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Chemical kinetics, Markov chains, and

the imaginary Itô interpretation
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The abstract chemical reaction

A+A→ ∅,

understood as a Markov chain in continuous time, has been studied
in the physical literature for several years. It has been claimed
that this reaction can be described by means of the stochastic
differential equation

dϕ = −ϕ2dt+ i ϕ dWt,

where i is the imaginary unit. This affirmation is, at least, intrigu-
ing, and has led to controversy and criticisms in the literature. The
goal of this work is to give partial evidence that such a description
may be possible.
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1. Introduction

The abstract chemical reaction

(1) A+A
λ−→ ∅,

denotes in the physical literature a continuous time Markov chain with an
infinite state space {n},
n ∈ N ∪ {0}, and which probability distribution is described by the differen-
tial equation

(2)
d

dt
Pn(t) =

λ

2
[(n+ 2)(n+ 1)Pn+2(t)− n(n− 1)Pn(t)].

The explicit solution of this forward Kolmogorov or master equation is well
known since long ago [30, 31]. Despite of this fact, or perhaps as a conse-
quence of it, research regarding this particular Markov chain has grown since
then. One of the most intriguing affirmations regarding this Markov process
is its equivalence to the solution of the stochastic differential equation (SDE)

(3) dϕ = −ϕ2dt+ i ϕ dWt,

where i is the imaginary unit, after the rescaling of time t→ t/λ has been
performed. It is clear that at least two facts can be surprising in this claim;
first, we are moving from a discrete space state in (2) to a continuous one
in (3) while claiming they are both equivalent, and not just an approxima-
tion of one another (despite of the fact that this equation is reminiscent of
a continuum limit of the Markov chain, see Appendix A). Second, a purely
jump stochastic process is assimilated to a diffusion in the complex plane.
Of course, the precise meaning of the word equivalence in this context will
be key in unveiling the potential relations between equations (2) and (3),
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if any. Let us start summarizing how this idea appears and develops in the
literature. The use of SDEs with an imaginary diffusion to describe Markov
chains modeling stoichiometric relations dates back to 1977 [20]. Equations
of the type of (3) were developed in the context of the Poisson representa-
tion, which is connected with earlier quantum theory [19]. The same idea
reappeared in [5], where this SDE is derived from equation (2) by means
of formal but sophisticated field-theoretic methods1. This new formalism,
again of quantum-theoretic inspiration, gave an increased popularity to the
use of these equations, which reappeared in the literature many times since
then, like for instance in [6, 7, 13, 22, 25, 27, 34, 45], where this list is not
meant in any sense to be exhaustive. Despite of this popularity, no rigorous
derivations, to the best of our knowledge, are present anywhere; the same
formal field-theoretic or Poisson-representation methods referred to above,
which seem to be equivalent to a large extent [16], are always employed. Al-
though seemingly accepted for years, the description of (2) in terms of (3)
has been recently put into question in [4] and [47]. However, this contrapo-
sition of simultaneously formal, but sophisticated, field-theoretic arguments
does not clarify what is the precise range of validity of equation (3), if any.
Therefore it seems that a careful stochastic analysis of the problem could
serve to clarify under which precise conditions this SDE can be used. The
present paper aims to establish a first step in this direction.

The outline of this work is as follows. In section 2 we summarize previous
approaches that formally derive equation (3) using a quantum mechanical
formalism; we however do not follow exactly the path considered in the
physical literature and construct our own viewpoint of this theory. In sec-
tion 3 we re-derive these results using a more classical approach, that of
generating functions. In section 4 we describe an explicitly solvable exam-
ple of this theory that illustrates its correctness, at least in those cases in
which the noise is real. In section 5 we approach the main issue of our work,
i.e. that of the validity of equation (3) as an exact description of Markov
chain (2), and show evidence that this indeed could be the case. Finally, we
analyze the stochastic dynamics of equation (3) in section 6, which devel-
opments complement those of section 5. Our main conclusions are drawn in
section 7.

1Actually, a stochastic partial differential equation of reaction-diffusion type is
derived. But our SDE follows from the same argument provided a zero-dimensional
system were considered. Also, note the difference in the notations used.
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2. Quantum mechanics of chemical kinetics:

the formal approach

Our objective is to study the abstract chemical reaction

A+A
λ−→ ∅,

understood as a continuous in time Markov chain. We define

Pn(t) dt := probability of having n particles in the time interval [t, t+ dt).

Then clearly Pn ≥ 0 ∀n = 0, 1, 2, . . ., and
∑∞

n=0 Pn = 1. This probability dis-
tribution obeys the following forward Kolmogorov equation

(4)
d

dt
Pn(t) =

λ

2
[(n+ 2)(n+ 1)Pn+2(t)− n(n− 1)Pn(t)].

This differential equation can be regarded as an infinite system of ordinary
differential equations. We will now build an alternative way of approaching
this problem, in the hope it will facilitate its analysis.

2.1. The abstract vector space representation

Our first step will be to build an abstract representation that embodies in
its formulation the elements of the Markov chain. Such a theory is known as
the Doi-Peliti formalism in the physical literature [14, 15, 37, 38]. We start
considering the set of linearly independent vectors B = { |n⟩ : n ∈ N ∪ {0}},
and the vector space they span over the real numbers, which we will hence-
forth denote as R. One can think of this set as the canonical Schauder basis
that spans the space R∞ defined to be the vector space of all sequences
of real numbers. These vectors are the “states” of the physical theory: |j⟩
describes the state of the system that corresponds to the existence of ex-
actly j particles in the Markov chain. The goal of this construction is to
describe the time evolution of the Markov chain in a formalism akin to that
of quantum mechanics. In order to achieve this, this vector space should
be endowed with a scalar product, an operation needed to tackle the prob-
lem of measurements in quantum mechanics. However, this will be somehow
problematic within the present formalism.

Before getting into this issue, we need to add some more structure to
this vector space. We shall define the following operators:
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Definition 1 (Annihilation and creation operators). We define the
action of these linear operators through their action on the elements of the
basis.

• The annihilation operator acts a |n⟩ := n |n− 1⟩ if n ≥ 1 and a |0⟩ :=
0.

• The creation operator acts c |n⟩ := |n+ 1⟩.

The definition of the annihilation and creation operators immediately
implies the following result.

Lemma 1. The commutator of the annihilation and creator operators is
the identity operator

[a, c] ≡ ac− ca = 1.

Proof. Compute

ac |n⟩ = a |n+ 1⟩ = (n+ 1) |n⟩ ,
ca |n⟩ = cn |n− 1⟩ = nc |n− 1⟩ = n |n⟩ ,

and subtract both equations. □

Remark (Combinatorics and operators). We can think of the anni-
hilation as a combinatoric operation. If we are given n particles and about
to annihilate (or for the same purpose remove) one of them, we can do it
in n possible ways with the obvious result of ending up with n− 1 particles.
One can regard this as the combinatoric meaning of a |n⟩ = n |n− 1⟩. On
the contrary, there is only one way to create (or add) a new particle. This
interpretation allows to build an intuitive picture for the non-vanishing com-
mutator: given a set of n particles, there are n+ 1 ways of creating and then
annihilating one particle; however, there are only n ways in which we can
do the same operations in reversed order.

If, as in quantum mechanics, we want the creation and annihilation
operators to be adjoint of each other, i.e. c = a†, we need to endow R with a
scalar product. We assume the elements of B to be pairwise orthogonal and
proceed using the language of quantum mechanics and denoting our scalar
product as ⟨· |·⟩.
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Lemma 2. The normalization condition ⟨0 |0⟩ = 1 implies

⟨m |n⟩ = n! δnm,

where the Kronecker delta

δnm :=

{
1 if n = m
0 if n ̸= m

.

Proof. By definition of an adjoint operator

⟨m| a |n⟩ = ⟨n| a† |m⟩ .

Then

n ⟨m |n− 1⟩ = ⟨n |m+ 1⟩ ,
and by renaming the variable m

n ⟨m− 1 |n− 1⟩ = ⟨n |m⟩ ,

which is valid for n ≥ 1 and m ≥ 1. Imposing ⟨0 |0⟩ = 1 and using orthogo-
nality it is easy to see that ⟨m |n⟩ = n! δnm. □

Remark. First, the Schauder basis B is obviously orthogonal (by construc-
tion of the scalar product) but not orthonormal. Second, the scalar product is
only partially defined on R×R; note its domain is H×H ⊊ R×R, where

H =






|Ψ⟩ =

∞∑

n=0

αn |n⟩ : ∥Ψ∥ :=
(

∞∑

n=0

n! |αn|2
)1/2

<∞






.

However the annihilation operator is not an inner operation in this subset
of R; in other words

a : H −→ H

is not well defined, because

∥a |Ψ⟩ ∥2 =
∞∑

n=0

n! (n+ 1)2 |αn+1|2 =
∞∑

n=1

n!n |αn|2 =
∞∑

n=0

n!n |αn|2

does not need to be finite. Finally, the subspace H does not contain all vectors
of the form |Ψ⟩ =∑∞

n=0 Pn |n⟩, because it is assumed that the sequence of
coefficients Pn belongs only to ℓ1 (since they are probabilities).
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As the remark above shows, the set of states of the form |Ψ⟩ =
∑∞

n=0 Pn |n⟩ cannot be endowed with a Hilbert space structure under
the considered scalar product. Therefore one has to consider the pair
({|Ψ⟩}, ⟨· |·⟩) only as a formal Hilbert space, a subtlety not always remarked
in the physical literature [37]. There is however a way out of this pitfall,
which is exactly the one employed in quantum mechanics: the introduction
of a Gelfand triple [40]. However, given that we are considering the Doi-
Peliti formalism only for the sake of contextualization, we will not explore
this direction in the present work.

The objective of this formalism is to work with the state vectors

(5) |Ψ(t)⟩ :=
∞∑

n=0

Pn(t) |n⟩ ,

where Pn(t) is taken to be the solution of the forward Kolmogorov equa-
tion (4).

Theorem 1. Equation (4) is equivalent to

(6)
d

dt
|Ψ(t)⟩ = λ

2
[1− (a†)2]a2 |Ψ(t)⟩ .

Proof. Using equation (4) we compute

d

dt
|Ψ(t)⟩ =

∞∑

n=0

dPn(t)

dt
|n⟩

=
λ

2

∞∑

n=0

(n+ 2)(n+ 1)Pn+2(t) |n⟩ −
λ

2

∞∑

n=0

n(n− 1)Pn(t) |n⟩

=
λ

2

∞∑

n=0

Pn+2(t)a
2 |n+ 2⟩ − λ

2

∞∑

n=0

Pn(t)(a
†)2a2 |n⟩

=
λ

2

∞∑

n=2

Pn(t)a
2 |n⟩ − λ

2

∞∑

n=2

Pn(t)(a
†)2a2 |n⟩

=
λ

2

∞∑

n=0

Pn(t)[a
2 − (a†)2a2] |n⟩ = λ

2
[1− (a†)2]a2 |Ψ(t)⟩ .

□
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Remark. If we define Ĥ :=
λ

2
[1− (a†)2]a2 we can rewrite (6) as

d

dt
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ ,

which can be seen as a Schrödinger-like formulation. Note that this formu-
lation should be regarded as an evolution in the vector space R (or in its
proper subspace ℓ1 [43]), not in a Hilbert space (see the Remark following
Lemma 2 and the subsequent discussion).

2.2. Coherent states

The next step in the Doi-Peliti formalism is the introduction of the coherent
states.

Definition 2 (Coherent states). For any ϕ ∈ [0,∞), we define the co-
herent state

(7) |ϕ⟩ := e−ϕ
∞∑

n=0

ϕn

n!
|n⟩ .

Remark. Note there is an ambiguity in the notation as |m⟩, m ∈ N ∪ {0},
could denote either a coherent state or an element of B; nonetheless we
believe which one we are referring to should be clear from the context.

Lemma 3. Coherent states are eigenvectors of the annihilation operator.
In particular, the eigenvalue of |ϕ⟩ is ϕ.

Proof. First, note that all coherent states are elements of the vector space
R. Then compute

a |ϕ⟩ = e−ϕ
∞∑

n=0

ϕn

n!
a |n⟩ = e−ϕ

∞∑

n=1

ϕn

(n− 1)!
|n− 1⟩

= ϕ e−ϕ
∞∑

n=1

ϕn−1

(n− 1)!
|n− 1⟩ = ϕ e−ϕ

∞∑

n=0

ϕn

n!
|n⟩ = ϕ |ϕ⟩ .

□
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The coherent state |ϕ⟩, defined in (7), represents a Poisson distribution
with parameter ϕ. At least formally, we can write the integral representation

(8) |Ψ⟩ =
∫ ∞

0
Ψ(ϕ) |ϕ⟩ dϕ,

for some amplitude Ψ(ϕ), where the integral has to be regarded as a Pettis
integral, i.e. the duality product induced by the scalar product does commute
with the integral [44]. This representation could be seen as an expansion of
a state vector in terms of all different Poissonians (and hence the name
Poisson representation [19–21]). Now consider the vector |Ψ⟩ =∑∞

n=0 Pn |n⟩
to find

(9) Pn =
1

n!

∫ ∞

0
ϕn e−ϕΨ(ϕ) dϕ,

which should be regarded as the coordinatewise meaning of (8). It is not
clear that any vector in R can be represented in this form. Our next step
will be to show that actually we need to allow Ψ(ϕ) to take values in a space
of distributions. Let us remind the reader the definition of ℓ1:

ℓ1 :=

{

{αn}∞n=0 ∈ R
∣
∣
∣
∣
∣

∞∑

n=0

|αn| <∞
}

.

Now define the operator

T : L1
+(0,∞) −→ ℓ1

Ψ(ϕ) 7−→ T [Ψ(ϕ)] :=

{
1

n!

∫ ∞

0
ϕn e−ϕΨ(ϕ) dϕ

}∞

n=0

,

where L1
+(0,∞) = {Θ ∈ L1(0,∞) : Θ(·) ≥ 0}. The following result accounts

for the properties of T .

Proposition 1. The operator T is well-defined, linear, continuous, and not
surjective.
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Proof. It is clear that this operator is linear if well-defined. To see it is
well-defined and continuous compute

∥T (Ψ)∥ℓ1 =
∞∑

n=0

1

n!

∣
∣
∣
∣

∫ ∞

0
ϕn e−ϕΨ(ϕ) dϕ

∣
∣
∣
∣
=

∞∑

n=0

1

n!

∫ ∞

0
ϕn e−ϕ |Ψ(ϕ)| dϕ

=

∫ ∞

0

∞∑

n=0

1

n!
ϕn e−ϕ |Ψ(ϕ)| dϕ =

∫ ∞

0
|Ψ(ϕ)| dϕ = ∥Ψ∥L1 <∞,

where we have used the monotone convergence theorem in order to commute
the integral and the sum.

To show that T is not surjective, we will show that there is no L1
+ func-

tion which image is e0 = (1, 0, 0, 0....) (≡ |0⟩). Lets proceed by contradiction:
suppose that there exists such a function Ψ0 ∈ L1

+(0,∞) with T (Ψ0) = e0,
then

1

n!

∫ ∞

0
ϕn e−ϕΨ0(ϕ) dϕ = δn0,

or equivalently
∫ ∞

0
ϕn e−ϕΨ0(ϕ) dϕ = δn0.

Therefore for any polynomial P (ϕ) we have
∫ ∞

0
P (ϕ) e−ϕΨ0(ϕ) dϕ = P (0),

which implies

|P (0)| ≤
∫ ∞

0
|P (ϕ)| e−ϕΨ0(ϕ) dϕ.

Writing P (ϕ) =
∑N

n=0 αnϕ
n for αn ∈ R, yields

|P (ϕ)| ≤
N∑

n=0

|αn|ϕn =: Q(ϕ) ∀ϕ ≥ 0.

As Q(ϕ) is a polynomial and Q(0) = |α0| = |P (0)| then, following our as-
sumption,

∫ ∞

0
|P (ϕ)| e−ϕΨ0(ϕ) dϕ ≤

∫ ∞

0
Q(ϕ) e−ϕΨ0(ϕ) dϕ = Q(0) = |P (0)|,

which in turn implies

(10)

∫ ∞

0
|P (ϕ)| e−ϕΨ0(ϕ) dϕ = |P (0)|
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for all P polynomials.
Now assume f(ϕ) ∈ Cc(R+) and compute

∫ ∞

0
f(ϕ) e−ϕΨ0(ϕ) dϕ =

∫ L

0
f(ϕ) e−ϕΨ0(ϕ) dϕ

=

∫ L

0
P (ϕ) e−ϕΨ0(ϕ) dϕ+

∫ L

0
[f(ϕ)− P (ϕ)] e−ϕΨ0(ϕ) dϕ

≤
∫ L

0
|P (ϕ)| e−ϕ |Ψ0(ϕ)| dϕ+

∫ L

0
|f(ϕ)− P (ϕ)| e−ϕ |Ψ0(ϕ)| dϕ

≤
∫ ∞

0
|P (ϕ)| e−ϕ |Ψ0(ϕ)| dϕ+

∫ L

0
|f(ϕ)− P (ϕ)| e−ϕ |Ψ0(ϕ)| dϕ

≤ |P (0)|+ ∥f(ϕ)− P (ϕ)∥L∞(0,L)∥Ψ0(ϕ)∥L1(0,∞)

= |P (0)− f(0)|+ ∥f(ϕ)− P (ϕ)∥L∞(0,L)∥Ψ0(ϕ)∥L1(0,∞),

where L > 0 is large enough so [0, L] contains the support of f(ϕ) and we
have used that f(0) = 0. The Weierstrass approximation theorem, together
with (10), assures us that we can choose a polynomial P (ϕ) such that

∫ ∞

0
f(ϕ) e−ϕΨ0(ϕ) dϕ ≤ ϵ ∀ ϵ > 0.

An analogous argument yields the reversed inequality, so we conclude

∫ ∞

0
f(ϕ) e−ϕΨ0(ϕ) dϕ = 0,

and this equality holds for any f(ϕ) ∈ Cc(R+). This implies that Ψ0(ϕ) = 0
a.e., and hence a contradiction. □

Remark. This proposition, in particular, states that the set of L1
+(0,∞)

functions is not sufficient to describe the space ℓ1 completely via the repre-
sentation (8).

Although we do not have a clear characterization of the Poisson repre-
sentation we move forward to introduce time dependence in it:

|Ψ(t)⟩ =
∫ ∞

0
Ψ(ϕ, t) |ϕ⟩ dϕ.

In order to partially characterize the time evolution of this amplitude we
need the following technical result.
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Lemma 4. The coherent states fulfill the following properties

a |ϕ⟩ = ϕ |ϕ⟩ ,

a† |ϕ⟩ =
(

1 +
∂

∂ϕ

)

|ϕ⟩ .

Proof. The first property was already proven in Lemma 3. To find the second
compute

a† |ϕ⟩ = e−ϕ
∞∑

n=0

ϕn

n!
a† |n⟩ = e−ϕ

∞∑

n=0

ϕn

n!
|n+ 1⟩

= e−ϕ ∂

∂ϕ

∞∑

n=0

ϕn+1

(n+ 1)!
|n+ 1⟩ = e−ϕ ∂

∂ϕ

∞∑

n=1

ϕn

n!
|n⟩

= e−ϕ ∂

∂ϕ

∞∑

n=0

ϕn

n!
|n⟩ =

(

1 +
∂

∂ϕ

)(

e−ϕ
∞∑

n=0

ϕn

n!
|n⟩
)

=

(

1 +
∂

∂ϕ

)

|ϕ⟩ .

□

Now we are ready to partially characterize the time evolution of the
amplitude Ψ(ϕ, t) by means of a partial differential equation.

Theorem 2. If Ψ(ϕ, t) is a bounded C1(0,∞;C2(0,∞)) solution to the
partial differential equation

(11)
∂Ψ

∂t
=

λ

2

(

2
∂

∂ϕ
− ∂2

∂ϕ2

)
(
ϕ2Ψ

)
for t > 0 and ϕ ∈ (0,∞),

then Pn(t) defined by (9) satisfies (4).

Proof. From equation (9) we have

d

dt
Pn(t) =

1

n!

∫ ∞

0

∂Ψ(ϕ, t)

∂t
e−ϕϕndϕ,

or alternatively in vector form

d

dt
|Ψ(t)⟩ =

∫ ∞

0

∂Ψ(ϕ, t)

∂t
|ϕ⟩ dϕ.
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By Theorem 1 equation (4) is equivalent to (6), and so

d

dt
|Ψ(t)⟩ = λ

2
[1− (a†)2]a2 |Ψ(t)⟩ = λ

2

∫ ∞

0
Ψ(ϕ, t)[1− (a†)2]a2 |ϕ⟩ dϕ

=
λ

2

∫ ∞

0
Ψ(ϕ, t)[1− (a†)2]ϕ2 |ϕ⟩ dϕ

=
λ

2

∫ ∞

0
ϕ2Ψ(ϕ, t)[1− (a†)2] |ϕ⟩ dϕ

= −λ

2

∫ ∞

0
ϕ2Ψ(ϕ, t)

(

2
∂

∂ϕ
+

∂2

∂ϕ2

)

|ϕ⟩ dϕ

=
λ

2

∫ ∞

0

(

2
∂

∂ϕ
− ∂2

∂ϕ2

)
[
ϕ2Ψ(ϕ, t)

]
|ϕ⟩ dϕ,

where the last step has to be understood componentwise, using the integra-
tion by parts,

− λ

2

∫ ∞

0
ϕ2Ψ(ϕ, t)

(

2
∂

∂ϕ
+

∂2

∂ϕ2

)(

ϕn e−ϕ
)

dϕ

=
λ

2

∫ ∞

0

(

2
∂

∂ϕ
− ∂2

∂ϕ2

)
[
ϕ2Ψ(ϕ, t)

]
ϕn e−ϕdϕ.

Therefore

∫ ∞

0

[
∂Ψ

∂t
− λ

2

(

2
∂

∂ϕ
− ∂2

∂ϕ2

)
(
ϕ2Ψ

)
]

|ϕ⟩ dϕ = 0,

i.e.
∫ ∞

0

[
∂Ψ

∂t
− λ

2

(

2
∂

∂ϕ
− ∂2

∂ϕ2

)
(
ϕ2Ψ

)
]

ϕn e−ϕdϕ = 0.

□

We can rewrite equation (11) in the following way

(12)
∂Ψ

∂t
= λ

(
∂

∂ϕ
+

i2

2

∂2

∂ϕ2

)
(
ϕ2Ψ

)
,

where i is the imaginary unit. If we formally regarded this equation as a
Fokker-Planck equation, we could be tempted to study the formally associ-
ated SDE

(13) dϕ = −ϕ2dt+ i ϕ dWt,
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obtained after rescaling time t→ t/λ. We call this apparently magic step,
which we have found nowhere justified within the framework of probability
theory, the imaginary Itô interpretation of equation (11). Before continuing
it is important to highlight the following facts:

• Equation (11) (in its original formulation or written in the form (12))
is not a Fokker-Planck equation, since it has negative diffusion [42].

• Equation (11) is a backward diffusion equation and therefore ill-posed
if considered forward in time, at least if the problem is posed in usual
functional spaces [41].

• Nevertheless (11) could possibly be considered as a well-posed equation
in a suitable distributional space [1]. This of course would make Ψ
distribution-valued and therefore not interpretable as a probability
measure. We illustrate this fact by means of an explicit solution in
Appendix C.

Although it looks like the imaginary Itô interpretation is a purely formal
and possibly ill-defined step, our present objective is to show that this is not
always the case and that equation (13) could represent the Markov process
described by (4) in a certain sense.

3. Generating functions: a classical approach

In this section we consider an alternative approach based on generating
functions [48]. This theory is closely related to the previous one, but perhaps
one could say that it uses a more standard mathematical machinery. First
of all we note the following equivalences:







|n⟩ ←→ xn,

a ←→ d

dx
(·) ,

a† ←→ x× (·) .

It is clear that this formalism is coherent with the one introduced previously
due to the properties:

{
d

dx
xn = nxn−1,

x · xn = xn+1.
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Also the value for the commutator follows directly

[
d

dx
, x

]

= 1.

The “state” of our physical system will now be encoded in an analytic func-
tion

G(x) :=

∞∑

n=0

Pn x
n,

where Pn are the probabilities and hence Pn ≥ 0 for all n ∈ N ∪ {0} and
∑∞

n=0 Pn = 1. Clearly, G ∈ Cω (−1, 1) ∩ C [−1, 1], i.e. G is analytic in the
open interval and continuous in its closure. It is also possible to consider G
as a function of a complex variable z ∈ S1 and in that case G would be a
holomorphic function in the complex open unit disk with continuous closure
in S1.

We can move to the time-dependent formalism via the introduction of
the time-dependent generating function

(14) G(t, x) :=

∞∑

n=0

Pn(t)x
n for t ≥ 0 and x ∈ [−1, 1] ,

which is an analog of (5).

Theorem 3. The time-dependent generating function (14) satisfies the par-
tial differential equation

(15)
∂G

∂t
=

λ

2

(
1− x2

) ∂2G

∂x2
for t > 0 and x ∈ (−1, 1)

if and only if Pn(t) satisfies the forward Kolmogorov equation (4).
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Proof. By means of equation (4) and for x ∈ (−1, 1) we have

∂

∂t
G(x, t) =

∞∑

n=0

dPn(t)

dt
xn

=
λ

2

∞∑

n=0

(n+ 2)(n+ 1)Pn+2(t)x
n − λ

2

∞∑

n=0

n(n− 1)Pn(t)x
n

=
λ

2

∞∑

n=0

Pn+2(t)
d2

dx2
xn+2 − λ

2

∞∑

n=0

Pn(t)x
2 d2

dx2
xn

=
λ

2

∞∑

n=2

Pn(t)
d2

dx2
xn − λ

2

∞∑

n=2

Pn(t)x
2 d2

dx2
xn

=
λ

2

∞∑

n=0

Pn(t)

(
d2

dx2
− x2

d2

dx2

)

xn

=
λ

2

(
1− x2

) ∂2

∂x2

∞∑

n=0

Pn(t)x
n =

λ

2

(
1− x2

) ∂2

∂x2
G(x, t).

Notice that for x ∈ (−1, 1) the series in (14) and the corresponding series
for the derivatives with respect to x and t are absolutely convergent and,
hence, we can interchange the order of differentiation and summation. □

Remark. The result in Theorem 3 is the analog of the result in Theorem 1.
This result is extended to any arbitrary reaction in Appendix B.

It is important to note that from the initial conditions for Pn, i.e. Pn(0),
we obtain only the initial value G(0, x) =

∑∞
n=0 Pn(0)x

n for equation (15),
but not the boundary conditions. The lack of boundary conditions comes
from the degeneration of the elliptic operator in (15) at the boundary, which
prevents the evolution of the boundary values. This fact has a probabilistic
meaning too, as it encodes the existence of two conserved quantities:

• Conservation of probability : G(t, 1) = 1 for all t ≥ 0.

• Conservation of parity : G(t,−1) = ℘ for all t ≥ 0, where ℘ =
∑∞

n=0 P2n(0)−
∑∞

n=0 P2n+1(0).

While the existence of the first conserved quantity is ensured for every type
of reactions, the existence of the second one is a particular consequence of
the structure of the binary annihilation A+A→ ∅. Its intuitive meaning
becomes clear when we consider an initial condition of the type δnm, i.e.
the initial number of particles is fixed for every realization of the stochastic
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process. Then ℘ = 1 if m is even and ℘ = −1 if m is odd. In the same way, if
Pn(0) > 0 for some even and odd values of n, then the probability of finding
an even or odd number of particles at an arbitrary time is the same as
initially (provided we assume that 0 is an even number).

One of the advantages of the formalism of generating functions is that
it allows us to recover, in a direct way, the probabilities

Pn(t) =
1

n!

∂nG

∂xn
(t, 0),

as well as the cumulants

E [n(n− 1) · · · (n−m+ 1)] (t) =
∂mG

∂xm
(t, 1).

However, in order to connect the theory related to the generating functions
to the one described in the previous section, we need to define the corre-
sponding coherent generating function.

Definition 3 (Coherent generating function). For any parameter ϕ ∈
[0,∞), we define the coherent generating function G : R −→ (0,∞) as

Gϕ(x) := eϕ(x−1).

Remark. Notice the relation between the definition of the coherent gener-
ating function, Definition 3, and the definition of coherent states in Defini-
tion 2.

Then the analog to the representation (8) in the context of generating
functions is given by

G(t, x) =

∫ ∞

0
Ψ(t, ϕ) eϕ(x−1) dϕ(16)

for t ≥ 0 and x ∈ [−1, 1], with Ψ(t, ·) ∈ L1(0,∞).

Using equation (15) for G we can determine the equation for the amplitude
Ψ, and hence further illustrate the form for G considered in (16).

Theorem 4. If Ψ ∈ C1([0,∞) ;C2(0,∞) ∩ L1(0,∞)), with Ψ(t, ϕ) bounded
in ϕ for all t, is a solution of equation (11), then G ∈ C1(0,∞;C∞(−1, 1)) ∩
C([0,∞);C[−1, 1]), given by (16), satisfies equation (15).



✐

✐

“4-Escudero” — 2023/12/24 — 23:35 — page 3034 — #18
✐

✐

✐

✐

✐

✐
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Proof. Notice that for x ∈ (−1, 1) the integral in (16), together with its
derivatives with respect to x (of first and second order) and t (of first order),
are well-defined. Then formula (16) implies

∂

∂t
G(t, x) =

∫ ∞

0

∂Ψ(t, ϕ)

∂t
eϕ(x−1) dϕ.

Since Ψ is a solution of (11), we obtain for x ∈ (−1, 1) that

∂

∂t
G(t, x) =

λ

2

∫ ∞

0

(

2
∂

∂ϕ
− ∂2

∂ϕ2

)
[
ϕ2Ψ(t, ϕ)

]
eϕ(x−1) dϕ

= −λ

2

∫ ∞

0
ϕ2Ψ(t, ϕ)

(

2
∂

∂ϕ
+

∂2

∂ϕ2

)

eϕ(x−1) dϕ

=
λ

2

∫ ∞

0
Ψ(t, ϕ)

(
1− x2

)
ϕ2 eϕ(x−1) dϕ

=
λ

2

∫ ∞

0
Ψ(t, ϕ)

(
1− x2

) ∂2

∂x2
eϕ(x−1) dϕ

=
λ

2

(
1− x2

) ∂2

∂x2
G(t, x).

Notice that for x ∈ (−1, 1) and ϕ ∈ [0,∞) we have that the terms
ϕ2Ψ(t, ϕ)eϕ(x−1), ϕ2∂ϕΨ(t, ϕ)eϕ(x−1), ϕΨ(t, ϕ)eϕ(x−1), and ϕ2Ψ(t, ϕ)(x−
1)2eϕ(x−1) converge to 0 as ϕ→ +∞, for all t > 0. Hence all boundary terms
obtained due to integration by parts vanish. Regularity for G follows from
(16) and the regularity for Ψ. □

Notice that despite the singular character of (11), which prevents the
construction of a classical existence and uniqueness theory, such a theory
can be built for equation (15). We start by defining the weighted Sobolev
space H1

ρ (−1, 1) as

H1
ρ (−1, 1) =

{

v ∈ L2(−1, 1) :
√

1− x2
∂v

∂x
∈ L2(−1, 1)

}

.

We first state the uniqueness result.

Theorem 5. Consider G0 ∈ L2(−1, 1) and ℘ ∈ R. There exists at most
one solution
G ∈ C(0,∞;L2(−1, 1)) ∩ L2

loc(0,∞;H1
ρ (−1, 1)), with G(·, 1), G(·,−1) ∈
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L2
loc(0,∞), of the problem

(17)







∂G

∂t
=

λ

2

(
1− x2

) ∂2G

∂x2
for t > 0 and x ∈ (−1, 1),

G(0, x) = G0(x) for x ∈ (−1, 1),
G(t, 1) = 1, G(t,−1) = ℘ for t > 0.

Proof. Assume that there are two solutions G1 and G2 of (17). Then G =
G1 −G2 satisfies

∫ 1

−1
|G(τ, x)|2dx+ λ

∫ τ

0

∫ 1

−1

(

(1− x2)
∣
∣∂xG(t, x)

∣
∣2 + |G(t, x)|2

)

dxdt

=

∫ 1

−1
|G(0, x)|2dx+ λ

∫ τ

0

(
|G(t, 1)|2 + |G(t,−1)|2

)
dt

for τ ∈ (0,∞). Here we used that

(1− x2)
∂2G

∂2x
=

∂

∂x

(

(1− x2)
∂G

∂x

)

+ 2x
∂G

∂x
,

2x
∂G

∂x
G =

∂

∂x

(
x|G|2

)
− |G|2.

Then G(0, x) = 0 for x ∈ (−1, 1), and G(t, 1) = 0, G(t,−1) = 0 for t > 0
yield

∫ 1

−1
|G(τ, x)|2dx+ λ

∫ τ

0

∫ 1

−1

[

(1− x2)
∣
∣∂xG(t, x)

∣
∣
2
+ |G(t, x)|2

]

dxdt = 0

for any τ > 0. Thus we obtain that G(t, x) = 0, and hence G1(t, x) =
G2(t, x), for t ≥ 0 and x ∈ [−1, 1]. □

Now we move to the problem of existence.

Theorem 6. Assume that G0 ∈ L2(−1, 1) and ℘ ∈ R. Then there
exists a solution G ∈ C(0,∞;L2(−1, 1)) ∩ L2

loc(0,∞;H1
ρ (−1, 1)), with

∂tG ∈ L2
loc(0,∞;H−1(−1, 1)), of problem (17). If G0 ∈ H1(−1, 1)

then ∂xG ∈ L2
loc(0,∞;H1

ρ (−1, 1)), G ∈ C(0,∞;H1(−1, 1)), and
∂tG ∈ L2

loc(0,∞;L2(−1, 1)).

Proof. Applying the Galerkin method, together with a priori estimates de-
rived below, ensures the existence of a solution G ∈ C(0,∞;L2(−1, 1)) ∩
L2(0,∞;H1

ρ (−1, 1)) of problem (17).
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Considering G as a test function for equation in (17) we obtain

∫ 1

−1
|G(τ, x)|2dx+ λ

∫ τ

0

∫ 1

−1

(

(1− x2)
∣
∣∂xG(t, x)

∣
∣2 + |G(t, x)|2

)

dxdt

=

∫ 1

−1
|G(0, x)|2dx+ λ

∫ τ

0

(
|G(t, 1)|2 + |G(t,−1)|2

)
dt, for τ ∈ (0,∞).

Thus the assumptions on initial and boundary conditions ensure

sup
t∈(0,T )

∫ 1

−1
|G(t, x)|2dx+

∫ T

0

∫ 1

−1
(1− x2)

∣
∣∂xG(t, x)

∣
∣2dxdt ≤ C

for any T > 0 and a constant C > 0. Then from equation (17) we also obtain
that

∥∂tG∥L2(0,T ;H−1(−1,1)) ≤ C.

Differentiating the equation in (17) with respect to x and taking ∂xG as a
test function we obtain

∫ 1

−1
|∂xG(τ, x)|2dx+ λ

∫ τ

0

∫ 1

−1
(1− x2)

∣
∣∂2

xG(t, x)
∣
∣2dxdt =

∫ 1

−1
|∂xG(0, x)|2dx

for τ > 0.
Then if G0 ∈ H1(−1, 1) we obtain ∂xG ∈ L∞(0, T ;L2(−1, 1)) and√

1− x2 ∂2
xG ∈ L2(0, T ;L2(−1, 1)) for any T ∈ (0,∞). From equation

in (17) we obtain also that ∂tG ∈ L2(0, T ;L2(−1, 1)) and ∂t∂xG ∈
L2(0, T ; (H1(−1, 1))′) for all T > 0. Hence G ∈ C(0,∞;H1(−1, 1)). □

4. Imagine the noise were real

In order to perform a step forward towards the understanding of the coherent
representation we will analyze simpler reaction schemes that do not produce
an imaginary noise within the framework of coherent state PDEs. We start
with the simpler case in which no noise is present and subsequently move to
the case of real noise.

4.1. No noise

Consider the abstract reaction

A
λ−→ ∅.
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The corresponding forward Kolmogorov equation reads

dPn

dt
= λ{(n+ 1)Pn+1 − nPn}.

If we introduce the generating function

G(t, x) =

∞∑

n=0

Pn(t)x
n,

it is easy to show that G satisfies the equation

(18)
∂G

∂t
= λ(1− x)

∂G

∂x
.

Solution of (18), subject to the initial condition G(0, x) = G0(x) and the
boundary condition G(t, 1) = 1 (that comes from the conservation of the
total probability), reads

G(t, x) = G0

(

1 + (x− 1)e−λt
)

.

On the other hand, the Poisson representation of the generating function
is given by

G(t, x) =

∫ ∞

0
Ψ(t, ϕ)eϕ(x−1)dϕ.

The corresponding equation of motion for the amplitude Ψ reads

(19)
∂Ψ

∂t
= λ

∂

∂ϕ
(ϕΨ).

This equation can be solved by the method of characteristics, which yields
the ODE

(20)
dϕ

dt
= −λϕ.

Then the solution to equation (19) reads

Ψ(t, ϕ) = eλtΨ0(ϕe
λt),

and thus

G(t, x) =

∫ ∞

0
eλtΨ0(ϕe

λt)eϕ(x−1)dϕ,
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which yields

G(t, x) = G0

(

1 + (x− 1)e−λt
)

,

after taking into account that

G0(x) =

∫ ∞

0
Ψ0(ϕ)e

ϕ(x−1)dϕ.

Remark. We finish this subsection with two conclusions:

• The equivalence of equations (18) and (19) suggests the correctness of
the procedure.

• Equation (20) plays the role of equation (13) in the previous sections,
but in this case it has being well derived using the method of charac-
teristics.

4.2. Real noise

Consider now the set of reactions

A
α−→ ∅,

∅ β−→ A,

A
γ−→ A+A,

which can be described via the forward Kolmogorov equation

dPn

dt
= γ[(n− 1)Pn−1 − nPn] + β(Pn−1 − Pn) + α[(n+ 1)Pn+1 − nPn].

For the sake of analytical tractability we will make the choice α = γ = β.
Then we find the equation

α−1∂G

∂t
= (x− 1)G+ (x− 1)2

∂G

∂x
= (x− 1)

∂

∂x
((x− 1)G) ,

to be solved for the generating function G, together with initial condition
G(0, x) = G0(x) and boundary condition G(t, 1) = 1. Solution of this prob-
lem can be computed with the method of characteristics and it reads

(21) G(t, x) =
1

1− αt(x− 1)
G0

(
x− αt(x− 1)

1− αt(x− 1)

)

.
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The amplitude Ψ obeys the equation

α−1∂tΨ = ∂ϕ(ϕ∂ϕΨ) = −∂ϕΨ+ ∂2
ϕ(ϕΨ),

which is the Fokker-Planck equation that corresponds to the SDE

dϕ = αdt+
√

2αϕdWt,

the unique solution of which is a time-rescaled Squared Bessel process of
dimension δ = 2 [26], which implies, among other things, that its density Ψ
is smooth [10]. From the coherent transform we can recover the generating
function

(22) G(t, x) =

∫ ∞

0
eϕ(x−1)Ψ(t, ϕ)dϕ.

It is important to note that the differential operator A(·) = ∂ϕ[ϕ∂ϕ(·)] is
symmetric. To see the importance of this fact define ξ(t, ϕ) to be the solution
of the Cauchy problem

α−1∂tξ(t, ϕ) = A(ξ) = ∂ϕ(ϕ∂ϕξ),

ξ(0, ϕ) = eϕ(x−1),

which can be solved to yield

ξ(t, ϕ) =
1

1− αt(x− 1)
e

φ(x−1)

1−αt(x−1) .

Now we claim that the integral

I(t, s) =

∫ ∞

0
ξ(t− s, ϕ)Ψ(s, ϕ)dϕ

is independent of s.
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To see this, take the derivative of I with respect to s to obtain

α−1 d

ds
I(t, s) = −

∫ ∞

0
α−1∂tξ(t− s, ϕ)Ψ(s, ϕ)dϕ

+

∫ ∞

0
α−1ξ(t− s, ϕ)∂sΨ(s, ϕ)dϕ

= −
∫ ∞

0
(Aξ) (t− s, ϕ)Ψ(s, ϕ)dϕ

+

∫ ∞

0
ξ(t− s, ϕ) (AΨ) (s, ϕ)dϕ

=

∫ ∞

0
ξ(t− s, ϕ)

(
A−AT

)
Ψ(s, ϕ)dϕ = 0.

In particular,

∫ ∞

0
eϕ(x−1)Ψ(t, ϕ)dϕ =

∫ ∞

0
ξ(t, ϕ)Ψ0(ϕ)dϕ.

As a consequence we can compute, using (22),

G(t, x) =
1

1− αt(x− 1)

∫ ∞

0
e

φ(x−1)

1−αt(x−1)Ψ0(ϕ)dϕ

=
1

1− αt(x− 1)

∫ ∞

0
e
ϕ
(

x−αt(x−1)

1−αt(x−1)
−1

)

Ψ0(ϕ)dϕ

=
1

1− αt(x− 1)
G0

(
x− αt(x− 1)

1− αt(x− 1)

)

,

which is in perfect agreement with (21). Note that this last result makes sense
even if Ψ0 is not a probability measure. This again suggests two conclusions:

• The procedure gives again correct results, but the SDE has been de-
rived correctly within the framework of stochastic analysis.

• The correctness of the method even for Ψ0 not being a probability
measure suggests that the equation for Ψ is more general than the
SDE.

A similar derivation, but formal from the viewpoint of our theory, is pre-
sented in Appendix D to illustrate the robustness of this type of computa-
tions.
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5. Imaginary noise is not unreal

In this section we point out the fact that there might be a connection between
the complex SDE (3) and the solution to (2) deeper than the already stated
relation between the respective moments [19–21]; see also Lemma 6 below.
A generalization of (11) is the following one-dimensional negative-diffusion
Fokker-Planck-like equation

∂Ψ

∂t
= − ∂

∂ϕ

(

A(ϕ)Ψ
)

− 1

2

∂2

∂ϕ2

(

D2(ϕ)Ψ
)

,

where A(ϕ) and D(ϕ) are polynomials.
As we have already seen, we have to expect a distribution to be the

solution of such a partial differential equation. In order to move forward, it
will be more convenient to employ the complex analytic representation of
distributions [12]. Let us denote by H (·) the class of holomorphic functions
on a given domain, it can then be proved that, see Theorem 2.2.10 in [12],

Theorem 7 (Analytic representation of distributions). For every
Ψ ∈ C∞

c (R)′ there exists a {Ψ}a ∈ H (C\R) such that for all f ∈ C∞
c (R),

⟨Ψ|f⟩ = lim
ϕ2→0+

∫ ∞

−∞

(

{Ψ}a (ϕ1 + iϕ2)− {Ψ}a (ϕ1 − iϕ2)
)

f(ϕ1)dϕ1,

where ⟨·|·⟩ represents the duality product between C∞
c (R) and C∞

c (R)′.

Note that this representation is not unique as any {Ψ}a ∈ H (C) leads to
the trivial distribution, see e.g. [28]. We focus now on the following analytical
representation.

Definition 4 (Cauchy representation). For every Ψ ∈ C∞(R)′ we de-
fine its Cauchy representation as

{Ψ}a (ϕ) :=
1

2πi

〈

Ψ(s)

∣
∣
∣
∣
∣

1

s− ϕ

〉

s

,

where ϕ ∈ C\R.

Remark. It is possible to prove that {Ψ}a (ϕ) is always well-defined in
H (C\R) [12]. Whenever Ψ ∈ Cc(R) its Cauchy representation can be written
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as the integral

{Ψ}a (ϕ) =
1

2πi

∫ +∞

−∞

Ψ(s)

s− ϕ
ds.

Clearly, when Ψ ∈ C∞ (R)′ \Cc(R), the duality product in Definition 4 is
well defined, but the integral is not necessarily so.

A paradigmatic example of Cauchy representation is that of the n−th
derivative of the Dirac delta:

If Ψ = δ
(n)
0 then {Ψ}a (ϕ) =

1

2πi

(−1)n+1n!

ϕn+1
.

Proposition 2. Let {Ψ}a ∈ H (C\R) be the Cauchy representation of a
(compactly-supported) distribution Ψ ∈ C∞ (R)′. Then:

• {P(s)Ψ(s)}a = P(ϕ){Ψ}a(ϕ) in H (C\R) /H (C) and

•
{
∂mΨ(s)

∂sm

}

a

=
∂m{Ψ(ϕ)}a

∂ϕm
in H (C\R) /H (C),

where ϕ ∈ C\R, s ∈ R, P is an arbitrary polynomial, and m an arbitrary
positive integer.

Proof. It is clear that all expressions in the statement are well-defined. Now,
to prove the first property it is enough to show that the equality is true for
P being an arbitrary monomial, say ϕn. The case n = 0 is trivial, for n = 1
compute

ϕ{Ψ}a(ϕ) =
1

2πi

〈

Ψ(s)

∣
∣
∣
∣
∣

ϕ

s− ϕ

〉

s

=
1

2πi

〈

Ψ(s)

∣
∣
∣
∣
∣

s− (s− ϕ)

s− ϕ

〉

s

=
1

2πi

〈

sΨ(s)

∣
∣
∣
∣
∣

1

s− ϕ

〉

s

− 1

2πi

〈

Ψ(s)

∣
∣
∣
∣
∣
1

〉

s

= {sΨ(s)}a −
1

2πi

〈

Ψ(s)

∣
∣
∣
∣
∣
1

〉

s
︸ ︷︷ ︸

∈H(C)

.



✐

✐

“4-Escudero” — 2023/12/24 — 23:35 — page 3043 — #27
✐

✐

✐

✐

✐

✐

Chemical kinetics, Markov chains 3043

The case n > 1 follows from the following computations:

ϕn{Ψ}a(ϕ) =
1

2πi

〈

Ψ(s)

∣
∣
∣
∣
∣

ϕn

s− ϕ

〉

s

=
1

2πi

〈

Ψ(s)

∣
∣
∣
∣
∣

sn − (sn − ϕn)

s− ϕ

〉

s

=
1

2πi

〈

snΨ(s)

∣
∣
∣
∣
∣

1

s− ϕ

〉

s

− 1

2πi

〈

Ψ(s)

∣
∣
∣
∣
∣

sn − ϕn

s− ϕ

〉

s

= {snΨ(s)}a −
1

2πi

n−1∑

m=0

ϕn−1−m

〈

Ψ(s)

∣
∣
∣
∣
∣
sm

〉

s
︸ ︷︷ ︸

∈H(C)

.

To prove the second property we proceed by induction, commencing with
the case m = 1:

∂

∂ϕ
{Ψ}a(ϕ) =

1

2πi

〈

Ψ(s)

∣
∣
∣
∣
∣

∂

∂ϕ

1

s− ϕ

〉

s

=
−1
2πi

〈

Ψ(s)

∣
∣
∣
∣
∣

∂

∂s

1

s− ϕ

〉

s

=
1

2πi

〈

Ψ′(s)

∣
∣
∣
∣
∣

1

s− ϕ

〉

s

=

{
∂Ψ(s)

∂s

}

a

.

For the general case we use the induction hypothesis to find

∂m+1

∂ϕm+1
{Ψ}a(ϕ) =

1

2πi

〈

∂mΨ(s)

∂sm

∣
∣
∣
∣
∣

∂

∂ϕ

1

s− ϕ

〉

s

=
−1
2πi

〈

∂mΨ(s)

∂sm

∣
∣
∣
∣
∣

∂

∂s

1

s− ϕ

〉

s

=
1

2πi

〈

∂m+1Ψ(s)

∂sm+1

∣
∣
∣
∣
∣

1

s− ϕ

〉

s

=

{
∂m+1Ψ(s)

∂sm+1

}

a

.

□

From now one we will always assume the initial condition Ψ0 ∈ C∞(R)′.

Corollary 1. Let A(·) and D(·) be polynomials and let Ψ be a
C1([0, T ], C∞(R)′) solution, for some T > 0, to

(23)







∂Ψ

∂t
= − ∂

∂ϕ
[A(ϕ)Ψ]− 1

2

∂2

∂ϕ2

[
D2(ϕ)Ψ

]
,

Ψ(0, ϕ) = Ψ0(ϕ), ϕ ∈ R,
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then its Cauchy representation {Ψ}a is a C1([0, T ],H (C\R) /H (C)) solution
to

(24)







∂{Ψ}a
∂t

= − ∂

∂ϕ
[A(ϕ){Ψ}a]−

1

2

∂2

∂ϕ2

[
D2(ϕ){Ψ}a

]
,

{Ψ}a(0, ϕ) = {Ψ0}a(ϕ), ϕ ∈ C.

Proof. The statement is a direct consequence of Proposition 2. □

We have already connected distribution-valued solutions to the negative-
diffusion PDE (23) with solutions to the complex PDE (24) via the Cauchy
representation {·}a. The imaginary-noise SDE formally associated to prob-
lem (24) is

(25) dz = A(z)dt+ iD(z)dWt,

where z ∈ C. And this SDE is in turn associated with the real two-
dimensional Fokker-Planck equation

∂

∂t
P = − ∂

∂z1
[A1P ]− ∂

∂z2
[A2P ] +

1

2

∂2

∂z21

[
D2

2P
]

(26)

+
1

2

∂2

∂z22

[
D2

1P
]
− ∂2

∂z1∂z2
[D1D2P ] ,

where A1(z1, z2) = ℜ[A(z1 + iz2)], A2(z1, z2) = ℑ[A(z1 + iz2)], D1(z1, z2) =
ℜ[D(z1 + iz2)], and D2(z1, z2) = ℑ[D(z1 + iz2)]. The following result shows
how to connect (23) with (25) through (24) and (26).

Theorem 8. Let Ψ be a C1([0, T ], C∞(R)′) solution to (23) . Then its
Cauchy representation can be expressed as

{Ψ}a(t, ϕ) =
1

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

for ϕ ∈ C \ supp(P ) ∪ R, if there exists a unique compactly-supported solu-
tion P ∈ C1([0, T ],M(R2)) to (26) with initial condition

P (0, z1, z2) = δ(z1 − x0)δ(z2),

whereM(R2) is the space of all probability measures over R2.
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Proof. We start with the initial condition:

{Ψ}a (0, ϕ) =
1

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

P (0, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

=
1

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

δ(z1 − x0)δ(z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

=
1

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

1

x0 − ϕ

〉

x0

.

Using the relations

∂

∂z1

1

z1 + iz2 − ϕ
= − ∂

∂ϕ

1

z1 + iz2 − ϕ

and

i
∂

∂z2

1

z1 + iz2 − ϕ
=

∂

∂ϕ

1

z1 + iz2 − ϕ
,

together with equation (26) for P , we find

∂

∂t
{Ψ}a (t, ϕ) =

1

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

∂tP (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

= − 1

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

∂

∂ϕ

A1P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

− 1

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

∂

∂ϕ

iA2P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

+
1

4πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

∂2

∂ϕ2

D2
2P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

+
1

4πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

− ∂2

∂ϕ2

D2
1P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

− 1

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

∂2

∂ϕ2

iD1D2P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0
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= − 1

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

∂

∂ϕ

A(z1, z2)P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

− 1

4πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

∂2

∂ϕ2

D2(z1, z2)P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

= − ∂

∂ϕ

1

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

A(z1, z2)P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

− 1

2

∂2

∂ϕ2

1

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

D2(z1, z2)P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

.

This implies the result stated in the theorem, since, by the argument similar
to that in the proof of Proposition 2, we have

1

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

A(z1, z2)P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

− A

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

∈ H(C)

and

1

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

D2(z1, z2)P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

−D2

2πi

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

P (t, z1, z2)

z1 + iz2 − ϕ
dz1dz2

〉

x0

∈ H(C).

□

Remark. Notice that solutions of equation (26) corresponding to (3), with
A(z) = −z2 and D(z) = z, are compactly supported, at least for some periods
of time (i.e. for T sufficiently small), as shown in section 6.

5.1. Compactly supported initial conditions

In this subsection, unless explicitly indicated, we restrict ourselves to an
important particular case: compactly supported initial conditions for the
Markov chain, i.e. we assume that Pn(0) = 0 for all n > N , where N ∈ N is
arbitrarily large but fixed. We need the following preparatory results.
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Lemma 5. The factorial moments

Mm(t) := E [n(n− 1) · · · (n−m+ 1)] (t), ∀m ∈ N ∪ {0}

where E [·] :=∑n(·)Pn, fulfil the system of coupled differential equations

(27)
d

dt
Mm = −m(m− 1)

2
Mm −mMm+1, ∀m ∈ N ∪ {0} .

Proof. First we set λ = 1 without loss of generality. The factorial moments
can be computed as derivatives of the generating function

Mm(t) =
∂mG

∂xm
(t, 1).

Now, by taking m derivatives with respect to x in equation (15) we find

∂

∂t

∂mG

∂xm
=

1

2

m∑

j=0

(
m

j

)
∂m−j

∂xm−j
(1− x2)

∂j+2G

∂xj+2
,

and by evaluating the last expression at x = 1 the statement follows. □

Remark. Note that this result is valid for any initial condition indepen-
dently of the fact that it is compactly supported or not. For the compactly sup-
ported initial condition system (27) is finite-dimensional, since Mm(t) = 0
for all m > N . This fact is crucial for the following result, which is indeed
restricted to that case.

Lemma 6. The moments of the SDE (3) coincide identically with the fac-
torial momentsMm(t) as long as its solution exists.

Proof. Applying Itô formula to a entire function f(·) of the solution to SDE
(3) yields

df(ϕ) = −ϕ2

(
∂f

∂ϕ
+

1

2

∂2f

∂ϕ2

)

dt+ iϕ
∂f

∂ϕ
dW ;

the validity of this formula is proven in Appendix E. Substituting f(ϕ) = ϕm

and applying the martingale property of the Itô integral gives

(28)
d

dt
E(ϕm) = −m(m− 1)

2
E(ϕm)−mE(ϕm+1),

so this system is identical to (27). The statement follows from the classical
uniqueness theorem for systems of ordinary differential equations [2]. □
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We now formulate the analog of Theorem 8 in the present context.

Theorem 9. Let Ψ ∈ C1([0, T ], C∞(R)′) be a solution to (23), where A(ϕ)
and D(ϕ) are polynomials.

Then its Cauchy representation can be expressed as

{Ψ}a(t, ϕ) =
1

2πi

∞∑

n=0

(−1)n+1

ϕn+1

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

(z1 + iz2)
nP (t, z1, z2)dz1dz2

〉

x0

for ϕ ∈ C \ {0}, if there exists a unique solution P ∈ C1([0, T ],M(R2)) to
(26) with initial condition

P (0, z1, z2) = δ(z1 − x0)δ(z2),

with all moments finite.

Remark. The finiteness of all moments can be obviously replaced by the
finiteness of the moment of the same order as the highest non-vanishing
moment of the initial distribution.

Proof. First note that

1

2πi

∞∑

n=0

(−1)n+1

ϕn+1

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

(z1 + iz2)
nP (0, z1, z2)dz1dz2

〉

x0

=
1

2πi

∞∑

n=0

(−1)n+1

ϕn+1

〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

(z1 + iz2)
nδ(z1 − x0)δ(z2)dz1dz2

〉

x0

=
1

2πi

∞∑

n=0

(−1)n+1

ϕn+1

〈

Ψ0(x0)

∣
∣
∣
∣
∣
xn0

〉

x0

=
1

2πi

∞∑

n=0

(−1)n+1

ϕn+1
Mn(0),



✐

✐

“4-Escudero” — 2023/12/24 — 23:35 — page 3049 — #33
✐

✐

✐

✐

✐

✐

Chemical kinetics, Markov chains 3049

whereMn(0) denote the moments of the distribution Ψ0(x0). Consider now
the (infinite-dimensional) vector

{〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

(z1 + iz2)
nP (t, z1, z2)dz1dz2

〉

x0

}∞

n=1

= {Dnn}Z×Z

{〈

Ψ0(x0)

∣
∣
∣
∣
∣

∫ +∞

−∞

∫ +∞

−∞

(z1 + iz2)
nP (0, z1, z2)dz1dz2

〉

x0

}∞

n=1

= {Dnn}Z×Z

{〈

Ψ0(x0)

∣
∣
∣
∣
∣
xn0

〉

x0

}∞

n=1

=Mn(t),

where {Dnn}Z×Z
denotes the infinite-dimensional operator that describes

the time evolution of the moments (28). Therefore

{Ψ}a(t, ϕ) =
1

2πi

∞∑

n=0

(−1)n+1

ϕn+1
Mn(t),

for all t ≥ 0, and thus, as a distribution

Ψ(t, ϕ) =

∞∑

n=0

Mn(t)

n!
δ(n)(ϕ),

which is our candidate for solution of the PDE in the statement. Now we
may, by means of the distributional version of (16), conclude by computing

G(t, x) =
〈

Ψ(t, ϕ)
∣
∣
∣eϕ(x−1)

〉

ϕ
=

∞∑

n=0

Mn(t)

n!
(1− x)n,

so we recover our original generating function Taylor-expanded at x = 1
instead of x = 0 (note that, in the present case of compactly supported
initial conditions, the generating function is simply a polynomial). □

Remark. The formal connection between Theorems 8 and 9 comes from
the identity

1

z − ϕ
=

∞∑

n=0

(−1)n+1

ϕn+1
zn,

which is valid for |z| < |ϕ|.
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Remark. The finiteness of the moments of the solution required in the
statement of this theorem replaces the compact support condition in Theo-
rem 8. Actually both hold (note that the latter implies the former) for ar-
bitrary periods of time, as shown in the next section. We will address this
question simultaneously to that of the local in time existence of solutions to
SDE (3), which was required in Lemma 6.

6. Stochastic dynamics

In this section we analyze some dynamical features of equation (3). Obvi-
ously, one of the missing steps in building a complete theory of the imaginary
Itô interpretation is the global existence of the solution to this equation. Al-
though we do not offer a proof of this fact herein, we build some partial
progress on it, and we as well prove some characteristic dynamical features
of this complex SDE. In particular, we show that its probability density
is not supported in all of C, a necessary requirement that appears in the
statement of Theorem 8. With respect to Theorem 9, our result on the local
in time existence of the solution will be enough, as we will highlight in the
following.

Clearly ϕ = 0 is the unique absorbing state for this diffusion, however
it is an unstable state (perhaps contrary to intuition after regarding the
development in Appendix A). We start with the precise statement of this
fact.

Theorem 10. Let ϕ(t) be a solution of (3); with probability one it holds
that:

• if |ϕ(0)| > 0 then the solution exists at least for a positive interval of
time (if |ϕ(0)| = 0 then the solution trivially exists for all times);

• if |ϕ(t∗)| ≥ 1/2 for some t∗ ≥ 0 then |ϕ(t)| ≥ 1/2 for all t ≥ t∗;

• if |ϕ(0)| > 0 and the solution is globally defined then

lim inf
t→∞

|ϕ(t)| ≥ 1/2;

• if |ϕ(0)| > 0 the solution never gets absorbed at the origin.

Proof. First consider |ϕ(t)|2 = ϕ1(t)
2 + ϕ2(t)

2, where ϕ1(t) :=
ℜ(ϕ)(t), ϕ2(t) := ℑ(ϕ)(t). Since (3) is equivalent to the real two-dimensional
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system
{

dϕ1 = −(ϕ2
1 − ϕ2

2)dt− ϕ2dWt

dϕ2 = −2ϕ1ϕ2dt+ ϕ1dWt
,

Itô calculus implies

d|ϕ|2 = (1− 2ϕ1)|ϕ|2dt.
This differential together with the fact −|ϕ| ≤ ϕ1 ≤ |ϕ| yields the string of
inequalities

(1− 2|ϕ|)|ϕ|2 ≤ d

dt
|ϕ|2 ≤ (1 + 2|ϕ|)|ϕ|2,

which can be re-written as
(
1

2
− |ϕ|

)

|ϕ| ≤ d

dt
|ϕ| ≤

(
1

2
+ |ϕ|

)

|ϕ|.

Dividing all three terms by |ϕ|2, everything can be written in terms of γ(t) :=
|ϕ(t)|−1

−γ(t)

2
− 1 ≤ d

dt
γ(t) ≤ −γ(t)

2
+ 1,

from where, after multiplying by et/2, we find

−et/2 ≤ d

dt

(

et/2γ(t)
)

≤ et/2.

Integrating and undoing the change of variables we conclude

|ϕ(t∗)|e(t−t∗)/2

1 + 2|ϕ(t∗)|[e(t−t∗)/2 − 1]
≤ |ϕ(t)| ≤ |ϕ(t∗)|e(t−t∗)/2

1− 2|ϕ(t∗)|[e(t−t∗)/2 − 1]
,

for all t ≥ t∗.2 Consequently:

• the solution exists until a possible blow-up time T ∗ ≥
2 log

[

1 +
1

2|ϕ(t∗)|

]

;

•
lim
t→∞

|ϕ(t∗)|e(t−t∗)/2

1 + 2|ϕ(t∗)|[e(t−t∗)/2 − 1]
=

1

2
;

2For the sake of clarity, let us emphasize that these computations are justified by
the assumption on the initial condition |ϕ(0)| > 0 and the continuity of the paths
of ϕ, which guarantee their local validity that can be subsequently extended for
arbitrarily long intervals of time.
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•
|ϕ(t∗)|e(t−t∗)/2

1 + 2|ϕ(t∗)|[e(t−t∗)/2 − 1]
=

1

2 +
1− 2|ϕ(t∗)|
|ϕ(t∗)|e(t−t∗)/2

;

•
|ϕ(t∗)|e(t−t∗)/2

1 + 2|ϕ(t∗)|[e(t−t∗)/2 − 1]
= 0⇐⇒ |ϕ(t∗)| = 0;

therefore the statement follows. □

Corollary 2. Let ϕ(t) be a solution of (3) such that |ϕ(0)| > 0; then there
exists a t̄ ∈ [0,∞] such that ϕ(t̄) ≥ 1/2. Moreover if |ϕ (t∗) | > 1/2 for some
0 ≤ t∗ <∞ then |ϕ(t)| > 1/2 for all t∗ ≤ t <∞.

Proof. Follows immediately from the proof of Theorem 10. □

Corollary 3. Let ϕ(t) be a solution of (3) subject to ϕ(0) = x0 ∈ R; with
probability one it holds that:

|ϕ(t)| ≤ |x0|e(t−t∗)/2

1− 2|x0|[e(t−t∗)/2 − 1]
.

In particular this implies that solutions to the Fokker-Planck equation (26),
with initial condition P (0, z1, z2) = δ(z1 − x0)δ(z2), are compactly supported
at least during the time interval [0,T), where the deterministic time

T = 2 log

[

1 +
1

2|x0|

]

.

Proof. Follows immediately from the proof of Theorem 10. □

Remark. Note that this corollary assures the compact support and the
finiteness of moments requirements in the statements of Theorems 8 and 9
locally in time. This is due to the degenerated character of the diffusion and
the specific structure of the coefficients. Although these theorems build the
Cauchy representation by averaging over x0, the compact support of the ini-
tial distribution guarantees their local in time validity. Moreover, since the
initial distribution is supported at the origin in the case of Theorem 9, the
validity of this theorem is actually global in time (in the sense that it is valid
for any finite, but arbitrary, lapse of time). Note, however, that this initial
distribution involves derivatives of the Dirac delta, so the solution of the
Fokker-Planck equation has to be defined in a neighborhood of x0 = 0, what
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implies that we cannot rely only on the trivial solution of the SDE; the global
in time validity follows from the fact that this neighborhood can be arbitrarily
small.

We note that the second property in the statement of Theorem 10 was
observed in numerical simulations [34] and herein we offer, for the first time
to the best of our knowledge, a mathematical proof of it. Moreover, it shows
that the probability density of this diffusion might identically vanish in a
certain disc for all times. Again, this is a consequence of the degenerated
character of the diffusion and the particular structure of the coefficients.
Note that we have not proven the global existence of solution and, in fact, a
finite time blow-up is in principle possible due to the quadratic nonlinearity.
If global existence held, then it would be interesting to determine whether
or not the compact support property is global in time too. But so far both
questions remain open. Next we state the counterpart of Theorem 10 in
terms of standard deviations.

Theorem 11. Let ϕ(t) be a solution to (3) such that |ϕ(0)| > 0; then

• If E[|ϕ(t∗)|−2] <∞ for some t∗ ≥ 0 then lim inft→∞ E[|ϕ(t)|2]1/2 ≥
1/
√
2.

• Moreover if E[|ϕ(t∗)|−2]−1/2 ≥ 1/2 for some t∗ ≥ 0 then E[|ϕ(t)|2]1/2 ≥
1/2 for all t ≥ t∗.

Proof. Since |ϕ(0)| > 0 then |ϕ(t)| > 0 for all times by Theorem 10. Conse-
quently we can change variables ξ = 1/ϕ to obtain

dξ = (1− ξ)dt− iξdWt,

which is a linear stochastic differential equation in the complex plane and
therefore globally well-posed, as well as the change of variables. Therefore
the expectation of ξ obeys the ordinary differential equation

d

dt
E[ξ] = 1− E[ξ],

which can be solved to yield

E[ξ(t)] = 1 + (E[ξ(t∗)]− 1)e−(t−t∗)(29)

= 1 +
(
E
[
ϕ(t∗)−1

]
− 1
)
e−(t−t∗).
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Now consider f(ξ1(t), ξ2(t)) :=
1
2 |ξ(t)|2 = 1

2(ξ1(t)
2 + ξ2(t)

2), where ξ1(t) :=
ℜ(ξ(t)), ξ2 := ℑ(ξ)(t), which obeys the random differential equation

df = (ξ1 − f)dt,

and therefore using (29) its expectation fulfills

d

dt
E[f ] = 1 + (E[ξ1(t

∗)]− 1)e−(t−t∗) − E[f ],

which solution reads

E[f(t)] = 1− e−(t−t∗) + (E[ξ1(t
∗)]− 1)(t− t∗)e−(t−t∗) + e−(t−t∗)E[f(t∗)]

= 1− e−(t−t∗) +

(

E

[
ϕ1(t

∗)

|ϕ(t∗)|2
]

− 1

)

(t− t∗)e−(t−t∗) + e−(t−t∗)E[f(t∗)]

≤ 1 + e−(t−t∗) +

(

E

[
ϕ1(t

∗)

|ϕ(t∗)|2
]

− 1

)

(t− t∗)e−(t−t∗)

≤ 1 + (1 + t− t∗)e−(t−t∗) ≤ 2.

Here we used that E[|ϕ(t∗)|−2]−1/2 ≥ 1/2⇒ E[f(t∗)] ≤ 2 in the first inequal-
ity and

E

[
ϕ1(t

∗)

|ϕ(t∗)|2
]

≤ E

[
1

|ϕ(t∗)|

]

≤ E

[
1

|ϕ(t∗)|2
]1/2

≤ 2,

by Jensen inequality, in the second. Now, using Hölder inequality

1 = E[1] = E

[ |ϕ(t)|
|ϕ(t)|

]

≤ E[|ϕ(t)|2]1/2 E[|ϕ(t)|−2]1/2

=
√
2E[|ϕ(t)|2]1/2 E[f(t)]1/2 ≤ 2E[|ϕ(t)|2]1/2.

For the asymptotic behavior, take the long time limit in this string of in-
equalities to find

1 ≤
√
2 lim inf

t→∞

{

E[|ϕ(t)|2]1/2 E[f(t)]1/2
}

=
√
2 lim inf

t→∞
E[|ϕ(t)|2]1/2×

× lim
t→∞

{

1− e−(t−t∗) +

(

E

[
ϕ1(t

∗)

|ϕ(t∗)|2
]

− 1

)

(t− t∗)e−(t−t∗)

+ e−(t−t∗)E[f(t∗)]

}1/2

=
√
2 lim inf

t→∞
E[|ϕ(t)|2]1/2.
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□

Remark. Note that by Hölder inequality

1 = E[1] = E

[ |ϕ(t)|
|ϕ(t)|

]

≤ E[|ϕ(t)|2]1/2 E[|ϕ(t)|−2]1/2

⇒ E[|ϕ(t)|−2]−1/2 ≤ E[|ϕ(t)|2]1/2.

Therefore E[|ϕ(t∗)|−2]−1/2 ≥ 1/2 is a condition stronger than
E[|ϕ(t∗)|2]1/2 ≥ 1/2.

7. Conclusions

In this work we have considered the connection between the PDE

∂Ψ

∂t
=

(
∂

∂ϕ
− 1

2

∂2

∂ϕ2

)
(
ϕ2Ψ

)
,

and the SDE

dϕ = −ϕ2dt+ i ϕ dWt,

that appears in the physics literature to study chemical kinetics modeled
by Markov chains. This relation, which we have termed the imaginary Itô
interpretation of the PDE, has been accepted in the physical literature for
decades but was also put into question in some works. From a puristic view-
point, of course, one cannot claim that a parabolic PDE with a negative
diffusion is a Fokker-Planck equation. Perhaps more importantly, if one re-
gards for instance the solutions in appendix C for t = 0 (that is, the initial
conditions), one finds distributions rather than measures, what means that
the initial condition for the SDE does not exist, at least as a random vari-
able; obviously this suggests a very difficult, if not impossible, interpretation
of the SDE.

Keeping these facts in mind one is tempted to claim that the imagi-
nary Itô interpretation is nothing but a formal step that cannot be justified.
However, the successes in the application of this theory (or different facets
of it) [5, 8, 9, 13, 25, 29, 34, 38], although they are all based on formal com-
putations, point to the opposite direction. This has been the motivation to
build our connection between the two theories in section 5, which in prin-
ciple should be valid for SDEs that have as solution well-defined diffusion
processes on the complex plane. In our particular case, a missing step in
our proofs is the global existence of the solution to the SDE. Although we
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have partially analyzed its dynamics in section 6, we have not found such
an argument that would guarantee the existence of a diffusion on the com-
plex plane for all times. Nevertheless, the local existence in time guarantees
that we can extend the Cauchy representation in Theorem 9 for any finite,
but arbitrary, lapse of time, since the initial distribution is supported at
the origin (despite its dependence on derivatives of the Dirac delta, what
makes nontrivial solutions of the SDE to come into play). This, in our view,
establishes a clear connection between the imaginary Itô interpretation and
the forward Kolmogorov equation when the initial condition of the latter
is compactly supported. Otherwise, the connection is established for short
times via Theorem 8.

It is also important to try to see how our present results could match
with recent criticisms to the imaginary Itô interpretation. In [47] one finds a
claim that points to the validity of the imaginary Itô interpretation at short
times and its failure at long or even intermediate times. This could perhaps
be related to the singularization of the probability amplitude Ψ: if the initial
condition of the Markov chain is Poissonian then the probability amplitude
will be a probability measure initially too; however as the time evolves it will
become singular (i.e. a distribution rather than a measure). Of course this is
just a conjecture and further analysis would be necessary in order to assure
this. In this respect, the lapse of existence guaranteed in section 6 might
be related to this short time validity. Anyway, this lapse of existence was
not crucial in our analysis as we encoded the initial condition in a different
way, via the initial distribution (so what is really crucial in our case is the
size of the support of this initial distribution); this suggests in turn that
there may be different notions of imaginary Itô interpretation present in the
literature. In [4] the authors put into question the validity of the imaginary
Itô interpretation through a formal path integral analysis: they conclude this
by means of the identification of a path integral that is ill-posed. However, a
parabolic PDE provided with a negative diffusion is ill-posed, at least in the
sense of Hadamard (Lemma 1.19, [41]), but nevertheless it could be well-
posed in certain distributional spaces [1] or under additional conditions [33].
We do not know whether or not such extensions in the notion of solution can
be carried out in the case of the path integral too. Independently of this, the
possibility that different notions of imaginary Itô interpretation are being
considered should not be immediately disregarded in this case either.

Of course, another possible criticism to the theory of the imaginary Itô
interpretation is its potential utility. Mapping a continuous time Markov
chain into a PDE posed in a space of distributions looks like making a
difficult problem an extremely difficult one instead. However, the previous
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successes referred to above in the use of this framework suggest the interest
that exploring the stochastic analytical side of it may have. Correspondingly,
it may also be interesting to study distributional PDEs or complex plane
diffusions by means of Markov chains; indeed, the study of Itô diffusions by
means of Markov chains is known to be simplifying and has been explored
within the framework of Malliavin calculus [18].

Finally, we wonder whether the imaginary Itô interpretation is part
of a bigger theory that links diffusions with PDEs. Apart from the clas-
sical diffusion theory that links Fokker-Planck equations with SDEs [35],
one finds different theories that approach higher order and fractional
order PDEs with stochastic processes and pseudoprocesses, see for in-
stance [3, 11, 17, 23, 24, 36, 49]. Since we can regard the imaginary
Itô interpretation as a link between singular second order PDEs and
diffusions on the complex plane, there arises a natural question about
the extendability of this theory to the singular higher order and frac-
tional order cases, and even about the existence of a general theory that
comprises all these connections as particular cases of a more general relation.

Acknowledgments. This work has been partially supported by a NRP
Early Career Research Exchanges grant, by the ICMAT-Severo Ochoa
project, and by project PGC2018-097704-B-I00 of the Ministerio de Ciencia,
Innovación y Universidades (Spain).

Appendix A. Van Kampen system size expansion

In this appendix we formally derive a mean-field macroscopic limit of re-
action (1) along the lines of the Van Kampen system size expansion [46].
Consider the forward Kolmogorov equation

dPn(t)

dt
=

λ

2
[(n+ 2)(n+ 1)Pn+2(t)− n(n− 1)Pn(t)] ,

and assume the existence of a regular enough function f : R+ × R+ −→
R, with R+ := [0,∞), such that f(τ, x) = limδ→0 Pnδ(tδ

−1), nδ → x, and
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tδ−1 → τ . Keeping these ideas in mind, we can derive an approximate equa-
tion for f via a Taylor expansion:

δ−1∂f

∂τ
(nδ, tδ−1) =

λ

2

[
(n+ 2)(n+ 1)f(nδ + 2δ, tδ−1)− n(n− 1)f(nδ, tδ−1)

]

= λ

[

(2n+ 1)f(nδ, tδ−1) + δ(n+ 2)(n+ 1)
∂f

∂x
(nδ, tδ−1)

+ δ2(n+ 2)(n+ 1)
∂2f

∂x2
(nδ, tδ−1) + . . .

]

;

now multiplying this equation by δ and formally taking the limit δ → 0 leads
to

∂f

∂τ
(x, τ) = λ

[

2xf(x, τ) + x2
∂f

∂x
(x, τ)

]

= λ
∂

∂x

(
x2f

)
.(A.1)

Let Φ(x) be an infinitely differentiable function with compact support. We
define a function f to be a distributional solution to equation (A.1) if, for
every Φ, the equality

d

dτ

∫

R+

f Φ dx = −λ
∫

R+

f x2
∂Φ

∂x
dx

holds. More generally, define a linear distribution Dτ : R+ × C∞
0 −→ R to

be a solution of this equation if the following equality holds for every test
function Φ:

d

dτ
Dτ [Φ] = −λDτ

[

x2
∂Φ

∂x

]

.

In particular, if we want the solution to be expressed in terms of a Dirac
delta of the form Dτ = δϕ(τ), then:

ϕ′(τ)
∂Φ

∂x
[ϕ(τ)] = −λϕ2(τ)

∂Φ

∂x
[ϕ(τ)]

for every test function, what implies

dϕ(τ)

dt
= −λϕ2(τ),

which could be thought of as a mean-field approximation to equation (3).
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Appendix B. Equations for the general reaction

In this appendix we derive the equations for the generating function and the
amplitude that correspond to the annihilation-creation Markov process

jA
λ−→ ℓA,

with j, ℓ ∈ N ∪ {0}, obviously j ̸= ℓ, and λ > 0. The forward Kolmogorov
equation corresponding to this process reads [32]

1

λ

dPn(t)

dt
=

(
n− ℓ+ j

j

)

Pn−ℓ+j(t)−
(

n
j

)

Pn(t),

for all n ∈ N ∪ {0} and with the understanding that Pm(t) ≡ 0 whenever
m < 0.

Using the generating function representation of this system,

G(t, x) :=

∞∑

n=0

Pn(t)x
n,

leads to

1

λ

∂G

∂t
=

∞∑

n=0

dPn

dt
xn =

1

j!

[
∞∑

n=0

(n− ℓ+ j) · · · (n− l + 1)Pn−ℓ+jx
n

−
∞∑

n=0

n · · · (n− j + 1)Pnx
n

]

,

whenever j ̸= 0, and thus

1

λ

∂G

∂t
=

1

j!





∞∑

n=j−ℓ

n · · · (n− j + 1)Pnx
n+ℓ−j −

∞∑

n=0

n · · · (n− j + 1)Pnx
n





=
1

j!

[
∞∑

n=0

n · · · (n− j + 1)Pnx
n+ℓ−j −

∞∑

n=0

n · · · (n− j + 1)Pnx
n

]

=
1

j!

[

xℓ
∂j

∂xj
G− xj

∂j

∂xj
G

]

;

so we can conclude

(B.2)
∂G

∂t
=

λ

j!
(xℓ − xj)

∂jG

∂xj
.
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An analogous computation shows that the case j = 0 is still described by
equation (B.2).

The amplitude Ψ(t, ϕ) is related to the generating function via the co-
herent transform Ψ(t, ϕ):

G(t, x) =

∫ ∞

0
Ψ(t, ϕ)eϕ(x−1)dϕ.

Using the binomial theorem we find

xℓ − xj =

ℓ∨j
∑

n=0

[(
l
n

)

−
(

j
n

)]

(x− 1)n,

where we have used the convention

(
ℓ
n

)

= 0 if n > ℓ and ℓ ∨ j :=

max{ℓ, j}. These two observations together with equation (B.2) and inte-
gration by parts lead to the result:

∂Ψ

∂t
=

λ

j!

j
∑

n=0

(−1)n
[(

ℓ
n

)

−
(

j
n

)]
∂n(ϕjΨ)

∂ϕn
,

where we have assumed j > ℓ, which is a necessary condition in order to
eliminate the boundary terms generated by integrating by parts.

This last formula implies that the only two reactions that lead to second
order operators are:

A+A
λ−→ ∅,

A+A
λ−→ A.

Appendix C. An explicit distributional solution

Based on the explicit solution to equation (4) found in [31], it is possible to
derive an explicit solution to the formal Fokker-Planck equation (11):

Ψ(t, ϕ) = δ(ϕ) +

k0∑

k=1

(2k0)!(k0 + k)!

2−2k(2k0 + 2k)!(k0 − k)!
e−k(2k−1)λt

×





2k∑

j=0

2−j

(
2k

j

)(−2k − 1

j

)

δ(j)(ϕ)−
2k−2∑

j=0

2−j

(
2k − 2

j

)(−2j + 3

j

)

δ(j)(ϕ)



 ,
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when initially we have exactly 2k0 particles, and where δ(j) denotes the j−th
derivative of the Dirac delta and

(−n
m

)

:= (−1)m
(
n+m− 1

m

)

for any n,m ∈ Z+. As an example, we consider this formula in the case of
having initially exactly two particles:

Ψ(t, ϕ) = δ0 + e−λt
{

δ
(2)
0 − 2δ

(1)
0

}

.

Note that this formula shows that solutions to the ill-posed Fokker-Planck
equation are in general distributions rather than measures.

Appendix D. More on real noise

In this Appendix we consider the set of reactions

A
α−→ ∅,

∅ β−→ A,

A
γ−→ A+A,

which can be described via the forward Kolmogorov equation

dPn

dt
= γ[(n− 1)Pn−1 − nPn] + β(Pn−1 − Pn) + α[(n+ 1)Pn+1 − nPn].

For our current purposes we make the choice α = γ = 2β; then we find the
equation

∂tG = β(x− 1)(1− 2∂x + 2x∂x)G,

to be solved for the generating function G. Its solution reads

(D.3) G(t, x) =
1

√

1− 2βt(x− 1)
G0

(
x− 2βt(x− 1)

1− 2βt(x− 1)

)

,

where we have used the boundary condition G(t, 1) = 1. For the amplitude
Ψ we formally find

∂tΨ = −β∂ϕΨ+ 2β∂2
ϕ(ϕΨ);

note that we have neglected a Dirac delta that arises as a boundary term
upon integration by parts in the derivation of this equation from the coher-
ent transform of the generating function (a problem that does not arise in
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section 4). Note also that this PDE is the actual Fokker-Planck equation
that corresponds to the SDE

dϕ = β dt+ 2
√

βϕ dWt.

The explicit solution of this equation is

ϕ(t) =
(√

ϕ0 +
√

βWt

)2
,

that in turn yields

Ψ(t, ϕ) =
1

2
√
8πβtϕ

∫ ∞

0
exp

[

−
(√

ϕ−√ϕ0

)2

2βt

]

Ψ0(ϕ0) dϕ0+

+
1

2
√
8πβtϕ

∫ ∞

0
exp

[

−
(√

ϕ+
√
ϕ0

)2

2βt

]

Ψ0(ϕ0) dϕ0

=
1√

8πβtϕ

∫ ∞

0
exp

[

−ϕ+ ϕ0

2βt

]

cosh

[√
ϕϕ0

βt

]

Ψ0(ϕ0) dϕ0.

This result gives rise to the generating function

G(t, x) =
1

√

1− 2βt(x− 1)

∫ ∞

0
exp

[
ϕ0(x− 1)

1− 2βt(x− 1)

]

Ψ0(ϕ0) dϕ0

=
1

√

1− 2βt(x− 1)
G0

(
x− 2βt(x− 1)

1− 2βt(x− 1)

)

,

in perfect agreement with (D.3). Note that this last result makes sense even
if Ψ0 is not a probability measure.

Appendix E. Preservation of Itô formula

Consider a modification of our Itô diffusion in the complex plane, i.e.

dϕ = −ϕ2dt+ i ϕ dWt,

given by

dφ = −φ2dt+ i φ dWt,

where Wt = W 1
t + iW 2

t , and W 1
t and W 2

t are independent Brownian mo-
tions; in other words Wt is a complex Brownian motion. This second model
is invalid from our viewpoint as it does not generate the right moments as
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the first one does, see Lemma 6; however it rises an interesting question. It
is well known that for any holomorphic function f(φ) the usual chain rule

df(φ) = −φ2∂f(φ)

∂φ
dt+ iφ

∂f(φ)

∂φ
dWt

holds ([39], section 7.2), but what is the right calculus for f(ϕ)? Herein we
show that, in the case in which we have purely imaginary noise, the usual
Itô stochastic calculus

(E.4) df(ϕ) = −ϕ2

[
∂f(ϕ)

∂ϕ
+

1

2

∂2f(ϕ)

∂ϕ2

]

dt+ iϕ
∂f(ϕ)

∂ϕ
dWt

still holds. Now it is convenient to use the decomposition ϕ = ϕ1 + iϕ2 to
transform our diffusion in the complex plane into a two-dimensional Itô
diffusion

(
dϕ1

dϕ2

)

= −
(

ϕ2
1 − ϕ2

2

2ϕ1ϕ2

)

dt+

(
−ϕ2 0
ϕ1 0

)(
dW 1

t

dW 2
t

)

in order to prove the following precise result.

Theorem 12. Let f(ϕ) = f1(ϕ) + if2(ϕ) be a holomorphic function; then
equation (E.4) holds, where







∂

∂ϕ
=

1

2

(
∂

∂ϕ1
− i

∂

∂ϕ2

)

∂

∂ϕ
=

1

2

(
∂

∂ϕ1
+ i

∂

∂ϕ2

) .

Proof. The fact that f is holomorphic, which implies
∂f

∂ϕ
= 0, along with

the definitions of
∂f

∂ϕ
and

∂f

∂ϕ
, yield the following identities

∂f

∂ϕ
=

∂f

∂ϕ1
= −i ∂f

∂ϕ2
,

∂2f

∂ϕ2
=

∂2f

∂ϕ2
1

= −∂2f

∂ϕ2
2

= −i ∂2f

∂ϕ1∂ϕ2
.
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On the other hand, the two dimensional Itô rule yields

df =

[

−(ϕ2
1 − ϕ2

2)
∂f

∂ϕ1
− 2ϕ1ϕ2

∂f

∂ϕ2
+

1

2
ϕ2
2

∂2f

∂ϕ2
1

+
1

2
ϕ2
1

∂2f

∂ϕ2
2

− ϕ1ϕ2
∂2f

∂ϕ1ϕ2

]

dt

+

[

ϕ1
∂f

∂ϕ2
− ϕ2

∂f

∂ϕ1

]

dWt.

Now, by substituting the previous expressions, we find

df =

[

−(ϕ2
1 − ϕ2

2)
∂f

∂ϕ
− i2ϕ1ϕ2

∂f

∂ϕ
+

1

2
ϕ2
2

∂2f

∂ϕ2
− 1

2
ϕ2
1

∂2f

∂ϕ2
− iϕ1ϕ2

∂2f

∂ϕ2

]

dt

+

[

iϕ1
∂f

∂ϕ
− ϕ2

∂f

∂ϕ

]

dWt

= −ϕ2

[
∂f

∂ϕ
+

1

2

∂2f

∂ϕ2

]

dt+ iϕ
∂f

∂ϕ
dWt.

□
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