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New simple Lie superalgebras as

queerified associative algebras

Dimitry Leites

Over C, Montgomery superized Herstein’s construction of simple
Lie algebras from finite-dimensional associative algebras, found ob-
structions to the procedure and applied it to Z/2-graded associa-
tive algebra of differential operators with polynomial coefficients.

Since the 1990s, Vasiliev and Konstein with their co-authors
constructed (via the Herstein–Montgomery method, having redis-
covered it) simple Lie (super)algebras from the associative (su-
per)algebra such as Vasiliev’s higher spin algebras (a.k.a. algebras
of observables of the rational Calogero model) and algebras of sym-
plectic reflections.

The “queerification” is another method for cooking a simple Lie
superalgebra from the simple associative (super)algebra. The (su-
per)algebras of “matrices of complex size” and the above examples
of associative (super)algebras can be “queerified” by adding new
elements resembling Faddeev–Popov ghosts.

Conjectures: 1) a “queerified” Hamiltonian describes a version
of the Calogero model with 1|1-dimensional time; 2) metabelean
algebras and inhomogeneous subalgebras of Lie superalgebras nat-
urally widen supersymmetries in future theories; 3) only certain
graded-commutative algebras can imitate algebras of functions in
a reasonably rich non-commutative Geometry.
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3190 Dimitry Leites

1. Preliminaries

Simple Lie algebras and superalgebras carry important symmetries useful
in innumerable applications. Here I describe a new method producing many
new simple Lie superalgebras. Clearly, certain relatives of simple Lie (su-
per)algebras are no less important in applications than the simple ones
(e.g., Poisson Lie (super)algebra vs. Lie (super)algebra of Hamiltonian vec-
tor fields, affine Kac–Moody algebras vs. loop algebras, see an interesting
discussion in [BLS]). To describe such relatives is a task for future.

1.1. From associative to Lie

Let K be an algebraically closed ground field of characteristic p ̸= 2; un-
less otherwise stated, we consider K = C. For the case of p = 2 and finite-
dimensional algebras, see [BLLS].

Let A be any associative algebra, let AL be the Lie algebra whose space
is A but multiplication is given by the commutator [a, b] := ab− ba.

Similarly, if A is a Z/2-graded associative algebra, let AS be the
Lie superalgebra with the multiplication given by the supercommuta-
tor. Let g(1) := [g, g] be the first derived Lie (super)algebra, a.k.a. (su-
per)commutant, of the Lie (super)algebra g.

1.1.1. Theorem. ([H]) Let A be any simple finite-dimensional associative

algebra with center Z and not equal to it. Then, L(A) := (AL)(1)/((AL)(1) ∩
Z) is a simple Lie algebra (unless [A : Z] = 4 and p = 2).

In [Mon], Montgomery generalized Herstein’s result to Z/2-graded sim-
ple associative algebras. (Actually, Montgomery considered so-called “col-
ored” algebras, graded by any commutative group G, although it was already
known, thanks to Scheunert, see [Sch], that there is a natural equivalence be-
tween G-graded G-Lie algebras reducing the representatives of equivalence
classes to either Lie algebras or to Lie superalgebras.)

Montgomery found out a sufficient condition to the super version of Her-
stein’s theorem 1.1.1 and formulated it in the infinite-dimensional situation
(in the finite-dimensional case this condition also works).

1.1.2. Theorem. ([Mon, Th.3.8]) Let A be a Z/2-graded simple associative

algebra of characteristic p ̸= 2 with supercenter Z whose elements supercom-

mute with any a ∈ A. Let the condition

(1) if u2 ∈ Z, then u ∈ Z for any homogeneous u ∈ A1̄
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Simple Lie superalgebras as queerified associative algebras 3191

hold. Then,

(2) SL(A) := (AS)(1)/((AS)(1) ∩ Z)

is a simple Lie superalgebra.

Examples. If dimA <∞, then the simple Lie (super)algebras obtained by
Herstein–Montgomery method are only those of series sl or psl (recall that
psl(pk) := sl(pk)/K1pk if the characteristic p of K is positive; or psl(a|a) :=
sl(a|a)/K12a in the super case). If dimA =∞, the condition (1) was verified
for algebras of observables in the rational Calogero model (a.k.a. symplectic
reflection algebras) in [KT1, Th.7.2], see also numerous simple examples in
[KS, KT2, KT3].

1.2. Central simple superalgebras

The associative algebra over a field K is called central simple if it has no
proper ideals and its center is 1-dimensional over K. Over any algebraically
closed field K of characteristic p ̸= 2, the only finite-dimensional central
simple associative algebras are algebras Mat(n) of n× n matrices.

The super analog of this classification states that the only finite-
dimensional central simple associative superalgebras are superalgebras
Mat(n|m) of supermatrices of size n|m in the standard format, and

Q(n) := {X ∈ Mat(n|n) | [X, J ] = 0},

where J is an odd operator such that J2 = a for an a ∈ K×. If the charac-
teristic of K is p ̸= 2, we can assume that a = −1 and interpret the queer

algebra Q(n) as preserving the complex structure given by an odd opera-
tor J .

See also Finkelberg’s reformulation of Wall’s classification of central sim-
ple algebras in “super” terms, together with new results, in [Lsos, Ch. 7] or
— in English, but without the Brauer groups over p-adic fields and sev-
eral other results due to Finkelberg — Deligne’s “Notes on spinors”, [Del,
pp. 99–135]. The answer over C: any central simple superalgebra is either
Mat(a|b) or Q(n). The classification over R explains Bott’s periodicity; for
more details, see [Lsos, Ch. 7].
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1.3. Queerification in characteristic p ̸= 2 (from [BLLS])

Let A be an associative algebra. The space of the associative algebra Q(A)
— the associative queerification of A — is A⊕Π(A), where Π is the change
of parity functor, with the same multiplication in A and the adjoint action
of A on Π(A); let

Π(x)Π(y) := xy for any x, y ∈ A.

Clearly, Q(n) = Q(Mat(n)).
We will be mostly interested in the following Lie version of queerifica-

tion.
The space of the Lie superalgebra q(A), called the Lie queerification of

A, is AL ⊕Π(A), so q(A)0̄ = AL and q(A)1̄ = Π(A), with the bracket given
by the following expressions and super anti-symmetry

(3)
[x, y] := xy − yx; [x,Π(y)] := Π(xy − yx);

[Π(x),Π(y)] := xy + yx for any x, y ∈ A.

The term “queer”, now conventional, is taken after the Lie superalge-
bra q(n) := q(Mat(n)). (The associative superalgebra Q(n) is an analog of
Mat(n); likewise, the Lie superalgebra q(n) is an analog of gl(n) for several
reasons, for example, due to the role of these analogs in Schur’s Lemma
and in the classification of central simple superalgebras.) We express the
elements of the Lie superalgebra g = q(n) by means of a pair of matrices

(4) (X,Y )←→

(

X Y
Y X

)

∈ gl(n|n), where X,Y ∈ Mat(n).

For any associative A, we will similarly denote the elements of q(A) by
pairs (X,Y ), where X,Y ∈ A. The brackets between these elements are as
follows:

(5)
[(X1, 0), (X2, 0)] := ([X1, X2], 0), [(X, 0), (0, Y )] := (0, [X,Y ]),

[(0, Y1), (0, Y2)] := (Y1Y2 + Y2Y1, 0).

One can similarly queerify any associative superalgebra A, see [BLLS].
In particular, Q(Mat(m|n)) ≃ Q(m+ n).

Let sq(n) := q(n)(1) be the first derived algebra, the superalgebra of
queertraceless matrices, where the queer trace, introduced in [BL], is given
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in notation of eq. (4) by the formula

qtr : (X,Y ) 7→ trY.

The Lie superalgebras q(n) and sq(n) are specifically “super” analogs of
the general Lie algebra gl(n) and its special (traceless) subalgebra sl(n);
we define their projectivizations to be pq(n) := q(n)/K12n and psq(n) :=
sq(n)/K12n.

1.3.1. Theorem. ([BLLS]) The only finite-dimensional simple Lie super-

algebras related with queerification in characteristic p ̸= 2 are psq(n) for

n > 2.

1.4. Two constructions of simple Lie (super)algebras from
associative algebras

These constructions are (1) the queerification and (2) the Herstein–Mont-
gomery construction (using a Z/2-grading). Both these constructions work
in any characteristic of the ground field.

Recall that Lie superalgebras (actually, Lie super rings over Z and Lie
superalgebras over finite fields) first appeared not as a tool in high energy
physics in 1974 or a bit earlier (as many think), but in the 1940s with
seedlings of idea in 1930s, in topology. Lately, simple (or close to simple,
like gl to psl) modular (i.e., over fields of characteristic p > 0) Lie algebras
and Lie superalgebras became a topic of more general interest caused, e.g.,
by a connection of the representations of quantum groups Uq(g), where g is
a simple finite-dimensional Lie algebra over C and q is the pth root of unity
with the representations of an incarnation of g, or its super version, over the
fields of characteristic p, see the book [J] and a lucid example in [V].

From Lie algebras to Lie superalgebras when p = 2. Interestingly,
over an algebraically closed field of characteristic 2, all finite-dimensional
simple Lie superalgebras are obtained by one of these two constructions —
queerification and the Herstein–Montgomery method. Both constructions
can be applied not only to associative algebras but also — and this is vital
— to every simple Lie algebra, see [BLLS].

A third construction when p = 3 and 5: from Lie algebras to
Lie superalgebras with indecomposable integer Cartan matrix. In
characteristics 3 and 5, Kannan suggested to construct Lie superalgebras
from Lie algebras (only with indecomposable integer Cartan matrix so far)
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by using modern tools of mathematical physics such as Verlinde categories,
see [Kan].

2. Examples of associative algebras ready to be queerified

In this section, I explicitly describe simple associative algebras A related
with various problems of interest in some areas of physics and mathematics,
see [Va, KV1, KV2, EG, Lo], and of completely different nature, see [Ha]
and references therein.

2.1. Theorem. The queerifications q(A) of the simple associative algebras

A described in this section are obtained by formulas (3). Passing to the sub-

quotients we get simple Lie superalgebras.

Proof. Directly follows from Theorem 1.1.2. □

2.2. Recapitulation: a notion needed in Subsection 2.3. Smash
product of algebras ([CM])

Recall that if A is an algebra over a field K and H is a bialgebra with co-
multiplication denoted ∆(h) =

∑

(h) h(1) ⊗ h(2) and counit ε : H → K, then
A is called an H-module algebra if there exists a map m : A⊗H → A such
that

A is an H-module under m,
m(ab⊗ h) =

∑

(h)m(a⊗ h(1))m(b⊗ h(2)) for any a, b ∈ A, h ∈ H,

m(1⊗ h) = 1Aε(h) for any h ∈ H.

The smash product A#H of a bialgebra H by an H-module algebra A is the
space A⊗H whose elements a⊗ h are expressed as a#h with multiplication
given by the next formula in which µ is the multiplication in H and · or
juxtaposition denote the multiplication in A:

(a#g)(b#h) :=
∑

(g)

a ·
(

m(g(1) ⊗ b)#µ(g(2) ⊗ h)
)

for any a, b ∈ A, g, h ∈ H.
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2.3. Symplectic reflection algebras ([EG, KT1]) and algebras of
observables in the rational Calogero model

([KV3, KS, KT3]) a.k.a. higher-spin algebras ([Va, KV2])

Let Γ ⊂ Sp(V ) be a finite group of automorphisms of a vector space V
equipped with a symplectic form. Recall that an element γ ∈ Γ is said to be
a symplectic reflection if rk(γ − id) = 2.

Let Hκ be a multi-parameter deformation of the smash product
S
.
(V )#C[Γ] of the group algebra of Γ by the polynomial algebra on V . The

parameter κ runs over points of CPr, where r is the number of conjugacy
classes of symplectic reflections in Γ. The algebra Hκ is called a symplectic

reflection algebra.
If Γ is the Weyl group of a root system in a vector space h and V =

h⊕ h∗, then the algebras Hκ are certain “rational” degenerations of the
double affine Hecke algebra introduced by Cherednik, see [Ch], and hence
are sometimes called rational Cherednik algebras.

A simplest example ofHκ is the algebraH1,c with c = ν a.k.a. the algebra
of observables in the N -particle rational Calogero model with Hamiltonian

HCal := −
1

2

∑

1≤i≤N





∂2

∂2
xi

− x2i + ν
∑

j ̸=i

2

xi − xj

∂

∂xi



 ,

which can be expressed in terms of the Dunkl operators Di as the anticom-
mutator of creation/annihilation operators:

(6)

HCal := −
1
2

∑

1≤i≤N [a0i , a
1
i ]+, where

aαi := 1√
2
(xi + (−1)αDi), where α ∈ {0, 1},

Di :=
∂
∂xi

+ ν
∑

j ̸=i
2

xi−xj
(1−Kij),

and where the Kij are the operators that permute indices:

Kijxi = xjKij , Kijxk = xkKij for k ̸= i, k ̸= j.

The algebra of observables is the associative algebra of polynomials in
the aαi and Kij .

Theorem 2.3.1 describes simple associative algebras Hκ in an interesting
particular case; for the general case, see Theorem 2.3.2.
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2.3.1. Theorem. ([Lo, Th.5.8.1, part 1)]) Let Γ = Sn. The algebra H1,c is

central simple if and only if c ̸= q
m
, where

(7) q and m are relatively prime integers and 1 < m ≤ n.

2.3.2. Theorem. ([Lo, Th.4.2.1]) Let Γ ⊂ Sp(V ) be any finite group. Let

Q designate the field of algebraic numbers, let r be the number of conjugacy

classes of symplectic reflections in Γ. There is a finitely generated subgroup

Λ ⊂ Q
r
such that the algebra H1,c, where c ∈ Q

r
, is central simple whenever

∑r
i=1 λici ̸∈ Z for all (λi)

r
i=1 ∈ Λ \ {0}.

2.3.3. Open questions. 1) From the point of view of this paper, in or-
der to get new simple Lie superalgebras, it is interesting to investigate the
exceptions in the above Losev’s theorems: the cases where the algebras H1,c

have ideals. It is unclear if the quotient modulo such an ideal is simple, are
the ideals nested, etc., cf. [KT1, KT2, KT3]: in other words, what, if any
exist, are the other central simple algebras obtained as quotients of H1,c or
as its ideals?

2) Is there a version of Calogero model with odd versions of
Dunkl operators? Let P−(x) be the polynomial algebra with generators xi
for i = 1, . . . , n satisfying xixj + xjxi = 0 for i ̸= j. This algebra is needed to
construct (for a long time elusive) odd versions of Dunkl operators, see [Ra].
The center of P−(x) is generated by the x2i for i = 1, . . . , n, and hence Mont-
gomery’s condition (1) is violated.

I was unable to describe subquotients A of P−(x) such that q(A) is
a simple Lie superalgebra, except for the known example: setting x2i = a ∈
K× we pass from P−(x) to its quotient, a Clifford algebra Cliff(n), which
satisfies condition (1) and is “naturally” Z/2-graded by setting pnat(xi) = 1̄
for any i. The Herstein-Montgomery construction turns Cliff(n) into the sim-
ple Lie superalgebra psq(n), while the queerification of Cliff(n) considered
as a superalgebra yields psq(2n) after the passage to a subquotient.

2.4. The Lie algebra of “complex size” matrices gl(λ) and its
generalizations

Let g be any simple finite-dimensional Lie algebra over C, let ρ be the half-
sum of positive roots of g, let µ be the highest weight of an irreducible
g-module with highest weight vector vµ, let the Ci be the Casimirs, i.e., the
generators of the center of U(g). Set

(8) Uc := U(g)/(Ci − ci)
rkg
i=1, where ci = Ci|vµ+ρ ∈ C.
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For almost all values of c = (c1, . . . , crkg), the algebra Uc is central simple,
cf. the example below.

In the particular case of g = sl(2) and c1 = λ2 − 1, where λ = µ+ 1 ∈ C

for the highest weight µ of an irreducible sl(2)-module, the algebra Uλ :=
U(g)/(C1 − c1) has an ideal

Iλ =

{

0 if λ ̸∈ Z \ {0},

of finite codimension otherwise.

If λ = n ∈ Z \ {0}, then Un has an ideal In of finite codimension and Un/In ≃
Mat(|n|), hence the name of gl(λ) for any λ ∈ C, see [Fei]. If λ ̸∈ Z \ {0},
then Uλ and its limit as λ→∞ ∈ CP1, see [GL], are central simple as well
as Un/In.

The Lie algebras (Uc)
L are “quantized” versions of the algebras of

functions on the orbits of the co-adjoint representation of simple finite-
dimensional Lie algebras over C, see [Kon], considered with the Poisson
bracket.

Observe that, having defined the parity of a root as the parity of the
corresponding root vector, and ρ as a half sum of positive even roots minus
a half sum of positive odd roots, it is possible to apply definition (8) to Lie
superalgebras g = osp(1|2n), and get central simple superalgebras fit to be
queerified. (Recall that one can queerify not only associative algebras, but
associative superalgebras as well.)

For any other finite-dimensional Lie superalgebra g(A) with indecompos-
able Cartan matrix A or the simple subquotient of g(A), the definition (8),
where i runs 1 through rk g, is inapplicable because the center of U(g(A))
is finitely generated only for g(A) = osp(1|2n). But this does not prevent us
from considering the infinite set of generators Ci of the center of U(g) and
use generalized formula (7) in which ci = Ci|vµ+ρ for all i.

Observe that there are simple finite-dimensional Lie superalgebra g,
without Cartan matrix, but still with sufficiently big center of U(g), e.g.,
the quotient of the first derived of the Poisson superalgebra po(0|2n) mod-
ulo center, see [LS].

Observe that for simple finite-dimensional Lie superalgebras, the alge-
bra of rational functions in Casimirs is finitely generated by the first rk g

Casimirs (as was first observed in some cases by Berezin; for a complete de-
scription in the case where g, or its double extension like gl(n|n), see [BLS],
has a Cartan matrix, see [Sg]).

In the cases where the center of U(g) is trivial, i.e., consists only of con-
stants (e.g., if g = spe(n), the supertraceless subalgebra of the periplectic Lie
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superalgebra pe(n) which preserves a non-degenerate odd anti-symmetric bi-
linear form, i.e., pe(n) is the linear part of the antibracket superalgebra), one
can apply Serganova’s construction from [Ser], i.e., replace the algebra U(g)
with U(g) := U(g)/r(U(g)) whose center is sufficiently big, where r(A) is the
radical of the algebra A. Serganova’s idea is applicable to other simple Lie
superalgebras g with the trivial center of U(g) (and with non-trivial centers
as well). Conjecturally, one can then replace in eq. (8) the algebra U(g) with
U(g) thus enlarging the set of examples of superalgebras of “complex size
matrices”.

For various applications of (super)algebras of “complex size matrices”,
see [LS1, Sg1, Sg2], [GL1] and references therein.

2.5. Simple reduced C∗-algebras of groups

Certain huge central simple algebras A are needed to produce C∗-simple
groups important in operator theory. I’ll quote from a very lucid review
MR2303514 (2008a:22004) by Bachir Bekka:

“Important examples of C∗-algebras arise from unitary representations
of locally compact groups. If G is such a group and (π,H) a unitary rep-
resentation of G, then π “extends” to a representation of the convolution
algebra L1(G) and the closure in the operator norm of π(L1(G)) in B(H)
[the latter being the collection of bounded linear operators on H] is a C∗-
algebra. Applied to the regular representation, which is defined on L2(G)
through the action of G by left translations, this construction yields the so-
called reduced C∗-algebra of G, denoted by C∗

r (G). The group G is said to
be C∗-simple if C∗

r (G) has no nontrivial closed two-sided ideals. The paper
[Ha] is a comprehensive and lively exposition on the question: Which groups
are C∗-simple?”

In [Ha], de la Harpe gave a rather long list of such groups, hence of
central simple algebras C∗

r (G) pertaining to our study in this paper as as-
sociative algebras that can be queerified into a simple Lie superalgebra. For
a description of centers in several such associative algebras, see [Los].

I am not sure if the really huge Lie superalgebras q(A) thus obtained
are of interest. However, encouraging are examples of certain Z-graded Lie
(super)algebras of exponential growth that were ignored until recently as
too huge to be of use but lately found various applications (by Borcherds,
Gritsenko and Nikulin).
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3. Dynamics with 1|1-dimensional time. How to queerify

Hamiltonians?

The rectifiability of the vector fields on supermanifolds with local coordi-
nates u1, . . . , um (even) and ξ1, . . . , ξn (odd) states that the non-vanishing
at some point vector field D can be reduced in a vicinity of this point to the
shape ∂u1

if the field is even or ∂ξ1 + ξ1∂u1
if D is odd and D2 ̸= 0, see [Sh].

(If D2 = 0 for an odd non-vanishing at some point vector field D, then lo-
cally D can be reduced to the shape ∂ξ1 , which yields “not interesting” Time
and dynamics.) Let {−,−} be either the Poisson bracket or the anti-bracket.
Then, the most natural from super point of view mechanics should be given
by the equation with 1|1-dimensional time with coordinates t (even) and τ
(odd):

(9) Dτ (f) = {f,H}, where Dτ := ∂τ + τ∂t and p({−,−}) + p(H) = 1.

Since D2
τ = ∂t, the equation (9) should describe more fine structure of the

dynamics than the conventional equation

(10) ḟ = {f,H},

used, e.g., in the classical description of the spinning top in [BM]. (Clearly,
H := 1

2{H,H}.) To find out what extra phenomena are described by eq. (9)
as compared with eq. (10) is an open problem. Both these equations de-
scribe dynamics of the same supermanifold. (M. Vasiliev observed that the
systems (9) and (10) are the simplest examples of “unfolded systems”, see
[MV].)

Introducing analogs of Faddeev–Popov ghosts (elements of Π(A)) we
“double” the supermanifold whose algebra of functions is A.Conjecturally,
to get the dynamics corresponding to the queerified algebra of observables
of the rational Calogero model we should “queerify” its Hamiltonian by
introducing ghosts, and, moreover, consider the 1|1-dimensional time.

4. On great expectations

4.1. On Differential Geometry with metabelean algebra of
functions and Volichenko algebras replacing Lie

superalgebras

Recall that a Volichenko algebra is any inhomogeneous (with respect to
parity) subalgebra of a Lie superalgebra. In [LSe1, LSe2], the first and very
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interesting examples of simple Volichenko algebras (defined as those with-
out two-sided proper ideals) were first given, and the idea to consider the
metabelean algebras (satisfying the identity [a, [b, c]] = 0 for any three of its
elements, where [a, b] := ab− ba) as algebras of functions was elaborated.
Since any metabelean algebra can be realized as a subalgebra, perhaps inho-
mogeneous, i.e., not a subsuperalgebra, of an enveloping supercommutative
superalgebra, see [KR], there are two natural categories of supermanifolds:

(A) In this category, currently considered by all researchers, only parity-
preserving automorphisms of superalgebras are allowed under the universal
belief that “only them are physically meaningful”; this belief is tacitly or
explicitly assumed starting with [BeL]. (I think this belief will not last and
will disperse, like certain “no-go” theorems and general myths of the “pre-
super” time, i.e., before [WZ], that “it is impossible to mix bosons with
fermions”.)

(B) In the other category, any automorphisms of superalgebras are al-
lowed as was initially suggested in [L0], see also [Dj, Ba]. (Observe that there
are not that many “additional” automorphisms, e.g., for the Grassmann al-
gebra G(n), the parity-preserving automorphisms depend on n functional
parameters, whereas any, not necessarily parity-preserving, automorphism
depends on n+ 1 functional parameters.)

In the category (B), the spaces are not Z/2-graded, but filtered: each
space V contains a subspace V0̄ called even, the odd part of V is not neces-
sarily a direct summand, but the quotient modulo V0̄. For every Volichenko
algebra V , its even part V0̄ is a Lie algebra.

Iyer proved that Volichenko algebras can serve as algebras of derivations
of metabelean algebras, playing for them the role of Lie (super)algebras of
derivations of (super)commutative algebras of functions, see [Iy].

The idea to consider elements of metabelean algebras as functions,
and Iyer’s result, widened supersymmetry in a natural way and not far:
metabelean algebras (of functions) live inside supercommutative superalge-
bras while their algebras of derivations (analogs of Lie algebras) live inside
Lie superalgebras. Interestingly, the changes of coordinates not preserving
parity do allow integration on any supermanifold with any even number of
odd coordinates, see [Lcr].

Strangely, this — natural — generalization of supersymmetry did not yet
draw any interest of physicists and the fruits of this generalization are un-
known so far. Interestingly, whereas the even wave functions corresponding
to bosons are invariant under arbitrary automorphisms of algebras consid-
ered in the category (B), the notion of “odd” function is not invariant, so
the answer to the question “does a given function correspond to a fermion
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or not?” depends on our choice of “coordinates” (parity) defined modulo the
even subspace.

4.2. Dreams of graded-commutative differential geometry

In [L0], I introduced the “something” (superscheme) on which the elements
of the Grassmann algebra play the role of functions, thus proving Berezin’s
conjecture “There exists an analog of Calculus in which the elements of
the Grassmann algebra play the role of functions” in the algebraic setting.
The paper [BeL] gave an equivalent (for proof, see [Mo, Section 4.8]) con-
struction (though in the language of charts and atlases) in the smooth case
(supermanifolds).

A local question “Is there an analog of formula (6) with odd Dunkl opera-
tors?” leads to a most tempting global conjecture generalizing Berezin’s con-
jecture by replacing the Grassmann algebra with P−(x), see Section 2.3.3.
The algebra P−(x) appeared in [Schw] as a conjectural quantum analog of
the algebra of functions. However, until now nobody was able to construct
an analog of Calculus or Differential Geometry where elements of P−(x)
play the role of functions, unless one imposes conditions x2i = 0 for all i and
gets the well-known now “super Geometry”, see [Del, Ch. 1], [Lsos]. In [BM],
Berezin and Marinov observed that Schwinger did not explicitly state what
the x2i are equal to, evading this question.

Conjecture. In a reasonably rich generalization of Geometry (with integra-
tion and differential equations), only certainG-graded-commutative algebras
can play the role of algebras of “functions”.

For example, after Morier-Genoud and Ovsienko understood how to
endow the Clifford algebra with a grading which turns it into a graded-
commutative algebra, see [MGO], they were able to construct a determi-
nant of the n× n matrices with values in the Clifford algebra, although
— mysteriously — not all dimensions n of the “space” permit to define
this determinant, see [COP]. Is it possible to endow the Weyl algebra, and
the tensor product of Weyl and Clifford algebras, with a G-grading turning
them into G-graded-commutative algebras or the role of functions in this
future geometry can be played only by the usual functions with values in
the Clifford algebra?

Observe, for the sake of completeness, that earlier than Scheunert, in
an unpublished manuscript, Nekludova proved an analog of Scheunert’s
theorem for G-graded-commutative algebras (“under a natural equivalence
there are either commutative algebras or supercommutative superalgebras”);
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Molotkov sharpened both Scheunert’s and Nekludova’s results from G finite
(in the original Nekludova’s claim) to any finitely generated commutative
group G (as is tacitly assumed in [Sch], although just “any” is written), see
[Lsos, Ch.8].
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