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Renormalized volume of minimally
bounded regions in asymptotically
hyperbolic Einstein spaces
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We define a renormalized volume for a region in an asymptoti-
cally hyperbolic Einstein manifold that is bounded by a Graham-
Witten minimal surface and the conformal infinity. We prove a
Gauss-Bonnet theorem for the renormalized volume, and compute
its derivative under variations of the minimal hypersurface.
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1. Introduction

The renormalized volume of an even-dimensional asymptotically hyperbolic
Einstein (AHE) manifold (X", g,) is among its most important global
invariants. Introduced in [I7] (see also [13]), it is defined by taking the
order-zero term in the expansion in e of the quantity voly, ({r > ¢}), where
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r is a so-called geodesic defining function for the boundary at infinity, M™.
There are many such defining functions, and the essential property of the
renormalized volume V. is that it does not depend on which one is chosen.
(This is generally not true if X is odd-dimensional.)

One of the basic theorems regarding renormalized volume in dimension
four is Anderson’s Gauss-Bonnet theorem ([2], see also [6]), which states
that

1
(1) 471'2X(X4) =3V, + 3 /X ]Wg+]§+dvg+.

Here W, is the Weyl tensor of g, ; since W, ]; is a pointwise conformal in-
variant of weight —4, the integral is guaranteed to converge notwithstanding
the infinite volume of (X, g4 ). Anderson used to compute the variation
of V. with respect to changes in g.

In this paper, we establish analogous results for half of an AHE mani-
fold that has been partitioned into two by a minimal surface. Specifically,
suppose (X4, g1 ) is an AHE manifold with conformal infinity (M3, [h]), and
suppose further that Y2 C X is a minimal hypersurface that intersects M in
a closed manifold ¥2 = M NY; we further assume that Y divides X into two
parts, X and X, whose intersection is precisely Y (the assignment of + is
arbitrary). Such a setting has been much studied in the literature on AHE
manifolds, beginning with [I6], which defined the renormalized area of Y in
analogy to the renormalized volume of X; it has also been and remains a
setting of much interest in the physics literature, particularly in the context
of the AdS/CFT correspondence.

We will be concerned, not with the renormalized area of Y, but with
the renormalized volume Vj of X, which we may define as the constant
term in the expansion volg, ({x € Xt : r(z) > e}), with r a geodesic defining
function. It is not immediately obvious that this quantity is independent
of the choice of r: the proof in the global case depends strongly on the
product decomposition [0,0), x M of a collar neighborhood of M in X,
but generically there is no such decomposition of a collar neighborhood of
M*™ =M N X" in X*. One could prove using rather more elaborate versions
of the arguments of [13] that V5" is invariant in this context, but our interest
is in a Gauss-Bonnet formula, and so we approach the result by a somewhat
different path, as described below.

We note that renormalized volume of regions in AH spaces divided in
two by hypersurfaces was considered in [12] using quite different techniques.
The authors showed that a volume could be defined in quite general circum-
stances — in particular, not assuming the Einstein or minimality conditions
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— but did not show that it is well-defined independent of all choices in the
four-dimensional Einstein case.

Let N C X be any hypersurface, and let h = g4 |rny be the induced met-
ric on N. Define an extrinsic curvature quantity Cy on N by the formula

Cn = 2iefpe —fofph o L iap - S, 13
N = 55N ap NaﬁgNNhSrhN'

Here Ly is the second fundamental form of N and L N its tracefree part,
while Hy = hob L.gp is its mean curvature. The curvature terms appearing
are the Ricci tensors of the respective metrics, and «, 8 are indices on T'N. It
is easy to show (and will be shown within) that C is a pointwise conformal
invariant of weight —3; indeed, in the notation of [5], Cx = —%54 — %,65.

The first main result of this paper is the following.

Theorem 1.1. Let (X*, g.) be an asymptotically hyperbolic space satisfying
the Einstein condition Ric(gy) = —3g+, with conformal infinity (M3, [h]).
Let Y3 be a complete minimal hypersurface dividing X into two pieces X+
and X~ such that XT N X~ =Y and such that Y N M = X2 £ (). Let r be
a fized geodesic defining function for M, and let Vj be the constant term in
the expansion

volg, ({z € X*:r(x) > e}) = coe™ + eae™ + Vi +0(1).

Let h = 9g+|ry. Then

1
(2) 7r2(4x(X+) — X(Zg)) = BV;r + 3 /j{+ W, 52]+dvg+ + /{/Cydv;l.

One then immediately obtains

Corollary 1.2. The renormalized volume Vf is independent of the choice
of geodesic defining function r, and it satisfies @

A natural question about the newly defined renormalized volume is how
it changes if Y is varied through minimal surfaces in X. The second main
result of the paper is as follows.

Theorem 1.3. Let X, M,Y,¥, X% g, h, and V;" be as in Theorem 1.1.
Suppose that F : (—e,e)y x Y — X is a C? wariation of Y through mini-
mal surfaces in X, so that F(t,%) C M for all t. Let F = F|(_.c)xx. De-

fine f € C>(%) by f= <%‘t:0 F, DM>, where Uy is the inward-pointing



3084 M. J. Gursky, S. E. McKeown, and A. J. Tyrrell

normal vector to ¥ in M™T with respect to h. Define f € COO(Y/) by =

<% ‘t—O F, uy>g , where py is the (X1, g1 )-inward unit normal vector along
- +

Y. Let v be a geodesic defining function near M. Then

d

dt

1 ~ 1 °
Vi =< f F9® (g, oar)dug + = fop. / flLy 2dvy,
=0 2 /s 3 v

where E:B\TE, iL:g_;,_‘Ty, 9(3) 18 the nonlocal term in the expansion
in r of g+, and f.p. ff/ f]Ly\%dv;L denotes the zeroth-order part, in e, of

fYﬂ{r>a} f‘LY|;%dUir

For more about the nonlocal term ¢, see and the surrounding
discussion. We show in Lemma 4.3 that the finite part of the integral over
Y can be written as the convergent integral of a rather more complicated
expression.

The above theorem is stated for variations of Y through minimal sur-
faces, whose existence in general we do not assert. However, one can broaden
the definition of Vf to any dividing hypersurface by using . In that case,
Theorem 1.3 remains valid for any variation of Y that preserves minimality
to first order; see section 4, where we also explain why C3-regularity of such
a variation is in general optimal.

In considering the existence problem for the variation of Y, the required
boundary data would be the induced variation of ¥, so another natural
question is whether the derivative Vf only depends on the induced normal
variation f . For example, suppose there are two variations of Y through
minimal surfaces that induce the same variation of ¥; do the derivatives of
Vf with respect to these variations agree? The answer is yes, at least if
|Ly|]% < 3 everywhere; see Lemma 4.1.

These theorems may be interpreted physically within the AdS/CFT cor-
respondence of high-energy and condensed matter physics. To do so, we as-
sume that (M3, [h]) is a spacelike slice within a static four-dimensional con-
formal field theory Q; and that (X%, g, ) is an Einstein spacelike slice within
a static asymptotically anti-de-Sitter Einstein five-dimensional spacetime
Z with conformal infinity 2. The surface ¥ is then known as an entan-
gling surface between M+ and M ~, and Y is the so-called Ryu-Takayanagi
surface extending 3. According to the “volume = complexity” conjecture
(I3, 4,9, 18, 22]), then, V5" encodes the algorithmic complexity of the quan-
tum state of M ™. The above theorems can then be interpreted as giving
formulae for this complexity and for its derivative as the entangling surface
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¥ is varied continuously, so long as Y also varies continuously. (As demon-
strated in [4], the latter will not always be the case.)

The assumption that X and its five-dimensional ambient Lorentzian
manifold Z are both Einstein, of course, is rather restrictive. In general phys-
ical situations, one might expect that the Ricci tensor of X includes some
extrinsic terms. But even if so, these would have well-defined asymptotics
due to the asymptotically AdS condition on Z, and it would be straightfor-
ward, if tedious, to carry out our calculation the same way in that context.

In section 2, we introduce our setting and notation. In section 3, we
prove Theorem 1.1; and in section 4, we prove Theorem 1.3.

2. Setting and notation

Recall that an asymptotically hyperbolic (AH) manifold is a compact mani-
fold X"+ with boundary M™, equipped on the interior X with a metric g+
such that, for any defining function ¢ for M, the metric § = p?g, extends to
a Riemannian metric on X = X; and such that, in addition, |dy| g = 1 along
M. The optimal regularity of g is in general a delicate question, but in the
context of this paper (i.e., X is four dimensional) by a result of Chrusciel-
Delay-Lee-Skinner [§] we may assume that there is a compactification such
that g is smooth up to the boundary. The canonical example of an AH man-
ifold is hyperbolic space itself, where X is the unit ball B"T!, and the metric
: _ A4|dz|? . . N . .
I8 91 = (e Given an AH metric, the metric h = g|7ps is a metric on
M, but is not well defined since the choice of ¢ is arbitrary. However, the
conformal class [h] is well defined, and is called the conformal infinity.

A defining function r for M is called geodesic if |dr|,24, = 1 on a neigh-
borhood of M. Such a function induces a diffeomorphism

(3) Y:[0,8)y x M — X
onto a neighborhood of M in X such that

dr® + h,

(4) w*ng = D) )

r
where h, is a one-parameter family of metrics on M. A lemma of Graham-
Lee ([15]) states that geodesic defining functions are in one-to-one corre-
spondence with the representatives h of [ﬁ], according to the correspondence
ho = h. The form (4] is called the geodesic normal form corresponding to
h = ho. We may assume that any geodesic compactification of X is smooth

(18))-
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An AH metric is called Einstein (or AHE) if it satisfies as well the
condition Ric(g) +ng =0. We will be concerned exclusively with four-
dimensional AHE spaces, i.e. the case n = 3. In this case, it is known
(10, T, [13]) that in geodesic normal form, h, has the expansion

(5) B = h—r2P" 4% O,

where try, ¢® =0 and where P" is the Schouten tensor of h, given by
h ho_Lln g

(6> P/U/ = R/u/ - ZRBh#V'

Apart from the trace condition, the tensor ¢ is not locally determined by
the geometry of (M3, h).

The renormalized volume of (X, gy) is defined as follows ([13, [I7]).
Choose a metric h € [h], and let 7 be the corresponding geodesic defining
function. Then the set {r > ¢} has volume

(7) volg, ({r > ¢}) = coe ™ + coe™ ' + Vi + o(1).

The renormalized volume is V, and it is independent of the choice of h
(that is, of ).

In our setting of interest, there exists as well an orientable minimal
surface Y3 C X, intersecting M transversely in a closed two-manifold %2 =
Y N M, and dividing X into two connected pieces X T and X ~ such that Y =
XTNX" . Wewrite M™ = XTNMand M~ = X~ NM,sothat X = M+t N
M ~. The assignment of the signs + and — is arbitrary, and corresponds to
a choice of unit normal vector field on Y.

We now introduce the notations we will use. We let (X*, M3,g,) be
an AHE space, and Y2 C X a minimal surface as above. We will let [h]
be the conformal infinity, and corresponding to the metric h will be the
geodesic defining function r. The compactified metric is g = r2g,. Further-
more, X, M+ and ¥? will be as above. For € > 0, we let X, = {r > ¢},
with X = Xt NX.. Weset Y. =Y N X, and M, = {r = ¢}. Similarly we
set Mt = X+t N M.. Finally, . =Y N M.

Next, there are a number of metrics to name. We let h. = g4|rar.,
while h. = e2h. = g|ra.. We let h = g+ |7y, while h=r2h = glry. We let
k = g|rs, while k. = g4 |7y, and k. = r?k. = £2k.. The decorations of ¢ will
sometimes change position as needed; for example, we will write hy,,, but hE.

Now, near ¥ C M, we can uniquely solve the eikonal equation and find
w € C*°(M) such that [dw|? = 1 near ¥, w|s =0, and w > 0 on M*. The
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metric h then takes the form h = dw? + ky,, with k,, a one-parameter family
of metrics on ¥. Near any point p € X, we can choose coordinates z!, 22 on
a neighborhood of p in ¥; then by the flow of grad; w on M, the system

(x!, 2% 23 = w) extends to a coordinate system on a neighborhood of p in M.

Finally, by the flow of grad;r, the system (r = 20, 2t 22, 23 = w) extends
to a coordinate system on a neighborhood of p in X. Now, we will regard Y
as given by a function

(8) w = u(r,z',2%),

where u(0, 2!, #2) = 0. This is the same convention as in [16]. In fact, we may
regard a neighborhood of ¥ in this way as a product [0,¢), X X X (—¢&,€)y;
when using this product identification, we will use ¢ to refer to a point of
¥, so that a generic point may be written (r, (, w).

When using index notation locally, we will let 0 < 7,5 < 3 be indices on
TX;1<p,v<3beindices on TM; and 1 < a,b < 2 be indices on T>. We
also let 0 < a, 8 < 2, which we will use when discussing TY".

Turning to extrinsic geometry, we let fips, jiy be the X T-inward unit
g-normal to the given hypersurface; the unbarred versions will refer to the
unit normal with respect to g+. We let 5;. be the g-unit normal to X, that is
directed into M, and py., similarly, the Y.-inward g-unit normal to .. We
let Ly, Ly be the second fundamental forms of the indicated hypersurfaces
with respect to the inward unit normals jip;. and fiy, and computed with
respect to g. Thus, for example,

Ly(A, B) = —(V iy, B).

The tracefree parts are denoted Ly, etc. In all of these, we will sometimes
write the hypersurface in the upper position, should it be convenient to do
so to place covariant indices; similarly, an unbarred L will refer to the second
fundamental form with respect to g, instead of g. We let H ;. = h¥ Vfﬁ,{a be
the mean curvature of M, with respect to g (or, if we omit the €, that of M);
similarly for Hy, while Hy; and Hy are the same quantities with respect to
g+ (recall we assume Hy = 0). We let ITy. be the second fundamental form
of Y. viewed as a hypersurface of Y. with respect to iL, while Ty, is the
same for ¥, viewed as a hypersurface in M. with respect to h.. The traces
of these (i.e., the mean curvatures of . viewed as a hypersurface of the
respective three-manifold) we denote 7y, 7as.. Again, the unbarred versions
are with respect to the unbarred metrics h and h.. We also let Ny be the
mean curvature of (3, k) C (M, h).
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We define a smooth function 65 € C°°(3;) to be the angle, at each point,
between Y and M,; that is, cos(65) = —(fy, fins. ). If the € is omitted, then
it denotes the angle between M and Y at a point of ¥. Since 6f is manifestly
a conformal invariant, we do not distinguish between barred and unbarred
versions.

Our curvature convention is such that the Ricci tensor is given by
R;j = RF ;.

If A is a vector or tensor field, we write A = Og(¢), for ¢ a function,
whenever |Alz = O(p).

3. The Gauss-Bonnet formula

We now prove Theorem 1.1. We do so by using a form of the Gauss-Bonnet
formula that has good conformal invariance properties, which allows us to
compute using g instead of g..

Proof of Theorem 1.1. Let (X, M, g+) be an AHE space with conformal in-
finity [h], and let Y be as in the previous section. Let h € [h], and let
be the corresponding geodesic defining function. Let € > 0. Then X is a
four-manifold with codimension-two corner 3., and boundary hypersurfaces
M and Y: (see section 2 for all notation). The Gauss-Bonnet theorem for
Riemannian manifolds with corners (in this case X), proven first in [I]
(and see [7]), can be rewritten in the following conformally useful way ([21],
building on [3]).

1 1
47T2X(X6+):/X+ <8|Wg+|?]++2Qg+> dvg++/y ([,Y—f‘Ty)dviz

9)
+ / (EME + TME) dvy, + j{ (UEE + GEE) dvks.
M+ e

Here, Wy, is the Weyl tensor of g, and the norm in question is its two-
tensor norm W”leijkl. Meanwhile, @)y, is the Q-curvature of g, defined
for any metric g by

1

1 2 1 iJ I
; Gl — SRR

Qg AgRgy + 69

Here, the Laplacian is a negative operator and the curvatures are respec-
tively the scalar and Ricci curvatures of g. For any metric g, the quantity
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\Wg@dvg is a pointwise conformal invariant of weight zero. Under a confor-
mal transformation § = e*¥g, the Q) curvature transforms as

64”Q§ = Qg+ Puw,

where Py is the Paneitz operator associated to g; we will not use the Paneitz
operator and so omit it here.

We give the definition of L and Ty, due to [5], for an arbitrary bound-
ary hypersurface (N3, h) embedded in a four-manifold endowed with metric
g. The definition is

o o 2 ° o
(10) Ly :L;;VVRZV—sz]*V”RZV+§HN|LN\,%—tth?V,
where Ly and Hy are the second fundamental form and the mean curvature
as before, and p, v are indices on T'N. Similarly, the T-curvature is defined
by

1 ° ° 1 o 2 o
- EM(RQ) - LRy, + L%/RZV - EHN|LN|]21 + 3 try, L3
1 1 1

Ty =

(11)

where p is the inward-pointing unit normal to IN. Under the conformal
change § = e?¥g, this transforms according to the equation

(12) eSwTN =TN + P:,)gw,

where P§ : C*°(X) — C*°(N) is the conformally covariant boundary oper-
ator

1 1 . 1
BYf =5ulgf + Bl f) = SHNAWS + LY VIV F + S HY fu
(13) I D 1
~R,— =R — = |Ln|3 + - Hx .

(We note that this formula differs from that in [21I]; that paper and others
in the literature contain misprints in the formula, which we have corrected
by [5].)

Next we turn to the corner quantities. For a corner (Z, k) that forms the
intersection between two boundary hypersurfaces N and S making angle
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0y € C*°(2), G is defined by

1 o 9 N o N o ab
(14) Gz = 5 cot(Oo)(|[IIn|; + | I1s|j) — csc(bo)IIpIlg,

where I1, etc., are as in section 2. The G curvature is a pointwise conformal
invariant of weight —2 (when the ambient metric on the four-manifold is
changed conformally). Next, Uz is defined by

Uz = (7 — bo) K= — icot(ao)(ﬂfv +12)
(15) 1 1
+ 5 CSC(Q())??NUS — g(VNHN + VSHs).

Here, K= is the Gaussian curvature of Z, and the other quantities are de-
fined analogously to those in the previous section. Under a global conformal
change § = e*¥g, U transforms according to the equation

(16) Uz = Uz 4 Pduw,
where PJ : C®(X) — C*°(E) is the conformally covariant operator

Pf=(0g—m)Arf +vNunf +vsusf
(17) + cot(0o) (nvvn f + nsvs f) — esc(bo) (nsvn f + nvvs f)

1
+ g(HNVNf + Hsvsf).

We now analyze formula @ in the context of our space (X1, g4). Be-
cause |W, +|3+ dvg, is a pointwise conformal invariant of weight zero, its in-
tegral converges as ¢ — 0 to [, |W§]§dvg, which in particular is finite.

In our setting, Ry, = —3¢;; and Ry, = =12, 50 Ag, Ry, =0 and Qy, =
6. The integral of %Qg . therefore is simply the integral of 3, so the sec-
ond integral over X, becomes simply 3voly, ({r > e} N XT), which is the
same quantity considered in , except that the latter is over all of X
instead of X*. To compute the contribution from this integral, we con-
sider four different regions of X. First, let rg > 0 be small — sufficiently
small, in particular, that the geodesic normal form holds for r < 2rg,
and that the region U = {r < 2rg, —2rp < w < 2rp} has the decomposition
[0,2r9) x 3 x (—2r¢, 2rg), with |u(r, ()| < ir¢ on U. Having chosen rg, we
will leave it fixed for all time.

The first region of interest to us is then A = {p € X* : r(p) > ro}. (This
set does not depend on e, which we assume is smaller than r(.) Next, we want
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to capture the points near the boundary M:. The obvious set to consider
is B. = (e,79) x M. The problem is that this may omit points that are
contained in X or include points contained in X ~, because Y is given not
by w = 0 but by w = u(r, ), where u may be positive or negative away from
{0} x X. To address this, we need to add the volume of the omitted points,
C., and subtract the volume of the over-included points D., viz.,

X =(AUB.UC)\ D..

To proceed, we analyze the volume form dv,, . First, at all points, we
have dv,, = r_4dv§. Near M, we can write

dvg = dvy, dr

using the normal-form identification . Now in local coordinates

(r,x', 2% %) near M, we may write

det(h,)
dvy, = 1| S duy.
Uhe =\ det(n) R

As shown for example in [13], we have the expansion

det(h,)
det(h)

=1+0@r2 oWt 4 O(r),

where v, v € C*°(M) are the so-called renormalized volume coefficients.
Either by direct computation using or by using equation (4.5) and the
equation at the top of the same page of ([14]) (remembering that M is totally
geodesic with respect to g and that the singular Yamabe metric for g is g+ ),
we may show that v(2) = _%Rﬁ- Thus,

1
dvg, =74 (1 — gTQR;L + O(T4)> dvy,dr

1
= <’I"_4 — g'l"_2RE + O(].)) d'UEdT.
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~ We next derive an expression for dvg (and thus dvg, ) near 3. Since
h = dw? + k,, near ¥, we have

. det (k)
Uh A et ()
= (1+ O(w))dvgdw.

dvydw

Hence, near ¥, we have
1
dvg, = <7“_4 - ér_QRE + O(l)) (14 O(w))dvgdwdr.

We then have

volg, (X

£

) = volg, (A) + voly, (B) + volg, (Cc) — voly, (D)

= vol,, (A /M+ / ( — ér—QR,; + 0(1)) drduy,
(18) —iitfmoﬂ+mfmu+mmmmmm»

where the last integral represents voly, (C.) — voly, (D). Now, by equations
(2.13) and (2.14) in [16],

(19) u(r,Q) = 177a4(C) + r*1og(r)u(C) + O,

where 7j,, is the mean curvature of ¥ viewed as a hypersurface of (M, h)
and v € C*°(X). Thus, we find

3voly, (X)) = 3vol,, (A +3/ / ( —2R +0(1 )) drdvy;

3 72 / <41"_ Fap + vlog(r) + 0(1)> drdu;

3 3
=3 VO]B(M+) —et / Ry dvy, + f Nardvg
8 S+ 4 Js
(20) + 3V +0(1).

Here ij is the collection of all the order-zero terms in € in the volume ex-
pansion, and is defined to be the renormalized volume; of course, we have not
shown so far that V" is independent of the choice of h € [h] (or equivalently,
of r).
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Since (as we saw above) @4, = 6, the above right-hand side is thus the
integral | X+ %Qg . dvg, . We next turn to the boundary integrals over Y. and
M., beginning with Y.. We will analyze Ly and Ty with respect to the metric
g+; of course, since Ly is a pointwise conformal invariant, it is automatic
that the integral of Ly over Y. will converge as ¢ — 0. Now, because g4
is Einstein and Y is minimal in (X, g4 ), the first and third terms in
vanish in this case. Thus, we get simply Ly = —213?‘,5 Rg 5 — try, L%,

Next turning to Ty, we again compute with respect to the ambient
metric g4, i.e., with respect to the non-compactified setting. Again, due
to the Einstein condition of g4 and the minimal condition on Y, the first,
second, fourth, sixth, seventh, and eighth terms of vanish, so we get

o 7 2 o
Ty = L*’ Rl + 3t L3

1 1 .y
= —E,CY + 61’;1‘;} Ly.
Now, Ly and trj, L§’/ are both pointwise conformal invariants of weight —3,
so we have exhibited Ty itself as such a pointwise conformal invariant. We
define

1 1 o

This is a pointwise conformal invariant, and the upshot of the above remarks
is that

(21) / (ﬁy + Ty) dv;z = / Cyd’t);Z = / Cydvh + O(E).
Y. Y. Y

We now turn to the integral over M in @ Here, we will compute T py.
and L)y, the extrinsic curvature quantities with respect to the compactified
metrics g and h.; then we will compute the transformation to g, h. using
equation , which in particular implies that

/ (['M + TM)dv% = / (ZM + TM + Pg(* log r))dvg.
MF Mt

€

Our goal is thus to compute the right-hand side of this equation. We begin
by computing some basic quantities. Recalling that g = dr? + h, and M, =
{r =€}, we find that

L.

1 - _
= —§8rh,,|r:E =ePh 4+ 0(52),



3094 M. J. Gursky, S. E. McKeown, and A. J. Tyrrell

where PP is the Schouten tensor of h, and we have used . Thus,

(22) Hy = (Pl + O() = %RE +O().

=

The reason the error is O(e3) is that the r? term in the expansion of h,. is
trace-free. We also have

Ly, =P+ O(e?).

We next wish to compute Rz on M. To do this, we use the fact that R, =
—12 and that gy = r~2g. Thus, we will use the conformal transformation

formula for scalar curvature. Let w = —log(r). It will be useful to record
that

2 1 2
(23) Agw =T + 1RB + O(T‘ ),

which follows easily from . Thus, from the conformal change formula, we
find

—12 = r*(R5 — 6A5w — 6|dw|?)

3
= 7‘2 (Rg — 67“_2 — §RE — 67”_2 + O(T2)> s
whence
3 2

We next compute the tracefree tangential Ricci tensor ]Q%zl,. We will use
again the same technique of conformal transformation and the fact that
Ric(g+) = —394. We first find using that

VIVIw = Pl +O(r).
It then follows from the equation

RiY = wa — 2V£V?,w + 2wuwy, — (Agw — 2\dw[§)g,w

that
Rf;,, = QPSV +O(r).
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We are ready to analyze the curvature integrands on M. First, we easily
find using and the above that

where the first-order contribution is from the first two terms of (10)), and the
last two terms prov1de contributions of order O(e?). Next, we Compute T,
recalling that iy, = 8 . Then it again follows from the above computations
that

TME = O(z’f)
The lowest-order contributions come once again from the first three terms
of (11} ., as well as the sixth. ) )

We next turn to computing P (w) = —PJ(log(r)) for PJ associated to
M. First, observe that w|y. = —log(e), and iy, (w) = % Thus, all tangen-
tial derivatives of both quanties vanish, which means the second through
fifth terms of vanish. Thus, only the first and last remain. It follows

from that
—fin. Agw = —e 3 4+ 0(e).

Next, using again the facts that R = %RE + O(r?) and our above calcula-
tions, we find that the last term of simplifies to

1 1, 1= o, 1o\ 1
<6Rg — 5}%}15 5 lh, + BHME> ,LL( 10g<7")) = 15 =+ 0(5)

Now, we wish to perform the integral over M, not M.. Just as for the
interior integral, the simplest approach will be first to compute the integral
over {e} x M*, and then subtract or add whatever was missed near the
corner due to turning of Y away from . First, we observe that from our
above computations, it is clear that

/ (T, + Ly + Pg(—log(r)))dvﬁs = / Pg(—log(r))dvﬁs + O(e).
M M

We may focus therefore only on contributions from P{(—log(r)). We write

[, e = | - Pi()du;,
-4 / " PIw)(1 + O(w))dwdig ).
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(Compare ) We compute the first term first. Recall that dv;, = (1 —
2e2Ry + O(e))dvy,. Thus,

/ Pg(w) :/ <—5_3 + le_lR,; + O(s)) (1 - 1sQR,*I + 0(54)> dvy,
{e}x M+ M+ 4 8

= — 3 vol; (M) + §5_1 / Ry dvy, + O(e).
8 M+

As for the corner integral, we find using

]{ / 70 Y (w)(1 + O(w))dwdvg(¢) = 7{2 (—e 3 +0(E™h)-
' <152UM + O(et log(a))> doy,
- _1571 jinMdvk + O(eloge).

Thus, we have found that

/M+ (TM + ,CM)dvng =—¢g3 VOIE(MJF)

3 1
+ 5_1 (8 /M+ R,;dv,g + Z énMdvk> -+ 0(1)

We are finally ready to evaluate the corner terms Us,_ and Gy_ in (J9).
Just as for M, our strategy will be to evaluate first with respect to g,
and then use the conformal transformation formula and the pointwise
conformal invariance of G. Thus, we will find

(24)

j{ (Gk + Uk)dvk = % (625 —{—Uzs + Pg(— 1OgT))dvEE.
EE Es

To begin, we wish to estimate 65, which enters the formulas for U, G,
and P. To do this, we find normal vectors fip;. and pfy. The first is easy:
A, = 8 . For the second, we observe that, for ¢ small, we can write ¥ as
the zero level set of F' = w — u(r, () (where, again, ( € ). Now,

0 Ooud -,0u 0O

_ 2\ Y gy 3 .
grad; F = (14 O(r ))aw 5 B k* 97 Db '(r*log(r));

9 1 0 1. .00y, 0
. 2 - 7_72ab M
=+00 ) g0 =5y, — 17K 5 gt

+ Oy (r3 1log(r)).
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Since |a%}g =14 O(r?), we have

|grad; Flg =1+ O(r?).

Consequently,
B grad; ' o\ O
gy = ——— = (1+0(r*))—
(25) Y | grad; F|5 ( ( ))8w
1 _ 0
= (g + 00*108)) 57+ 002
Thus,

1
cos(05) = —(finr., fiv) = 5T + O’ log(e)).

Next we wish to estimate the second fundamental form Ty, of 3. viewed as
a submanifold of Y;. To do this, we first want to know the inward-pointing
unit normal vector vy, to 3. in Y;. By inspection, we can see that

0 oF gradg F

o or |dF|2

is normal to Y. and tangent to Yz, so

0

o + 1677Mi + O(e3loge).

(26) == (4 OE) 5+ ey -

Vg
Now, a local frame for T3 is given by {X1, X2}, where

0 OF 0
0zx® Oz ow’

X, =

Since Vg 0, = O%(£)9; (which is easy to check), we may conclude that
<VX vy, ,Xb> = O(e). Thus, by Weingarten’s equation,

[T1y.]5 = O(e).

It now follows that G, = O(g): the first term in (14)) because cot(65) =
O(g), and the second because of the estimate on ITy..

We next turn to U .. The second and third terms in are O(e) for
the same reason. Turning to the fourth term, 7y, Hy, = O(e) by (22 | To
compute vy, Hy, we first compute Hy using the conformal change formula.



3098 M. J. Gursky, S. E. McKeown, and A. J. Tyrrell

Recall that Hy = 0. Then again taking w = —logr, we find from the con-
formal transformation formula Hy = e “(Hy — 31y (w)) that

0=r(Hy — %ﬁM +O0(r*log(r))),

whence

— 3
Hy = §ﬁM + O(r2 log(r)).

™

Thus, vy, Hy = O(elog(e)); so since 6§ = 5 + O(e), we have
— T
Us, = §K,; + O(eloge).
Consequently,

$ (@ + U)oy, = w°x(2) + Ofc loge).
Es

We still need to compute the integral of Pg(— logr). First, still letting w =
—log 7, observe that w|y;, = —loge and that iyw = —%. Thus, the first and
second terms of 1) in P§(w) vanish identically, as do the terms 77, 7as.w,
Ty, Uam.w, and H pp Upgw.

Now, the third term takes the form

1
Uy, [lyw = Dy, <277M + O(T‘2 log(r)))

1
= zgﬁMawﬁM + O(eloge)

= O(eloge).

Next, vy.w = —% + O(e), so cot(05)My. Py.w = O(e). On the other hand,
— esc(05)Ty. Py,w = e 17y, + O(e), since 7y, =Ty + O(e?) and csc(6) =
1+ 0(e?).

Finally,

1— 1
gHyﬂysw = —is_lﬁM + O(eloge).
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Adding together all these terms, we therefore find that ngw = %a_lﬁM +
O(eloge). Thus,

j{ (G: +U. + PJ(—1logr)) dvg,
Es

(27) ,
= 55_1 j(I{ Tydvr, + 72X (Z) + O(eloge).
b
Combining @, , , , and , we find
1
(A (X)) — x(2)) = 3V + 3 /X+ (W, |2 dug, +/ Cydvj, + O(gloge).
Letting € — 0 yields the result. O

4. Variation of renormalized volume

In this section we give a proof of Theorem 1.3. Since this will require exten-
sive calculations we begin by establishing some new notational conventions.

In addition to using the coordinate system (r, x!, 2% w), it will be conve-

nient to use the system (20, 2!, 22, 23) = (r, 2!, 2%, w — u), where u is as in
. We will still use 0 < 4,5 < 3 to refer to coordinate fields on X, but will
use 0 < &, B < 2 to refer to the coordinate fields tangent to Y. It will also be
useful on the interior X to let 2 be the g4-distance to lo/, so that agﬁ = uy
is the g4 -unit inward normal vector to Y. The system (r,zt, 22, 2™) is clearly
another coordinate system near }o/, and the corresponding coordinate vector
fields tangent to Y are the same.

As in the introduction, suppose F : (—¢,¢); x Y — X is a C? variation
of Y through minimal surfaces in X such that F(¢,X) C M for all ¢. For
each t € (—¢,¢), F(Y) = Y? splits X into two disjoint sets, X;", X; and
we can make our choice of X, consistent by fixing a point p € XO+ and
requiring that p € X;" for ¢ in a possibly smaller time interval t € (-4, ).
Let V5 (t) = V" (X;"). We will also use the notation V" (F(Y)). Our goal
is to use the formula to compute a formula for the first variation, Vf

Before proceeding we recall that strictly speaking, the formula for Vf
given by (2)) only holds for minimal Y. However, as we remarked in the intro-
duction, one can use this formula to define Vj for any dividing hypersurface,
in particular for Y* = F(Y'), where F; is a general variation of Y.

We begin by making two simplifying assumptions about the variation F.
First, we show that it suffices to consider normal variations of Y. We then
weaken the assumption that V! = F(Y) is minimal for each ¢, and only
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assume that minimality is preserved infinitesimally. The latter assumption
will suffice to establish the theorem.

To see why it suffices to consider normal variations, let Z = %]—}‘ o be
the variation field of F. Write Z = Z+ + Z", with the two uniquely defined
fields respectively normal and tangential to Y. Now, because F;(¥X) C M for
all ¢, along ¥ we have Z'" € TY NTM, and it follows that Z' is tangential
to ¥ along the boundary. Thus, by Theorem 9.34 of [20] and the fact that
Y is compact, there exists a unique global flow g :R XY — Y such that
£G|,_y=—2". Define F : (—g,e) x Y — X by F(t,y) = F(t,G(t,y)). By
the chain rule, %ft( = Z1. On the other hand, Fy(Y) = F,(Y) for all ¢,
so it remains a flow t%:r%ugh minimal surfaces, and the renormalized volume
at each time ¢ is identical. Thus, it suffices to compute the variation for
(initially) normal variation fields, i.e., those satisfying

d
—F

1TY.
dt

t=0

As mentioned, we will also assume

d
(28) < Hy.

=0
dt ’

t=0

where Hy: is the mean curvature of Y viewed (via pullback by F;) as a
function on Y.

Let F:(—¢,6) x Y = X, be a C® normal variation satisfying (28)). As
in the statement of Theorem 1.3, we let f = <My, %L:O }">g+, where uy is
the (X, g4 )-inward unit normal vector along Y. Since F is normal, we can
write

d

(29) =

di Fe= fuy.

t=0

Also, let F = Fl(—,e)xx- Then F determines f € C°°(X) given by

(30) f_<jt f,aM>,

t=0

where )7 is the inward-pointing normal vector to ¥ in M+ with respect
to h.

From now on, to simplify notation we will let primes denote %|t:0~ By
the formulas , , and in the appendix, the variations of the
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induced metric, second fundamental form, and mean curvature of Y are
given by

(31) h’&g = _2fL5<5’
hoh 7~
leé = VdV3f —hY Lchggf + R!oz;zéﬁf’
H = Ajf+(ILy[ = 3)f.
By , H' = 0, so the last formula above implies that f must satisfy

(32) Anf=B—|Ly[)f.

o

Lemma 4.1. f € C*®(Y) has an asymptotic expansion of the form

(33) f=r""f+o(1),
where f € C®(X) is given by . 3
Conversely, if |Ly|}gl <3 onY, then given f € C™(X), there is a unique
solution f to satisfying the expansion .
Proof. We first observe that near M,
(34) Ly |2 = O(r?).
This follows from below, but it can also be seen by using the fact that Ly
is trace-free (since Y is minimal), and the the trace-free second fundamental

form is a conformal invariant (of weight 1). Using (34)), it is easy to see that
the indicial roots of the operator

P =A;— (3~ |Ly[})
are —1 and 3. It follows that f has an expansion of the form
f=r"tf1+0(1),

for some f_; € C*°(X). However, using the expansion of the metric h near
M in , we have h% = 1 + O(r?), and using this it is easy to see that

f- Tﬁlf_l = o(1).
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as in . Since py = rpuy, (29) implies

i Fio = fuy

t=0
= [r o1+ 0(1)] riy
= fo1fy +o(r),

and it follows from and the definition of F that f_1 = f.
Conversely, given f, if we let

foa=rtf

then Pf_; = O(1). It then follows from standard arguments (see [19]) that
there is a unique solution of Pf =0 with f =r~1f_; + O(1). Again using
the expansion of the metric it is readily checked that f =r~1f +o0(1). O

Remark 4.2. Although [ € COO()O/), since the indicial roots of the equation
satisfied by f are —1 and 3, the expansion of f must in general be expected
to have a term r3logr, so rf € C3*(Y), and optimal reqularity of F is C>.

Proof of Theorem 1.3. The statement of Theorem 1.3 consists of two
claims: the formula for the derivative of Vf, and the assertion that f deter-
mines f. Since the latter follows from the uniqueness claim in Lemma 4.1, to
complete the proof of the theorem we just need to carry out the calculation
of Vj

By Theorem 1.1,

1

SV (X) = 224) —xOF) g [ Wyl vy, — [ ety

We let hy = g+|py,- For € >0 small, recall that X. = {z € X :r(z) > }.
We let Y! = Y' N X,, and define

V(1) = m(4x(X;" N Xo) — x(9YY))
1

2
- / Wy, 2, dv,, — / Cy« du;, .
XrnXx. Yt

Then

d 1d

d
V _ %% 2
Sdt E(t)’tzo 8dt /x’jﬁxg | g+‘g+ A0

- — Cy+ dv;y ‘
t=0 dt Y Y he

t=0
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For the first integral,

1
2 _ 2 -
—o /XjﬂXa ’WQ+‘g+dvg+ - 8/Y,: ’W9+’g+fdvh-

To analyze the second integral, we let dv%t = Ydvy, , where ¢ = O(r —e),
with 0 the Heaviside function. Then

d / d
—_ CYt dv; = — / CYt Cl?)<§
dt t=0JY? ha dt =0 JYt he

~ lim © [ / (Cy+ 0 F) (W o Fr)(Frduy — dv)
Y

T—=0 T

(35) e

+ / (Cy-oFr —Cy)(@po fT)dUE
Y

+ /ch(zp o Fr — w)dvﬁ}

1
dvj, + lim — Cy(@[) o Fy — v)dvj,.

Now by the Implicit Function Theorem, the equation r(F(t(p), r(p),{(p))) =
€ can be written as r = £(t, ¢) for some smooth £ : (—§,0) x ¥ — R. Let k. be
the metric induced on Y. by g. Writing dv;, = nr‘3drdv,gi for some smooth
correction factor 77 that is one on Y., we may use the fundamental theorem
of calculus to write the last term as

1
lim = [ Cy(¢ o Fr —)duv;
Y

T—0 T

= — lim - //TC vy (r, On(r, O)r3drdug,_(¢)

70 T

[ 8 [ et ontrortann
/Cy€C3

:/ Cye ! dr(fuy)dvks
EE

dvg,_(C)

=0

— [ evton, fuy)y.du.
e
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Therefore
d

d d
(36) 7 /Y; CYtd,Uﬁt’t:O = /Y (%Cyt t:o)dvﬁ + /Y Cy(advﬁt

+ / CY <T87’7 qu)ng dvka °
2

e

=0)

We dispose of the last term with

Claim 1.
ling | C (10 Sy g, don. =0,

Proof. We know that py =rpy and that Cf,* :T?’C{Z. We also know

from that
(r0r. fiv)g = O(2).
So we get
Cy (ror, iy ) g, = T30€<T8T7NY>9+ = 0(e").

Therefore, taking into account the asymptotics of f, we get

(37) /Z Cy (1D, fuy )y, dvy. = O(E).

0

By and the formula for the variation of the volume form in the
appendix we have

d
since Y is minimal. The minimality of Y to first order also implies Hy: =

O(t?). Since g, is Einstein, the formula for Cy: thus simplifies to

|t:0 = Hydv;, =0,

R |
(39) Cyr = ~(Ly) Ry = gty (Ly)* + O(),

where Ly is the second fundamental form of Y with respect to uy and Rh

is the Ricci tensor of hy. Combining , , and 1} we obtain

d . d vt 545 ilt ~
i), o dvht‘tzo——/ysdt((L VPR dvy

_3/stttr,~”(L 12|,y dvj + O(e).
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We intend to apply integration by parts to the integrand of this expression
to write quantities in terms of boundary integrals on 3. We first write the
integrands in terms of geometric quantities on Y.
Define
_ B phe

A= (Ly+) Ra s

B = trj, (Ly+)".
Differentiating A gives

I _ 587786 ph ohwh 2\ap ph _ T&v7 B8 ph_pa+
(40) A'=h""h R%Vavﬁf—FSf(L ) Rp+ fh™7h R%R&ﬁgﬁ
7 a57 B8 h
+ hOTRP Ls(RL;).
A standard formula for the variation of the Ricci tensor (see e.g. [23]) gives
us

~ 1 - ~ . ~ . ~ ~ -
(41) (R =- 5 [AjRL 5 = VE(Ogh') = VE(Sal') + VEV i (tr; 1)]
. mr 5 s 1oor 5 -~ Toor 5 -
_RYIROCph Bt o ZpnCph pr o ZpiCph pro
hh Rd:ymhﬁg+2h R&5 BC+2h R,Bﬁhac'
Here~5 is the divergence with respect to h. Now, by , Aﬁﬁ,@ﬁ =
—2Ah(fL&B). By the same equation,

try, B =0.
Taking the divergence of both sides of gives us
(42) B
= —V8(2fLsp)
= —2fV¥L5—2L;5V5 f.

Now by Codazzi, we have

along Y. Contracting & and 4 and using the Einstein condition on g along
with the fact that Y is minimal gives

_ pY9+ _ _FEIThT &vhr VT Ry _ b7 .
O_Réﬁ_ h VaLﬁ,y—l—h VBL(W— V}}Lﬁﬁ—l—vﬂH_ thﬁd'
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L. =

S

d5h' = 2LV f.

Turning to the fifth term of (41] ., we consider the Riemann tensor on Y. As
the dimension of Y is three, it follows that the Weyl tensor of h vanishes,
giving us

iy i¢ ph 71 iC L phiy
ﬁé —R: h~ChaB—|—h"R h +h’7 Ran 5 Rh

So we can write the last three terms of as
_ pAj5C gh

! 77{ h 7 nC R
6hnc+ L Ranhﬁ<+ SRR

— RI(W7) Ry 5 + h"CRh h’ h”CRZnhég - thh’
Therefore we have found
(Rl;) = A"(fLyp) = VA(Lg VT f) = VA(Las VT f) + 2f (REL™)hy s
—3fLa VR’Z ~3fL5RE; + fR"Lyj.

This then lets us write down an expression for (L, (Ric;‘)’ )7,

L(RE ) = L NG (fLyg) — 2177V (Las VT ) = 6/ (L) RE + FRM| LI,

A = RIPVEF - 3f(L) R + fRECRY
+ LA (fLsp) — QLQﬁV?y(LBﬁvgf) + fRM L2
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Using formula in the appendix for the the variation of the second
fundamental form, it is straightforward to see that B’ is given by

B = (trL3)':3(ﬁM)’l~zﬂ W LasLss ~C+3h°”hﬁ”h5<LaﬁL75L
= Gf|L*2 + 3h%7h ﬁiﬁé‘[vhvhf L%ﬁf
9+ 17T~ .
(Rajlﬁn & 5’7) ] ’7 n¢
= 3f|L%} +3(VEVE/)I(L >aﬁ +3fRY: (L)

It will be useful to record two consequences of the Gauss curvature equation.

First, using the Einstein condition, the Ricci curvature of & can be expressed
as

ho_ 7 . p9+ _ 2\
(44) Rﬁf = —3hz; Rﬁﬁfﬁ (L )ﬁC
It follows that the scalar curvature of h is given by
(45) R; = —6—|L|*.

We now focus on rewriting four terms in A’ and B’ to make them amenable
to integration by parts. We thus make the following definitions:

Dy = / RIPGEE fdu;
Y.

D2=/ LaBAE(fL&B)dUH

€

afoh
D3 = —/Y 2LV (L mvz )dvs

Dy = / 3(L2)PVEVE fdv; .
Y. A
We will write each of the above terms as an integral over Y. plus an integral

over Y. Recall that vy, is the inward pointing h unit-normal vector field to
Y. in Y;. Integrating by parts then applying the second contracted Bianchi
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identity and , we find
D, = /Y BB RE VRV fduy
_E/YE RO RE fduy — 7{ Rh 08 V7 fduy,
— /Y %(ngﬁ)vg fdvy — f Rl A AV ? fdvy,.
= [ Sregsa s [Sn ) - mieon, o],

(e

_ f [RiCB(VYE, Vﬁf) — %RBVYE (f):| dvg,

AL BILP Lo iy (oh
- / (H + L — 9) fdvi1 — ]{ (RiC;l —*Rﬁh) <Vhf, VY>dUk .
v. \ 2 2 e 2 6 E

Next,

L NG (fLgp)dvy,

/ [|Ly Apf+ LA L, B+2LaﬂV7th aﬂ]dvh
/ [|L| Apf+ LA L, 5+<Vhf,Vh|L| >} dvy,

/f aﬁAL vy, — 7{ |LI2vy. (f)dvy, .

We want to use a Simons-type identity to replace the term Aj; L, i By the
Codazzi equation,
9+ h h
R“ﬁn Valss — ViLss,

SO we may write

(46) WV@Rgt =
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Now we want to commute the covariant derivatives in the first term on
the right-hand side of this equation. By the Ricci identity,

VIVAL

hohy _ _ ph a7 _ ho iy

5B Saq
Contracting 6 and 4 and using gives
(47) RIVhVLL
Combining and , we get
AjLag = hVRY Ly + RASL75 — hOIVERS:

Therefore,
y6.,8n

(48) Dy = /Y [LdﬁL*fibzgm+(L2)5¥5R§B—Lowiﬁvgz%‘”~ fdvs

- j{ |L|*vy, (f)dvg, .
Es

Applying integration by parts to D3 and using yields
(49) D3 =— /Y 2LV E(L: V] fduy,
:% 2L2(V’:°f, VYE)dUkE'
Ea

Now again using integration by parts and applying we see

(50) Dy = / 3(L2)AVEVE fduy
YE

55oh 7 Aok 38,6 oh
= — /Y E BLYTVEL; V' fduy, — 7{2 E 8Las L1 Vi fduvy,.
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In order to rewrite the first term on the right, we consider the following:

(51)  —3hPLOIVALE V= —3hP LY (VELs — ViLas)VE f
- 3h55L"‘7V§LMV% f
o g B 3 - 2 B
—3LYRY VI~ CVILPVL.

Using the above formula and then applying integration by parts again
we see

(52) - / BLEVVEL; PV, fdvy
Ys
_ « B 3 2 B
_/Y ( LIRS VI f - SVl Vﬁf> dv;
5 a g a 5 g -
/Y ViLYRY fdvh+3/ LOVRS: . fduy
+/ = V’BVdev;L—i—Bj{ L8 Rgi f
v. 2 =
3
+27{ |L|*V,,. fdvg,
EE

‘We also observe that

3 . .
(53) ?,fvﬂLcwzwz;y~~ :if(ngcw Vi 5)Re, "
3 RI+ B&&
2f ab’vn n
__° apy .
— f aﬁw W,, %7,

If we use the above formula to re-write the first term on the right-hand side
of , and use the resulting formula to re-write , we get

Dy = / [3 fLaﬂthhRfit
Y. apn

— 2wt

3
27 " apyn

Wy, 87, 4 2 |L\ A; f | do;,

+f {3fL'”RZ,i +§|L\2uy€(f)—3L2(vﬁf,m) duy. .
ZE
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It is interesting to note that the cancellation of the first term in D4 with the
last interior term of Ds accounts for the absence of any derivatives of Weyl
terms in our final formula.

Now we want to compute [y C'dv;, = — [ A'dvj — 3 Jy. B'dvy,. Using
our expressions for Dy, Do, D3 and D4 and gathering together all of the
terms that appear as integrals over Y. we get:

(54) Iy::/YEKS'QLPHLIg)f

+La5m5m~ 455 f + Rl (L2)a5 f— LaﬂhévvhR?t il
aBiév—h pa+
+ fLPRIVIRY
—ff W, 97+ - \L| Ay f

aﬁwn

- 3f(L2)“5R§~ + fR?“BRfit oo+ FRILL
212 2
IR+ RS (L >°‘ﬁ]dvh
_ 3L \LI4
= /y K 2 T )
(55) + L8[V Rh

77f aﬁ’yn
_ 2f(L2)aﬁRh + fROéﬁR!h— +th‘L’2

~55f
1
Wy, 55 4 SLPAGS

AL + FRE <L2>aﬁ] duy,
Next, decomposing the Riemann tensor of g4 gives
9+ _ 9+ 7
(56) Raﬁéﬁ - Wdﬁﬁﬁ hdﬁ'

Applying to gives

h _ 2 _ [ 9+
(57) Ry = —L2— k5~ W
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Decomposing the Riemann tensor of h allows us to write
h Crad _ Céaﬂwh_wh_
(58) RS@BEL LY = L>L [h R.; héCRaﬁ h R +haCR66
_iRiLh&éh + R hgfhdﬁ]‘

Next we apply and then to get
RgdBELC‘SL&B (L2)°‘5Rh~ — f]L| R;
1
_ 4 2 2 aﬁ 9+ 2 - 4
= —|L|* —4|L|* — 2(L?) Wdﬁ,@ﬁ+3|L‘ + 2|L] .
Note that we also use here the fact that |L?|? = $|L[*, which holds because

Hy =0.
Simplifying gives

LaﬁL’ytsRh — —‘L’2 ‘L’4 (LQ)aﬁWg;;ﬂn
Applying this to re-write 148 L”‘sR’}~ 535 and using (32]) to re-write Ah f gives
BILI> | |L!
Iy = — - -9
= AT
1

_ 2 2\aB 1179+ Y4
LS - 2(12) Wi Il

- *f W, i+ = IL\ f- |L|4f

aﬁwn
+ 2f|L%? + 4|L)? f+2(L2)aﬁW9+~ —6f|L|? — fIL|*

— (LA Wp0f — WansaW i af + LIPS +6f

anﬁn

+ fIL)3 + fW?iA(LQ)aﬁ — f|L]2} dv;,
(59) = /Y <3f+ fW~B,mW°‘ﬁV +fwamnwan~n> dv .

We may simplify this helpfully:

Claim 2.

1

(60) 3 aﬁ

i W9+am + Wg+5nWanﬂn - *|Wg

+19+°
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Proof. Observe that

9+ ijkl
|W!] W’L]le

= 4WIt ~vvmﬁuzlww W”anﬁ + W9t WQW.
néBA apé

+19+

Now, Wa‘qg 5 is an algebraic curvature tensor on Y, a three-manifold, and
(omitting g for clarity) its trace is given by

Wizs = ~Waz"s-

«,

But (by, e.g., Prop. 7.23 and Corollary 7.25 of [20]), an algebraic curvature
tensor on a three-manifold is determined by its trace; in this case, the formula
reads

W >

afis = =Wha"'shs- + W. 5 h Wndnﬁhés — VVﬁ n has .

na §ttpy 73 7
It follows that

ng ~W04575 — 4Wnom,3W B
apyo nanB’

So

‘Wg _4Wg+ Wna,87+8wg+ ngﬁg'

=

It follows from the previous claim and that is equal to

o0 gy = [ (IR gl s - § (o

€

Gathering the boundary terms from D1, Ds, D3 and D4 and the normal
derivative term on the above line we get

60§ [(Ric—3RR) (VL) + LPor. (1) 2LV o)

e 1
— FLERY ) — SILPv(f) + TA(Y f,00) = e (F) | oy,
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_ 9+ _ :
Now we apply . to the first term and use R~5 L= Wd,é% to re-write
fL‘WRZJf~~ ya , giving us

7{ [—2L2(Vf, )+ LW
P

gyl Ye T W?;Bﬁfé‘yf + |LPvy. (f)| dvp...

Combining this with (35)), (36| and (61)) gives us
d
3Vl = [ IR+ | =W VT (P ()
dt Y. . e

(63) - 2Ld&LﬁBy}5}EV§f + L75Wf'f5 fug‘] dvg. + O(e).
Next we will examine the asymptotics of the term Wgﬂ l/Y fﬂ Now, it

follows from . @ and the second-last equation on the bottom of page 52
of [I1] that

Wé?uOy = O(T)
Moreover, from the first equation on p. 53 of the same book, we may conclude
that
Wi — 3.3 1 o2
Oplv — _irg;w + (T )
with ¢ as in . By the conformal change formula for the Weyl tensor,
therefore, we find

(64 Wi = —or ol +05(1).
Now by ,
~Wy, (vy., iy, V' f, i) = =Wy, (o, fay, VY £, fiy)
3ngrﬁ, fozg fﬁ
- _TBWg;L P0G 05 f
= T3W6ﬁ6ﬁ’791f+ oY),

where n corresponds to jiy. Taking , , , and , we see that
the first corner term of may be written

- 3 B
(65) f —Wg+(Vy;,uy,vhf, uy)dvkE = f 59(3)(DM,5M)deE +O(€).
e by
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We now simplify the remaining terms of :

Claim 3.
/Y |L|? fdvy, +yi [|L|2m(f) - 2LMLWBu$Ev§f
(66) + L%W;]ggﬁfl/%] dvy,.

= [p /Y |L|? fdvj, + O(e loge).

Proof. Observe that

ap
(67) LdB — T +
Now

(68) iy = (14 0(?%)dy, — (772]\/‘[7“ + O(r® log r)) Or 4+ O%(r*)0,.

Therefore
_ 1. 3
(69) py (r) = =5 [Ty + O(r* log r)].

Now using the fact that 9a5 = GaB + O(r?) we may write

_ 1 1
(70) Ldg = —iﬂYgag + O(rz) =3 wiap + 0(7“2).

Therefore we may write

. awgaﬁ B ﬁMga,B

71 L. .=
(1) ap 2r 2r

+ O(rlogr).

Hence

8’[1} _a n _O[
Lo (P, = <t [l Tt 1 e og)|.

2e 2e
(72) = [~ e "ITmlif + Oleloge)]dug

' [awf]ws n Nnm9vs + O(elog 5)] |:—f~571 + O(E)] dvy,_
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SO we may write
j{ ’L|,%VYE(f)dUke = —]{ |ﬁM|%f~’dvks_1 + O(eloge).
T, b

Now,

2 . — pdzayzpB6
(73) \L|hfdvh r*g*g [ 5 o

8wgaﬁ + 77M9a6 +O(?”10g7’):| .

awg'yé Nr9vs F.—1 _
. [ 5 + 5 + O(rlogr) [fr +O(r)] dvj,
= [T72|ﬁM|%JE+ O(log T)]dvz,
S0
(74) /Y |L\%fdv,;=0+/a 7§EyL|%fdvkdr
=C+ / % r_z\ﬁM]zf—i- O(log r)dvydr
€ P

=C' +¢e! j(I{ ]ﬁM]%fdvk + O(eloge)
b
for some constants C' and C” and rg > 0 chosen small enough. Observe that
O = fp/ |L|? fdv;,.
Y

By we can write

Also observe by that v& = O(r?) unless & = 0, in which case 1/? =O(r).
Now if we let a run over the indices 1,2 we can write

LayLweVP | = WP (L2) 02 f5 + WP (L) 502 5
=00

It follows that
Ld;,LgiVB fdvog = O(e)duy,
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SO
j(é LdﬁLgufvﬁfdvk = 0(e).
Now we turn our attention to the term L;/SW% snf Ve First observe that

9+ 9+
SEt) Fadi

and

g ~

9+ J&on
yasn g2

where n corresponds to fiy. Now

g~~7 p— g~~

5067 5067
_ 919 _ 79719
= Vil — Vil

AT . BT BT, (AT BT _TBT..
—80L% F()K,Lﬁé F@gL/ﬁ (87L05 FG:YL,BzS Fn’s’LBO)
— 9T . BT T BT

- 8OLw - F()SLM - (avL()& - FfLﬁ())

= O(r).

This gives us
~S 0 R
7 ngsﬁfyg = 0(r?)
and
=5 ~ = 0 55 b
LIWIts fue = LY Wigss foe + LW fuz
,.S N
= LW fve +007)
=0(r?).

Therefore we may write

LOWI: . frlduy, = O()duy.

Fad

We then get that

Fadh

j'{ LYW 0% fdu, = O(e).
Es

This proves the claim. O
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Combining Claim 3 with and and letting € — 0 yields the theorem.
O

As promised in the introduction, we show that the finite part can be
written as a convergent integral.

Lemma 4.3. With notation as above, we obtain
£ [ 1LPFao = [ (8OLED +ILES) doj,
Y. Y
where the right side is a convergent integral.
Proof. By we know
(75) LI f = [TTn 2 fr + O(r log(r))
which implies

VUE

L|}glf =V, [ﬁM%fr +0(r3 log(T‘))]
= ’ﬁM‘%JZE +0(c’ log(e)).

It follows that

(N X

where we have used that fact that v/det k. has vanishing first derivative at
r = 0. By Stokes’s theorem,

L2 f)dvy, = e f TTar |2 fdvg + O(e log(e)),
b

(77) | AT QLR == § 9.

€

LI3 f)duy .
Also recall :
/YE L2 fdvy = C + 72 / TTu[2fr~2 + O(1)drduvg
:f.p./y yL|2fde+g—17§E|ij|ifduE+o<g).

The result now follows. O
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5. Appendix

In this appendix we give a brief summary of the formulas needed in the proof
of Theorem 1.3, based on notes provided by Nicholas Edelen. Although they
are all standard, due to differences in notation and convention we have
decided to present a summary of the calculations.

Let (X, g) be a Riemannian manifold of dimension n + 1, and V denote
the Riemannian connection. Let Y be a smooth manifold of dimension n, and
consider a one-parameter family of smooth immersions F : (—e¢,€) x Y — X.
Let h = (F)*g be the induced metric on Y, and V¥ the corresponding
connection.

Let V' denote the variation field of F;:

vo i,
t=0

Eventually we will assume that F; is a normal variation; i.e., if v is a choice

of unit to Y then there is a function f € C*°(Y) such that V = fv.

Let {x!,... 2"} be local coordinates near a point 0 € Y. They induce
coordinates on F;(Y) defined via (t,z!,...,2") — Fi(z!,...,2"), and we
have the corresponding coordinate vector fields {9, ..., d,}, along with 9; =
V. Let

hap(t, ) = g7,(v)(0a, 0p)-
Then
, 0

— 2y
o8 =t _,

= Q(Vaﬁm 85) + g(aou Vaﬁﬁ)
=9(Vo,V,08) + g(0a: Vo, V).

If V = fr, then this becomes
(78) ws = J9(Vo,1,08) + 9(0a, Va,v).

Given a choice of normal v our definition of the second fundamental form
of Y is

(79) L(9a,05) = 9(v, Va,08) = —9(Va,v, 03).



3120 M. J. Gursky, S. E. McKeown, and A. J. Tyrrell

Therefore, by we conclude
(80) 18 =—2fLag.
By the standard formula for the inverse, this implies
(81) (h*BY = 2fL%., L.
By our definition of second fundamental form,

0

/
= L,
(82) o

=9(Va,v,V,08) + g(v,V,Va,03).

The first term on the right is easily seen to vanish, since 0 = d,g(v,v) =
29(Vy,v,v) implies that

(83) 9(Vo,v,Va,05) = —Lag g(Vo,v,v) = 0.
For the second term, we commute derivatives to get

g(”? vatvaaaﬁ) = g(”’ vaav(‘ataﬂ) + R(V7 80(7857 V)

(84)
=9(,V,V,V)+ R(V,04,08,v),

where R is the curvature tensor of g. If V' = fv then by and ,
simplifies to

Liys = 9(v,Va,Va,0p)
= g(v, vaavag(ﬁ/)) + fR(v, 80”857 v)
(85) = VIV f+9(v,0afVo,v+0sfVao,v+ Vo, Va,v)
+ fR(v, 0, 0, V)
= VIV S+ fo(v,Va,Vo,v) + [R(v,0a,05,v),

where in the last line we used the fact that 0,9(v,v) = 0. Using this fact
again we also find

(86) 9(v, Vo, Va,v) = —g(Va,v,Vo,v).
It follows from the definition of the second fundamental form that

Vaa’/ = _L’OYA 8’)/7
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hence

—9(Vo,v,Va,v) = =L} Lg,.
Substituting this into and combining with , we arrive at
(87) 0s =VeVEf—fLILgy+ f R(v,04,08,v).

For the variation of the mean curvature H = h*8 L.s we use and
to obtain

(88) H' = Ay f + (|L? + Ric(v,v)) f.

Finally, using the standard formula for the derivative of the volume form,
we have

(89) (dvh)’ = —fH dvh.
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