a unique up
to scaling function g+(r) that stays bounded in (0, a), and extends to a
function in C2([0, a]) satisfying g+(0) ̸= 0 and g+′(0) = 0. It is clear that
g+(r) ∈ Cn+2((0, a]) also. We fix the scale by imposing g+(0) = 1. In the
exterior part I−a , equation (6.17) can be solved explicity. The solution is

(6.19) g−l1,l2(r) = −
2l1
r3

− l2 l1, l2 ∈ R.

Consider the function {g+(r), g−l1,l2(r)}. This corresponds to a function

g(r) ∈ C1(0,∞) if and only if

g+(a) = g−l1,l2(a) = −
2l1
a3

− l2, g+′(a) = g−l1,l2
′(a) =

6l1
a4
.

It is clear that this system admits a unique solution {l1, l2} with correspond-
ing g−(r) := g−l1,l2(r) given by

g−(r) := g+(a) +
a

3
g+′(a)

(
1−

a3

r3

)
.(6.20)

This establishes the existence of a unique bounded function g(r) ∈
C2([0, a]) ∩ Cn+2((0, a]) ∩ C1(0,∞) ∩ C∞([a,∞) satisfying g(0) = 1 and
solving (6.17) on I±a . This g(r) is the trace of a bounded radially symmet-
ric function G : D −→ R. It is immediate from the properties of g(r) that
G ∈ Cn+2(D+) ∩ C∞(D−) ∩ C1(D). Moreover, since g(r) ∈ C2([0, a]) and

satisfies g′(0) = 0, Taylor’s theorem gives g(r) = 1 + g2r
2 +Φ

(2)
g (r) where

g2 ∈ R and Φ
(2)
g (r) is C2([0, a]) and o(r2). Using Lemma 3.2 it follows that

G ∈ C2(D
+
). This proves the first claim of the Lemma.

The explicit form (6.12) follows at once from (6.20). Given that 0 ̸≡
E + P ≥ 0 and since g+(0) = 1 and g+′(0) = 0, Lemma C.4 establishes that
g+(a) > 1 and g+′(a) > 0. Therefore G(a) > 1, G′(a) > 0 and the claim
G∞ > 1 also follows.
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Concerning the function G1(r), by the uniqueness up to scale of bounded
solutions of (6.17) on I+a , there exists a constant Wc such that G1(r) =
−Wcg(r) on I

+
a (the introduction of a minus sign will be convenient later).

On I−a , G−
1 (r) has the form (6.19) for some constants l1 and l2. Imposing the

jumps (6.10) it is immediate that G−
1 (r) = −(Wcg(r) + l0) on I

−
a . Combining

with (6.15) concludes the proof. □

Remark 6.4. In the proof of this lemma it has been useful to distinguish
the function G from its trace g(r). For the rest of the paper, this is no longer
necessary, so we use the same symbol G for both. This follows the general
convention used throughout the paper.

We can now prove the following result on existence and uniqueness of W.

Proposition 6.5 (Existence and uniqueness of W). Assume the setup
of the base perturbation scheme (B1-B4). Then

1) W is radially symmetric on D, i.e. it is a function W(r).

2) There exists a (unique) choice of constants B± in the gauge free-
dom (2.16) such that the transformed function (still denoted by W)
is continuous across r = a and fulfils the property that K2(ξ, r

−1η) is
bounded at infinity. Moreover, this function is given by

W = Wc(G(r)−G∞), Wc ∈ R

where the function G(r) and constant G∞ are defined in Lemma 6.3. In
particular W ∈ Cn+2(M+ \ C0) ∩ C

2(M+) ∩ C∞(M−) ∩ C1(M \ C0),

W− =
2J

r3
, J := −WcG

′(a)
a4

6

and J vanishes if and only if Wc = 0. The parameter Π
(2)
+ correspond-

ing to this function is Π
(2)
+ = −WcG∞

Proof. Let G be the unique function related to W by the Hodge decompo-
sition (6.7) and satisfying

∫
Sr

GηS2 = 0. This function satisfies the jumps
(6.10), so all the hypothesis of Lemma 6.3 hold and we conclude that G is

given by (6.11) with l0 = Π
(2)
+ −D3. Inserting back into (6.7) and using that
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Π
(2)
− = 0 and (6.12), W can be written as

W =

{
WcG(r) + Π

(2)
+ on D+

WcG(r) + Π
(2)
+ −D3 =

2J
r3 +WcG∞ +Π

(2)
+ −D3 on D−.

(6.21)

with J := −WcG
′(a)a

4

6 . This proves item 1. From (5.7), boundedness of
the component K2(ξ, r

−1η) on M− is equivalent to limr→∞W = 0 (com-
pare item B2.2 in the base scheme). In addition, given that G(r) is C1

on D, the function W is continuous on D if and only if the constant D3

can be transformed away. To achieve both properties, and given the trans-
formation law (2.21), we use the gauge transformation with vectors V −

2 =

(WcG∞ +Π
(2)
+ −D3)t∂ϕ on M− and V +

2 = (WcG∞ +Π
(2)
+ )t∂ϕ on M+. It is

clear that no other possible choice of the constants B± in (2.16) can ac-
complish this. The gauge transformed W (which we still call W) is now
given by W = Wc(G(r)−G∞) everywhere and the corresponding parame-

ter Π
(2)
+ = −WcG∞, as follows directly from (6.21) on D+. All the properties

claimed in the proposition are immediate consequences of the corresponding
properties for G(r) obtained in Lemma 6.3. In particular J vanishes if and
only if Wc does because G

′(a) > 0. □

6.2. Global problem for v̂: existence and uniqueness of
the ℓ ≥ 2 sector

In this subsection we apply Proposition 6.1 to deal with the global problem
for v̂, consisting of the PDE (5.35) at either side D± plus the matching
conditions (5.78)–(5.81) in Proposition 5.12. In contrast to the problem for
W, however, we cannot prove uniqueness of v̂ yet, since the radially sym-
metric (ℓ = 0) part still contains one free function (the integrating factor
σ(r)). Adding the requirement of a barotropic equation of state (in the next
subsection) will allow us to tackle the existence and uniqueness of the ℓ = 0
sector of v̂.

Proposition 6.6 (Global problem for v̂). Assume the setup of the base
perturbation scheme (B1-B4) and restrict to the class of gauges {Ψ(A,B,Y)}
constructed in Proposition 5.9 in both M±. Then, v̂(r, θ) must have the form

v̂(r, θ) = v̂0(r) + v̂2(r)P2(cos θ).(6.22)



✐

✐

“9-Mars” — 2024/1/2 — 18:37 — page 2778 — #60
✐

✐

✐

✐

✐

✐

2778 M. Mars, B. Reina, and R. Vera

Moreover, the field equations and matching conditions for v̂2(r) admit a
unique bounded solution. This solution satisfies

• v̂+2 (r) ∈ Cn+1((0, a]) and v̂+2 (r) is O(r4) and extends as a C1([0, a])
function, and v̂+2

′(r) is O(r3) near r = 0,

• v̂−2 (r) ∈ C∞([a,∞)), v̂−2 (r) is O(r−4) and v̂−2
′(r) is O(r−5) near r =

∞.

In particular if ϖ±(r) = 0 then v̂2(r) = 0. These results are independent of
the function β(r).

Proof. By Proposition 5.9 the decomposition (5.43) holds on both regions,
and the function v̂⊥ satisfies, c.f. (5.47),

r2v̂⊥,rr + rA(r)v̂⊥ r + V (r) (∆S2 v̂⊥ + 2v̂⊥) = 0(6.23)

with

V (r) = eλ, A(r) =
1

2
r

(
λ′ + ν ′ − 4

ν ′′

ν ′

)
.

Equation (6.23) is of the form (6.1) with γ(r) = 2. Recall that λ(r), ν(r) ∈
Cn+1(M+) ∩ Cn+1(M−), so the same holds for V (r). The values of V (r)
at the origin and infinity are, respectively, V0 = 1 (by (3.29)) and V∞ =
1. Concerning A(r), we use the expansion at the origin for ν(r) in (3.27)
together with ν2 ̸= 0, which follows from (3.28) because of assumption H2

and the base perturbation scheme condition Ec + Pc ̸= 0. With that,

r

ν ′+
=

1

2ν2
+Φ(2), Φ(2) ∈ Cn−1(M+) and O(r2).(6.24)

Thus, A+ ∈ Cn−1(M+) and A+(0) = −2. Therefore (6.23) satisfies the re-
quirements of Proposition 6.1 with V0 = 1, V∞ = 1, a0 = −2, a∞ = 4. Since
γ(r) = 2 we have ℓ

max
= 1. We conclude that v̂⊥ must be of the form

v̂0⊥(r)P0(cos θ) + v̂1⊥(r)P1(cos θ) and hence identically zero since by con-
struction v̂⊥ does not have such components. The decomposition (5.43)
gives (6.22) at once. Furthermore, since the class of gauges is restricted
to α(r) = 0, Lemma 5.2 ensures that (6.22) holds in the class of gauges
{Ψ(A,B,Y)}, i.e. for arbitrary parameters A, B and free function Y(r)
in (2.16), as well as for any choice of β(r).

It remains to show that v̂2(r) exists and is unique, and obtain its be-
havior around r = 0 and r → ∞. The problem for v̂2 is given by equation
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(5.46) at both ± sides, together with the matching conditions obtained from
(5.78)–(5.79) of Proposition 5.12, which explicitly read

[v̂2] = 0, [v̂′2] =
1

6

(
2 + aν ′(a)

)
e−ν(a)a3κE+(a)(ϖ+(a)−Π

(1)
+ )2.(6.25)

We want to apply Theorem D.3 with F = F2 given in (5.37), and

A±(r) =
1

2
r

(
ν ′± + λ′± − 4

ν ′′±
ν ′±

)
, B±(r) = −4eλ± .

Let us check that all the hypotheses are satisfied. We have already seen that
A+(r) ∈ Cn−1([0, a]) and a0 = A+(0) = −2, while we have b0 = B+(0) = −4
(c.f. (3.29)). In the exterior, we may write (by the background field equa-
tions)

A−(r) = 2(1 + eλ−), B−(r) = −4eλ− ,(6.26)

where λ−(r) is given explicitly in (3.25). Consequently,

a∞ = lim
r→+∞

A−(r) = 4, b∞ = lim
r→+∞

B−(r) = −4,

lim
r→+∞

r2
dA−(r)

dr
= −

κM
T

2π
, lim

r→+∞
r2
dB−(r)

dr
=

κM
T

π
.

The function F+
2 (r) is Cn−1((0, a]) and extends continuously to the centre,

where it vanishes. The structure of F+
2 (r) around r = 0 is obtained using

(3.27), (5.3) and (5.6), and it is found to be of the form F+
2 = r6(σ6 +Φ

(1)
F )

where σ6 ∈ R and Φ
(1)
F is o(1). Concerning F−

2 , inserting the background
vacuum field equations in (5.37) gives

(6.27) F−
2 =

1

3
r4(eλ − 1)ϖ′

−
2 =

3κM
T
J2
ϖ

πr5

(
1 +O

(
1

r

))

where the second equality follows from the explicit form (5.5) of ϖ−. Hence,
F+
2 and F−

2 satisfy the requirements of Theorem D.3 with α0 = 6 and
α∞ = −5. The quantities λ0− and λ∞− defined in Theorem D.3 take the val-
ues λ0− = −4 and λ∞− = −4. All the hypothesis of Theorem D.3 are satisfied,
including (D.13), as well as λ0− + 1 ≤ 0 and α0 − 1 ≥ 0. Consequently, there
exists a unique solution {v̂+2 (r), v̂

−
2 (r)} that stays bounded on (0,∞), and,

moreover, v̂+2 (r) is O(r4), extends as a C1([0, a]) function, and v̂+2
′(r) is

O(r3) because λ0− = −4 and α0 = 6. The behaviour of the solution v̂− and
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its derivative v̂−′ near r = ∞ is obtained from Theorem D.3 with the val-
ues min{|λ∞− |, |α∞|} = 4 and min{|λ∞− − 1|, |α∞ − 1|} = 5 respectively. The
differentiability of the solutions in D+ and D− follow from the fact that the
coefficients A+, B+ and F+

2 are Cn−1, Cn and Cn−1 on (0, a) respectively,
while A−, B− and F−

2 are C∞([a,∞)).
As above, Lemma 5.2 ensures that the class of gauges {Ψ(A,B,Y)} given

by (2.16) with arbitrary parameters A, B, free function Y(r) and α(r) = 0,
and also free choice of β(r), keeps v̂2(r) invariant.

The final statement concerning the case ϖ± = 0 is immediate since
v̂2(r) = 0 solves the ODE (5.46) with F2(r) = 0. □

6.3. Barotropic equation of state: existence and uniqueness of v̂

Let us recapitulate. Propositions 5.9 and 6.6 have shown the existence of a
class of gauges {Ψ(A,B,Y)} and free β(r) where v̂ only has ℓ = 0 and ℓ = 2
components. Inverting the definitions (5.19), the original functions {h,m, k}
take the form (on either side D±)

h = ĥ+
1

2
rν ′f(6.28)

=
1

2
σ −

1

ν ′
(v̂′0 + v̂′2P2(cos θ))

+

(
1

rν ′
+

1

2

)
(q̂0 + fωP2(cos θ)) +

1

2
rν ′f,

k = v̂ − ĥ+ f(6.29)

= v̂0 + v̂2P2(cos θ)−
1

2
σ +

1

ν ′
(v̂′0 + v̂′2P2(cos θ))

−

(
1

rν ′
+

1

2

)
(q̂0 + fωP2(cos θ)) + f

m = q̂ − h+
1

2
rf
(
λ′ + ν ′

)
+ (rf),r(6.30)

=

(
1−

1

rν ′
−

1

2

)
(q̂0 + fωP2(cos θ))

−
1

2
σ +

1

ν ′
(v̂′0 + v̂′2P2(cos θ)) +

1

2
rλ′f + (rf),r,

where σ, q̂0, q̂2, v̂0, v̂2, fω are functions of r, while f is still a free function
depending on r, θ.

From the previous subsections, and leaving aside f(r, θ) (to be discussed
later), the only part of the solution where existence and uniqueness has not
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yet been established is the ℓ = 0 sector, where the unknowns are {v̂0, q̂0, σ}.
In this section we accomplish this by imposing the background barotropic
EOS. As discussed in subsection 5.1.1, q̂0(r) is then given explicitly by (5.55)
and it is useful to replace the unknowns {v̂0(r), σ(r)} by {δ(r), ς(r)}. The
main advantage is that ς(r) decouples from δ(r) and satisfies a global prob-
lem for which we can show existence and uniqueness, while δ(r) will be
shown later to be pure gauge. Let us first focus on the problem for ς(r).

We already have the equations that ς+ and ς− satisfy in their respective
domains, i.e. (5.65). Let us determine the jumps of ς+ and ς− across r =
a, as well as the regularity conditions of ς+ around r = 0, both following
from assumptions B2 and B3 of the base scheme. Incidentally, no conditions
at r = ∞ will be needed, since the field equations will provide bounded
solutions only. We start with the regularity and observe, first of all, that
(5.62) already implies δ(r) is Cm(0, a) and bounded near r = 0. Since we
have a priori information on {h,m, k}, let us rewrite (6.28)–(6.30) in terms
of {δ, ς}. After a straightforward calculation and introducing the auxiliary
function

(6.31) Γ(r) := ς ′
1

ν ′
+ ς

rν ′

2 + rν ′
+

2 + rν ′

rν ′
2fω

as a shorthand, we have

h =
1

2
rν ′(δ + f) + I0 +

1

2
Γ +

(
2 + rν ′

2rν ′
fω −

1

ν ′
v̂′2

)
P2(cos θ),

k = δ + f −
1

2
Γ +

(
v̂2 +

1

ν ′
v̂′2 −

2 + rν ′

2rν ′
fω

)
P2(cos θ),(6.32)

m =
1

2
rλ′(δ + f) + (r(δ + f)),r +

rν ′ − 2

2(2 + rν ′)
Γ

+ ς
4eλ

2(2 + rν ′)2
+

(
1

ν ′
v̂′2 −

2− rν ′

2rν ′
fω

)
P2(cos θ).

By Proposition 6.6, v̂2(r) is C
n+1((0, a]) and O(r4), extends C1 at the origin

and v̂′2(r) is O(r3). Moreover, δ(r) is Cm(0, a) and bounded near r = 0 and
fω(r) is O(r4) as follows from its defining expression (5.28) together with
(3.27) and (5.3). Consequently, the expression for h (or that for k) forces
Γ(r) to be of class Cm((0, a]) and bounded near r = 0. This implies that
rΓ(r) must vanish as r → 0. From (6.31), this limit is

(6.33) 0 = lim
r→0

rΓ(r) = lim
r→0

(
1

2ν2
ς ′(r) + r3ν2ς(r)

)
,



✐

✐

“9-Mars” — 2024/1/2 — 18:37 — page 2782 — #64
✐

✐

✐

✐

✐

✐

2782 M. Mars, B. Reina, and R. Vera

where in the second equality we used (6.24) and (3.27). On the other hand,
if the limit of Γ(r) as r → 0 exists then so does the limit of h, and therefore
the expression of h in (6.32) inserted in (5.61) provides

(6.34) lim
r→0

P (2) = −(Ec + Pc) lim
r→0

Γ(r) if lim
r→0

Γ(r) exists.

We next obtain the jumps that ς(r) must satisfy on r = a. The matching
conditions (5.78)–(5.79) imply, restricting to the ℓ = 0 sector,

[v̂0] =
H0

2
+

(
1 +

aν ′(a)

2

)
c0,(6.35)

[v̂′0] =

(
1

a
+
ν ′(a)

2

)(
[q̂0]−

H0

2

)
−

(
eλ(a)

a
+

1

2
aν ′(a)2

)
c0.(6.36)

Eliminating δ from (5.62) into (5.63) gives an expression relating v̂0 and ς.
Taking the diference at both sides and inserting (6.35) gives

(6.37) [ς] =
1

4
e−λ(a)(eλ(a) + 3)(1− eλ(a))(H0 − 2[I0]),

where ν ′(a) is substituted from (3.20). To obtain [ς ′] we make use of (5.64),
after eliminating δ with (5.62), at both ± sides. The expression contains [v̂0]
and [v̂′0], which we substitute by their expressions in (6.35) and (6.36). The
terms containing [q̂0] cancel. Inserting (6.37) and using (3.20) we obtain

[ς ′] =
1

4a
e−λ(a)(e2λ(a) + 3)(eλ(a) − 1)(H0 − 2[I0])(6.38)

−
2

a
(eλ(a) + 1)[fω],

keeping in mind that the explicit expression of [fω] is given by (5.83).
Later in the paper we will face the issue of fixing the gauge completely.

To do that it will be determinant to understand the role of the parameter
H0 − 2[I0]. In preparation for that, let us introduce ς∗(r) as the function
that satisfies the same equation as ς and shares its behaviour around r = 0,
namely

(6.39) lim
r→0

(
1

2ν2
ς ′∗(r) + r3ν2ς∗(r)

)
= 0,

but with jumps given by

(6.40) [ς∗] = 0, [ς ′∗] = −
2

a
(eλ(a) + 1)[fω].
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We also introduce the corresponding function Γ⋆

(6.41) Γ∗ := ς ′∗
1

ν ′
+ ς∗

rν ′

2 + rν ′
+

2 + rν ′

rν ′
2fω.

and require

if lim
r→0

Γ⋆ and lim
r→0

Γ exist =⇒ lim
r→0

Γ⋆ = lim
r→0

Γ.(6.42)

In the next proposition we establish existence and uniqueness of ς∗. The
corresponding result for the original ς is obtained as a corollary.

Proposition 6.7 (Existence and uniqueness of ς∗). The problem for
ς∗(r), namely equation (5.65) on D+ and D− with matching conditions on
r = a given by (6.40) and such that the restriction around the origin (6.39)
holds, admits a one-parameter family of solutions. In addition, the limits
limr→0 Γ(r) and limr→0 Γ⋆(r) exist and the function ς⋆ is uniquely deter-

mined by the value P
(2)
c := limr→0 P

(2) by means of

lim
r→0

Γ⋆ = −
P (2)

Ec + Pc
.(6.43)

This solution has the following properties:

1) ς+∗ (r) is of class Cn+1((0, a]), extends to a C1([0, a]) function, and has
the form

(6.44) ς+∗ (r) = −κP (2)
c

Ec + 3Pc

6(Ec + Pc)
ς+− (r) + ς+P (r),

where ς+− (r) and ς+P (r) are unique: ς+− (r) solves the homogeneous part
of (5.65) and satisfies (6.48), while ς+P (r) is the only particular solution
of (5.65) that is O(r4).

2) ς−∗ (r) reads

ς−∗ (r) =eλ−(r)
( ςA
r2

+
ςB
r

)
+ 2J2

ϖ

1

r4
(2 + eλ−(r)),(6.45)

where λ−(r) is given by (3.25) and ςA, ςB are constants fully
determined by the matching conditions in terms of quan-
tities of the background configuration, plus Jϖ,Π

(1) and

{P
(2)
c , ς+− (a), ς+P (a), ς+−

′(a), ς+P
′(a)}.
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3) If ϖ± = 0 then

ς+∗ (r) =− κP (2)
c

Ec + 3Pc

6(Ec + Pc)
ς+− (r),(6.46)

ς−∗ (r) =κP (2)
c ς−∗∗(r),(6.47)

where

ς−∗∗(r) :=
Ec + 3Pc

6(Ec + Pc)
eλ−(r)

((
a2

r2
−
a

r

)
e−λ(a)aς+−

′(a)

+

(
a2

r2
−
a

r
(1 + e−λ(a))

)
ς+− (a)

)
.

Proof. We first analize the equation for ς+∗ in D+. To do that we make use
of Lemma D.2 for the homogeneous part of (5.65). Lemma D.2 applies with
(changing t for r)

A+(r) =
1

2
r

(
ν ′+ + λ′+ − 4

ν ′′+
ν ′+

)
, B+(r) = 2eλ+ ,

which have been already analised (except for a different constant factor
in B+) in the proof of Proposition 6.6. We showed A+(r) ∈ Cn−1([0, a])
and a0 = A+(0) = −2, while B+(r) ∈ Cn+1([0, a]) with b0 = 2 (observe that
b0 ≥ 0, which prevents us from using Theorem D.3). As a result λ+ = −1 and
λ− = −2, and therefore point (i) of Lemma D.2 ensures there exist two lin-
early independent solutions ς+± (r), which necessarily are of class Cn+1(0, a),
with

ς++ (r) = r(1 + o(1)), ς++
′(r) = 1 + o(1),

ς+− (r) = r2(1 + o(1)), ς+−
′(r) = r(2 + o(1)).(6.48)

The inhomogeneous term of equation (5.65) reads

F̂+
0 := −r3e−ν+

(
2(λ′+ + ν ′+)(ϖ+ −Π(1))2 −ϖ′

+
2r
)
− 4F+

2 .(6.49)

Although Theorem D.3 cannot be applied directly, we may still use sev-
eral constructions introduced in its proof, specifically regarding the proper-
ties of the particular solution Up introduced there. By direct inspection, the

function F̂+
0 is Cn−1([0, a]), just like F+

2 (c.f. (5.37)). Its structure around
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r = 0 is obtained from (3.27), (5.3), (5.6), plus the fact that F+
2 is O(r6), and

turns out to be F̂+
0 = −r4(4e−ν0(ϖ0 −Π(1))2(λ2 + ν2) + o(1)). In the nota-

tion of Theorem D.3 with F+ = F̂+
0 we have α0 = 4, so that α0 + λ+ = 3

and α0 + λ− = 2 and therefore the general solution of the equation for ς+(r)
has the form

ς+∗ (r) = c+ς
+
+ (r) + c−ς

+
− (r) + ς+P (r),

where the particular solution satisfies, see Remark D.5,

ς+P (r) = r4(ς0P + o(1)), ς+P
′(r) = r3(4ς0P + o(1))(6.50)

with ς0P a fixed number (see (D.19)). From (6.48) and (6.50), the requirement
(6.39) forces c+ = 0. This implies, taking into account (6.24) and fω ∈ O(r4),
that limr→0 Γ∗ = c−/ν2.

So far we only used equation (5.65) and (6.39). Both are satisfied by the
original function ς+, so it must also be that ς+(r) = ĉ−ς

+
− (r) + ς+P (r) for an,

a priori, different integration constant ĉ−. However, since limr→0 Γ = ĉ−/ν2,
condition (6.42) implies ĉ− = c− and we conclude that ς+(r) = ς+⋆ (r). Using
ν2 = κ(Ec + 3Pc)/6, and that Ec + Pc ̸= 0, the relation (6.34) fixes c− as

c− = −
κ(Ec + 3Pc)

6(Ec + Pc)
P (2)
c .

This proves (6.43) and item 1.
Equation (5.65) for ς∗ in the exterior region D− reads

r2ς−∗
′′(r) + 2r(eλ− + 1)ς−∗

′(r) + 2eλ−ς−∗ (r) = −12J2
ϖ

1

r4
(eλ− − 4),

after inserting (6.26) for A−(r), (6.27) and (5.5). We do not replace λ−(r)
by its explicit form (3.25) for conciseness. The general solution is given by

ς−∗ (r) = eλ−(r)
( ςA
r2

+
ςB
r

)
+ 2J2

ϖ

1

r4
(2 + eλ−(r)), ςA, ςB ∈ R.

The integration constants ςA, ςB are restricted to satisfy the jumps (6.40),
which can be arranged in the form

(
1 a
2 a

)(
ςA
ςB

)
=

(
κ1
κ2

)
,(6.51)

where κ1, κ2 depend on {P
(2)
c , ς+− (a), ς+P (a), Jϖ, a,MT

, ς+−
′(a), ς+P

′(a), [fω]},
with [fω] given by (5.83). The 2× 2 matrix has determinant −a ̸= 0 and
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therefore there exist unique values of ςA, ςB that fulfill these conditions.
This proves item 2, as well as the global existence and uniqueness claim.

Assume now ϖ± = 0. The inhomogeneous term vanishes F̂+
0 = 0 (see

(6.49) and (5.37)) and therefore ς+P (r) = 0, so that (6.46) follows. In addition,
Jϖ = Π(1) = [fω] = 0, and we can solve (6.51), to obtain

ςA =
κ(Ec + 3Pc)

6(Ec + Pc)
P (2)
c a2

(
ae−λ(a)ς+−

′(a) + ς+− (a)
)
,(6.52)

ςB = −
κ(Ec + 3Pc)

6(Ec + Pc)
P (2)
c a

(
aς+−

′(a) + (e−λ(a) + 1)ς+− (a)
)
.(6.53)

Inserting into (6.45) gives (6.47) after using the explicit form (3.25) of λ−(r).
□

Corollary 6.8. The function ς is given by

ς+(r) = ς+∗ (r),(6.54)

ς−(r) = (H0 − 2[I0]) e
λ−(r)(6.55)

×

(
−
3

4

(
κM

T

4π

)2 1

r2
+

(
κM

T

4π

)
1

r

)
+ ς−∗ (r).

Proof. As shown above, only (6.55) needs attention. The function ς̃ := ς − ς∗
satisfies the homogeneous part of equation (5.65). The general solution in
the exterior D− is thus given by

ς̃−(r) = eλ−(r)

(
ς̃A
r2

+
ς̃B
r

)
.

It suffices to obtain the constants ς̃A and ς̃B from the matching conditions

ς̃−(a) = −[ς̃] =−
1

4
e−λ(a)(eλ(a) + 3)(1− eλ(a))(H0 − 2[I0]),

ς̃−′(a) = −[ς̃ ′] =−
1

4a
e−λ(a)(e2λ(a) + 3)(eλ(a) − 1)(H0 − 2[I0]),

that follow from (6.37)–(6.38) and (6.40). Using the explicit form of λ(a),
c.f. (3.25), we obtain (6.55). □

Remark 6.9. As a consequence of the above results, the function Γ+ = Γ+
∗

is determined in terms of quantities of the background configuration plus
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Jϖ,Π
(1) and P

(2)
c , and near r = 0 it has the form

(6.56) Γ+(r) = −
1

Ec + Pc
P (2)
c + o(1).

The function Γ in D− takes the form

(6.57) Γ−(r) = −2
4πr − κM

T

8πr − κM
T

(H0 − 2[I0]) + Γ−
∗ (r),

with Γ−
∗ being fully determined in terms of quantities of the background

configuration plus Jϖ,Π
(1) and {P

(2)
c , ς+− (a), ς+P (a), ς+−

′(a), ς+P
′(a)}.

Having established the existence result for ς, we show that the functions
that remain undetermined, namely δ(r) and f(r, θ), are pure gauge. Since we
want to stay in the context where Propositions 6.5 (point 3 ) and Proposition
6.6 can be applied, the available gauge freedom has already been restricted
to the subset {Ψ(A,Y)}, namely a function Y(r, θ) and a constant A, on each
side M±. There is also the free integration function β(r) on each side. Our
next result fixes this freedom and removes the functions f and δ altogether.
This concludes our analysis of the base perturbation scheme.

Proposition 6.10 (Existence and uniqueness of the barotropic base
scheme). Assume the setup of the barotropic base perturbation scheme (B1-
B5). Then, there exists a gauge on each region given by φ+ := {Ψ()+} and
φ− := {Ψ()−} (no arguments left), c.f. Notation 2.7, in which

1. the two items of Proposition 6.5 hold,

2. β± can be fixed such that fφ+ = 0 and fφ− = 0,

3. The solutions of the field equations, denoted by {hφ+, k
φ
+,m

φ
+} in D+

and {hφ−, k
φ
−,m

φ
−} in D−, exist and for given P

(2)
c ∈ R are unique.

Moreover, the corresponding composed functions in D̂ take the form

hφ(r, θ) = hφ0 (r) + hφ2 (r)P2(cos θ),

mφ(r, θ) = mφ
0 (r) +mφ

2 (r)P2(cos θ),

kφ(r, θ) = kφ2 (r)P2(cos θ),

with hφ0 , h
φ
2 ,m

φ
0 ,m

φ
2 , k

φ
2 ∈ Cn((0, a]) ∩ C∞([a,∞)), extend continu-

ously to r = 0 and are bounded.
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Furthermore, if ϖ± = 0 then kφ+ = 0 and

hφ+ = −κP (2)
c

Ec + 3Pc

24(Ec + Pc)

(
2 + rν ′+
ν ′+

ς+−
′ + rν ′+ς

+
−

)
,(6.58)

mφ
+ = −κP (2)

c

Ec + 3Pc

24(Ec + Pc)

1

rν ′2+
(6.59)

×

((
(2 + rν ′+)(2 + rλ′+)− 4eλ+

)
ς+−

′

+
(
(2 + rλ′+)rν

′
+ − 4eλ+

)
ς+−

)
,

while kφ− = 0 and

hφ− = κP (2)
c

(
8πr − κM

T

4κM
T

rς−∗∗
′ +

κM
T

4(4πr − κM
T
)
ς−∗∗

)
,(6.60)

mφ
− = κP (2)

c

(
16πr − 3κM

T

4κM
T

rς−∗∗
′

(6.61)

−

(
8πr +

(16πr − 3κM
T
)κ2M2

T

4(4πr − κM
T
)2

)
4πr − κM

T

κM
T
(8πr − κM

T
)
ς−∗∗

)
,

where ς+− (r) and ς−∗∗(r) are defined in Proposition 6.7.

Proof. We start considering the classes {Ψ(A,B,Y)±} in which Proposition
6.6 holds, both on M+ and M−. We apply a change of gauge (2.17)–(2.20)
in Proposition 2.5 with R = r, α(r) = 0 and

(6.62) Y = −r

(
δ + f −

Γ

2

)
.

We also fix β(r) by

(6.63) β(r) = δ −
Γ

2
.

Applying this to (6.32) one obtains

hg =
1

2

(
A+ 2I0 +

Γ

2

(
2 + rν ′

))
+

(
2 + rν ′

2rν ′
fω −

1

ν ′
v̂′2

)
P2(cos θ),(6.64)

kg =

(
v̂2 +

1

ν ′
v̂′2 −

2 + rν ′

2rν ′
fω

)
P2(cos θ),(6.65)
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mg =
1

rν ′

(
Γ

4

(
(2 + rν ′)(2 + rλ′)− 4eλ

)
−

2eλ

2 + rν ′
ς(6.66)

−
1

6
r3e−ν

(
2(λ′ + ν ′)(ϖ −Π(1))2 − rϖ′2

))

+

(
1

ν ′
v̂′2 −

2− rν ′

2rν ′
fω

)
P2(cos θ),

fg = 0.(6.67)

This already proves item 2. Observe that this partial gauge fixing still leaves
arbitrary the constants A,B on each side. We now choose (uniquely) B+ and
B− so that the second point in Proposition 6.5 holds.

At the interior we choose A+ = −2I+
0 , so that (6.64)–(6.66) become

hφ+ =
Γ+

4

(
2 + rν ′+

)
+

(
2 + rν ′+
2rν ′+

f+ω −
1

ν ′+
v̂+2

′

)
P2(cos θ),(6.68)

kφ+ =

(
v̂+2 +

1

ν ′+
v̂+2

′ −
2 + rν ′+
2rν ′+

f+ω

)
P2(cos θ),(6.69)

mφ
+ =

1

rν ′+

(
Γ+

4

(
(2 + rν ′+)(2 + rλ′+)− 4eλ+

)
−

2eλ+

2 + rν ′+
ς+(6.70)

−
1

6
r3e−ν+

(
2(λ′+ + ν ′+)(ϖ+ −Π(1))2 − rϖ′

+
2
))

+

(
1

ν ′+
v̂+2

′ −
2− rν ′+
2rν ′+

f+ω

)
P2(cos θ).

The behaviour of these expressions as r → 0, using (3.27)–(3.29), (6.24),
(6.56), that fω ∈ O(r4), and Propositions 6.6 and 6.7 as well as Corollary 6.8,
is given by

lim
r→0

hφ+ = −
1

2(Ec + Pc)
P (2)
c , lim

r→0
kφ+ = 0, lim

r→0
mφ

+ = 0,

i.e. the limits exist. This shows in particular that the change of gauge defined
by (6.62) lies within the class of gauges described in Notation 2.7 and there-
fore that (6.68)–(6.70) are written in an admissible and fully fixed gauge
{Ψ()+} (no arguments left), which we have denoted simply by φ+. These
expressions involve only functions whose existence, uniqueness and regu-
larity properties have already been established in Propositions 6.6 and 6.7
together with Corollary 6.8. Specifically v̂+2 , ς

+ are Cn+1((0, a]), v̂+2 is unique

and ς+, and thus also Γ+ by Remark 6.9, is unique up to the constant P
(2)
c .

The claim for {hφ+, k
φ
+,m

φ
+} follows.
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Regarding {hg−, k
g
−,m

g
−} in D− we choose A− = −2I+

0 +H0. Then
(6.64)–(6.66) become, in the fixed gauge φ− = {Ψ()−} (no arguments left),

hφ− =
1

4
(2 + rν ′−)Γ

−
∗(6.71)

+
1

κM
T

(
3(8πr − κM

T
)
J2
ϖ

r4
− (4πr − κM

T
)rv̂−2

′

)
P2(cos θ),

kφ− =

(
v̂−2 +

4πr − κM
T

κM
T

rv̂−2
′ −

8πr − κM
T

κM
T

3
J2
ϖ

r4

)
P2(cos θ),(6.72)

mφ
− =

(
8πr −

(16πr − 3κM
T
)(8πr − κM

T
)

4πr − κM
T

)
3J2

ϖ

κM
T
r4

(6.73)

−

(
8πr +

(16πr − 3κM
T
)κ2M2

T

4(4πr − κM
T
)2

)
4πr − κM

T

κM
T
(8πr − κM

T
)
ς−∗

−
16πr − 3κM

T

4κM
T

rς−∗
′

+

(
4πr − κM

T

κM
T

rv̂−2
′ −

8πr − 3κM
T

κM
T

3
J2
ϖ

r4

)
P2(cos θ)

after using (3.25), (5.5), (5.28), (6.55) and (6.57). It is straigforward to check
first that given (6.45), ς−∗ is O(1/r) and ς−∗

′ is O(1/r2) and therefore Γ−
∗ , c.f.

(6.41), is bounded near r = ∞. Then, since v̂2 is O(1/r4) and v̂′2 is O(1/r5),
c.f. Proposition 6.6, the three functions in (6.71)–(6.73) are bounded in D−,
which justifies the fact that the change of gauge was indeed within the class
{Ψ} from Notation 2.7. Again, Propositions 6.6 and 6.7 together with Corol-
lary 6.8 have established all the required existence, uniqueness and regularity
properties: v̂−2 , ς

− are both ∈ C∞([a,∞)), v̂−2 is uniquely determined and ς∗
is explicitly given in (6.45) with the constants ςA and ςB fully determined

once P
(2)
c is fixed, and Remark 6.9 establishes the same for Γ∗. The claim

for {hφ−, k
φ
−,m

φ
−} follows.

We now consider the particular case ϖ± = 0, so that, in particular,

Π
(1)
+ = Jϖ = 0 and fω(r) = 0. First, Proposition 6.6 gives v̂±2 (r) = 0 and

therefore all terms in the ℓ = 2 sector in (6.68)–(6.73) vanish. Thence we
already have that kφ+ = kφ− = 0. On the other hand, Proposition 6.7 item 3,
and Corollary 6.8, provide the form of ς+ and the explicit expression of ς−,
which inserted in (6.68), (6.70), (6.71), using (6.31), and (6.73) yield (6.58)
and (6.59) in D+, and (6.60) and (6.61) in D−. □

Remark 6.11. Combining A+ = −2I+
0 with (5.60) it follows that, in the

gauge φ, the constant Iφ
0 vanishes. Hence, the perturbed pressure and energy
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density (5.58)–(5.59) in this gauge are

P (2)φ = −2(E + P )

(
hφ+ +

1

3
e−νr2(ϖ −Π(1))2 (P2(cos θ)− 1)

)
,

E(2)φ =
4

ν ′
E′

(
hφ+ +

1

3
e−νr2(ϖ −Π(1))2 (P2(cos θ)− 1)

)
.

7. Existence and uniqueness of the general set up

We are now ready to apply the results obtained for the “base” perturbation
scheme to solve, using a bootstrap argument, the general first order and
second order problems for the perturbation scheme in the canonical form
over a background configuration for a rigidly rotating perfect fluid interior
and vacuum exterior following Definition 2.3.

Before stating the main results of this paper, it is necessary to discuss the

physical meaning of the constant P
(2)
c that has been introduced in the previ-

ous section. We already know that P (2) = limr→0 P
(2) (Proposition 6.7), so

one might think that this parameter already has a clear meaning. However,
the point is more subtle than one may think, as we discuss next.

7.1. The perturbed central pressure

In this work, three different sets of gauge vectors play a role. Theorem 2.2
assumes a Cn+1 perturbation scheme. So, in particular it assumes pertur-
bation tensors Ko

1 and Ko
2 that are Cn(M±) and Cn−1(M±) respectively.

The first set of gauge vectors is the standard one, namely vector fields that
respect this differentiability class everywhere. They correspond to gauge vec-
tors V1 ∈ Cn+1(M±) at first order and V2 ∈ Cn(M±) at second order. The
second set of gauge vectors is the one that transforms Ko

1 , K
o
2 into KΨ

1 , KΨ
2

as given in Theorem 2.2. These gauge vectors are no longer differentiable
everywhere. However, it is part of the content of Theorem 2.2 that they can
be chosen to have no radial component and to extend continuously at the
origin. Moreover, under a very mild extra condition discussed in Remark 2.4,
when the target tensors KΨ

1 and KΨ
2 are taken as fixed, these vectors are

uniquely defined up to a linear combination of the background Killings ξ
and η. So, all such vectors extend continuously to the origin and have no
radial component. We call this “canonical gauge transformation”. The third
class is defined in Proposition 2.5 and has been called {Ψ(C;A,B,Y, α)} in
Notation 2.7. This class has been extensively used in the analysis of the base
perturbation scheme.
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Concerning the perturbed pressures P (1) amd P (2), the field equations
imply that these functions are of class Cn−2(M+) and Cn−3(M+) in the
starting gauge Ko

1 and Ko
2 . We already know (Lemma 4.2) that, under this

first set of gauge transformations, P
(2)
c is invariant provided the configura-

tion has equatorial symmetry (and this property is true in the present setup,
see below).

In the base perturbation scheme we have only assumed the outcome of
Theorem 2.2. While P (1) = 0 followed directly from the field equations, at
this level of generality we did not know a priori that P (2) is well-behaved at
the centre (not even bounded). We prefered this route (instead of assuming
the hypotheses of Theorem 2.2, which would of course would have been
justified) in order to emphasize that, even with this generality, imposing
that the fluid satisfies a barotropic equation of state (independent of the
perturbation parameter ε) already forces the continuity of P (2) at the centre

and hence the existence of the parameter P
(2)
c .

We now discuss the gauge invariance of P
(2)
c under the canonical gauge

transformation and under {Ψ(C;A,B,Y, α)} when the hypotheses of Theo-
rem 2.2 are assumed (instead of only its conclusions). We are only interested
in the case when P (1) = 0.

Lemma 7.1. Let Ko
1 and Ko

2 be perturbation tensors defined by the Cn+1

(n ≥ 3) perturbation scheme (Mε, ĝε, {ψε}) assumed in Theorem 2.2. As-
sume further that the perturbed field equations for a rigidly rotating perfect

fluid hold on M+ with P (1) = 0 and set P
(2)
c := P (2)(0).

(i) If ĝε, ε ̸= 0, only admits one axial Killing vector, then P
(2)
c is gauge

invariant under the canonical gauge transformation.

(ii) P
(2)
c is gauge invariant under {Ψ(C;A,B,Y, α)}.

Proof. For the gauge vectors V1 and V2 that transform Ko
1 and Ko

2 into the
form KΨ

1 and KΨ
2 given in Theorem 2.2, we know that V1 and V2 have

no radial component (because the condition described in Remark 2.4 is
satisfied). Since the background pressure P is radially symmetric we have
V1(P ) = V2(P ) = 0 outside the centre, and in fact everywhere because V1,
V2 extend continuosly to the centre. It is now immediate from (4.23) that
P (1)g = P (1) = 0 and P (2)g = P (2). In particular, the value at the centre

P
(2)
c = P (2)(0) is gauge invariant. This proves item (i).

For item (ii), let V1, V2 be gauge vectors given by (2.15) and (2.16)
respectively. Since V1 has again no radial component, the property P =
P (1) = 0 follows as before. Now, (4.23) gives P (2)g = P (2) + V2(P ) = P (2) +
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2Y(r, θ)∂r(P ). Boundedness of Y and the vanishing of dP at the centre,

ensured by Lemma 3.2, proves that P
(2)
c is also gauge invariant in this case.

□

This result allows us to call P
(2)
c “the perturbed central pressure” (to

second order) in an unambiguous way.

7.2. Existence and uniqueness of the first order problem

We focus first on the first order problem, i.e. that for (2.11). To do that we
only need to consider the base perturbation scheme with ϖ(r) = Π(1) = 0
and identify KΨ

1 with K2 in (5.7) thanks to the substitutions

W(r, θ) → ω(r, θ), h→ h(1), m→ m(1), k → k(1), f → f (1),(7.1)

at both sides ±, while the perturbed density and pressure in the exterior
M− get substituted by

(7.2) P (2) → P (1), E(2) → E(1).

Obviously, also

(7.3) Wc → ωc, Π
(2)
+ → Π

(1)
+ , P (2)

c → P (1)
c ,

and the latter is called simply “perturbed pressure at the origin”. We make
the full argument precise in the proof of the following proposition.

Proposition 7.2 (Rotating stars to 1st order). Consider a Cn+1 per-
fect fluid ball configuration according to Definition 3.3 with n ≥ 4 and Ec +
Pc ̸= 0. Let us be given a Cn+1 maximal perturbation scheme (Mε, ĝε, {ψε})
inheriting the Abelian G2 generated by {ξ = ∂t, η = ∂ϕ}. Assume that the
corresponding first order perturbation tensor K1

• solves the 1st order perturbed equations for a rigidly rotating perfect
fluid with the barotropic equation of state of the background in M+

and for vacuum in M−,

• satisfies the linearized matching conditions across the boundary of the
fluid ball.

• it is bounded,

• the perturbed pressure vanishes at the origin, P
(1)
c = 0.
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Then there exist first order gauge vectors (at each interior and exterior re-
gions M±) such that the gauge transformed tensor Kφ

1 takes the form

(7.4) Kφ
1 = −2ωc(G(r)−G∞)r2 sin2 θdtdϕ,

where ωc ∈ R, G(r) is the unique C1(0,∞) solution of (6.17) in D with
G(0) = 1, and G∞ = limr→∞G(r) = G(a) + aG′(a)/3 > 1. Moreover, G+

extends to a C2(M+) ∩ Cn+2(M+ \ C0) function, while G− is C∞([a,∞))
and given explicitly by (6.20).

Furthermore, the parameter Ω(1) = −ωcG∞, and the first order perturbed
pressure and density P (1) and E(1) vanish identically.

Proof. We start by setting the problem under the frame of the base per-
turbation scheme. Point B1 of the base perturbation scheme is satisfied by
assumption. We set K±

1 = 0, i.e. ϖ± = 0, and the whole point B2 is triv-
ially satisfied with Π(1) = Jϖ = 0, while the matching conditions (5.66) and
(5.67) are also satisfied for b1 = Q±

1 = 0. By Proposition 4.1 the perturba-
tion scheme inherits the orthogonal transitivity of the group generated by
{ξ, η} and therefore Theorem 2.2 applies to both the interior and exterior
regionsM± ensuring that there exists a gauge transformation at each region
M± for which the first order perturbation tensors take the form (2.11) on
each M±. With the identifications in (7.1) and setting R(r) = r (which is
allowed by the assumptions in Definition 3.3), the properties of the functions
in (2.11) imply that point B3.1 of the base perturbation scheme is satisfied
for K2 = KΨ

1 with m = n− 1 (on both M+ and M−). Finally, the points
B3.2, B4 and B5 are incorporated as assumptions in the Proposition.

It suffices now to apply Proposition 6.10 for the case ϖ± = 0 and impose

P
(2)
c = 0, which is the translation of P

(1)
c = 0 under (7.2). Applying again

the translation (7.2) to the outcome of this Proposition gives (7.4) as well
as all the listed properties of G(r).

The parameter Ω(1) was called Π
(1)
+ in the base scheme and takes

the value (by Proposition 6.5 after appyling the translation (7.3)) Π
(1)
+ =

−ωcG∞. Moreover, Remark 6.11, applied to ϖ = 0 and hφ = 0 provides

E(2) = P (2) = 0. The translation (7.2) provides the final claim. Calling P
(2)
c

the “perturbed pressure at the origin” is justified by Lemma 7.1 □

7.3. Existence and uniqueness to second order

Given the previous result for the first order problem, the second order prob-
lem just follows the base perturbation scheme, and we just need to make
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direct use of Proposition 6.10. We make the result and the argument precise
in the following.

Theorem 7.3 (Rotating stars to second order). Consider a Cn+1 per-
fect fluid ball configuration according to Definition 3.3 with n ≥ 4 and Ec +
Pc ̸= 0. Let us be given a Cn+1 maximal perturbation scheme (Mε, ĝε, {ψε})
inheriting the Abelian G2 generated by {ξ = ∂t, η = ∂ϕ}. Assume that the
corresponding first and second order perturbation tensors K1 and K2

• solve the perturbed equations to second order for a rigidly rotating per-
fect fluid with the barotropic equation of state of the background in M+

and for vacuum in M−,

• satisfy the matching conditions to second order across the boundary of
the fluid ball,

• are bounded,

• the perturbed pressure at the origin vanishes, P
(1)
c = P

(2)
c = 0.

Then there exist first and second order gauge vectors (at each interior and
exterior regions M±) such that the gauge transformed tensors Kφ

1 and Kφ
2

are of class C2(M+) ∩ Cn+2(M+ \ C0) ∩ C
∞(M−) ∩ C1(M) and C0(M+) ∩

Cn(M+ \ C0) ∩ C
∞(M−) respectively, and take the form

Kφ
1 = −2ωc(G(r)−G∞)r2 sin2 θdtdϕ,(7.5)

Kφ
2 =

(
−4eν(r)h(r, θ) + 2ω2

c (G(r)−G∞)2r2 sin2 θ
)
dt2(7.6)

+ 4eλ(r)m(r, θ)dr2 + 4k(r, θ)r2
(
dθ2 + sin2 θdϕ2

)

− 2Wc(G(r)−G∞)r2 sin2 θdtdϕ,

with

h(r, θ) = h0(r) + h2(r)P2(cos θ),

m(r, θ) = m0(r) +m2(r)P2(cos θ),(7.7)

k(r, θ) = k2(r)P2(cos θ),

where ωc,Wc ∈ R are free parameters and

(i) G(r) is the unique C1(0,∞) solution of (6.17) in D with G(0) = 1.
Moreover, G∞ = limr→∞G(r) = G(a) + aG′(a)/3 > 1, G′(a) > 0 and
G(r) in D+ extends to a C2([0, a]) ∩ Cn+2((0, a]) function.
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(ii) The functions h0(r), h2(r),m0(r),m2(r), k2(r) are of class C
n((0, a]) ∩

C∞([a,∞)), extend continuously to r = 0, are bounded, are uniquely
determined by ωc, and all vanish if ωc = 0.

(iii) The rotation parameters Ω(1) = −ωcG∞ and Ω(2) = −WcG∞.

Remark 7.4. In all the expressions referred to in this remark the replace-

ment ϖ+ −Π
(1)
+ → ωcG is to be made.

The global solution in the gauge φ is obtained, apart from G(r), in terms
of two fully determined functions ς∗(r) and v̂2(r). The function v̂2(r) is the
unique bounded solution of the equation (5.46) with (5.37) and (5.28) that
satisfies the matching conditions

[v̂2] = 0, [v̂′2] =
1

6
eλ(a)(1 + eλ(a))a3κE+(a)G

2(a),

c.f. Proposition 6.6. The function ς∗(r) is the unique bounded solution of the
equation (5.65) with (5.37) and (5.28) that satisfies (6.39) and the matching
conditions

[ς∗] = 0, [ς ′∗] = −
2

3
eλ(a)(1 + eλ(a))a3κE+(a)G

2(a),

and is determined by the value P
(2)
c = limr→0 P

(2) through the relation

(6.43), c.f. Proposition 6.7. Although in Theorem 7.3 we have set P
(2)
c = 0,

the solution has been obtained for general values of the second order per-

turbed pressure P
(2)
c . This may be of independent interest.

• In the interior region we have E(1) = P (1) = 0, and the functions
{h,m, k} and {E(2), P (2)} are given by the right-hand sides of (6.68)–
(6.70) and Remark 6.11, respectively, with Γ(r) as defined in (6.31),
fω as in (5.28) and ς+∗ , v̂+2 being the interior parts of ς∗, v̂2.

• In the exterior region the functions {h,m, k} are given by the right-
hand sides of (6.71)–(6.73) with Γ⋆ as defined in (6.41) and Jϖ →
−ωcG

′(a)a4/6, with ς−∗ and v̂−2 being the exterior parts of ς∗ and v̂2.

Proof. All the hypotheses of Proposition 7.2 are satisfied, so (7.5) as well
as item (i) follow readily. We now use the base perturbation scheme. The
first point B1 is satisfied by assumption. Point B2 holds with K1 = Kφ

1 and

ϖ = ωc(G−G∞), Π
(1)
+ = −ωcG∞. Proposition 4.1 and Theorem 2.2 imply

the existence of a second order gauge vector that transforms the second
order tensor onto the form KΨ

2
± as given in (2.12) on each M±. By the
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same Theorem 2.2, point B3.1 of the base perturbation scheme is satisfied
with m = n− 2. Since n ≥ 4 by assumption, the condition m ≥ 2 holds.
Finally, B3.2, B4 and B5 are satisfied by assumption.

It suffices now to apply Proposition 6.10 with ϖ = ωc(G−G∞) to con-

clude (7.6), (7.7), as well as point (ii). As before, calling P
(2)
c the “perturbed

pressure at the origin” (at second order) is justified by Lemma 7.1. Item (iii)

follows because Ω(2) corresponds to Π
(2)
+ in the base scheme and its value

was given in Proposition 6.5 (the value of Ω(1) already appears in Proposi-
tion 7.2).

The matching conditions for ς∗ and v̂2 in the Remark follow from

(6.40) and (6.25) respectively, for ϖ = ωc(G−G∞) and Π
(1)
+ = −ωcG∞, so

that ϖ+(a)−Π
(1)
+ = ωcG(a) and therefore [fω] =

1
3e

λ(a)a4κE+(a)G
2(a), c.f.

(5.83). The expressions are simplified using (3.20) and that ν(a) = −λ(a),
c.f. (3.25) and (3.19). □

We finish the paper by writing down the family of metrics gε to second
order for the gauge φ obtained in this theorem. The final step will be to
exploit the freedom in redefining the perturbation parameter ε→ ε̃ = ε̃(ε),
inherent to any perturbation theory, as well as the scalability of the pertur-
bations, to obtain the clasical form of the stationary and axially symmetric
perturbations around static balls.

From Theorem 7.3 we have

gε = g − ε(2ωc + εWc)(G(r)−G∞)r2 sin2 θdtdϕ(7.8)

+ ε2
((

−2eν(r)h(r, θ) + ω2
c (G(r)−G∞)2r2 sin2 θ

)
dt2

+ 2eλ(r)m(r, θ)dr2 + 2k(r, θ)r2
(
dθ2 + sin2 θdϕ2

) )
+O(ε3).

If ωc = 0 then (7.8) reduces to gε = g − ε2Wc(G(r)−G∞)r2 sin2 θdtdϕ+
O(ε3), which simply means that the perturbation is set to start at second
order, which then becomes the first non-trivial order and takes exacly the
same form as the first order with ωc = Wc/2. We can thus assume ωc ̸= 0
without loss of generality. The change ε̃ = ε(ωc + εWc/2), after a suitable
rescaling

{h,m, k} → {h/ω2
c ,m/ω

2
c , k/ω

2
c}
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yields

gε̃ = g − 2ε̃(G(r)−G∞)r2 sin2 θdtdϕ(7.9)

+ ε̃2
((

−2eν(r)h(r, θ) + (G(r)−G∞)2r2 sin2 θ
)
dt2

+ 2eλ(r)m(r, θ)dr2 + 2k(r, θ)r2
(
dθ2 + sin2 θdϕ2

))
+O(ε̃3).

This redefinition amounts to setting ωc = 1 and Wc = 0. Let us stress the
fact that all functions in this last expression are unique, and that the only
free paramenter that enters the first and second order perturbations, which
we have taken to be ωc, is now integrated into ε̃. This corresponds to the
property, widely used in the literature, that stationary and axially symmetric
perturbations of fluid balls to second order depend on a single free parameter,
that can be encoded in the perturbation parameter and which physically
is related to the rotation of the fluid. As discussed in the introduction,
establishing this fact rigorously was one of the aims of this paper.

Let us finally stress that the relation of the parameters and functions
in (7.9) with the rotation of the star, as measured by the static observer ξ at
infinity, requires the full control of the gauges and the jump at the surface
of the relevant functions, and is of global nature and gauge invariant, as
discussed in [33]. One detail that is missing in [33] is that boundedness
of the perturbation forces the gauges (at first order) to be fixed so that ξ
remains to be the stationary observer for gε at infinity. This fixing of gauges,
as done in the present paper, yields the following fluid velocity

u = Fε(ξ − ε̃G∞η) +O(ε̃3),(7.10)

Fε := e−
ν

2 +
1

2
ε̃2e−

3ν

2

(
−2eνh+G2r2 sin2 θ

)
.

Indeed, the redefinition {ωc → 1,Wc → 0} gives (by Theorem 7.3, item
(ii)) {Ω(1) = −G∞ = −(G(a) + aG′(a)/3) < −1,Ω(2) = 0} and (7.10) fol-
lows from (4.21) and (4.22) applied to (7.9). The velocity of rotation of
uε along η as measured with respect to ξ at infinity is thus given by −ε̃G∞,
and vanishes iff ε̃ = 0.
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Appendix A. First order perturbed Ricci tensor in

covariant form

In this appendix we derive, in a fully covariant manner, the first order per-
turbed Ricci tensor in backgrounds admitting two Killing vectors ξ and η
satisfying suitable conditions (see Proposition A.1 below) and for metric
perturbation tensors K1 with a single component along the ξ, η direction. It
turns out that the perturbed Ricci tensor preserves this structure, namely
its only non-zero component is again along the ξ, η direction. In practice
this implies a decoupling of the perturbed field equations.

In the main text we apply these results in the context of static and
spherically symmetric backgrounds. However, the decoupling holds in much
more generality. In view of their potential interest for other problems we
present the general result.

We start by writing down an expression for the perturbed Ricci tensor in
an arbitrary background when the metric perturbation tensor K1 is splitted
as K1αβ = wSαβ , where w and Sαβ are for the moment any C2 scalar and
symetric (0, 2)-tensor, respectively. Directly from the definition (4.2)

S(1)
µαβ =

1

2
(∇αwSµβ +∇βwSµα −∇µwSαβ) + wPµαβ ,(A.1)

Pµαβ :=
1

2
(∇αSµβ +∇βSµα −∇µSαβ) .

Taking the trace in µα in (4.2) yields immediately

S(1)µ
µβ =

1

2
∇βK1

µ
µ =

1

2
∇β

(
wSµ

µ

)
.(A.2)
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We also need to compute

∇µS
(1)µ

αβ =
1

2
(∇µ∇αwSµβ +∇µ∇βwSµα −∇µ∇µwSαβ)(A.3)

+
1

2

(
∇αw∇µSµβ +∇βw∇µSµα − 2∇µw∇µSαβ

+∇µw∇αSµβ +∇µw∇βSµα

)
+ w∇µP

µ
αβ

=
1

2

(
∇α (∇

µwSµβ) +∇β (∇
µwSµα)−∇µ∇µwSαβ

)

−∇µw∇
µSαβ +

1

2
(∇αw∇

µSµβ +∇βw∇
µSµα)

+ w∇µP
µ
αβ .

Inserting (A.2)–(A.3) into (4.7), yields the following (fully general) identity:

R
(1)
αβ =

1

2

(
∇α (∇

µwSµβ) +∇β (∇
µwSµα)−∇µ∇µwSαβ

)
−∇µw∇µSαβ

+
1

2

(
∇αw∇µSµβ +∇βw∇µSµα

)
+ w∇µP

µ
αβ −

1

2
∇α∇β

(
wSµ

µ

)
.

We now assume that (M, g) admits two Killing vectors ξ and η and that
Sαβ = ξαηβ + ξβηα. Then ∇µwSµα = ξ(w)ηα + η(w)ξα, S

µ
µ = 2⟨ξ, η⟩ and

∇µSµα = ξµ∇
µηα + ηµ∇

µξα = −∇α⟨ξ, η⟩.

Moreover, the Killing equations also imply

Pµαβ = ∇αξµ ηβ +∇βξµ ηα +∇αηµ ξβ +∇βηµ ξα,(A.4)

whose divergence is, after using the standard identity∇µ∇αξ
µ = Rαµξ

µ (and
similarly for η),

∇µP
µ
αβ = Rαµξ

µηβ +Rβµξ
µηα +Rαµη

µξβ +Rβµη
µξα

− 2∇αξ
µ∇βηµ − 2∇βξ

µ∇αηµ.

Putting everything together, it follows that

R
(1)
αβ = ∇(α

(
ξ(w)ηβ)

)
+∇(α

(
η(w)ξβ)

)
(A.5)

−
1

2
(∇µ∇

µw)Sαβ −∇µw∇µSαβ −∇(αw∇β)⟨ξ, η⟩

+ 2w
(
Rµ(αξ

µηβ) +Rµ(αη
µξβ)

)

− 4w∇(αξ
µ∇β)ηµ −∇α∇β (w⟨ξ, η⟩) .
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where brackets denote symmetrization. This is a general identity valid for a
perturbation tensor K1αβ of the form K1αβ = 2wξ(αηβ) with ξ and η Killing
vectors of the background.

This general identity may have applications in several contexts. For the
purposes of this paper we need the following particular case:

Proposition A.1. Let (M, g) be a spacetime admitting two Killing vectors
ξ and η satisfying the following three conditions:

(i) ξ and η are perpendicular, i.e. ⟨ξ, η⟩ = 0,

(ii) [ξ, η] = 0,

(iii) both ξ and η are hypersurface orthogonal and non-null on an open
set U .

Consider a first order perturbation tensor K1αβ = wSαβ with Sαβ :=
2ξ(αηβ) and w ∈ C2(U) satisfying ξ(w) = η(w) = 0. Then, on U , the first
order perturbation of the Ricci tensor is

R
(1)
αβ = Sαβ

(
(λξ + λη)w −

1

2⟨ξ, ξ⟩⟨η, η⟩
∇µ

(
⟨ξ, ξ⟩⟨η, η⟩∇µw

)
(A.6)

−
w

2⟨ξ, ξ⟩⟨η, η⟩
∇µ⟨ξ, ξ⟩∇

µ⟨η, η⟩

)
,

where λξ and λη are defined by λξ =
1

⟨ξ,ξ⟩Ric(ξ, ξ) and λη = 1
⟨η,η⟩Ric(η, η).

Remark A.2. In the main text we use this result several times. For no-
tational simplicity, it is convenient to define the second order differential
operator R(f)

R(f) :=

(
(λξ + λη)f −

1

2⟨ξ, ξ⟩⟨η, η⟩
∇µ

(
⟨ξ, ξ⟩⟨η, η⟩∇µf

)
(A.7)

−
f

2⟨ξ, ξ⟩⟨η, η⟩
∇µ⟨ξ, ξ⟩∇

µ⟨η, η⟩

)

with λξ and λη as above, so that (A.6) is simply R
(1)
αβ = R(w)Sαβ .
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Proof. We work on U . Being hypersurface orthogonal and non-null, the
derivatives of ξ and η are necessarily of the form

∇αξβ = ξαHβ − ξβHα Hα := −
1

2⟨ξ, ξ⟩
∇α⟨ξ, ξ⟩(A.8)

∇αηβ = ηαMβ − ηβMα Mα := −
1

2⟨η, η⟩
∇α⟨η, η⟩.(A.9)

For any Killing field ξ and vector X it holds (L denotes Lie derivative)

ξµ∇µ⟨X,X⟩ = Lξ⟨X,X⟩ = 2⟨LξX,X⟩.

As a consequence, the commutation property [ξ, η] = 0 implies ξαMα =
ηαHα = 0. We can now compute

∇αξ
µ∇βηµ = (ξαH

µ − ξµHα) (ηβMµ − ηµMβ) = ξαηβHµM
µ =⇒

2∇(αξ
µ∇β)ηµ = Sαβ (HµM

µ) = Sαβ

(
1

4⟨ξ, ξ⟩⟨η, η⟩
∇µ⟨ξ, ξ⟩∇

µ⟨η, η⟩

)

and also

∇µSαβ = 2∇µ

(
ξ(αηβ)

)
= 2

(
∇µξ(α

)
ηβ) + 2

(
∇µη(α

)
ξβ)

= 2ξµH(αηβ) + 2ηµM(αξβ) − (Hµ +Mµ)Sαβ

= 2ξµH(αηβ) + 2ηµM(αξβ) +
1

2⟨ξ, ξ⟩⟨η, η⟩
∇µ

(
⟨ξ, ξ⟩⟨η, η⟩

)
Sαβ .

Hypersurface orthogonality implies that both ξ and η are eigenvectors of the
Ricci tensor, so that

Rαµξ
µ = λξξα, Rαµη

µ = ληηα,

with λξ and λη as defined in the Proposition. Thus, under assumptions (i),(ii)
and (iii), the first order perturbation of the Ricci tensor (A.5) simplifies to

R
(1)
αβ = ∇(α

(
ξ(w)ηβ)

)
+∇(α

(
η(w)ξβ)

)

+ ξ(w)
1

⟨ξ, ξ⟩
∇(α⟨ξ, ξ⟩ηβ) + η(w)

1

⟨η, η⟩
∇(α⟨η, η⟩ξβ)

+Sαβ

(
(λξ + λη)w −

1

2⟨ξ, ξ⟩⟨η, η⟩
∇µ

(
⟨ξ, ξ⟩⟨η, η⟩∇µw

)

−
w

2⟨ξ, ξ⟩⟨η, η⟩
∇µ⟨ξ, ξ⟩∇

µ⟨η, η⟩

)
.
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When, in addition, w is invariant under ξ and η, the first four terms vanish
and the perturbed Ricci tensor is proportional to the metric perturbation
tensor K1, with explicit expression given in (A.6). □

Remark A.3. We note that under the assumptions of this proposition, we
may insert (A.8) and (A.9) into the expression for P in (A.4) to get

Pµαβ = −
1

2

∇µ (⟨ξ, ξ⟩⟨η, η)

⟨ξ, ξ⟩⟨η, η⟩
Sαβ +

1

⟨ξ, ξ⟩
ξµη(α∇β)⟨ξ, ξ⟩+

1

⟨η, η⟩
ηµξ(α∇β)⟨η, η⟩

and the tensor S(1) (A.1) takes the following form

S(1)
µαβ =

1

2
(∇αwSµβ +∇βwSµα −∇µwSαβ)(A.10)

−
1

2

∇µ (⟨ξ, ξ⟩⟨η, η)

⟨ξ, ξ⟩⟨η, η⟩
K1αβ +

w

⟨ξ, ξ⟩
ξµη(α∇β)⟨ξ, ξ⟩

+
w

⟨η, η⟩
ηµξ(α∇β)⟨η, η⟩.

Appendix B. Geometrical stationary and axisymmetric

perturbed matching to second order

The perturbed matching to second order for the Hartle setup presented in
[33] assumes that the perturbed matching hypersurface is axially symmetric,
so that the interior and exterior regions are stationary and axially symmetric
both in structure and in shape. In this appendix we revisit that framework by
dropping any assumption on the perturbation of the matching hypersurface,
thus considering the general case. Furthemore, for the sake of generality, we
will also include the radial functions R± at either side in the background
configuration. To be more precise, in Propositions 1 and 2 in [33], apart from
having set R(r) = r, all four functions Q1, T1, Q2, T2 on Σ are assumed
not to depend on φ. We present in the following the corresponding general
results.

We start by recalling the perturbed matching theory to second order, as
developed in [22] (see [4, 27] for the first order). We do this for completeness
and also because, following [33], it allows us to introduce a quantity with
better gauge behaviour that simplifies the expressions to some extent.

The first order matching conditions require the equality of two pairs of

symmetric tensors h
(1)
± , κ

(1)
± defined on the background matching hypersur-

face Σ. Geometrically, these tensors correspond, respectively, to the linear



✐

✐

“9-Mars” — 2024/1/2 — 18:37 — page 2804 — #86
✐

✐

✐

✐

✐

✐

2804 M. Mars, B. Reina, and R. Vera

pertubations of the first and second fundamental forms of the matching hy-
persurfaces Σε in the one-paramenter family of spacetimes (M, g±ε ) defining
the perturbation. They take explicit forms in terms of background quanti-
ties, the metric perturbation tensor K±

1 and a vector field Z±
1 along Σ which

encodes the first order variation of the matching hypersurface with ε. Its
decomposition into normal and tangential components Z±

1 = Q±
1 n

± + T1
±,

where n± is the unit normal to Σ±, introduces two scalars Q±
1 which de-

scribe the deformation of Σ± as a set of points, and two tangential vectors
T1

± which determine how the different points within the sets are identified.

The construction to second order is analogous and involves tensors h
(2)
± , κ

(2)
±

and vector fields Z±
2 = Q±

2 n
± + T2

± along Σ.
We drop the ± indexes for simplicity. The matching problem involves two

independent gauges, the usual spacetime gauge and a hypersurface gauge.
The former involves two vectors V1 and V2 called (spacetime) gauge vectors
and affect Z1 and Z2 as [22]

(B.1) Zg
1 = Z1 − V1|Σ, Zg

2 = Z2 − V2 − 2∇Z1
V1 +∇V1

V1|Σ.

The hypersurface gauge involves two vector fields U1 (first order) and U2

(second order) both tangential to Σ and transform Z1 and Z2 as [22]

(B.2) Zh
1 = Z1 + U1, Zh

2 = Z2 + U2 + 2∇U1
Z1 − σκ(U1, U1)n,

where σ = +1 when Σ is timelike and σ = −1 when Σ is spacelike5. One
possible use of the hypersurface gauge is setting to zero the tangential parts
at one side of T1 and T2 (either side but not both sides simultaneously).
Concerning the effect of (B.2) on the normal components, we observe that
the scalar Q1 is not affected at all. This just reflects the fact that the hyper-
surface gauge does not modify the matching hypersurfaces as sets of points
and only affects how they are identified pointwise. This is no longer true at
second order. The underlying reason is that Z2 measures “accelerations” (in
the sense of second order changes) and this has the not so obvious conse-
quence that Q2 is affected by U1. From the second in (B.2) it follows

Qh
2 = Q2 + 2U1(Q1)− σκ(U1, U1 + 2T1).

5In this paper we only deal with σ = +1, but here we present the general expres-
sions in terms of the new variables.
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This suggests the construction of the hypersurface gauge invariant quantity
(cf. [33])

(B.3) Q̂2 := Q2 + σκ(T1, T1)− 2T1(Q1).

We therefore rewrite the explicit expressions of h(1), κ(1), h(2), κ(2) given
in Propositions 2 and 3 in [22] in terms of this gauge invariant quantity
Q̂2. The first order objects h(1), κ(1) are independent of Q2, so we simply
reproduce from [22]:

h(1)ij = £T1
hij + 2Q1κij +K1αβe

α
i e

β
j ,(B.4)

κ(1)ij = £T1
κij − σDiDjQ1 +Q1

(
−nµnνRαµβνe

α
i e

β
j + κilκ

l
j

)
(B.5)

+
σ

2
K⊥

1 κij − nµS
(1)µ

αβe
α
i e

β
j ,

where D is the Levi-Civita covariant derivative of the (background) induced
metric h on Σ, S(1) is defined in (4.2), eαi are tangent vectors to Σ and
K⊥

1 := K1(n, n).
For second order quantities, we replace Q2 in terms of Q̂2 in the expres-

sions in [22, Proposition 3]. The result is

h(2)ij = LT2
hij + 2Q̂2κij +K2αβe

α
i e

β
j + 2LT1

h(1)ij − LT1
LT1

hij(B.6)

+ L2Q1τ (1)−2Q1κ(T1)−DT1
T1
hij + 4σQ1K

⊥
1 κij

+ 2Q2
1

(
−nµnνRαµβνe

α
i e

β
j + κilκ

l
j

)
+ 2σDiQ1DjQ1

− 4Q1nµS
(1)µ

αβe
α
i e

β
j ,

κ(2)ij = LT2
κij − σDiDjQ̂2(B.7)

+
(
Q̂2 + σQ1K

⊥
1

)(
−nµnνRαµβνe

α
i e

β
j + κilκ

l
j

)

− nµS
(2)µ

αβe
α
i e

β
j + 2LT1

κ(1)ij

+ κij

(
σ

2
K⊥

2 −
1

4
(K⊥

1 )2 − σ
(
τ (1)l + σDlQ1

)(
τ (1)l + σDlQ1

)

+ 2σQ1nµn
ρnδS(1)µ

ρδ

)

+
(
σK⊥

1 nµ + 2τ (1)µ + 2σDµQ1

)
S(1)µ

αβe
α
i e

β
j

− 2Q1nµn
ν(∇νS

(1)µ
αβ)e

α
i e

β
j

− 2nµn
νS(1)µ

αν

(
eαi DjQ1 + eαjDiQ1

)
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− 2Q1nµS
(1)µ

αβe
β
l

(
eαi κ

l
j + eαj κ

l
i

)

+ L− 1

2
K⊥

1 grad(Q1)+2σQ1κ(grad(Q1)) hij

+
1

2

(
DiQ1DjK

⊥
1 +DjQ1DiK

⊥
1

)

− LT1
LT1

κij − L2Q1κ(T1)+DT1
T1
κij − 2σQ1Lgrad(Q1)κij

−Q2
1

(
nµnνnδ(∇δRαµβν)e

α
i e

β
j + 2nµnνRδµανe

δ
l e

α
j κ

l
i

+ 2nµnνRδµανe
δ
l e

α
i κ

l
j

)
,

where S(2) is given in (4.3), K⊥
2 := K2(n, n), τ

(1) is the tangent vector de-
fined by h(τ (1), ei) = K1(n, ei), DµQ is defined by {nµDµQ1 = 0, eµi DµQ1 =
DiQ1} and, for any tangent vector V , κ(V ) is the tangent vector with com-
ponents κijV

j .
The perturbed matching conditions at first order [4, 22, 27] demand the

existence of Q±
1 and T1

± such that [h(1)] = [κ(1)] = 0. At second order [22]

the perturbed matching conditions hold iff there exist Q̂±
2 and T2

± such that
[h(2)] = [κ(2)] = 0.

We may now apply the perturbed matching theory to our specific setting.
As in the main text, for any pair of quantities F± (we use + and − as
super or subindexes indistinctly) on Σ satisfying [F ] = 0 we simply write
F+ = F− =: F .

Proposition B.1. Let (M, g) be a static and spherically symmetric space-
time with two regions as in Definition 3.1. Consider the metric perturbation
tensors K±

1 of the form

(B.8) K1 = −2ω(r, θ)R2(r) sin2 θdtdϕ

at either side M±. Let us assume that

(i) n(R)|Σ ̸= 0, (ii)

(
1

2
n(ν)−

n(R)

R
+

1

Rn(R)

)∣∣∣∣
Σ

̸= 0,(B.9)

(iii) n(ν)|Σ ̸= 0,

where n := −e−λ/2∂r. The perturbations K±
1 satisfy the first order matching

conditions if and only if there exists a constant b1 such that

[ω] = b1 ∈ R, [n(ω)] = 0.(B.10)
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Moreover, introducing the quantities

(B.11) Λ1 =
1

2
eν
(
n(n(ν)) +

1

2
(n(ν))2

)
, Λ2 = −Rn(n(R)),

the deformation vectors Z±
1 = Q±

1 n
± + T1

± must satisfy

[T1] = b1τη + ζ, [Q1] = 0, [Λ1]Q1 = 0, [Λ2]Q1 = 0,(B.12)

where η = ∂φ and ζ is an arbitrary background Killing vector.

Remark B.2. This proposition holds in full generality, i.e. no a priori
restriction (such as e.g. axial symmetry) is assumed on how the matching
hypersurface is deformed to first order.

Remark B.3. Conditions (B.9) are well-defined because the expresions
they involve agree when computed from either side of the matching hyper-
surface. This is a consequence of the background matching conditions (3.6).

Proof. Let gS2 be the standard round sphere on S2 and denote by D its
associated derivative. We use coordinates {τ, ϑ, φ} := {τ, xA} on Σ. For any
tangent vector V = V τ∂τ + V A∂xA , and any symmetric tensor S = a1dτ

2 +
a2gS2 , with a1, a2 constants, the Lie derivative LV S can be expressed as

LV S = 2a1V̇
τdτ2 + 2

(
a1DAV

τ + a2∂τVA
)
dτdxA(B.13)

+ a2
(
DAVB +DBVA

)
dxAdxB

where the dot denotes derivative with respect to τ and Latin indices A,B, · · ·
are raised and lowered with gS2 . By (3.4)–(3.5), the tensors hij , κij are both
of this form. For notational convenience we write them as

h = α1dτ
2 + α2gS2 , κ = β1dτ

2 + β2gS2 ,(B.14)

α1 := −eν |Σ, α2 := R2|Σ,(B.15)

β1 := −
1

2
eνn(ν)|Σ, β2 := Rn(R)|Σ.

Note that α1, α2 are both non-zero. The first set of matching conditions
(B.4) are

L[T1]h+ 2[Q1]κ+ [Φ⋆(K1)] = 0,(B.16)

where Φ⋆ is the pull-back to Σ. Note that the last term in (B.16) has com-
ponents only in dτdφ. Applying (B.13), the {A,B} components of (B.16)
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read

α2

(
DA[T1]B +DB[T1]A

)
+ 2β2[Q1]gS2AB = 0.(B.17)

Thus [T1]A(τ) is a conformal Killing vector of S2. Let Y a (a = 1, 2, 3) be the
spherical harmonics with ℓ = 1 on the sphere. More specifically, Y a is de-
fined as the restriction of the Cartesian coordinate xa to the unit sphere, and
the labels are chosen so that the rotation generated by η has axis along x3.
The spherical harmonics Y a satisfy DADBY

a = −Y agS2AB and the six di-
mensional algebra of conformal Killing vectors on S2 is spanned by {DAY

a}
(proper conformal Killings) and {ϵABD

BY a} (Killing vectors) where ϵAB

is the volume form of (S2, gS2) with {∂ϑ, ∂φ} positively oriented. The axial
Killing vector η is tangent to the foliation of Σ by spheres, so in partic-
ular it defines an axial Killing vector on the unit sphere and we can write
η = ηA∂A. By definition we have ηA := gS2ABη

B = ϵABD
BY 3. In expressions

without indexes, we will use η̄ := gS2(η, ·) to distinguish ηA from ηα. Note
that η = α2η̄, where η is defined by lowering indices with the induced metric
on Σ.

Consequently, (B.17) is equivalent to the existence of functions
fa(τ), qa(τ) such that [T1]A = fa(τ)DAY

a + qa(τ)ϵABD
BY a and

[Q1] =
α2

β2
fa(τ)Y

a,(B.18)

where we have used assumption (i) in (B.9), i.e. β2 ̸= 0. Now, the tensor
[Φ⋆(K1)] is [Φ

⋆(K1)] = −2[ω]α2ηAdτdx
A and the {τ, A} component of (B.16)

becomes

α1DA[T1]
τ + α2∂τ [T1]A − [ω]α2ηA = 0 ⇐⇒

DA

(
α1[T1]

τ + α2ḟaY
a
)
+ ϵABD

B (α2q̇aY
a)− [ω]α2ηA = 0.(B.19)

Taking DA of (B.19) and using that DA([ω]ηA) = 0 it follows

∆gS2

(
α1[T1]

τ + α2ḟaY
a
)
= 0,

hence the term in parenthesis depends only on τ , i.e.

[T1]
τ = −

α2

α1
ḟaY

a + C
(1)
0 (τ).(B.20)
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Substituting back into (B.19) yields

ϵABD
B (α2q̇aY

a) = [ω]α2ηA.(B.21)

At each value of τ , the left hand side is a Killing vector of S2. Since ηA is
also a Killing vector of the sphere, this imples that [ω] can at most depend
on τ . However, since ω(r, θ) we conclude that [ω] is constant, and we write
[ω] = b1. Recalling that ηA = ϵABD

BY 3, equation (B.21) can be written as

α2ϵABD
B
(
q̇aY

a − b1Y
3
)
= 0,

from which it imediatelly follows that q̇1 = q̇2 = 0 and q̇3 = b1 ⇐⇒ q3 =
b1τ + c3 with c3 constant. Finally, the {τ, τ} component of (B.16) is, us-
ing (B.13),

α1
d[T1]

τ

dτ
+ β1[Q1] = 0 ⇐⇒ α1Ċ

(1)
0 − α2f̈aY

a +
β1α2

β2
faY

a = 0

where in the last equality we inserted (B.18) and (B.20). This implies that

C
(1)
0 is constant and that f̈a = β1

β2
fa. Sumarizing, the linearized matching

conditions [h(1)ij ] = 0 are fullfilled iff

[T1] =

(
−
α2

α1
ḟaY

a + C
(1)
0

)
∂τ + fa(τ)D

AY a∂A + b1τη + ζ0,(B.22)

[Q1] =
α2

β2
fa(τ)Y

a,

[ω] = b1, f̈a =
β1
β2
fa(B.23)

where ζ0 is any Killing vector on the sphere. In particular, we have estab-
lished the first in (B.10).

We next impose the second set of linearized matching conditions. The
last term in (B.5) (we drop the ± indexes here) is, using Remark A.3 with
w = ωe−ν ,

Φ⋆
(
nµS

(1)µ
αβ

)
= −

1

2

(
n
(
ωe−ν

)
+

n (⟨ξ, ξ⟩⟨η, η⟩)

⟨ξ, ξ⟩⟨η, η⟩
ωe−ν

)∣∣∣∣
Σ

Φ⋆(Sαβ)

=
1

2α1

(
n(ω) +

2ω

R
n(R)

)∣∣∣∣
Σ

Φ⋆(Sαβ)

= (α2n(ω)|Σ + 2β2ω|Σ) dτ ⊗s η̄(B.24)
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after using ⟨ξ, ξ⟩ = −eν
Σ
= α1, ⟨η, η⟩ = R2 sin2 θ and the fact that

Φ⋆(S) = 2α1α2dτ ⊗s η̄,(B.25)

where ⊗s stands for symmetrized tensor product, α⊗s β = 1
2(α⊗ β + β ⊗

α). The Hessian DiDjQ of any function Q on Σ has the following compo-
nents

DτDτQ = ∂τ∂τQ, DτDAQ = ∂τ∂AQ, DADBQ = DADBQ.(B.26)

Equations (B.5) are therefore

(B.27) L[T1]κij −DiDj [Q1]− [Q1n
µnνRαµβνe

α
i e

β
j ]

+ [Q1]κilκ
l
j − (α2[n(ω)] + 2β2[ω]) (dτ ⊗s η̄)ij = 0,

where we have used K⊥
1 = 0 and have inserted (B.24). We first consider the

{τ, A} component. The third and fourth terms are spherically symmetric,
hence their {τ, A} component vanishes. The first two are computed using
(B.13) and (B.26) as well as (B.22). The result is

(
−
β1α2

α1
+ β2 −

α2

β2

)
ḟaDAY

a −
1

2
α2[n(ω)]ηA = 0.(B.28)

The first factor in parenthesis is (ii) in (B.9), hence non-zero by assumption.
Since the vector fieldsDAY

a, ηA are linearly independent and α2 ̸= 0, (B.28)
is equivalent to ḟa = 0 and [n(ω)] = 0. The former combined with (B.23) and
β1 = 0 forces fa = 0 and (B.22) simplifies to

[T1] = b1τη + C
(1)
0 ∂τ + ζ0, [Q1] = 0.

This proves the first two in (B.12) with ζ := C
(1)
0 ∂τ + ζ0 any Killing vector

on Σ. Equations (B.27) have been reduced to Q1[n
µnνRαµβνe

α
i e

β
j ] = 0. It is

straightforward to check that

nµnνRαµβνe
α
i e

β
j = Λ1δ

τ
i δ

τ
j + Λ2gS2ABδ

A
i δ

B
j ,(B.29)

which proves the last two statements of the Proposition. □

Remark B.4. The presence of a Killing vector ζ in (B.12) is a consequence
of the isometries present in the background configuration, and can never be
determined [24].
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Remark B.5. Whenever R(r) = r we have Λ2 = re−λλ′/2 and 2eλ−νΛ1 =
ν ′′ − ν ′λ′/4 + ν ′2/2, and this lemma extends to the general case (without
axial symmetry on Q1 and T1) the consequences of Proposition 1 in [33], and
in particular Q1[λ

′] = Q1[ν
′′] = 0 from (B.12). We note that the condition

ν ′ ̸= 0 is (wrongly) missing in Proposition 1 in [33].

Before going into the second order matching problem we state and prove
a lemma that will simplify the computations.

Lemma B.6. Let (M, g) be a static and spherically symmetric spacetime
with two regions as in Definition 3.1. Assume that the hypotheses in Propo-
sition B.1 hold and that the corresponding first order matching conditions
are satisfied.

Consider second order metric perturbation tensors K±
2 of the form

K2 =
(
−4eν(r)h(r, θ) + 2ω2(r, θ)R2(r) sin2 θ

)
dt2(B.30)

− 2W(r, θ)R2(r) sin2 θdtdϕ+ 4eλ(r)m(r, θ)dr2

+ 4k(r, θ)R2(r)(dθ2 + sin2 θdϕ2) + 4eλ(r)∂θf(r, θ)R(r)drdθ.

Apply first a hypersurface gauge defined by U1 = −T1
− − b1τ∂φ, U2 = 0 and

then a spacetime gauge on each side defined by V −
1 = −b1t∂ϕ, V

+
1 = 0 and

V ±
2 = 0. Using superstript g to denote spacetime quantities in the final gauge

and hg to denote hypersurface quantities in the final hypersurface and space-
time gauges, the following identitites hold

ωg
− = ω− + b1, ωg

+ = ω+,

[n(ωg)] = [n(ω)] = 0, [n(n(ωg))] = [n(n(ω))]

fg+ = f+ + β+(r+), fg− = f− + β−(r−)(B.31)

=⇒ [fg] = [f ] + [β], [β] ∈ R

[ωg] = 0, [hg] = [h], [kg] = [k], [mg] = [m], [Wg] = [W],(B.32)

[n(hg)] = [n(h)], [n(kg)] = [n(k)], [n(Wg)] = [n(W)],(B.33)

[T1
hg] = ζ, Qhg

1
± = Q±

1 (=⇒ [Qhg
1 ] = [Q1] = 0),(B.34)

[T2
hg] = [T2]− 2b1τDT1

−η − 2DT1
−ζ − b21τ

2Dηη(B.35)

− 2b1τDηζ − 2b1Q1τκ(η),

Q̂hg+
2 = Q̂+

2 , Q̂hg−
2 = Q̂−

2 − 2b1τη(Q1)(B.36)

=⇒ [Q̂hg
2 ] = [Q̂2] + 2b1τη(Q

−
1 ).
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Proof. By Proposition 2.5 with C = −b1 (resp. C = 0) it follows ωg
− =

ω− + b1 (resp. ωg
+ = ω+), so that, in particular, n(ωg

±) = n(ω±), n(n(ω
g
±)) =

n(n(ω±)). As a result,

[ωg] = [ω]− b1
(B.10)
= 0, [n(ωg)] = [n(ω)]

(B.10)
= 0.

The same proposition with A = B = Y = α = 0 (the second order gauge vec-
tor V2 vanishes on both sides) gives (B.31)–(B.33). Concerning the deforma-
tion vectors, we apply the hypersurface gauge transformation law (B.2), fol-
lowed by the spacetime gauge transformation (B.1) and insert V2 = U2 = 0.
The result is

Zhg
1 = Zh

1 − V1|Σ = Z1 + U1 − V1|Σ,(B.37)

Zhg
2 = Zh

2 −∇V1
V1|Σ − 2∇Zh

1
V1 + 2∇V1

V1|Σ(B.38)

= Z2 + 2∇U1
Z1 − κ(U1, U1)n− 2∇Zh

1
V1 +∇V1

V1|Σ

= Z2 + 2∇U1
Z1 − κ(U1, U1)n− 2∇Zhg

1
V1|Σ −∇V1

V1|Σ.

Inserting in (B.37) the explicit forms of U1 and V1 in the Lemma and using
(B.12) yields

T1
hg+ = T1

+ − T1
− − b1τη = [T1]− b1τη = ζ

T1
hg− = T1

− − T1
− − b1τη + b1τη = 0

}
=⇒ [T1

hg] = ζ,(B.39)

Qhg
1

+ = Q+
1 , Qhg

1
− = Q−

1 .(B.40)

This proves (B.34). For Z±
2 we first compute

∇U1
Z±
1 = ∇U1

(T1
± +Q±

1 n)

= DU1
T1

± − κ(U1, T1
±)n + U1(Q

±
1 )n +Q±

1 κ(U1).

Inserting into (B.38), together with [Q1] = 0, U1 = −T1
−, V −

1 = −b1tη,

V +
1 = 0 and the first order hg quantity Zhg

1
− = Q1n + b1τη, leads to

Zhg
2

+ = Q+
2 n + T2

+ + 2DU1
T1

+ − 2κ(U1, T1
+)n + 2U1(Q1)n

+ 2Q1κ(U1)− κ(U1, U1)n,

Zhg
2

− = Z−
2 + 2DU1

T1
− − 2κ(U1, T1

−)n + 2U1(Q1)n + 2Q1κ(U1)

− κ(U1, U1)n + 2∇Q1n(b1tη)|Σ −∇b1tη(b1tη)|Σ

= Q−
2 n + T2

− + 2DU1
T1

− − 2κ(U1, T1
−)n + 2U1(Q1)n + 2Q1κ(U1)

− κ(U1, U1)n + 2b1Q1τκ(η)− b21τ
2 (Dηη − κ(η, η)n) ,
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To do this computation it is useful to introduce the spacelike unit vector
field n := −e−λ/2∂r. This field restricts to Σ as the unit normal before and

commutes with η, so that ∇nη = [n, η] +∇ηn
Σ
= κ(η). It must stressed that

the extension of the normal n does not change the outcome of the computa-
tion. Extracting the tangential to Σ and using U1 = −T1

− − b1τη we obtain
the diference

[T2
hg] = T2

+ + 2DU1
T1

+ + 2Q1κ(U1)

−
(
T2

− + 2DU1
T1

− + 2Q1κ(U1) + 2b1Q1τκ(η)− b21τ
2Dηη

)

= [T2]− 2D(T1
−+b1τη)[T1]− 2b1Q1τκ(η) + b21τ

2Dηη

= [T2]− 2DT1
− (b1τη + ζ)− 2b1τDη (b1τη + ζ)

− 2b1Q1τκ(η) + b21τ
2Dηη

= [T2]− 2b1τDT1
−η − 2DT−

1
ζ − b21τ

2Dηη − 2b1τDηζ − 2b1Q1τκ(η).

This proves (B.35). Regarding the normal parts, we have

Qhg
2

+ = Q+
2 − 2κ(U1, T1

+) + 2U1(Q1)− κ(U1, U1),

Qhg
2

− = Q−
2 − 2κ(U1, T1

−) + 2U1(Q1)− κ(U1, U1) + b21τ
2κ(η, η),

and the corresponding gauge invariant quantities (B.3) are

Q̂hg
2

+ (B.3)
= Qhg+

2 + κ(T1
hg+, T1

hg+)− 2T1
hg+(Q1)

= Q+
2 − 2κ(U1, T1

+) + 2U1(Q1)− κ(U1, U1)

+ κ(T1
+ + U1, T1

+ + U1)− 2(T1
+ + U1)(Q1)

= Q+
2 + κ(T1

+, T1
+)− 2T1

+(Q1)
(B.3)
= Q̂+

2 ,

Q̂hg−
2

(B.3)
= Qhg−

2 + κ(T1
hg−, T1

hg−)− 2T1
hg−(Q1)

(B.39)
= Qhg−

2

= Q−
2 − 2κ(U1, T1

−) + 2U1(Q1)− κ(U1, U1) + b21τ
2κ(η, η)

= Q−
2 + 2κ(T1

−, T1
−) + 2b1τκ(η, T1

−)− 2T1
−(Q1)− 2b1τη(Q1)

− κ(T1
−, T1

−)− b21τ
2κ(η, η)− 2b1τκ(η, T1

−) + b21τ
2κ(η, η)

= Q̂−
2 − 2b1τη(Q1),

which establishes (B.36). □

We can now solve the second order matching problem.

Proposition B.7. Let (M, g) be a static and spherically symmetric space-
time with two regions as in Definition 3.1. Assume that the hypotheses in
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Proposition B.1 hold and that the corresponding first order matching condi-
tions are satisfied.

Consider second order metric perturbation tensors K±
2 of the form

K2 =
(
−4eν(r)h(r, θ) + 2ω2(r, θ)R2(r) sin2 θ

)
dt2(B.41)

− 2W(r, θ)R2(r) sin2 θdtdϕ+ 4eλ(r)m(r, θ)dr2

+ 4k(r, θ)R2(r)(dθ2 + sin2 θdϕ2)

+ 4eλ(r)∂θf(r, θ)R(r)drdθ.

Then the second order matching conditions are satisfied if and only if there
exist functions Q̂±

2 on Σ such that, in terms of

Ξ± := Q̂±
2 − 2R(eλ/2f)|Σ± + 2T1

±(Q1),(B.42)

the following expressions hold

[Ξ] = −
R

n(R)

∣∣∣∣
Σ

(2c0 + (2c1 +H1) cosϑ) ,(B.43)

[W] = D3 − 2ζ0(ω
+|Σ),(B.44)

[n(W)] = −2ζ0(n(ω)|Σ)− 2Q1[n(n(ω))],(B.45)

[k] = − n(R)|Σ [eλ/2f ] + c0 + c1 cosϑ,(B.46)

[h] =
1

2
H0 +

Rn(ν)

4n(R)

∣∣∣∣
Σ

(2[k] +H1 cosϑ) ,(B.47)

[m] = 2[k] +
R

n(R)

∣∣∣∣
Σ

[n(k)] +

(
H1 −

(2c1 +H1)

2n(R)2|Σ

)
cosϑ(B.48)

+
1

2

[
(Ξ + 2Reλ/2f)

(
−

1

Rn(R)
Λ2 +

n(R)

R

)]

−
1

2Rn(R)

∣∣∣∣
Σ

(Q1)
2[n(Λ2)],
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[n(h)] =
Rn(ν)

2n(R)

∣∣∣∣
Σ

[n(k)](B.49)

+
n(ν)

2

(
1−

Rn(ν)

2n(R)

)∣∣∣∣
Σ

(2[k] +H1 cosϑ)

−
n(ν)

4n(R)2

∣∣∣∣
Σ

(H1 + 2c1) cosϑ

+
n(ν)

4

[(
Ξ + 2Reλ/2f

)

×

(
−

1

Rn(R)
Λ2 −

2

eνn(ν)
Λ1 +

n(R)

R
−

n(ν)

2

)]

−
1

4
(Q1)

2

[
n(ν)

Rn(R)
n(Λ2) +

2

eν
n(Λ1)

]
,

where D3, H1, H0, c0, c1 are arbitrary constants.

Remark B.8. As in Remark B.5, settingR(r) = r the results of this propo-
sition extend to the general case (without assuming axial symmetry on Q1,
T1, Q2 and T2) the outcome of Proposition 2 in [33].

Proof. We exploit Lemma B.6 to simplify the proof. Specifically, we solve
the problem in the gauge g and hg and then we translate into the original
gauge. For the sake of notational simplicity we drop the superindexes g and
hg along the proof and we only restore them at the end.

In the gauge of Lemma B.6 we have T1
− = 0 (by (B.39)) and [ω] = 0

(so that we may simply write ω). Thus, Proposition B.1 gives T1
+ = ζ =

C
(1)
0 ∂τ + ζ0 with ζ0 a Killing vector on the sphere. It is useful to introduce

the tangent vector to Σ given by

J2 := [T2]− 2Q1κ(ζ)−Dζ ζ.

The second order matching conditions [h(2)ij ] = 0 obtained from (B.6) be-
come, after using Proposition B.1

0 = [h(2)ij ] = LJ2
hij + 2[Q̂2]κij + [Φ⋆(K2)]ij(B.50)

+ 2Lζ h
(1)

ij − 4Q1[nνS
(1)µ

αβe
α
i e

β
j ]

= LJ2
hij + 2[Q̂2]κij + [Φ⋆(K2)]ij

+ 4ζ(Q1)κij + 2Lζ Φ
⋆(K1)ij ,



✐

✐

“9-Mars” — 2024/1/2 — 18:37 — page 2816 — #98
✐

✐

✐

✐

✐

✐

2816 M. Mars, B. Reina, and R. Vera

where in the last equality we inserted the explicit expression of h(1) from
(B.4) and used the facts that Lζ hij = Lζ κij = 0 and, in the present gauge,

also [nνS
(1)µ

αβe
α
i e

β
j ] = 0. To ellaborate (B.50) further, we use Φ⋆(K1) =

−2α2ω|Σdτ ⊗s η̄, (B.25), so that

Lζ Φ
⋆(K1) = −2α2dτ ⊗s (ζ0(ω|Σ)η̄ + ω|ΣgS2([ζ0, η ], ·)) .

Inserting this and the pull-back of (B.41) on Σ transforms (B.50) into

(B.51) LJ2
h+ 2[Q̂2]κ+ 4α1[h]dτ

2

− 2α2[W]dτ ⊗s η̄ + 4α2[k]gS2 + 4ζ(Q1)κ

− 4α2dτ ⊗s (ζ0(ω|Σ)η̄ + ω|ΣgS2([ζ0, η ], ·)) = 0.

We consider first the A,B components of this expression. Decomposing J2 =
J τ
2 ∂τ + J A

2 ∂A and computing LJ2
h with the general identity (B.13), we find

that these components give

α2(DAJ2B +DBJ2A) + 2β2[Q̂2]gS2AB + 4α2[k]gS2AB + 4β2ζ(Q1)gS2AB = 0.

As in the proof of Proposition B.1, this is equivalent to the existence of six

functions f
(2)
a (τ), q

(2)
a (τ) such that

J2A = f (2)a (τ)DAY
a + q(2)a (τ)ϵABD

BY a,(B.52)

[Q̂2] + 2ζ(Q1) =
α2

β2

(
f (2)a (τ)Y a − 2[k]

)
.(B.53)

We next consider the {τ, A} component of (B.51). Another application of
(B.13) gives

(B.54) DA

(
α1J

τ
2 + α2ḟ

(2)
a Y a

)
+ α2q̇

(2)
a ϵABD

BY a

− α2 ([W]ηA + 2ζ0(ω|Σ)ηA + 2ω|Σ[ζ0, η ]A) = 0.

The divergence DA of the second term is identically zero. The divergence
of the last term is also zero because η(W) = 0 and ηA, [ζ0, η]A are Killing
vectors (hence divergence-free) and, in addition,

ηADA

(
ζB0 DB(ω|Σ0

)
)
+ [ζ0, η ]

ADA(ω|Σ)

= ηAζB0 DADB(ω|Σ) + (ζB0 DBη
A)DA(ω|Σ)

= ζB0 DB

(
ηADA(ω|Σ)

)
= 0,
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where in the first equality we expanded the Lie bracket and in the last
equality we used η(ω|Σ) = 0. Thus, the divergence of (B.54) is equivalent to

∆gS2

(
α1J

τ
2 + α2ḟ

(2)
a Y a

)
= 0 ⇐⇒ J τ

2 = C
(2)
0 (τ)−

α2

α1
ḟ (2)a Y a,(B.55)

with C
(2)
0 (τ) an integration function depending only on τ . Substituting back

into (B.54) yields

q̇(2)a ϵABD
BY a − [W]ηA − 2ζ0(ω|Σ)ηA − 2ω|Σ[ζ0, η ]A = 0.(B.56)

We now decompose ζ0A = ζ0aϵABD
BY a, ζ0a ∈ R and define ηaA :=

ϵABD
BY a so that in particular η = η 3. The commutation relations are,

a, b, · · · = 1, 2, 3,

[η a, η b] = −ϵabc η
c

with ϵabc the Levi-Civita totally antisymmetric symbol, so (B.56) takes the
form

q̇(2)a ηaA − [W]ηA − 2ζ0(ω|Σ)ηA + 2ω|Σζ0bϵ
b3

aη
a
A = 0.

By linear independence of {η a }, this is equivalent to

q̇
(2)
3 = [W] + 2ζ0(ω|Σ),(B.57)

q̇(2)a = −2ω|Σζ0bϵ
b3

a, a = 1, 2.(B.58)

Since [W] and ω|Σ are constant along τ it follows that q̈
(2)
a = 0, i.e. there

exist six constants b
(2)
a and d

(2)
a such that

q(2)a = b(2)a τ + d(2)a , [W] = b
(2)
3 − 2ζ0(ω|Σ),(B.59)

b(2)a + 2ω|Σζ0bϵ
b3

a = 0, a = 1, 2.

It only remains to impose the {τ, τ} component of (B.51), which is

α1J̇2
τ
+ β1[Q̂2] + 2α1[h] + 2β1ζ(Q1) = 0.

Upon inserting (B.53) and (B.55) this is equivalent to

α1Ċ
(2)
0 + 2α1[h] + α2

[(
−f̈ (2)a +

β1
β2
f (2)a

)
Y a −

2β1
β2

[k]

]
= 0.
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The fact that [h] and [k] are τ -independent and φ-independent imposes that

Ċ
(2)
0 is constant and that the term in parentheses is constant for a = 3 and

zero for a = 1, 2. In other words, there exist c
(2)
0 , c

(2)
1 , f

(2)
0 ∈ R such that

C
(2)
0 (τ) = c

(2)
0 + c

(2)
1 τ, f̈ (2)a −

β1
β2
f (2)a = f

(2)
0 δ3a,(B.60)

[h] =
β1α2

α1β2
[k]−

1

2
c
(2)
1 +

α2f
(2)
0

2α1
Y 3.

Summarizing, the second order matching conditions [h(2)ij ] = 0 are equiv-
alent to (B.52), (B.53), (B.55), (B.59) and (B.60). We next deal with
[κ(2)ij ] = 0. We note the following facts:

(a) nµn
νS(1)µ

να = 0, (see (A.10))

(b) [S(1)
µαβe

µ
l e

α
i e

β
j ] = 0, as a consequence of [ω] = 0,

(c) [nµS
(1)µ

ναe
α
i e

β
j ] = 0, as consequence of [ω] = 0, [n(ω)] = 0 (see (B.24)).

Additional facts that we will use are

(d) L[T1]κij = Lζ κij = 0,

(e) L[T2]κij − L2Q1κ([T1])+[DT1
T1] κij = LJ2

κij ,

(f) [LT1
κ(1)ij ] = L[T1]κ

(1)
ij = L

ζ⃗
κ(1)ij

= Lζ

(
−DiDjQ1 +Q1

(
− nµnνRαµβνe

α
i e

β
j + κilκ

l
j

)∣∣∣
Σ−

− nµS
(1)µ

αβe
α
i e

β
j

∣∣∣
Σ

)

= −DiDj ζ(Q1) + ζ(Q1)
(
− nµnνRαµβνe

α
i e

β
j + κilκ

l
j

)∣∣∣
Σ−

− Lζ ((α2n(ω)|Σ + 2β2ω|Σ) dτ ⊗s η̄)ij ,

where in (f) we used that ζ is the restriction to Σ of an ambient Killing vector
tangential to Σ, which has the consequence that Lζ commutes with the

Hessian of (Σ, h) and that it anhilates (−nµnνRαµβνe
α
i e

β
j + κilκ

l
j )|Σ− . Note

that nµnνRαµβνe
α
i e

β
j may be discontinuous on Σ, but since it is multiplied

by ζ(Q1), it does not matter (by (B.29) and (B.12)) whether we evaluate it
on Σ− (as we have chosen), or on Σ+. We have also inserted (B.24) in the
last equality.
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Using (a)–(f) in (B.7) together with K⊥
1 = 0, τ (1) = 0 and [Q1] = 0, the

equations [κ(2)ij ] = 0 become

0 = [κ(2)ij ] = LJ2
κij −DiDj

(
[Q̂2] + 2 ζ(Q1)

)
(B.61)

+
[
Q̂2

(
−nµnνRαµβνe

α
i e

β
j + κilκ

l
j

)]

+ 2 ζ(Q1)
(
− nµnνRαµβνe

α
i e

β
j + κilκ

l
j

)∣∣∣
Σ−

− 2Lζ ((α2n(ω)|Σ + 2β2ω|Σ) dτ ⊗s η̄)ij

−
[
nµS

(2)µ
αβe

α
i e

β
j

]
+

1

2
[K⊥

2 ]κij

− 2Q1

[
nµn

ν(∇νS
(1)µ

αβ)e
α
i e

β
j

]

−Q2
1

[
nµnνnδ(∇δRαµβν)e

α
i e

β
j + 2nµnνRδµανe

δ
l e

α
j κ

l
i

+ 2nµnνRδµανe
δ
l e

α
i κ

l
j

]
.

We proceed with the first and third terms in the third line. Consider, as
before, the extension n := −e−λ/2∂r of the normal vector off the matching
hypersurface (the result is independent of how we extend). Directly from
the definition of S(2)µ

αβ (4.3) we get

nµS
(2)µ

αβ =
1

2

(
∇α

(
K2µβn

µ
)
+∇β

(
K2µαn

µ
)
− LnK2αβ

)
.(B.62)

For any one-form Pα one has the following identity, easy to prove,

Φ⋆(∇P )ij = DiPj + κij(Pαn
α|Σ)

where Pi = Φ⋆(P )i. Applying this to (B.62) it follows

nµS
(2)µ

αβe
α
i e

β
j =

1

2

(
Diτ

(2)
j +Djτ

(2)
i − Φ⋆(LnK2)ij

)
+K⊥

2 κij(B.63)

where we have defined τ (2)i := K2αβn
α|Σe

β
i and recall that K⊥

2 :=
K2αβn

αnβ |Σ. For the ∇S(1)-term, we first observe that by the background
symmetries (or by direct computation) the vector field n is geodesic, i.e.
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∇nn = 0. Thus, (A.10) (c.f. (B.24)) gives

nµn
ν(∇νS

(1)µ
αβ) = nν∇ν

(
nµS

(1)µ
αβ

)

= −
1

2
nν∇ν

[
e−ν

(
n(ω) +

2ωn(R)

R

)
Sαβ

]

= nν∇ν

[
sin2 θ

(
R2n(ω) + 2ωRn(R)

)
(dt⊗s dϕ)αβ

]

= sin2 θ

[
n
(
R2n(ω) + 2ωRn(R)

)

−
(
R2n(ω) + 2ωRn(R)

)(1

2
n(ν) +

n(R)

R

)]
(dt⊗s dϕ)αβ

where we replaced w = ωe−ν and in the last equality we inserted

nν∇ν∇αt = −
1

2
n(ν)dtα, nν∇ν∇αϕ = −

1

R
n(R)dϕα,

which follows by a simple computation. Consequently,
[
nµn

ν(∇νS
(1)µ

αβ)
]
= [n

(
R2n(ω) + 2ωRn(R)

)
] (dτ ⊗s η̄)ij

= α2[n(n(ω))] + ω|Σ[n(n(R
2))] (dτ ⊗s η̄)ij .

With this and (B.63), equation (B.61) is rewritten as

LJ2
κij −DiDj

(
[Q̂2] + 2 ζ(Q1)

)
(B.64)

+
[
Q̂2

(
−nµnνRαµβνe

α
i e

β
j + κilκ

l
j

)]

+ 2 ζ(Q1)
(
− nµnνRαµβνe

α
i e

β
j + κilκ

l
j

)∣∣∣
Σ−

− 2Lζ ((α2n(ω)|Σ + 2β2ω|Σ) dτ ⊗s η̄)ij

−
1

2

(
Di[τ

(2)
j ] +Dj [τ

(2)
i]
)
+

1

2

[
(LnK2)αβe

α
i e

β
j

]

−
1

2
[K⊥

2 ]κij − 2Q1α2[n(n(ω))] (dτ ⊗s η̄)ij

−Q2
1

[
nµnνnδ(∇δRαµβν)e

α
i e

β
j

+ 2nµnνRδµανe
δ
l e

α
j κ

l
i + 2nµnνRδµανe

δ
l e

α
i κ

l
j

]
= 0.

where we have also used the first order matching conditionQ1[n(n(R
2))] = 0.

So far we imposed no restriction on K2. We now use (B.41), which implies

[K⊥
2 ] = 4[m], [τ (2)i] = −2Di[Re

λ/2f ]
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so that, in particular,

−
1

2

(
Di[τ

(2)
j ] +Dj [τ

(2)
i]
)
= 2DiDj [Re

λ/2f ].(B.65)

We start by analyzing the {A,B} component of (B.64). The backgroung
spherical symmetry and the fact that (Φ⋆(K2))AB is proportional to gS2AB

implies

DADB

(
2[Reλ/2f ]− [Q̂2]− 2 ζ(Q1)

)
+ΘgS2AB = 0(B.66)

for some function Θ that will be determined later. This equation states that
DA(2R[eλ/2f ]− [Q̂2]− 2 ζ(Q1)) is a conformal Killing vector on the sphere.
The most general conformal Killing vector which, in addition, is a gradient
is a linear combination (with coefficients that may depend of τ) of DAY

a.
Hence, there exist three functions sa(τ) such that

DA

(
2R[eλ/2f ]− [Q̂2]− 2 ζ(Q1)

)
= sa(τ)DAY

a

⇐⇒ 2R[eλ/2f ]− [Q̂2]− 2 ζ(Q1) = sa(τ)Y
a + s0(τ),

where s0(τ) is a further integration “constant”. Inserting (B.53) we finally
arrive at

R[eλ/2f ] = −
α2

β2
[k] +

1

2
s0(τ) +

1

2

(
sa(τ) +

α2

β2
f (2)a (τ)

)
Y a.(B.67)

This equation already provides relations between sa and f
(2)
a , but we will

come to that later. With this information, (B.66) reduces to

Θ = sa(τ)Y
a.(B.68)

To find the explicit form of Θ (as well as for the rest of equations) we need
[(LnK2)αβe

α
i e

β
j ]. It is convenient to extend also eαi to a spacetime neigh-

bourhood of Σ (the result being again independent of how the extension is
made). We make the natural choice eαi ∂α = ∂xi . The structure nµ = nr(r)δµr
implies

(LnK2)αβe
α
i e

β
j = n

(
K2ij

)
.

Note that K2ij are spacetime scalars so their directional derivative is
well-defined. We can now analyze the {τ, A} component of (B.64). The
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i = τ, j = A component of (B.65) is zero because Reλ/2f |Σ does not de-
pend on τ . Inserting the general identity (B.13) and using the forms of J2,
[Q2] + 2 ζ(Q1) and (K2)τA, one finds

(
β2 −

β1α2

α1
−
α2

β2

)
ḟ (2)a DAY

a + β2q̇
(2)
a ϵABD

BY a

+ (α2n(ω)|Σ + 2β2ω|Σ) ζ0bϵ
b3

aϵABD
BY a

−

(
Lζ0 (α2n(ω)|Σ + 2β2ω|Σ)

+
(
β2[W] +

1

2
α2[n(W)]

)
+Q1α2[n(n(ω))|Σ]

)
ηA = 0,

where we used Lζ0ηA = −ζ0bϵ
b3

aϵABD
BY a. By the hypotheses of the Propo-

sition, the first factor in parenthesis is non-zero, so linear independence of

DAY
a and ϵABD

BY a implies firstly that ḟ
(2)
a = 0, which combined with the

second in (B.60) gives

f (2)a = 0 (a = 1, 2), f
(2)
0 = −

β1
β2
f
(2)
3 , f

(2)
3 constant,

and secondly that, for a = 1, 2,

β2q̇
(2)
a + α2n(ω)|Σζ0bϵ

b3
a + 2β2ω|Σζ0bϵ

b3
a = 0

(B.58)
⇐⇒ n(ω)|Σζ0bϵ

b3
a = 0,

and for a = 3, after inserting (B.57),

[n(W)] = −2Lζ0(n(ω)|Σ)− 2Q1[n(n(ω))].

Observe that the constancy of f
(2)
3 and the vanishing of f

(2)
1 , f

(2)
2 , together

with the fact that f and [k] are τ - and φ-independent imply, via (B.67), that
sa = 0 for a = 1, 2, and s0, s3 are both constant. With these restrictions, J2

(from (B.52) and (B.55)), [Q̂2] (from (B.53)) and (B.67) become

J2 =
(
c
(2)
0 + c

(2)
1 τ
)
∂τ(B.69)

+
(
f
(2)
3 DAY 3 + (b(2)a τ + d(2)a )ϵABDBY

a
)
∂A,

[Q̂2] = 2R[e
λ

2 f ]− 2 ζ(Q1)− s3Y
3 − s0,(B.70)

[k] = −
β2
α2

R[eλ/2f ] +
β2
2α2

s0 +
1

2

(
β2
α2
s3 + f

(2)
3

)
Y 3.(B.71)
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The remaining equations involve the curvature terms in the last line of
(B.64). With our extension ei = ∂xi , it holds [n, ei] = 0, and then

nα∇αe
β
i |Σ = κjie

β
j .

Using that the normal field n is geodesic, as well as (B.29) and (B.14), we
compute

nµnνnδ(∇δRαµβν)e
α
i e

β
j + 2nµnνRδµανe

δ
l e

α
j κ

l
i + 2nµnνRδµανe

δ
l e

α
i κ

l
j

= nδ∇δ

(
nµnνRαµβνe

α
i e

β
j

)
+ nµnνRδµανe

δ
l e

α
j κ

l
i + nµnνRδµανe

δ
l e

α
i κ

l
j

=

(
n(Λ1) +

2β1
α1

Λ1

)
δτi δ

τ
j +

(
n(Λ2) +

2β2
α2

Λ2

)
gS2ABδ

A
i δ

B
j ,

and therefore, given that Q1[Λ2] = 0 and Q1[Λ1] = 0, the last line in (B.64)
simplifies to

Q2
1

[
nµnνnδ(∇δRαµβν)e

α
i e

β
j + 2nµnνRδµανe

δ
l e

α
j κ

l
i +2nµnνRδµανe

δ
l e

α
i κ

l
j

]

= Q2
1[n(Λ1)]δ

τ
i δ

τ
j +Q2

1[n(Λ2)]δ
A
i δ

B
j gS2AB.

We also need κilκ
l
j , namely

κilκ
l
j =

β21
α1
δτi δ

τ
j +

β22
α2
δAi δ

B
j gS2AB,

and we can finally obtain the explicit form of Θ by collecting the appropriate
A,B terms in (B.64) (all except for the two Hessians):

Θ =− 2β2f
(2)
a Y a +

[
Q̂2

(
−Λ2 +

β22
α2

)]
+ 2 ζ(Q1)

(
−Λ−

2 +
β22
α2

)

+ 2α2[n(k)] + 4[k]β2 − 2[m]β2 −Q2
1[n(Λ2)],

where for any quantity a we set a− := a|Σ− . Hence (B.68), and the properties

we have found for f
(2)
a and sa yield

[m] = 2[k]−
1

2β2
Q2

1[n(Λ2)] +
α2

β2
[n(k)](B.72)

−

(
f
(2)
3 +

s3
2β2

)
Y 3 +

1

2

[
Q̂2

(
−
Λ2

β2
+
β2
α2

)]

+ ζ(Q1)

(
−
Λ−
2

β2
+
β2
α2

)
,
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The last step is to impose the {τ, τ} component of (B.64). Using J τ
2 =

c
(2)
0 + c

(2)
1 τ (see (B.69)) and the fact that [Q̂2] + 2 ζ(Q1) is τ -independent

(see (B.70)), this {τ, τ} component is

2β1c
(2)
1 +

[
Q̂2

(
−Λ1 +

β21
α1

)]
+ 2ζ (Q1)

(
−Λ−

1 +
β21
α1

)

+ 2α1[n(h)] + 4β1[h]− 2[m]β1 −Q2
1[n(Λ1)] = 0,

where we also used [n(R2ω2)] = 0. Solving for [n(h)] and inserting [m] from
(B.72) and [h] from (B.60) one finds

[n(h)] =
β1α2

α1β2
[n(k)] +

β1
α1

(
1−

β1α2

α1β2

)(
2[k]− f

(2)
3 Y 3

)
−

β1
2α1β2

s3Y
3

+
β1
2α1

([
Q̂2

(
−
Λ2

β2
+

Λ1

β1
+
β2
α2

−
β1
α1

)]

+ 2 ζ(Q1)

(
−
Λ−
2

β2
+

Λ−
1

β1
+
β2
α2

−
β1
α1

)

+ Q2
1

[
−
n(Λ2)

β2
+

n(Λ1)

β1

])
.

This concludes the process of solving the second order matching conditions
in the g-gauge. We put together the results and restore the g′s and hg′s:

[Wg] = b
(2)
3 − 2ζ0(ω

g|Σ),

[n(W)g] = −2ζ0(n(ω
g)|Σ)− 2Qhg

1 [n(n(ωg))],

[kg] = −
β2
α2

R[eλ/2fg] +
β2
2α2

s0 +
1

2

(
β2
α2
s3 + f

(2)
3

)
Y 3,(B.73)

[hg] = −
1

2
c
(2)
1 +

β1α2

2α1β2

(
2[kg]− f

(2)
3 Y 3

)
,

[mg] = 2[kg]−
1

2β2
(Qhg

1 )2[n(Λ2)] +
α2

β2
[n(k)](B.74)

−

(
f
(2)
3 +

s3
2β2

)
Y 3 +

1

2

[
Q̂hg

2

(
−
Λ2

β2
+
β2
α2

)]

+ ζ(Qhg
1 )

(
−
Λ−
2

β2
+
β2
α2

)
,
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[n(hg)] =
β1α2

α1β2
[n(kg)] +

β1
α1

(
1−

β1α2

α1β2

)(
2[kg]− f

(2)
3 Y 3

)
(B.75)

−
β1

2α1β2
s3Y

3 +
β1
2α1

([
Q̂hg

2

(
−
Λ2

β2
+

Λ1

β1
+
β2
α2

−
β1
α1

)]

+ 2ζ(Qhg
1 )

(
−
Λ−
2

β2
+

Λ−
1

β1
+
β2
α2

−
β1
α1

)

+ (Qhg
1 )2

[
−
n(Λ2)

β2
+

n(Λ1)

β1

])
,

[T2
hg] =

(
c
(2)
0 + c

(2)
1 τ
)
∂τ(B.76)

+
(
f
(2)
3 DAY 3 + (b(2)m τ + d(2)m )ϵABDBY

m
)
∂A

+ 2Qhg
1 κ(ζ) +Dζ ζ,

[Q̂hg
2 ] = 2R[eλ/2fg]− 2ζ(Qhg

1 )− s3Y
3 − s0,(B.77)

where f
(2)
3 , c

(2)
0 , c

(2)
1 , b

(2)
1 , b

(2)
2 , b

(2)
3 , d

(2)
1 , d

(2)
2 , d

(2)
3 , s0, s3 are constants, the

spherical Killing ζ0 decomposes as ζ0 = ζ0aη
a and {ζ0a} and {b

(2)
a } are re-

lated by

b(2)a + 2ωg|Σζ0bϵ
b3

a = 0 (a = 1, 2).

Observe that the constant s0 appears only in (B.73) and (B.77), accompa-
nying the term [eλ/2fg]. This reflects the fact that f is defined up to an
arbitrary additive function that can be different on both sides of Σ. The
arbitrary difference [eλ/2(fg − f)] can thus be combined with s0 to produce
a single constant. This will be used in the redefinition of s0 below. The con-

stants c
(2)
0 , d

(2)
a appear only in [T2

hg] and state that [T2
hg] is defined up to

an additive Killing vector ζ(2) := c
(2)
0 ∂τ + d

(2)
a ϵABDBY

a∂A of (Σ, hij).
We can now apply the gauge relations described in Lemma B.6 to rewrite

these conditions in the original gauge. We introduce the redefinitions of
constants (see Remark B.9 below)

f
(2)
3 → −H1, b

(2)
3 → D3, c

(2)
1 → −H0,

s0 → 2
α2

β2
c0 + 2R[eλ/2(fg − f)], s3 →

α2

β2
(2c1 +H1)(B.78)
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and use the explicit expression (B.15) for α1, α2, β1, β2 which imply

β1α2

α1β2
=

Rn(ν)

2n(R)
,

β2
α2

=
n(R)

R
,

β1
α1

=
1

2
n(ν),

and the first four equations yield (B.44)–(B.47) immediately. From
Lemma B.6 we have Qhg

1
± = Q±

1 = Q1, Q̂
hg
2

+ = Q̂+
2 and Q̂hg

2
− = Q̂−

2 −
2b1τη(Q1), while Proposition B.1 states [T1] = b1τη + ζ. Recalling the def-
inition (B.42) it is immediate that (B.77) is equivalent to (B.43). Next, we
use the identity [ab] = a+[b] + [a]b− (valid for any a, b) to compute, for an
arbitrary quantity P,

[Q̂hg
2 P] + 2ζ(Qhg

1 )P− = [Q̂2P] + 2b1τη(Q1)P
− + 2ζ(Q1)P

−

= [(Ξ + 2Reλ/2f)P]− 2[T1(Q1)P] + 2(ζ(Q1) + b1τη(Q1))P
−

= [(Ξ + 2Reλ/2f)P]− 2T1
+(Q1)[P].

This identity applied respectively to

P = −
Λ2

β2
+
β2
α2

and P = −
Λ2

β2
+

Λ1

β1
+
β2
α2

−
β1
α1

transforms (B.74) into into (B.48) and (B.75) into (B.49), after using that
T1

+(Q1)[P] = T1
+(Q1[P]) = 0, which follows form the constancy of [P] on

Σ and (B.12). To conclude the proof, note that (B.76) simply determines
T2

+ in terms of T2
−. Neither term appears in the rest of expressions, so this

condition poses no additional restriction to the matching. □

Remark B.9. The redefinition of constants (B.78) at the end of the proof
has been done so that the result matches the expressions found and used
in [33].

Appendix C. Basic analytic lemmas

We use the notation, conventions and definitions of elliptic operators in [10].
Specifically, U denotes a domain of Rn (i.e. a connected open subset). As
usual ∂U denotes its topological boundary and U its closure. A second order
operator L = aij(x) ∂2

∂xixj
+ bi(x) ∂

∂xi
+ c(x), aij(x) = aji(x), defined on U is

uniformly elliptic if the lowest eigenvalue λ(x) and largest eigenvalue Λ(x)
satisfy that λ is positive and Λ/λ is bounded on U . At points x ∈ ∂U where
the outer normal exists, this will be denoted by ∂ν .
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We need the following version of the boundary point lemma and maxi-
mum principle.

Lemma C.1 (Boundary point lemma). Suppose that L is uniformly
elliptic, u ∈ C2(U) and Lu ≥ 0 in U . Let x0 ∈ ∂U be such that

1) u is continuous at x0 and u(x0) ≥ 0.

2) u(x0) > u(x) for all x ∈ U ,

3) ∂U satisfies an interior sphere condition at x0 (i.e. there exists a ball
B ⊂ U with x0 ∈ ∂B).

4) c ≤ 0 and |c|/λ, |bi|/λ are bounded in B.

Then the outer normal derivative of u at x0, if it exists, satisfies the strict
inequality

(C.1) ∂νu(x0) > 0.

Although not stated in this form in [10], the proof of Lemma 3.4 in
[10] also establishes this version. Concerning the next result, its validity is
explicitly stated in a remark after Theorem 3.5 in [10].

Theorem C.2 (Strong maximum principle). Let L be uniformly ellip-
tic on a domain U and u ∈ C2(U) satisfy Lu ≥ 0 (≤ 0). Assume c ≤ 0 and
|c|/λ, |b|/λ are locally bounded in U . Then u cannot achieve a non-negative
maximum (non-positive minimum) in the interior of U unless it is constant.

We shall use these results in a very simple context, namely for second
order ODE operators. We consider two types of intervals I+ = (0, a) (a > 0)
and I− = (a,∞). In both cases the interior sphere condition is obviously
satisfied. We use r to denote the real coordinate of I+ and I−. The outer
normal derivative at r = a is obviously ∂r for I+ and ∂r for I−.

The first result we need is the following (the proof is an essentially trivial
consequence of the previous results, but we include it for completeness)

Lemma C.3. On I+ = (0, a), let L+ be

(C.2) L+ :=
d2

dr2
+ b+(r)

d

dr
+ c+(r),

where |b+(r)| and |c+(r)| are locally bounded in (0, a]. Let f ∈ C2(I+) ∩
C0(I+) ∩ C1((0, a]) satisfy L+f = 0. Assume c+(r) ≤ 0. Then,
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(i) f(a) > f(0) ≥ 0 =⇒ ∂rf(a) > 0,

(ii) f(a) < f(0) ≤ 0 =⇒ ∂rf(a) < 0,

(iii) f(a) = f(0) = 0 =⇒ f(r) = 0 ∀r ∈ I+.

Proof. L+ is obviously uniformly elliptic with λ = 1. Note, in particular
that |c+|/λ and |b+|/λ are locally bounded in I+. Consider first the case
f(a) > f(0) ≥ 0. Since f is non-constant, the strong maximum principle
implies that the supremum of f in I+ is f(a) and it is achieved only at r = a.
By the boundedness of c and |bi| on (0, a] we may apply the boundary point
lemma at r = a to conclude ∂rf(a) > 0. The case (ii) follows from (i) when
applied to −f . Finally, when f(a) = f(0) = 0 the strong maximum principle
implies f(r) = 0 immediately. □

Lemma C.4. In the setting of Lemma C.3 assume further that c+(r) is not
identically zero, f(0) ≥ 0 and ∂rf(0) = 0. Then f(a) > f(0) and ∂rf(a) > 0.

Proof. The supremum of f in I+ is clearly non-negative and f cannot be
constant because c+(r) is not identically zero. Thus, the strong maximum
principle implies that the supremum can only be achieved at the bound-
ary. This supremum cannot be f(0) because ∂rf(0) = 0 would contradict
the boundary point lemma. Thus, the supremum is at f(a) > f(0) and the
boundary point lemma implies ∂rf(a) > 0, as claimed. □

An analogous result to Lemma C.3 holds for the unbounded domain I−.

Lemma C.5. On I− = (a,∞), let L− be

(C.3) L− :=
d2

dr2
+ b−(r)

d

dr
+ c−(r),

where |b−(r)| and |c−(r)| are bounded in I+. Let f ∈ C2(I−) ∩ C1(I−) sat-
isfy L−f = 0 and

(C.4) lim
r→∞

f(r) = f∞ <∞

Assume that c−(r) ≤ 0 in I−. Then,

(i) f(a) > f∞ ≥ 0 =⇒ ∂rf(a) < 0,

(ii) f(a) < f∞ ≤ 0 =⇒ ∂rf(a) > 0,

(iii) f(a) = f∞ = 0 =⇒ f(r) = 0 ∀r ∈ I−.
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Proof. The first two statements are immediate consequences of the strong
maximum principle and boundary point lemma. For the third one, assume
by contradiction that there is r0 > a with f(r0) ̸= 0. By replacing f → −f
we may assume without loss of generality that f(r0) > 0. By the limit as-
sumption (C.4) with f∞ = 0 there exists r1 sufficiently large (in particular
satisfying r1 > r0) with f(r1) < f(r0). The strong maximum principle ap-
plied to (0, r1) gives a contradition, because the function is not constant but
its supremum (which is at least f(r0) and hence positive) is achieved neces-
sarily at an interior point. Thus, it must be that f(r) = 0 as claimed. □

Appendix D. Existence and uniqueness of bounded global

solutions of a class of ODE

We use the following result (Corollary 6.2 in [17]). We will use f ∈ C0((a,∞])
to indicate f ∈ C0(a,∞) and that the limit of f(s) as s→ ∞ exists and is
finite.

Lemma D.1. Consider the second order homonegous ODE

z̈ + α(s)ż + β(s)z = 0(D.1)

defined on the interval (s0,∞). Assume that α, β ∈ C0((s0,∞]) and let α0 :=
lims→∞ α(s), β0 := lims→∞ β(s). Assume further that

∫ ∞

s0

|α(s)− α0| ds <∞,

∫ ∞

s0

|β(s)− β0| ds <∞.(D.2)

Define

µ± :=
−α0 ±

√
α2
0 − 4β0

2
.

If µ± are real and distinct, then (D.1) admits two lineary independent real
solutions z±(s) satisfying the following asymptotic behaviour at s→ ∞

z±(s) = eµ±s (1 + o(1)) , ż±(s) = eµ±s (µ± + o(1)) .(D.3)

We want to apply this result to analyze the behaviour of solutions to
ODE with certain type of singularities at t = 0. Specifically, in the main text
we need the following lemma.
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Lemma D.2. Consider the second order homogeneous ODE

t2x′′ + tA(t)x′ + B(t)x = 0(D.4)

defined in the interval (0, t0). Assume that A(t),B(t) ∈ C1([0, t0)) and let
a0 := A(0) and b0 := B(0). Define

λ± :=
a0 − 1±

√
(a0 − 1)2 − 4b0
2

.

(i) If 4b0 < (a0 − 1)2 there exist two real linearly independent solutions x±(t)
of (D.4), and have the following behaviour near t = 0:

x±(t) = t−λ± (1 + o(1)) , x′±(t) = −t−(1+λ±) (λ± + o(1)) .(D.5)

(ii) If either b0 < 0 or (b0 = 0, a0 > 1) then there exists a unique up to scaling
solution x(t) of (D.4) that stays bounded in (0, t0). x(t) extends continuously
at t = 0 with x(0) = 0 if b0 < 0 and x(0) ̸= 0 if (b0 = 0, a0 > 1).

(iii) When (b0 = 0, a0 > 1) assume further that B(t) = t2Q(t) where Q(t) ∈
C1([0, t0)) and satisfying Q(0) ̸= 0. Then, the bounded solution x(t) in item
(ii) extends to a C2 function in [0, t0) satisfiying x

′(0) = 0.

Proof. Consider the change of variables t(s) = e−s which sends (0, t0)
to (s0 := − ln t0,∞). Define z(s) := x(t(s)), α(s) := 1−A(t(s)), β(s) :=
B(t(s)). The ODE (D.4) takes the form (D.1). For any function γ(s) we
have the equality

∫ ∞

a
γ(s)ds =

∫ e−a

0

γ(s(t))

t
dt.

Since the functions A(t) and B(t) are C1 up to t = 0, |A(t)− a0|/t and
|B(t)− b0|/t are bounded, so the hypotheses of Lemma D.1 are satisfied.
In addition α0 = 1− a0, β0 = b0 so that, in particular µ± = λ±. When
4b0 < (a0 − 1)2 we have that λ+ and λ− are real and distinct. The lin-
early independent solutions z±(s) whose existence is guaranteed by Lemma
D.1 show the existence of two solutions x±(t) with the behaviour claimed
in (D.5). This proves item (i).

For item (ii), in either case b0 < 0 or (b0 = 0, a0 > 1) we have λ+ > 0 and
λ− ≤ 0. The solution x+(t) of item (i) is unbounded near zero, while x−(t) is
bounded. Since the general solution is a linear combination of both, the first
statement follows. The continuous extension at t = 0 is direct from (D.5)
given that λ− < 0 when b0 < 0 and λ− = 0 when (b0 = 0, a0 > 1).
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Finally, for item (iii) we already know by item (ii) that x−(t) (which
is the only one up to scaling that remains bounded) admits a continuous
extension to t = 0. Furthermore the corresponding z−(s) satisfies

lim
s→∞

ż−(s) = 0(D.6)

as a consequence of (D.3) and µ− = λ− = 0. We next prove that x′−(t)
satisties limt→0+ x′−(t) = 0. First observe that Q(0) ̸= 0 implies that there
is t1 > 0 sufficiently small such that B(t) = t2Q(t) has a constant sign in
(0, t1). We restrict to this domain and to the equivalent in the s-variable
(s1 := − ln t1,∞), where β(s) is guaranteed to vanish nowhere. Since both
α(s) and β(s) are C1((s1,∞)) we may take a derivative of (D.1) and replace
z(s) obtained algebraically from (D.1) itself. The result is the following ODE
for ζ(s) := ż(s)

ζ̈ +

(
α(s)−

β̇(s)

β(s)

)
ζ̇ +

(
β(s) + α̇(s)−

α(s)β̇(s)

β(s)

)
ζ = 0.(D.7)

It is immediate to compute

α̇(s) = tA′(t)
∣∣
t=e−s ,

β̇(s)

β(s)
= −2− t

Q′(t)

Q(t)

∣∣∣∣
t=e−s

so the coefficients of the ODE (D.7) are continuous in (s1,∞]. One checks
easily that the integral conditions (D.2) are also satisfied. The corresponding
constants of Lemma D.1 are

µ± =
a0 − 3± |a0 + 1|

2
.

Using now a0 > 1 we find µ+ = a0 − 1 and µ− = −2, so by Lemma D.1, the
function ζ must have the asymptotic behaviour

ζ(s) = e−2s (a1 + o(1)) + e(a0−1)s (a2 + o(1))

with constants a1, a2. But ζ(s) = ż(s) is forced to approach zero at infinity
(see (D.6)), so a2 = 0. We conclude that

x′(t) = −(esζ(s))|s=− ln t = −t (a1 + o(1))(D.8)

and we have shown that x′(t) extends continuously to t = 0 with the value
zero. It only remains to show that x′′(t) also extends continuously to t = 0,
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but this follows at once from the ODE itself

x′′(t) + t−1A(t)x′(t) +Q(t)x(t) = 0

since we already know that the second and third terms extend continuously
to t = 0 (the second term by (D.8)). □

The following theorem is the main result of the appendix.

Theorem D.3. Let a be a positive constant. Assume that A+,B+ : [0, a] →
R and A−,B− : [a,∞) → R are C1 on their respective domains and that the
limits

lim
r→+∞

A−(r), lim
r→+∞

B−(r), lim
r→+∞

r2
dA−(r)

dr
, lim

r→+∞
r2
dB−(r)

dr
(D.9)

exist and are finite. Define the constants

a0 = A+(0), b0 = B+(0), a∞ = lim
r→+∞

A−(r), b∞ = lim
r→+∞

B−(r)

and assume that b0, b∞ < 0. Let F+ ∈ C0([0, a]), F− ∈ C0([a,∞)), d0, d1 ∈
R and consider the ODE problem (⋆) defined by

r2
d2u+(r)

dr2
+ rA+(r)

du+(r)

dr
+ B+(r)u+(r) = F+(r) on (0, a],(D.10)

r2
d2u−(r)

dr2
+ rA−(r)

du−(r)

dr
+ B−(r)u−(r) = F−(r) on [a,∞),(D.11)

u+(a)− u−(a) = d0,
du+

dr

∣∣∣∣
r=a

−
du−

dr

∣∣∣∣
r=a

= d1.(D.12)

Assume that the inhomogeneous terms satisfy F+(r) = rα0(σ+ + o(1)) near
r = 0 and F−(r) = rα∞(σ− + o(1)) near infinity, with constants α0, α∞ and
σ±. Define

λ0± :=
a0 − 1±

√
(a0 − 1)2 − 4b0
2

, λ∞± :=
1− a∞ ±

√
(a∞ − 1)2 − 4b∞
2

.

If the constants satisfy

α0 ≥ 0, α0 + λ0− ̸= 0, α∞ ≤ 0, α∞ − λ∞− ̸= 0,(D.13)

then (⋆) has a unique bounded in (0,∞) solution {u+(r), u−(r)} and more-
over
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• u+(r) can be extended as a C0([0, a]) function of order O(rmin{−λ0
−,α0}),

and if 1 + λ0− ≤ 0 and α0 − 1 ≥ 0, then u+(r) can be also extended as
a C1([0, a]) function and u+′(r) is O(rmin{−(1+λ0

−),α0−1}).

• u−(r) is of order O(r−min{|λ∞
− |,|α∞|}) and u−′(r) is

O(r−min{|λ∞
− −1|,|α∞−1|}) near r = ∞.

Remark D.4. If F± = 0 and d0 = d1 = 0 the unique solution is the trivial
u(r) = 0, which also extends to the origin.

Proof. We first analyse the homogeneous problem. By Lemma D.2, item (i),
the homogeneous equation (D.10) with F+ = 0 admits two linearly inde-
pendent solutions u++(r) and u

+
−(r), both of class C2((0, a]) (we may include

r = a because A+,B+ are C1 up to this boundary), with behaviour near
r = 0 given by

u+±(r) = r−λ0
± (1 + o(1)) ,

du+±(r)

dr
= −r−(1+λ0

±)
(
λ0± + o(1)

)
.(D.14)

Since λ0− < 0, because b0 < 0 by assumption, u+−(r) extends to a C0([0, a])
function with u+−(0) = 0. In the domain [a,∞) we consider the change of
coordinate r = t−1 which transforms the homogeneous ODE (D.11) with
F− = 0 into the form

t2
d2û−(t)

dt2
+ t(2− Â(t))

dû−(t)

dt
+ B̂(t)û−(t) = 0

where for any function f(r) we denote by f̂(t) := f(t−1) : (0, a−1] → R. Con-
ditions (D.9) imply inmediately that Â, B̂ extend to t = 0 as C1([0, a−1])
functions, and we may apply item (i) in Lemma D.2 to conclude that there
exist two independent solutions u−±(t) ∈ C2([a,∞)) satisfying

û−±(t) = t−λ∞
± (1 + o(1)) ,

dû−±(t)

dt
= −t−(1+λ∞

± )
(
λ∞± + o(1)

)
.

In terms of the original function, this behaviour translates onto

u−±(r) = rλ
∞
± (1 + o(1)) ,

du−±(r)

dr
= rλ

∞
± −1

(
λ∞± + o(1)

)
.(D.15)
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Since λ∞− < 0, because b∞ < 0 by assumption, u−−(r) vanishes at r → ∞. We
let W±(r) be the Wronskian of the functions u±−(r), u

±
+(r), i.e.

W±(r) := u±−(r)
du±+(r)

dr
− u±+(r)

du±−(r)

dr
.

It is inmediate from the previous considerations that

W+(r) = r−a0

(
−
√

(a0 − 1)2 − 4b0 + o(1)
)

near r = 0,

W−(r) = r−a∞

(√
(a∞ − 1)2 − 4b∞ + o(1)

)
near r = +∞.

We may now include the inhomogeneus term. The general solution of the
inhomogeneous problem on each domain in given by the general formula

u±(r) =C±
+u

±
+(r) + C±

−u
±
−(r) + u±P (r),(D.16)

where C±
+ , C±

− are arbitrary constants and a particular solution u±P (r) on
each domain is given by

u±P (r) = u±+(r)

∫ r

r±

u±−(s)F
±(s)

s2W±(s)
ds− u±−(r)

∫ r

r±

u±+(s)F
±(s)

s2W±(s)
ds,(D.17)

where r± are arbitrary values subject to r− ∈ (0, a] and r+ ∈ [a,∞). The
behaviour of the integrands near zero and near infinity are, respectively,

u+∓(s)F
+(s)

s2W+(s)
= sα0+λ0

±−1(µ+ + o(1)),

u−∓(s)F
−(s)

s2W−(s)
= sα∞−λ∞

± −1(µ− + o(1)),

for suitable constants µ+, µ−. Since λ0+, λ
∞
+ are positive, assumption (D.13)

implies α0 + λ0± ̸= 0, α∞ − λ∞± ̸= 0. It is then straighforward to check, using
l’Hôpital’s rule, that

∫ r

r+

u+∓(s)F
+(s)

s2W+(s)
ds = rα0+λ0

±

(
µ+

α0 + λ0±
+ o(1)

)
+Q+

± near r = 0,

∫ r

r−

u−∓(s)F
−(s)

s2W−(s)
ds = rα∞−λ∞

±

(
µ−

α∞ − λ∞±
+ o(1)

)
+Q−

± near r = ∞,
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where Q+
± and Q−

± are constants. Consequently

U+
P (r) := u+P (r)−Q+

+u
+
+(r) +Q+

−u
+
−(r)(D.18)

= rα0

(
µ+(λ0− − λ0+)

(α0 + λ0+)(α0 + λ0−)
+ o(1)

)
near r = 0,(D.19)

U−
P (r) := u−P (r)−Q−

+u
−
+(r) +Q−

−u
−
−(r)(D.20)

= rα∞

(
µ−(λ∞+ − λ∞− )

(α∞ − λ∞+ )(α∞ − λ∞− )
+ o(1)

)
near r = +∞.

Absorbing the constants Q±
± into C±

± , the general solution (D.16) has the
form

u±(r) =C±
+u

±
+(r) + C±

−u
±
−(r) + U±

P (r).

Note that U+
P (r) is bounded near r = 0 while U−

P (r) is bounded at infinity.
We now impose that the solution {u+(r), u−(r)} is bounded everywhere.
Since λ0−, λ

∞
− < 0 and λ0+, λ

∞
+ > 0 this is equivalent to setting C+

+ = C−
+ = 0

and we are left with two constants to determine. Thus, the general solu-
tion (D.16) reads

(D.21) u±(r) = C±
−u

±
−(r) + U±

P (r).

Imposing the matching conditions (D.12) yields a system of two equa-
tions of the form
(D.22)(

u+−(a) −u−−(a)
du+

−

dr

∣∣
r=a

−
du−

−

dr

∣∣
r=a

)(
C+
−

C−
−

)
=

(
d0 + U−

P (a)− U+
P (a)

d1 +
dU−

P

dr

∣∣
r=a

− dU+
P

dr

∣∣
r=a

)
.

We apply now Lemma C.3 to u+−(r) and Lemma C.5 to u−−(r) to conclude
that u+−(r) and u

−
−(r) and their derivatives are all non-zero at a and, more-

over, u+−(a) has the same sign as it derivative at a, while u−−(a) has opposite
sign than its derivative. It follows that the 2× 2 matrix in (D.22) is invert-
ible, and hence there exits a unique pair of constants {C+

− , C
−
−} satifying

the transition conditions (D.12). This concludes the proof of existence and
uniqueness of a bounded solution of problem (⋆).

We conclude with the the behaviour of the first derivative of the solu-
tions (D.21), i.e.

du±(r)

dr
= C±

−

du±−(r)

dr
+
dU±

P (r)

dr
,
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at the origin and at infinity correspondingly. Firstly, the terms dU±
P /dr are

obtained by direct differentiation of their definitions (D.18) and (D.20) and
introducing (D.14)–(D.15) together with the differentiation of (D.17), which
provides

du±P (r)

dr
=
du±+(r)

dr

∫ r

r±

u±−(s)F
±(s)

s2W±(s)
ds−

du±−(r)

dr

∫ r

r±

u±+(s)F
±(s)

s2W±(s)
ds.

The results are

dU+
P (r)

dr
= rα0−1

(
α0µ

+(λ0− − λ0+)

(α0 + λ0+)(α0 + λ0−)
+ o(1)

)
near r = 0,

(D.23)

dU−
P (r)

dr
= rα∞−1

(
α∞µ

−(λ∞+ − λ∞− )

(α∞ − λ∞+ )(α∞ − λ∞− )
+ o(1)

)
near r = ∞.

(D.24)

Regarding u+(r), the assumption 1 + λ0− ≤ 0 ensures, c.f. (D.14), that
du+−/dr has a limit at r → 0 and is, in fact, O(r−(1+λ0

−)). The expression
(D.23) implies that if α0 − 1 ≥ 0 then dU+

P /dr also has a limit at r → 0
and is O(r(α0−1)). The claim for u+(r) follows. As for u−(r), since α∞ ≤ 0
and λ∞− < 0 by assumption, the claim follows analogously from (D.15) and
(D.24). □

Remark D.5. The behaviour of the first derivative of the particular solu-
tion U+

p (r) near the origin is given by (D.23), and therefore, if α0 − 1 ≥ 0

then U+
P (r) extends to a C1([0, a]) function as U+

P (r) = rα0(U0
P + o(1)) and

U+
P

′(r) = rα0−1(α0U
0
P + o(1)) with U0

P ∈ R.
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