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Local operators of 4d N = 2 gauge

theories from the affine Grassmannian
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We give a new, fully mathematical, construction of the space of
local operators in the holomorphic-topological twist of 4d N = 2
gauge theories. It is based on computations of morphism spaces in
the DG category of line operators, which (by work of Kapustin-
Saulina and Cautis-Williams) may be represented as ind-coherent
sheaves on the affine Grassmannian and, more generally, on the
RG,V spaces of Braverman-Finkelberg-Nakajima. We prove that
characters of our morphisms spaces reproduce the Schur indices of
4d N = 2 theories, and that the spaces themselves agree with the
4dN = 2 vertex algebras of Beem-Lemos-Liendo-Peelaers-Rastelli-
Van Rees, Oh-Yagi, Butson and Jeong. We also generalize our con-
struction to local operators at junctions of Wilson-’t Hooft lines,
and compare the Euler character of the morphism spaces to the
Schur indices in the work of Cordova-Gaiotto-Shao.
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1. Background

Given a reductive Lie group G and a representation V , one can define a 4d
N = 2 supersymmetric gauge theory TG,V . Physically, it has gauge group Gc
(the compact real form) and hypermultiplet matter in representation V ⊕
V ∗. Such a theory admits a variety of twists, labelled by nilpotent elements
in the supersymmetry algebra, which are amenable to mathematical study.
The prototypical example is Witten’s fully topological twist [29], used in the
case G = SL(2), V = 0 to reproduce Donaldson invariants of 4-manifolds.
More generally, Kapustin [18] introduced a holomorphic-topological (HT)
twist, which requires spacetime to locally take the form R2 × C, and depends
topologically on R2 and holomorphically on C. Our goal in this paper is to
give a new, fully mathematical definition of the space of local operators in
the HT twist of 4d N = 2 gauge theories, based on a careful computation
in the category of line operators.

Let OpsG,V denote the space of local operators in the HT twist of TG,V .
It is physically defined as the cohomology of the HT supercharge acting
on the full space of local operators in the untwisted theory. It has a Z-
valued cohomological grading ‘F ’, and an additional non-cohomological 1

2Z-
valued grading ‘J ’, corresponding to spin in the holomorphic plane (mixed
with an SU(2) R-symmetry). This space has been well studied from other
perspectives. In particular:

• Its graded Euler character is the “Schur index” of TG,V ,

(1.1) χq OpsG,V := TrOpsG,V
(−1)F qJ = ISchur[TG,V ] .

The Schur index, introduced in [10, 11], is a particular specialization
of the 4d N = 2 superconformal index [20, 28]; though it makes sense
even when a 4d N = 2 theory is not conformal. In this paper, we
will always use q as a formal variable counting the weight of the loop
rotation.

• The space OpsG,V itself is the vacuum module of a Poisson vertex alge-
bra VG,V . This Poisson vertex algebra was constructed for general 4d
N = 2 theories from a more physical perspective by Oh and Yagi [26],
and from a mathematical perspective by Dylan Butson [5], as a BRST
reduction of classical beta-gamma algebras valued in T ∗V . When TG,V
is superconformal — meaning quadratic indices satisfy C2(N) = C2(g)
— the vertex algebra can be further quantized by introducing an
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Omega background, yielding a VOA Vℏ

G,V . These VOA’s were first in-
troduced in superconformal theories by Beem-Lemos-Liendo-Peelaers-
Rastelli-Rees [2]. However, the work of [2] did not define this vertex
algebra from the point of view of local operators in TG,V . The fact that
the two pictures coincide is a nontrivial result, and can be explained
using a ”cigar-like” reduction. This is explained in [25] and [17] from
a physical perspective and [5] from a mathematical perspective. This
deformation is flat and does not alter the underlying vector space of
the vacuum module, so

(1.2) OpsG,V ≃ VG,V ≃ Vℏ

G,V at arbitrary ℏ ∈ C .

The perspective we will take, similar to [5], uses the category of line
operators in the HT twist of a 4dN = 2 theory. Physically, the objects of this
category are line operators supported on a line in the topological R2 plane
and the origin of the holomorphic C plane. The category contains half-BPS
Wilson-’t Hooft lines, as well as more general quarter-BPS line operators.
The category was given a geometric description by Cautis and Williams,
in [6] for pure gauge theory (V = 0) and [7] for general V , following the
physical predictions of [18, 19]. This category is described as the category of
equivariant coherent sheaves on the Braverman-Finkelberg-Nakajima (BFN)
space. Let us recall the construction here.

Let O be the ring of formal power series C[[z]] and K the field of formal
Laurent series C((z)). Denote by D = Spec(O) the formal disk and D∗ =
Spec(K) the formal punctured disk. Given a Lie group G and representation
V of G, the BFN space is defined by the following base-change diagram:

(1.3)

RG,V V (O)

G(K)×G(O) V (O) V (K)

This space can be alternatively described as the moduli space of triples
(P, φ, s) where P is a principal G torsor over D, φ is a trivialization of
P over D∗, and s is a section of the associated V bundle over D that is
sent, under φ, to a regular section of the trivial V bundle. This remarkable
object was first studied in [3, 24], where the authors used its Borel-Moore
homology to construct Coulumb branches of 3d N = 4 gauge theories. The
K-theoretic version is studied in [], [6] as well as [9]. There is an action of
G̃O on the left on RG,V , where C

∗ is some cover group of loop rotation. The
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category of line operators in the HT twist is expected to be the category of
equivariant coherent sheaves on RG,V as a monoidal category. This category
is denoted by Coh(G̃O \ RG,V ), whose monoidal structure is defined carefully
in [7]. Under this expectation, the trivial line is the tensor identity ✶ of the
category and the space of local operators is the endomorphism algebra

(1.4) OpsG,V ≃ EndCoh(G̃O\RG,V )(✶) .

This expectation is in fact not easy to work with. Over the last decade,
much effort has been made towards using the techniques of derived algebraic
geometry to rigorously define aspects of the physical quantum field theories,
and this is one example of this. Indeed, when considering sheaves on this
space, several issues appear: first, thatRG,V is a non-Noetherian ind-scheme,
and so some care needs to be taken when considering coherent sheaves;
second, equation (1.3) is a base-change diagram, and one should consider
this as a diagram of DG ind-schemes; third, that RG,V is not reduced. If one
considers Borel-Moore homology, as in [3, 24], or K theory, as in [4, 6, 9],
then one can consider the reduced-classical scheme, but this is not enough
to properly produce the space of local operators.

This paper is devoted to such an endeavor, with the help of techniques
of derived algebraic geometry. The structure of a DG indscheme and its
category of sheaves are studied in [13–15] for locally almost finite type,
and [27] in general. We will use the machinery of [13–15, 27] to define the
category of ind-coherent sheaves, and compute carefully and explicitly the
endomorphism algebra of the identity line up to quasi-isomorphism. We will
show (Theorem 4.13 and Theorem 4.14) that after certain shift of gradings,
it coincides with the vacuum module of the Poisson vertex algebra in [26]
and [5]. We will also consider the insertion of other (half-BPS) Wilson-’t
Hooft line operators and the space of local operators at their junctions,
which will give rise to modules of the algebra VG,V . We will compare the
Euler characters of these modules with the index formulae in [8]. In the
category of line operators Coh(G̃O \ RG,V ), these Wilson-’t Hooft operators
are equivariant vector bundles on various G̃O orbits inside RG,V .

In the work of [5], the author showed that the category of line opera-
tors in HT twist has the structure of a factorization E1-category ([5, Section
5.11]). This structure should give rise to the structure of a E2 factorization
algebra to OpsG,V , which is the aforementioned Poisson vertex algebra struc-
ture. We hope that this work with the procedure outlined in [5] can help
rigorously produce factorization algebras from the category of line operators.
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The paper is structured in the following way. In Section 2, we give an
introduction to the geometry of the BFN spaces. In Section 3, we introduce
the Poisson vertex algebra VG,V . In Section 4, we introduce the category of
ind-coherent sheaves on the BFN spaces; we compute the space of endomor-
phisms of the identity line for pure gauge theory (Theorem 4.13) and for
gauge theory with matter (Theorem 4.14); in both cases the result coincides
with the vacuum module of the Poisson vertex algebra VG,V . In Section 5,
Theorem 5.1, we compute the space of local operators at the junction of fun-
damental t’Hooft lines and dyonic Wilson-’t Hooft lines, in pure PSL(2) the-
ory, and compare the results with the formulae of Cordova-Gaiotto-Shao [8].
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ance throughout this research project. I would like to thank Kevin Costello
for motivating some of the constructions in this paper (in particular ideas
contained in section 4.4), and Justin Hilburn for teaching me about Witt
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braic geometry. I would like to thank Dylan Butson for sharing his insights
into factorization categories and sharing with me his thesis. I would like to
thank Nick Rozenblyum for teaching me about Corollary 4.11. I would also
like to thank Niklas Garner and Philsang Yoo for many helpful discussions.
I would like to thank my friend Don Manuel for many encouragements.

2. The affine Grassmannian and the BFN space

2.1. The geometry of the affine Grassmannian

We will work with the ground field C. Let G be a reductive Lie group. The
affine Grassmannian of G is the quotient:

(2.1) GrG := RG,0 = G(K)/G(O).

It turns out that GrG is a classical ind-scheme; its geometry is well studied in
the literature. We will in this section recall some basic facts about this space.
For details, see [30]. In particular, we note that the study of the geometry of
this space has two complications, one is that it is an ind-scheme; the other
is that it is not always reduced.

2.1.1. The affine Grassmannian of GLn. In the case of GLn, the affine
Grassmannian GrGLn

can be defined alternatively as the moduli space of
lattices in Kn. More precisely, if R is an algebra over C, then an R family of
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lattices in Kn is a finitely-generated projective R[[z]]-submodule Λ of R((z))n

such that Λ⊗R[[z]] R((z)) = R((z))n. The affine Grassmannian GrGLn
can be

defined as the presheaf assigning to R the set of R families of lattices in Kn.
We have:

Proposition 2.1. GrGLn
is represented by a classical ind-projective ind-

scheme. Namely, it can be written as a colimit of classical projective schemes
under closed embeddings.

Moreover, GrGLn
is formally smooth in the following sense:

Definition 2.2. An ind-scheme X = lim
−−−→

Xn is formally smooth if for any
algebra R and nilpotent ideal I ⊆ R, the map X(R) → X(R/I) is surjective.

2.1.2. The affine Grassmannian of general G. Given a reductive Lie
group G, choosing a faithful representation G→ GLn one obtains a closed
embedding GrG →֒ GrGLn

, and from Proposition 2.1 one concludes that GrG
is an ind-projective ind-scheme. There is a canonical isomorphism π0(GrG) ∼=
π1(G), and the connected components of GrG are labeled by the fundamental
group of G, which is also the quotient of the co-weight lattice of G by its co-
root lattice. All connected components are isomorphic to each other, with an
isomorphism given by left multiplication. It turns out, however, this space
is not always reduced, as can be seen from the following example:

Example. Consider T = C∗. Then GrT = K∗/O∗. The C points of this space
is a disjoint union of infinitely many copies of Spec(C). They can be repre-
sented by {zn|n ∈ Z}, since any nonzero element in K is of the form zng[z]
for some g[z] ∈ O∗. However, if we evaluate GrG on the algebra C[ϵ] with
ϵ2 = 0, then an element in C[ϵ]⊗K is invertible iff its image under the map
C[ϵ]⊗K → K setting ϵ 7→ 0 is invertible. This means that the set of invert-
ible elements in C[ϵ]⊗K is K∗ ⊕ ϵK, while the set of invertible elements
in O is O∗ ⊕ ϵO. The quotient is not a discrete set anymore, but rather an
infinite-dimensional vector bundle over GrT (C). The fibre of this bundle at a
point zn is K/znO, and should be interpreted as the tangent space of GrT at
zn. This presents difficulty in considering the category of coherent sheaves,
as in this case, the category of sheaves on GrT is different from the category
of sheaves on its C points, even though the K0 groups of the two categories
are isomorphic.

In the case when G is semi-simple, GrG is in fact reduced. In general,
we denote by GrG,red the reduced ind-scheme of GrG. In the following, we
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will present a different stratification of GrG from the one obtained through
an embedding GrG →֒ GrGLn

.

2.1.3. A stratification for GrG,red. Let T be a maximal torus of G
and B a Borel subgroup of G containing T . Denote the associated weight
lattice by X∗(T ) and coweight lattice by X∗(T ). The choice of a Borel sub-
group determines a set of dominant weightsX∗(T )+ and dominant coweights
X∗(T )+. Each λ

∨ ∈ X∗(T ) determines an element in T (K) given by tλ
∨

. The
assignment λ∨ → G(O)tλ

∨

is a bijection between X∗(T )+ and G(O) orbits
of G(K)/G(O). Denoting by Grλ∨ the associated orbit, then it is a smooth
quasi-projective variety since it is the quotient of an affine algebraic group
by an algebraic subgroup. The reduced locus GrG,red has a stratification:

(2.2) GrG,red =
⋃

λ∨∈X∗(T )+

Grλ∨

Let Grλ∨ be the Zariski closure of Grλ∨ . Then for λ∨ ≤ µ∨ in X∗(T )+, Grλ∨

is a closed subscheme of Grµ∨ . This gives GrG,red an ind-scheme structure:

(2.3) GrG,red = lim
−−−→

λ∨∈X∗(T )+

Grλ∨ .

Each Grλ∨ is a projective variety, though usually it’s very singular. In gen-
eral, Grλ∨ is a normal projective variety, and it is smooth if and only if λ∨

is miniscule, in which case Grλ∨ = Grλ∨ . These are called miniscule orbits,
and are in one-to-one correspondence with the fundamental group of G, as
well as with the number of connected components of GrG. Note that when
G is semi-simple, GrG = GrG,red. Thus in this case, equation (2.3) gives an
explicit stratification of GrG.

2.2. The BFN space RG,V

Now fix a finite dimensional representation V of G. The Cartesian diagram
in equation (1.3) defines RG,V as a derived stack. In contrast to the affine
Grassmannian, RG,V is not a classical ind-scheme, but a DG-indscheme.
This means that it is not determined solely by its value on classical rings.
Now fix an ind-scheme structure of GrG, say GrG = lim

−−−→
GrG,n such that

each GrG,n is a projective scheme closed under the action of G̃O. Let G(K)n
be the pre-image of GrG,n under the projection G(K) → GrG. For each n,
choose N (that depends on n) large enough so that the action of G(K)n
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maps V (O) to z−NV (O). We have the following base-change diagram:

(2.4)

RG,V,n V (O)

G(K)n ×G(O) V (O) z−NV (O)

Since the bottom line of the Cartesian square in equation (1.3) is an induc-
tive limit of the bottom line from equation (2.4), RG,V has the following
presentation as an ind-scheme:

(2.5) RG,V = lim
−−−→

RG,V,n.

Each RG,V,n is a coconnective DG scheme, as V (O) is a finite codimensional
vector subspace in z−NV (O), and for n ≤ m, the map RG,V,n → RG,V,m is
a closed embedding.

We will also need a local description of RG,V . Let L
−G be the group

ind-scheme associating to an algebra R the set L−G(R) = G(R[z−1]), and
let L<0G be the kernel of L−G→ G sending z−1 7→ 0. Then according to
[1, 30], the map:

(2.6) L<0G×G(O) → G(K)

is an open embedding. Thus L<0G is an open neighborhood of identity
coset in GrG. Over L<0G, the vector bundle G(K)×G(O) V (O) trivializes to
L<0G× V (O), and so over this local chart, RG,V can be represented by a
pro-DG-algebra whose underlying pro-algebra is the pro-algebra of functions
on the following ind-scheme:

(2.7) L<0G× V (O)× V (K)/V (O)[−1],

and whose differential D is induced from the action map:

(2.8) L<0G× V (O) → V (K) → V (K)/V (O).

3. The Poisson algebra VG,V

As explained in [26] and [5], the algebra of local operators of the HT twist
of a 4d N = 2 gauge theory has the structure of a Poisson vertex algebra,
which we denote by VG,V . Here we will recall their construction. Consider
the commutative Poisson vertex algebra Vβγ−bc generated by bosonic fields
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(β, γ) with conformal weight 1
2 and cohomological degree 0, valued in the

representations V and V ∗, as well as fermionic fields (b, c) with conformal
weight (1, 0) and cohomological degree (−1, 1), valued in the Lie algebra g

of G. The nontrivial Poisson brackets are given by:

(3.1) {β, γ} ∝ idV , {b, c} ∝ C2(g).

There is a BRST operator Q defined by the current:

(3.2) JBRST = Tr(bcc)− βcγ.

The action of Q is given by Q = {JBRST ,−} and satisfies Q2 = 0. The Pois-
son algebra VG,V is defined as the Q-cohomology of Vβγ−bc.

Let us now describe the vacuum module of the vertex algebra VG,V in
more detail. In fact, we will describe the vacuum module of the DG Poisson
vertex algebra (Vβγ−bc, Q). The vacuum module of (Vβγ−bc, Q) is generated
by a vacuum vector |0⟩ such that the positive modes acts trivially, and non-
positive modes act freely. This means that, as a vector space, Vβγ−bc is given
by:

(3.3) Vβγ−bc = C[βk−1/2, γk−1/2, bk−1, ck]k≤0|0⟩,

with the differential Q given as above. If we shift the loop weight of V (O)
by q1/2, then the above can be identified as the following vector space:

(3.4) C[V (O)]⊗ C[V ∗(O)]⊗
∧

∗g(K)/g(O)⊗
∧

∗g(K)/zg(O).

To understand the differential, we identify the Lie algebra of g with its
dual using a killing form, and view c as valued in g(K)∗; then we have the
following vector space:

(3.5) C[V (O)]⊗ C[V ∗(O)]⊗
∧

∗g(K)/g(O)⊗
∧

∗ (g(O))∗ ,

such that the βcγ part of the differential is induced by the moment map,
and Tr(bcc) part of the differential is identified with the Chevalley-Eilenberg
differential. The vacuum module VG,V as a DG algebra is then identified
with equation (3.5) together with a differential coming from a combina-
tion of derived symplectic reduction and Chevalley-Eilenberg differential.
Here

∧
∗ (g(O))∗ should be understood as the direct limit of the Chevalley-

Eilenberg complex of g(O)/zmg(O).
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If we consider pure gauge theory, then the only differential is the
Chevalley-Eilenberg differential, and we obtain the vector space:

(3.6)
∧

∗g(K)/g(O)⊗
∧

∗ (g(O))∗

with the CE differential.
Physically, the space of local operators is not simply the cohomology of

(Vβγ−bc, Q). This is due to the fact that when computing correlation func-
tions, the ghosts should not appear as initial or final states. Mathematically,
this amounts to, after taking cohomology, projecting to c0-ghost-number
zero. This is the same as taking invariants with respect to the Lie group G
(the constant gauge transformations) by hand, instead of derived invariants
of its Lie algebra. We denote the resulting space by π0VG,V . From the above
discussions, we have a quasi-isomorphism:

(3.7) π0VG,V ∼=
[
C[V (O)]⊗ C[V ∗(O)]⊗

∧
∗g(K)/g(O)⊗

∧
∗(zg(O))∗

]G
.

Note that g(K)/g(O) and (zg(O))∗ contribute the same factor to the Euler
character. However, their roles are not symmetric, since one of them is used
for symplectic reduction and the other is for derived group invariants. This
difference will show up in the geometric computation as well.

Remark. The Poisson vertex algebra VG,V exists for any gauge theory.
However, when the gauge theory is super-conformal, which happens when
C2(V ) = C2(G), this algebra has a deformation through the work of [25] and
[5], and the deformed algebra is identified with the conformal vertex algebra
(VOA) first studied in [2]. Their construction is as follows: the algebra Vβγ−bc
has a deformation quantization into the VOA V ℏ

βγ−bc generated by bosonic
fields β, γ and fermionic fields b, c with OPE:

(3.8) γ(z)β(w) ∼
ℏidV
z − w

, b(z)c(w) ∼
ℏC2(G)

z − w
.

The action of Q is promoted to the action of QBRST via:

(3.9) QBRSTO(z) =

∮

w
JBRST (z + w)O(z).

It squares to zero precisely when C2(V ) = C2(G), and the cohomology of
QBRST gives the deformation quantization of VG,V . In this case, it is ex-
pected that in the category of line operators, the Schur functor is trivial,
or in other words, the left dual of a line operator is isomorphic to its right
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dual. We will not prove this in our paper. This is one direct consequence of
superconformal symmetry in the category of line operators.

4. Geometric computations of the space of local operators

Let G be a reductive Lie group and V a finite-dimensional representation
of G. In this section, we will specify the category of line operators in TG,V
using ∞-category language, identify the identity line operator, and compute
its endomorphism algebra. This will be done in steps. In Section 4.1, we
will introduce the category of line operators using the machinery of [27]. In
Section 4.2 we will briefly introduce the Hom functor between two line op-
erators. In Section 4.3, we obtain the endomorphism algebra for pure gauge
theory(V = 0) in Theorem 4.13. In Section 4.4, as a simple yet nontrivial
example, we look at pure abelian gauge theory. In Section 4.5, we obtain the
endomorphism algebra for gauge theories with matter in Theorem 4.14. In
both cases, we find agreement with the Poisson vertex algebra π0VG,V intro-
duced in Section 3. We comment that in this section, we will write Sym•(V )
for the free graded-commutative algebra generated by a graded vector space
V . In particular, when V is in even degree, then it is a polynomial algebra;
when V is in odd degree, then it is an exterior algebra.

4.1. The category of equivariant coherent sheaves

A reasonable DG ind-scheme, as defined in [27, Definition 6.8.1], is a con-
vergent prestack X such that X = lim

−−−→
Xi where each Xi is quasi-compact,

quasi-separated and eventually coconnective, and that Xi → Xj is almost
finitely-presented closed embeddings. GrG and RG,V are examples of such
reasonable DG ind-schemes. Let H be a classical affine group scheme that
acts on X. Then the quotient stack X/H is called a weakly renormalizable
pre-stack following [27, Definition 6.28.1], and one can define the category
IndCoh∗(X/H) via a right Kan extension:

(4.1) IndCoh∗(X/H) := lim
f :S→X/H flat

IndCoh∗(S),

where the limit is taken over all reasonable DG ind-schemes flat over X/H,
using the functoriality of f∗,IndCoh. We have the following equivalence:

(4.2)
IndCoh∗(X/H) ∼= IndCoh∗(X)H,w,naive

:= HomH−modweak,naive
(Vect, IndCoh∗(X)),
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where the right hand side is the naive weakly equivariant category with
respect to the action of H as defined in [27] Section 5. This in particular,
may not be equivalent to the ind-completion of its compact object. This
category may seem abstract, but one can unpack it using flat descent. Recall
that given a flat cover T → S, one can consider the associated Cech nerve:

(4.3) T×∗+1

S .

Applying this to the flat cover X → X/H, the Cech nerve is:

(4.4) X×∗+1

X/H = X X ×H X ×H ×H · · ·

By [27, Theorem 6.25.1]:

(4.5) IndCoh∗(X/H) ∼= Totsemi(IndCoh(X
×∗+1

X/H )).

The right hand side is a semi-simplicial set of categories that only involve
categories of sheaves on ind-schemes. Suppose further that H acts on each
Xi such that X/H = lim

−−−→
Xi/H, we can write:

(4.6)
Totsemi(IndCoh(X

×∗+1

X/H ))

= Totsemi( lim
upper-!

IndCoh(Xi ×X/H X×∗+1

X/H )).

Commuting the limit on the right hand side using [27, Lemma 6.17.2], notic-

ing that Xi ×X/H X×∗+1

X/H ) is the Cech nerve of Xi → Xi/H, we get:

(4.7) Totsemi(IndCoh(X
×∗+1

X/H )) = lim
upper-!

IndCoh(Xi/H).

By [12, Lemma 1.3.3], we may change the limit over upper-! to the colimit
over lower-∗:

(4.8) IndCoh∗(X/H) ∼= lim
−−−→

lower-∗
IndCoh∗(Xi/H).

Now we specialize this story to the BFN space. Let C∗ act as the
two-fold cover of the loop rotation. Both GrG and RG,V have an action
of G(O)⋊C∗.1 We will denote this group by G̃O. From the above dis-
cussion, we can define categories IndCoh(G̃O \GrG) and more generally,

1We will use the two fold cover of the group of loop rotations here, since this will
allow us to shift gradings by q1/2, which is necessary for matching with the physical
Schur indices.
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IndCoh(G̃O \ RG,V ). Moreover, if we fix a stratification {RG,V,n} of RG,V

as in Section 2.2, then:

(4.9) IndCoh(G̃O \ RG,V ) ∼= lim
−−−→

IndCoh(G̃O \ RG,V,n).

For each n, the category of coherent sheaves Coh(G̃O \ RG,V,n) is the full
subcategory of IndCoh(G̃O \ RG,V,n) consisting of objects whose pull-back
to RG,V,n is coherent. The category of equivariant coherent sheaves on RG,V ,
Coh(G̃O \ RG,V ), is defined as the full subcategory of IndCoh(G̃O \ RG,V )
whose objects are the images of Coh(G̃O \ RG,V,n) under the above colimit.
This category Coh(G̃O \ RG,V ) is expected to be the category of line op-
erators for the theory TG,V , and the derived Hom between objects in this
category is expected to be the space of local operators at the junction of two
lines.

4.2. On Hom spaces

To obtain the space of local operators at the junction of two line operators,
we need to take the Hom space between two line operators as a DG vec-
tor space. Intuitively, this is the derived Hom spaces between two coherent
sheaves. In this section, we will briefly introduce the setting in which this
enriched Hom can be taken. Let C be a presentable monoidal DG category
and M be a presentable DG module category of C. For any pair of objects
(M1,M2) in M, the object

(4.10) HomC(M1,M2) ∈ C

is defined by the following adjunction property:

(4.11) HomM(−⊗M1,M2) = HomC(−,Hom
C(M1,M2)).

Let X be a reasonable DG indscheme acted on by a smooth affine group
scheme H. Then IndCoh(X/H) is a module category over the monoidal
category IndCoh(BH) ∼= QCoh(BH), where BH = pt/H is the classifying
stack of H. We thus obtain a Hom functor:

(4.12)
HomQCoh(BH)(−,−) : IndCoh(X/H)op × IndCoh(X/H)

→ QCoh(BH).
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We will abbreviate this by HomBH . Specify this to our setting, we have the
Hom functor:

(4.13)
HomBC

∗

: IndCoh∗(G̃O \ RG,V )
op × IndCoh∗(G̃O \ RG,V )

−→ QCoh(BC∗) ∼= IndCoh(BC∗).

This will be the main player of this section for many of the computations.
We will write EndBC

∗

if the two arguments of Hom are identical.

Remark. This definition of Hom spaces seem to be abstract, but in our
example it is a concrete one: first of all, it will be given by a colimit of Hom
spaces computed on each closed orbit of G(O); secondly, on each orbit, it is
the usual dg vector space of Hom, which can be computed by choosing an
injective resolution of the second argument.

4.3. Bulk local operators in pure gauge theory

In pure-gauge, the category of line operators is Coh(G̃O \GrG). This cate-
gory is a monoidal category, with monoidal unit given by O[e]/G̃O

, the struc-

ture sheaf of the identity coset [e] with the trivial G̃O equivariant structure.
Our goal is to compute the space:

(4.14) EndBC
∗

(O[e]/G̃O

)

as a C∗-DG vector space. The remainder of this section is devoted to the
computation of this space, up to quasi-isomorphism. The idea of the com-
putation is the following:

• First, prove that one can factor the computation into two steps: com-

puting EndBG̃O(O[e]/G̃O

); then taking the (derived-)invariant subspace

with respect to the G(O) action.

• Computing the derived G(O) invariants using the Chevalley-Eilenberg
cochain complex.

• Computing EndBG̃O(O[e]/G̃O

) using formal completion.

The result, stated in Theorem 4.13, coincides with π0VG,0 after some
appropriate degree shift.

4.3.1. Decomposing the Hom functor. Let H be a smooth affine
group scheme that can be written as:

(4.15) H = H0 ⋊ T
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for two smooth affine group schemesH0 and T . Assume also that T is of finite
type. Let Y = lim

−−−→
Yn be a reasonable H-indschemes such that Yn → Yn+1

are closed embeddings of H-schemes. Denote by Y = lim
−−−→

Yn/H. Let X be
one of the Yn and i : X → Y the closed embeddding. Denote by X = X/H.
Let (F ,G) be a pair of objects in Coh(X ). We would like to understand

(4.16) Hompt/T (i∗,IndCohF , i∗,IndCohG).

Denote by π the natural projection Y → pt/H = BH, the classifying stack
of H, and by π0 the natural map BH → BT . Since IndCoh(Y) is a module
category of IndCoh(BH), we have an object:

(4.17) HomBH(i∗,IndCohF , i∗,IndCohG) ∈ IndCoh(pt/H).

Now if we view IndCoh(BH) as a module category of IndCoh(BT ) via the
functor π∗0, we will have an object:

(4.18) HomBT
(
OBH ,Hom

BH(i∗,IndCohF , i∗,IndCohG)
)
.

Lemma 4.1. The following is a quasi-isomorphism of T modules:

(4.19)
HomBT (i∗,IndCohF , i∗,IndCohG)

∼= HomBT
(
OBH ,Hom

BH(i∗,IndCohF , i∗,IndCohG)
)
.

Proof. Let V be an object of IndCoh(BT ), then:

(4.20)

HomIndCoh(BT )

(
V,HomBT

(
OBH ,Hom

BH(i∗,IndCohF , i∗,IndCohG)
))

∼= HomIndCoh(BH)

(
π
∗
0V,Hom

BH(i∗,IndCohF , i∗,IndCohG)
)

∼= HomIndCoh(Y) (V ⊗ i∗,IndCohF , i∗,IndCohG)

∼= HomIndCoh(BT )

(
V,HomBT (i∗,IndCohF , i∗,IndCohG)

)
.

This proves the claim. □

This statement says that we can first compute the endomorphism of
i∗,IndCohF and i∗,IndCohG as an H-module, and then compute invariants
with respect to H0. However, this is not the best way to understand this
Hom space, since IndCoh(BH) is not compactly generated. In [27, Section
5.11], the author defined another category that is compactly generated. De-
note by Rep(H)c the monoidal subcategory of IndCoh(BH) consisting of
objects whose images under the forgetful functor IndCoh(BH) → Vect are
compact, and Rep(H) = Ind(Rep(H)c), the ind-completion. This category
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is compactly generated, and if H is a smooth affine algebraic group, then it
is equivalent to IndCoh(H). In particular, IndCoh(BT ) ∼= Rep(T ).

Moreover, by [27, Lemma 5.16.2], if H = limHi for Hi finite dimen-
sional smooth algebraic groups, then Rep(H) = lim

−−−→
Rep(Hi), and so the un-

derstanding of Rep(H) can be reduced to understanding representations of
finite-dimensional algebraic groups.

Since the action of Rep(T ) on both IndCoh(BH) and IndCoh(Y) factors
through an action of Rep(H), we can modify Lemma 4.1 into the following:

Lemma 4.2. The following is a quasi-isomorphism of T modules:

(4.21)
HomBT (i∗,IndCohF , i∗,IndCohG)

∼= HomBT
(
OBH ,Hom

Rep(H)(i∗,IndCohF , i∗,IndCohG)
)
.

The object HomRep(H)(i∗,IndCohF , i∗,IndCohG) behaves better with colimit
in equation (4.8):

Proposition 4.3. Denote by Fk and Gk the pushforward of F and G to
Yk/H. There is a qausi-isomorphism in Rep(H):

(4.22) HomRep(H)(i∗,IndCohF , i∗,IndCohG) ∼= lim
−−−→

HomRep(H)(Fk,Gk).

Proof. Given V ∈ Rep(H)c, we have:

(4.23)

HomRep(H)

(
V,HomRep(H)(i∗,IndCohF , i∗,IndCohG)

)

∼= HomIndCoh(Y)(V ⊗ i∗,IndCohF , i∗,IndCohG)

(by equation (4.8)) ∼= lim
−−−→

HomIndCoh(Yk/H)(V ⊗Fk,Gk)

∼= lim
−−−→

HomRep(H)

(
V,HomRep(H)(Fk,Gk)

)

(since V is compact) ∼= HomRep(H)

(
V, lim

−−−→
HomRep(H)(Fk,Gk)

)

Since Rep(H) is compactly generated, this proves the claim. □

The object HomRep(H)(Fk,Gk) may seem to be abstract at first, but we
can show that this is a familiar object: the underlying vector space of this
object is the derived Hom between Fk and Gk as sheaves over Yk. Denote
by Oblv the forgetful functor Rep(H) → Vect. This is the composition of
Ψ : Rep(H) → IndCoh(BH) with the forgetful functor IndCoh(BH) → Vect.
Denote also by pk the projection Xk → Xk/H. We claim:
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Proposition 4.4. There is a quasi-isomorphism:

(4.24) OblvHomRep(H)(Fk,Gk) ∼= HomVect(p∗kFk, p
∗
kGk).

Here the left hand side of the above equation is the underlying DG vector
space of HomRep(H)(Fk,Gk).

We need the following Lemma:

Lemma 4.5. Let p0 : pt → BH be the projection, then:

(4.25) p∗0Hom
BH(Fk,Gk) ∼= HomVect(p∗kFk, p

∗
kGk).

Proof. Denote by πk the projection Yk/H → BH. We know that
IndCoh(Yk/H) is a module category of QCoh(Yk/H), and this is compatible
with the monoidal functor:

(4.26) π
∗
k : IndCoh(BH) ∼= QCoh(BH) → QCoh(Yk/H).

Using adjunction property, we have:

(4.27) HomBH(Fk,Gk) = HomBH
(
OYk/H ,Hom

QCoh(Yk/H)(Fk,Gk)
)
.

The right hand side of the above equation can be identified with:

(4.28) (πk)∗Hom
QCoh(Yk/H)(Fk,Gk).

We are thus interested in p∗0(πk)∗Hom
QCoh(Xk/H)(Fk,Gk). Consider now the

Cartesian diagram:

(4.29)

Yk pt

Yk/H pt/H

π̃k

pk p0

πk

Using base-change property of QCoh, we obtain:

(4.30) p∗0(πk)∗Hom
QCoh(Yk/H)(Fk,Gk) ∼= (π̃k)∗p

∗
kHom

QCoh(Yk/H)(Fk,Gk).

Now by [23, Proposition 9.5.3.3]:

(4.31) p∗kHom
QCoh(Yk/H)(Fk,Gk) ∼= HomQCoh(Yk)(p∗kFk, p

∗
kGk).

Putting this into equation (4.30) we obtain the desired result. □
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Proof of Proposition 4.4. By adjunction property, there is a quasi-
isomorphism:

(4.32) HomRep(H)(Fk,Gk) ∼= HomRep(H)
(
OBH ,Hom

BH(Fk,Gk)
)
.

Since each Yk is quasi-compact, quasi separated and eventually coconnec-
tive and Fk and Gk are coherent, by Lemma 4.5 and the fact that p∗k is
conservative and t-exact, the Hom space HomBH(Fk,Gk) is an object in
IndCoh(BH)+ (the category of eventually coconnective objects), which is
equivalent to Rep(H)+ via Ψ. Thus:

(4.33) ΨHomRep(H)(Fk,Gk) ∼= HomBH(Fk,Gk).

Since Oblv = p∗0 ◦Ψ, this and Lemma 4.5 gives the desired result. □

Remark. The above discussions suggest that the sheaf
HomQCoh(Yk/H)(Fk,Gk) is the usual Hom sheaf between Fk and Gk
on Yk with the canonical H equivariant structure. The (derived)
global section of this sheaf over Yk as an H module is identified with
HomRep(H)(Fk,Gk). The H module HomRep(H)(i∗,IndCohF , i∗,IndCohG) is the
colimit of HomRep(H)(Fk,Gk).

We will apply this to the affine Grassmannian GrG. Fix a stratification
GrG = lim

−−−→
GrG,n such that GrG,n is a projective scheme closed under the

action of G̃O. Take F and G to be objects in Coh(G̃O \GrG,n), viewed as
objects in Coh(G̃O \GrG). Lemma 4.2 implies:

(4.34) HomBC
∗

(F ,G) ∼= HomBC
∗

(
O

BG̃O

,HomRep(G̃O)(F ,G)
)
.

Proposition 4.3 shows that the G̃O module HomRep(G̃O)(F ,G) is a colimit of

Hom spaces on finite-dimensional strata GrG,k, namely HomRep(G̃O)(Fk,Gk).
These are bounded from below independent of k by Proposition 4.4, and
so can be identified with HomBH(Fk,Gk). The functor HomBC

∗

(O
BG̃O

,−)

thus computes the derived invariants of these G̃O modules with respect
to the normal subgroup G(O). Let G>n be the normal subgroup defined
by G(1 + znO), then G̃O

∼= lim G̃O/G>n, and so by [27, Lemma 5.16.2],
Rep(G̃O) ∼= lim

−−−→
Rep(G̃O/G>n), and so taking G(O) invariants of modules

in Rep(G̃O) can be calculated by analyzing invariants of finite algebraic
groups. This is what we turn to next.
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4.3.2. Equivariance with respect to G(O). In this section, we will
deal with G(O) invariants. Let G>0 be the kernel of the group homomor-
phism G(O) → G given by mapping g[z] → g(0), and let g>0 be it’s Lie al-
gebra. For each representation V , there is an associated Chevalley-Eilenberg
cochain complex:

(4.35) V ⊗ Sym•((zg (O))∗ [−1]) ,

in which the differential V → V ⊗ (zg(O))∗ is induced by the action of zg(O)
on V . In this section, we will prove:

Proposition 4.6. Let V be an algebraic G̃O representation, there is a
quasi-isomorphism:

(4.36) HomBC
∗

(O
BG̃O

, V ) ∼= [V ⊗ Sym•((zg (O))∗ [−1])]
G
.

Here [−]G means taking the G invariant part of a representation.

Proof. We have a short exact sequence of groups:

(4.37) 1 → G>0 → G(O) → G→ 1,

which gives a natural equivalence of functors:

(4.38) HomBC
∗

(O
BG̃O

, V ) ∼= HomBC
∗

(
OB(G×C∗),Hom

B(G×C
∗)(O

BG̃O

, V )
)

Since G is reductive, the category of algebraic representations of G is semi-
simple, which implies that:

(4.39)
HomBC

∗

(
OB(G×C∗),Hom

B(G×C
∗)(O

BG̃O

, V )
)

=
[
HomB(G×C

∗)(O
BG̃O

, V )
]G
,

where [−]G is taking ordinary G invariants. Thus we only need to under-
stand HomB(G×C

∗)(O
BG̃O

, V ), which is the( derived) G>0 invariants of V . To
understand this, we need:

Lemma 4.7. Let K be a finite-dimensional simply-connected unipotent
Lie group and V be an algebraic representation of K, then RHom(C, V ) ∼=
H∗ (V ⊗ Sym•(k∗[−1])) =: H∗(k, V ), where V ⊗ Sym•(k∗[−1]) is the Cheval-
ley Eilenberg cochain complex of V as a k module.
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Let us assume this for now and apply it to G>0. From Rep(G>0) =
lim
−−−→

Rep(G>0/G>m), we see that for any finite-dimensional representation V :

(4.40) RHomG>0
(C, V ) = lim

−−−→

m
RHomG>0/G>m

(C, V ).

Now the Lie group G>0/G>m is unipotent simply-connected, whose Lie al-
gebra is zg(O)/zm+1g(O), so for finite-dimensional V , one has:

(4.41) RHomG>0/G>m
(C, V ) ∼= V ⊗ Sym•

((
zg(O)/zm+1g(O)

)∗
[−1]

)

Taking co-limit over m, one obtain, for any finite-dimensional(and more
generally algebraic) representation V :

(4.42) RHomG>0
(C, V ) ∼= V ⊗ Sym•((zg (O))∗ [−1]) .

This completes the proof. □

For completeness, we present the proof of Lemma 4.7 here:

Proof of Lemma 4.7. Clearly H0 = HomK(C, V ), so by the usual idea of ho-
mological algebra(for instance, in [21]), we need only show that the functors
Hi are erasable for i > 0. This is done by induction and a use of the func-
tion ring OK . We claim that Hi(k,OK) is zero for i > 0. When k = C and
K = C, OK = C[x] and the action of k is given by taking derivatives. Thus
H1(C,C[x]) = 0 since taking derivative is a surjective map.

Now for general k, by nilpotency, we have a short exact sequence of
Lie algebras 0 → h → k → C → 0. This must split since C is one dimen-
sional and so we have a covering map H ⋊C → K where H is simply con-
nected. By assumption K is simply connected so the map is an isomorphism.
Thus we have an exact sequence of Lie groups 0 → H → K → C → 0. Let
us consider H∗(k,OK). By Hochschild-Serre spectral sequence [16], there is a
spectral sequence whose second term is given by E∗,∗

2 = H∗(C,H∗(h,OK)),
that converges to E∗

∞ = H∗(k,OK). Since C is one dimensional, E2 is sup-
ported on two columns, the spectral sequence terminates and Hn(k,OK) =
⊕p+q=nH

p(C,Hq(h,OK)). Consider Hq(h,OK), we need to understand the
module structure of OK as anH module. From the isomorphismH ⋊C ∼= K
of Lie groups, we see that there is an isomorphism of algebras

(4.43) OK = OH ⊗ C[x],
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which is described by the following: for g ∈ K, we write g = hgcg
with hg ∈ H and cg ∈ C, then the map is given by mapping func-
tion f on K to f(hgcg) on H ⋊C. Now to understand the mod-
ule structure, if we take an object f1 ⊗ f2 where f1 ∈ OH and f2 ∈
C[x], for any h ∈ H, h(f1 ⊗ f2)(g) = f1 ⊗ f2(h

−1g) = f1 ⊗ f2(h
−1hgcg) =

f1(h
−1hg)⊗ f2(cg) = ((hf1)⊗ f2)(g). All the equations use the fact that

the decomposition of g = hgcg is unique. Thus under the above isomor-
phism (4.43) , OK as an H module is nothing but a direct sum of OH ,
hence Hq(h,OK) = 0 for q > 0, and H0(h,OK) = Oh

K , the invariant part
of OK . Again from the identification (4.43) this is isomorphic to C[x].
But what is the module structure? Let f = f1 ⊗ f2 where f1 is H in-
variant(it is a constant function in this case), let c ∈ C, then cf(g) =
f(c−1hgcg) = f(c−1hcc−1cg), now since H is a normal subgroup(h is an
ideal), c−1hc ∈ H, and so by the uniqueness of the above decomposition,
cf(g) = f1(c

−1hc)f2(c
−1cg) = f1(h)(cf2)(cg), where we used that f1 is a con-

stant function on H. Thus the action on C[x] is taking derivative and we
already see that the cohomology is zero for positive degree. This completes
the inductive hypothesis.

Since every K module has an injective resolution by OK , we conclude
that Hi are indeed erasable for i > 0. □

4.3.3. Formal completion. We are left with computing

EndRep(G̃O)(O[e]/G̃O

) as an algebraic representation of G̃O. Before go-
ing into any details, we would like to comment that this computation may
seem complicated, but it is rooted on this simple observation: if R is smooth
and I is a complete intersection ideal, then R/I is quasi-isomorphic to its
Koszul resolution, and EndR−Mod(R/I) is an exterior algebra over R/I
generated by (I/I2)∗. This is not quite obvious when we replace R by a
formally smooth indscheme, since each of the strata may be very singular.
In this section, we will introduce formal completion introduced in [13] to
render the situation amenable.

Let X be a prestack; then its de-Rham stack is defined by:

(4.44) XdR(S) = X (Sred)

where Sred is the reduced scheme of S. Given a morphism of prestacks X →
Y, the formal completion is defined by([13, Section 6.1]):

(4.45) ŶX := Y ×YdR
XdR.
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This operation behaves well with filtered colimit as explained in [13, 6.1.3]: if
X = lim

−−−→
Xn and Y = lim

−−−→
Yn such that the map X → Y comes from a system

of maps Xn → Yn, then:

(4.46) ŶX = lim
−−−→

ŶnXn
.

Now assume that X is a locally almost finite type DG scheme and Y
an almost finite type DG indscheme, and an embedding i : X → Y , then by
[13, Proposition 6.3.1], ŶX is a DG indscheme. More-over, from the above
we see that:

(4.47) ŶX ∼= lim
−−−→

ŶnX ,

which in particular means that:

(4.48) IndCoh(ŶX) ∼= lim
−−−→

IndCoh(ŶnX).

Denote by î the embedding ŶX → Y , and by în the embedding of ŶnX →

Yn, then by [13, Proposition 7.4.5], the adjunction Id → în
!
în∗,IndCoh is an

equivalence. Taking colimit, we see that Id → î!̂i∗,IndCoh is an equivalence. If
we now consider the sequence of maps:

(4.49) X ŶX Y,
j î

then i = î ◦ j, and so we have an equivalence of continuous endo-functors of
IndCoh(X):

(4.50) i!i∗,IndCoh
∼= j!j∗,IndCoh.

Now let us take Y = GrG and X a miniscule orbit, denote by X = X/G̃O

and Y = Y/G̃O. The formal completion ŶX is a DG-indscheme with an G̃O

action, we denote by ŶX the quotient stack ŶX/G̃O. We have the following
diagram of maps:

(4.51)

X ŶX Y

X ŶX Y

j

p

î

p p

j î

We comment that the ∗-pushforward and !-pullback functors for the category

IndCoh are well defined for the maps j and î. Indeed, one may represent the
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category IndCoh over the quotient stacks using the cosimplicial presentation
as in equation (4.4), then the ∗-pushforward and !-pullback functors can be
defined as the corresponding functors between the cosimplicial categories
in equation (4.5). [27] Lemma 6.16.1 and Lemma 6.17.2 together guarantee
that this system of functors behave well with the pull-back functors of the
cosimplicial categories.

Lemma 4.8. There is an equivalence of continuous endo-functors of
IndCoh(X ):

(4.52) i
!
i∗,IndCoh

∼= j
!
j∗,IndCoh.

Proof. Since p is conservative and t-exact, we need only show that:

(4.53) p∗i
!
i∗,IndCoh

∼= p∗j
!
j∗,IndCoh.

By definition of IndCoh∗ as well as the definition of functors involved,

we have p∗i
!
i∗,IndCoh

∼= i!i∗,IndCohp
∗, as well as p∗j

!
j∗,IndCoh = j!j∗,IndCohp

∗.
These two functors are equivalent as seen from the above discussion. This
completes the proof. □

Recall that we would like to compute EndRep(H)(i∗,IndCohOX ). By ad-
junction:

(4.54) EndRep(H)(i∗,IndCohOX ) ∼= HomRep(H)(OX , i
!
i∗,IndCohOX ).

By Lemma 4.8 we have:

(4.55) HomRep(H)(OX , i
!
i∗,IndCohOX ) ∼= HomRep(H)(OX , j

!
j∗,IndCohOX ).

Thus we have transfered the computation onto the formal completion. In
the next section, we will specialize to the case when X = [e] and Y = GrG,
and explicitly understand this formal completion using the idea of formal
geometry studied in [15].

4.3.4. Formal groups and Lie algebras. In [15, Chapter 7], the authors
studied formal groups, and showed that the category of formal groups over a
prestack X is equivalent to that of Lie algebra objects in IndCoh(X ). Let us
briefly recall the important notions here. Let X be a locally almost finite type
prestack (see [15] for what it means). Denote by FormMod/X the category of
locally almost finite type stacks Z over X such that the map Z → X is inf-
schematic and induces an equivalence Zred ∼= Xred ([15, Chapter 5, 1.1.1]).
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A formal group over X is a group object in FormMod/X . This category is
denoted by Grp(FormMod/X ). On the other hand, consider the category of
Lie algebra objects in IndCoh(X ), which we denote by LieAlg(IndCoh(X )).
The result of [15, Chapter 7], more specifically Theorem 3.1.4, states that
there is an equivalence:

(4.56) Grp(FormMod/X ) ∼= LieAlg(IndCoh(X )).

The idea of this is that given a formal group Y over X , the object
π∗,IndCoh(ωY), the pushforward of the dualizing sheaf, has the structure of
a cocommutative Hopf algebra. This is the universal enveloping algebra of
the Lie algebra associated to Y.

When X = pt, then the category LieAlg(IndCoh(pt)) is the category of
DG Lie algebras in Vect studied in [22]. In the special case when g is a
Lie algebra concentrated in degree 0, the formal moduli problem is simply
ĝ0, the formal completion of g at 0([22, Construction 2.2.13.]). The formal
group structure is given by the Baker–Campbell–Hausdorff formula.

Let us now apply this to the case when X = [e] and Y = GrG, we have:

Lemma 4.9. The formal completion ŶX is a formal group whose Lie alge-
bra is z−1g[z−1].

Proof. From the discussion of Section 2.2, the group ind-scheme L<0G is

an open neighborhood of X in Y , and so ŶX ∼= L̂<0GX . Now L̂<0GX is a
formal group whose associated Lie algebra is z−1g[z−1]. □

Denote by L<0g the Lie algebra of L<0G. By [15, Chapter 7, Theorem

3.1.4], we see that ŶX is equivalent to L̂<0g0, the formal completion of L<0g

at 0. The action of G̃O is given by conjugation on L<0g ∼= g(K)/g(O). Again
denote by X = X/G̃O and Y = Y/G̃O. Recall the morphism j : X → ŶX and
i : X → Y. We claim:

Proposition 4.10. There is an equivalence of continuous endofunctors on
IndCoh(X )

(4.57) i
!
i∗,IndCoh

∼= Sym•
(
L<0g[−1]

)
⊗−

where L<0g is understood as a G(O) module under conjugation action.
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Proof. By Lemma 4.8, we can replace the left hand side of equation (4.57)

by j
!
j∗,IndCoh. Consider the following diagram:

(4.58) X G̃O \ L̂<0g0 G(O) \ L<0g
j

Denote by ig the inclusion X → G(O) \ L<0g, Lemma 4.8 again implies:

(4.59) j
!
j∗,IndCoh

∼= i
!
gig,∗,IndCoh.

The latter can be computed explicitly using a Koszul resolution, and the
result follows. □

We can now prove:

Corollary 4.11. There is a quasi-isomorphism of G̃O vector spaces:

(4.60) EndRep(G̃O)(O[e]/G̃O

) ∼= Sym•(g(K)/g(O)[−1]) .

Proof. By Proposition 4.10:

(4.61)
EndRep(G̃O)(O[e]/G̃O

)

∼= HomRep(G̃O)
(
O[e]/G̃O

, Sym•(g(K)/g(O)[−1])⊗O[e]/G̃O

)
.

Since O[e]/G̃O

is simply the trivial representation of G̃O, the right hand side

of equation (4.61) can be identified as the right hand side of equation (4.60).
This completes the proof. □

4.3.5. Other miniscule orbits. We can in fact use this technique for
other miniscule orbits of GrG. Let us now take X to be a miniscule orbit
and Y = GrG. Denote by X and Y the quotients of X and Y by G̃O. Choose
[g] a point in X , let P̃ be the stabilizer of [g] in G̃O, then the there is an
equivalence of prestacks:

(4.62) X ∼= G̃O \ G̃O/P̃ ∼= BP̃ .

Under this, the map i : X → Y corresponds to the map of schemes:

(4.63) P̃ \ pt P̃ \GrG G̃O \GrG
j m
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where the map j is the embedding of pt as [g−1]. Let V be the P̃ module
given by:

(4.64) g(K)/(g(O) + gg(O)g−1).

We prove:

Proposition 4.12. There is a quasi-isomorphism of objects in IndCoh(X ):

(4.65) i
!
i∗,IndCoh(OX ) ∼= G̃O ×P̃ Sym•(V [−1]).

Proof. Using the presentation of X in equation (4.63), we would like to show
that:

(4.66) j!m!m∗,IndCohj∗,IndCoh(OX ) = Sym•(V [−1])

as a module of P̃ . Let us understand the composition
m!m∗,IndCohj∗,IndCoh(OX ), consider the following Cartesian diagram:

(4.67)

P̃ \ G̃O/P̃ P̃ \ pt

P̃ \GrG G̃O \GrG

m̃

ĩ i

m

Here m̃ is the projection of G̃O/P̃ to a point, and ĩ is induced by the embed-
ding X → GrG. By base-change property [13, Proposition 2.9.2], we have:

(4.68) m!i∗,IndCoh
∼= ĩ∗,IndCohm̃

!.

Thus the object m!i∗,IndCoh(OX ) is ĩ∗,IndCohωX , where ωX is the dualizing
sheaf of X with the canonical P̃−equivariant structure. In our case, since
X = G̃O/P̃ , ωX is the line bundle over X associated to the one dimensional
P̃ representation:

(4.69) Ltop = Symtop((gO/p)
∗[1])

Here (gO/p)
∗[1] is a finite dimensional vector space in cohomological de-

gree −1, and so the exterior algebra has finite cohomological degree. The
representation Ltop is the top degree part of the exterior algebra, and is
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in cohomological degree −dim(X). Let us now employ the idea of formal
completion. Consider the Cartesian diagram:

(4.70)

P̃ \ X̂[g] P̃ \ G̃O/P̃

P̃ \ Ŷ[g] P̃ \GrG

By base-change property [13, Proposition 2.9.2], the shriek pullback of

ĩ∗,IndCohωX to Ŷ[g] is the pushforward of the dualizing sheaf of X̂[g] to Ŷ[g].
The advantage is that these local completions have very explicit descriptions.
Indeed, by [15, Chapter 7, Theorem 3.1.4], the space X̂[g] is equivalent to

the completion of gO/p at 0. Similarly, the space Ŷ[g] is equivalent to the

completion of L<0g at 0. The map X̂[g] → Ŷ[g] corresponds to the embedding

of the following P̃ modules:

(4.71) ψ : gO/p → g(K)/g(O), H → gHg−1.

We can thus transfer to the following diagram:

(4.72)

P̃ \ X̂[g] P̃ \ gO/p

P̃ \ pt P̃ \ Ŷ[g] P̃ \ g(K)/g(O)

ϕ̂

ψ̂ ψ

ĵ φ̂

with which we can derive:

(4.73) j!ĩ∗,IndCohωX ∼= ĵ!ϕ̂!ψ∗,IndCoh(ωgO/p).

Here the sheaf ωgO/p is the structure sheaf of gO/p tensored with the repre-
sentation Ltop. We now have:

(4.74)
ĵ!ϕ̂!ψ∗,IndCoh(ωgO/p)

∼= HomBP̃
(
(ĵ ◦ ϕ̂)∗,IndCoh(OBP̃ ), ψ∗,IndCoh(ωgO/p)

)
.

The right hand side can be computed using a Koszul resolution of (ĵ ◦
ϕ̂)∗,IndCoh(OBP̃ ), and the result is the following complex:

(4.75) Sym•(g(K)/g(O)[−1])⊗ C[gO/p]⊗ Ltop,
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together with a differential induced from the Koszul resolution. Here C[gO/p]
denotes the algebra of functions on gO/p. The nonzero part of the Koszul
differential lies in:

(4.76)
Sym•(g(O)/p[−1])⊗ C[gO/p]⊗ Ltop

∼= Sym•((g(O)/p)∗ [1])⊗ C[gO/p].

The quasi-isomorphism is due to tensoring with Ltop, which makes this into
a usual Koszul complex. The cohomology of this complex is C in degree 0,
and so the cohomology of the complex in equation (4.75) is thus identified
with Sym•(V [−1]). This completes the proof. □

4.3.6. Conclusion. Using Proposition 4.6 and Corollary 4.11, we obtain:

Theorem 4.13. There is a quasi-isomorphism of C∗ vector spaces:

(4.77) EndBC
∗

(O[e]/G̃O

) ∼= [Sym•((g(K)/g(O)⊕ (zg(O))∗) [−1])]
G
,

where [−]G is taking ordinary G invariants. This space coincides with π0VG,0
of equation (3.6) after shifting the degree of g(K)/g(O) to −1.

Remark. As remarked in [26], the character of the above space is given by:

(4.78)
1

|W |

∮

T

ds

2πis

∏

α roots

(1− sα)

[
(q)2rank(G)

∞

∏

α roots

(qsα; q)2∞

]
,

which reproduces Schur index of a pure gauge theory.

4.4. The abelian gauge group case

As a non-trivial but illuminating example, we consider the case T = C∗.
The space GrT is the moduli space of lattices in K. This is an ind-projective
variety, but is not reduced. There is a closed embedding: GrT,red → GrT ,
where GrT,red is the reduced scheme of GrT , and is a discrete set of points
labeled by Z. In particular, the identity coset e is a closed reduced point in
GrT . The Schur index for the abelian gauge group T can be reproduced by
the endomorphism algebra:

(4.79) EndBC
∗

(O[e]/T (O)⋊C∗).

The argument from Section 4.3 can still be applied. The relative tangent
complex of e→ GrT is the space K/O[1], and the action of O∗ is trivial. We
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have the following quasi-isomorphism:

(4.80) EndBC
∗

(OB(T (O)⋊C∗)) ∼= Sym•((K/O ⊕ (zO)∗) [−1]) .

In this case, the Poisson algebra VG,0 is just bc ghost with trivial differential,
and the space of local operators π0VG,0 coincides with the above as a vector
space.

It is important in this example that we use the non-reduced scheme. The
embedding i : GrT,red → GrT induces an isomorphism on K0 group, but the
functors i∗,IndCoh and i! are not inverses to each other. In fact, Proposition
4.10 implies that i!i∗,IndCoh(Ozn) = Sym•(K/znO[−1]), and this factor would
be absent if one used GrT,red istead of GrT .

In fact, when T = C∗, the affine Grassmannian GrT has a rather simple
form: let Ŵ be the functor assigning to an algebra R the space of invertible
elements in 1 + z−1R[z−1]; then one has a decomposition:

(4.81) GrT = Ŵ ×GrT,red.

Here Ŵ is a formal group whose reduced scheme is a point. It is called the
formal group of Witt vectors. Its Lie algebra is L<0C. We thus have an
equivalence of formal stacks:

(4.82) Ŵ = L̂<0C0,

from which we conclude that GrT = L̂<0C0 × Z. In conclusion, when T =
C∗, even without taking formal completion, the affine Grassmannian GrT
decomposes into a product of Z with the formal completion of a vector
space at a point. Consequently, one can compute the space of local operators
at the junction of t’Hooft line defects labeled by GrT,red, by reducing the

computation to Ŵ . In principle, as far as the index is concerned, one may
consider more general sheaves over Ŵ , by writing out the composition series
of a coherent sheaf using the structure sheaf of the reduced point. We will
not go in this direction here.

4.5. Gauge theory with matter

In this section, we will generalize the computation of Section 4.3 to gauge
theories with matter. Let V be a representation of G. Recall that the BFN
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space is defined by the base change diagram:

(4.83)

RG,V V (O)

G(K)×G(O) V (O) V (K)

We add to this another base-change diagram:

(4.84)

Z RG,V V (O)

e× V (O) G(K)×G(O) V (O) V (K)

Here Z = V (O)×V (K) V (O) can be described as V (O)× V (K)/V (O)[−1].
The identity line is the pushforward of structure sheaf of V (O) along the
embedding i : V (O) → RG,N . Note that this is a classical scheme embedded
into a derived scheme. We will label the maps:

(4.85)

V (O) Z RG,V V (O)

e× V (O) G(K)×G(O) V (O) V (K)

l m

p1 p2

j

The Schur index is then the graded Euler character of:

(4.86) EndBC
∗

(
i∗,IndCoh(OV (O)/G̃O

)
)
.

In the following, we will write X for the quotient stack X/G̃O, in or-
der to avoid clustering of notations. We will also omit the IndCoh for all
the push-forward functors. To do this computation, fix again an ind-scheme
structure of GrG and RG,V similar to Section 2.2. We make use of the fol-
lowing diagram:

(4.87)

V (O) Zn RG,V,n V (O)

e× V (O) G(K)n ×G(O) V (O) z−NV (O)

ln mn

p1 p2

jn
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such thatmn ◦ ln = in. Since RG,V is a colimit of RG,V,n, by equation (4.22):

(4.88) EndBC
∗

(
i∗(OV (O))

)
= lim

−−−→

n
EndBC

∗

(
in,∗(OV (O))

)
.

Lemma 4.2 implies that EndBC
∗

(
in,∗(OV (O))

)
this is the G(O) invariants

of:

(4.89) EndRep(G̃O)
(
in,∗(OV (O))

)
.

Let us compute this vector space using adjunctions. Since in = mn ◦ ln, from
the adjunction pair (mn,∗,m

!
n), one has:

(4.90)
EndRep(G̃O)

(
in,∗(OV (O))

)

∼= HomRep(G̃O)
(
ln,∗(OV (O)),m

!
nin,∗(OV (O))

)
.

As Zn is a very explicit DG scheme with a very explicit action of G̃O, one
can write an explicit projective resolution of ln,∗(OV (O)) given by the Koszul
complex:

(4.91) ln,∗(OV (O))
∼= OZn

⊗ Sym•
(
(z−NV (O)/V (O))∗[2]

)
.

together with the differential given by the usual Koszul differential. This is
a quasi-isomorphism of G̃O equivariant sheaves. Substituting the resolution
of equation (4.91) into the above equation, one has:

(4.92)

HomRep(G̃O)
(
ln,∗(OV (O)),m

!
nin,∗(OV (O))

)

∼= HomRep(G̃O)
(
OZn

,m!
nin,∗(OV (O))

)

⊗ Sym•
(
z−NV (O)/V (O)[−2]

)
.

By definition, OZn
= (p1)

∗OV (O), using push-pull adjunction, one has:

(4.93)
HomRep(G̃O)

(
OZn

,m!
nin,∗(OV (O))

)

∼= HomRep(G̃O)
(
OV (O), (p1)∗m

!
nin,∗(OV (O))

)
.



✐

✐

“10-Niu” — 2024/1/3 — 23:47 — page 3238 — #32
✐

✐

✐

✐

✐

✐

3238 Wenjun Niu

We then apply the base-change property established in [27] Lemma 6.16.1,
namely that (p1)∗m

!
n
∼= j!n(p2)∗, which implies:

(4.94)
HomRep(G̃O)

(
OV (O), (p1)∗m

!
nin,∗(OV (O))

)

∼= HomRep(G̃O)
(
OV (O), j

!
njn,∗(OV (O))

)
.

To make contact with the affine Grassmannian, we now consider the follow-
ing Cartesian diagram:

(4.95)

e× V (O) G(K)n ×G(O) V (O)

e GrG,n.

jn

q1 q2

kn

Since OV (O)
∼= q∗1O[e], by pull-push adjunction:

(4.96)
HomRep(G̃O)

(
OV (O), j

!
njn,∗(OV (O))

)

∼= HomRep(G̃O)
(
O[e], (q1)∗j

!
njn,∗(OV (O))

)
.

By base-change formula again, (q1)∗j
!
n
∼= k!n(q2)∗, we obtain:

(4.97)
HomRep(G̃O)

(
O[e], (q1)∗j

!
njn,∗(OV (O))

)

∼= EndRep(G̃O)(kn,∗O[e])⊗ C[V (O)].

Here V (O) is in cohomological degree 0. By taking the colimit and ap-
plying Proposition 4.3, we find that the underlying G̃O representation of

EndRep(G̃O)(i∗(OV )) can be identified with:

(4.98) C[V (O)]⊗ Sym (V (K)/V (O))⊗ EndRep(G̃O)(O[e]).

Here EndRep(G̃O)(O[e]) is computed in equation (4.60).
As far as the character is concerned, the above computation thus gives

us the desired G̃O module. However, the differential is kept obscured in
this computation. To analyze the differential, we will use formal completion.
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Recall the following diagram:

(4.99)

RG,V V (O)

G(K)×G(O) V (O) V (K)

Denote by T̂ the formal completion of G(K)×G(O) V (O) along [e]× V (O).

This is a G̃O-equivariant formal scheme over V (O). It is clear that it is

isomorphic to ĜrG,[e] × V (O) where ĜrG,[e] is the formal completion of GrG

along [e]. As already discussed in Lemma 4.9, the space ĜrG,[e] is a formal
group, and thus by [15, Theorem 3.1.4], it is isomorphic, as a formal group,

to the formal completion of its Lie algebra at 0, namely L̂<0g0. We define
R̂ by the following diagram:

(4.100)

R̂ RG,V V (O)

L̂<0g0 × V (O) G(K)×G(O) V (O) V (K)

By [13, Section 6.1.3 (iv)], R̂ can be identified as the formal completion of
RG,V along V (O)×V (K) V (O). Let î be the embedding V (O) → R̂, then
just as in Lemma 4.8, we have:

(4.101)
HomRep(G̃O)

(
OV (O), î

!î∗OV (O)

)

∼= HomRep(G̃O)
(
OV (O), i

!i∗OV (O)

)
.

The advantage of this construction is the following: the space R̂ is an explicit
DG ind-scheme whose underlying pro-algebra is represented by the pro-
algebra of functions on the following ind-scheme:

(4.102) L̂<0g0 × V (O)× V (K)/V (O)[−1],

and has a differential D as described in Section 2.2, induced by the formal
group action. We will denote by A the pro-algebra defining this DG ind-
scheme. It is worth writing down this differential explicitly here. Choose a
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basis vi for V , let ρji be the matrix elements of g action on V , namely:

(4.103) Xvj =
∑

i

ρji (X)vi.

Denote by ρji,n the corresponding linear function on L<0g, by v∗i,n the cor-
responding linear functions on V (O), and by w∗

i,n the linear functions on
V (K)/V (O)[−1]. Note that w∗

i,n are odd variables. The differential D can
be expressed as:

(4.104)

Dw∗
i,n =

∑

j,m+k=n

ρji,m ⊗ v∗j,k

+
1

2

∑

j1,j2,m1+m2+k=n

ρj1i,m1
ρj2j1,m2

⊗ v∗j2,k + · · · .

We comment that this comes from exponentiating the action of X, and the
first term vanish because functions on V (K)/V (O) is zero on V (O). This dif-
ferential should be understood in the pro-algebra otherwise the summation
would be infinite.

The identity line is the structure sheaf of e× V (O), and we would like
to use a Koszul resolution:

(4.105) C[V (O)] ∼= Sym•
(
(L<0g)∗[1]

)
⊗A⊗ Sym•((V (K)/V (O))∗ [2]) .

We comment that this should be understood as a projective system of reso-
lutions. To make this a DG resolution, we need to include the usual Koszul

differential d1 coming from the pair L̂<0g0 and (L<0g)∗, as well as d2 com-
ing from the pair V (K)/V (O) and (V (K)/V (O))∗. However, these are not
enough, since {D, d2} ≠ 0. One can in fact compute this commutator explic-
itly: let u∗i,n be the linear function on V (K)/V (O) corresponding to w∗

i,n in
the Koszul resolution, then:

(4.106)

{D, d2}u
∗
i,n = Dw∗

i,n =
∑

j,m+k=n

ρji,m ⊗ v∗j,k

+
∑

j1,j2,m1+m2+k=n

ρj1i,m1
ρj2j1,m2

⊗ v∗j2,k + · · · .

And this commutator acts trivially on other generators of the pro-algebra.
To make this into a DG resolution, we need to include another differential
D̃: let ϵji,n be the linear function on L<0g corresponding to ρji,n in the Koszul
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resolution. Then we define D̃ by:

(4.107)

D̃u∗i,n =
∑

j,m+k=n

ϵji,m ⊗ v∗j,k

+
1

2

∑

j1,j2,m1+m2+k=n

ϵj1i,m1
ρj2j1,m2

⊗ v∗j2,k + · · · .

This differential is of course G̃O invariant, since ϵji,n transforms in the same

way as ρji,n, and u
∗
i,n transforms in the same way as w∗

i,n. After introducing

this new differential, {D, d2} = {D̃, d1} and the combination of the four
differentials will be a differential, and the above indeed becomes a projective
system of free resolutions. Now if we take endomorphism with C[V (O)], we
obtain the space:

(4.108) Sym•
(
L<0g[−1]

)
⊗ C[V (O)]⊗ Sym•(V (K)/V (O)[−2]) ,

and the only nonzero differential is that induced from D̃. Examining the
definition of D̃, we find that the higher order terms all drop off, and the linear
term maps L<0g to C[V (O)]⊗ Sym•(V (K)/V (O)[−2]), and is identified with
the differential induced by the moment map.

Combining the above steps, we obtain the following:

Theorem 4.14. There is a quasi-isomorphism of DG-C∗ modules:

(4.109)
EndBC

∗

(i∗(OV (O)))
∼=

[
C[V (O)]⊗ Sym•(V (K)/V (O)[−2])

⊗ Sym•((g(K)/g(O)⊕ (zg(O))∗) [−1])
]G
.

If we shift the loop grading of V (K) by q1/2, the cohomological degree of
V (K)/V (O) to 0, and the cohomological degree of g(K)/g(O) to −1, then
the cohomology of this space coincides with π0VG,V in equation (3.7).

Proof. After the grading shift, Sym•(V (K)/V (O)) can be identified with
C[V ∗(O)]. Since π0VG,V restricts to taking the Lie group invariants,
comparing equation (4.109) with (3.7), we conclude that π0VG,V ∼=
EndBC

∗

(i∗(OV (O))). □

Remark. The character of the space in equation (4.109) is given by:
(4.110)

1

|W |

∮

T

ds

2πis

∏

α roots

(1− sα)


(q)2rank(G)

∞

∏
α roots

(qsα; q)2∞
∏

β weights of N⊕N∗

(−q1/2sβ , q)∞


 .



✐

✐

“10-Niu” — 2024/1/3 — 23:47 — page 3242 — #36
✐

✐

✐

✐

✐

✐

3242 Wenjun Niu

This is the Schur index for the gauge theory with matter as stated in [26].

5. The insertion of fundamental t’Hooft lines
in pure PSL(2)

Using the technique developed in the previous sections, one can consider
the space of local operators at the junction of two half-BPS Wilson-’t Hooft
line operators. As stated in the introduction, these operators correspond to
vector bundles on the reduced G̃O orbits of RG,V . Among these, the ’t Hooft
line operators are certain line bundles on the G̃O orbits, and are labelled
by the dominant coweight of G. These Wilson-’t Hooft line operators are
the perverse coherent sheaves appearing in the work of [6, 7]. For a full
dictionary of correspondences between line operators and coherent sheaves,
see [6, 7, 18].

Given two line operators L1 and L2, the space of local operators at their
adjunction is given by:

(5.1) OpsG,V (L1, L2) = HomBC
∗

Coh(G̃O\RG,V )
(L1, L2).

The space OpsG,V (L1, L2) should give rise to a module of the Poisson vertex
algebra OpsG,V = π0VG,V . Indeed, since ✶ ∗ Li ∼= Li for i = 1, 2, the Poisson
algebra OpsG,V acts on OpsG,V (L1, L2) through convolution. By the work
of [5], this action is also compatible with the factorization structure. The
structure of these spaces as OpsG,V modules has not been carefully described
in literature; however, the Euler character of these spaces χqOpsG,V (L1, L2)
are computed in [8].

We will look at the simplest non-trivial example: the space of local oper-
ators at the junction of fundamental ’t Hooft lines and basic dyonic Wilson-
’t Hooft lines in pure PSL(2) (PSU(2) in physics notation) theory. The
fundamental t’Hooft line here is the structure sheaf of the miniscule orbit
Gr1/2 ∼= P1, corresponding to the minimal dominant coweight 1

2 of PSL(2).
We wiil not try to identify these as representations of OpsG,V , but only com-
pute the vector spaces and their indices. We will match the indices with the
indices of [8].

We will keep using the notationX for the quotient stackX/G̃O. Consider
now L1 = L2 = OGr1/2

, we would like to compute:

(5.2) OpsG,V (L1, L2) = EndBC
∗

(OGr1/2
)
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Proposition 4.12 reduces the computation of Endomorphism algebra to com-
puting the global sections of an associated vector bundle. In the computa-
tions below, we will drop all the quotients by G̃O in order to simlify the
notations, although all the discussions below is carried in the equivariant
settings. Fix a fixed point z1/2, let P̃ be the stabilizer. The module V is
given by:

(5.3) g(K)/
(
z1/2g(O)z−1/2 + g(O)

)

The computation then requires that we understand the associated vector
bundle as a bundle over P1.

Since z1/2g(O)z−1/2 + g(O) = H(O)⊕ E(O)⊕ z−1F (O), the represen-
tation:

(5.4) g(K)/
(
z1/2g(O)z−1/2 + g(O)

)

falls into the following exact sequence:

(5.5) 0 → z−1b → g(K)/
(
z1/2g(O)z−1/2 + g(O)

)
→ g(K)/z−1g(O) → 0,

where b is the Lie algebra of B ⊆ G. This short exact sequence split as a
representation of B, and since G(O)/P̃ = G/B, we have an isomorphism of
vector bundles:

(5.6) G̃O ×P̃ V
∼= G×B z

−1b
⊕

OGr1/2 ⊗ g(K)/z−1g(O).

Taking exterior power on both sides, we have an isomorphism:
(5.7)
G̃O ×P̃ Sym•(V [1]) ∼= G×B Sym•(z−1b[−1])⊗ Sym•

(
g(K)/z−1g(O)[−1]

)
.

The global section of G×B Sym•(z−1b[−1]) can be computed easily:

(5.8)

H∗(G×B Sym0(z−1b[−1])) = C[0],

q−1H∗(G×B Sym1(z−1b[−1])) = C[−1]⊕ g[−1],

q−2H∗(G×B Sym2(z−1b[−1])) = g[−2].

The index of H∗(G×B Sym•(z−1b[−1])) is equal to (1− q)(1− q − qs2 −
qs−2). The index of Sym•

(
g(K)/z−1g(O)[−1]

)
is given by:

(5.9)
(q)∞(q : qs2)∞(q : qs−2)∞
(1− q)(1− qs2)(1− qs−2)

,
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so the index of EndRep(G̃O)(OGr1/2
) is given by:

(5.10)
1− q − qs2 − qs−2

(1− qs2)(1− qs−2)
(q)∞(q : qs2)∞(q : qs−2)∞.

In conclusion:

Theorem 5.1. The space EndBC
∗

(OGr1/2
) is quasi-isomorphic to:

(5.11)

[ (
C⊕ qC[−1]⊕ qg[−1]⊕ q2g[−2]

)

⊗ Sym•
((
g(K)/z−1g(O)⊕ (zg(O))∗

)
[−1]

)]G
.

The character of this space is:
(5.12)

1

2
(q)2∞

∮

s
ds(1− s2)(1− s−2)

(1− q − qs2 − qs−2)

(1− qs2)(1− qs−2)
(q : qs2)2∞(q : qs−2)2∞.

We expect (5.11) to be the space of local operators supported at a point
on a single straight ’t Hooft line. The resulting character does not match
the index obtained in [8]. The computation that matches their result is
the following: consider now L1 = OGr1/2

the fundamental ’t Hooft line, and
L2 = ΩGr1/2

a dyonic Wilson-’t Hooft line, where ΩGr1/2
is the dualizing

sheaf of Gr1/2. Physically, ΩGr1/2
corresponds to the dyonic Wilson-’t Hooft

line with fundamental magnetic charge and +1 electric charge. Consider the
junction:

(5.13) OpsG,V (L1, L2) = HomBC
∗

(OGr1/2
,ΩGr1/2

),

In this case, Proposition 4.12 still applies, with the associated bundle of
V twisted by the canonical sheaf of Gr1/2 = G/B. The cohomology of the
twisted G×B z

−1b⊗O(−2) is:

(5.14)

H∗(G×B Sym0(z−1b⊗O(−2)[−1])) = C[−1],

q−1H∗(G×B Sym1(z−1b⊗O(−2)[−1])) = C[−1]⊕ C[−2],

q−2H∗(G×B Sym2(z−1b⊗O(−2)[−1])) = C[−2].

This space has index −(1− q)(1 + q). The contribution from g(K)/z−1g(O)
remains the same. Hence the space HomBC

∗

(OGr1/2
,ΩGr1/2

) has index:

(5.15)

−
1

2
(q)2∞

∮

s
ds(1− s2)(1− s−2)

(1 + q)

(1− qs2)(1− qs−2)
(q : qs2)2∞(q : qs−2)2∞,



✐

✐

“10-Niu” — 2024/1/3 — 23:47 — page 3245 — #39
✐

✐

✐

✐

✐

✐

Local operators of 4d N = 2 gauge theories 3245

Shifting by q1/2, this exactly matches the formula in [8]. In this paper, the
authors are implicitly using a Serre functor to rotate the line operators, or in
other words, they took the dual of the line operators in the monoidal cate-
gory. This subtle operation was described explicitly in [6], and an important
feature is that the left dual of a line operator is not necessarily equivalent
to the right dual, unless the theory is superconformal, cf. the end of Section
3. As explained in [6], the difference between left dual and right dual is due
to the fact that the dualizing sheaf Ω of G̃O \GrG is not isomorphic to its
involution s∗Ω, where the involution s : G̃O \GrG → G̃O \GrG is defined by
s([g]) = [g−1]. Thus, after rotating by 2π, a line operator receives contribu-
tion from the dualizing sheaf of GrG. In the case of the structure sheaf of a
miniscule orbit, this is simply the dualizing sheaf of the orbit. This explains
the presence of ΩGr1/2

in the above formula.
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