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We study the open version of the su(m|n) supersymmetric
Haldane–Shastry spin chain associated to the BCN extended root
system. We first evaluate the model’s partition function by mod-
ding out the dynamical degrees of freedom of the su(m|n) super-
symmetric spin Sutherland model of BCN type, whose spectrum
we fully determine. We then construct a generalized partition func-
tion depending polynomially on two sets of variables, which yields
the standard one when evaluated at a suitable point. We show
that this generalized partition function can be written in terms of
two variants of the classical skew super Schur polynomials, which
admit a combinatorial definition in terms of a new type of skew
Young tableaux and border strips (or, equivalently, extended mo-
tifs). In this way we derive a remarkable description of the spectrum
in terms of this new class of extended motifs, reminiscent of the
analogous one for the closed Haldane–Shastry chain. We provide
several concretes examples of this description, and in particular
study in detail the su(1|1) model finding an analytic expression for
its Helmholtz free energy in the thermodynamic limit.
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1. Introduction

Recent experiments involving trapped ions and optical lattices of ultracold
Rydberg atoms have made it possible to simulate spin chains and low-di-
mensional lattice models with long-range interactions, leading to a renewed
interest in this type of fundamental quantum systems [1–6]. The quintessen-
tial example of these models is the spin 1/2 chain independently introduced
by Haldane [7] and Shastry [8], in which the spins are uniformly arranged
on a circle and the spin-spin interactions decay as the square of their inverse
(chord) distance. The relevance of this model for theoretical and mathe-
matical physics cannot be understated. Indeed, its importance in condensed
matter physics is well known, as one of the simplest models whose elemen-
tary (spinon) excitations [9, 10] can be naturally regarded as anyons in the
framework of Haldane’s fractional statistics [11]. It has also found numerous
applications in such fundamental fields as the quantum Hall effect [12, 13],
the theory of long-range magnetism [6], or quantum transport in mesoscopic
systems [14, 15], to name only a few. More recently, it has been found that
the ground state of the su(n) generalization of the Haldane–Shastry (HS)
chain can be expressed in terms of chiral correlators of suitable primary fields
of the su(n) Wess–Zumino–Novikov–Witten model at level 1, a result that
has been extended to similar models with long-range interactions [16–19].

From a more mathematical standpoint, two key properties set the HS
chain apart from other integrable one-dimensional models, namely its close
connection with a spin dynamical model and its Yangian symmetry even
for a finite number of sites. Indeed, the HS chain can be obtained from
the spin Sutherland model [20, 21] in the strong interaction limit, through
a mechanism usually known as Polychronakos’s freezing trick [22, 23]. In
essence, as the parameter a governing the strength of the spin-spin interac-
tion in the spin Sutherland model goes to infinity its eigenfunctions become
increasingly peaked at the coordinates of the equilibrium positions of the
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Sutherland scalar potential, which coincide with the HS chain sites. Thus
in this limit the dynamical and spin degrees of freedom effectively decouple,
and the latter are governed by the HS Hamiltonian. This connection can be
used to compute in closed form the partition function of the HS chain as the
a → ∞ limit of the quotient of the partition functions of the spin and scalar
Sutherland dynamical models [24]. In fact, this non-standard method for
evaluating the partition function can be readily applied to other spin chains
of HS type with rational [23, 25] or hyperbolic [26, 27] interactions, known
respectively as the Polychronakos–Frahm (PF) and Frahm–Inozemtsev (FI)
chains and related to the integrable spin Calogero [28, 29] and Inozemt-
sev [30] dynamical models. The latter method has also been extended to the
su(m|n) supersymmetric versions of the HS [10, 31] and PF [32, 33] chains,
in which each site is occupied by either an su(m) boson or an su(n) fermion.

The second characteristic feature of the HS chain (including its su-
persymmetric version) is its invariance under the Yangian quantum group
Y (gl(n)) (for su(n) spin) even for a finite number of sites [34, 35], which
is in fact at the root of many of the model’s most salient properties. To
begin with, a direct consequence of the Yangian symmetry is the high de-
generacy of the spectrum, a fact already noted in Haldane’s original paper.
On a more quantitative level, the model’s eigenstates can be classified using
certain representations of the Yangian labeled by a class of skew Young dia-
grams known as border strips, whose dimension coincides with the number
of their associated semistandard Young tableaux [36, 37]. As it turns out,
these border strips are in a one-to-one correspondence with sequences of the
binary digits 0 and 1, which essentially coincide with Haldane’s motifs [34].
It should be noted, however, that this elegant description of the spectrum
in terms of motifs (or border strips) and their associated Young tableaux
cannot be obtained directly from the model’s partition function. Indeed, to
derive this description it is necessary to infer a generalized partition func-
tion depending polynomially on certain auxiliary variables, which reduces
to the standard one when evaluated at a suitable point. It is then shown
that this generalized partition function can be expressed in terms of skew
Schur polynomials associated to border strips. Using the combinatorial def-
inition of the latter polynomials, it is then immediate to assign an energy
to each border strip and to relate its degeneracy to the number of asso-
ciated Young tableaux (see, e.g., [38, 39]). This is seen to imply that the
spectrum of the supersymmetric HS chain coincides with that of a classical
vertex model with local interactions and a suitably chosen energy function.
Again, the Yangian symmetry and its consequences described above also
hold for the supersymmetric PF chain [39, 40]. Remarkably, this description
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of the spectrum of the supersymmetric HS and PF chains holds with minor
changes if we add to the Hamiltonian of these models a chemical potential
term [41, 42]. As shown in the latter references, this makes it possible to
compute the thermodynamic functions of these models and analyze their
critical behavior using the (inhomogeneous) transfer matrix method.

The spin chains of HS type discussed so far are connected to the root
system of the simple Lie algebra AN−1, since in all of them the spin-spin
interactions depend only on the difference of the site coordinates1. The same
is true for the corresponding spin dynamical models of Calogero–Sutherland
type, whose interaction potential is a function of the difference of the par-
ticles’ coordinates. Since the pioneering work of Olshanetsky and Perelo-
mov [43], it has been known that it is possible to obtain integrable variants
of the (scalar) Calogero–Sutherland models of AN−1 type associated to the
extended root systems of all the classical simple Lie algebras. It is then rela-
tively straightforward to construct (supersymmetric) spin dynamical models
associated to the non-exceptional root systems2 BCN , BN and DN , each of
which gives rise to a corresponding spin chain through the freezing trick (see,
e.g., [44–51]). Of these three types of models the BCN ones have received
the most attention, in part because they contain one or two more free pa-
rameters than the BN and DN ones, respectively. In particular, a reduction
of the HS chain of BCN type (in which the spin reversal operators are re-
placed by the identity) has recently appeared as the parent Hamiltonian of
certain infinite matrix product states constructed from the chiral correlators
of primary fields of a boundary conformal field theory [52, 53].

On the other hand, the spin Calogero–Sutherland models of BCN type
and their associated spin chains have not been studied to the same extent
as their AN−1 counterparts. Most notably, although the partition functions
of both the PF [48] and HS [47] chains of BCN type have been computed
in closed form (the latter only in the non-supersymmetric case), till very
recently a description of their spectrum in terms of suitable motifs has been
conspicuously lacking. For the PF chain such a description has just been
provided in Ref. [54], building on previous work on the generalized partition
function of this model [55]. More precisely, each AN−1-type motif splits into

1Note, however, that the PF and FI chains are not translationally invariant, since
their sites are not uniformly spaced.

2In fact, the spin Calogero model of CN type is equivalent to the BN one, while
the CN spin Sutherland model is a trivial special case of its BCN counterpart.
Scalar dynamical models associated to the exceptional root system have also been
considered, but their interest is more limited since they involve only a fixed number
of particles.
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up to N + 1 “branched motifs” with different energies, whose degeneracies
can be obtained through a combinatorial formula.

The aim of this paper is to derive a complete description of the spectrum
of the supersymmetric Haldane–Shastry chain of BCN type in terms of
suitable motifs. This model can be regarded as an open version of the original
(closed) HS chain, since its sites lie on the upper unit half-circle and each
spin interacts with the remaining ones and with their reflections with respect
to the circle’s horizontal diameter. Our approach significantly differs from
that of Refs. [54, 55], since the structure of the partition functions of the PF
and HS chains is considerably different. In particular, while the generalized
partition function of the PF chain is a straightforward generalization of a
Rogers–Szegő multivariate polynomial, this is not the case for the HS chain.
Our starting point is instead a different ansatz for the generalized partition
function of the supersymmetric HS chain of BCN type, which reduces to the
standard one when evaluated at a suitable point. This generalized partition
function is then expressed in terms of two different variants of the classical
super Schur polynomials. Remarkably, it can be shown that each of these
polynomials can be associated to an extended border strip of length N + 1
(or, equivalently, motif of length N), where N is the number of sites, and its
energy expressed in terms of the model’s dispersion relation in the usual way.
The crucial difference with the AN−1 case is that the allowed skew Young
tableaux for these extended border strips must have their last box filled by
a fixed integer depending on the number of fermionic and bosonic degrees of
freedom. In this way we obtain a simple description of the spectrum in terms
of extended motifs and restricted Young tableaux, with a combinatorial
expression for the degeneracy of the corresponding multiplets.

The above result has important consequences in connection with some of
the model’s fundamental properties, as we shall now discuss. To begin with,
the existence of a motif-based description of the spectrum strongly suggests
that the twisted Yangian symmetry possessed by the non-supersymmetric
open HS chain3 [44] is also present in its supersymmetric extension studied
here. Another consequence of such a description, together with the simplic-
ity of the model’s dispersion relation [56], is the huge degeneracy of the
spectrum, which we have numerically checked for a relatively large number
of particles taking advantage of our simple characterization of the spectrum.
We have also applied this characterization to find a simple formula for the

3Although in Ref. [44] only three particular instances of the HS chain of BCN

type with uniformly spaced sites were discussed, the argument presented in this
reference actually applies to the general case.
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partition function of the su(1|1) model for an arbitrary number of spins,
from which we have derived a closed-form expression for its free energy per
site in the thermodynamic limit. For the general su(m|n) chain, our motif-
based description of the spectrum can be regarded as the first step towards
determining the model’s thermodynamics via the inhomogeneous transfer
matrix method successfully applied to its AN−1 counterpart [42].

This paper is organized as follows. In Section 2 we introduce the model
and outline the computation of its partition function applying Polychron-
akos’s freezing trick. This computation is carried out in detail in Section 3,
after determining the spectrum of the su(m|n) spin Sutherland model. Sec-
tion 4 is devoted to a brief review of the definition of the classical skew super
Schur polynomials and their connections with border strips and skew Young
tableaux. In Section 5 we construct a generalized partition function for the
model, which is then applied in the following section to deduce a complete
description of the spectrum in terms of extended border strips and restricted
supersymmetric Young tableaux. We provide some specific examples of this
general result in Section 7, where we also study in detail the su(1|1) model
and its thermodynamics. Finally, in Section 8 we present our conclusions
and point out several avenues for further research suggested by our results.

2. The model

The open (BCN -type) supersymmetric Haldane–Shastry spin chain de-
scribes an array of N particles, which can be either bosons or fermions,
lying on the upper unit half-circle at fixed angles 2θi ∈ (0, π) determined by
the N roots θi of the equation

(2.1) P
(β−1,β′−1)
N (cos 2θ) = 0.

Here β and β′ are two positive parameters, and P
(β−1,β′−1)
N is a Jacobi

polynomial of degree N . Note that the chain sites e2i θj (with j = 1, . . . , N)
are not uniformly spaced unless the pair (β, β′) takes the values specified in
Table 1. If m and n respectively denote the number of bosonic and fermionic
internal degrees of freedom, the Hilbert space of the system is the linear space

S(m|n) = ⊗N
i=1S

(m|n)
i with S

(m|n)
i = Cm+n spanned by the basis vectors

(2.2) |s1 · · · sN ⟩ := |s1⟩ ⊗ · · · ⊗ |sN ⟩, 1 ⩽ si ⩽ m+ n.

In order to define the bosonic and fermionic degrees of freedom in
Cm+n, consider two complementary subsets B,F ⊂ {1, . . . ,m+ n} with
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(β, β′) θj

(1/2, 1/2) π(j − 1/2)/2N

(3/2, 1/2) πj/(2N + 1)

(3/2, 3/2) πj/(2N + 2)

Table 1: Values of the parameters (β, β′) for which the points eiθj with j =
1, . . . , N determined by Eq. (2.1) are uniformly spaced (the corresponding
values of θj are listed in the second column).

B = {b1, . . . , bm} and F = {f1, . . . , fn}, where b1 < b2 < · · · < bm and f1 <
f2 < · · · < fn . In what follows we shall accordingly call the single particle
state |si⟩ bosonic if si ∈ B or fermionic if si ∈ F .

Setting θ±ij := θi ± θj , the model’s Hamiltonian can be taken as4

(2.3)

H =
1

8

∑

i ̸=j

(
1− Sij

sin2 θ−ij
+

1− S̃ij

sin2 θ+ij

)
+

1

8

∑

i

(
β

sin2 θi
+

β′

cos2 θi

)(
1− Si

)
,

where the Latin indices (as in the sequel, unless otherwise stated) run from
1 to N and we have set

(2.4a) S̃ij := SiSjSij .

The Hamiltonian (2.3) depends on two types of operators implementing the
long-range interaction among the spins. More precisely, the supersymmetric
spin permutation operators Sij = Sji are defined by

(2.4b) Sij | · · · si · · · sj · · · ⟩ := (−1)ν(si,...,sj)| · · · sj · · · si · · · ⟩ ,

where ν(si, . . . , sj) is 0 (respectively 1) if si, sj ∈ B (respectively si, sj ∈ F ),
and is otherwise equal to the number of fermionic spins sk with i+ 1 ⩽ k ⩽

j − 1. Likewise, the spin reversal operators Si are defined by

(2.4c) Si| · · · si · · · ⟩ := λεε′(si)| · · · ı(si) · · · ⟩ ,

where ε, ε′ = ± are two fixed signs and λεε′(si) is ε for bosons (i.e, for si ∈ B)
and ε′ for fermions (i.e., si ∈ F ). Here ı is in general any nontrivial involution
leaving invariant the bosonic and fermionic sectors, i.e., ı2 = I ̸= ı, ı(B) = B

4For the sake of simplicity, we shall omit in what follows the explicit dependence
of H, Sij and Si on m,n and ε, ε′.
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and ı(F ) = F . Assuming that ı has at most one fixed point in each sector,
we shall fix its action by setting

ı(bα) := bm+1−α , ı(fβ) := fn+1−β ,

where, as in the sequel, the Greek indices are assumed to label the elements
of the sets B and F so that they run from 1 to m for bosons and from 1 to
n for fermions unless otherwise stated. The existence of fixed points of the
involution ı obviously depends on the parity of the integers m and n. Indeed,
there is a bosonic (respectively fermionic) fixed point if and only if m is odd
(resp. n is odd). One can intuitively think of ı as reversing the spin of a
site, by simply relabeling the bosonic degrees of freedom according to bα 7→
b′α := α− (m+ 1)/2 or the fermionic ones according to fβ 7→ f ′

β := β − (n+

1)/2. (In other words,
[
ı(bα)]

′ = b′m+1−α = m+ 1− α− 1
2(m+ 1) = 1

2(m+
1)− α = −b′α, and similarly for fermions.)

Remark 1. As mentioned in the Introduction, the model (2.3) can be
regarded as an open version of the (supersymmetric) Haldane–Shastry chain.
More precisely, the chain sites zj := e2iθj lie on the upper unit circle, and
the spin at zj interacts not only with the remaining spins at zk (with k ̸= j)
but also with their reflections with respect to the real axes z̄k. Moreover, the
strength of these interactions is equal to the inverse square of the distance
between zj and the points zk and z̄k, respectively. Writing the last term in
Eq. (2.3) as

1

8

∑

i

(
β − β′

sin2 θi
+

4β′

sin2(2θi)

)
(1− Si)

shows that the Hamiltonian (2.3) is obviously related to the BCN extended
root system with elements θ±ij , θi and 2θi, with 1 ⩽ i < j ⩽ N . Note also in
this respect that the operators Sij and Si obey the algebraic relations

S2
ij = I , SijSjk = SikSij = SjkSik , SijSkl = SklSij ,(2.5a)

S2
i = I , SiSj = SjSi , SijSk = SkSij , SijSj = SiSij ,(2.5b)

where the indices i, j, k, l take distinct values in the range 1, . . . , N , and
thus generate an algebra isomorphic to the group algebra of the BCN Weyl
group.

The partition function of the chain (2.3) was evaluated in Ref. [47] in
the purely bosonic (n = 0) or purely fermionic (m = 0) cases applying Poly-
chronakos’s freezing trick [22] to the spin Sutherland model of BCN type
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[45]. This method can be easily generalized to the genuinely supersymmet-
ric case mn ̸= 0, as we shall explain in the next section. More precisely, the
Hamiltonian of the su(m|n) spin Sutherland model is defined by

Hspin = −∆+ a
∑

i ̸=j

(
a− Sij

sin2 x−ij
+

a− S̃ij

sin2 x+ij

)
(2.6)

+
∑

i

(
b(b− Si)

sin2 xi
+

b′(b′ − Si)

cos2 xi

)
,

where a, b, b′ are real parameters greater than 1/2, x±ij := xi ± xj , ∆ :=∑
i ∂

2
xi
, and Sij , Si and S̃ij are defined by Eqs. (2.4). The particles can

be regarded as distinguishable and confined to the interval (0, π/2) due to
the inverse-square singularities at the hyperplanes x±ij = kπ and xi = kπ/2
with k ∈ Z. We can thus take the system’s configuration space as

C ′ = {x := (x1, . . . , xN ) ∈ R
N : 0 < x1 < x2 < · · · < xN < π/2} ,

with corresponding Hilbert space H′ = L2(C ′)⊗ S(m|n). The scalar version
of the Hamiltonian (2.6) is obtained by replacing the supersymmetric spin
exchange and reversal operators by the identity, namely

Hsc = −∆+ a(a− 1)
∑

i ̸=j

(
1

sin2 x−ij
+

1

sin2 x+ij

)
(2.7)

+
∑

i

(
b(b− 1)

sin2 xi
+

b′(b′ − 1)

cos2 xi

)
,

which acts on the Hilbert space L2(C ′). Note that Hsc coincides with the
dynamical Hamiltonian (2.6) for the choices (m|n) = (1|0) and ε = +1 under
the canonical identification L2(C ′)⊗ S(1|0) ∼= L2(C ′)⊗ C ∼= L2(C ′) .

Setting b = aβ, b′ = aβ′ we obviously have

Hspin = Hsc + 8aH(x) = −∆+ a2U(x) +O(a) ,

where H(x) is obtained from the spin chain Hamiltonian (2.3) replacing the
fixed sites θi by the dynamical variables (coordinates) xi and

U(x) =
∑

i ̸=j

(
1

sin2 x−ij
+

1

sin2 x+ij

)
+
∑

i

(
β2

sin2 xi
+

β′2

cos2 xi

)
.
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As a grows to infinity the particles tend to freeze at the coordinates of the
equilibrium of the scalar potential U(x) on the configuration space C ′. It can
be shown that this equilibrium is unique [57], and its coordinates coincide
with the chain sites θi [58]. Thus in this limit the spin degrees of freedom
decouple from the dynamical ones, and are governed by the Hamiltonian
H(θ1, . . . , θN ) = H. It follows that when a ≫ 1 the eigenvalues Eij of Hspin

behave as

Eij = Esc,i + 8aEj + o(a),

where Esc,i and Ej are any two energies of the scalar Hamiltonian (2.7) and
the spin chain Hamiltonian (2.3), respectively. Let us respectively denote by
Zspin and Zsc the partition functions of the BCN Sutherland spin dynamical
and scalar models. The partition function Z of the spin chain is then given
by the exact expression

(2.8) Z(T ) = lim
a→∞

Zspin(8aT )

Zsc(8aT )
.

This is, in essence, Polychronakos’s freezing trick as applied to the
chain (2.3).

3. Partition function

3.1. Auxiliary operator

In view of the freezing trick formula (2.8), in order to compute the partition
function of the chain (2.3) we need to determine the spectra of the spin
dynamical model (2.6) and its scalar counterpart (2.7). To this end, we
introduce the auxiliary operator

Haux = −∆+ a
∑

i ̸=j

(
a− Pij

sin2 x−ij
+

a− P̃ij

sin2 x+ij

)
(3.1)

+
∑

i

(
b(b− Pi)

sin2 xi
+

b′(b′ − Pi)

cos2 xi

)
,

where Pij , Pi are defined by

(Pijf)(. . . , xi, . . . , xj , . . .) = f(. . . , xj , . . . , xi, . . .) ,(3.2a)

(Pif)(. . . , xi, . . .) = f(. . . ,−xi, . . .)(3.2b)
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and P̃ij = PiPjPij . The operators Haux, Pij , and Pi are assumed to act
on the space L2(C) of square integrable functions defined on the whole
open cube C = (−π/2, π/2)N ⊂ RN . In particular, by contrast with Hsc the
configuration space of the latter operators is not restricted to the ordered
tuples in C. We shall also tacitly identify in what follows Haux with its trivial
extension Haux ⊗ I to the Hilbert space L2(C)⊗ S(m|n).

We next define total (i.e., acting simultaneously on a particle’s coordi-
nates and spin degrees of freedom) permutation and flip operators Πij and
Πi as

(3.3) Πij = Pij ⊗ Sij , Πi = Pi ⊗ Si.

Such operators obviously depend on m,n and the signs ε, ε′ , although we
shall omit these labels for the sake of conciseness. Note also that the op-
erators {Πij ,Πi}, as well as their spin coordinate counterparts defined in
Eqs. (2.4) and (3.2), provide a realization of the Weyl group of BCN type.
For fixed values of m,n and ε, ε′, let us denote by Λ the supersymmetric
projector onto states totally symmetric under the action of both Πij and
Πi. The key observation at this point is that the operator Hspin : H′ → H′

can be shown to be unitarily equivalent to its symmetric extension under Πij

and Πi to the space H := L2(C)⊗ S(m|n) [47, 50]. With a slight notational
abuse, we shall henceforth identify both operators and thus study the action
of the spin dynamical Hamiltonian Hspin in the Hilbert space Λ(H), instead
of the original one H′ = L2(C ′)⊗ S(m|n). The idea is of course to derive in
this way the spectrum of Hspin from that of the (essentially scalar) auxiliary
operator (3.1). The spectrum of the latter operator can in turn be computed
through the following standard procedure:

i) Introduce a suitable (partial) order in an appropriately chosen subset
of L2(C) spanning a dense subspace, and construct a (Schauder, i.e.,
non-orthonormal) basis in which the auxiliary operator Haux is upper
triangular, and thus its eigenvalues coincide with its diagonal elements
in this basis.

ii) Take the direct product with S(m|n) and project onto Λ(H), thus ob-
taining a Schauder basis of Λ(H) in which Hspin is upper triangular,
with the same diagonal elements and hence eigenvalues as Haux.

To better understand the last point, note that on Λ(H) we have Πij = Πi =
I, and thus

Pij = Sij , Pi = Si .
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It follows that

(3.4) HspinΛ = HauxΛ = ΛHaux,

since the operators Λ and Haux commute (indeed, [Pij ,Λ] = [Pi,Λ] = 0). In
the next section we shall implement the above procedure and compute the
spectrum of Hspin.

3.2. Spectrum of the spin dynamical model

As explained in the last section, we begin by constructing a Schauder basis of
L2(C) in which Haux is upper triangular. Consider, to this end, the function

(3.5) ϕ(x) =
∏

i<j

| sinx+ij sinx
−
ij |

a
∏

k

| sinxk|
b| cosxk|

b′ ,

which is clearly an element of L2(C) invariant under permutations (3.2a)
and reversal (3.2b) of the coordinates, i.e., Pijϕ = Piϕ = ϕ . For any integer
multiindex p = (p1, . . . , pN ) with pi ∈ Z consider the set {up}, where the
functions up ∈ L2(C) are defined by

(3.6) up(x) := e2ip·xϕ(x) .

Note that

pi = pj =⇒ Pijup = up, pi = 0 =⇒ Piup = up.

The subspace spanned by the elements {up} is obviously dense in L2(C)
(since {e2ip·x} is), and we can thus construct a Schauder basis out of it by
introducing an order. To do so, consider the application p 7→ p̄ defined by

p̄ := (p̄1, . . . , p̄N ) = (|pi1 |, . . . , |piN |)

where (i1, . . . , iN ) is a permutation of (1, . . . , n) such that p̄ is nonincreasing,
i.e., p̄i ⩾ p̄i+1 (and obviously nonnegative). We order the set of nonnegative
nonincreasing multiindices using the lexicographical order ≺, i.e., we write
p̄ ≺ q̄ if and only if the first nonzero difference p̄i − q̄i is negative. We then
define a partial order in the set of integer multiindices {p} by setting p ≺ q
if and only if p̄ ≺ q̄. This in turn induces a partial order in {up}, namely
up ≺ uq if and only if p ≺ q. As shown in Ref. [47], the auxiliary operator
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Haux is upper triangular in the basis obtained ordering {up} with any order
compatible with ≺, with diagonal elements given by

(3.7) (Haux)pp =
∑

i

(
2p̄i + b+ b′ + 2a(N − i)

)2
.

Let us now turn to the second point of the procedure described at the
end of the last section. To begin with, let us define the spin wave functions

|p, s⟩ := Λ(up|s⟩) = Λ
(
e2ip·xϕ(x)|s⟩

)
,

where p ∈ ZN and |s⟩ := |s1, . . . , sN ⟩ is an element of the canonical spin
basis (2.2) of S(m|n). Since the span of the set {up} with p ∈ ZN is dense
in L2(C), the set of vectors {|p, s⟩} with p ∈ ZN and si ∈ {1, . . . ,m+ n}
obviously spans a dense subspace of Λ(H). These vectors are however not
linearly independent, since from the identities

Πij |p, s⟩ = Πi|p, s⟩ = |p, s⟩

it follows that the state |p, s⟩ is invariant under simultaneous permutations
and reversals5 of the quantum numbers (p, s). For this reason, in order
to construct a basis from the set {|p, s⟩} we can assume without loss of
generality that pi ∈ N ∪ {0} and pi ⩾ pi+1 for all i. Similarly, if pi = pi+1

we can obviously take (for instance) si ⩽ si+1 for bosons and si < si+1 for
fermions. Indeed, if si = si+1 ∈ F we have

|p, s⟩ = Πi,i+1|p, s⟩ = −|p, s⟩ =⇒ |p, s⟩ = 0 .

Finally, |p, s⟩ = 0 when pi = 0 and si ∈ B is a fixed point of the involution
(“spin reversal”) ı when ε = −1, or si ∈ F is a fixed point of ı when ε′ = −1.
Indeed, in the first case we have

Πi|p, s⟩ = |p, s⟩ = ε|p, s⟩ = −|p, s⟩,

and similarly in the second one. With this observation in mind, we define
the sets Bε ⊂ B and Fε′ ⊂ F by

Bε := {b1, . . . , bmε
} , Fε′ := {f1, . . . , fnε′

} ,

5By “reversal” of the i-th coordinate of p and s we of course intend the mapping
(pi, si) 7→ (−pi, ı(si)).
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with6

mε :=
1

2

(
m+ επ(m)

)
, nε′ :=

1

2

(
n+ ε′π(n)

)
.

It then follows from the above remarks that when pi = 0 we can restrict with-
out loss of generality the corresponding spin component si to Bε ∪ Fε′ . Sum-
marizing, we have found the following necessary conditions7 on the quantum
numbers (p, s) for the set {|p, s⟩} to be a basis of Λ(H).

(B1) The integer multiindex p = (p1, . . . , pN ) is nonnegative and nonincreas-
ing, i.e., pi ∈ N ∪ {0} and pi ⩾ pi+1 for all i.

(B2) If pi = pi+1 then si ⩾ si+1 if si ∈ B and si > si+1 if si ∈ F .

(B3) If pi = 0 then si ∈ Bε ∪ Fε′ .

It is straightforward to show that the above conditions are actually sufficient,
i.e., that they ensure the linear independence of the set {|p, s⟩}.

It follows from Eq. (3.4) that the action of the spin dynamical Hamil-
tonian Hspin is upper triangular in any basis B of Λ(H) constructed from
states {|p, s}⟩ with (p, s) satisfying the above three conditions, provided
that we set |p, s⟩ ≺ |p′, s′⟩ if and only if p ≺ p′. Indeed,

Hspin|p, s⟩ = HspinΛ
(
up|s⟩

)
= ΛHaux

(
up|s⟩

)
= Λ

(
(Hauxup)|s⟩

)

= Λ

(
∑

p′⪯p

(Haux)p′pup′ |s⟩

)
=
∑

p′⪯p

(Haux)p′p|p
′, s⟩,

where the symbol p′ ⪯ p indicates that either p′ ≺ p or p′ = p. Of course,
if p′ ̸= p the quantum numbers (p′, s) need no longer satisfy conditions
(B1)–(B3) above (in particular, the state |p′, s⟩ could vanish). However, if
|p′, s⟩ ≠ 0 applying suitable permutations and reversals to these quantum
numbers we can always write

|p′, s⟩ = ±|p′′, s′⟩ ,

with (p′′, s′) satisfying (B1)–(B3). Since the partial order ≺ is obviously
invariant under permutations and sign reversals we obviously have p′′ ≺ p,
and therefore |p′′, s′⟩ ≺ |p, s⟩. This indeed shows that Hspin is indeed upper

6We denote by π(k) the parity of the integer k (i.e., 0 for even k and 1 for odd
k).

7To be sure, condition (B2) below could actually be replaced by equivalent ones
like, e.g., si ⩽ si+1 if si ∈ B and si < si+1 if si ∈ F .
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triangular in the basis B of states |p, s⟩ satisfying conditions (B1)–(B3) and
partially ordered by ≺, with eigenvalues

(3.8) (Hspin)ps,ps = (Haux)pp =
∑

i

(
2pi + b+ b′ + 2a(N − i)

)2
=: Ep.

Since Ep does not depend on s, each multiindex p satisfying condition (B1)
gives rise to an eigenvalue of Hspin whose intrinsic (or spin) degeneracy d(p)
is equal to the number of spin configurations s satisfying conditions (B2)
and (B3).

Remark 2. A similar argument shows that the eigenvalues of the scalar
Hamiltonian Hsc are also given by Eq. (3.8), although in this case each of
them has no spin degeneracy. Thus Hspin and Hsc have the same (distinct)
eigenvalues, but with different degeneracies.

In order to compute the spin degeneracy of the eigenvalues of Hspin, let
us divide the vector p in “sectors” consisting of equal entries, i.e.,

(3.9) p = (π1, . . . , π1︸ ︷︷ ︸
k1

, . . . , πr, . . . , πr︸ ︷︷ ︸
kr

) ,

where ki is the number of entries with the same value πi and π1 > · · · >
πr ⩾ 0 on account of condition (B1). Note that the number of sectors r is
always between 1 and N , and that k1 + k2 + · · ·+ kr = N , i.e., k belongs to
the set PN of compositions of the integer N (that is, partitions with order
taken into account). The spin degeneracy d(p) of the eigenvalue Ep depends
only on the vector k = (k1, . . . , kr) (i.e., on the lengths of the sectors in
p) and on the value πr of the last (smallest) distinct entry of p. Indeed,
d(p) is obviously a product whose factors are the different ways of “filling”
the spin components of s corresponding to each sector in p in accordance
to conditions (B2)-(B3) above. For each of the first r − 1 sectors we have
πi > 0, so that condition (B3) is vacuous. Hence in this case the number of
fillings is simply equal to the number of ways in which one can choose ki
values among m bosonic spins (which can appear more than once) and n
fermionic ones (which cannot), i.e.,

(3.10)

ki∑

l=0

(
m+ l − 1

l

)(
n

ki − l

)
=: d

(m|n)
ki

.

The same is true for the last sector when πr > 0. On the other hand, if
πr = 0 we must take condition (B3) into account, and hence the number of
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bosonic and fermionic values available to fill the last sector of p is reduced
respectively to mε and nε′ . Hence the number of fillings of the last sector is

in this case given by d
(mε|nε′ )
kr

. Thus the intrinsic degeneracy of the eigenvalue
of Hspin associated with the multiindex p is given by

(3.11) d(p) = d
(m|n)
εε′ (πr, kr)

r−1∏

i=1

d
(m|n)
ki

,

where d
(m|n)
k is defined by Eq. (3.10) and

(3.12) d
(m|n)
εε′ (πr, kr) =




d
(m|n)
kr

, πr > 0,

d
(mε|nε′ )
kr

, πr = 0.

3.3. Computation of the partition function

We are now ready to compute the partition function Zspin of Hspin in the
large coupling constant limit a → ∞. To this end, given a multiindex p of
the form (3.9) satisfying condition (B1) let us denote by

Kj :=

j∑

i=1

ki

the partial sums of the vector k. Setting

β̄ :=
1

2
(β + β′) =

b+ b′

2a

and expanding Eq. (3.8) in powers of a after a straightforward calculation
we obtain [47]

Ep = E0 + 8a

r∑

j=1

πjkj
(
β̄ +N −Kj−1 − (kj + 1)/2

)
+O(1) ,

where

E0 = 4a2
∑

i

(β̄ +N − i)2 =
2

3
Na2

(
2N2 + 3(2β̄ − 1)N + 6β̄(β̄ − 1) + 1

)
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is the ground state energy of Hspin and Hsc. Writing q := e−1/T and taking
the limit a → ∞ we thus have

lim
a→∞

q−E0/8aZspin(8aT ) =
∑

k∈PN

∑

π1>···>πr⩾0

d(p) q
∑

r
j=1πjkj( β̄+N−Kj−1−(kj+1)/2).

The latter sum can be evaluated using the formula

Σl :=
∑

π1>···>πl>0

q
∑

l
j=1πjkj( β̄+N−Kj−1−(kj+1)/2) =

l∏

i=1

qE(Ki)

1− qE(Ki)
.

proved in Ref. [47], where

(3.13) E(j) :=
1

2
j(2 β̄ + 2N − j − 1)

can be interpreted as the dispersion relation of the HS chain of BCN

type (2.3). Indeed, taking Eqs. (3.11)-(3.12) into account we easily obtain
the following asymptotic expression for the partition function of the su(m|n)
supersymmetric spin Sutherland mode of BCN type:

lim
a→∞

q−E0/8aZspin(8aT )(3.14)

=
∑

k∈PN

(
r∏

i=1

d
(m|n)
ki

· Σr + d
(mε|nε′ )
kr

r−1∏

i=1

d
(m|n)
ki

· Σr−1

)

=
∑

k∈PN

(
d
(m|n)
kr

qE(N)

1− qE(N)
+ d

(mε|nε′ )
kr

)
r−1∏

i=1

d
(m|n)
ki

qE(Ki)

1− qE(Ki)
.

The partition function of the scalar Sutherland model of BCN type was
computed in Ref. [47] in the same fashion (or is just obtained from the
previous expression setting m = 1, n = 0 and ε = +1), with the result

(3.15) lim
a→∞

q−E0/8aZsc(8aT ) =

N∏

i=1

(
1− qE(i)

)−1
.

The partition function Z(T ) of the spin chain (2.3) follows from the freezing
trick formula (2.8), namely
(3.16)

Z(T ) =
∑

k∈PN

F (q,k)
(
d
(mε|nε′ )
kr

+
(
d
(m|n)
kr

− d
(mε|nε′ )
kr

)
qE(N)

) r−1∏

i=1

d
(m|n)
ki

,
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where {K ′
1, . . . ,K

′
N−r} is the complement of the set {K1, . . . ,Kr} in

{1, . . . , N} (with K ′
1 < K ′

2 < · · · < K ′
N−r) and

(3.17) F (q,k) :=

r−1∏

i=1

qE(Ki)
N−r∏

j=1

(1− qE(K
′
j)) .

4. Skew super Schur polynomials

4.1. Symmetric polynomials

We shall start by briefly reviewing some well-known properties of symmetric
polynomials to fix the notation (see, e.g., Ref. [59] for an in-depth treatment).
The complete (homogeneous) symmetric polynomial hk(x) of degree k in the
vector variable x := (x1, . . . , xm) is defined by

hk(x) =
∑

1⩽j1⩽···⩽jk⩽m

xj1 · · ·xjk .

Likewise, the elementary symmetric polynomial ek(y) of degree k in the
vector variable y := (y1, . . . , yn) is given by

ek(y) =
∑

1⩽j1<···<jk⩽n

yj1 · · · yjk .

The generating functions for these polynomials are respectively

(4.1)

m∏

i=1

1

1− txi
=

∞∑

k=0

hk(x)t
k,

n∏

i=1

(1 + tyi) =

n∑

k=0

ek(y)t
k.

From these families of symmetric polynomials we construct the polynomials

(supersymmetric elementary functions) E
(m|n)
k in the vector variables x =

(x1, . . . , xm), y = (y1, . . . , yn) as
8

(4.2) E
(m|n)
k (x,y) =

k∑

j=0

hj(x)ek−j(y).

The generating function of these polynomials is obviously
∏m

i=1(1− txi)
−1 ·∏n

j=1(1 + tyj). It is immediate to check that9 that the value of E
(m|n)
k (x,y)

8It is understood that ek(y) = 0 for k > n.
9Indeed, (1 + t)n =

∑n

l=0

(
n

l

)
tl, (1− t)−m =

∑
∞

l=0

(
m+l−1

l

)
tl.
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at the point x = (1, . . . , 1) =: (1m), y = (1n) is given by

(4.3) E
(m|n)
k (1m, 1n) =

k∑

j=0

(
m+ j − 1

j

)(
n

k − j

)
= d

(m|n)
k ,

where it is understood that the combinatorial number
(
r
s

)
vanishes for s > r.

4.2. Schur polynomials

We next define the standard Schur polynomials. To this end, consider
the Young diagram labeled by an integer multiindex λ = (λ1, . . . , λr) with
λ1 ⩾ · · · ⩾ λr > 0, which by definition consists of λ1 boxes in the first (top)
row, λ2 boxes in the second row, etc. (cf. Fig. 1). A semistandard Young
tableau of shape λ is any filling of the Young diagram λ with natural num-
bers whose entries weakly increase along each row (from left to right) and
strictly increase down each column. The Schur polynomial Sλ(x1, . . . , xm)
corresponding to the Young diagram λ is then defined by

(4.4) Sλ(x1, . . . , xm) =
∑

T

xt11 · · ·xtmm ,

where T is any semistandard Young tableau of shape λ filled with the integers
{1, . . . ,m} and ti is the number of times the integer i appears in T . In
particular, note that ek = S(1k) and hk = S(k). The polynomial Sλ can be
expressed in terms of either the complete or the symmetric homogeneous
polynomials through the Jacobi–Trudi determinantal formulas

Sλ(x1, . . . , xm) = det
(
hλi−i+j(x1, . . . , xm)

)r
i,j=1

(4.5)

= det
(
eλ′

i−i+j(x1, . . . , xm)
)s
i,j=1

,

where λ′ = (λ′
1, . . . , λ

′
s) is the Young diagram conjugate to λ (obtained ex-

changing the rows and columns of λ, or equivalently reflecting λ about its
main diagonal; cf. Fig. 1).

More generally, a Schur polynomial can be associated to any skew Young
diagram, which we define next. If λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) are
two Young diagrams such that µ ⊂ λ (i.e., s ⩽ r and µi ⩽ λi for all i), we
define the skew diagram λ/µ as the set-theoretic difference λ− µ, obtained
by removing µi boxes from the i-th row of λ starting from the left. As
for Young diagrams, a (semistandard) skew Young tableau of shape λ/µ is
any filling of the skew Young diagram λ/µ with natural numbers which is
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Figure 1: Young diagram of shape λ = (5, 4, 1) (left) and its conjugate λ′ =
(3, 2, 2, 2, 1) (right).

weakly increasing along rows and strictly increasing down columns. The cor-
responding (skew) Schur polynomial Sλ/µ(x1, . . . , xn) is defined again by the
right-hand side of Eq. (4.4), where the sum is now over skew Young tableaux
of shape λ/µ. The Jacobi–Trudi formulas for skew Schur polynomials akin
to (4.5) are

Sλ/µ(x1, . . . , xn) = det
(
hλi−µj−i+j(x1, . . . , xn)

)r
i,j=1

(4.6)

= det
(
eλ′

i−µ′
j−i+j(x1, . . . , xn)

)s
i,j=1

.

Clearly, a skew Young diagram λ/µ need not be a Young diagram. A partic-
ular type of skew Young diagram which in general is not a Young diagram is
a border strip, i.e., a connected10 skew Young diagram with no 2× 2 blocks.
The height of a border strip is defined as the number of its rows minus one,
and its length as the total number of of its boxes. We shall use the notation
⟨k1, . . . , kr⟩ to refer to the border strip with ki boxes in the i-th column,
numbered from right to left (cf. Fig. 2), and shall denote by S⟨k1,...,kr⟩ the
corresponding Schur polynomial. Border strips are closely related to motifs
in the description of the spectrum of spin chains of Haldane–Shastry type, as
we shall discuss in Section 6. This is due to the connection of these diagrams
with the corresponding skew Schur polynomials labeling the irreducible rep-
resentations of certain Yangian algebras [36, 37].

All of the above definitions can be readily extended to the (m|n) super-
symmetric case by suitably adapting the definition of semistandard Young
tableau. More precisely, given a skew Young diagram λ/µ, an (m|n) super-
symmetric Young tableau of shape λ/µ is a filling of λ/µ with the integers
1, . . . ,m+ n that is:

10A skew Young diagram is connected if it is possible to join any two of its boxes
by a path. A path is a sequence of squares such that any two consecutive squares
in the sequence share a common side.
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(YT1) Weakly increasing along rows and strictly increasing down columns
for integers in F .

(YT2) Strictly increasing along rows and weakly increasing down columns
for integers in B,

where as usual B = (b1, . . . , bm), F = (f1, . . . , fn) and B ∪ F = {1, . . . ,m+
n} (see Fig. 3 for an example). The skew super Schur polynomial

Figure 2: The border strip ⟨3, 1, 2, 4, 2⟩ = (5, 5, 5, 3, 2, 2, 2, 1)/(4, 4, 2, 1, 1, 1).

S
(m|n)
λ/µ (x,y), where x := (x1, . . . , xm) and y := (y1, . . . , yn), associated with

a skew Young diagram λ/µ is defined by

(4.7) S
(m|n)
λ/µ (x,y) =

∑

T

x
tb1
1 · · ·x

tbm
m y

tf1
1 · · · y

tfn
n ,

where the sum runs over all the tableaux T of shape λ/µ filled according to
the rules spelled above. We shall be mainly interested in super Schur poly-
nomials associated with border strips ⟨k1, . . . , kr⟩, which we shall denote

by S
(m|n)
⟨k1,...,kr⟩

. The function S
(m|n)
⟨k1,...,kr⟩

(x,y) is a homogeneous polynomial in

the variables (x,y) of degree equal to the length of the associated bor-
der strip. It can be conveniently expressed in terms of the supersymmetric

elementary functions E
(m|n)
k (x,y) introduced above by the determinantal
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formula [36, 38, 40]

(4.8) S
(m|n)
⟨k1,...,kr⟩

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E
(m|n)
kr

E
(m|n)
kr−1+kr

· · · E
(m|n)
k2+···+kr

E
(m|n)
k1+···+kr

1 E
(m|n)
kr−1

· · · E
(m|n)
k2+···+kr−1

E
(m|n)
k1+···+kr−1

0 1 · · · E
(m|n)
k2+···+kr−2

E
(m|n)
k1+···+kr−2

...
...

...
...

0 0 · · · E
(m|n)
k2

E
(m|n)
k1+k2

0 0 · · · 1 E
(m|n)
k1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

1 2 3 4 4

2 3 4 5

2

Figure 3: (3|2) supersymmetric Young tableau of shape (5, 4, 1) for the
choice B = {1, 2, 3}, F = {4, 5}.

5. Generalized partition function

Let us now turn back to the study of the partition function of the super-
symmetric HS chain of BCN type (2.3). The method we have applied in
Section 3 for its computation is a generalization of that used for the AN−1

HS chain in Refs. [24, 31]. In order to construct a representation of the par-
tition function of the BCN -type chain in terms of (a variant of) super Schur
polynomials, we shall therefore briefly review how this is done in the AN−1

case [38, 39].

5.1. Review of the AN−1 case

The Hamiltonian of the su(m|n)-supersymmetric HS chain of AN−1 type
can be taken as

(5.1) HA =
1

2

∑

i<j

1− Sij

sin2 ξ−ij
, ξi :=

iπ

N
, i = 1, . . . , N,
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where as usual Sij is the (m|n)-supersymmetric spin permutation opera-
tor (2.4b). Its partition function [24, 38] is given by

(5.2) ZA(T ) =
∑

k∈PN

r∏

i=1

d
(m|n)
ki

· FA(q,k),

where

(5.3) EA(i) := i(N − i)

is the AN−1-type dispersion relation and FA(q,k) is defined by the right-
hand side of (3.17) with E replaced by EA. Using the properties of the
skew super Schur polynomials introduced above we can define a generalized
partition function of the variables q, x and y by

(5.4) ZA(q;x,y) =
∑

k∈PN

r∏

i=1

E
(m|n)
ki

(x,y) · FA(q,k).

It follows from Eqs. (4.3) and (5.2) that the partition function of the AN−1-
type HS chain can be expressed in terms of the generalized partition function
ZA as

(5.5) ZA(q) = ZA(q; 1
m, 1n).

Since the dispersion relation EA is integer valued, the function FA(q,k), and
hence the generalized partition function ZA, is obviously a polynomial in q.
It can be shown [38] that the coefficients of the expansion of ZA in powers
of q can be expressed in terms of the skew super Schur polynomials through
the remarkable formula

(5.6) ZA(q;x,y) =
∑

k∈PN

S
(m|n)
⟨k1,...,kr⟩

(x,y) q
∑

r−1
i=1 EA(Ki).

One of the aims of this article is to construct the corresponding expression
for the BCN model.

5.2. The BCN case

Let us now turn to the partition function (3.16) of the open supersymmet-
ric Haldane-Shastry spin chain derived in Section 3. As in the AN−1 case,
we extend this function to a generalized partition function depending on
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the variables (x, y) replacing the degeneracies d
(m|n)
ki

, d
(mε|nε′ )
ki

by the corre-

sponding supersymmetric elementary functions E
(m|n)
ki

(x,y), E
(mε|nε′ )
ki

(x,y).
We thus arrive at the following definition of the generalized partition func-
tion in the BCN case:

(5.7) Z(q;x,y) :=
∑

k∈PN

[
E

(mε|nε′ )
kr

(x,y)

+

(
E

(m|n)
kr

(x,y)− E
(mε|nε′ )
kr

(x,y)

)
qE(N)

] r−1∏

i=1

E
(m|n)
ki

(x,y) · F (q,k).

From Eq. (4.3) it again follows that the partition function of the su(m|n)
supersymmetric open HS chain (2.3) can be obtained from the generalized
partition function Z by setting x = (1m), y = (1n), i.e.,

Z(q) = Z(q; 1m, 1n).

Our aim is to show that this function can be expressed in terms of
suitably modified (BCN -type) skew super Schur polynomials as
(5.8)

Z(q;x,y) =
∑

k∈PN

(
S
(m|n)
⟨k1,...,kr⟩,0

(x,y) + S
(m|n)
⟨k1,...,kr⟩,1

(x,y)qE(N)

)
q
∑

r−1
i=1 E(Ki),

where

(5.9a) S
(m|n)
⟨k1,...,kr⟩,0

=

∣∣∣∣∣∣∣∣∣∣∣

E
(mε|nε′ )
kr

E
(mε|nε′ )
kr−1+kr

· · · E
(mε|nε′ )
k1+···+kr

1 E
(m|n)
kr−1

· · · E
(m|n)
k1+···+kr−1

...
...

...

0 0 · · · E
(m|n)
k1

∣∣∣∣∣∣∣∣∣∣∣

(5.9b) S
(m|n)
⟨k1,...,kr⟩,1

=

∣∣∣∣∣∣∣∣∣

E
(m|n)
kr

−E
(mε|n

ε′
)

kr
E

(m|n)
kr−1+kr

−E
(mε|n

ε′
)

kr−1+kr
· · · E

(m|n)
k1+···+kr

−E
(mε|n

ε′
)

k1+···+kr

1 E
(m|n)
kr−1

· · · E
(m|n)
k1+···+kr−1

...
...

...
0 0 · · · E

(m|n)
k1

∣∣∣∣∣∣∣∣∣
.

Expanding the determinants in Eqs. (5.9) along the first row and taking
into account Eq. (4.8) we obtain the following equivalent expressions for the
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polynomials S
(m|n)
⟨k1,...,kr⟩,α

(with α = 0, 1):

(5.10) S
(m|n)
⟨k1,...,kr⟩,α

= (−1)r−1fN,α +

r−1∑

s=1

(−1)s−1fN−Kr−s,αS
(m|n)
⟨k1,...,kr−s⟩

,

with fk,0 := E
(mε|nε′ )
k and fk,1 := E

(m|n)
k − E

(mε|nε′ )
k . Note also that we ob-

viously have

(5.11) S
(m|n)
⟨k1,...,kr⟩

= S
(m|n)
⟨k1,...,kr⟩,0

+ S
(m|n)
⟨k1,...,kr⟩,1

.

The proof of Eq. (5.8) closely follows the argument in [31] for the AN−1

case. To begin with, we can rewrite Eq. (5.7) for the generalized partition
function as

(5.12) Z(q;x,y) = Z0(q;x,y) + qE(N)Z1(q;x,y),

where

(5.13) Zα(q;x,y) :=
∑

k∈PN

F (q,k)fkr,α(x,y)

r−1∏

i=1

E
(m|n)
ki

(x,y)

and F (q;k) is given by Eq. (3.17). Expanding the second product in the
definition of F we obtain

F (q,k) =

1∑

α1,...,αN−r=0

(−1)α1+···+αN−r q
∑

r−1
i=1 E(Ki)+

∑
N−r
i=1 αiE(K′

i).

For a given partition k = (k1, . . . , kr) ∈ PN of length r, the numbers

{K1, . . . ,Kr−1,K
′
i1 , . . . ,K

′
il}

(with 1 ⩽ i1 < · · · < il ⩽ N − r and l ⩽ N − r) are clearly the partial sums

{K̂1, . . . , K̂s−1}

(excluding K̂s = N) of another such partition k̂ ∈ PN of length s = r + l
finer than k. We can thus rewrite Zα as

(5.14) Zα(q;x,y) =
∑

k∈PN

Sk,α(x,y)q
∑

r−1
i=1 E(Ki),
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where the coefficients Sk(x,y) are to be determined. From the previous dis-
cussion it is clear that the only partitions k̃ = (k̃1, . . . , k̃s) ∈ PN in Eq. (5.13)
which contribute to the term q

∑
r−1
i=1 E(Ki) in the previous sum are those

coarser than k, i.e., such that

{K̃1, . . . , K̃s−1} ⊂ {K1, . . . ,Kr−1} .

Defining the integers L1 < · · · < Ls−1 by K̃i = KLi
, and noting that k̃i =

K̃i − K̃i−1 (with K̃0 := 0) for i = 1, . . . , s− 1 and k̃s = N − K̃s−1 = N −
KLs−1

, we thus obtain

(5.15) Sk,α = (−1)r−1fN,α

+

r∑

s=2

∑

1⩽L1<···<Ls−1⩽r−1

(−1)r−sfN−KLs−1
,α

s−1∏

i=1

E
(m|n)
KLi

−KLi−1
,

where the first term corresponds to the partition k̃ = (N) of length s = 1.
We next define the integers ℓi := Li − Li−1 ⩾ 1 (with i = 1, . . . , s− 1) and
L0 := 0, in terms of which Li =

∑i
j=1 ℓj . Calling p = r − Ls−1 ⩾ 1, it follows

that ℓ := (ℓ1, . . . , ℓs−1) belongs to the set Pr−p(s− 1) of partitions (taking
order into account) of the integer r − p. Since p = r −

∑s−1
i=1 ℓi ⩽ r − s+ 1,

we can rewrite Eq. (5.15) as

Sk,α = (−1)r−1fN,α +

r∑

s=2

r−s+1∑

p=1

∑

ℓ∈Pr−p(s−1)

(−1)r−sfN−Kr−p,α

s−1∏

i=1

E
(m|n)
KLi

−KLi−1
.

Exchanging the sums over s and p and setting s = j + 1 we obtain

Sk,α = (−1)r−1fN,α

+

r−1∑

p=1

(−1)p−1fN−Kr−p,α

r−p∑

j=1

(−1)r−p−j
∑

ℓ∈Pr−p(j)

j∏

i=1

E
(m|n)
KLi

−KLi−1
.

Recalling the identity

r−p∑

j=1

(−1)r−p−j
∑

ℓ∈Pr−p(j)

j∏

i=1

E
(m|n)
KLi

−KLi−1
= S

(m|n)
⟨k1,...,kr−p⟩

(cf. Eq. (3.25) in Ref. [38]) and comparing with Eq. (5.10) we conclude that

Sk,α = S
(m|n)
⟨k1,...,kr⟩,α

.
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Equation (5.8) then follows immediately from the latter relation and (5.12)-
(5.14).

Remark 3. Following Ref. [54], equation (5.8) can be written as

(5.16) Z(q;x,y) =
∑

k∈PN

S
(m|n)
⟨k1,...,kr⟩

(q;x,y)q
∑

r−1
i=1 E(Ki),

where

(5.17a) S
(m|n)
⟨k1,...,kr⟩

(q;x,y) =

N∑

l=0

S
(m|n)
⟨k1,...,kr|l⟩

(x,y)qE(l)

with

(5.17b) S
(m|n)
⟨k1,...,kr|l⟩

(x,y) = δl0S
(m|n)
⟨k1,...,kr⟩,0

(x,y) + δlNS
(m|n)
⟨k1,...,kr⟩,1

(x,y) .

We see that Eq. (5.16) is formally the analogue of Eq. (5.6), with the skew

super Schur polynomials S
(m|n)
⟨k1,...,kr⟩

(x,y) replaced by their q-deformed ver-

sions (5.17a). (Note, in this respect, that the dispersion relation of the Poly-
chronakos (rational) chain of BCN type discussed in Ref. [54] is simply
E(x) = x.) A major difference between Eq. (5.17b) and its counterpart for
the rational chain studied in Ref. [54] is the fact that in our case the only

nonvanishing polynomials S
(m|n)
⟨k1,...,kr|l⟩

(x,y) are the first (l = 0) and the last

one (l = N), whereas for the rational chain all of the corresponding polyno-
mials are in general nonzero. An important consequence of this fact is that
the “branching” of the spectrum of the Polychronakos chain of BCN type
is far greater than is the case for the present model, as we shall explain in
Remark 8 below.

6. BCN -type motifs and border strips

In this section we shall take advantage of the explicit formula (5.8) for the
BCN -type generalized partition function Z(q;x,y) to show that the spec-
trum of the HS chain (2.3) coincides with that of a vertex model with appro-
priate interactions between consecutive vertices plus an additional boundary
term. This will lead to a description of the chain’s spectrum in terms of a
novel BCN -type version of Haldane’s motifs [10, 34, 38, 40]. As before, it
will prove convenient to start by reviewing the motif-based description of
the spectrum of the AN−1-type HS chain.
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6.1. Review of the AN−1 case

From Eq. (5.6) it follows that the partition function of the su(m|n) super-
symmetric HS chain of type AN−1 can be expressed as

(6.1) ZA =
∑

k∈PN

dA(k) q
∑

r−1
i=1 EA(Ki),

where by Eq. (4.7)

(6.2) dA(k) = S
(m|n)
⟨k1,...,kr⟩

(1m, 1n).

This shows that the spectrum of HA consists of the numbers (nonnegative
integers)

(6.3) EA(k) =

r−1∑

i=1

EA(Ki), k = (k1, . . . , kr) ∈ PN ,

each of which possesses an intrinsic degeneracy dA(k). Moreover, by Eq. (4.7)
dA(k) is the number of (m|n) supersymmetric skew Young tableaux corre-
sponding to the border strip ⟨k1, . . . , kr⟩, i.e., the number of fillings of the
latter border strip with the integers {1, . . . ,m+ n} = B ∪ F consistent with
rules (YT1)-(YT2) in Section 4.2. These facts make it possible to find a
motif-based description of the spectrum of the supersymmetric HS chain of
type AN−1 as follows.

To each tableau corresponding to the border strip ⟨k1, . . . , kr⟩ we as-
sociate a bond vector s = (s1, . . . , sN ) ∈ (B ∪ F )N whose components are
the numbers filling the tableau read from right to left and top to bottom.
This obviously establishes a one-to-one correspondence between tableaux
associated with a border strip and allowed bond vectors, where a bond vec-
tor is said to be allowed if its corresponding tableau satisfies rules (YT1)-
(YT2). It is apparent that the energy Ek,A associated to a given border strip
⟨k1, . . . , kr⟩ is given by

(6.4) Ek,A =

N−1∑

j=1

δjEA(j) ,

where δj = 1 if j ∈ {K1, . . . ,Kr−1} and δj = 0 otherwise. The vector δ :=
(δ1, . . . , δN−1) ∈ {0, 1}N−1 is the motif corresponding to the border strip
⟨k1, . . . , kr⟩. Note that there is also a one-to-one correspondence between
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border strips and motifs, since given a motif δ the associated border strip
can be constructed by starting with one empty box and successively adding
a box to the left of the i-th box (respectively below the i-th box) provided
that δi = 1 (resp. δi = 0). Again, we shall say that the motif δ is allowed if
its corresponding border strip admits at least one tableau consistent with
rules (YT1)-(YT2) above. It is easy to see that in the truly supersymmetric
case mn ̸= 0 all motifs are allowed, whereas in the purely bosonic case n =
0 (resp. purely fermionic case m = 0) the only allowed motifs are those
containing no sequence with m or more 1’s (resp. n or more 0’s).

Given an allowed motif δ, the intrinsic degeneracy of its energy (6.4)
is given by the number of tableaux corresponding to the border strip
⟨k1, . . . , kr⟩ associated with δ, or equivalently of bond vectors allowed for
this border strip. Since the 1’s in the motif δ occupy by construction
the positions labeled by the partial sums {K1, . . . ,Kr−1} (called rapidi-
ties in the literature) of the partition k ∈ PN corresponding to the bor-
der strip ⟨k1, . . . , kr⟩, a moment’s reflection shows that a bond vector
s = (s1, . . . , sN ) is allowed for the border strip ⟨k1, . . . , kr⟩ constructed from
the motif δ if and only if δi = δ(si, si+1) for i = 1, . . . , N − 1, where the
function δ : (B ∪ F )2 → {0, 1} is defined by

(6.5) δ(s, t) =

{
0, s < t or s = t ∈ B,

1, s > t or s = t ∈ F.

We conclude that the spectrum of the su(m|n) supersymmetric HS
chain (5.1) (with the correct degeneracy for each level) can be generated
through the formula

(6.6) EA(s) =

N−1∑

i=1

δ(si, si+1)EA(i) ,

where the bond vector s runs over the set (B ∪ F )N .
Equation (6.6) admits an obvious interpretation as the energy function

of a classical vertex model with N + 1 vertices and N bonds, where each
bond can be in one of m+ n possible states, m of which are of “bosonic”
and the remaining n of “fermionic” type. Indeed, it suffices to assign the
energy δ(si, si+1)EA(i) to the i-th bond if i = 1, . . . , N − 1, and zero energy
to the last (N -th) bond. The vertex model’s partition function can thus be
written as

ZV
A (q) =

∑

s∈(B∪F )N

qEA(s).
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Note that, by construction, we have

ZV
A (q) = ZA(q).

6.2. The BCN case

Let us now turn back to the BCN case. To begin with, setting

(6.7) S̃
(m|n)
⟨k1,...,kr⟩

(x,y) =





S
(m|n)
⟨k1,...,kr−1,kr−1⟩,0(x,y), kr > 1

S
(m|n)
⟨k1,...,kr−2,kr−1⟩,1

(x,y), kr = 1

we can more conveniently rewrite Eq. (5.8) as

(6.8) Z(q;x,y) =
∑

k∈PN+1

S̃
(m|n)
⟨k1,...,kr⟩

(x,y) q
∑

r−1
i=1 E(Ki).

It should be stressed that the border strip ⟨k1, . . . , kr⟩ in the LHS of Eq. (6.7)
corresponds to a partition k = (k1, . . . , kr) of N + 1 of length r, whereas the
border strips ⟨k1, . . . , kr−1, kr − 1⟩ and ⟨k1, . . . , kr−1⟩ in the RHS correspond
to partitions of N with respective lengths r and r − 1.

Equation (6.8) again entails that the partition function of open HS
chain (2.3) can be expressed in a more compact way as

(6.9) Z(q) =
∑

k∈PN+1

d(k) q
∑

r−1
i=1 E(Ki),

with

d(k) = S̃
(m|n)
⟨k1,...,kr⟩

(1m, 1n) =





S
(m|n)
⟨k1,...,kr−1,kr−1⟩,0(1

m, 1n) =: d0(k), kr > 1

S
(m|n)
⟨k1,...,kr−2,kr−1⟩,1

(1m, 1n) =: d1(k) kr = 1.

By Eq. (4.3), dα(k) can be obtained replacing E
(m|n)
k and E

(mε|nε′ )
k in

Eqs. (5.9) by d
(m|n)
k and d

(mε|nε′ )
k , respectively.

To get a better understanding of the latter formulas, it is useful to con-
sider them in the two simple cases k = (N + 1) and k = (N, 1). In the first
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case, from Eq. (5.9a) with (x,y) = (1m, 1n) it follows that

d(k) = d0(k) = d
(mε|nε′ )
N .

Hence the degeneracy corresponding to the single column border strip ⟨N +
1⟩ is equal to the number of (mε|nε′) skew Young tableaux of shape ⟨N⟩. If
we order the spin variables so that
(6.10)

{b1, . . . , bmε
} ∪ {f1, . . . , fnε′

} = {1, . . . ,mε + nε′}, bmε
= mε + nε′ ,

it is easy to convince oneself that one can express d(k) as the number of
(m|n) supersymmetric skew Young tableaux of shape ⟨N + 1⟩ with the last
box filled with the integer ∗ := mε + nε′ , which is by construction of bosonic
type. We shall symbolically denote the shape of these tableaux by

...

∗

Equivalently, d(k) is given by the number of bond vectors s = (s1, . . . , sN+1)
corresponding to the partition k = (N + 1) according to the rules (YT1)-
(YT2) in Section 4.2, with sN+1 = ∗ fixed.

Remark 4. When mε = 0 and nε′ > 0 (i.e., for m = 0 or m = n = ε′ =
−ε = 1), we have ∗ = nε′ , Bε = ∅, and Bε ∪ Fε′ = Fε′ . It should be clear from
the above discussion that in this case we should still regard the ∗ symbol
in the last box as bosonic, even if nε′ = fnε′

is of fermionic type otherwise.
Indeed, in this case nε′ is allowed in the box above the last (starred) one.

Likewise, for the partition k = (N, 1) ∈ PN+1 by Eq. (5.9b) with (x,y) =
(1m, 1n) we have

d(k) = d1(k) = d
(m|n)
N − d

(mε|nε′ )
N .

Thus d(k) equals the difference between the number of (m|n) and (mε|nε′)
supersymmetric tableaux corresponding to the single column border strip
⟨N⟩. This is evidently equal to the number of tableaux of shape ⟨N⟩
containing at least one entry greater than mε + nε′ , which in turn (since
skew Young tableaux are non-decreasing down columns) coincides with the
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number of such tableaux whose last entry is greater than mε + nε′ . Since
∗ = mε + nε′ = bmε

is of bosonic type, this is the same as the number of
tableau of shape ⟨N, 1⟩ whose last box is filled by ∗. We shall again indicate
the shape of these tableaux by the diagram

...

∗

Equivalently, d(k) is given by the number of bond vectors s = (s1, . . . , sN+1)
corresponding to the partition (N, 1) according to the rules (YT1)-(YT2),
again with sN+1 = ∗ fixed.

Remark 5. As in the previous example, when mε = 0 and nε′ > 0 the
symbol ∗ = nε′ should be regarded as bosonic even if nε′ = fnε′

is fermionic
in this case, since from the preceding discussion it follows that nε′ is not
allowed in the box to the right of the last (starred) one.

The above considerations suggest that in all cases the degeneracy asso-
ciated with a partition k ∈ PN+1 is the number of (m|n) supersymmetric
skew Young tableau of shape ⟨k1, . . . , kr⟩ with the last (leftmost and low-
ermost) box filled with ∗ = mε + nε′ , regarded always as bosonic. We shall
prove below that this is indeed the case. More precisely:

(R1) The eigenvalues of the open su(m|n) HS chain (2.3) are labeled by
the partitions (with order taken into account) k = (k1, . . . , kr) of the
integer N + 1 according to the formula.

E(k) =

r−1∑

i=1

E(Ki) ,

where the dispersion relation E is defined by Eq. (3.13).

(R2) The intrinsic degeneracy d(k) of the eigenvalue E(k) (which could
possibly be equal to zero) coincides with the number of (m|n) super-
symmetric skew Young tableaux of shape ⟨k1, . . . , kr⟩ of length N + 1
whose last (i.e, lowermost and leftmost) box is filled with ∗ = mε + nε′ ,
regarded always as bosonic.

Remark 6. It is of course understood that the spin variables must be
chosen according to the convention (6.10) (with the proviso mentioned
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in Remark 4 when mε = 0 and nε′ > 0), which we shall tacitly follow
in the sequel. There are obviously other conventions yielding the same
rule for the degeneracy d(k). For instance, we could have equivalently set
∗ = mε + nε′ + 1 = fnε′+1, regarded as fermionic even when mε > 0 and
nε′ = 0. Alternatively, we could have defined ∗ = mε + nε′ + 1/2, which has
the advantage of not requiring a special proviso when mε or nε′ vanish. It
should also be noted that d(k) could be zero for some partitions k ∈ PN+1

(even in the truly supersymmetric case mn ̸= 0), in which case
∑r−1

i=1 E(Ki)
is not an eigenvalue11 of the chain (2.3).

Before proving the above two rules, we shall briefly outline some of its
main consequences. First of all, as in the AN−1 case, from (R1)-(R2) above
it follows that the spectrum of the supersymmetric HS chain of BCN type
can be equivalently described in terms of “starred” border strips (i.e, with
the last boxed filled by ∗) and motifs, where now the motifs have length N
instead of N − 1. In other words, the eigenvalues of the Hamiltonian (2.3)
can be generated by the formula —akin to its AN−1 counterpart (6.4)—

(6.11) Eδ =

N∑

i=1

δiE(i), δ := (δ1, . . . , δN ) ∈ {0, 1}N .

The degeneracy of the eigenvalue Eδ (which can possibly be zero) is given
by the number of (m|n) supersymmetric starred tableaux having as shape
the border strip corresponding to the motif δ. We stress that the rule for
filling the tableaux is exactly the same as in the AN−1 case, i.e., is given by
conditions (YT1)-(YT2) in Section 4.2. The only differences with the latter
case are that i) the tableaux now have one extra box (i.e., they are of length
N + 1), and ii) the last box must be filled by ∗ = mε + nε′ , regarded always
as bosonic.

Just as in the AN−1 case, the previous description of the spectrum of the
BCN chain (2.3) can be reformulated in the framework of classical vertex
models. Indeed, the spectrum of the chain (2.3) can be equivalently gen-
erated using bond vectors (s1, . . . , sN+1) ∈ (B ∪ F )N+1 with sN+1 = ∗ by
setting

(6.12) Es =

N∑

i=1

δ(si, si+1)E(i),

11Unless, of course,
∑r−1

i=1
E(Ki) =

∑r̃−1

i=1
E(K̃i) for some other partition k̃ :=

(k̃1, . . . , k̃r̃) ∈ PN+1 with d(k̃) > 0.
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where δ : (B ∪ F )2 → {0, 1} is defined exactly as in the AN−1 case
(Eq. (6.5)). The latter formula can of course be interpreted as the energy
function of a classical vertex model with N + 2 vertices and N + 1 bonds
each of which can be in one of m+ n possible states, m of which are bosonic
and n fermionic, with the following two restrictions: i) the last bond has zero
energy, and ii) the bond before the last is always in the state ∗ = mε + nε′ ,
regarded as bosonic.

We shall now provide a complete proof of rules (R1)-(R2) above. The
proof will be based on an alternative recursion relation satisfied by the BCN -

type super Schur polynomials S
(m|n)
⟨k1,...,kr⟩,α

obtained expanding the determi-

nants in Eq. (5.9) along their first column, namely

(6.13) S
(m|n)
⟨k1,...,kr⟩,α

= fkr,αS
(m|n)
⟨k1,...,kr−1⟩

− S
(m|n)
⟨k1,...,kr−2,kr−1+kr⟩,α

.

First of all, it is clear from Eq. (6.8) that the eigenvalues of the Hamil-
tonian (2.3) can only be the numbers

∑r−1
i=1 E(Ki), where k is a partition

of N + 1 of length r. This establishes the first rule. The second one will be
proved by induction on the number of columns r′ of the border strip corre-
sponding to a given partition of the integer N + 1 with the last box removed.
The two examples presented above then show that the rules (R1)-(R2) are
valid for r′ = 1. Assume, therefore, that they hold for partitions of N + 1
with r′ ⩽ ρ, and consider a partition with r′ = ρ+ 1. Suppose, first, that this
partition is of the type k = (k1, . . . , kr) with kr > 1, so that d(k) = d0(k)
and r = r′ = ρ+ 1. Evaluating the identity (6.13) with α = 0 at the point
(x,y) = (1m, 1n) we obtain the recursion relation

d(k) = d0(k) = S
(m|n)
⟨k1,...,kr−1⟩,0(1

m, 1n)(6.14)

= dA(k1, . . . , kr−1)d
(mε|nε′ )
kr−1 − d0(k1, . . . , kr−2, kr−1 + kr − 1).

The first term in the RHS is the number of fillings of the border strip
⟨k1, . . . , kr−1⟩ according to the (m|n) supersymmetric rules (YT1)-(YT2)
in Section 4.2 times all possible fillings of a single column of height
kr − 1 using only the integers {1, . . . ,mε + nε′}. By the induction hypoth-
esis, the second term counts the number of fillings of the border strip
⟨k1, . . . , kr−2, kr−1 + kr − 1⟩ according to rule (R2), i.e., such that the last
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box is filled only with the integers {1, . . . ,mε + nε′}. We now use the fol-
lowing elementary identity involving border strips:

(6.15)
... ×

. .
.

... =

. .
.

...

...

+

. .
.

...

...

where each border strip represents the total number of (m|n) supersymmet-
ric Young tableaux associated with it, and the shaded columns are filled
using only the integers {1, . . . ,mε + nε′}. Equation (6.14) can thus be sym-
bolically expressed as

d(k) =
... ×

. .
.

... −

. .
.

...

...

=

. .
.

...

...

=

. .
.

...

...

∗

Thus in this case d(k) is equal to the number of fillings of the border strip
⟨k1, . . . , kr⟩ according to the rule (R2) (i.e., filling the last box with the
integer mε + nε′), as claimed.

Consider next a partition k = (k1, . . . , kr) of N + 1 with r′ = ρ+ 1 and
kr = 1, so that d(k) = d1(k) and r′ = r − 1 = ρ+ 1. Evaluating the iden-
tity (6.13) with α = 1 at the point (x,y) = (1m, 1n) we obtain the recursion
relation

d(k) = d1(k) = S
(m|n)
⟨k1,...,kr−1⟩,1

(1m, 1n)

(6.16)

=
(
d
(m|n)
kr−1

− d
(mε|nε′ )
kr−1

)
dA(k1, . . . , kr−2)− d1(k1, . . . , kr−3, kr−2 + kr−1).

The term in parentheses in the RHS is equal to the number of fillings of the
single column of length kr−1 whose last box contains only integers greater
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than mε + nε′ . By the induction hypothesis, the last term represents the
number of fillings of the border strip ⟨k1, . . . , kr−3, kr−2 + kr−1⟩ whose last
box is filled with integers also greater than mε + nε′ . We can thus symboli-
cally express Eq. (6.16) as

d(k) =
... ×

. .
.

... −

. .
.

...

...

where the gray box is filled only with integers greater than mε + nε′ . By the
elementary identity

... ×

. .
.

... =

. .
.

...

...

+

. .
.

...

...

we conclude that in this case

d(k) =

. .
.

...

...

=

. .
.

...

...

∗

as claimed. This completes the proof of rules (R1)-(R2) above.
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Remark 7. A similar argument can be used to find the following combi-

natorial expression for the BCN -type super Schur polynomials S
(m|n)
⟨k1,...,kr⟩,α

:

(6.17) S
(m|n)
⟨k1,...,kr⟩,α

=
∑

T∈Tα

x
tb1
1 · · ·x

tbm
m y

tf1
1 · · · y

tfn
n ,

where T0 (respectively T1) denotes the set of all supersymmetric tableaux of
shape ⟨k1, . . . , kr⟩ whose last box is filled by an integer ⩽ mε + nε′ (respec-
tively > mε + nε′). Indeed, the formula is clearly true for r = 1, and it can
be easily proved by induction on r using the recursion relation (6.13).

Remark 8. Setting x = (1m), y = (1n) in Eq. (5.8) or (5.16) we obtain the
following alternative formula for the partition function of the su(m|n) HS
chain of BCN type:

(6.18) Z(q) =
∑

k∈PN

(
d0(k) + d1(k)q

E(N)
)
q
∑

r−1
i=1 E(Ki) ,

where

d0(k) = S
(m|n)
⟨k1,...,kr|0⟩

(1m, 1n) , d1(k) = S
(m|n)
⟨k1,...,kr|N⟩(1

m, 1n) .

It is important to observe that, by contrast with Eq. (6.9), the border strip
⟨k1, . . . , kr⟩ appearing in the latter equations corresponds to a partition k =
(k1, . . . , kr) of length N . Since

d0(k) + d1(k) = S
(m|n)
⟨k1,...,kr⟩,0

(1m, 1n) + S
(m|n)
⟨k1,...,kr⟩,1

(1m, 1n)

= S
(m|n)
⟨k1,...,kr⟩

(1m, 1n) = dA(k)

by Eqs. (5.11), (5.17b) and (6.2), Eq. (6.18) admits an obvious interpre-
tation in terms of the “branching” of type AN−1 border strips. To wit,
each border strip ⟨k1, . . . , kr⟩ with k = (k1, . . . , kr) ∈ PN , whose degener-
acy and energy for the HS chain of AN−1 type are respectively dA(k) and∑r−1

i=1 EA(Ki), splits into two different “branched” border strips ⟨k1, . . . , kr|0⟩
and ⟨k1, . . . , kr|N⟩ with respective degeneracies d0(k) and d1(k), and en-
ergies

∑r−1
i=1 E(Ki) and

∑r−1
i=1 E(Ki) + E(N). Moreover, by Remark 7 the

degeneracies d0(k) and d1(k) of each of these branched border strips are re-
spectively equal to the number of supersymmetric Young tableaux of types
T0 and T1. This description of the spectrum of the su(m|n) supersymmetric
HS chain of BCN type is in fact closely connected to the analogous one for
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the Polychronakos chain of BCN type deduced in Ref. [54], the main differ-
ence between both models being that in the latter each type AN−1 motif in
general gives rise to N + 1 branches with different energies instead of just
two.

7. Examples

In this section we shall provide a few concrete examples illustrating the
motif-based description of the spectrum of the open supersymmetric HS
chain (2.3) developed in the last section, spelled out in the two rules (R1)-
(R2) above.

7.1. su(1|2), N = 3

Let us start with a simple example with N = 3 spins, one bosonic and two
fermionic degrees of freedom. To begin with, since n is even we have nε′ =
n/2 = 1 regardless of the value of ε′. Thus the spectrum is independent of
ε′, which is obviously a general feature of the model when n is even. On the
other hand, as we shall see next, the spectrum is highly dependent on ε.

7.1.1. ε = +1. In this case mε = nε′ = 1 and hence ∗ = 2, so that B =
{2} and F = {1, 3}.

In Table 2 we list all the partitions k = (k1, . . . , kr) of N + 1 = 4, to-
gether with their corresponding (1|2) supersymmetric tableaux filled ac-
cording to rules (R1)-(R2) in the previous section (with ∗ = 2). Taking into
account that for N = 3

E(i) = i

(
3 + β̄ −

1

2
(i+ 1)

)
=

i

2
(2β̄ + 5− i),

we see that the chain’s energies (in ascending order) are in this case given
by

02, (β̄ + 2)4, (2β̄ + 3)6, (3β̄ + 3)2, (3β̄ + 5)6, (4β̄ + 5)4, (5β̄ + 6)2, (6β̄ + 8)1,

where the subscripts indicate the corresponding degeneracies. In particular,
since β̄ > 0 the ground state (associated to the partition (4)) has zero energy
and is twice degenerate. It easily follows from the motif-based description of
the spectrum that this last property is actually valid for general N . Indeed,
since E(i) > 0 for 1 ⩽ i ⩽ N , it is clear from Eq. (6.11) that the ground
state energy vanishes provided that the motif δ = (0N ), corresponding to
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Partition Motif Tableaux Energy Degeneracy

(4) (0,0,0)

1

2

2

2

2

2

2

2

0 2

(3,1) (0,0,1)
1

2

2 3

2

2

2 3

E(3) 2

(2,2) (0,1,0)

1

1 2

2

2

1 2

2

1

1 3

2

2

1 3

2

1

2 3

2

2

2 3

2

E(2) 6

(2,1,1) (0,1,1) 1

2 3 3

2

2 3 3
E(2) + E(3) 2

(1,3) (1,0,0)
1 1

2

2

1 2

2

2

1 3

2

2

2 3

2

2

E(1) 4

(1,2,1) (1,0,1) 1 1

2 3

1 2

2 3

1 3

2 3

2 3

2 3
E(1) + E(3) 4

(1,1,2) (1,1,0)

1 1 1

2

1 1 2

2

1 1 3

2

1 2 3

2

1 3 3

2

2 3 3

2

E(1) + E(2) 6

(1,1,1,1) (1,1,1) 2 3 3 3 E(1) + E(2) + E(3) 1

Table 2: Allowed motifs for the su(1|2) supersymmetric chain of BCN

type (2.3) for N = 3 spins and ε = +1, with their corresponding energies
and degeneracies.

the border strip ⟨N + 1⟩, is allowed. This is obviously the case when m =
1, n = 2, ε = 1, since ∗ = mε + nε′ = 2 ∈ B implies that the border strip
⟨N + 1⟩ can be filled according to rules (R1)-(R2) in the previous section by
the two tableaux with bond vectors (2N+1) and (1, 2N ). In particular, the
ground state is twice degenerate in this case.

7.1.2. ε = −1. Now mε = 0, nε′ = 1 and thus ∗ = 1. This is exactly the
situation covered in Remarks 4 and 5 in the previous section, since neces-
sarily f1 = 1 but ∗ = 1 should be regarded as bosonic. Thus a tableau like
1 1 ···
1

is allowed in this case, since the 1 in the last (lowermost) box is re-

garded as bosonic in the comparison with the one above it, while all the
other 1’s in the tableau are considered to be of fermionic type. For the same
reason, tableaux like 1 1 ··· are forbidden. Taking (for instance) F = {1, 2}
and B = {3}, and applying rules (R1)-(R2) above, it is straightforward to
show that the spectrum is given in this case (in order of ascending energy)
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Partition Motif Tableaux Energy Degeneracy

(3,1) (0,0,1)
1

2

1 3

1

3

1 3

2

3

1 3

3

3

1 3

E(3) 4

(2,2) (0,1,0)
1

1 2

1

1

1 3

1

2

1 3

1

3

1 3

1

E(2) 4

(2,1,1) (0,1,1) 1

1 2 2

1

1 2 3

2

1 2 3

3

1 2 3
E(2) + E(3) 4

(1,2,1) (1,0,1)

1 1

1 2

1 2

1 2

1 3

1 2

1 1

1 3

1 2

1 3

1 3

1 3

2 2

1 3

2 3

1 3

E(1) + E(3) 8

(1,1,2) (1,1,0)

1 1 1

1

1 1 2

1

1 1 3

1

1 2 2

1

1 2 3

1

E(1) + E(2) 5

(1,1,1,1) (1,1,1) 1 2 2 2 1 2 2 3 E(1) + E(2) + E(3) 2

Table 3: Allowed motifs for the su(1|2) supersymmetric chain of BCN

type (2.3) for N = 3 spins and ε = −1, with their corresponding energies
and degeneracies. (We have taken F = {1, 2} and B = {3}.)

by

(2β̄ + 3)4, (3β̄ + 3)4, (3β̄ + 5)5, (4β̄ + 5)8, (5β̄ + 6)4, (6β̄ + 8)2

(cf. Table 3). We see that the degeneracies differ significantly from those in
the case ε = +1 listed in Table 2. In particular, the two levels corresponding
to the partitions (4) and (1, 3) are absent in this case. Moreover, the ground
state is now associated to the partition (2,2), has energy 2β̄ + 3 ⩾ 3 and
is four times degenerate. For arbitrary N , an analysis similar to the one
above shows that the ground state corresponds to the motif (0N−3, 1, 0), or
equivalently to the border strip ⟨N − 1, 2⟩, and has energy E(N − 1) = (N −
1)(β̄ +N/2). The ground state is again four times degenerate, corresponding
to the four tableaux

1
2
.
.
.

2
1 2
1

2
2
.
.
.

2
1 2
1

1
2
.
.
.

2
1 3
1

2
2
.
.
.

2
1 3
1

allowed for the border strip ⟨N − 1, 2⟩ according to the rules (R1)-(R2) in
the previous section. Incidentally, for both ε = 1 and ε = −1 the highest
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excited state, with energy

N∑

i=1

E(i) =
1

6
N(N + 1)(3β̄ + 2N − 2),

is obviously associated to the single-line border strip ⟨1N+1⟩, and is nonde-
generate for ε = 1 (the only allowed tableau is 2 3 ··· 3 ) and twice degener-
ate for ε = −1 (the two allowed bond strips being 1 2 ··· 2 and 1 2 ··· 2 3 ).
In particular, the spectrum is less spread for ε = −1 than for ε = 1, as is
already apparent from Fig. 4 for the case N = 15.

The description of the spectrum developed in the previous section makes
it feasible to exactly compute the spectrum of the su(m|n) HS chain of BCN

type (2.3) for a relatively large number of spins using standard symbolic
packages. For instance, in Fig. 4 we present the result of the computation
with Mathematica™ of the spectrum of the su(1|2) chain with β̄ = 1 and
N = 15 spins for both ε = 1 and ε = −1 (recall that in this case the spec-
trum is independent of ε′). Much as in the AN−1 case, both spectra show a
very high degeneracy12 (of the order of 50 000 for energies near the median)
and a Gaussian-like shape. In particular, the high degeneracy of the spec-
trum and the existence of a motif-based description thereof strongly suggest
that this model possesses twisted Yangian symmetry. As mentioned in the
Introduction, the existence of this symmetry was established in Ref. [44]
only in the non-supersymmetric case and for the three uniform cases listed
in Table 1.

7.2. su(1|1), arbitrary N

The partition function of the su(1|1) HS chain ofAN−1 type can be computed
in closed form for arbitrary N , with the result [60]

ZA,N (q) = 2

N−1∏

i=1

(1 + qEA(i)) ,

where we have explicitly indicated the dependence on N for later conve-
nience. A similar formula is in fact valid for the AN−1 Polychronakos–
Frahm [23, 61] (rational) and Frahm–Inozemtsev [26] (hyperbolic) chains,

12In fact, since by Eqs. (3.13) and (6.11) the energies are of the form iβ̄ + j
with i, j nonnegative integers, it is clear that the degeneracy is higher when β̄ is a
positive integer or rational number with a small denominator.
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Figure 4: Energy E vs. degeneracy d of the spectrum of the su(1|2) HS
chain of BCN type with N = 15 spins and β̄ = 1 for ε = −1 (blue circles)
and ε = 1 (pink squares).

with EA replaced by the dispersion relation of the latter chains. As in the
AN−1 case, the partition function of the su(1|1) HS chain of BCN type can
be evaluated in closed form for arbitrary N , as we shall next show. In par-
ticular, we shall see that the result depends in an essential way on the two
signs ε and ε′.

7.2.1. ε = ε′ = 1. In this case mε = nε′ = 1, and therefore ∗ = 2, F =
{1} and B = {2}. Since 2 is bosonic, no type 1 tableaux of the form

. .
.

...

2

are allowed. Thus all allowed tableaux are of type 0, i.e., of the form

. .
.

...

2
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It is also clear that the 2 in the last box imposes no additional restriction
(apart from the standard rules for (1|1) supersymmetric tableaux) on the
box immediately on top of it. In other words, the number of tableaux of
this form with N + 1 boxes coincides with the number of regular su(1|1)
tableaux with N boxes obtained by removing the last (bottommost) box.
We thus arrive at the formula

Z++
N (q) =

∑

k∈PN

dA(k)q
∑

r−1
i=1 E(Ki) .

Realizing that the RHS is nothing but ZA,N (q) with EA replaced by E we
conclude that

Z++
N (q) = 2

N−1∏

i=1

(1 + qE(i)) .

Thus the su(1|1) HS chain of BCN type with ε = ε′ = 1 behaves essentially
as a type AN−1 chain with a different dispersion relation.

7.2.2. ε = ε′ = −1. We have mε = nε′ = 0, and therefore ∗ = mε +
nε′ = 0. Thus only type 1 tableaux are allowed, and it is again clear that the
0 in the leftmost box entails no restriction (apart from the standard rules
for (1|1) supersymmetric tableaux) on the box to its right. We thus have

Z−−
N (q) =

∑

k∈PN

dA(k)q
E(N)q

∑
r−1
i=1 E(Ki) = qE(N)Z++

N (q)

= 2qE(N)
N−1∏

i=1

(1 + qE(i)) .

Thus the spectrum in this case is obtained by shifting the spectrum in the
previous case by a constant (positive) energy E(N).

7.2.3. ε = −ε′ = 1. In this case mε = 1, nε′ = 0, and hence ∗ = mε +
nε′ = 1, B = {1} and F = {2}. A moment’s reflection shows that all border
strips ⟨k1, . . . , kr⟩ give rise to exactly one allowed Young tableau, of the form

. .
.

1 2
.
.
.

1
1 2 ··· 2
.
.
.

1
1

. .
.

1
1 2 ··· 2
.
.
.

1
1 2 ··· 2
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respectively for type 0 and 1 border strips. Thus the partition function is
given in this case by

Z+−
N (q) =

∑

k∈PN+1

q
∑

r−1
i=1 E(Ki) = 1 +

N∑

r=2

∑

1⩽K1<···<Kr−1⩽N

q
∑

r−1
i=1 E(Ki)

=

N∏

i=1

(1 + qE(i)).

Thus the su(1|1) HS chain of BCN type with ε = −ε′ = 1 is equivalent to a
system of N free spinless fermions with dispersion relation E (i.e., for which
the energy of the single-particle mode with momentum 2kπ/N is E(k)).

7.2.4. ε = −ε′ = −1. Here mε = 0, nε′ = 1, and consequently ∗ = mε +
nε′ = 1, F = {1} and B = {2}. The difference with the previous case is that,
even if now 1 is of fermionic type, ∗ = 1 should be treated as a bosonic
variable (cf. Remarks 4) and 5 above). As a consequence, type 0 and type

1 tableaux can only end in
1 ···
1

and
···

1 2
, respectively, where in both cases

··· stands for a standard (1|1) supersymmetric tableaux with no additional
restrictions. Since Kr−1 = N − 1 + α for type α tableaux, we conclude that

Z−+
N (q) = (qN−1 + qN )ZA,N−1(q)

∣∣
EA→E

= 2
(
qE(N−1) + qE(N)

)N−2∏

i=1

(1 + qE(i)).

7.2.5. Free energy. With the previous explicit formulas it is an easy
matter to obtain an exact expression for the free energy per spin of the open
su(1|1) HS chain (2.3) in the thermodynamic limit. To this end, we first
normalize the Hamiltonian dividing it by 1/N2, in order to obtain a finite
energy density in the thermodynamic limit. Since

E(i)

N2
= xi

(
1 +

β̄

N
−

xi
2

−
1

2N

)
, xi :=

i

N
∈ (0, 1],

we have

E(i)

N2
→

N→∞

x

2
(2γ − x) =: φ(x) , γ := 1 + lim

N→∞

β̄

N
⩾ 1 ,

where x ∈ [0, 1] is a continuous variable. The free energy per particle in the
thermodynamic limit is then given in all four cases by

f(T ) = −T lim
N→∞

1

N
logZεε′

N

(
e−1/N2T

)
= −T

∫ 1

0
log
(
1 + e−ϕ(x)/T

)
dx .
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−π π

γ −
1
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p

φ(p)

−π π

1/2

Figure 5: Dispersion relation ϕ(p) = |p|(2πγ − |p|)/2π2 of the su(1|1) super-
symmetric HS chain of BCN type (2.3) in the thermodynamic limit for γ > 1
(left) and γ = 1 (right).

Changing to the momentum variable p = πx we obtain

(7.1) f(T ) = −
T

π

∫ π

0
log
(
1 + e−φ(p)/T

)
dp ,

where the dispersion relation ϕ(p) is given by

ϕ(p) := φ
(
|p|
π

)
=

|p|

2π2
(2πγ − |p|)(7.2)

=
1

2π2

[
π2γ2 − (|p| − πγ)2

]
, −π ⩽ p ⩽ π.

Thus in the thermodynamic limit all four variants of the su(1|1) HS chain
of BCN type are equivalent to a system of free fermions with dispersion
relation given by Eq. (7.2). The latter expression is of course reminiscent
of the corresponding ones for the free energy per spin of the AN−1-type
HS, PF and FI chains obtained in Refs. [42, 60]. It is clear that (when
prolonged as a periodic function of period 2π) ϕ(p) has a cusp at the points
p = kπ with k ∈ Z when γ > 1, or 2kπ with k ∈ Z for γ = 1 (cf. Fig. 5),
much like what happens with the dispersion relation of the AN−1-type PF
and FI chains (when γ > 1) or the HS chain (when γ = 1). Since γ ⩾ 1, the
dispersion relation is clearly monotonic in each of the intervals [−π, 0] and
[0, π], as is the case with the HS chains of AN−1 type. Moreover, for γ = 1
Eq. (7.2) coincides (up to a trivial rescaling by a factor of 1/π2) with the
dispersion relation of the su(1|1) HS chain of AN−1 type. This shows that
the su(1|1) HS chain of BCN type with β̄/N → 0 as N → ∞ is equivalent in
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the thermodynamic limit to its AN−1 counterpart, a result that is far from
obvious a priori.

8. Conclusions and outlook

The description of the spectrum of the Haldane–Shastry spin chain in terms
of border strips (or, equivalently, motifs) and skew Young tableaux is one
of the hallmarks in the theory of integrable spin chains with long-range
interactions, underscoring the close connections of spin chains of HS type
with the representation theory of Yangian algebras. In this paper we address
the problem of finding a similar motif-based description of the spectrum of
the open version of the (supersymmetric) Haldane–Shastry spin chain, as-
sociated with the BCN root system. More precisely, we first construct the
model’s Hamiltonian by suitably extending the standard definition of the
spin permutation and reversal operators to the supersymmetric case. We
then compute its partition function in closed form by means of Polychron-
akos’s freezing trick, which basically consists in modding out the dynamical
degrees of freedom of the associated BCN -type spin Sutherland model. In-
spired by the procedure for the closed (AN−1) HS chain [38], we construct a
generalized partition function depending polynomially on two sets of vector
variables, which reproduces the standard one when these variables are set
equal to 1. We then show that this generalized partition function can be
expressed in terms of two variants of the standard skew super Schur poly-
nomials, which can be defined through a simple combinatorial formula in
terms of supersymmetric skew Young tableaux with an additional box filled
with a fixed integer. With the help of this formula, we are able to derive
a complete description of the spectrum of the supersymmetric HS chain of
BCN type in terms of extended motifs and restricted Young tableaux, akin
to the one for the closed HS chain. We illustrate this description with a few
concrete examples, including a complete study of the su(1|1) model and its
thermodynamics.

Much as in the AN−1 case, the existence of a motif-based description of
the spectrum of the model under study could prove of key importance for
uncovering some of its fundamental properties. In the first place, such a de-
scription is a clear indication that the model possesses some kind of (twisted)
Yangian symmetry. Obtaining an explicit realization of this symmetry, ei-
ther via its generators or through a suitable monodromy matrix [44], is
certainly worth investigating. As in the AN−1 case [41, 42], the motif-based
description of the spectrum deduced in this work can be taken as the starting
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point for deriving its thermodynamics using the inhomogeneous transfer ma-
trix approach. To this end, it is necessary to introduce a chemical potential
term in the Hamiltonian and generalize the above results —in particular, the
characterization of the spectrum in terms of restricted supersymmetric skew
Young tableaux— to the model thus obtained. In fact, the detailed results
for the su(1|1) chains derived in this paper strongly suggest that the thermo-
dynamic functions in the general su(m|n) case can be obtained from those of
the closed supersymmetric HS chain simply by replacing the dispersion rela-
tion of the latter model by that of the present one (cf. Eq. (3.13)). A related
application of our results is the study of the model’s criticality by analyz-
ing the low temperature asymptotic behavior of its Helmholtz free energy,
which should exhibit the T 2 behavior characteristic of (1 + 1)-dimensional
conformal field theories [62, 63] at the critical phase.
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[6] C.-L. Hung, A. González-Tudela, J. I. Cirac and H. J. Kimble, Quan-
tum spin dynamics with pairwise-tunable, long-range interactions, Proc.
Natl. Acad. Sci. USA 113 (2016), E4946–E4955.

[7] F. D. M. Haldane, Exact Jastrow–Gutzwiller resonating-valence-bond
ground state of the spin-1/2 antiferromagnetic Heisenberg chain with
1/r2 exchange, Phys. Rev. Lett. 60 (1988), 635–638.

[8] B. S. Shastry, Exact solution of an S = 1/2 Heisenberg antiferromag-
netic chain with long-ranged interactions, Phys. Rev. Lett. 60 (1988),
639–642.

[9] F. D. M. Haldane, “Spinon gas” description of the S = 1
2 Heisenberg

chain with inverse-square exchange: exact spectrum and thermodynam-
ics, Phys. Rev. Lett. 66 (1991), 1529–1532.

[10] F. D. M. Haldane, Physics of the ideal semion gas: spinons and quantum
symmetries of the integrable Haldane–Shastry spin chain, in A. Okiji
and N. Kawakami, eds., Correlation Effects in Low-dimensional Elec-
tron Systems, vol. 118 of Springer Series in Solid-state Sciences (1994),
pp. 3–20.

[11] F. D. M. Haldane, “Fractional statistics” in arbitrary dimensions: a
generalization of the Pauli principle, Phys. Rev. Lett. 67 (1991), 937–
940.

[12] H. Azuma and S. Iso, Explicit relation of the quantum Hall effect and
the Calogero–Sutherland model, Phys. Lett. B 331 (1994), 107–113.

[13] E. J. Bergholtz and A. Karlhede, Quantum Hall circle, J. Stat. Mech.-
Theory E. 2014 (2014), P04015(12).

[14] C. W. J. Beenakker and B. Rajaei, Exact solution for the distribution
of transmission eigenvalues in a disordered wire and comparison with
random-matrix theory, Phys. Rev. B 49 (1994), 7499–7510.

[15] M. Caselle, Distribution of transmission eigenvalues in disordered wires,
Phys. Rev. Lett. 74 (1995), 2776–2779.

[16] J. I. Cirac and G. Sierra, Infinite matrix product states, conformal
field theory, and the Haldane–Shastry model, Phys. Rev. B 81 (2010),
104431(4).



✐

✐

“3-GonzalezLopez” — 2023/12/18 — 23:52 — page 3011 — #49
✐

✐

✐

✐

✐

✐

Open supersymmetric Haldane–Shastry chain 3011

[17] A. E. B. Nielsen, J. I. Cirac and G. Sierra, Quantum spin Hamiltonians
for the su(2)k WZW model, J. Stat. Mech.-Theory E. 2011 (2011),
P11014(39).

[18] R. Bondesan and T. Quella, Infinite matrix product states for long-range
SU(N) spin models, Nucl. Phys. B 886 (2014), 483–523.

[19] H.-H. Tu, A. E. B. Nielsen and G. Sierra, Quantum spin models for
the SU(n)1 Wess–Zumino–Witten model, Nucl. Phys. B 886 (2014),
328–363.

[20] B. Sutherland, Exact results for a quantum many-body problem in one
dimension. II, Phys. Rev. A 5 (1972), 1372–1376.

[21] Z. N. C. Ha and F. D. M. Haldane,Models with inverse-square exchange,
Phys. Rev. B 46 (1992), 9359–9368.

[22] A. P. Polychronakos, Lattice integrable systems of Haldane–Shastry
type, Phys. Rev. Lett. 70 (1993), 2329–2331.

[23] A. P. Polychronakos, Exact spectrum of SU(n) spin chain with inverse-
square exchange, Nucl. Phys. B 419 (1994), 553–566.
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Shastry spin chains of BCN type, Nucl. Phys. B 707 (2005), 553–576.

[48] J. C. Barba, F. Finkel, A. González-López and M. A. Rodŕıguez, An
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