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Einstein, σ-model and Ernst-type

equations and non-isospectral GBDT

version of Darboux transformation

Alexander Sakhnovich

We present a non-isospectral GBDT version of Bäcklund-Darboux
transformation for the gravitational and σ-model equations. New
families of explicit solutions correspond to the case of GBDT with
non-diagonal generalized matrix eigenvalues. An interesting inte-
grable Ernst-type system, the auxiliary linear systems of which are
non-isospectral canonical systems, is studied as well.

1. Introduction

The study of the integrable reductions of Einstein field equations goes back
to the seminal paper [6] (see also [23]). The survey [3] includes several ref-
erences to the interesting articles which precede [6] and a bibliography of
the related works during thirty years after its publication. For the recent
references one can turn, for instance, to [21]. Following the publication of
[6], a closely related σ-model equation was studied in [26]. Gravitational
(Einstein) equation and σ-model equation both belong to the so called non-
isospectral case where the spectral parameter depends on other variables
(see, e.g., [7, 8] on this topic). We apply to the gravitational (Einstein) equa-
tion and σ-model equation the non-isospectral GBDT version of Bäcklund-
Darboux transformation. This version of Bäcklund-Darboux transformation
is especially suitable for the explicit construction of the wave functions and
solutions of those equations. Generalized matrix eigenvalues A are used in
GBDT instead of the usual eigenvalues, and new classes of explicit solutions
appear when we deal with the non-diagonal A (e.g., A in the normal Jordan
form).

Hamiltonian evolution equations are related to Einstein and σ-model
equations (and play an essential role in their study), see, for instance, [4,
5, 18]. In this paper, we investigate an interesting Ernst-type integrable
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nonlinear system:

H(ξ, η)−H(ξ, η) = i
(
H(ξ, η)JH(ξ, η)−H(ξ, η)JH(ξ, η)

)
,

Hη(ξ, η) = Hξ(ξ, η) (H ≥ 0, H ≥ 0), J =

[
0 Ip
Ip 0

]
,

where the HamiltoniansH andH are 2p× 2pmatrix functions and the auxil-
iary (to our Ernst-type system) linear systems are non-isospectral canonical
systems with these Hamiltonians. As usual, i above stands for the imaginary
unit (i2 = −1) and Ip is the p× p identity matrix.

Gravitational (Einstein) equation in light-cone coordinates has the form

(
α(ξ, η)uξ(ξ, η)u(ξ, η)

−1)η +
(
α(ξ, η)uη(ξ, η)u(ξ, η)

−1)ξ = 0, αξη = 0,(1.1)

where α is a scalar function, u is a 2× 2 matrix function, and uξ =
∂
∂ξu.

Physically meaningful solutions u of (1.1) have the properties [6, 7]:

α ∈ R, u(ξ, η) ∈ GL(2,R),(1.2)

where R is the real axis and GL(2,R) stands for the set of 2× 2 invert-
ible matrix functions with real-valued entries. The solutions satisfying an
additional property

det(u) = α2.(1.3)

are constructed via the multiplication of the solutions u of (1.1) satisfy-
ing (1.2) by certain real-valued scalar functions (see (2.31) or [6, (2.17)]).

In the important paper [26], the authors wrote down σ-model equa-
tion in the form (1.1), where u are m×m invertible matrix functions with
complex-valued entries (u ∈ GL(m,C)). More precisely, it is supposed that
the relations

α(ξ, η) ∈ R, u(ξ, η) ∈ GL(m,C), u(ξ, η)∗Ju(ξ, η) ≡ J(1.4)

hold. Here, C stands for the complex plane, u∗ means complex conjugate
transpose of u, and we assume further that the m×m matrix J satisfies
relations

J = J∗ = J−1.(1.5)

The paper consists of five sections. Some basic GBDT relations for the
equation (1.1) are given in Section 2. Using these relations, we express (in
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Section 3) wide families of solutions of the σ-model and gravitational equa-
tions (so called transformed solutions) via some initial solutions. The dis-
cussed above Ernst-type equation is studied in Section 4. Finally, explicit
formulas and new explicit solutions are presented in Section 5. Several aux-
iliary results are proved in the Appendices A and B.

Some notations have been introduced above and further notations are
explained here. The notation N means the set of positive integer numbers,
α stands for the complex conjugate of α, and the inequality H ≥ 0 for some
matrix H means that H = H∗ and has nonnegative eigenvalues. The set of
i× k matrices with real-valued entries in denoted by Ri×k. The spectrum
of matrix A is denoted by σ(A). We say that the function is continuously
differentiable if its first derivatives exist and are continuous (in the topology
Rk if it is a function of k variables).

2. Preliminaries

1. Bäcklund-Darboux transformations and related commutation methods
present an important tool in spectral, gauge and soliton theories (see, e.g.,
[9, 11, 14–16, 20, 24, 25, 27, 44]). Our GBDT version of Bäcklund–Darboux
transformation was first introduced in [29] (see further results and references
in the papers [19, 20, 30, 32, 35] and in the book [37]).

In this section, we derive some important relations for the equation (1.1)
from our more general GBDT results in [30, Sections 2,3]. We study the case
(1.1), (1.4). We discuss also the modification of the solution of (1.1), (1.2)
such that (1.3) holds.

Integrable linear equations are often considered in the so called zero
curvature form

d

dη
G−

d

dξ
F + [G,F ] = 0 ([G,F ] := GF − FG),(2.1)

which is the compatibility condition of the auxiliary linear systems

(2.2)

d

dξ
w(ξ, η, λ) = G(ξ, η, λ)w(ξ, η, λ),

d

dη
w(ξ, η, λ) = F (ξ, η, λ)w(ξ, η, λ),

where ξ and η are independent variables, λ is the spectral parameter and
w is an m×m non-degenerate matrix function (fundamental solution). In
the so called isospectral case, where λ does not depend on ξ and η, one can
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write, for instance, Gη = ∂
∂ηG instead of d

dηG. In the non-isospectral case,

where λ depends on ξ and (or) η, we need the total derivatives d
dξ and (or)

d
dη with respect to these variables.

Here, relation (2.1) easily follows from (2.2) but the fact that (2.1) yields
the existence of w satisfying (2.2) is somewhat more complicated, see [34]
and references therein. Clearly, zero curvature representation [1, 13, 43] is
closely related to Lax pairs.

According to [7], equation (1.1) is equivalent to (2.1) in the case

G(ξ, η, λ) = −
1

λ− 1
q(ξ, η), F (ξ, η, λ) = −

1

λ+ 1
Q(ξ, η).(2.3)

Moreover, the case is non-isospectral, that is, λ is a scalar function depending
on the variables ξ and η and on the “hidden spectral parameter” z. The
dependence of λ on ξ and η is given by the equations [7, 30]:

λξ = −
αξ

α
λ
λ+ 1

λ− 1
= −

αξ

α
λ−

2αξ

α
−

2αξ

α(λ− 1)
,(2.4)

λη = −
αη

α
λ
λ− 1

λ+ 1
= −

αη

α
λ+

2αη

α
−

2αη

α(λ+ 1)
.(2.5)

The equality αξη = 0 in (1.1) means that α admits representation:

α(ξ, η) = f(ξ) + h(η).(2.6)

Since α = α (see (1.2) and (1.4)), we assume further that

f(ξ) = f(ξ), h(η) = h(η)(2.7)

in (2.6). It follows from (2.4)–(2.6) (see [7]) that one can choose

λ(ξ, η, z) =
h(η)− f(ξ)− z +

√
(z − 2h(η))(z + 2f(ξ))

f(ξ) + h(η)
.(2.8)

Remark 2.1. The functions f, h and the branch of the square root in (2.8)
(or, equivalently, in (3.6)) should be chosen so that λ(ξ, η) is well-defined and
continuously differentiable. For this purpose, we may also either restrict the
domains of ξ and η or turn to the Riemann surfaces (see, e.g., [26, p. 510]).
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We note that the matrix functions q and Q in (2.3) are connected with
the solution u of the corresponding equation (1.1) by the equalities

q(ξ, η) = uξ(ξ, η)u(ξ, η)
−1, Q(ξ, η) = −uη(ξ, η)u(ξ, η)

−1(2.9)

(see [7] or [30, (44)]).

Remark 2.2. In fact, taking into account the property (3.7) of λ, we
rewrite (2.1) in the form

qη +Qξ = [q,Q], (αq)η = (αQ)ξ.(2.10)

The existence of u satisfying (2.9) and the fact that (1.1) holds for this u
easily follow from (2.10).

2. In this paper, each generalized Bäcklund-Darboux transformation
(GBDT) is determined by some initial system (2.2), (2.3) (to which GBDT
is applied) and by a triple of matrices {A, S(0, 0),Π(0, 0)}, where A and
S(0, 0) are n× n matrices (n ∈ N), Π(0, 0) is an n×m matrix and the ma-
trix identity

AS(0, 0)− S(0, 0)A∗ = iΠ(0, 0)JΠ(0, 0)∗, J = J∗ = J−1.(2.11)

holds. Clearly, instead of the initial system (2.2), (2.3), we may fix the
functions α(ξ, η), q(ξ, η) and Q(ξ, η) generating (2.2), (2.3) or the functions
α(ξ, η) and u(ξ, η) satisfying (1.1) (in which case q and Q are given by (2.9)).

We assume that

α = α, S(0, 0) = S(0, 0)∗, qJ = −Jq∗, QJ = −JQ∗.(2.12)

Below, we show that similar to the isospectral case, the so called Darboux
matrix function wA has at each ξ and η the form of the transfer matrix
function:

wA(ξ, η, λ) = Im − iJΠ(ξ, η)∗S(ξ, η)−1
(
A(ξ, η)− λIn

)
−1

Π(ξ, η).(2.13)

The transfer matrix function was introduced in this form by Lev Sakhnovich
in [38] (see also [37, 40]). The corresponding matrix functions A(ξ, η), Π(ξ, η)
and S(ξ, η) in (2.13) are defined by the values A(0, 0) = A, Π(0, 0) and
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S(0, 0), respectively, and by the linear equations:

Aξ = −
αξ

α
A−

2αξ

α
In −

2αξ

α
(A− In)

−1,(2.14)

Aη = −
αη

α
A+

2αη

α
In −

2αη

α
(A+ In)

−1,(2.15)

Πξ = (A− In)
−1Πq, Πη = (A+ In)

−1ΠQ,(2.16)

Sξ =
αξ

α

(
S − 2(A− In)

−1S(A∗ − In)
−1
)

− i(A− In)
−1ΠqJΠ∗(A∗ − In)

−1,(2.17)

Sη =
αη

α

(
S − 2(A+ In)

−1S(A∗ + In)
−1
)

− i(A+ In)
−1ΠQJΠ∗(A∗ + In)

−1.(2.18)

Recall that (for our non-isospectral case) λ = λ(ξ, η, z) in (2.13). The Dar-
boux matrix function wA transforms the fundamental solution w of the
initial system (2.2) into the fundamental solution wAw of the transformed
system.

In view of (2.14) and (2.15) we have

Aξη = Aηξ = 2
αξαη

α2
A3(A− In)

−1(A+ In)
−1,

and so the compatibility condition for systems (2.14), (2.15) is fulfilled. In
order to see that equations (2.16) are compatible, we take into account
(2.14), (2.15) and differentiate Πξ with respect to η and Πη with respect to
ξ. It follows that

αΠξη = (A− In)
−1(A+ In)

−1
(
αηAΠq + αΠQq + α(A+ In)Πqη

)
,

αΠηξ = (A− In)
−1(A+ In)

−1
(
αξAΠQ+ αΠqQ+ α(A− In)ΠQξ

)
.

Now, the compatibility condition Πξη = Πηξ is immediate from (2.10). The
equality Sξη = Sηξ is proved in a similar way although more complicated
calculations are required for that purpose. See some further details in Ap-
pendix A.

Equations (2.14)–(2.16) are derived from the more general formulas con-
sidered in [30, pp. 1252-1254]. The equality α = α enabled us to set (for our
special case) A1 = A and A2 = A∗ in the formula [30, (19)]. After substi-
tution Π2(0, 0)

∗ = iJΠ(0, 0)
∗, formula [30, (6)] at the point (0, 0) took the

form (2.11). Next, we used the last two equalities in (2.12) in order to set
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Π1 ≡ Π and Π∗

2 ≡ iJΠ∗ in [30, (5), (19), (20))]. Equations (2.14)–(2.16) fol-
lowed. Now, from (2.11)–(2.18) one obtains (see [30, (6)]):

A(ξ, η)S(ξ, η)− S(ξ, η)A(ξ, η)∗ = iΠ(ξ, η)JΠ(ξ, η)∗.(2.19)

Finally, formulas (11)–(13) in [30] imply that

d

dξ
wA(ξ, η, λ) = Ĝ(ξ, η, λ)wA(ξ, η, λ)− wA(ξ, η, λ)G(ξ, η, λ),(2.20)

d

dη
wA(ξ, η, λ) = F̂ (ξ, η, λ)wA(ξ, η, λ)− wA(ξ, η, λ)F (ξ, η, λ),(2.21)

Ĝ(ξ, η, λ) = −
1

λ− 1
q̂(ξ, η), F (ξ, η, λ) = −

1

λ+ 1
Q̂(ξ, η).(2.22)

Here, according to [30, (10), (13)] we have the following expressions for the
transformed coefficients q̂ and Q̂ (denoted by q̂11 and Q̂11 in [30]):

q̂ =
(
Im − iJΠ∗S−1(A− In)

−1Π
)
q
(
Im + iJΠ∗(A∗ − In)

−1S−1Π
)

− 2i(αξ/α)JΠ
∗S−1(A− In)

−1S(A∗ − In)
−1S−1Π,(2.23)

Q̂ =
(
Im − iJΠ∗S−1(A+ In)

−1Π
)
Q
(
Im + iJΠ∗(A∗ + In)

−1S−1Π
)

− 2i(αη/α)JΠ
∗S−1(A+ In)

−1S(A∗ + In)
−1S−1Π.(2.24)

When we invert S above, we consider the corresponding formulas in the
points of invertibility of S. Note that equalities (2.17)–(2.12) yield S(ξ, η) =
S(ξ, η)∗, and so q̂J and Q̂J given by (2.23) and (2.24) satisfy skew-self-
adjointness conditions similar to the last two equalities in (2.12) for qJ and
QJ :

q̂J = −J(q̂)∗, Q̂J = −J(Q̂)∗.(2.25)

Recall that α and u satisfy (1.1), and so (2.1) holds. Hence, according to
[37, Theorem 6.1] the initial system (2.2) is compatible.

Remark 2.3. For simplicity, we assume in the text that G and F are con-
tinuously differentiable and, for this purpose, α(ξ, η) = f(ξ) + h(η), q(ξ, η)
and Q(ξ, η) are continuously differentiable (or, instead of the requirements
on q and Q, that u is two times continuously differentiable). In fact, the
conditions which we need in order that (2.1) yields the compatibility of sys-
tems (2.2) are weaker (see, e.g., [37, Theorem 6.1]).
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In view of (2.2) and taking into account (2.20), (2.21) we see that the
matrix function ŵ(ξ, η, λ) = wA(ξ, η, λ)w(ξ, η, λ) satisfies the system

(2.26)

d

dξ
ŵ(ξ, η, λ) = Ĝ(ξ, η, λ)ŵ(ξ, η, λ),

d

dη
ŵ(ξ, η, λ) = F̂ (ξ, η, λ)ŵ(ξ, η, λ).

Thus, the transformed system (2.26) is compatible and the compatibility
condition holds:

d

dη
Ĝ−

d

dξ
F̂ + [Ĝ, F̂ ] = 0.(2.27)

Moreover, relations (2.26) (or, equivalently, relations (2.20) and (2.21)) show
that wA of the form (2.13) is, indeed, a Darboux matrix function.

3. Finally, we describe a way to modify a solution of (1.1) (when m = 2)
so that the modified solution u satisfies the equality (1.3) It is easy to see
that a 2× 2 matrix function u = {uik}

2
i,k=1 has a property:

uξu
−1 =

1

det(u)

[
(u11)ξu22 − (u12)ξu21 ∗

∗ (u22)ξu11 − (u21)ξu12

]
.(2.28)

Thus, considering traces “tr” of both sides of (2.28) we have

tr
(
uξu

−1
)
=

(detu)ξ
det(u)

.(2.29)

Clearly, a similar to (2.29) formula is valid for tr
(
uηu

−1
)
. Hence, taking

traces in (1.1) one obtains

(
α
(detu)ξ
det(u)

)

η

+

(
α
(detu)η
det(u)

)

ξ

= 0.(2.30)

Now, assuming that α and some 2× 2 matrix function ǔ satisfy (1.1), (1.2),
and that det(ǔ) > 0, one (using standard calculations) derives that α and
the matrix function

u := α(det ǔ)−1/2ǔ(2.31)

satisfy (1.1), (1.2) and equality (1.3).
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3. σ-model and gravitational equations

1. Clearly, (1.1) remains valid if we multiply u (from the right) by some
constant m×m matrix. Hence, without loss of generality one may assume
that

u(0, 0) = Im.(3.1)

First, we prove the following theorem on the construction of solutions of the
σ-model equation.

Theorem 3.1. Let α and u satisfy equation (1.1), let a triple of matri-
ces {A, S(0, 0),Π(0, 0)} satisfying (2.11) be given and assume that relations
(2.12) and (3.1) hold, where q and Q in (2.12) are given by (2.9). Set

U(ξ, η) := Im − iJΠ(ξ, η)∗S(ξ, η)−1A(ξ, η)−1Π(ξ, η),(3.2)

where the matrix functions A(ξ, η), Π(ξ, η) and S(ξ, η) are introduced by the
linear equations (2.14)–(2.18).

Then, the scalar function α and the matrix function

û(ξ, η) = U(ξ, η)u(ξ, η)(3.3)

satisfy equation (1.1), that is,

(
α(ξ, η)ûξ(ξ, η)û(ξ, η)

−1)η +
(
α(ξ, η)ûη(ξ, η)û(ξ, η)

−1)ξ = 0.(3.4)

Moreover, û is J-unitary:

û(ξ, η)∗Jû(ξ, η) ≡ J.(3.5)

Proof. Fixing the branch of the square root we rewrite (2.8) in the form

λ(ξ, η, z) =

(√
z − 2h(η)−

√
z + 2f(ξ)

)2

z − 2h(η)− (z + 2f(ξ))

=

√
z − 2h(η)−

√
z + 2f(ξ)√

z − 2h(η) +
√

z + 2f(ξ)
.(3.6)

Thus, we have

λ → 0 for z → ∞.(3.7)
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Relations (2.4), (2.5) and (3.7) yield

λξ → 0, λη → 0 for z → ∞.(3.8)

For a fixed constant µ = λ(ξ, η, zµ), from the definition (2.13) we obtain

(
Im − iJΠ(ξ, η)∗S(ξ, η)−1(A(ξ, η)− µIn)

−1Π(ξ, η)
)
ξ

(3.9)

=
d

dξ
wA(ξ, η, λ)

+ iλξ(ξ, η, zµ)JΠ(ξ, η)
∗S(ξ, η)−1(A(ξ, η)− µIn)

−2Π(ξ, η);(
Im − iJΠ(ξ, η)∗S(ξ, η)−1(A(ξ, η)− µIn)

−1Π(ξ, η)
)
η

(3.10)

=
d

dη
wA(ξ, η, λ)

+ iλη(ξ, η, zµ)JΠ(ξ, η)∗S(ξ, η)−1(A(ξ, η)− µIn)
−2Π(ξ, η).

When zµ tends to infinity, formulas (2.20)–(2.22) and (3.7)–(3.10) yield

Uξ(ξ, η) = q̂(ξ, η)U(ξ, η)− U(ξ, η)q(ξ, η),(3.11)

Uη(ξ, η) = −Q̂(ξ, η)U(ξ, η) + U(ξ, η)Q(ξ, η).(3.12)

Using equalities (2.9), (3.11) and (3.12) we derive

ûξ(ξ, η) = q̂(ξ, η)û(ξ, η), ûη(ξ, η) = −Q̂(ξ, η)û(ξ, η),(3.13)

where q̂, Q̂ and û are given by (2.23), (2.24) and (3.3), respectively. Applying
Remark 2.2 to the zero curvature equation (2.27) and taking into account
(3.13), we see that û satisfies equation (3.4). Moreover, relations (1.5), (2.25)
and (3.13) imply that

(
û(ξ, η)∗Jû(ξ, η)

)
ξ
= 0,

(
û(ξ, η)∗Jû(ξ, η)

)
η
= 0.(3.14)

From (2.13) and (2.19) one obtains

wA(ξ, η, λ)
∗J wA(ξ, η, λ) ≡ J(3.15)

(see, e.g., [38] or [37, (1.84)]). In particular, we have

U(ξ, η)∗JU(ξ, η) = J.(3.16)
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By virtue of (3.1), (3.3) and (3.16), the equality

û(0, 0)∗Jû(0, 0) = J(3.17)

holds. Finally, formulas (3.14) and (3.17) yield (3.5). □

2. Setting in Theorem 3.1 m = 2, we easily obtain the following corollary
for the gravitational equation.

Corollary 3.2. Let α and u satisfy (1.1) and (1.2), let a triple of matrices
{A, S(0, 0),Π(0, 0)}, which satisfies the matrix identity (2.11), be given and
assume that the relations

A, S(0, 0) ∈ GL(n,R), Π(0, 0) ∈ R
n×2, S(0, 0) = S(0, 0)∗,(3.18)

iJ ∈ GL(2,R), J = J∗ = J−1, qJ = −Jq∗, QJ = −JQ∗(3.19)

are valid, where q and Q in (3.19) are given by (2.9). Assume additionally
that

d := det
((

I2 − iJΠ(0, 0)∗S(0, 0)−1A−1Π(0, 0)
)
u(0, 0)

)
> 0.(3.20)

Then, the scalar function α and the matrix function ũ of the form

ũ(ξ, η) = α(ξ, η)d−1/2U(ξ, η)u(ξ, η),(3.21)

where U(ξ, η) is given by (3.2), satisfy (1.1)–(1.3).

Proof. According to (1.2) and (2.9), we have

q(ξ, η), Q(ξ, η) ∈ R
2×2.(3.22)

Relations (2.14)–(2.18), (3.18), (3.19) and (3.22) show that

A(ξ, η), S(ξ, η) ∈ R
n×n, Π(ξ, η) ∈ R

n×2.(3.23)

It follows from (1.2), (3.2), the first relation in (3.19), and (3.23) that

U(ξ, η) ∈ R
2×2, û(ξ, η) ∈ R

2×2.(3.24)

where û(ξ, η) = U(ξ, η)u(ξ, η). Moreover, equalities (2.9) and the last two
equalities in (3.19) imply that

(
u(ξ, η)∗Ju(ξ, η)

)
ξ
= 0,

(
u(ξ, η)∗Ju(ξ, η)

)
η
= 0,
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that is,

u(ξ, η)∗Ju(ξ, η) = u(0, 0)∗Ju(0, 0).(3.25)

By virtue of (3.16) and (3.25) we have û(ξ, η)∗Jû(ξ, η) = u(0, 0)∗Ju(0, 0).
Hence, taking taking into account that û(ξ, η) is continuous, û(ξ, η) ∈ R2×2

and (3.20) holds we obtain

det û(ξ, η) ≡ d > 0.(3.26)

According to Theorem 3.1, α and û satisfy (1.1). In view of (3.24) and (3.26),
û satisfies (1.2) and det û(ξ, η) > 0. Now, compare (2.31) and (3.21) in order
to see that α and ũ satisfy (1.1)–(1.3). □

4. Ernst-type equations

1. Non-isospectral (or modified) canonical system has the form

wξ(ξ, z) = iλJH(ξ)w(ξ, z) (λ = (z − ξ)−1),(4.1)

H(ξ) = H(ξ)∗ ∈ C
m×m, J = J∗ = J−1 ∈ C

m×m,(4.2)

where H(ξ) ≥ 0. This system (or the corresponding multiplicative integrals)
appeared, e.g., in the works by M.S. Livšic [22], by V.P. Potapov [28], by
Yu.P. Ginzburg and by L.A. Sakhnovich (see the review [39, pp. 37, 38]). It
is closely connected (see [39, pp. 34–39]) with the Riemann-Hilbert problem
for random matrices presented in [12] and with Wiener-Masani problem in
prediction theory (as discussed in [41]).

GBDT for the canonical system, that is, for system (4.1), (4.2) (H ≥ 0),
where the spectral parameter λ does not depend on z and ξ was treated in
[31]. GBDT for the non-isospectral system (4.1), (4.2) was studied in [33].

We note that Bäcklund transformation for Ernst equation was first in-
troduced in [17], and for the matrix form of Ernst equation see, for instance,
[2, 42]. In particular, G.A. Alekseev [2] considered Ernst equation as the
compatibility condition for the systems

wξ = (z − ξ)−1U(ξ, η)w, wη = (z − η)−1V (ξ, η))w,(4.3)

where U and V have real-valued entries (for the hyperbolic case) and some
special structure (see [2, (8),(11)]).
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Somewhat modifying systems (4.3), we consider the compatibility con-
dition of the auxiliary linear systems

wξ = (z − ξ − η)−1U(ξ, η)w, wη = (z − ξ − η)−1V (ξ, η)w,(4.4)

and obtain an Ernst-type integrable nonlinear system (non-isospectral case):

U(ξ, η)− V (ξ, η) + [U(ξ, η), V (ξ, η)] = 0, Uη(ξ, η) = Vξ(ξ, η).(4.5)

Indeed, the compatibility condition (2.1) for systems (4.4) takes the form

(z − ξ − η)−1
(
Uη(ξ, η)− Vξ(ξ, η)

)

+ (z − ξ − η)−2
(
U(ξ, η)− V (ξ, η) + [U(ξ, η), V (ξ, η)]

)
= 0,(4.6)

which is equivalent to (4.5). We note that in the case of the systems (4.4) it
is convenient to get rid of the spectral parameter λ and use the expression
(z − ξ − η)−1 instead of it. Thus, we deal with w(ξ, η, z) where z is the
independent “hidden” spectral parameter.

Further we set

U(ξ, η) = iJH(ξ, η), V (ξ, η) = iJH(ξ, η) (H = H∗),(4.7)

and assume that (4.2) holds. System (4.5) takes the form

(4.8)
JH(ξ, η)− JH(ξ, η) + i[JH(ξ, η), JH(ξ, η)] = 0,

Hη(ξ, η) = Hξ(ξ, η).

2. In order to construct Darboux matrix corresponding to the system
(4.8), we fix a triple {A, S(0, 0),Π(0, 0)} satisfying (2.11) and set

A(ξ, η) =
(
A− (ξ + η)In

)
−1

i.e., Aξ = Aη = A2.(4.9)

We introduce Π(ξ, η) and S(ξ, η) by the linear equations

Πξ = −iAΠJH, Πη = −iAΠJH;(4.10)

Sξ = ΠJHJ∗Π∗ − (AS + SA∗), Sη = ΠJHJ∗Π∗ − (AS + SA∗).(4.11)

It is easily checked that by virtue of (4.8), (4.10) and the last two equalities
in (4.9) we have Πξη = Πηξ, that is, the compatibility condition (for systems
(4.10)) is fulfilled. Moreover, the identity (2.19) is valid (see [33, (2.4)]).
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Now, we introduce a matrix function

v(ξ, η, z) := w0(ξ, η)
−1wA

(
ξ, η, (z − ξ − η)−1

)
;(4.12)

where wA is given by (2.13) and

∂

∂ξ
w0(ξ, η) = G̃0(ξ, η)w0(ξ, η),

∂

∂η
w0(ξ, η) = F̃0(ξ, η)w0(ξ, η),(4.13)

G̃0 = −iJΠ∗S−1Π− [JΠ∗S−1Π, JH],(4.14)

F̃0 = −iJΠ∗S−1Π− [JΠ∗S−1Π, JH], w0(0, 0)
∗Jw0(0, 0) = J.(4.15)

Using matrix functions A, Π, S and w0 from above and taking into account
our results for GBDT of the non-isospectral canonical system [33], we prove
the following theorem.

Theorem 4.1. Let H and H satisfy (4.8), let the equalities (4.2) hold for
H and J and assume that H = H∗. Then, the matrix function v(ξ, η, z) of
the form (4.12) is the corresponding Darboux matrix, that is, it satisfies the
systems:

vξ(ξ, η, z) = i(z − ξ − η)−1
(
JH̃(ξ, η)v(ξ, η, z)− v(ξ, η, z)JH(ξ, η)

)
,(4.16)

vη(ξ, η, z) = i(z − ξ − η)−1
(
JH̃(ξ, η)v(ξ, η, z)− v(ξ, η, z)JH(ξ, η)

)
,(4.17)

where

(4.18)
H̃(ξ, η) = w0(ξ, η)

∗H(ξ, η)w0(ξ, η),

H̃(ξ, η) = w0(ξ, η)
∗H(ξ, η)w0(ξ, η).

Proof. For each fixed ξ or η we substitute into [33] z − ξ instead z and
(A− (ξ + η)In)

−1 instead of A(η) or z − η instead z and (A− (ξ + η)In)
−1

instead of A(ξ), respectively, and use [33, (2.14), (2.15)] in order to derive

d

dξ
wA

(
ξ, η, (z − ξ − η)−1

)
(4.19)

= i(z − ξ − η)−1
(
JH(ξ, η)wA

(
ξ, η, (z − ξ − η)−1

)

− wA

(
ξ, η, (z − ξ − η)−1

)
JH(ξ, η)

)

+ G̃0(ξ, η)wA

(
ξ, η, (z − ξ − η)−1

)
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and

d

dη
wA

(
ξ, η, (z − ξ − η)−1

)
(4.20)

= i(z − ξ − η)−1
(
JH(ξ, η)wA

(
ξ, η, (z − ξ − η)−1

)

− wA

(
ξ, η, (z − ξ − η)−1

)
JH(ξ, η)

)

+ F̃0(ξ, η)wA

(
ξ, η, (z − ξ − η)−1

)
,

where G̃0 and F̃0 are given by (4.14) and (4.15). Here, we took into account
that the definition [33, (2.5)] of wA slightly differs from the definition in this
paper. Using (4.9)–(4.11) and (2.19), one could also derive (4.19) and (4.20)
directly.

According to (4.12), (4.13) and (4.19), (4.20), we have (4.16) and (4.17),
where

H̃ = Jw−1
0 JHw0, H̃ = Jw−1

0 Hw0 (J = J∗ = J−1).(4.21)

In view of (4.13)–(4.15), differentiating w∗

0Jw0 we obtain

w0(ξ, η)
∗Jw0(ξ, η) ≡ J.(4.22)

Finally, formulas (4.21) and (4.22) imply (4.18). □

Remark 4.2. If A is invertible, we may set

w0(ξ, η) = wA(ξ, η, 0) = Im − iJΠ(ξ, η)∗S(ξ, η)−1A(ξ, η)−1Π(ξ, η).(4.23)

Indeed, in view of [33, Remark 1] wA(ξ, η, 0) satisfies (4.13). Recall also
that relation (2.19) yields the identity (3.15), and so the matrix wA(0, 0, 0)
satisfies the last equality in (4.15).

Remark 4.3. According to (4.21), JH̃(ξ, η) is linear similar to JH(ξ, η)
and JH̃(ξ, η) is linear similar to JH(ξ, η). Moreover, in view of (4.18) the
inequality H(ξ, η) ≥ 0 implies H̃(ξ, η) ≥ 0 and the inequality H(ξ, η) ≥ 0 im-
plies H̃(ξ, η) ≥ 0.

5. Some examples

1. Explicit constructions are of special interest in our theory. Recall that λ of
the form (3.6) satisfies (2.4) and (2.5). Compare (2.4) and (2.5) with (2.14)
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and (2.15), respectively, in order to see that the matrix function A(ξ, η) in
Theorem 3.1 may be given explicitly. Namely, in view of Proposition B.1 the
following proposition is also valid.

Proposition 5.1. Let the matrix A ∈ Cn×n be given. Assume that

λk − 2h(η) ̸= 0, λk + 2f(ξ) ̸= 0

for the values λk ∈ σ(A). Then, the matrix function

A(ξ, η) =
(
R
(
2h(η)

)
−R

(
− 2f(ξ)

))(
R
(
2h(η)

)
+R

(
− 2f(ξ)

))−1
,(5.1)

where R is constructed in the proof of Proposition B.1, satisfies (2.14) and
(2.15).

We note that f, h and the square roots
√

λk − 2h(η) and
√

λk + 2f(ξ)
in the construction of R should be chosen so that R

(
2h(η)

)
+R

(
− 2f(ξ)

)

is invertible and
√

λk − 2h(η) and
√

λk + 2f(ξ) are continuously differen-
tiable.

Remark 5.2. Given m = 2p and α of the form (2.6), (2.7), we may choose

u(ξ, η) = e

(
f(ξ)−h(η)

)
j , j =

[
Ip 0
0 −Ip

]
,(5.2)

and

J =

[
0 Ip
Ip 0

]
or J =

[
0 −iIp
iIp 0

]
(5.3)

in Theorem 3.1. Indeed, in view of (2.9) and (5.2) we have

q(ξ, η) ≡ f ′(ξ)j, Q(ξ, η) ≡ h′(η)j
(
f ′ =

d

dξ
f
)
,(5.4)

and the corresponding equalities in (2.12) hold. Clearly, (3.1) holds as well.
Finally, substituting (2.6) and (5.2) into the left-hand side of (1.1) we
rewrite (1.1) in the form h′(η)f ′(ξ)j − f ′(ξ)h′(η)j = 0, and so (1.1) is valid.
In other words, α and u given by (2.6) and (5.2), respectively, satisfy (1.1).

Our next remark suggests the choice of J and u in Corollary 3.2.
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Remark 5.3. Pauli matrix σ2 = J =

[
0 −i
i 0

]
gives a simple example of

the matrix J such that the corresponding relations in (3.19) hold.
Setting (in Remark 5.2) p = 1 and J = σ2, we see that relations (1.2)

and (3.19) are valid. According to Remark 5.2, the pair α, u satisfies (1.1).

2. Consider the case

f(ξ) = −ξ, h(η) = η,(5.5)

which was studied in [26]. According to (5.4) and (5.5) we have

q ≡ −j, Q ≡ j.(5.6)

New explicit solutions appear when the parameter matrix A is non-diagonal.
In the next example, we deal with the simplest of such cases (m = 2p,
n = 2).

Example 5.4. Let A be a 2× 2 Jordan block:

A =

[
c 1
0 c

]
.(5.7)

Then, in view of (B.5) and (B.7) we have

R(2η) =

[
ω(η) 1

2ω(η)

0 ω(η)

]
, R(2ξ) =

[
ν(ξ) 1

2ν(ξ)

0 ν(ξ)

]
;(5.8)

ω(η) :=
√

c− 2η, ν(ξ) :=
√

c− 2ξ.(5.9)

After some simple calculations, using (5.1), (5.5) and (5.8) we derive

A =

[
a b
0 a

]
, a(ξ, η) =

ω(η)− ν(ξ)

ω(η) + ν(ξ)
, b(ξ, η) = −

a(ξ, η)

ν(ξ)ω(η)
.(5.10)

(
A(ξ, η)− I2

)
−1

= −
ω(η) + ν(ξ)

2ν(ξ)

[
1 ν(ξ)−ω(η)

2ω(η)ν(ξ)2

0 1

]
,(5.11)

(
A(ξ, η) + I2

)
−1

=
ω(η) + ν(ξ)

2ω(η)

[
1 ω(η)−ν(ξ)

2ν(ξ)ω(η)2

0 1

]
.(5.12)



✐

✐

“12-Sakhnovich” — 2024/1/9 — 23:03 — page 3336 — #18
✐

✐

✐

✐

✐

✐

3336 Alexander Sakhnovich

Partition Π(ξ, η) into two 2× p blocks: Π(ξ, η) =
[
Λ1(ξ, η) Λ2(ξ, η)

]
, recall

that Π(0, 0) is assumed to be given (it belongs to the triple, which determines
GBDT) and set

Λ1(ξ, η) = exp

{
−
1

4

[(
ν(ξ) + ω(η)

)2 ν(ξ)
ω(η) +

ω(η)
ν(ξ)

0
(
ν(ξ) + ω(η)

)2

]}
Λ1(0, 0),(5.13)

Λ2(ξ, η) = exp

{
1

4

[(
ν(ξ) + ω(η)

)2 ν(ξ)
ω(η) +

ω(η)
ν(ξ)

0
(
ν(ξ) + ω(η)

)2

]}
Λ2(0, 0),(5.14)

where ω and ν are introduced in (5.9). Direct differentiation in (5.13), (5.14)
and formulas (5.6), (5.11) and (5.12) show that we constructed Π(ξ, η) cor-
rectly and it satisfies (2.16). Formulas (5.13) and (5.14) may be simplified

Λ1(ξ, η) = exp
{
−
(
ν(ξ) + ω(η)

)2
/4
}(

I2 −
1

4

[
0 ν(ξ)

ω(η) +
ω(η)
ν(ξ)

0 0

])
Λ1(0, 0),

(5.15)

Λ2(ξ, η) = exp
{(

ν(ξ) + ω(η)
)2
/4
}(

I2 +
1

4

[
0 ν(ξ)

ω(η) +
ω(η)
ν(ξ)

0 0

])
Λ2(0, 0),

(5.16)

Finally, we note that under the condition ω(η)ν(ξ) ̸= ν(ξ)ω(η) the entries of
the 2× 2 matrix function S(ξ, η) = {Sik(ξ, η)}

2
i,k=1 are uniquely successively

recovered from the identity (2.19) (and from formula (5.10)) :

S22 = (a− a)−1K22, S21 = (a− a)−1(K21 + bS22),

S12 = (a− a)−1(K12 − bS22), S11 = (a− a)−1(K11 + bS12 − bS21),

where Kik are the entries of K := iΠJΠ∗ and Π(ξ, η) is explicitly constructed
above. Now, our main formulas (3.2) and (3.3) provide a corresponding
family of explicit solutions û of the σ-model.

Acknowledgments. This research was supported by the Austrian Science
Fund (FWF) under grant No. P29177 and grant DOI: 10.55776/Y963

Appendix A. Compatibility condition for systems on S

Heuristically, the compatibility condition

Sξη = Sηξ(A.1)
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for the systems (2.17) and (2.18) may be deduced from the unique solvability
(under natural assumptions) of the identity (2.19) on S.

In order to prove (A.1) rigorously, we rewrite (2.14) and (2.15) in the
forms

Aξ = −
αξ

α
A(A+ In)(A− In)

−1, Aη = −
αη

α
A(A− In)(A+ In)

−1.(A.2)

It is easy to see that the identities

2A(A− In)
−1(A+ In)

−1 = (A− In)
−1 + (A+ In)

−1,(A.3)

2(A− In)
−1(A+ In)

−1 = (A− In)
−1 − (A+ In)

−1.(A.4)

are valid. Now, we differentiate both sides of (2.17) with respect to η and
both sides of (2.18) with respect to ξ using (2.18) and (2.17), respectively,
as well as the equalities (2.16) and (A.2). We simplify the right-hand sides of
the obtained relations using (2.12), (A.3) and (A.4). Then, reducing similar
terms we derive

Sξη − Sηξ =−
i

2α

(
αξ

(
(A+ In)

−1ΠQJΠ∗(A∗ + In)
−1

− (A− In)
−1ΠQJΠ∗(A∗ − In)

−1
)

+ αη

(
(A+ In)

−1ΠqJΠ∗(A∗ + In)
−1

− (A− In)
−1ΠqJΠ∗(A∗ − In)

−1
)

(A.5)

+ (A− In)
−1Π

(
2(αq)η + α[Q, q]

)
JΠ∗(A∗ − In)

−1

− (A+ In)
−1Π

(
2(αQ)ξ + α[Q, q]

)
JΠ∗(A∗ + In)

−1
)
.

Next, we multiply (A.5) by 2iα(A− In)(A+ In) from the left and by
(A∗ + In)(A

∗ − In) from the right. Taking into account that (αq)η = (αQ)ξ,
we obtain

2iα(A− In)(A+ In)
(
Sξη − Sηξ

)
(A∗ + In)(A

∗ − In)(A.6)

= −2αξ

(
AΠQJΠ∗ +ΠQJΠ∗A∗

)

− 2αη

(
AΠqJΠ∗ +ΠqJΠ∗A∗

)

+ 2AΠ
(
(αq)η + (αQ)ξ + α[Q, q]

)
JΠ∗

+ 2Π
(
(αq)η + (αQ)ξ + α[Q, q]

)
JΠ∗A∗.

Finally, the first equation in (2.10) implies that the right-hand side of (A.6)
equals zero. Thus, (A.1) follows.
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Appendix B. Matrix square roots

Modifying the proof of [35, Proposition 3.3], we obtain the following propo-
sition.

Proposition B.1. Let A ∈ Cn×n admit representation EJE−1, where J
is the Jordan normal form of A. Then, there is a matrix function R(µ)
(µ ∈ R, µ ̸∈ σ(A)) such that

R(µ)2 = A− µIn, R(µ) = ED(µ)E−1,(B.1)

R(µ1)R(µ2) = R(µ2)R(µ1) (µ1, µ2 ∈ R),(B.2)

where D is a block diagonal matrix with the blocks of the same orders as
the corresponding Jordan blocks of J . Moreover, the blocks of D are upper
triangular Toeplitz matrices (or scalars if the corresponding blocks of J are
scalars).

Proof. Clearly, the statement of proposition holds for n = 1. Consider the
case, where A is an n× n Jordan block (n ≥ 2):

A =




λ 1

λ
. . .
. . . 1

λ



.(B.3)

For this A and µ ∈ R, we construct upper triangular Toeplitz matri-
ces R(µ) satisfying the first equality in (B.1). First, we introduce the shift
matrices

Si := {δk−l+i}
n
k,l=1, SiSj = Si+j .(B.4)

where δs is Kronecker delta, and Si = 0 for i ≥ n. Let us write down the
representations

A− µIn = (λ− µ)In + S1, R(µ) = c0In + c1S1 + . . .+ cn−1Sn−1.(B.5)

According to (B.4) and (B.5), we have

R(µ)2 = c20In + 2c0c1S1 + (2c0c2 + c21)S2

+

n−1∑

i=3

(
2c0ci + c1ci−1 + . . .+ ci−1c1

)
Si.(B.6)
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Now, we set

c0 =
√

λ− µ ̸= 0, c1 = 1/(2c0),(B.7)

and choose successively the values c2, . . . so that the coefficients before the
shift matrices Si (i ≥ 2) on the right-hand side of (B.6) turn to zero. (In
this way, the values ci (i ≥ 2) are uniquely defined, and the upper triangular
Toeplitz matrix R(µ) given by (B.5) satisfies the first equality in (B.1).)

When A is a Jordan matrix J , we construct block diagonal matrix D(µ),
each block of which is generated by the corresponding Jordan block of J
in a way described above. It is easy to see that (B.1) holds for A = J and
R(µ) = D(µ). Finally, if A = EJE−1, we set R(µ) = ED(µ)E−1 (as in the
second equality in (B.1)), and the first equality in (B.1) for A and R follows
from the first equality in (B.1) for J and D.

Since the blocks of J and D(µ) are upper triangular Toeplitz matrices,
J and D(µ) commute (see, e.g., [10] on the properties of triangular Toeplitz
matrices). Hence, (B.2) is valid. □

Although µ ∈ R is required is Section 5, it is easy to see that the construction
above works also for µ ∈ C. A closely related construction of the matrix root
f(A)1/ℓ (ℓ ∈ N), which commutes with the matrix A, is presented in [36]
together with some references.
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