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Genus zero Gopakumar-Vafa invariants of

multi-Banana configurations

Nina Morishige

The multi-Banana configuration F̂mb is a local Calabi-Yau threefold
of Schoen type. Namely, F̂mb is a conifold resolution of Îv ×D Îw,
where Îv → D is an elliptic surface over a formal disc D with an Iv
singulararity on the central fiber. We generalize the technique de-
veloped in our earlier paper to compute genus 0 Gopakumar-Vafa
invariants of certain fiber curve classes. We illustrate the compu-
tation explicitly for v = 1 and v = w = 2. The resulting partition
function can be expressed in terms of elliptic genera of C2, or clas-
sical theta functions, respectively.

1. Introduction

1.1. Background

LetX be a quasi-projective Calabi-Yau threefold overC, so thatX is smooth
and KX

∼= OX . Fix a curve class β ∈ H2(X). Let M =MX
β be the moduli

space of Simpson semistable [10], pure, 1-dimensional sheaves F with proper
support on X with ch2(F) = β∨ and χ(F) = 1. The genus 0 Gopakumar-
Vafa invariants n0β(X) are defined mathematically by Katz [6]:

Definition 1. The genus 0 Gopakumar-Vafa (GV) invariants n0β(X) of X
in curve class β are defined as the Behrend function weighted Euler charac-
teristics of the moduli space MX

β .

(1) n0β(X) = e(MX
β , ν) :=

∑

k∈Z

k · etop(ν
−1(k))

where etop is topological Euler characteristic and ν :MX
β → Z is Behrend’s

constructible function [1].
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In our previous paper [8], we computed the genus 0 Gopakumar-Vafa
invariants of the Banana manifold, XBan, a special kind of Schoen threefold,
defined as the conifold resolution given by blowing up along the diagonal of
the fiber product of a generic rational elliptic surface S → P1 with itself :

XBan := Bl∆(S ×P1 S).

These results were consistent with the computation of the Donaldson-
Thomas invariants of XBan obtained via topological vertex methods by
Bryan [3].

In this paper, we use similar methods as before to obtain the genus 0
Gopakumar-Vafa invariants of certain fiber classes of related local Calabi-
Yau threefolds, which we call multi-Banana configurations, and denote by
F̂mb. Our motivation is to study the fiberwise contribution of these con-
figurations, which exist as formal subschemes in special Schoen manifolds,
(Section 2.1). Unlike in our previous paper, even the genus 0 Gopakumar-
Vafa invariants associated to these configurations cannot be obtained by
other methods at present. Additionaly, the example configurations we study
yield partition functions with modular properties that can be expressed suc-
cinctly.

We note the multi-Banana configuration F̂mb was studied by Ruddat in
where he calls them perverse curves and investigates their mirror symmetry.
Our results appear to be compatible with results that appear in the physics
literature [4, Section 3.3].

1.2. The multi-Banana configuration F̂mb

The twelve singular fibers Fban of the regular Banana manifold XBan are
normalizations of the product of I1 singular fibers with themselves,

Fban
∼= Bl∆(I1 × I1) ⊂ XBan.

Let F̂ban be the formal completion of XBan along Fban. Each Fban is iso-
morphic to a non-normal toric variety whose normalization is isomorphic
to P1 ×P1 blown up at two points on the diagonal. We have π1(F̂ban) =
Z × Z . See [8, Section 3.1] for details.

We define the local Calabi-Yau threefold F̂mb as follows:
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Definition 2. The multi-Banana F vw
mb and the local multi-Banana config-

uration F̂ vw
mb are the étale covers of Fban and F̂ban, respectively,

F vw
mb → Fban,

F̂ vw
mb → F̂ban,

associated to the subgroup vZ × wZ ⊂ Z × Z .

We sometimes suppress the decoration and write Fmb and F̂mb instead.
Observe that Fban = F 11

mb and F̂ban = F̂ 11
mb.

The geometry of multi-Banana configurations was studied by Kanazawa
and Lau [5]. In particular, F̂ vw

mb has vw + 2 curve classes, generated by three
families of curves, {Ai}, {Bj}, and {Ck}, see section 2.2:

β ∈
w−1∑

i=0

Z [Ai]⊕
v−1∑

j=0

Z [Bj ] ⊕

(v−1)(w−1)∑

k=0

Z [Ck], β ∈ H2(F̂
vw
mb ).

1.3. Main results

In some cases of small v and w, the GV invariants have nice formulas. We
can express the partition function in terms of φQ(p), the unique weak Jacobi
form of weight -2 and index 1,

φQ(p) = p−1(1− p)2
∞∏

m=1

(1−Qmp−1)2(1−Qmp)2

(1−Qm)4
,

Q = exp(2πiτ), p = exp(2πiz), (τ, z) ∈ H×C.

and EllQ,p(C
2, t), the equivariant elliptic genus of C2:

EllQ,p(C
2, t) =

√
φQ(pt)φQ(p−1t)

φQ(t)
.

When v = 1, we have the following.
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Theorem 3. (See Theorem 10 for details and notation.) Fix a curve class
β(a, c) in the local multi-Banana F̂mb = F̂ 1w

mb :

β(a, c) =

w−1∑

i=0

ai[Ai] + c[C] + [B],

a = (a0, . . . , aw−1) ∈ Z w
≥0, c ∈ Z≥0.

Then the genus 0 Gopakumar-Vafa invariants n0β(a,c)
(F̂ 1w

mb ) can be ex-
pressed as:

∑

a,c

n0β(a, c)
(F̂mb)r

asc = s · φQ(s)

w−1∑

i=0

i+w−2∏

k=i

EllQ,s(C
2, Ri;k),

where

Q :=

w−1∏

i=0

(ris),

Ra;b := ra · ra+1 · ra+2 · · · rb · s
b−a+1, a ≤ b,

rk+w := rk.

In the case of v = w = 2, the curve classes are naturally labelled as
A0, A1, B0, B1, C0, C1. We have the following result:

Theorem 4. (See Theorem 9 for details and notation.) Let v = w = 2, and
fix a curve class β(a, c) in the local multi-Banana F̂mb = F̂ 22

mb:

β(a, c) = a0[A0] + a1[A1] + c0[C0] + c1[C1] + [B0],

a = (a0, a1), c = (c0, c1) ∈ Z 2
≥0.

Then the genus 0 Gopakumar-Vafa invariants n0β(a,c)
(F̂mb) are given by the

following:

∑

a0,a1,c0,c1

n0β(a,c)
(F̂mb)r

a0

0 r
a1

1 s
c0
0 s

c1
1 = 2

{
φQ(r0)φQ(s0)φQ(r1)φQ(s1)

φQ(r0s0)φQ(r1s1)

}1/2

,

where

Q := r0r1s0s1

φQ(p) := φ−2,1(Q, p).
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Remark 5. We note that the appearance of the elliptic genera in the par-
tition function of the multi-Banana suggests a correspondence via geometric
engineering [7] to partition functions of Yang-Mills gauge theories on sur-
faces. This viewpoint is discussed further in the previously cited physics
literature [4].

1.4. Outline of method

We recall the method we used in [8] to compute the genus 0 GV invari-
ants of XBan. The argument carries over largely unchanged for the local
multi-Banana configurations X = F̂mb, apart from the final combinatorics
computation, so we refer the reader to our previous paper for the details of
the proofs of the statements in this summary of our method.

We have a T := C∗ ×C∗ torus action on Fmb, given by translation on
the smooth locus, and which extends to an action on all of F̂mb. This gives
us an action on its coherent sheaves Coh(F̂mb) and thus on the moduli space

M F̂mb

β . This action preserves the canonical class and is compatible with the
symmetric obstruction theory. We can use the motivic nature of the Behrend
function weighted Euler characteristic to stratify the moduli space under
this group action [1, 2]. The nontrivial torus orbits make no contribution to

e(M F̂mb

β , ν), and we can reduce to considering only the T -fixed points of the

moduli space (M F̂mb

β )T .

We first count the fixed points of the moduli space. This gives us the
naive Euler characteristic, ñ0β(F̂mb), which we define as the Euler character-
istic of the moduli space without the Behrend function weighting:

ñ0β(F̂mb) := e(M F̂mb

β ).

Using stability arguments we show that the sheaves in our moduli space have
scheme-theoretic support on the multi-Banana surface Fmb [8, Proposition
12]. Thus, for computing ñ0β(F̂mb), it suffices to count T -invariant sheaves
of Fmb.

We would like to work on the universal cover of a multi-Banana, U(Fmb),
to make the computations easier. This is an infinite type toric surface, whose
irreducible components are isomorphic to the blow-up of P1 ×P1 at two
torus fixed points. We give further details of the local geometry in Sec-
tion 2.2. The universal cover U(Fmb) is the same as that of the regular
Banana fiber U(Fban) considered in [8].
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In order to relate the sheaves of U(Fmb) with those of Fmb, we intro-
duce another torus action, which we denote by P := C∗ ×C∗. This P ac-
tion on Coh(Fmb) is defined by tensoring with degree 0 line bundles of Fmb,
as Pic0(Fmb) ∼= C∗ ×C∗ [8, Section 4]. Again, the Euler characteristic con-
tribution can be computed on orbits of the action, and it then suffices to
consider only sheaves invariant under the two C∗ ×C∗ actions, T and P .
The T torus action also lifts to give an action on the universal cover and its
sheaves.

Any sheaf fixed under the P action can be realized as a direct image of an
equivariant sheaf on U(Fmb) [8, Proposition 22]. This equivariant sheaf con-
tains a distinguished subsheaf which pushes forward to the original sheaf,
and is unique up to deck transformations. Moreover stability, Euler char-
acteristic 1, and invariance under the T torus action is preserved in this
correspondence.

The requirements of stability and Euler characteristic equal to 1 then
puts restrictions on the allowed invariant stable sheaves. If we further specify
that the curve class β has degree exactly 1 in one of the curve families of F vw

mb ,
then all the T and P fixed sheaves in our moduli space correspond to struc-
ture sheaves of possibly non-reduced curves on U(Fmb) [8, Proposition 23].
The multiplicity of each component is constrained [8, Proposition 31] by a
condition, which is equivalent to requiring that the partition given by mul-
tiplicities of successive rational components from the fixed central degree 1
curve has a conjugate partition with odd parts that are distinct. We give
the specific details of this condition in Section 4.

This count of the number of fixed points of the moduli space gives the
naive Euler characteristic, ñ0β(F̂mb). However, the Behrend function weight-

ing amounts to a sign (−1)deg β , which depends on the total degree of the
curve [8, Proposition 39], and this can be incorporated into the partition
function.

We note that our technique is limited to computing invariants associated
to fiber class curves such that the degree of one of these families is fixed to
be 1. We do not yet know how to extend the technique to arbitrary degrees.

Our method allows us to calculate the partition function for F̂ vw
mb in the

general case, for arbitrary v and w. However, as v and w increase, there will
be unavoidable linear relations among the curve classes, even after fixing the
degree of one curve type to be 1. We will only present in detail the 2× 2
case (Section 4) and the 1× w case (Section 5) as they illustrate the ideas
sufficiently without the notation becoming burdensome.
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2. Geometry

In this section, we give two examples of multi-Banana configurations F̂mb

that exist as formal neighborhoods of surfaces inside compact Calabi-Yau
threefolds. We then discuss some of the local geometry of multi-Banana
configurations needed for the following sections.

2.1. Global geometry

Definition 6. Amulti-Banana manifoldXmb is a smooth Calabi-Yau three-
fold which is a conifold resolution of the fiber product of two rational elliptic
surfaces, and such that the formal neighborhood of each singular fiber is a
multi-Banana configuration.

Example 7. Let S
π
→ P1 be a rational elliptic surface with singular fibers

consisting of four I1 and four I2 singular fibers. Suppose S has a 2-torsion
section. This induces an order 2 automorphism φ2 that interchanges the
nodes of each of the I2 fibers.

We can then form the fiber product of S with itself, S ×P1 S. In order to
get a conifold resolution, we blow up the generalized diagonal ∆̃, consisting
of the diagonal ∆, as well as all its translates by iterations of φ2,

∆̃ := (φ
(i)
2 × φ

(j)
2 )∆, 0 ≤ i, j < 2.

We will call this multi-Banana manifold X22.

X22 := Bl∆̃(S ×P1 S)

In this case, the multi-Banana contains four F 22
mb configurations, and four

ordinary Banana fibers Fban.

Instead of taking the fiber product of S with itself, we can also do the
following construction.

Example 8. Let S
π
→ P1 be a rational elliptic surface with two I1 and two

I5 singular fibers. Then S has a 5-torsion section, which induces an order 5
automorphism φ5 which acts on each I5 fiber by cycling the nodes.
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Now, let us take the quotient of S by the action of φ5, and let S′ be the
resolution of the quotient:

S′ := Res (S/φ5).

Notice that by construction, S′ π′

→ P1 is another rational elliptic surface with
singular fibers over the same base points:

P1
sing := {p ∈ P1|π−1(p) ⊂ S singular}

= {p ∈ P1|π′
−1

(p) ⊂ S′ singular}.

We also have that the smooth fibers of S and S′ are isogenous:

φ5|p : π
−1(p) → π′ −1(p),

φ5|p is an isogeny, ∀p ∈ P1\P1
sing.

In this case, there is a conifold resolution of the fiber product, S ×P1 S′.
From the construction, we have a rational map of schemes over P1,

S 99K S′ = Res (S/φk),

so we get a graph

Γ ⊂ S ×P1 S′.

Then the conifold resolution is given by blowing up this graph Γ. We will
call this multi-Banana threefold X15:

X15 := BlΓ(S ×P1 S′).

The multi-Banana manifold X15 is a rigid Calabi-Yau threefold and contains
two F 15

mb multi-Banana configurations, and two F 51
mb multi-Banana configu-

rations.

2.2. Local geometry

We now examine the local geometry of the multi-Banana configurations in
more detail and establish some notation we will need later.

We recall the construction from [5] and relate it to our discussion.
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Let L be a tiling of the plane (x, y, 1) ⊂ R3 given by:

{x = m, z = 1} ∪ {y = n, z = 1} ∪ {y − x = r, z = 1},

m, n, r ∈ Z ,

(x, y, z) ∈ R3.

Let A be the non-finite type toric threefold whose fan consists of all the
cones over the proper faces of L (Figure 1). Let U(Fmb) be the universal
cover of Fmb, and U(F̂mb) the universal cover of F̂mb,

U(Fmb)
pr

−−→ Fmb

U(F̂mb)
pr

−−→ F̂mb.

Then U(Fmb) ⊂ A is the union of the toric divisors of A, and U(F̂mb) is the
formal completion of A along U(Fmb).

Figure 1. The fan of A.

We have an action of G = vZ × wZ , v, w ∈ Z≥0, on L ⊂ R3 by trans-
lation:

(v, w) · (x, y, 1) = (x+ v, y + w, 1).

which induces an automorphism ψG : A → A and also on U(F̂mb). These
are then the deck transformations of the universal cover of the local multi-
Banana configuration F̂mb:

U(F̂mb) → U(F̂mb)/ψG
∼= F̂mb.

We denote by Ξ the irreducible surface which is the momentum polytope
of P1 ×P1 blown up at 2 points, and drawn as a hexagon in our diagrams:

Ξ := momentum polytope of
(
Blp1,p2

(P1 ×P1)
)
, p1, p2 ∈ P1 ×P1.
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Then the momentum polytope of U(Fmb) can be represented as a hexagonal
tiling of the plane, and the momentum polytope of Fmb is given by v ×
w hexagons glued together along their toric boundary, as depicted in the
example of Figure 2.

A0

A1

A2 A0

A1

A2

B0

B1

B2

B3

B0

B1

B2

B3

C0

C1

C2
C0

C1

C2

C4

C5

C6

C4

C5

C6

Figure 2. Fmb in the case v = 3 and w = 4. Here, the top boundary curves
are identified with those along the bottom, and also the left edge with the
right edge.

The irreducible components of the torus fixed curves in Fmb fall into
three families of rational curves. Two of these families, {Ai} and {Bj}, are
proper transforms of the rational curves from the Iv and Iw singular fibers
in Fmb, respectively, and one family, {Ck}, are the exceptional curves of the
conifold resolution.

We will draw these curves oriented as shown in Figure 3, so the vertical
curves are in the A family, the horizontal curves are B family, and the
diagonal curves are from the C family.

When there is no confusion, we will also label irreducible components
of the lifts to the universal cover of these torus invariant curves with the
curve class of their projection to Fmb. That is, an irreducible component of
pr−1(Ai) ⊂ U(Fmb) will also be referred to as Ai in the universal cover.

As each hexagon surface Ξ is the momentum polytope of P1 ×P1 blown
up at 2 points, their 6 boundary divisors have 2 relations. For example, in
the labeled Figure 3, we have:

(2)
Ai + Ck = Al + Cn,

Bm + Ck = Bj + Cn.
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Ai

Bj

Ck Al

Bm

Cn

Figure 3. Curve labels for hexagon Ξ.

from the equivalent ways to express the total transform of the rulings in
each P1 factor.

A priori, there are 3vw torus invariant irreducible curves in Fmb, but
these satisfy standard hexagon relations (Eq. 2), so it is possible to choose
a basis of vw + 2 curves, consisting of v ×A curves, w ×B curves, and
(v − 1)(w − 1) + 1× C curves. For the small examples we consider, we will
index the curves in each family in a simple way. It is possible to use a
systematic choice of generators and labels for the general case [5, Section 5.1],
but it would be notationally cumbersome for these examples, so we do not
present that here.

As remarked in the introduction, our technique is limited to considering
only curves where we restrict the degree of one family of curves to be exactly
1. For concreteness, we will assume our curves are of class

(3) β =
∑

ai[Ai] + [B0] +
∑

ck[Ck].

The hexagonal tiling from U(Fmb) possesses a vZ × wZ periodicity from
the deck transformations. In order to get rid of the ambiguity from the
deck transformations, we will assume we have fixed a choice of fundamental
domain D, and any curve we consider has its unique irreducible component
covering B0 inside D. In other words, we will require that T -torus invariant
curves C ⊂ U(Fmb) with [pr(C)] = β also satisfy C ∩ pr−1(B0) ⊂ D.

From the arguments given in Subsection 1.4, in order to compute the
naive Euler characteristic ñ0β(F̂mb), it suffices to count all configurations of
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possibly non-reduced T -torus invariant curves covering β on the universal
cover U(Fmb), subject to the constraint that the partition given by multi-
plicities of successive rational components of each tree emanating from B0

has a conjugate partition which has odd parts that are distinct. In section 4
and 5, we will illustrate this count in two specific cases, namely when the
fundamental domain consists of 2× 2 hexagons, and also the case of 1× w
hexagons. These configurations exist, for example, in X22, and X15, respec-
tively, as described in the previous Section 2.1.

3. Notation and conventions

We gather in this section the conventions we use for product and sum ex-
pansions for Jacobi forms and elliptic genera.

Recall, the weak Jacobi form φ−2,1(q, p) of weight -2 index 1 is defined
as

φ−2,1(q, p) = p−1(1− p)2
∞∏

m=1

(1− qmp−1)2(1− qmp)2

(1− qm)4
,

The Jacobi theta function θ1(q, p) function is given as

θ1(q, p) = −
∑

k∈Z+ 1

2

q
k2

2 (−p)k

= −iq
1

8 p−
1

2

∞∏

m=1

(1− qm)(1− qm−1p)(1− qmp−1)

and the Dedkind η function is

η(q) = q
1

24

∞∏

m=1

(1− qm).

Here,

q = exp(2πiτ), p = exp(2πiz), (τ, z) ∈ H×C.
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Since the first variable will be constant within our partition functions,
we will use the shortened notation,

φQ(p) := φ−2,1(Q, p)

θQ(p) := θ1(Q, p)

ηQ := η(Q)

Treating these expressions as formal power series, it is easy to verify the
identities :

(4)

√
φQ(p) =

iθQ(p)

η3
Q

,

√
p φQ(p) =

√
Q

p
φQ(

Q

p
),

√
φQ(p) = −

√
φQ(p−1).

Suppose M is a non-compact complex manifold of dimension d with a
C∗ action with isolated fixed points {x} of tangent weights ki. We define
the equivariant elliptic genus of M to be:

Ellq,y(M, t) =
∑

x∈MC∗

d∏

j=1

y−
1

2

∞∏

m=1

(1− qm−1yt−kj(x))(1− qmp−1tkj(x))

(1− qm−1t−kj(x))(1− qmtkj(x))
.

In particular ([11, Theorem 12]), we have:

Ellq,y(C
2, t) =

θ1(q, yt)θ1(q, yt
−1)

θ1(q, t)θ1(q, t−1)

=

√
φ−2,1(q, yt)φ−2,1(q, y−1t)

φ−2,1(q, t)

=

√
φQ(yt)φQ(y−1t)

φQ(t)
.(5)

4. Case 2 × 2

In this section, we study the case of F̂22 := F̂ 22
mb, and we use this example to

illustrate in detail how the method described in the Section 1.4 leads to the
computation of the Gopakumar-Vafa invariants.
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4.1. T -Torus fixed curves on F̂22

We first fix a choice of a fundamental domain D in U(F22) so that there is
no ambiguity in our counts due to deck transformations.

We label the curves of the 2× 2 hexagons of the momentum polytope
of the fundamental domain in U(F22) with our convention explained in Sec-
tion 2.2. The vertical curves cover curves in the A family, the horizontal
curves those in the B family, and the diagonal curves cover the C family
as shown in Figure 4. There is a 2Z × 2Z periodicity of this fundamental
domain in the universal cover.

A0

A1

A2

A3

A0

A1

B0

B1

B2

B3

B0

B1

C1

C0

C2

C3

C0

C1

C2

Figure 4. 2× 2 hexagon momentum polytope of the fundamental domain in
U(F22).

We can choose a basis for the homology classes of curves of F22 given by
the 6 curves A0, A1, B0, B1, C0, and C1, as labelled in Figure 4. This can be
shown using simple applications of the standard hexagon relations (Eq. 2)
as follows.

First observe that the sum of the the C curves in each row is constant,
as is the sum in each column,

(6)
C0 + C2 = C1 + C3,

C0 + C1 = C2 + C3.
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This follows by combining two hexagon relations to the bottom row of
hexagons in Fig. 4. For example,

A0 + C1 = A2 + C2,

A0 + C0 = A2 + C3.

yields C0 + C2 = C1 + C3. The other relation is derived similarly.

We can also write the sum of all the diagonal curves in two ways, grouped
as rows or as columns. In this case when I = J = 2, we have:

(C0 + C1) + (C2 + C3) = (C0 + C2) + (C1 + C3),

Together with the previous Eq. 6, this implies that

C1 = C2,

C0 = C3.

In a similar fashion, it is easy to deduce that

A0 = A2,

A1 = A3,

B0 = B2,

B1 = B3.

We can thus choose a basis for the homology classes of curves given by the
6 curves A0, A1, B0, B1, C0, C1.

We are interested in sheaves invariant under the action of the torus T ,
so their support must be contained in the T -torus fixed curves. We will
assume from now on that the support curve C of our sheaf has degB0 = 1
and degB1 = 0 so that it is in the homology class:

(7) [C] = β ∈
∑

i=0,1

ai[Ai] + [B0] +
∑

j=0,1

cj [Cj ].

Recall there is a 1-1 correspondence between the π1(F22)-equivariant sheaves
on U(Fmb) and the P -fixed sheaves on Fmb up to deck transformations [8,
Proposition 22]. To remove the ambiguity, we will further require that the
corresponding equivariant sheaf in U(Fmb) has support curve C ⊂ U(Fmb),
whose reduced irreducible component covering the curve in class [B0] is in



✐

✐

“11-Morishige” — 2024/1/2 — 18:20 — page 2874 — #16
✐

✐

✐

✐

✐

✐

2874 Nina Morishige

our chosen fundamental domain D. In this example, notice that there are
two possible choices for B0, since [B0] = [B2].

The irreducible components of the curve C may be nonreduced, so we
need to keep track of the multiplicity of each component to determine the
curve class of pr(C). We let the variable ri track the number of curves,
counted with multiplicity, which cover Ai, i ∈ {0, 1}, and sj track the number
of curves which cover Cj , j ∈ {0, 1}. A typical curve C which covers a curve
in class Eq. (7) is pictured in Figure 5.

B0

r0

s1

r1

s0

r0

s1

r1

s0

r0

s1

r1

s1

r0

s0

r1

s1

r0

s0

r1

s1

r0

s0

Figure 5. A typical torus fixed curve in U(F22) which covers a curve with
deg[B] = deg[B0] = 1. Here ri and sj are used to track the multiplicity of
curves which cover Ai and Cj curves, respectively.
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4.2. Translating to combinatorics

We explain the details of our method of converting the count of invariant
stable sheaves into a combinatorics problem.

Recall from the discussion in Section 1.4 the naive Euler characteristic
ñ0β(F̂22) = e(M F̂22

β ) for curves in class β of the form Eq. (7) equals a count of
T -torus invariant structure sheaves of genus 0 curves on the universal cover
C ⊂ U(Fmb) that cover class β [8, Proposition 23], subject to the certain
conditions [8, Proposition 31] on their multiplicity that we explain below.

First we introduce some terminology. We will refer to irreducible com-
ponents of C as edges, and the intersection of two or more edges as vertices.
Let B0 ⊂ C be the edge that covers class [B0] and lies in the fundamental
domain D by assumption.

We will call the union of B0 with any one of the four disjoint subcurves
of C\B0 a branch of C. Then the curve counts can be done on each branch
separately, and will be the same on each branch, up to relabeling.

The edge B0 is the intersection of two irreducible surface component
hexagons isomorphic to Ξ in U(Fmb). Let S be one of these and let g be the
deck transformation that translates S into the other. The hexagons gmS,
m ∈ Z , in the orbit of S under the group of deck transformations ⟨g⟩ ∼= Z

will be called inside hexagons. Any other hexagons will be called outside
hexagons.

Any edge of C\B0 covers Ai or Cj , i, j ∈ {0, 1}, and will be the intersec-
tion of an inside hexagon and an outside one. These T -invariant edges can
can have monomial thickening in these two directions. Any thickenings in the
direction of the inside hexagon will be called inside thickenings, and those
in the direction of the outside hexagon will be called outside thickenings.
However, because of stability and the requirement of the Euler characteristic
of O[C] to be 1, the possible thickenings can only be of a particular form.

Thickenings on the edges that cover Ai or Cj are subject to the following
properties [8, Proposition 31]:

1) Inside thickenings of any edge that intersects B0 is unrestricted.

2) All nonzero outside thickenings must be 1.

3) Inside thickenings are non-increasing on components along a branch
in the direction moving away from B0.
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4) Inside thickenings for two adjacent edges contained in a common inside
hexagon can either be the same or differ by one.

We can interpret the inside multiplicity of each edge as length of a part
in a partition. These constraints are independent on each branch, so we
examine one branch at a time. Along each branch, the non-increasing length
condition says that the allowed multiplicities of edges form a Young diagram.
If we examine the conjugate partition of the branch, the fourth condition
can be interpreted as saying that any odd parts that appear in the conjugate
partition are distinct, with no restriction on the even parts.

The generating function that counts the number of partitions p(n) with
odd parts distinct can be written as the product of generating functions for
partitions with arbitrary even parts with that of partitions with unique odd
parts:

∑
p(n)qn =

∏ 1

1− q2n

∏
(1 + q2n−1)

We must further refine the parts, because we have four curve classes Ai and
Cj , for i, j ∈ {0, 1} to keep track of. In other words, we need to keep track
of the residue classes mod 4 in our partition.

Consider for example the northeast branch of the curve shown above,
which we reproduce in Figure 6. Suppose we number the edges consecu-
tively, starting with the first edge e1 that intersects B0. Then the every
odd-numbered edge will contribute to an odd part, and the even-numbered
ones to an even part. The first edge e1 in this example curve covers C1, and
we assign the variable s1 to track this curve. The second edge e2 covers A0

and we use the variable r0 to track this.

So we refine the generating function above, and replace powers of the
variable q, by

q1 7→ s1

q2 7→ s1r0

q3 7→ s1r0s0

q4 7→ s1r0s0r1,

and for higher powers of q, we continue the pattern, so that

q4m+i = q4mqi 7→ (s1r0s0r1)
mqi
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B0

s1

r0

s0

r1

s1

r0

s0

Figure 6. Detail of the northeast branch of the curve shown in Figure 5.

We also use the notation

Q := r0s0r1s1.

Now, the generating function that counts the number of partitions with
odd parts distinct can be expressed for the northeast branch as:

(1 + s1)(1 + s0r0s1)(1 +Qs1)(1 +Qs0r0s1) · · ·

(1− r0s1)(1−Q)(1−Qr0s1)(1−Q2) · · ·

=

(1 + s1)
∞∏

m=1
(1 +Qms1)(1 +Qmr−1

1 )

(1− r0s1)
∞∏

m=1
(1−Qm)(1− r0s1Qm)

We do this for each branch and multiply the contribution from all four
branches. Notice also that there are two distinct possible locations for the
curve B0. However, they give the same contribution to the generating func-
tion, since the four branches in either location consist of the same sequence
of curves, up to renaming of the branches.
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Hence, using the identities (4), the partition function can be expressed
in terms of the theta function θQ(p) as:

2iη−6
Q

θQ(−r0)θQ(−s0)θQ(−r1)θQ(−s1)

θQ(r0s0)θQ(r1s1)
.(8)

or in terms of the weak Jacobi form φQ(p) as:

2

{
φQ(−r0)φQ(−s0)φQ(−r1)φQ(−s1)

φQ(r0s0)φQ(r1s1)

}1/2

(9)

As we explained in the introduction, this count of the fixed points corre-
sponds to the naive Euler characteristic contribution, ñ0β(F̂mb),

∑

a0,a1
c0,c1

ñ0β(a,c)
(F̂mb)r

a0

0 r
a1

1 s
c0
0 s

c1
1 = 2

{
φQ(−r0)φQ(−s0)φQ(−r1)φQ(−s1)

φQ(r0s0)φQ(r1s1)

}1/2

.

(10)

However, the Behrend function weighting amounts to a sign that depends
on the degree of the curve class [8, Remark 33]:

ñ0β(a,c)
(F̂mb) = (−1)a0+a1+c0+c1n0β(a,c)

(F̂mb).

We can incorporate this sign by replacing our tracking variables by their
negatives.

Hence, we have shown the following.

Theorem 9. Fix a curve class β(a, c) in the local multi-Banana F̂mb = F̂ 22
mb,

β(a, c) = a0[A0] + a1[A1] + c0[C0] + c1[C1] + [B0],

a = (a0, a1), c = (c0, c1) ∈ Z 2
≥0.

Then the genus 0 Gopakumar-Vafa invariants n0β(a,c)
(F̂mb) are given by the

following:

∑

a0,a1
c0,c1

n0β(a,c)
(F̂mb)r

a0

0 r
a1

1 s
c0
0 s

c1
1 = 2

{
φQ(r0)φQ(s0)φQ(r1)φQ(s1)

φQ(r0s0)φQ(r1s1)

}1/2

,
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where we use the notation

Q := r0r1s0s1

φQ(p) := φ−2,1(Q, p).

and φQ(p) = φ−2,1(Q, p) is the unique weak Jacobi form of weight -2 and
index 1:

φQ(p) = p−1(1− p)2
∞∏

m=1

(1−Qmp−1)2(1−Qmp)2

(1−Qm)4
,

Q = exp(2πiτ), p = exp(2πiz), (τ, z) ∈ H×C.

5. Case 1 × w

In this section, we look in detail at the case of F 1w
mb , when v = 1 and w ≥ 1.

In this case, the fundamental domain in U(F 1w
mb ) has a Z × wZ peri-

odicity in the universal cover. Its momentum polytope is given by 1× w
hexagons. Using the hexagon relations (Eq. 2) as in the previous section,
it is easy to see there is only one horizontal curve class, which we call B,
and one diagonal curve class, which we call C. There are w distinct vertical
curve classes, Ai, 0 ≤ i ≤ w − 1, (Figure 7).

Let us assume that the support curve C of our sheaf has degB = 1 so
that

[C] ∈
w∑

i=0

ai[Ai] + [B] + c[C].

Let ri track the number of Ai curves and s track the number of C curves.

For this case, we define the variable Q to be:

(11) Q :=

w−1∏

i=0

(ris).

We will also use the following multi product notation:

(12) Ra;b := ra · ra+1 · ra+2 · · · rb · s
b−a+1, a ≤ b,

where the subscript of r is interpreted mod w:

rk+w := r[k], [k] ∈ Z /wZ .
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A0

A1

A2

Aw−1

A0

A1

A2

Aw−1

B

B

B

B

B

C

C

C

C

C

C

C

C

Figure 7. 1× w hexagon momentum polytope of the fundamental domain
in U(F 1w

mb ).

In particular,

R0;b :=

b∏

i=0

(ris).

First, suppose the single B curve is located connected to an A0 curve. Then,
we can count the number of partitions with odd parts distinct in the same
way as before, and the generating function for these configurations is ex-
pressed as follows:

(1 + s)2
∞∏

m=1

(1 + sQm)2(1 + s−1Qm)2

(1−Qm)4
×

w−2∏

k=0

{
(1 + sR0;k)(1 + s−1R0;k)

(1−R0;k)2

×
∞∏

m=1

(1 + sR0;kQ
m)(1 + s−1R0;kQ

m)(1 + sR−1
0;kQ

m)(1 + s−1R−1
0;kQ

m)

(1−R0;kQm)2(1−R−1
0;kQ

m)2

}
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We can write this more succinctly using the weak Jacobi form φQ(p) as:

(13) (−s)φQ(−s)
w−2∏

k=0

{√
φQ(−sR0;k)

√
φQ(−sR0;k)

φQ(R0;k)

}
;

or alternatively, in terms of the theta function θQ(p) as:

(14) (−s)φQ(−s)
w−2∏

k=0

{
θQ(−sR0;k)θQ(−sR

−1
0;k)

θQ(R0;k)θQ(R
−1
0;k)

}
.

Notice that, from Eq. (5), the product can be expressed in terms of the
equivariant elliptic genus of C2,

(15) (−s)φQ(−s)
w−2∏

k=0

EllQ,−s(C
2, R0;k).

There are w different locations possible for the B curve in the 1× w
hexagon, characterized by the choice of which Ai curve, 0 ≤ i ≤ w − 1, that
the B curve is connected to. Although the generating function for the par-
titions with distinct odd parts associated to these other configurations de-
pends on the particular location of B, it is easy to see that it differs from
the previous formula only by a cyclic shift of indices in the R0;k variable.

The total partition function counts the contribution from all possible
locations of the B curve, and is thus expressed as a sum over the generating
functions from each location,

(16) (−s)φQ(−s)
w−1∑

i=0

i+w−2∏

k=i

EllQ,−s(C
2, Ri;k).

As in the previous section, this count of fixed points corresponds to
the naive Euler characteristic. To take account of the Behrend function
weighting, we can incorporate a sign based on the degree of the curve class
by simply replacing our tracking variables by their negatives.

Thus, for the case of F̂ 1w
mb , we have the following partition function.
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Theorem 10. Fix a curve class β(a, c) in the local multi-Banana F̂mb =

F̂ 1w
mb :

β(a, c) =

w−1∑

i=0

ai[Ai] + c[C] + [B],

a = (a0, . . . , aw−1) ∈ Z w
≥0, c ∈ Z≥0.

Then the genus 0 Gopakumar-Vafa invariants n0β(a,c)
(F̂ 1w

mb ) can be ex-
pressed as:

∑

a,c

n0β(a,c)
(F̂mb)r

asc = s · φQ(s)

w−1∑

i=0

i+w−2∏

k=i

EllQ,s(C
2, Ri;k).

where Ellq,y(C
2, t) is the equivariant elliptic genus of C2, and we use the

notation:

r
a := ra0

0 r
a1

1 . . . r
aw−1

w−1 ,

Q :=

w−1∏

i=0

(ris),

Ra;b := ra · ra+1 · ra+2 · · · rb · s
b−a+1, a ≤ b,

rk+w := r[k], [k] ∈ Z /wZ .

We also mention that it is possible to choose to fix the degree of the A
family of curve classes or the C class to be 1 instead of the B curve. However,
in this 1× w case, doing so reduces to the ordinary Banana configuration
Fban case and yields the same formula as in the earlier paper [8].
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