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Self-gravitating static balls of power-law

elastic matter

Artur Alho, Simone Calogero, and Astrid Liljenberg

We study a class of power-law stored energy functions for spher-
ically symmetric elastic bodies that includes well-known material
models, such as the Saint Venant-Kirchhoff, Hadamard, Signorini
and John models. We identify a finite subclass of these stored en-
ergy functions, which we call Lamé type, that depend on no more
material parameters than the bulk modulus κ > 0 and the Pois-
son ratio −1 < ν ≤ 1/2. A general theorem proving the existence
of static self-gravitating elastic balls for some power-law materials
has been given elsewhere. In this paper numerical evidence is pro-
vided that some hypotheses in this theorem are necessary, while
others are not.

1. Introduction

Spherically symmetric static configurations of self-gravitating matter distri-
butions are described by the equation

(1.1) p′rad =
2

r
(ptan − prad)−Gρ

m

r2
,

in which prad(r) is the radial pressure, ptan(r) the tangential pressure and
ρ(r) the mass density of the matter distribution, while

m(r) = 4π

∫ r

0
ρ(s) s2 ds

is the mass enclosed in the ball of radius r > 0; G is Newton’s gravitational
constant. Solutions of (1.1) are of paramount importance in astrophysics,
where, depending on the matter model being used, describe stars, galax-
ies, planets, or other systems, in static equilibrium [3, 12, 18]. The matter
model is specified by assigning an equation of state between the Euler state
variables (ρ, prad, ptan), e.g., prad = ptan = F (ρ) for a barotropic fluid; in the
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case of kinetic matter models, the Euler state variables are given by integral
moments of the one-particle distribution function f in phase-space [3].

In this paper we study Equation (1.1) for single balls of elastic matter
with stored energy function ŵ : (0,∞)2 → R. We use the formulation of elas-
ticity theory for spherically symmetric bodies with natural reference state
introduced in [1], see also [6], in which the Euler state variables of elastic
balls satisfy the equations of state

ρ(r) = Kδ(r), prad(r) = p̂rad(δ(r), η(r)), ptan(r) = p̂tan(δ(r), η(r)),

where the constitutive function (p̂rad, p̂tan) is given by

(1.2) p̂rad(δ, η) = δ2∂δŵ(δ, η), p̂tan(δ, η) = p̂rad(δ, η) +
3

2
δη∂ηŵ(δ, η).

Here K is called the reference density of the spherically symmetric elastic
body and

η(r) =
m(r)
4π
3 Kr3

.

In terms of the variables δ, η, Equation (1.1) reads

(1.3a) â(δ, η)δ′ =
b̂(δ, η)

r
(η − δ)−

4πG

3
K2r η δ, η(r) =

3

r3

∫ r

0
δ(s)s2 ds,

where
(1.3b)

â(δ, η) = ∂δp̂rad(δ, η), b̂(δ, η) = 2
p̂tan(δ, η)− p̂rad(δ, η)

η − δ
+ 3∂ηp̂rad(δ, η).

The stored energy function ŵ will be assumed to be of the power-law type in-
troduced in [2]. Several important examples of elastic material models belong
to this class, e.g., the Saint-Venant Kirchhoff model, the Signorini model,
the Hadamard model and the John model, see Section 2.2. (The Ogden
material model [19] also belongs to this class, but it is not included in this
paper.) Elastic matter models have long been used in astrophysics [9, 14–16]
and have important applications to e.g. describe the deformation of plan-
ets [10, 18] and neutron stars crusts [7]. The existence of static Newtonian
self-gravitating elastic bodies, without any symmetry assumption, has been
studied in [4, 5] using the Lagrangian formulation of elasticity theory. The
first theorem proving the existence of static self-gravitating multi-body elas-
tic matter distributions with regular boundaries and arbitrarily large strain
has been given in [1] for the Seth model in spherical symmetry and it was
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later extended to more general elastic models for static self-gravitating balls
in [2]. One purpose of this paper is to present numerical evidence showing
that some of the assumptions made in [2] are necessary, while other are
not, see Section 3. In the next section we define and discuss some general
properties of power-law stored energy functions.

2. Power-law hyperelastic constitutive functions

Let κ > 0 be the bulk modulus and −1 < ν ≤ 1/2 be the Poisson ratio of
the material. Several stored energy functions found in literature have the
form presented in the following definition.

Definition 1. Let (n1, n2, . . . , nm) ∈ Nm, m ≥ 2, and θj , βij ∈ R, i =
1, . . . , nj , j = 1, . . . ,m be such that

(i) θ1 < θ2 < · · · < θm, β1j < β2j < · · · < βnjj, for all j = 1, . . . ,m, i =
1, . . . , nj;

(ii) if nj = 1, then θj ̸= 0 and θj = β1j;

(iii) at least one of the numbers βij is different from 0 and −1;

(iv) at least one of the positive integers nj is greater than 1.

Assume that there exists an interval V ⊆ (−1, 1/2] such that for all ν ∈ V
the following linear system

m∑

j=1

nj∑

i=1

αijθj = 0,

m∑

j=1

nj∑

i=1

αijθ
2
j = 1,

m∑

j=1

nj∑

i=1

αijβ
2
ij = 3

1− ν

1 + ν
,(2.1a)

nj∑

i=1

αij(θj − βij) = 0, j = 1, . . . ,m(2.1b)

has a solution αij ∈ R⧹{0}, i = 1, . . . , nj , j = 1, . . . ,m. Then the function
ŵ : (0,∞)2 → R given by

(2.2) κ−1ŵ(δ, η) =

m∑

j=1

ηθj
nj∑

i=1

αij

(
δ

η

)βij

+ w0, w0 := −

m∑

j=1

nj∑

i=1

αij

is said to be a type (n1, . . . , nm) power-law elastic stored energy function for
spherically symmetric bodies with natural reference state.
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The constitutive funtion (1.2) for power-law stored energy functions is
given by

κ−1p̂rad(δ, η) =

m∑

j=1

η1+θj

nj∑

i=1

αijβij

(
δ

η

)1+βij

,(2.3)

κ−1p̂tan(δ, η) =
1

2

m∑

j=1

η1+θj

nj∑

i=1

αij(3θj − βij)

(
δ

η

)1+βij

,(2.4)

while the functions â(δ, η), b̂(δ, η) in (1.3b) are given by

κ−1â(δ, η) =
∑

j∈J

ηθj
∑

i∈Ij

αijβij(1 + βij)

(
δ

η

)βij

,

(2.5a)

κ−1b̂(δ, η) = 3
∑

j∈J

ηθj
∑

i∈Ij

αij(θj − βij)

[
(δ/η)1+βij − 1

1− (δ/η)
+ βij

(
δ

η

)1+βij

]
,

(2.5b)

where we introduced the sets

Ij := {i ∈ {1, . . . , nj} : βij ̸= −1, βij ̸= 0}, J = {j ∈ {1, . . . ,m} : Ij ̸= ∅}.

By condition (iii) on βij in Definition 1, Ij is not empty for at least one
j ∈ {1, . . . ,m}.

For a stored energy function of the form (2.2), the definition of w0 is
equivalent to the normalization condition ŵ(1, 1) = 0. Equations (2.1a) are
equivalent to the following compatibility equations with linear elasticity:

(2.6a) κ−1∂δp̂rad(1, 1) =
3(1− ν)

1 + ν
, κ−1∂ηp̂rad(1, 1) = −

2(1− 2ν)

1 + ν
,

(2.6b) κ−1∂δp̂tan(1, 1) =
3ν

1 + ν
, κ−1∂ηp̂tan(1, 1) =

1− 2ν

1 + ν
,

and the natural reference state condition

(2.7) p̂rad(1, 1) = p̂tan(1, 1) = 0,

while (2.1b) is equivalent to isotropic condition

(2.8) p̂rad(δ, δ) = p̂tan(δ, δ).
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We refer to [1, 6] for a more detailed discussion on the conditions (2.6)–(2.8).
Remark. Condition (i) only affects the order in which the factors

η1+θj (δ/η)1+βij appear in the stored energy function (lexicographic order);
condition (ii) is required for consistency with (2.1b), while condition (iii) is
imposed to ensure that the constitutive function for the radial pressure is
not independent of δ, see (2.3). Condition (iv) excludes the power-law types
(1, 1, 1, . . . , 1) from Definition 1. These stored energy functions correspond
to barotropic fluid models and will be discussed in a separate section, see
the last example in Section 2.2.

Remark. In [2] we have written (2.2) in a slightly different form, namely
we expressed the exponents of η as θj =

1
3γj . This notation was particularly

useful for the examples considered in [2] but here is no longer necessary.
Moreover in [2] we used the Lamé material parameters λ, µ instead of κ, ν.
The relation between these two sets of parameters is

κ = λ+
2µ

3
, ν =

λ

2(λ+ µ)
.

Remark. The assumption that the system (2.1) must have non-zero so-
lutions for all ν in some interval V ⊆ (−1, 1/2] is required to exclude the
possibility that the stored energy function (2.2) is defined only for isolated
values of the Poisson ratio. The latter seems rather artificial and would result
into unpleasant technical complications.

Remark. Examples of well-known hyperelastic models with power-law
stored energy function are the Saint Venant-Kirchhoff model, the Signorini
model, the John model and the Hadamard model, see [2] and Section 2.2
below.

Remark. For some applications, e.g., to study the homologous motion
of (self-gravitating) elastic balls [6], it is necessary to consider elastic stored
energy functions which do not satisfy the natural state condition (2.7).

If there are no values of θ1, . . . , θm, β11, . . . , βnmm for which the sys-
tem (2.1) admits solutions αij ̸= 0 for all κ > 0, ν ∈ V , for some interval
V ⊆ (−1, 1/2], then the corresponding power-law stored energy function is
inadmissible. To this regard we have the following simple lemma.

Lemma 1. There exist no power-law elastic stored energy functions of type
(1,2), (2,1) or (2,2).
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Proof. When m = 2 and (n1, n2) = (1, 2), the system (2.1) is given by

(∗)





α11θ1 + α12θ2 + α22θ2 = 0,
α11θ

2
1 + α12θ

2
2 + α22θ

2
2 = 1,

α12(θ2 − β12) + α22(θ2 − β22) = 0,
α11θ

2
1 + α12β

2
12 + α22β

2
22 = 31−ν

1+ν .

The system consisting of the first three equations has no solution when θ1
or θ2 is zero, while for (θ1, θ2) ̸= (0, 0) has the unique solution

α11 =
1

θ1(θ1 − θ2)
, α12 =

θ2 − β22
θ2(θ1 − θ2)(β22 − β12)

,

α22 =
β12 − θ2

θ2(θ1 − θ2)(β22 − β12)
,

which is non-zero provided θ2 ̸= βi2, i = 1, 2. Replacing in the fourth equa-
tion we obtain that the system (∗) has no solutions, except possibly for an
isolated value of the Poisson ratio and thus this model is not a type (1,2)
power-law stored energy function. Similarly one proves that the types (2,1)
and (2,2) are inadmissible. □

Remark. From the simple proof of the previous lemma it is clear that a
power-law type is inadmissible if the subsystem of (2.1) consisting of (2.1b)
and the first two equations in (2.1a) has a unique solution. The special result
included in Lemma 1 will be used in Lemma 2.

2.1. Lamé type power-law stored energy functions

We shall say that a power-law stored energy function is of Lamé type if
the coefficients αij in (2.2) are uniquely determined by the exponents θj , βij
and the Poisson ratio ν through the system (2.1). Power-law stored energies
which are not Lamé type contain additional parameters besides the bulk
modulus κ and the Poisson ratio ν. We remark that these additional param-
eters are not genuine material constants, as they depend on having assumed
a specific type of stored energy function (while κ and ν only depend on the
postulate that all materials obey linear elasticity for very small strain). As
shown in the following lemma, there are only a few Lamé types power-law
materials.
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Lemma 2. The only possible elastic stored energy functions of Lamé type
are the following:

m = 2 : (1, 3), (2, 3) and permutations,(2.9a)

m = 3 : (1, 1, 2), (1, 2, 2), (2, 2, 2) and permutations.(2.9b)

Proof. Let k be the number of nj = 1. As the system (2.1) consists of m+
3− k equations and there are

∑m
j=1 nj coefficients αij , then a necessary

condition for a power-law material to be of Lamé type is that m+ 3− k ≥∑m
j=1 nj . Using

m∑

j=1

nj = k +
∑

nj≥2

nj ≥ k + 2(m− k)

we find thatm ≤ 3. Hence the only possible Lamé types are (1,2), (1,3), (2,2)
and (2,3) for m = 2, (1,1,2), (1,2,2), (2,2,2) for m = 3, and permutations
thereof. We have already shown that the types (1,2), (2,1) and (2,2) are
inadmissible, see Lemma 1, hence the proof is completed. □

Upon studying each of the types (2.9) separately, one can easily show
that they are all Lamé types except for some some special values of the
exponents θ1, . . . , θm. For instance, the most general type (2, 2, 2) power-law
stored energy function is

κ−1ŵ(δ, η) = ηθ1

(
α11

(
δ

η

)β11

+ α21

(
δ

η

)β21

)

+ ηθ2

(
α12

(
δ

η

)β12

+ α22

(
δ

η

)β22

)

+ ηθ3

(
α13

(
δ

η

)β13

+ α23

(
δ

η

)β23

)

− (α11 + α21 + α12 + α22 + α13 + α23).(2.10)

The system (2.1) consists of 6 equations on α11, α21, α12, α22, α13, α23. Defin-
ing

A(2,2,2) = θ1θ2(θ1 − θ2)(β13 − θ3)(β23 − θ3)

+ θ2θ3(θ2 − θ3)(β11 − θ1)(β21 − θ1)

+ θ1θ3(θ3 − θ1)(β12 − θ2)(β22 − θ2),
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the system (2.1) for type (2,2,2) power-law stored energy functions has a
unique solution if and only if A(2,2,2) ̸= 0, namely

α11 =
θ1 − β21

A(β11 − β21)
[(θ2(β23 − θ3)(β13 − θ3)− θ3(β22 − θ2)(β12 − θ2)

+ 2θ2θ3(θ3 − θ2)
1− 2ν

1 + ν
]

α12 =
β22 − θ2

A(β12 − β22)
[(θ1(β23 − θ3)(β13 − θ3)− θ3(β21 − θ1)(β11 − θ1))

+ 2θ1θ3(θ3 − θ1)
1− 2ν

1 + ν
]

α13 =
θ3 − β23

A(β13 − β23)
[(θ1(β22 − θ2)(β12 − θ2)− θ2(β21 − θ1)(β11 − θ1))

+ 2θ1θ2(θ2 − θ1)
1− 2ν

1 + ν
]

α21 = −
β11 − θ1
β21 − θ1

α11, α22 = −
β12 − θ2
β22 − θ2

α12, α23 = −
β13 − θ3
β23 − θ3

α13.

From these expressions it is clear that the conditions on the exponents θj , βij
for the existence of the Lamé type (2,2,2) power-law stored energy function
are

(θ1, θ2, θ3) ̸= (0, 0, 0), θj ̸= βij , i = 1, 2, j = 1, 2, 3.

Similar conditions can be found for the other types in (2.9). Moreover all
Lamé types can be derived from the types (2,2,2), (1,3) and (3,1) in the
limits given in Figure 1.

2.2. Examples

In this section we give some examples of power-law stored energy functions
for spherically symmetric bodies; the original Lagrangian form of these mod-
els without symmetry assumptions can be found in [8, 11, 17, 20].

Saint Venant-Kirchhoff model. Saint Venant-Kirchhoff (SVK) materi-
als have the following Lamé type (3, 2) power-law stored energy function

κ−1ŵSVK(δ, η) = η−4/3

(
3(1− ν)

8(1 + ν)

(
δ

η

)−4

+
3ν

2(1 + ν)

(
δ

η

)−2

+
3

4(1 + ν)

)

+ η−2/3

(
−
3

4

(
δ

η

)−2

−
3

2

)
+

9

8
.(2.11)
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(1, 2, 1)

(2, 2, 1)

β11=θ1
99

β12=θ2
// (2, 1, 1)

(2, 2, 2)

β13=θ3
99

β11=θ1 %%

β12=θ2
// (2, 1, 2)

β13=θ3
99

β11=θ1
// (1, 1, 2)

(1, 2, 2)

β12=θ2
99

β13=θ3
// (1, 2, 1)

(2, 3)
β11=θ1

// (1, 3)
ν=1/2

##

(1, 1)

(3, 2)
β12=θ2

// (3, 1)

ν=1/2

;;

Remark. The same limits hold
by replacing β1j with β2j .

Figure 1: Relation between the Lamé type power-law stored energy func-
tions.

(Quasi linear) Signorini model. Signorini materials have the following
non-Lamé type power-law stored energy function

κ−1ŵSig(δ, η) =
3(5 + 8ν)− τ(1 + ν)

16(1 + ν)
η−1

(
δ

η

)−1

+ η−
1

3

(
τ(1 + ν)− 3(1 + 4ν)

4(1 + ν)

((
δ

η

)−1

+
1

2

(
δ

η

)))

+ η
1

3

(
3

4(1 + ν)

(
δ

η

)−1

+
3 + τ(1 + ν)

4(1 + ν)

(
δ

η

)
+

3− τ(1 + ν)

16(1 + ν)

(
δ

η

)3
)

−
3(1− 2ν) + τ(1 + ν)

2(1 + ν)
,

(2.12)

where τ is a (dimensionless) constant. Except for some particular values of
τ , this stored energy function is of type (1,2,3). The case τ = 0 is known as
quasi linear Signorini model. We shall restrict to the latter case in the rest
of the paper.
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(Quasi linear) John model. John materials have the following non-
Lamé type power-law stored energy function

κ−1ŵJohn(δ, η) = −
ϵ(1 + 4ν) + 3(1− 2ν)

(1 + 4ν)
η−1

(
δ

η

)−1

+ η−
2

3

(
3

2(1 + 4ν)

(
δ

η

)−2

+ 2
3 + ϵ(1 + 4ν)

1 + 4ν

(
δ

η

)−1

+
6 + ϵ(1 + 4ν)

1 + 4ν

)

+ η−
1

3

(
−
6(1 + ν) + ϵ(1 + 4ν)

1 + 4ν

(
δ

η

)−1

− 2
6(1 + ν) + ϵ(1 + 4ν)

1 + 4ν

)

+
2ϵ(1 + 4ν) + 3(5 + 8ν)

2(1 + 4ν)
,(2.13)

where ϵ is a (dimensionless) constant. Except for some particular values of
ϵ, this stored energy function is of type (1,3,2). From now on we restrict to
the case ϵ = 0, which we called the quasi-linear John model.

Remark. The John model discussed in this section is actually just a
special case of a larger family of stored energy functions, called harmonic,
introduced by Fritz John in [11].

Hadamard model. Hadamard materials are hyperelastic materials with
the following Lamé type (2,1,2) stored energy function

κ−1ŵHad(δ, η) = η−4/3

(
3

2(1 + ν)

(
δ

η

)−2

+
3

4(1 + ν)

)

− η−1

(
3(1− ν)

1 + ν

(
δ

η

)−1
)

+ η−2/3

(
−

3ν

2(1 + ν)

(
δ

η

)−2

−
3ν

1 + ν

)

+
3(1 + 2ν)

4(1 + ν)
, ν > 0.(2.14)

Remark. Hadamard materials are defined up to an additive term h(δ),
which was chosen h(δ) ∼ δ−1 in (2.14).
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Affine models. In this section we derive the power-law stored energy
functions for which the Equation (1.3) satisfied by static self-gravitating
bodies admits self-similar type solutions.

Self-similar static solutions of (1.3) are solutions of the form δ(r) =
crα, for some c, α ∈ R. Positivity of the mass requires α > −3. Moreover
η(r) = 3

3+αδ(r). Substituting in (1.3), we obtain the following equation on
the constitutive equation:
(2.15)

â

(
δ,

3

3 + α
δ

)
α− b̂

(
δ,

3

3 + α
δ

)
α

α+ 3
+

4π

3
K2 3

3 + α
c−2/αδ1+2/α = 0.

A stored energy function that satisfies (2.15) will be called affine.

Proposition 1. A necessary condition for a power-law material to sat-
isfy (2.15) for all δ > 0 is that

(2.16) there exists a unique q ∈ {1, . . . ,m} such that Iq ̸= ∅.

When (2.16) holds, (2.15) is satisfied with α > −3, c > 0 and for all δ > 0
if and only if θ := θq /∈ [1/3, 1],

C(θ) :=
2

θ − 1

[
1− θ

1− 3θ
b̂

(
1,

3− 3θ

1− 3θ

)
− â

(
1,

3− 3θ

1− 3θ

)]
> 0

and

(2.17) α =
2

θ − 1
, c =

(
3

4πK2

) 1

1−θ 1− 3θ

3− 3θ
C(θ)

1

1−θ .

Proof. If Ij ̸= ∅ for more than one value of j ∈ {1, . . . ,m}, the left hand side
of (2.15) would contain two different powers of δ and thus (2.15) cannot be
verified for all δ > 0. If Ij ̸= ∅ only for a unique j = q ∈ {1, . . . ,m} and
setting θ = θq we obtain

â

(
δ,

3

3 + α
δ

)
= â

(
1,

3

3 + α

)(
3

3 + α

)θ

δθ,

b̂

(
δ,

3

3 + α
δ

)
= b̂

(
1,

3

3 + α

)(
3

3 + α

)θ

δθ,

hence a necessary condition for (2.15) to hold for all δ > 0 is that θ = 1 +
2/α, which gives the formula for α in (2.17) as well as the condition θ /∈
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[1/3, 1]. Replacing in (2.15) we find that (2.15) holds if and only if c is given
as in (2.17), hence C(θ) > 0 must hold in order that c > 0. □

The only example considered so far that satisfies the assumption (2.16) is the
John model, in which case the self similar solution becomes the one found
in [2]. Another interesting class of affine power-law stored energy function
is the following Lamé type:

κ−1ŵ(δ, η) =
1

1 + θ
δ−1 −

1

θ
+ ηθ

(
3(1− ν)

β(β − 1)(1 + ν)
(δ/η)β−1

+

(
3(1− ν)

β(1 + ν)
−

1

1 + θ

)
(δ/η)−1 +

1

θ
−

3(1− ν)

(β − 1)(1 + ν)

)
.(2.18)

Applying the result of the Proposition 1 to the stored energy function (2.18)
we obtain the self-similar solution of (1.3) given by δ(r) = crα, where α, c
are given by (2.17) and

C(θ) =
1− ν

1 + ν

18
(
3−3θ
1−3θ

)θ
(5− 2θ)

(1− 3θ)2
> 0

if and only if θ ∈ (−∞, 1/3) ∪ (1, 5/2).

Remark. The stored energy function (2.18) is a special case of the class of
polytropic stored energy functions introduced in [6].

Barotropic fluids. Power-law stored energy functions of type (1, 1, . . . , 1)
correspond to barotropic fluids. The most general stored energy function in
this case has the form

κ−1ŵ
(m)
fluid(δ) = α11δ

θ1 + α12δ
θ2 + · · ·+ αm1δ

θm − (α11 + α12 + · · ·+ α1m),

where θ1 < θ2 < · · · < θm are all different from zero and at least one is dif-
ferent from −1. The system (2.1) on the coefficients αij reduces to

α11θ1 + α12θ2 + . . . α1mθm = 0(2.19a)

α11θ
2
1 + α12θ

2
2 + . . . α1mθ2m = 1(2.19b)

α11θ
2
1 + α12θ

2
2 + . . . α1mθ2m = 3(1− ν)/(1 + ν).(2.19c)

We see that ν = 1/2 must hold for the system (2.19) to admit solutions. For
m > 3 (and ν = 1/2) the system (2.19) has infinitely many solutions, while
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for m = 2 the system (2.19) admits the unique solution

α11 =
1

θ1(θ1 − θ2)
, α12 = −

1

θ2(θ1 − θ2)
.

Thus the type (1,1) is the only Lamé type power-law fluid stored energy
function. The constitutive functions for the principal pressures of these ma-
terials are

(2.20) p̂
(1,1)
rad (δ) = p̂

(1,1)
tan (δ) = κ−1 δ(δ

θ2 − δθ1)

θ2 − θ1
, θ2 > θ1.

For θ2 = γ − 1 and θ1 = 0, (2.20) becomes the constitutive function of poly-
tropic fluids with polytropic exponent γ, see [6].

3. Numerical results

The purpose of this final section is to investigate numerically whether some of
the assumptions made in [2] to prove the existence of static self-gravitating
elastic balls are necessary or not. The results concern the Saint Venant-
Kirchhoff, John, Hadamard and Signorini model, each discussed in a sepa-
rate subsection. For each of these models, there exists (a necessarily unique)
∆♭ ∈ (1,∞] such that ∂δp̂rad(δ, δ) > 0 for 0 < δ < ∆♭ and if ∆♭ < ∞ then
∂δp̂rad(∆♭,∆♭) = 0; in particular, if ∆♭ < ∞ and δc = δ(0) > ∆♭, the hyper-
bolicity condition ∂δp̂rad(δ, η) > 0 is violated at the center.

For more numerical results on static self-gravitating solutions for the
models in this section, e.g., the mass-radius diagram and the existence of
multi-body distributions, we refer to [13].

3.1. Saint Venant-Kirchhoff materials

The Saint Venant-Kirchhoff material model is hyperelastic with stored en-
ergy function (2.11), which yields the principal pressures

κ−1p̂rad(δ, η) = η−1/3

(
−
3

2

1− ν

1 + ν

(
δ

η

)−3

−
3ν

1 + ν

(
δ

η

)−1
)

+
3

2
η1/3

(
δ

η

)−1

,

κ−1p̂tan(δ, η) = η−1/3

(
−
3

2

ν

1 + ν

(
δ

η

)−1

−
3

2(1 + ν)

(
δ

η

))
+

3

2
η1/3

(
δ

η

)
.
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At the center

κ−1p̂rad(δc, δc) = κ−1p̂tan(δc, δc) =
3
(
δ
2/3
c − 1

)

2δ
1/3
c

,

κ−1∂δp̂rad(δc, δc) = −
3
(
(1 + ν)δ

2/3
c + ν − 3

)

2(1 + ν)δ
4/3
c

.

The pressures are positive at the center if and only if δc > 1, and the constant
∆♭ is given by

∆♭ =

(
3− ν

1 + ν

)3/2

.

The following theorem was proved in [2]:

Theorem 1. When the elastic material is given by the Saint Venant-
Kirchhoff model, the condition δc := ρc/K > 1 is necessary for the exis-
tence of regular static self-gravitating balls. When 1 < δc < ∆♭ there ex-
ists a unique strongly regular static self-gravitating ball with central density
ρ(0) = ρc.

We are interested in the following question.

Open Problem 1. Do static self-gravitating elastic balls exist in the Saint
Venant-Kirchhoff material model when the strict hyperbolicity condition is
violated at the center?

We have found numerical evidence suggesting that regardless of the value
of ν ∈ (−1, 1/2], finite radius solutions cannot be constructed when δc ≥ ∆♭.
The density and pressures blow up almost immediately, see Figure 2.

3.2. Quasi-linear John materials

Quasi-linear John materials are hyperelastic with stored energy func-
tion (2.13)ϵ=0, which yields the principal pressures

κ−1p̂rad(δ, η) = −
3

1 + 4ν
η1/3

((
δ

η

)−1

+ 2

)
+ 6

1 + ν

1 + 4ν
η2/3 +

3(1− 2ν)

1 + 4ν
,

κ−1p̂tan(δ, η) = −
3

1 + 4ν
η1/3

(
1 + 2

(
δ

η

))
+ 6

1 + ν

1 + 4ν
η2/3

(
δ

η

)
+

3(1− 2ν)

1 + 4ν
.
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(a) δc = 0.99∆♭ (b) δc = 1.01∆♭

Figure 2: Elastic balls constructed in the Saint Venant-Kirchoff material
model with Poisson ratio ν = 0.25 for center datum close to ∆♭ (≈ 3.26).

At the center

κ−1p̂rad(δc, δc) = κ−1p̂tan(δc, δc)

=
3

1 + ν

(
δc

1/3 − 1
)(

(2− ν)δc
1/3 + 2ν − 1

)
,

κ−1∂δp̂rad(δc, δc) =
3(1− ν)

(ν + 1)δ
2/3
c

.

The pressures are positive at the center if and only if δc > 1 or 0 < δc < ∆∗,
where

∆∗ =

(
1− 2ν

2− ν

)3

< 1;

the constant ∆♭ is given by ∆♭ = ∞.
The following theorem was proved in [2]:

Theorem 2. When the elastic material is given by the John model, for all
δc := ρc/K > 1 there exists a unique strongly regular static self-gravitating
ball with central density ρ(0) = ρc.

We are interested in the following question.

Open Problem 2. Is δc > 1 a necessary condition or can finite radius
elastic balls exist in the quasi-linear John material model when 0 < δc < ∆∗?
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(a) δc = 0.90∆∗ (b) δc = 0.99∆∗

Figure 3: Elastic balls constructed in the quasi-linear John material model
with Poisson ratio ν = 0.1 for center datum smaller than ∆∗ (≈ 0.0746).
Only in (b) does the ball have finite radius. There seems to exist a ∆◦ such
that when δc = ∆◦ the radial pressure is tangent to the horizontal axis at
one point.

In our numerical investigations we have found evidence suggesting the
existence of a constant ∆◦, dependent on ν, such that finite radius balls do
exist when δc ∈ [∆◦,∆∗) but not when δc < ∆◦, see Figure 3. We have not
a found a closed expression for ∆◦, but Figure 4 shows where in the (ν, δc)-
plane finite radius balls could be constructed numerically. An interesting
property of these solutions is that the tangential pressure is increasing with
the radius rather than decreasing, as it appears to be the case for solutions
with center datum δc > 1, see Figure 5.

3.3. Hadamard materials

Hadamard materials are hyperelastic materials with stored energy func-
tion (2.14), which yields the principal pressures

p̂rad(δ, η) = −
3

1 + ν
η−1/3

(
δ

η

)−1

+
3ν

1 + ν
η1/3

(
δ

η

)−1

+ 3
1− ν

1 + ν
,

p̂tan(δ, η) = −
3

2(1 + ν)
η−1/3

((
δ

η

)−1

+

(
δ

η

))
+

3ν

1 + ν
η1/3

(
δ

η

)
+ 3

1− ν

1 + ν
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Figure 4: The gray region indicates where finite radius balls have been found
numerically in the quasi-linear John model for δc ∈ (0,∆∗). The border be-
tween the black and gray regions approximates the proposed ∆◦(ν).

(a) ν = −0.5 (b) ν = 0.25

Figure 5: Elastic balls constructed in the quasi-linear John material model
with center datum δc = 2. The tangential pressure decreases with the radius
as opposed to when δc < 1, see Figure 3.

and at the center we have

κ−1p̂rad(δc, δc) = κ−1p̂rad(δc, δc) =
3
(
δc

1/3 − 1
)(

νδc
1/3 + 1

)

(ν + 1)δc
1/3

,

κ−1∂δp̂rad(δc, δc) =
3
(
1− νδ

2/3
c

)

(ν + 1)δ
4/3
c

.
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The pressures are positive at the center if and only if δc > 1, and the constant
∆♭ is given by

∆♭ =

(
1

ν

)3/2

.

The following theorem has been proved in [2]:

Theorem 3. When the elastic material is given by the Hadamard model,
the condition δc := ρc/K > 1 is necessary for the existence of regular static
self-gravitating balls. For

1 < δc <

(
1

2ν

)3/2

= ∆♯

there exists a unique strongly regular static self-gravitating ball with central
density ρ(0) = ρc.

We are interested in the following question.

Open Problem 3. Is the sufficient bound δc < ∆♯ in theorem 3 necessary
or can it be replaced by the weaker bound δc < ∆♭?

In our numerical investigations we have found evidence suggesting that
the bound indeed can be replaced. Figure 6 shows finite radius balls with
center datum both smaller than and larger than ∆♯. Furthermore, finite
radius solutions seem to exist for center datum in the entire interval from ∆♯

up to ∆♭, but not for δc ≥ ∆♭, see Figure 7. When δc ≥ ∆♭, the hyperbolicity
condition is violated at the center and the numerical solutions in Figure 7(b)
blows up similarly to how they do in the Saint Venant-Kirchhoff model.

3.4. Quasi-linear Signorini materials

Quasi-linear Signorini materials are hyperelastic with stored energy func-
tion (2.12)τ=0, which yields the principal pressures

p̂rad(δ, η) =
3(1 + 4ν)

8(1 + ν)
η2/3

(
2−

(
δ

η

)2
)

+
3

16(1 + ν)
η4/3

(
−4 + 4

(
δ

η

)2

+ 3

(
δ

η

)4
)

−
3(5 + 8ν)

16(1 + ν)
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(a) δc = 0.99∆♯ (b) δc = 1.01∆♯

Figure 6: Elastic balls constructed in the Hadamard material model with
Poisson ratio ν = 0.25 for center datum close to ∆♯ (≈ 2.83).

(a) δc = 0.99∆♭ (b) δc = 1.01∆♭

Figure 7: Elastic balls constructed in the Hadamard material model with
Poisson ratio ν = 0.25 for center datum close to ∆♭ (≈ 8).

p̂tan(δ, η) =
3(1 + 4ν)

8(1 + ν)
η2/3

(
δ

η

)2

−
3

16(1 + ν)
η4/3

(
−4 +

(
δ

η

)4
)

−
3(5 + 8ν)

16(1 + ν)
.
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At the center

κ−1p̂rad(δc, δc) = κ−1p̂tan(δc, δc) =
3
(
δ
2/3
c − 1

)(
3δ

2/3
c + 8ν + 5

)

16(ν + 1)
,

κ−1∂δp̂rad(δc, δc) =
3
(
5δ

2/3
c − 4ν − 1

)

4(ν + 1)δc
1/3

.

The pressures are positive at the center if and only if δc > 1 or, when ν ∈
(−1,−5/8), for 0 < δc < ∆∗, where

∆∗ =

(
−5− 8ν

3

)3/2

< 1.

Furthermore, the constant ∆♭ is given by ∆♭ = ∞.
Remark. The hyperbolicity condition is violated at the center if δc <

((4ν + 1)/5)3/2 but this only happens for invalid combinations of δc and ν,
i.e., when the principal pressures are negative at the center.

The results in [2] do not cover the quasi-linear Signorini materials, so we
are interested in the following questions.

Open Problem 4. Do finite radius elastic balls exist in the quasi-linear
Signorini material model when (a) δc > 1, (b) 0 < δc < ∆∗?

Regarding question (a) we were able to numerically construct finite ra-
dius balls for every combination of ν ∈ (−1, 1/2) and δc > 1 that we tried, see
Figure 8 for examples. Regarding question (b), we found numerical evidence
suggesting the existence of a constant ∆◦, dependent on ν ∈ (−1,−5/8),
such that finite radius balls do exist when δc ∈ [∆◦,∆∗) but not when
δc < ∆◦, see Figure 9. We have not been able to derive a closed expres-
sion for ∆◦, but Figure 10 shows where in the (ν, δc)-plane finite radius balls
could be constructed numerically.
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(a) ν = −0.5 (b) ν = 0.25

Figure 8: Elastic balls constructed in the quasi-linear Signorini material
model with center datum δc = 2.

(a) δc = 0.65∆∗ (b) δc = 0.70∆∗

Figure 9: Elastic balls constructed in the quasi-linear Signorini material
model with Poisson ratio ν = −0.7 for center datum smaller than ∆∗ (≈
0.0894). Only in (b) does the ball have finite radius. There seems to exist a
∆◦ such that when δc = ∆◦ the radial pressure is tangent to the horizontal
axis at one point.
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Figure 10: The gray region indicates where finite radius balls have been
found numerically in the quasi-linear Signorini model for δc ∈ (0,∆∗). The
border between the black and gray regions approximates the proposed ∆◦(ν)
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