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We define a renormalized volume for a region in an asymptoti-
cally hyperbolic Einstein manifold that is bounded by a Graham-
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1. Introduction

The renormalized volume of an even-dimensional asymptotically hyperbolic
Einstein (AHE) manifold (Xn+1, g+) is among its most important global
invariants. Introduced in [17] (see also [13]), it is defined by taking the
order-zero term in the expansion in ε of the quantity volg+({r > ε}), where
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r is a so-called geodesic defining function for the boundary at infinity, Mn.
There are many such defining functions, and the essential property of the
renormalized volume V+ is that it does not depend on which one is chosen.
(This is generally not true if X is odd-dimensional.)

One of the basic theorems regarding renormalized volume in dimension
four is Anderson’s Gauss-Bonnet theorem ([2], see also [6]), which states
that

(1) 4π2χ(X4) = 3V+ +
1

8

∫

X

|Wg+ |
2
g+dvg+ .

HereWg+ is the Weyl tensor of g+; since |Wg+ |
2
g+ is a pointwise conformal in-

variant of weight −4, the integral is guaranteed to converge notwithstanding
the infinite volume of (X, g+). Anderson used (1) to compute the variation
of V+ with respect to changes in g+.

In this paper, we establish analogous results for half of an AHE mani-
fold that has been partitioned into two by a minimal surface. Specifically,
suppose (X4, g+) is an AHE manifold with conformal infinity (M3, [h̄]), and
suppose further that Y 3 ⊂ X is a minimal hypersurface that intersectsM in
a closed manifold Σ2 =M ∩ Y ; we further assume that Y divides X into two
parts, X+ and X−, whose intersection is precisely Y (the assignment of + is
arbitrary). Such a setting has been much studied in the literature on AHE
manifolds, beginning with [16], which defined the renormalized area of Y in
analogy to the renormalized volume of X; it has also been and remains a
setting of much interest in the physics literature, particularly in the context
of the AdS/CFT correspondence.

We will be concerned, not with the renormalized area of Y , but with
the renormalized volume V +

+ of X+, which we may define as the constant
term in the expansion volg+({x ∈ X+ : r(x) > ε}), with r a geodesic defining
function. It is not immediately obvious that this quantity is independent
of the choice of r: the proof in the global case depends strongly on the
product decomposition [0, δ)r ×M of a collar neighborhood of M in X,
but generically there is no such decomposition of a collar neighborhood of
M+ =M ∩X+ inX+. One could prove using rather more elaborate versions
of the arguments of [13] that V +

+ is invariant in this context, but our interest
is in a Gauss-Bonnet formula, and so we approach the result by a somewhat
different path, as described below.

We note that renormalized volume of regions in AH spaces divided in
two by hypersurfaces was considered in [12] using quite different techniques.
The authors showed that a volume could be defined in quite general circum-
stances – in particular, not assuming the Einstein or minimality conditions
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– but did not show that it is well-defined independent of all choices in the
four-dimensional Einstein case.

Let N ⊂ X̊ be any hypersurface, and let h = g+|TN be the induced met-
ric on N . Define an extrinsic curvature quantity CN on N by the formula

CN =
1

2
L̊
αβ
N R

g+
αβ − L̊

αβ
N Rh

αβ +
1

3
HN |L̊N |2h −

1

3
trh L̊

3
N .

Here LN is the second fundamental form of N and L̊N its tracefree part,
while HN = hαβLαβ is its mean curvature. The curvature terms appearing
are the Ricci tensors of the respective metrics, and α, β are indices on TN . It
is easy to show (and will be shown within) that CN is a pointwise conformal
invariant of weight −3; indeed, in the notation of [5], CN = −1

2L4 −
1
3L5.

The first main result of this paper is the following.

Theorem 1.1. Let (X4, g+) be an asymptotically hyperbolic space satisfying
the Einstein condition Ric(g+) = −3g+, with conformal infinity (M3, [h̄]).
Let Y 3 be a complete minimal hypersurface dividing X into two pieces X+

and X− such that X+ ∩X− = Y and such that Y ∩M = Σ2 ̸= ∅. Let r be
a fixed geodesic defining function for M , and let V +

+ be the constant term in
the expansion

volg+
({
x ∈ X+ : r(x) > ε

})
= c0ε

−3 + c2ε
−1 + V +

+ + o(1).

Let h̃ = g+|TY . Then

(2) π2(4χ(X+)− χ(Σ2)) = 3V +
+ +

1

8

∫

X̊+

|Wg+ |
2
g+dvg+ +

∫

Y̊

CY dvh̃.

One then immediately obtains

Corollary 1.2. The renormalized volume V +
+ is independent of the choice

of geodesic defining function r, and it satisfies (2).

A natural question about the newly defined renormalized volume is how
it changes if Y is varied through minimal surfaces in X. The second main
result of the paper is as follows.

Theorem 1.3. Let X,M, Y,Σ, X+, g+, h̄, and V
+
+ be as in Theorem 1.1.

Suppose that F : (−ε, ε)t × Y → X is a C3 variation of Y through mini-
mal surfaces in X, so that F(t,Σ) ⊂M for all t. Let F̃ = F|(−ε,ε)×Σ. De-

fine f̃ ∈ C∞(Σ) by f̃ =
〈

d
dt

∣∣
t=0

F̃ , ν̄M
〉
, where ν̄M is the inward-pointing
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normal vector to Σ in M+ with respect to h̄. Define f ∈ C∞(Y̊ ) by f =〈
d
dt

∣∣
t=0

F , µY
〉
g+
, where µY is the (X+, g+)-inward unit normal vector along

Y . Let r be a geodesic defining function near M . Then

d

dt

∣∣∣∣
t=0

V +
+ =

1

2

∮

Σ
f̃ g(3)(ν̄M , ν̄M )dvk̄ +

1

3
f.p.

∫

Y̊

f |L̊Y |
2
h̃
dvh̃,

where k̄ = h̄|TΣ, h̃ = g+|TY , g
(3) is the nonlocal term in the expansion

in r of g+, and f.p.
∫
Y̊
f |L̊Y |

2
h̃
dvh̃ denotes the zeroth-order part, in ε, of∫

Y ∩{r>ε} f |L̊Y |
2
h̃
dvh̃.

For more about the nonlocal term g(3), see (5) and the surrounding
discussion. We show in Lemma 4.3 that the finite part of the integral over
Y can be written as the convergent integral of a rather more complicated
expression.

The above theorem is stated for variations of Y through minimal sur-
faces, whose existence in general we do not assert. However, one can broaden
the definition of V +

+ to any dividing hypersurface by using (2). In that case,
Theorem 1.3 remains valid for any variation of Y that preserves minimality
to first order; see section 4, where we also explain why C3-regularity of such
a variation is in general optimal.

In considering the existence problem for the variation of Y , the required
boundary data would be the induced variation of Σ, so another natural
question is whether the derivative V̇ +

+ only depends on the induced normal

variation f̃ . For example, suppose there are two variations of Y through
minimal surfaces that induce the same variation of Σ; do the derivatives of
V +
+ with respect to these variations agree? The answer is yes, at least if

|L̊Y |
2
h̃
≤ 3 everywhere; see Lemma 4.1.

These theorems may be interpreted physically within the AdS/CFT cor-
respondence of high-energy and condensed matter physics. To do so, we as-
sume that (M3, [h̄]) is a spacelike slice within a static four-dimensional con-
formal field theory Ω; and that (X4, g+) is an Einstein spacelike slice within
a static asymptotically anti-de-Sitter Einstein five-dimensional spacetime
Z with conformal infinity Ω. The surface Σ is then known as an entan-
gling surface between M+ and M−, and Y is the so-called Ryu-Takayanagi
surface extending Σ. According to the “volume = complexity” conjecture
([3, 4, 9, 18, 22]), then, V +

+ encodes the algorithmic complexity of the quan-
tum state of M+. The above theorems can then be interpreted as giving
formulae for this complexity and for its derivative as the entangling surface
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Σ is varied continuously, so long as Y also varies continuously. (As demon-
strated in [4], the latter will not always be the case.)

The assumption that X and its five-dimensional ambient Lorentzian
manifold Z are both Einstein, of course, is rather restrictive. In general phys-
ical situations, one might expect that the Ricci tensor of X includes some
extrinsic terms. But even if so, these would have well-defined asymptotics
due to the asymptotically AdS condition on Z, and it would be straightfor-
ward, if tedious, to carry out our calculation the same way in that context.

In section 2, we introduce our setting and notation. In section 3, we
prove Theorem 1.1; and in section 4, we prove Theorem 1.3.

2. Setting and notation

Recall that an asymptotically hyperbolic (AH) manifold is a compact mani-
fold Xn+1 with boundary Mn, equipped on the interior X̊ with a metric g+
such that, for any defining function φ forM , the metric ḡ = φ2g+ extends to
a Riemannian metric on X = X; and such that, in addition, |dφ|ḡ = 1 along
M . The optimal regularity of ḡ is in general a delicate question, but in the
context of this paper (i.e., X is four dimensional) by a result of Chruściel-
Delay-Lee-Skinner [8] we may assume that there is a compactification such
that ḡ is smooth up to the boundary. The canonical example of an AH man-
ifold is hyperbolic space itself, where X is the unit ball Bn+1, and the metric
is gH = 4|dx|2

(1−|x|2)2 . Given an AH metric, the metric h̄ = ḡ|TM is a metric on
M , but is not well defined since the choice of φ is arbitrary. However, the
conformal class [h̄] is well defined, and is called the conformal infinity.

A defining function r for M is called geodesic if |dr|r2g+ = 1 on a neigh-
borhood of M . Such a function induces a diffeomorphism

(3) ψ : [0, ε)r ×M →֒ X

onto a neighborhood of M in X such that

(4) ψ∗g+ =
dr2 + h̄r

r2
,

where h̄r is a one-parameter family of metrics on M . A lemma of Graham-
Lee ([15]) states that geodesic defining functions are in one-to-one corre-
spondence with the representatives h̄ of [h̄], according to the correspondence
h̄0 = h̄. The form (4) is called the geodesic normal form corresponding to
h̄ = h̄0. We may assume that any geodesic compactification of X is smooth
([8]).
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An AH metric is called Einstein (or AHE) if it satisfies as well the
condition Ric(g) + ng = 0. We will be concerned exclusively with four-
dimensional AHE spaces, i.e. the case n = 3. In this case, it is known
([10, 11, 13]) that in geodesic normal form, h̄r has the expansion

(5) h̄r = h̄− r2P h̄ + r3g(3) +O(r4),

where trh̄ g
(3) = 0 and where P h̄ is the Schouten tensor of h̄, given by

(6) P h̄
µν = Rh̄

µν −
1

4
Rh̄h̄µν .

Apart from the trace condition, the tensor g(3) is not locally determined by
the geometry of (M3, h̄).

The renormalized volume of (X, g+) is defined as follows ([13, 17]).
Choose a metric h̄ ∈ [h̄], and let r be the corresponding geodesic defining
function. Then the set {r > ε} has volume

(7) volg+({r > ε}) = c0ε
−3 + c2ε

−1 + V+ + o(1).

The renormalized volume is V+, and it is independent of the choice of h̄
(that is, of r).

In our setting of interest, there exists as well an orientable minimal
surface Y 3 ⊂ X, intersecting M transversely in a closed two-manifold Σ2 =
Y ∩M , and dividingX into two connected piecesX+ andX− such that Y =
X+ ∩X−. We writeM+ = X+ ∩M andM− = X− ∩M , so that Σ =M+ ∩
M−. The assignment of the signs + and − is arbitrary, and corresponds to
a choice of unit normal vector field on Y .

We now introduce the notations we will use. We let (X4,M3, g+) be
an AHE space, and Y 3 ⊂ X a minimal surface as above. We will let [h̄]
be the conformal infinity, and corresponding to the metric h̄ will be the
geodesic defining function r. The compactified metric is ḡ = r2g+. Further-
more, X+,M+, and Σ2 will be as above. For ε > 0, we let Xε = {r > ε},
with X+

ε = X+ ∩Xε. We set Yε = Y ∩Xε and Mε = {r = ε}. Similarly we
set M+

ε = X+ ∩Mε. Finally, Σε = Y ∩M+
ε .

Next, there are a number of metrics to name. We let hε = g+|TMε
,

while h̄ε = ε2hε = ḡ|TMε
. We let h̃ = g+|TY , while

¯̃
h = r2h̃ = ḡ|TY . We let

k̄ = ḡ|TΣ, while kε = g+|TΣε
and k̄ε = r2kε = ε2kε. The decorations of ε will

sometimes change position as needed; for example, we will write hεµν , but h
µν
ε .

Now, near Σ ⊂M , we can uniquely solve the eikonal equation and find
w ∈ C∞(M) such that |dw|2

h̄
= 1 near Σ, w|Σ = 0, and w ≥ 0 on M+. The
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metric h̄ then takes the form h̄ = dw2 + k̄w, with k̄w a one-parameter family
of metrics on Σ. Near any point p ∈ Σ, we can choose coordinates x1, x2 on
a neighborhood of p in Σ; then by the flow of gradh̄w on M+, the system
(x1, x2, x3 = w) extends to a coordinate system on a neighborhood of p inM .
Finally, by the flow of gradḡ r, the system (r = x0, x1, x2, x3 = w) extends
to a coordinate system on a neighborhood of p in X. Now, we will regard Y
as given by a function

(8) w = u(r, x1, x2),

where u(0, x1, x2) ≡ 0. This is the same convention as in [16]. In fact, we may
regard a neighborhood of Σ in this way as a product [0, ε)r × Σ× (−ε, ε)w;
when using this product identification, we will use ζ to refer to a point of
Σ, so that a generic point may be written (r, ζ, w).

When using index notation locally, we will let 0 ≤ i, j ≤ 3 be indices on
TX; 1 ≤ µ, ν ≤ 3 be indices on TM ; and 1 ≤ a, b ≤ 2 be indices on TΣ. We
also let 0 ≤ α, β ≤ 2, which we will use when discussing TY .

Turning to extrinsic geometry, we let µ̄Mε
, µ̄Y be the X+-inward unit

ḡ-normal to the given hypersurface; the unbarred versions will refer to the
unit normal with respect to g+. We let ν̄Mε

be the ḡ-unit normal to Σε that is
directed into M+, and ν̄Yε

, similarly, the Yε-inward ḡ-unit normal to Σε. We
let LMε

, LY be the second fundamental forms of the indicated hypersurfaces
with respect to the inward unit normals µ̄Mε

and µ̄Y , and computed with
respect to ḡ. Thus, for example,

LY (A,B) = −⟨∇ḡ
Aµ̄Y , B⟩.

The tracefree parts are denoted L̊Mε
, etc. In all of these, we will sometimes

write the hypersurface in the upper position, should it be convenient to do
so to place covariant indices; similarly, an unbarred L will refer to the second

fundamental form with respect to g+ instead of ḡ. We let HMε
= h̄

µν
ε L

Mε

µν be
the mean curvature ofMε with respect to ḡ (or, if we omit the ε, that ofM);
similarly for HY , while HMε

and HY are the same quantities with respect to
g+ (recall we assume HY ≡ 0). We let IIYε

be the second fundamental form

of Σε viewed as a hypersurface of Yε with respect to
¯̃
h, while IIMε

is the
same for Σε viewed as a hypersurface in Mε with respect to h̄ε. The traces
of these (i.e., the mean curvatures of Σε viewed as a hypersurface of the
respective three-manifold) we denote η̄Yε

, η̄Mε
. Again, the unbarred versions

are with respect to the unbarred metrics h̃ and hε. We also let η̄M be the
mean curvature of (Σ, k̄) ⊂ (M, h̄).
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We define a smooth function θε0 ∈ C∞(Σε) to be the angle, at each point,
between Y and Mε; that is, cos(θ

ε
0) = −⟨µ̄Y , µ̄Mε

⟩. If the ε is omitted, then
it denotes the angle betweenM and Y at a point of Σ. Since θε0 is manifestly
a conformal invariant, we do not distinguish between barred and unbarred
versions.

Our curvature convention is such that the Ricci tensor is given by
Rij = Rk

ikj .
If A is a vector or tensor field, we write A = Oḡ(φ), for φ a function,

whenever |A|ḡ = O(φ).

3. The Gauss-Bonnet formula

We now prove Theorem 1.1. We do so by using a form of the Gauss-Bonnet
formula that has good conformal invariance properties, which allows us to
compute using ḡ instead of g+.

Proof of Theorem 1.1. Let (X,M, g+) be an AHE space with conformal in-
finity [h̄], and let Y be as in the previous section. Let h̄ ∈ [h̄], and let r

be the corresponding geodesic defining function. Let ε > 0. Then X+
ε is a

four-manifold with codimension-two corner Σε, and boundary hypersurfaces
M+

ε and Yε (see section 2 for all notation). The Gauss-Bonnet theorem for
Riemannian manifolds with corners (in this case X+

ε ), proven first in [1]
(and see [7]), can be rewritten in the following conformally useful way ([21],
building on [5]).

4π2χ(X+
ε ) =

∫

X+
ε

(
1

8
|Wg+ |

2
g+ +

1

2
Qg+

)
dvg+ +

∫

Yε

(LY + TY ) dvh̃

+

∫

M+
ε

(LMε
+ TMε

) dvh +

∮

Σε

(UΣε
+GΣε

) dvkε
.

(9)

Here, Wg+ is the Weyl tensor of g+, and the norm in question is its two-
tensor norm W ijklWijkl. Meanwhile, Qg+ is the Q-curvature of g+, defined
for any metric g by

Qg = −
1

6
∆gRg +

1

6
R2

g −
1

2
Rij

g R
g
ij .

Here, the Laplacian is a negative operator and the curvatures are respec-
tively the scalar and Ricci curvatures of g. For any metric g, the quantity
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|Wg|
2
gdvg is a pointwise conformal invariant of weight zero. Under a confor-

mal transformation g̃ = e2ωg, the Q curvature transforms as

e4ωQg̃ = Qg + P
g
4 ω,

where P g
4 is the Paneitz operator associated to g; we will not use the Paneitz

operator and so omit it here.
We give the definition of LN and TN , due to [5], for an arbitrary bound-

ary hypersurface (N3, h) embedded in a four-manifold endowed with metric
g. The definition is

(10) LN = L̊
µν
N Rg

µν − 2L̊µν
N Rh

µν +
2

3
HN |L̊N |2h − trh L̊

3
N ,

where LN and HN are the second fundamental form and the mean curvature
as before, and µ, ν are indices on TN . Similarly, the T -curvature is defined
by

TN =−
1

12
µ(Rg)− L̊

µν
N Rg

µν + L̊
µν
N Rh

µν −
1

2
HN |L̊N |2h +

2

3
trh L̊

3
N

+
1

6
RhHN −

1

27
H3

N −
1

3
∆hHN ,

(11)

where µ is the inward-pointing unit normal to N . Under the conformal
change g̃ = e2ωg, this transforms according to the equation

(12) e3ωT̃N = TN + P
g
3 ω,

where P g
3 : C∞(X) → C∞(N) is the conformally covariant boundary oper-

ator

P
g
3 f =

1

2
µ∆gf +∆hµ(f)−

1

3
HN∆hf + L̊

µν
N ∇h

µ∇
h
νf +

1

3
H

µ
Nfµ

+

(
1

6
Rg −

1

2
Rh −

1

2
|L̊N |2h +

1

3
H2

N

)
µ(f).

(13)

(We note that this formula differs from that in [21]; that paper and others
in the literature contain misprints in the formula, which we have corrected
by [5].)

Next we turn to the corner quantities. For a corner (Ξ, k) that forms the
intersection between two boundary hypersurfaces N and S making angle
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θ0 ∈ C∞(Ξ), G is defined by

(14) GΞ =
1

2
cot(θ0)(|I̊IN |2k + |I̊IS |

2
k)− csc(θ0)I̊I

N

abI̊I
ab

S ,

where II, etc., are as in section 2. The G curvature is a pointwise conformal
invariant of weight −2 (when the ambient metric on the four-manifold is
changed conformally). Next, UΞ is defined by

(15)
UΞ = (π − θ0)KΞ −

1

4
cot(θ0)(η

2
N + η2S)

+
1

2
csc(θ0)ηNηS −

1

3
(νNHN + νSHS).

Here, KΞ is the Gaussian curvature of Ξ, and the other quantities are de-
fined analogously to those in the previous section. Under a global conformal
change g̃ = e2ωg, U transforms according to the equation

(16) e2ωŨΞ = UΞ + P
g
2 ω,

where P g
2 : C∞(X) → C∞(Ξ) is the conformally covariant operator

P
g
2 f = (θ0 − π)∆kf + νNµNf + νSµSf

+ cot(θ0)(ηNνNf + ηSνSf)− csc(θ0)(ηSνNf + ηNνSf)

+
1

3
(HNνNf +HSνSf).

(17)

We now analyze formula (9) in the context of our space (X+
ε , g+). Be-

cause |Wg+ |
2
g+dvg+ is a pointwise conformal invariant of weight zero, its in-

tegral converges as ε→ 0 to
∫
X+ |Wḡ|

2
ḡdvḡ, which in particular is finite.

In our setting, R
g+
ij = −3g+ij and Rg+ ≡ −12, so ∆g+Rg+ ≡ 0 and Qg+ ≡

6. The integral of 1
2Qg+ therefore is simply the integral of 3, so the sec-

ond integral over X+ becomes simply 3 volg+({r > ε} ∩X+), which is the
same quantity considered in (7), except that the latter is over all of X
instead of X+. To compute the contribution from this integral, we con-
sider four different regions of X. First, let r0 > 0 be small – sufficiently
small, in particular, that the geodesic normal form (4) holds for r < 2r0,
and that the region U = {r < 2r0,−2r0 < w < 2r0} has the decomposition
[0, 2r0)× Σ× (−2r0, 2r0), with |u(r, ζ)| < 1

2r0 on U . Having chosen r0, we
will leave it fixed for all time.

The first region of interest to us is then A = {p ∈ X+ : r(p) ≥ r0}. (This
set does not depend on ε, which we assume is smaller than r0.) Next, we want
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to capture the points near the boundary M+
ε . The obvious set to consider

is Bε = (ε, r0)×M+. The problem is that this may omit points that are
contained in X+ or include points contained in X−, because Y is given not
by w = 0 but by w = u(r, ζ), where u may be positive or negative away from
{0} × Σ. To address this, we need to add the volume of the omitted points,
Cε, and subtract the volume of the over-included points Dε, viz.,

X+
ϵ = (A ∪Bϵ ∪ Cϵ) \Dϵ.

To proceed, we analyze the volume form dvg+ . First, at all points, we
have dvg+ = r−4dvḡ. Near M , we can write

dvḡ = dvh̄r
dr

using the normal-form identification (3). Now in local coordinates
(r, x1, x2, x3) near M , we may write

dvh̄r
=

√
det(h̄r)

det(h̄)
dvh̄.

As shown for example in [13], we have the expansion

√
det(h̄r)

det(h̄)
= 1 + v(2)r2 + v(4)r4 +O(r5),

where v(2), v(4) ∈ C∞(M) are the so-called renormalized volume coefficients.
Either by direct computation using (5) or by using equation (4.5) and the
equation at the top of the same page of ([14]) (remembering thatM is totally
geodesic with respect to ḡ and that the singular Yamabe metric for ḡ is g+),
we may show that v(2) = −1

8Rh̄. Thus,

dvg+ = r−4

(
1−

1

8
r2Rh̄ +O(r4)

)
dvh̄dr

=

(
r−4 −

1

8
r−2Rh̄ +O(1)

)
dvh̄dr.
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We next derive an expression for dvḡ (and thus dvg+) near Σ. Since
h̄ = dw2 + k̄w near Σ, we have

dvh̄ =

√
det(k̄w)

det(k̄)
dvk̄dw

= (1 +O(w))dvk̄dw.

Hence, near Σ, we have

dvg+ =

(
r−4 −

1

8
r−2Rh̄ +O(1)

)
(1 +O(w))dvk̄dwdr.

We then have

volg+(X
+
ε ) = volg+(A) + volg+(Bε) + volg+(Cε)− volg+(Dε)

= volg+(A) +

∫

M+

∫ r0

ε

(
r−4 −

1

8
r−2Rh̄ +O(1)

)
drdvh̄

−

∮

Σ

∫ r0

ε

∫ u(r,ζ)

0

(
r−4 +O(r−2)

)
(1 +O(w))dwdrdvk̄(ζ),(18)

where the last integral represents volg+(Cε)− volg+(Dε). Now, by equations
(2.13) and (2.14) in [16],

(19) u(r, ζ) =
1

4
r2ηM (ζ) + r4 log(r)v(ζ) +O(r4),

where ηM is the mean curvature of Σ viewed as a hypersurface of (M, h̄)
and v ∈ C∞(Σ). Thus, we find

3 volg+(X
+
ε ) = 3 volg+(A) + 3

∫

M

∫ r0

ε

(
r−4 −

1

8
r−2Rh̄ +O(1)

)
drdvh̄

− 3

∮

Σ

∫ r0

ε

(
1

4
r−2ηM + v log(r) +O(1)

)
drdvk̄

= ε−3 volh̄(M
+)− ε−1

(
3

8

∫

M+

Rh̄dvh̄ +
3

4

∮

Σ
ηMdvk̄

)

+ 3V +
+ + o(1).(20)

Here V +
+ is the collection of all the order-zero terms in ε in the volume ex-

pansion, and is defined to be the renormalized volume; of course, we have not
shown so far that V +

+ is independent of the choice of h̄ ∈ [h̄] (or equivalently,
of r).
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Since (as we saw above) Qg+ = 6, the above right-hand side is thus the
integral

∫
X+

1
2Qg+dvg+ . We next turn to the boundary integrals over Yε and

Mε, beginning with Yε. We will analyze LY and TY with respect to the metric
g+; of course, since LY is a pointwise conformal invariant, it is automatic
that the integral of LY over Yε will converge as ε→ 0. Now, because g+
is Einstein and Y is minimal in (X, g+), the first and third terms in (10)

vanish in this case. Thus, we get simply LY = −2L̊αβ
Y Rh̃

αβ − trh̃ L̊
3
Y .

Next turning to TY , we again compute with respect to the ambient
metric g+, i.e., with respect to the non-compactified setting. Again, due
to the Einstein condition of g+ and the minimal condition on Y , the first,
second, fourth, sixth, seventh, and eighth terms of (11) vanish, so we get

TY = L̊αβRh̃
αβ +

2

3
trh̃ L̊

3
Y

= −
1

2
LY +

1

6
trh̃ L̊

3
Y .

Now, LY and trh̃ L̊
3
Y are both pointwise conformal invariants of weight −3,

so we have exhibited TY itself as such a pointwise conformal invariant. We
define

CY =
1

2
LY +

1

6
trh̃ L̊

3
Y .

This is a pointwise conformal invariant, and the upshot of the above remarks
is that

(21)

∫

Yε

(LY + TY ) dvh̃ =

∫

Yε

CY dvh̃ =

∫

Y̊

CY dvh̃ +O(ε).

We now turn to the integral over M+
ε in (9). Here, we will compute TMε

and LMε
, the extrinsic curvature quantities with respect to the compactified

metrics ḡ and h̄ε; then we will compute the transformation to g+, hε using
equation (12), which in particular implies that

∫

M+
ε

(LM + TM )dvg+ =

∫

M+
ε

(LM + TM + P
ḡ
3 (− log r))dvḡ.

Our goal is thus to compute the right-hand side of this equation. We begin
by computing some basic quantities. Recalling that ḡ = dr2 + h̄r and Mε =
{r = ε}, we find that

LMε
= −

1

2
∂rh̄r|r=ε = εP h̄ +O(ε2),
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where P h̄ is the Schouten tensor of h̄, and we have used (5). Thus,

(22) HMε
= ε(Ph̄)

µ
µ +O(ε3) =

1

4
εRh̄ +O(ε3).

The reason the error is O(ε3) is that the r3 term in the expansion of h̄r is
trace-free. We also have

L̊Mε
= εP̊ h̄ +O(ε2).

We next wish to compute Rḡ on Mε. To do this, we use the fact that Rg+ ≡
−12 and that g+ = r−2ḡ. Thus, we will use the conformal transformation
formula for scalar curvature. Let ω = − log(r). It will be useful to record
that

(23) ∆ḡω = r−2 +
1

4
Rh̄ +O(r2),

which follows easily from (5). Thus, from the conformal change formula, we
find

−12 = r2(Rḡ − 6∆ḡω − 6|dω|2ḡ)

= r2
(
Rḡ − 6r−2 −

3

2
Rh̄ − 6r−2 +O(r2)

)
,

whence

Rḡ =
3

2
Rh̄ +O(r2).

We next compute the tracefree tangential Ricci tensor R̊ḡ
µν . We will use

again the same technique of conformal transformation and the fact that
Ric(g+) = −3g+. We first find using (5) that

∇ḡ
µ∇

ḡ
νω = P h̄

µν +O(r).

It then follows from the equation

Rg+
µν = Rḡ

µν − 2∇ḡ
µ∇

ḡ
νω + 2ωµων − (∆ḡω − 2|dω|2ḡ)ḡµν

that

R̊ḡ
µν = 2P̊ h̄

µν +O(r).
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We are ready to analyze the curvature integrands on Mε. First, we easily
find using (10) and the above that

LMε
= O(ε),

where the first-order contribution is from the first two terms of (10), and the
last two terms provide contributions of order O(ε3). Next, we compute TMε

,
recalling that µ̄Mε

= ∂
∂r
. Then it again follows from the above computations

that

TMε
= O(ε).

The lowest-order contributions come once again from the first three terms
of (11), as well as the sixth.

We next turn to computing P ḡ
3 (ω) = −P ḡ

3 (log(r)) for P ḡ
3 associated to

Mε. First, observe that ω|Mε
≡ − log(ε), and µ̄Mε

(ω) ≡ 1
ε
. Thus, all tangen-

tial derivatives of both quanties vanish, which means the second through
fifth terms of (13) vanish. Thus, only the first and last remain. It follows
from (23) that

1

2
µ̄Mε

∆ḡω = −ε−3 +O(ε).

Next, using again the facts that Rḡ = 3
2Rh̄ +O(r2) and our above calcula-

tions, we find that the last term of (13) simplifies to
(
1

6
Rḡ −

1

2
Rh̄ε

−
1

2
|L̊Mε

|2
h̄ε

+
1

3
H

2
Mε

)
µ̄(− log(r)) =

1

4
ε−1 +O(ε).

Now, we wish to perform the integral over M+
ε , not Mε. Just as for the

interior integral, the simplest approach will be first to compute the integral
over {ε} ×M+, and then subtract or add whatever was missed near the
corner due to turning of Y away from Σ. First, we observe that from our
above computations, it is clear that

∫

M+
ε

(TMε
+ LMε

+ P
ḡ
3 (− log(r)))dvh̄ε

=

∫

M+
ε

P
ḡ
3 (− log(r))dvh̄ε

+O(ε).

We may focus therefore only on contributions from P
ḡ
3 (− log(r)). We write

∫

M+
ε

P
ḡ
3 (ω)dvh̄ε

=

∫

{ε}×M+

P
ḡ
3 (ω)dvh̄ε

−

∮

Σ

∫ u(ε,ζ)

0
P

ḡ
3 (ω)(1 +O(w))dwdvk̄(ζ).
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(Compare (18).) We compute the first term first. Recall that dvh̄ε
= (1−

1
8ε

2Rh̄ +O(ε4))dvh̄. Thus,

∫

{ε}×M+

P
ḡ
3 (ω) =

∫

M+

(
−ε−3 +

1

4
ε−1Rh̄ +O(ε)

)(
1−

1

8
ε2Rh̄ +O(ε4)

)
dvh̄

= −ε−3 volh̄(M
+) +

3

8
ε−1

∫

M+

Rh̄dvh̄ +O(ε).

As for the corner integral, we find using (19)

∮

Σ

∫ u(ε,ζ)

0
P

ḡ
3 (ω)(1 +O(w))dwdvk̄(ζ) =

∮

Σ

(
−ε−3 +O(ε−1)

)
·

·

(
1

4
ε2ηM +O(ε4 log(ε))

)
dvk̄

= −
1

4
ε−1

∮

Σ
ηMdvk̄ +O(ε log ε).

Thus, we have found that

∫

M+
ε

(TM + LM )dvg+ =− ε−3 volh̄(M
+)

+ ε−1

(
3

8

∫

M+

Rh̄dvh̄ +
1

4

∮

Σ
ηMdvk̄

)
+ o(1).

(24)

We are finally ready to evaluate the corner terms UΣε
and GΣε

in (9).
Just as for M+

ε , our strategy will be to evaluate first with respect to ḡ,
and then use the conformal transformation formula (16) and the pointwise
conformal invariance of G. Thus, we will find

∮

Σε

(Gk + Uk)dvk =

∮

Σε

(GΣε
+ UΣε

+ P
ḡ
2 (− log r))dvk̄ε

.

To begin, we wish to estimate θε0, which enters the formulas for U,G,
and P2. To do this, we find normal vectors µ̄Mε

and µ̄Y . The first is easy:
µ̄Mε

= ∂
∂r
. For the second, we observe that, for ε small, we can write Y as

the zero level set of F = w − u(r, ζ) (where, again, ζ ∈ Σ). Now,

gradḡ F = (1 +O(r2))
∂

∂w
−
∂u

∂r

∂

∂r
− k̄ab

∂u

∂xa
∂

∂xb
+Oi(r3 log(r))∂i

= (1 +O(r2))
∂

∂w
−

1

2
rηM

∂

∂r
−

1

4
r2k̄ab

∂ηM
∂xa

∂

∂xb
+Oḡ(r

3 log(r)).
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Since
∣∣ ∂
∂w

∣∣
ḡ
= 1 +O(r2), we have

| gradḡ F |ḡ = 1 +O(r2).

Consequently,

(25)

µ̄Y =
gradḡ F

| gradḡ F |ḡ
= (1 +O(r2))

∂

∂w

−

(
1

2
rηM +O(r3 log(r))

)
∂

∂r
+Oḡ(r

2).

Thus,

cos(θε0) = −⟨µ̄Mε
, µ̄Y ⟩ =

1

2
εηM +O(ε3 log(ε)).

Next we wish to estimate the second fundamental form IIYε
of Σε viewed as

a submanifold of Yε. To do this, we first want to know the inward-pointing
unit normal vector ν̄Yε

to Σε in Yε. By inspection, we can see that

V =
∂

∂r
−
∂F

∂r

gradḡ F

|dF |2ḡ

is normal to Σε and tangent to Yε, so

(26) ν̄Yε
=

V

|V |ḡ
= (1 +O(ε2))

∂

∂r
+

1

2
εηM

∂

∂w
+O(ε3 log ε).

Now, a local frame for TΣε is given by {X1, X2}, where

Xa =
∂

∂xa
−
∂F

∂xa
∂

∂w
.

Since ∇ḡ
∂a
∂r = Oi(ε)∂i (which is easy to check), we may conclude that

⟨∇ḡ
Xa
ν̄Yε

, Xb⟩ḡ = O(ε). Thus, by Weingarten’s equation,

|IIYε
|ḡ = O(ε).

It now follows that GΣε
= O(ε): the first term in (14) because cot(θε0) =

O(ε), and the second because of the estimate on IIYε
.

We next turn to UΣε
. The second and third terms in (15) are O(ε) for

the same reason. Turning to the fourth term, ν̄MHMε
= O(ε) by (22). To

compute ν̄Yε
H̄Y , we first compute HY using the conformal change formula.
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Recall that HY ≡ 0. Then again taking ω = − log r, we find from the con-
formal transformation formula HY = e−ω(HY − 3µ̄Y (ω)) that

0 = r(HY −
3

2
ηM +O(r2 log(r))),

whence

HY =
3

2
ηM +O(r2 log(r)).

Thus, ν̄Yε
HY = O(ε log(ε)); so since θε0 =

π
2 +O(ε), we have

UΣε
=
π

2
Kk̄ +O(ε log ε).

Consequently,

∮

Σε

(GΣε
+ UΣε

)dvk̄ε
= π2χ(Σ) +O(ε log ε).

We still need to compute the integral of P ḡ
2 (− log r). First, still letting ω =

− log r, observe that ω|Mε
≡ − log ε and that µ̄Mω ≡ −1

ε
. Thus, the first and

second terms of (17) in P ḡ
2 (ω) vanish identically, as do the terms ηMε

ν̄Mε
ω,

ηYε
ν̄Mε

ω, and HMε
ν̄Mε

ω.
Now, the third term takes the form

ν̄Yε
µ̄Y ω = ν̄Yε

(
1

2
ηM +O(r2 log(r))

)

=
1

4
εηM∂wηM +O(ε log ε)

= O(ε log ε).

Next, ν̄Yε
ω = −1

ε
+O(ε), so cot(θε0)ηYε

ν̄Yε
ω = O(ε). On the other hand,

− csc(θε0)ηMε
ν̄Yε

ω = ε−1ηM +O(ε), since ηMε
= ηM +O(ε2) and csc(θε0) =

1 +O(ε2).
Finally,

1

3
HY ν̄Yε

ω = −
1

2
ε−1ηM +O(ε log ε).
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Adding together all these terms, we therefore find that P ḡ
2 ω = 1

2ε
−1ηM +

O(ε log ε). Thus,

(27)

∮

Σε

(
Gε + U ε + P

ḡ
2 (− log r)

)
dvk̄ε

=
1

2
ε−1

∮

Σ
ηMdvk̄ + π2χ(Σ) +O(ε log ε).

Combining (9), (20), (21), (24), and (27), we find

π2(4χ(X+
ε )− χ(Σ)) = 3V +

+ +
1

8

∫

X+
ε

|Wg+ |
2
g+dvg+ +

∫

Yε

CY dvh̃ +O(ε log ε).

Letting ε→ 0 yields the result. □

4. Variation of renormalized volume

In this section we give a proof of Theorem 1.3. Since this will require exten-
sive calculations we begin by establishing some new notational conventions.

In addition to using the coordinate system (r, x1, x2, w), it will be conve-

nient to use the system (x0̃, x1̃, x2̃, x3̃) = (r, x1, x2, w − u), where u is as in
(8). We will still use 0 ≤ i, j ≤ 3 to refer to coordinate fields on X, but will
use 0 ≤ α̃, β̃ ≤ 2 to refer to the coordinate fields tangent to Y . It will also be
useful on the interior X̊ to let xn̂ be the g+-distance to Y̊ , so that ∂

∂xn̂ = µY
is the g+-unit inward normal vector to Y̊ . The system (r, x1, x2, xn̂) is clearly
another coordinate system near Y̊ , and the corresponding coordinate vector
fields tangent to Y are the same.

As in the introduction, suppose F : (−ε, ε)t × Y → X is a C3 variation
of Y through minimal surfaces in X such that F(t,Σ) ⊂M for all t. For
each t ∈ (−ε, ε), Ft(Y ) = Y t splits X into two disjoint sets, X+

t , X
−
t and

we can make our choice of X+
t consistent by fixing a point p ∈ X+

0 and
requiring that p ∈ X+

t for t in a possibly smaller time interval t ∈ (−δ, δ).
Let V +

+ (t) = V +
+ (X+

t ). We will also use the notation V +
+ (Ft(Y )). Our goal

is to use the formula (2) to compute a formula for the first variation, V̇ +
+ .

Before proceeding we recall that strictly speaking, the formula for V +
+

given by (2) only holds for minimal Y . However, as we remarked in the intro-
duction, one can use this formula to define V +

+ for any dividing hypersurface,
in particular for Y t = Ft(Y ), where Ft is a general variation of Y .

We begin by making two simplifying assumptions about the variation F .
First, we show that it suffices to consider normal variations of Y . We then
weaken the assumption that Y t = Ft(Y ) is minimal for each t, and only
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assume that minimality is preserved infinitesimally. The latter assumption
will suffice to establish the theorem.

To see why it suffices to consider normal variations, let Z = d
dt
Ft

∣∣
t=0

be

the variation field of F . Write Z = Z⊥ + Z⊤, with the two uniquely defined
fields respectively normal and tangential to Y . Now, because Ft(Σ) ⊂M for
all t, along Σ we have Z⊤ ∈ TY ∩ TM , and it follows that Z⊤ is tangential
to Σ along the boundary. Thus, by Theorem 9.34 of [20] and the fact that
Y is compact, there exists a unique global flow G : R× Y → Y such that
d
dt
G
∣∣
t=0

= −Z⊤. Define F̂ : (−ε, ε)× Y → X by F̂(t, y) = F(t,G(t, y)). By

the chain rule, d
dt
F̂t

∣∣∣
t=0

= Z⊥. On the other hand, F̂t(Y ) = Ft(Y ) for all t,

so it remains a flow through minimal surfaces, and the renormalized volume
at each time t is identical. Thus, it suffices to compute the variation for
(initially) normal variation fields, i.e., those satisfying

d

dt
Ft

∣∣∣∣
t=0

⊥TY.

As mentioned, we will also assume

(28)
d

dt
HY t

∣∣∣∣
t=0

= 0,

where HY t is the mean curvature of Y t viewed (via pullback by Ft) as a
function on Y .

Let F : (−ε, ε)× Y → X, be a C3 normal variation satisfying (28). As
in the statement of Theorem 1.3, we let f =

〈
µY ,

d
dt

∣∣
t=0

F
〉
g+
, where µY is

the (X+, g+)-inward unit normal vector along Y . Since F is normal, we can
write

(29)
d

dt

∣∣∣∣
t=0

Ft = fµY .

Also, let F̃ = F|(−ε,ε)×Σ. Then F̃ determines f̃ ∈ C∞(Σ) given by

(30) f̃ =

〈
d

dt

∣∣∣∣
t=0

F̃ , ν̄M

〉
,

where ν̄M is the inward-pointing normal vector to Σ in M+ with respect
to h̄.

From now on, to simplify notation we will let primes denote d
dt
|t=0. By

the formulas (80), (87), and (88) in the appendix, the variations of the
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induced metric, second fundamental form, and mean curvature of Y are
given by

h̃′
α̃β̃

= −2fLα̃β̃ ,(31)

L′
α̃β̃

= ∇h̃
α̃∇

h̃
β̃
f − h̃γδ̃Lα̃γ̃Lβ̃δ̃f +R

g+

α̃n̂β̃n̂
f,

H ′ = ∆h̃f + (|LY |
2
h̃
− 3)f.

By (28), H ′ = 0, so the last formula above implies that f must satisfy

(32) ∆h̃f = (3− |LY |
2
h̃
)f.

Lemma 4.1. f ∈ C∞(Y̊ ) has an asymptotic expansion of the form

(33) f = r−1f̃ + o(1),

where f̃ ∈ C∞(Σ) is given by (30).
Conversely, if |L̊Y |

2
h̃
≤ 3 on Y̊ , then given f̃ ∈ C∞(Σ), there is a unique

solution f to (32) satisfying the expansion (33).

Proof. We first observe that near M ,

|LY |
2
h̃
= O(r2).(34)

This follows from (67) below, but it can also be seen by using the fact that LY

is trace-free (since Y is minimal), and the the trace-free second fundamental
form is a conformal invariant (of weight 1). Using (34), it is easy to see that
the indicial roots of the operator

P = ∆h̃ − (3− |LY |
2
h̃
)

are −1 and 3. It follows that f has an expansion of the form

f = r−1f−1 +O(1),

for some f−1 ∈ C∞(Σ). However, using the expansion of the metric h̃ near

M in (5), we have h0̃0̃ = 1 +O(r2), and using this it is easy to see that

f − r−1f−1 = o(1).
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as in (33). Since µY = rµ̄Y , (29) implies

d

dt

∣∣∣∣
t=0

Ft = fµY

=
[
r−1f−1 + o(1)

]
rµ̄Y

= f−1µ̄Y + o(r),

and it follows from (30) and the definition of F̃ that f−1 = f̃ .

Conversely, given f̃ , if we let

f−1 = r−1f̃

then Pf−1 = O(1). It then follows from standard arguments (see [19]) that
there is a unique solution of Pf = 0 with f = r−1f−1 +O(1). Again using
the expansion of the metric it is readily checked that f = r−1f̃ + o(1). □

Remark 4.2. Although f ∈ C∞(Y̊ ), since the indicial roots of the equation
satisfied by f are −1 and 3, the expansion of f must in general be expected
to have a term r3 log r, so rf ∈ C3,α(Ȳ ), and optimal regularity of F is C3.

Proof of Theorem 1.3. The statement of Theorem 1.3 consists of two
claims: the formula for the derivative of V +

+ , and the assertion that f̃ deter-
mines f . Since the latter follows from the uniqueness claim in Lemma 4.1, to
complete the proof of the theorem we just need to carry out the calculation
of V̇ +

+ .
By Theorem 1.1,

3V +
+ (Xt) = π2(4χ(X+

t )− χ(∂Y t))−
1

8

∫

X+

t

|Wg+ |
2
g+dvg+ −

∫

Y t

CY tdvh̃t
.

We let h̃t = g+|T Y̊t
. For ε > 0 small, recall that Xε = {x ∈ X : r(x) > ε}.

We let Y t
ε = Y t ∩Xε, and define

3Vε(t) = π2(4χ(X+
t ∩Xϵ)− χ(∂Y t

ϵ ))

−
1

8

∫

X+

t ∩Xϵ

|Wg+ |
2
g+ dvg+ −

∫

Y t
ε

CY t dvh̃t
.

Then

3
d

dt
Vε(t)

∣∣
t=0

= −
1

8

d

dt

∫

X+

t ∩Xε

|Wg+ |
2
g+ dvg+

∣∣∣
t=0

−
d

dt

∫

Y t
ε

CY t dvh̃t

∣∣∣
t=0

.
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For the first integral,

(35) −
1

8

d

dt

∣∣∣∣
t=0

∫

X+

t ∩Xε

|Wg+ |
2
g+dvg+ =

1

8

∫

Yε

|Wg+ |
2
g+fdvh̃.

To analyze the second integral, we let dvε
h̃t

= ψdvh̃t
, where ψ = θ(r − ε),

with θ the Heaviside function. Then

d

dt

∣∣∣∣
t=0

∫

Y t
ε

CY tdvh̃t
=

d

dt

∣∣∣∣
t=0

∫

Y t

CY tdvε
h̃t

= lim
τ→0

1

τ

[∫

Y

(CY τ ◦ Fτ )(ψ ◦ Fτ )(F
∗
τ dvh̃τ

− dvh̃)

+

∫

Y

(CY τ ◦ Fτ − CY )(ψ ◦ Fτ )dvh̃

+

∫

Y

CY (ψ ◦ Fτ − ψ)dvh̃

]

=

∫

Yε

CY

(
d

dt
dvh̃t

∣∣∣∣
t=0

)

+

∫

Yε

d

dt
CY t

∣∣∣∣
t=0

dvh̃ + lim
τ→0

1

τ

∫

Y

CY (ψ ◦ Ft − ψ)dvh̃.

Now by the Implicit Function Theorem, the equation r(F(t(p), r(p), ζ(p))) =
ε can be written as r = ξ(t, ζ) for some smooth ξ : (−δ, δ)× Σ → R. Let k̄ε be
the metric induced on Σε by ḡ. Writing dvh̃ = ηr−3drdvk̄ε

for some smooth
correction factor η that is one on Σε, we may use the fundamental theorem
of calculus to write the last term as

lim
τ→0

1

τ

∫

Y

CY (ψ ◦ Fτ − ψ)dvh̃

= − lim
τ→0

1

τ

∫

Σε

∫ ξ(τ,ζ)

ε

CY (r, ζ)η(r, ζ)r
−3drdvk̄ε

(ζ)

= −

∫

Σε

d

dt

∣∣∣∣
t=0

∫ ξ(t,ζ)

ε

CY (r, ζ)η(r, ζ)r
−3drdvk̄ε

(ζ)

= −

∫

Σε

CY (ε, ζ)ε
−3 ∂ξ

∂t

∣∣∣∣
t=0

dvk̄ε
(ζ)

=

∫

Σε

CY ε
−1dr(fµY )dvkε

=

∫

Σε

CY ⟨r∂r, fµY ⟩g+dvkε
.
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Therefore

d

dt

∫

Y t
ε

CY tdvh̃t

∣∣∣
t=0

=

∫

Yε

( d
dt
CY t

∣∣
t=0

)
dvh̃ +

∫

Yε

CY
( d
dt
dvh̃t

∣∣
t=0

)
(36)

+

∫

Σε

CY ⟨r∂r, fµY ⟩g+dvkε
.

We dispose of the last term with

Claim 1.

lim
ε→0

∫

Σε

CY ⟨r∂r, fµY ⟩g+dvkε
= 0.

Proof. We know that µY = rµ̄Y and that C
g+
Y = r3C ḡ

Y . We also know
from (25) that

⟨r∂r, µ̄Y ⟩ḡ = O(ε2).

So we get

C
g+
Y ⟨r∂r, µY ⟩g+ = r3C ḡ

Y ⟨r∂r, µY ⟩g+ = O(ε4).

Therefore, taking into account the asymptotics of f , we get

(37)

∫

Σε

CY ⟨r∂r, fµY ⟩g+dvkε
= O(ε).

□

By (28) and the formula for the variation of the volume form (89) in the
appendix we have

(38)
d

dt
dvh̃t

∣∣
t=0

= HY dvh̃ = 0,

since Y is minimal. The minimality of Y to first order also implies HY t =
O(t2). Since g+ is Einstein, the formula for CY t thus simplifies to

(39) CY t = −(LY t)α̃β̃Rh̃t

α̃β̃
−

1

3
trh̃t

(LY t)3 +O(t2),

where LY t is the second fundamental form of Y t with respect to µY and Rh̃t

is the Ricci tensor of h̃t. Combining (36), (37), (38) and (39) we obtain

d

dt

∫

Y t
ε

CY t dvh̃t

∣∣∣
t=0

= −

∫

Yε

d

dt

(
(LY t

)α̃β̃Rh̃t

α̃β̃

)∣∣
t=0

dvh̃

−
1

3

∫

Yε

d

dt
trh̃t

(LY t

)3
∣∣
t=0

dvh̃ +O(ε).
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We intend to apply integration by parts to the integrand of this expression
to write quantities in terms of boundary integrals on Σ. We first write the
integrands in terms of geometric quantities on Y .

Define

A = (LY t)α̃β̃Rh̃t

α̃β̃

B = trh̃t
(LY t)3.

Differentiating A gives

A′ = h̃α̃γ̃ h̃β̃δ̃Rh̃
γ̃δ̃
∇h̃

α̃∇
h̃
β̃
f + 3f(L2)α̃β̃Rh̃

α̃β̃
+ fh̃α̃γ̃ h̃β̃δ̃Rh̃

γ̃δ̃
R

g+

α̃n̂β̃n̂
(40)

+ h̃α̃γ̃ h̃β̃δ̃Lγ̃δ̃(R
h̃
α̃β̃

)′.

A standard formula for the variation of the Ricci tensor (see e.g. [23]) gives
us

(Rh̃
α̃β̃

)′ =−
1

2

[
∆h̃h̃

′
α̃β̃

−∇h̃
α̃(δ̃β̃h̃

′)−∇h̃
β̃
(δ̃α̃h̃

′) +∇h̃
α̃∇

h̃
β̃
(trh̃ h̃

′)
]

(41)

− h̃γ̃η̃h̃δ̃ζ̃Rh̃
α̃γ̃β̃δ̃

h̃′
η̃ζ̃

+
1

2
h̃η̃ζ̃Rh̃

α̃η̃h̃
′
β̃ζ̃

+
1

2
h̃η̃ζ̃Rh̃

β̃η̃
h̃′
α̃ζ̃
.

Here δ̃ is the divergence with respect to h̃. Now, by (31), ∆h̃h̃
′
α̃β̃

=

−2∆h̃(fLα̃β̃). By the same equation,

trh̃ h̃
′ = 0.

Taking the divergence of both sides of (31) gives us

δ̃β̃h̃
′ = h̃α̃γ̃∇h̃

γ̃ h̃
′
α̃β̃

(42)

= −∇α̃
h̃
(2fLα̃β̃)

= −2f∇α̃
h̃
Lα̃β̃ − 2Lα̃β̃∇

α̃
h̃
f.

Now by Codazzi, we have

R
g+

α̃β̃γ̃n̂
= ∇h̃

β̃
Lα̃γ̃ −∇h̃

α̃Lβ̃γ̃

along Y . Contracting α̃ and γ̃ and using the Einstein condition on g+ along
with the fact that Y is minimal gives

0 = R
g+

β̃n̂
= −h̃α̃γ̃∇h̃

α̃Lβ̃γ̃ + h̃α̃γ̃∇h̃
β̃
Lα̃γ̃ = −∇γ̃

h̃
Lβ̃γ̃ +∇h̃

β̃
H = −∇α̃

h̃
Lβ̃α̃.
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Hence

(43) ∇α̃
h̃
Lβ̃α̃ = 0

and

δ̃β̃h̃
′ = −2Lβ̃γ̃∇

γ̃f.

Turning to the fifth term of (41), we consider the Riemann tensor on Y . As
the dimension of Y is three, it follows that the Weyl tensor of h̃ vanishes,
giving us

Rh̃
α̃γ̃β̃δ̃

= h̃α̃β̃R
h̃
γ̃δ̃

− h̃α̃δ̃R
h̃
β̃γ̃

− h̃β̃γ̃R
h̃
α̃δ̃

+ h̃γ̃δ̃R
h̃
α̃β̃

−
1

2
Rh̃h̃α̃β̃h̃γ̃δ̃

+
1

2
Rh̃h̃α̃δ̃h̃β̃γ̃ .

Thus,

−h̃γ̃η̃h̃δ̃ζ̃Rh̃
α̃γ̃β̃δ̃

h̃′
η̃ζ̃

= −Rζ̃η̃

h̃
h̃′
η̃ζ̃
h̃α̃β̃ + h̃η̃ζ̃Rh̃

β̃η̃
h̃′
α̃ζ̃

+ h̃η̃ζ̃Rh̃
α̃η̃h̃

′
β̃ζ̃

−
1

2
Rh̃h̃′

α̃β̃
.

So we can write the last three terms of (41) as

− h̃γ̃η̃h̃δ̃ζ̃Rh̃
α̃γ̃β̃δ̃

h̃′
η̃ζ̃

+
1

2
h̃η̃ζ̃Rh̃

α̃η̃h̃
′
β̃ζ̃

+
1

2
h̃η̃ζ̃Rh̃

β̃η̃
h̃′
α̃ζ̃

=

−Rh̃
η̃ζ̃
(h̃η̃ζ̃)′h̃α̃β̃ +

3

2
h̃η̃ζ̃Rh̃

β̃η̃
h̃′
α̃ζ̃

+
3

2
h̃η̃ζ̃Rh̃

α̃η̃h̃
′
β̃ζ̃

−
1

2
Rh̃h̃′

α̃β̃
.

Therefore we have found

(Rh̃
α̃β̃

)′ = ∆h̃(fLα̃β̃)−∇h̃
α̃(Lβ̃γ̃∇

γ̃f)−∇h̃
β̃
(Lα̃γ̃∇

γ̃f) + 2f(Rh̃
η̃ζ̃
Lη̃ζ̃)h̃α̃β̃

− 3fLα̃
γ̃Rh̃

β̃γ̃
− 3fLβ̃

γ̃Rh̃
α̃γ̃ + fRh̃Lα̃β̃ .

This then lets us write down an expression for ⟨L, (Rich̃)′⟩h̃ :

Lα̃β̃(Rh̃
α̃β̃

)′ = Lα̃β̃∆h̃(fLα̃β̃)− 2Lα̃β̃∇h̃
β̃
(Lα̃γ̃∇

γ̃f)− 6f(L2)α̃β̃Rh̃
α̃β̃

+ fRh̃|L|2;

hence

A′ = R
α̃β̃

h̃
∇h̃

α̃∇
h̃
β̃
f − 3f(L2)α̃β̃Rh̃

α̃β̃
+ fR

α̃β̃

h̃
R

g+

α̃n̂β̃n̂

+ Lα̃β̃∆h̃(fLα̃β̃)− 2Lα̃β̃∇h̃
α̃(Lβ̃γ̃∇

γ̃

h̃
f) + fRh̃|L|2.
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Using formula (87) in the appendix for the the variation of the second
fundamental form, it is straightforward to see that B′ is given by

B′ = (trL3)′ = 3(h̃α̃γ̃)′h̃β̃η̃h̃δ̃ζ̃Lα̃β̃Lγ̃δ̃Lη̃ζ̃ + 3h̃α̃γ̃ h̃β̃η̃h̃δ̃ζ̃L′
α̃β̃
Lγ̃δ̃Lη̃ζ̃

= 6f |L2|2
h̃
+ 3h̃α̃γ̃ h̃β̃η̃h̃δ̃ζ̃

[
∇h̃

α̃∇
h̃
β̃
f − L2

α̃β̃
f

+ (R
g+

α̃n̂β̃n̂
L
γ̃
α̃Lβ̃γ̃)f

]
Lγ̃δ̃Lη̃ζ̃

= 3f |L2|2
h̃
+ 3(∇h̃

α̃∇
h̃
β̃
f)(L2)α̃β̃ + 3fR

g+

α̃n̂β̃n̂
(L2)α̃β̃ .

It will be useful to record two consequences of the Gauss curvature equation.
First, using the Einstein condition, the Ricci curvature of h̃ can be expressed
as

(44) Rh̃
η̃ζ̃

= −3h̃η̃ζ̃ −R
g+

η̃n̂ζ̃n̂
− (L2)η̃ζ̃ .

It follows that the scalar curvature of h̃ is given by

(45) Rh̃ = −6− |L|2.

We now focus on rewriting four terms in A′ and B′ to make them amenable
to integration by parts. We thus make the following definitions:

D1 =

∫

Yε

R
α̃β̃

h̃
∇h̃

α̃∇
h̃
β̃
fdvh̃

D2 =

∫

Yε

Lα̃β̃∆h̃(fLα̃β̃)dvh̃

D3 = −

∫

Yε

2Lα̃β̃∇h̃
α̃(Lβ̃γ̃∇

γ̃

h̃
f)dvh̃

D4 =

∫

Yε

3(L2)α̃β̃∇h̃
α̃∇

h̃
β̃
fdvh̃.

We will write each of the above terms as an integral over Yε plus an integral
over Σε. Recall that νYε

is the inward pointing h̃ unit-normal vector field to
Σε in Yε. Integrating by parts then applying the second contracted Bianchi
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identity and (45), we find

D1 =

∫

Yε

h̃α̃γ̃ h̃β̃δ̃Rh̃
γ̃δ̃
∇h̃

α̃∇
h̃
β̃
fdvh̃

= −

∫

Yε

h̃α̃γ̃ h̃β̃δ̃∇h̃
α̃R

h̃
γ̃δ̃
∇h̃

β̃
fdvh̃ −

∮

Σε

Rh̃
α̃β̃
να̃Yε

∇β̃

h̃
fdvkε

= −

∫

Yε

1

2
(∇α̃

h̃
Rh̃)∇

h̃
α̃fdvh̃ −

∮

Σε

Rh̃
α̃β̃
να̃Yε

∇β̃

h̃
fdvkε

=

∫

Yε

1

2
Rh̃∆h̃fdvh̃ +

∮

Σε

[1
2
Rh̃νYε

(f)− Rich̃(νYε
,∇h̃f)

]
dvkε

=

∫

Yε

(
6 + |L|2

2

)
(|L|2 − 3)fdvh̃

−

∮

Σε

[
Rich̃(νYε

,∇h̃f)−
1

2
Rh̃νYε

(f)

]
dvkε

=

∫

Yε

(
|L|4

2
+

3|L|2

2
− 9

)
fdvh̃ −

∮

Σε

(
Rich̃−

1

2
Rh̃h̃

)(
∇h̃f, νYε

)
dvkε

.

Next,

D2 =

∫

Yε

Lα̃β̃∆h̃(fLα̃β̃)dvh̃

=

∫

Yε

[
|L|2∆h̃f + fLα̃β̃∆h̃Lα̃β̃ + 2Lα̃β̃∇γ̃

h̃
f∇h̃

γ̃Lα̃β̃

]
dvh̃

=

∫

Yε

[
|L|2∆h̃f + fLα̃β̃∆h̃Lα̃β̃ + ⟨∇h̃f,∇h̃|L|2⟩

]
dvh̃

=

∫

Yε

fLα̃β̃∆h̃Lα̃β̃dvh̃ −

∮

Σε

|L|2νYε
(f)dvkε

.

We want to use a Simons-type identity to replace the term ∆h̃Lα̃β̃ . By the
Codazzi equation,

R
g+

γ̃α̃β̃n̂
= ∇h̃

α̃Lγ̃β̃ −∇h̃
γ̃Lα̃β̃ ,

so we may write

h̃δ̃γ̃∇h̃
δ̃
R

g+

γ̃α̃β̃n̂
= h̃δ̃γ̃∇h̃

δ̃
∇h̃

α̃Lγ̃β̃ − h̃δ̃γ̃∇h̃
δ̃
∇h̃

γ̃Lα̃β̃(46)

= ∇γ̃

h̃
∇h̃

α̃Lγ̃β̃ −∆h̃Lα̃β̃ .
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Now we want to commute the covariant derivatives in the first term on
the right-hand side of this equation. By the Ricci identity,

∇h̃
δ̃
∇h̃

α̃Lγ̃β̃ −∇h̃
α̃∇

h̃
δ̃
Lγ̃β̃ = Rh̃

δ̃α̃γ̃
η̃Lη̃β̃ +Rh̃

δ̃α̃β̃
η̃Lη̃γ̃ .

Contracting δ̃ and γ̃ and using (43) gives

(47) h̃δ̃γ̃∇h̃
δ̃
∇h̃

α̃Lγ̃β̃ = h̃δ̃γ̃Rh̃
δ̃α̃β̃

η̃Lη̃γ̃ +Rh̃
α̃γ̃L

γ̃
β̃ .

Combining (47) and (46), we get

∆h̃Lα̃β̃ = h̃δ̃γ̃Rh̃
δ̃α̃β̃

η̃Lη̃γ̃ +Rh̃
α̃γ̃L

γ̃
β̃ − h̃δ̃γ̃∇h̃

δ̃
R

g+

γ̃α̃β̃n̂
.

Therefore,

D2 =

∫

Yε

[
Lα̃β̃Lγ̃δ̃Rh̃

δ̃α̃β̃γ̃
+ (L2)α̃β̃Rh̃

α̃β̃
− Lα̃β̃h̃δ̃γ̃∇h̃

δ̃
R

g+

γ̃α̃β̃n̂

]
fdvh̃(48)

−

∮

Σε

|L|2νYε
(f)dvkε

.

Applying integration by parts to D3 and using (43) yields

D3 = −

∫

Yε

2Lα̃β̃∇h̃
α̃(Lβ̃γ̃∇

γ̃

h̃
f)dvh̃(49)

=

∮

Σε

2L2(∇h̃f, νYε
)dvkε

.

Now again using integration by parts and applying (43) we see

D4 =

∫

Yε

3(L2)α̃β̃∇h̃
α̃∇

h̃
β̃
fdvh̃(50)

= −

∫

Yε

3Lα̃γ̃∇h̃
α̃Lγ̃

β̃∇h̃
β̃
fdvh̃ −

∮

Σε

3Lα̃γ̃L
γ̃β̃να̃Yε

∇h̃
β̃
fdvkε

.
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In order to rewrite the first term on the right, we consider the following:

−3h̃β̃δ̃Lα̃γ̃∇h̃
α̃Lδ̃γ̃∇

h̃
β̃
f = −3h̃β̃δ̃Lα̃γ̃(∇h̃

α̃Lδ̃γ̃ −∇h̃
δ̃
Lα̃γ̃)∇

h̃
β̃
f(51)

− 3h̃β̃δ̃Lα̃γ̃∇h̃
δ̃
Lα̃γ̃∇

h̃
β̃
f

= −3Lα̃γ̃R
g+

β̃α̃γ̃n̂
∇β̃

h̃
f −

3

2
∇β̃ |L|

2∇β̃

h̃
f.

Using the above formula and then applying integration by parts again
we see

−

∫

Yε

3Lα̃γ̃∇h̃
α̃Lγ̃

β̃∇h̃
β̃
fdvh̃(52)

=

∫

Yε

(
−3Lα̃γ̃R

g+

β̃α̃γ̃n̂
∇β̃

h̃
f −

3

2
∇β̃ |L|

2∇β̃

h̃
f

)
dvh̃

= 3

∫

Yε

∇β̃

h̃
Lα̃γ̃R

g+

β̃α̃γ̃n̂
fdvh̃ + 3

∫

Yε

Lα̃γ̃∇β̃

h̃
R

g+

β̃α̃γ̃n̂
fdvh̃

+

∫

Yε

3

2
|L|2∇β̃∇β̃fdvh̃ + 3

∮

Σε

Lα̃γ̃ν δ̃Yε
R

g+

δ̃α̃γ̃n̂
f

+
3

2

∮

Σε

|L|2∇νYε
fdvkε

We also observe that

3f∇β̃

h̃
Lα̃γ̃R

g+

β̃α̃γ̃n̂
=

3

2
f(∇h̃

β̃
Lα̃γ̃ −∇h̃

α̃Lβ̃γ̃)Rg+
β̃α̃γ̃

n̂(53)

=
3

2
fR

g+

α̃β̃γ̃n̂
Rg+

β̃α̃γ̃
n̂

= −
3

2
fW

g+

α̃β̃γ̃n̂
Wg+

α̃β̃γ̃
n̂.

If we use the above formula to re-write the first term on the right-hand side
of (52), and use the resulting formula to re-write (50), we get

D4 =

∫

Yε

[
3fLα̃β̃h̃δ̃γ̃∇h̃

δ̃
R

g+

γ̃α̃β̃n̂

−
3

2
fW

g+

α̃β̃γ̃n̂
Wg+

α̃β̃γ̃
n̂ +

3

2
|L|2∆h̃f

]
dvh̃

+

∮

Σε

[
3fLα̃γ̃R

g+

β̃α̃γ̃n̂
ν
β̃
Yε

+
3

2
|L|2νYε

(f)− 3L2(∇h̃f, νYε
)

]
dvkε

.
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It is interesting to note that the cancellation of the first term in D4 with the
last interior term of D2 accounts for the absence of any derivatives of Weyl
terms in our final formula.

Now we want to compute
∫
Yε

C′dvh̃ = −
∫
Yε
A′dvh̃ −

1
3

∫
Yε
B′dvh̃. Using

our expressions for D1, D2, D3 and D4 and gathering together all of the
terms that appear as integrals over Yε we get:

IY := −

∫

Yε

[(
3|L|2

2
+

|L|4

2
− 9

)
f(54)

+ Lα̃β̃Lγ̃δ̃Rh̃
γ̃α̃β̃δ̃

f +Rh̃
α̃β̃

(L2)α̃β̃f − Lα̃β̃h̃δ̃γ̃∇h̃
δ̃
R

g+

γ̃α̃β̃n̂
f

+ fLα̃β̃h̃δ̃γ̃∇h̃
δ̃
R

g+

γ̃α̃β̃n̂

−
1

2
fW

g+

α̃β̃γ̃n̂
Wg+

α̃β̃γ̃
n̂ +

1

2
|L|2∆h̃f

− 3f(L2)α̃β̃Rh̃
α̃β̃

+ fR
α̃β

h̃
R

g+

α̃n̂β̃n̂
+ fRh̃|L|2

+ f |L2|2
h̃
+ fR

g+

α̃n̂β̃n̂
(L2)α̃β̃

]
dvh̃

= −

∫

Yε

[(
3|L|2

2
+

|L|4

2
− 9

)
f

+ Lα̃β̃Lγ̃δ̃Rh̃
γ̃α̃β̃δ̃

f(55)

−
1

2
fW

g+

α̃β̃γ̃n̂
Wg+

α̃β̃γ̃
n̂ +

1

2
|L|2∆h̃f

− 2f(L2)α̃β̃Rh̃
α̃β̃

+ fR
α̃β

h̃
R

g+

α̃n̂β̃n̂
+ fRh̃|L|2

+ f |L2|2
h̃
+ fR

g+

α̃n̂β̃n̂
(L2)α̃β̃

]
dvh̃.

Next, decomposing the Riemann tensor of g+ gives

(56) R
g+

α̃n̂β̃n̂
=W

g+

α̃n̂β̃n̂
− h̃α̃β̃ .

Applying (56) to (44) gives

(57) Rh̃
α̃β̃

= −L2
α̃β̃

− 2h̃α̃β̃ −W
g+

α̃n̂β̃n̂
.
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Decomposing the Riemann tensor of h̃ allows us to write

Rh̃
δ̃α̃β̃ζ̃

Lζ̃δ̃Lα̃β̃ = Lζ̃δ̃Lα̃β̃ [h̃δ̃β̃R
h̃
α̃ζ̃

− h̃δ̃ζ̃R
h̃
α̃β̃

− h̃α̃β̃R
h̃
δ̃ζ̃

+ h̃α̃ζ̃R
h̃
δ̃β̃

(58)

−
1

2
Rh̃h̃δ̃β̃h̃α̃ζ̃ +

1

2
Rh̃h̃δ̃ζ̃ h̃α̃β̃ ].

Next we apply (57) and then (45) to get

Rh̃
δ̃α̃β̃ζ̃

Lζ̃δ̃Lα̃β̃ = 2(L2)α̃β̃Rh̃
α̃β̃

−
1

2
|L|2Rh̃

= −|L|4 − 4|L|2 − 2(L2)α̃β̃W
g+

α̃n̂β̃n̂
+ 3|L|2 +

1

2
|L|4.

Note that we also use here the fact that |L2|2 = 1
2 |L|

4, which holds because
HY = 0.

Simplifying gives

Lα̃β̃Lγ̃δ̃Rh̃
γ̃α̃β̃δ̃

= −|L|2 −
1

2
|L|4 − 2(L2)α̃β̃W

g+

α̃n̂β̃n̂
.

Applying this to re-write Lα̃β̃Lγ̃δ̃Rh̃
γ̃α̃β̃δ̃

and using (32) to re-write ∆h̃f gives

IY = −

∫

Yε

[(
3|L|2

2
+

|L|4

2
− 9

)
f

− |L|2f − 2(L2)α̃β̃W
g+

α̃n̂β̃n̂
f −

1

2
|L|4f

−
1

2
fW

g+

α̃β̃γ̃n̂
Wg+

α̃β̃γ̃
n̂ +

3

2
|L|2f −

1

2
|L|4f

+ 2f |L2|2 + 4|L|2f + 2(L2)α̃β̃W
g+

α̃n̂β̃n̂
− 6f |L|2 − f |L|4

− (L2)α̃β̃Wα̃n̂β̃n̂f −Wα̃n̂β̃n̂W
α̃
n̂
β̃
n̂f + |L|2f + 6f

+ f |L2|2
h̃
+ fW

g+

α̃n̂β̃n̂
(L2)α̃β̃ − f |L|2

]
dvh̃

=

∫

Yε

(
3f +

1

2
fWα̃β̃γ̃n̂W

α̃β̃γ̃
n̂ + fWα̃n̂γ̃n̂W

α̃
n̂
γ̃
n̂

)
dvh̃.(59)

We may simplify this helpfully:

Claim 2.

(60)
1

2
W

g+

α̃β̃γ̃n̂
Wg+

α̃β̃γ̃
n̂ +W

g+

α̃n̂β̃n̂
W α̃n̂β̃n̂

g+ =
1

8
|Wg+ |

2
g+ .
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Proof. Observe that

|Wg+ |
2
g+ =W

g+
ijklW

ijkl
g+

= 4W
g+

n̂α̃β̃γ̃
W n̂α̃β̃γ̃

g+ + 4W
g+

n̂α̃n̂β̃
W n̂α̃n̂β̃

g+ +W
g+

α̃β̃γ̃δ̃
W α̃β̃γ̃δ̃

g+ .

Now, W
g+

α̃β̃γ̃δ̃
is an algebraic curvature tensor on Y , a three-manifold, and

(omitting g+ for clarity) its trace is given by

Wα̃β̃
α̃
δ̃ = −Wn̂β̃

n̂
δ̃.

But (by, e.g., Prop. 7.23 and Corollary 7.25 of [20]), an algebraic curvature
tensor on a three-manifold is determined by its trace; in this case, the formula
reads

Wα̃β̃γ̃δ̃ =Wn̂α̃
n̂
δ̃h̃β̃γ̃ +Wn̂β̃

n̂
γ̃ h̃α̃δ̃ −Wn̂α̃

n̂
γ̃ h̃β̃δ̃ −Wn̂β̃

n̂
δ̃h̃α̃γ̃ .

It follows that

W
g+

α̃β̃γ̃δ̃
W α̃β̃γ̃δ̃

g+ = 4W n̂α̃n̂β̃
g+ W

g+

n̂α̃n̂β̃
.

So

|Wg+ |
2
g+ = 4W

g+

n̂α̃β̃γ̃
W n̂α̃β̃γ̃

g+ + 8W
g+

n̂α̃n̂β̃
W n̂α̃n̂β̃

g+ .

□

It follows from the previous claim and (32) that (59) is equal to

(61) IY =

∫

Yε

[
|L|2f +

1

8
|Wg+ |

2
g+f

]
dvh̃ −

∮

Σε

νYε
(f)dvkε

.

Gathering the boundary terms from D1, D2, D3 and D4 and the normal
derivative term on the above line we get

∮

Σε

[(
Rich̃−

1

2
Rh̃h̃

)
(∇h̃f, νYε

) + |L|2νYε
(f)− 2L2(∇h̃f, νYε

)(62)

− fLα̃γ̃R
g+

β̃α̃γ̃n̂
ν
β̃
Yε

−
1

2
|L|2νε(f) + L2(∇f, νε)− νYε

(f)

]
dvkε

.
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Now we apply (57) to the first term and use R
g+

α̃β̃γ̃n̂
=W

g+

α̃β̃γ̃n̂
to re-write

fLα̃γ̃R
g+

β̃α̃γ̃n̂
ν
β̃
ε , giving us

∮

Σε

[
− 2L2(∇f, νYε

) + fLα̃γ̃W
g+

α̃β̃γ̃n̂
ν
β̃
Yε

−W
g+

α̃n̂β̃n̂
f α̃νβ̃ε + |L|2νYε

(f)

]
dvkε

.

Combining this with (35), (36) and (61) gives us

3
d

dt
Vϵ(t)

∣∣
t=0

=

∫

Yε

|L|2fdvh̃ +

∮

Σε

[
−W

g+

α̃n̂β̃n̂
να̃Yε

∇β̃

h̃
f + |L|2νYε

(f)

− 2Lα̃γ̃L
γ̃
β̃ν

α̃
Yε
∇β̃

h̃
f + Lγ̃δ̃W

g+

γ̃α̃δ̃n̂
fνα̃Yε

]
dvkε

+O(ε).(63)

Next we will examine the asymptotics of the term −W
g+

α̃n̂β̃n̂
να̃Yε

f β̃ . Now, it

follows from (5), (6), and the second-last equation on the bottom of page 52
of [11] that

W
ḡ
0µ0ν = O(r).

Moreover, from the first equation on p. 53 of the same book, we may conclude
that

W
ḡ
0µ0ν = −

3

2
rg(3)µν +O(r2)

with g(3) as in (5). By the conformal change formula for the Weyl tensor,
therefore, we find

(64) W
g+
µ0ν0 = −

3

2
r−1g(3)µν +Oḡ(1).

Now by (33),

−Wg+(νYε
, µY ,∇

h̃f, µY ) = −r3Wg+(ν̄Yϵ
, µ̄Y ,∇

Y f, µ̄Y )

= −r3W
g+

α̃n̄β̃n̄
ν̄α̃Yϵ

f β̃

= −r5W
g+

α̃n̄β̃n̄
ν̄α̃Yϵ

ḡβ̃γ̃∂γ̃f

= r3W0̃n̄0̃n̄ν̄
0̃
Yϵ
f̃ +O(r4),

where n̄ corresponds to µ̄Y . Taking (25), (26), (64), and (33), we see that
the first corner term of (63) may be written

(65)

∮

Σε

−Wg+(νYϵ
, µY ,∇

h̃f, µY )dvkε
=

∮

Σ

3

2
g(3)(ν̄M , ν̄M )f̃dvk̄ +O(ε).
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We now simplify the remaining terms of (63):

Claim 3.

∫

Yε

|L|2fdvh̃ +

∮

Σε

[
|L|2νYε

(f)− 2Lα̃γ̃L
γ̃
β̃ν

α̃
Yε
∇β̃

h̃
f

+ Lγ̃δ̃W
g+

γ̃α̃δ̃n̂
fνα̃Yε

]
dvkε

(66)

= f.p.

∫

Y̊

|L|2fdvh̃ +O(ε log ε).

Proof. Observe that

(67) Lα̃β̃ =
Lα̃β̃

r
+
µ̄Y (r)

r2
ḡα̃β̃ .

Now

(68) µ̄Y = (1 +O(r2))∂w −

(
ηMr

2
+O(r3 log r)

)
∂r +Oa(r2)∂a.

Therefore

(69) µ̄Y (r) = −
1

2

[
ηMr +O(r3 log r)

]
.

Now using the fact that ḡα̃β̃ = ḡαβ +O(r2) we may write

(70) Lα̃β̃ = −
1

2
µ̄Y ḡαβ +O(r2) = −

1

2
∂wḡαβ +O(r2).

Therefore we may write

(71) Lα̃β̃ = −
∂wḡαβ

2r
−
ηM ḡαβ

2r
+O(r log r).

Hence

|L|2
h̃
νYε

(f)dvkε
= ε4ḡαγ ḡβδ

[
∂wḡαβ

2ε
+
ηM ḡαβ

2ε
+O(ε log ε)

]
·

·

[
∂wḡγδ

2ε
+
ηM ḡγδ

2ε
+O(ε log ε)

] [
−f̃ ε−1 +O(ε)

]
dvkε

=
[
− ε−1|I̊IM |2kf̃ +O(ε log ε)

]
dvk̄ε

,(72)
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so we may write

∮

Σε

|L|2
h̃
νYε

(f)dvkε
= −

∮

Σ
|I̊IM |2kf̃dvkε

−1 +O(ε log ε).

Now,

|L|2
h̃
fdvh̃ = r4ḡαγ ḡβδ

[
∂wḡαβ

2r
+
ηM ḡαβ

2r
+O(r log r)

]
·(73)

·

[
∂wḡγδ

2r
+
ηM ḡγδ

2r
+O(r log r)

] [
f̃ r−1 +O(r)

]
dvh̃

=
[
r−2|I̊IM |2kf̃ +O(log r)

]
dv¯̃

h
,

so
∫

Yε

|L|2
h̃
fdvh̃ = C +

∫ r0

ε

∮

Σ
|L|2

h̃
fdvkdr(74)

= C +

∫ r0

ε

∮

Σ
r−2|I̊IM |2kf̃ +O(log r)dvkdr

= C ′ + ε−1

∮

Σ
|I̊IM |2kf̃dvk +O(ε log ε)

for some constants C and C ′ and r0 > 0 chosen small enough. Observe that

C ′ = f.p.

∫

Y̊

|L|2fdvh̃.

By (71) we can write

(L2)α̃β̃ = O(1),

(L2)α̃0̃ = O(r).

Also observe by (26) that να̃ε = O(r2) unless α̃ = 0̃, in which case ν 0̃ε = O(r).
Now if we let a run over the indices 1, 2 we can write

Lα̃γ̃L
γ̃

β̃
να̃ε ∇

β̃f = hβ̃δ̃(L2)ãβ̃ν
ã
ε fδ̃ + hβ̃δ̃(L2)0̃β̃ν

0̃
εfδ̃

= O(r3)

It follows that

Lα̃γ̃L
γ̃

β̃
να̃ε ∇

β̃fdvk = O(ε)dvk̄,
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so ∮

Σε

Lα̃γ̃L
γ̃

β̃
να̃ε ∇

β̃fdvk = O(ε).

Now we turn our attention to the term Lγ̃δ̃W
g+
γαδnfν

α
ε . First observe that

W
g+

γ̃α̃δ̃n̂
= rW

g+

γ̃α̃δ̃ ˆ̄n

and

W
g+

γ̃α̃δ̃ ˆ̄n
=
W

ḡ

γ̃α̃δ̃ ˆ̄n

r2
,

where ˆ̄n corresponds to µ̄Y . Now

W
ḡ

γ̃0̃δ̃ ¯̂n
= R

ḡ

γ̃0̃δ̃ ˆ̄n

= ∇ḡ

0̃
L
ḡ

γ̃δ̃
−∇ḡ

γ̃L
ḡ

0̃δ̃

= ∂0̂Lγ̃δ̃ − Γβ̃

0̃γ̃
Lβ̃δ̃ − Γβ̃

0̃δ̃
Lβ̃γ̃ − (∂γ̃L0̃δ̃ − Γβ̃

0̃γ̃
Lβ̃δ̃ − Γβ̃

γ̃δ̃
Lβ̃0̃)

= ∂0̃Lγ̃δ̃ − Γβ̃

0̃δ̃
Lβ̃γ̃ − (∂γ̃L0̃δ̃ − Γβ̃

γ̃δ̃
Lβ̃0̃)

= O(r).

This gives us

Lγ̃δ̃W
g+

γ̃0̃δ̃ ˆ̄n
fν 0̃ε = O(r3)

and

Lγ̃δ̃W
g+

γ̃α̃δ̃ ˆ̄n
fνα̃ε = Lγ̃δ̃Wγ̃0̃δ̃ ˆ̄nfν

0̃
ε + Lγ̃δ̃W

g+

γ̃b̃δ̃ ˆ̄n
fν b̃ε

= Lγ̃δ̃W
g+

γ̃0̃δ̃ ˆ̄n
fν 0̃ε +O(r3)

= O(r3).

Therefore we may write

Lγ̃δ̃W
g+

γ̃α̃δ̃n̂
fνα̃ε dvk = O(ε)dvk̄.

We then get that

∮

Σε

Lγ̃δ̃W
g+

γ̃α̃δ̃n̂
να̃ε fdvk = O(ε).

This proves the claim. □
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Combining Claim 3 with (63) and (65) and letting ε→ 0 yields the theorem.
□

As promised in the introduction, we show that the finite part can be
written as a convergent integral.

Lemma 4.3. With notation as above, we obtain

f.p.

∫

Yε

|L|2fdvh̃ =

∫

Y

(
∆h̃(|L|

2f) + |L|2f
)
dvh̃,

where the right side is a convergent integral.

Proof. By (73) we know

(75) |L|2
h̃
f = |I̊IM |2

k
f̃ r +O(r3 log(r))

which implies

∇νε
|L|2

h̃
f = ∇νε

[
|I̊IM |2

k
f̃ r +O(r3 log(r))

]

= |I̊IM |2
k
f̃ ε+O(ε3 log(ε)).

It follows that

(76)

∮

Σϵ

∇νε
(|L|2

h̃
f)dvkε

= ε−1

∮

Σ
|I̊IM |2

k
f̃dvk +O(ε log(ε)),

where we have used that fact that
√

det kε has vanishing first derivative at
r = 0. By Stokes’s theorem,

(77)

∫

Yε

∆Y (|L|2
h̃
f)dvh̃ = −

∮

Σϵ

∇νε
(|L|2

h̃
f)dvkε

.

Also recall (74):

∫

Yε

|L|2
h̃
fdvh̃ = C +

∮

Σ

∫ r0

ε

|I̊IM |2
k
f̃ r−2 +O(1)drdvk

= f.p.

∫

Yε

|L|2fdvh̃ + ε−1

∮

Σ
|I̊IM |2

k
f̃dvk +O(ε).

The result now follows. □
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5. Appendix

In this appendix we give a brief summary of the formulas needed in the proof
of Theorem 1.3, based on notes provided by Nicholas Edelen. Although they
are all standard, due to differences in notation and convention we have
decided to present a summary of the calculations.

Let (X, g) be a Riemannian manifold of dimension n+ 1, and ∇ denote
the Riemannian connection. Let Y be a smooth manifold of dimension n, and
consider a one-parameter family of smooth immersions F : (−ϵ, ϵ)× Y → X.
Let h = (Ft)

∗g be the induced metric on Y , and ∇Y the corresponding
connection.

Let V denote the variation field of Ft:

V =
d

dt
Ft

∣∣∣∣
t=0

.

Eventually we will assume that Ft is a normal variation; i.e., if ν is a choice
of unit to Y then there is a function f ∈ C∞(Y ) such that V = fν.

Let {x1, . . . , xn} be local coordinates near a point 0 ∈ Y . They induce
coordinates on Ft(Y ) defined via (t, x1, . . . , xn) 7→ Ft(x

1, . . . , xn), and we
have the corresponding coordinate vector fields {∂1, . . . , ∂n}, along with ∂t =
V . Let

hαβ(t, x) = gFt(Y )(∂α, ∂β).

Then

h′αβ =
∂

∂t
hαβ

∣∣∣∣
t=0

= g(∇∂t
∂α, ∂β) + g(∂α,∇∂t

∂β)

= g(∇∂α
V, ∂β) + g(∂α,∇∂β

V ).

If V = fν, then this becomes

h′αβ = fg(∇∂α
ν, ∂β) + g(∂α,∇∂β

ν).(78)

Given a choice of normal ν our definition of the second fundamental form
of Y is

L(∂α, ∂β) = g(ν,∇∂α
∂β) = −g(∇∂α

ν, ∂β).(79)
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Therefore, by (78) we conclude

h′αβ = −2fLαβ .(80)

By the standard formula for the inverse, this implies

(hαβ)′ = 2fLα
γL

βγ .(81)

By our definition of second fundamental form,

L′
αβ =

∂

∂t
Lαβ

∣∣∣∣
t=0

= g(∇∂t
ν,∇∂α

∂β) + g(ν,∇∂t
∇∂α

∂β).

(82)

The first term on the right is easily seen to vanish, since 0 = ∂tg(ν, ν) =
2g(∇∂t

ν, ν) implies that

g(∇∂t
ν,∇∂α

∂β) = −Lαβ g(∇∂t
ν, ν) = 0.(83)

For the second term, we commute derivatives to get

g(ν,∇∂t
∇∂α

∂β) = g(ν,∇∂α
∇∂t

∂β) +R(V, ∂α, ∂β , ν)

= g(ν,∇∂α
∇∂β

V ) +R(V, ∂α, ∂β , ν),
(84)

where R is the curvature tensor of g. If V = fν then by (83) and (84), (82)
simplifies to

L′
αβ = g(ν,∇∂t

∇∂α
∂β)

= g(ν,∇∂α
∇∂β

(fν)) + fR(ν, ∂α, ∂β , ν)

= ∇Y
α∇

Y
β f + g(ν, ∂αf∇∂β

ν + ∂βf∇∂α
ν + f∇∂α

∇∂β
ν)

+ fR(ν, ∂α, ∂β , ν)

= ∇Y
α∇

Y
β f + fg(ν,∇∂α

∇∂β
ν) + fR(ν, ∂α, ∂β , ν),

(85)

where in the last line we used the fact that ∂αg(ν, ν) = 0. Using this fact
again we also find

g(ν,∇∂α
∇∂β

ν) = −g(∇∂α
ν,∇∂β

ν).(86)

It follows from the definition of the second fundamental form that

∇∂α
ν = −Lγ

α ∂γ ,
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hence

−g(∇∂α
ν,∇∂β

ν) = −Lγ
αLβγ .

Substituting this into (86) and combining with (85), we arrive at

L′
αβ = ∇Y

α∇
Y
β f − f Lγ

αLβγ + f R(ν, ∂α, ∂β , ν).(87)

For the variation of the mean curvature H = hαβLαβ we use (81) and
(87) to obtain

H ′ = ∆Y f +
(
|L|2 +Ric(ν, ν)

)
f.(88)

Finally, using the standard formula for the derivative of the volume form,
we have

(dvh)
′ = −fH dvh.(89)
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