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Mirror symmetry suggests unexpected relationships between arith-
metic properties of distinct families of algebraic varieties. For ex-
ample, Wan and others have shown that for some mirror pairs,
the number of rational points over a finite field matches modulo
the order of the field. In this paper, we obtain a similar result for
certain mirror pairs of toric hypersurfaces. We use recent results
describing the relationship between the Picard-Fuchs equations of
these varieties and their Hasse–Witt matrices, which encapsulate
information about the number of points, to compute the number
of points modulo the order of the field explicitly. We classify pen-
cils of K3 hypersurfaces in Gorenstein Fano toric varieties where
the point count coincides and analyze examples related to classical
hypergeometric functions.
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1. Introduction

Let Fq be a finite field of order q = pa. Then the Frobenius operator F
induces a p-linear map

Hn(X,OX)
F
−→ Hn(X,OX).

Amatrix for F , for some choice of basis ofHn(X,OX), is called a Hasse–Witt
matrix. Katz made a detailed study of the Hasse–Witt matrix for projective
hypersurfaces (see for example [Kat72] and [Kat73]); Achter and Howe give
a useful description of the Hasse–Witt matrix using modern language in
[AH19]. When Hn(X,OX) is one-dimensional, the Hasse–Witt matrix is
simply an element of Fq. Calabi–Yau varieties have this property, as do
elliptic curves and K3 surfaces, their lower-dimensional counterparts.

The Hasse–Witt matrix encapsulates information about the number of
points on a Calabi–Yau variety over a finite field of characteristic p, modulo
p. The relationship is given by Katz’s congruence formula ([Kat73, Théorème
3.1]), which relates the generating function Z(X/Fq;T ) for the number of
points on X over finite extensions of Fq to the Frobenius action:

(1.1) Z(X/Fq;T ) ≡
n
∏

i=0

det(1− T · Fa|H i(X,OX))
(−1)i+1

(mod p).

The zeta function of a Calabi–Yau variety has a unique root that is a p-adic
unit, known as the unit root. Combining this fact with Katz’s congruence
formula, we see that the number of points on a Calabi–Yau variety (or its
lower-dimensional counterpart) (mod p) is entirely controlled by the factor
of the zeta function given by the Hasse–Witt matrix.

We are interested in the interplay between the geometric and arithmetic
properties of K3 surfaces and Calabi–Yau varieties. We will work with va-
rieties realized as hypersurfaces in Gorenstein Fano toric varieties. In gen-
eral, such hypersurfaces arise in multiparameter families. Their holomor-
phic periods satisfy systems of partial differential equations that have an
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A-hypergeometric structure (these are also known as GKZ equations, af-
ter Gel′fand, Kapranov, and Zelevinsky). However, in many cases one can
specialize to subfamilies of independent geometric interest. We will use com-
binatorial and geometric criteria to identify collections of pencils of varieties
with similar, but not identical, arithmetic properties.

In the case of K3 surfaces, we identify pencils that correspond to classical
hypergeometric equations of the form 3F2. These are lower-dimensional ana-
logues of the famous 14 cases of 4F3 hypergeometric equations corresponding
to Calabi-Yau hypersurfaces with maximally unipotent monodromy (see the
work of [RV01, DM07, LTYZ21]). One may use this fact to obtain explicit
formulas for the Hasse–Witt invariants.

Our choice of geometric context is inspired by mirror symmetry, which
describes deep and unexpected connections between distinct families of al-
gebraic varieties. The first mirror construction, due to Greene and Plesser
in [GP90], constructs a mirror to the family of all smooth Calabi–Yau hy-
persurfaces in Pn, using the Fermat pencil of Calabi-Yau n− 1-folds Xn−1,ψ

given by

xn+1
0 + · · ·+ xn+1

n − ψ(n+ 1)x0 . . . xn = 0.

Candelas, de la Ossa, and Rodŕıguez Villegas observed that in the case
of Calabi-Yau threefolds, the Greene–Plesser mirror construction has arith-
metic consequences. In this case, a group G ∼= (Z/5Z)3 acts diagonally on
X3,ψ, and the mirror to smooth quintics in P4 is given by the resolution of

singularities Y3,ψ = X̃3,ψ/G. In [CDRV00], they showed that for ψ ∈ Z the
number of points on X3,ψ over a field of prime order is given by trunca-
tions of series solutions of the Picard–Fuchs differential equation satisfied
by the holomorphic form. This phenomenon generalizes results of Dwork in
[Dwo69] for the case of quartics X2,ψ. In [CDRV01], Candelas, de la Ossa,
and Rodŕıguez Villegas computed the zeta functions of X3,ψ and the mir-
ror quintic pencil Y3,ψ. They showed that for each ψ ∈ Z the zeta functions
share a common factor corresponding to the holomorphic form.

Various researchers in mirror symmetry have sought to generalize the
phenomena observed by Candelas–de la Ossa–Rodŕıguez Villegas to broader
classes of examples of mirror varieties. The first work built on the Greene–
Plesser mirror construction. In [Wan06], Wan showed that for any ψ ∈ Fq
and any dimension n, the number of points on Xn−1,ψ and its mirror Yn−1,ψ

over a field of qk elements are the same, modulo the order of the field:

#(Xn−1,ψ,Fqk) ≡ #(Yn−1,ψ,Fqk) (mod qk).
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Wan conjectured that a similar congruence should hold in any setting where
one can construct a one-to-one correspondence between a Calabi-Yau va-
riety X and its mirror Y (rather than having more general paired mirror
families, as in the correspondence between all smooth quintics in P4 and the
quintic mirror Y3,ψ). In [Kad06], Kadir considered a two-parameter family of
octic Calabi-Yau threefolds in the weighted projective space P(1, 1, 2, 2, 2).
She showed that this family and the family of mirror octics obtained via
a Greene–Plesser mirror construction share a common factor in their zeta
functions corresponding to the holomorphic form, and claimed that a similar
computation would describe a common factor for any Greene-Plesser mirror
of Calabi-Yau hypersurfaces in a Gorenstein weighted projective space. In
the arithmetically rich K3 surface setting, researchers have used the Greene–
Plesser mirror construction to investigate the relationship between K3 sur-
face families of high Picard rank and modularity (see [LY96, VY98, Dor00]).

Aldi and Peruničić in [AP15], and the present authors together with
Doran, Kelly, Sperber, and Voight in [DKSSVW18] and [DKSSVW20],
have investigated arithmetic mirror symmetry phenomena in the context
of the Berglund-Hübsch-Krawitz (BHK) mirror construction. In particular,
[DKSSVW18] uses BHK mirrors to identify pencils of Calabi-Yau varieties in
Pn that share common Picard–Fuchs equations and common factors in their
zeta functions. Kloosterman further explored this phenomenon in [Klo18],
using a geometric approach. Both [Kad06] and [CDRV01] use the Batyrev
mirror construction and techniques of toric varieties for a more detailed
analysis of the Greene–Plesser mirror. In [MW16], Magyar and the second
author examined a larger collection of Batyrev mirrors, providing a conjec-
tural description of collections of toric hypersurface pencils that are strong
mirrors in Wan’s sense. The recent works [BKSZ22, COEvS20, COvS20]
use the expected correspondence between Picard-Fuchs equations and zeta
functions together with novel computational techniques to identify persistent
zeta function factorizations of both physical and arithmetic significance.

All of these variations on arithmetic mirror symmetry compare prop-
erties of special pencils or subfamilies where the Picard–Fuchs equation
satisfied by the holomorphic form is the same on each side of the mirror
correspondence. From the standpoint of mirror constructions, this is a very
special property: one typically expects that a family with many complex de-
formations, such as all smooth quintics in P4, should be mirror to a family
with few complex deformations, such as the Greene–Plesser mirror Y3,ψ.

From the standpoint of arithmetic, on the other hand, this restriction is
straightforward. Point counts on a variety over a finite field may be computed
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using the Frobenius action F on an appropriately chosen p-adic cohomol-
ogy, so the question is whether the Frobenius action and the cohomological
structure measured by the Picard–Fuchs equation are compatible. In the
arithmetic setting, such investigations go back to Igusa’s classic study of
the Legendre pencil of elliptic curves [Igu58] and have been worked out in
detail in various contexts, building on Dwork’s work in [Dwo69]. Slinkin and
Varchenko drew on these ideas to give arithmetic versions of the solutions to
the KZ equations used in conformal field theory in [SV21]. The analysis in
[DKSSVW18] draws heavily on the arithmetic tradition in order to make the
correspondence between Picard–Fuchs equations and point counting precise
in the setting of BHK mirror symmetry.

The mirror-symmetric context of the present work is Batyrev mirror
symmetry, which describes mirrors of Calabi–Yau varieties realized as hyper-
surfaces in Gorenstein Fano toric varieties. Such toric varieties correspond to
combinatorial objects called reflexive polytopes; these polytopes have been
completely classified in dimensions four and lower. The reflexive simplices,
n-dimensional reflexive polytopes with n+ 1 vertices, determine Gorenstein
weighted projective spaces and certain finite quotients. In this particular
combinatorial setting, the Batyrev, Greene–Plesser, and BHK constructions
overlap. Our strategy is to generalize techniques appropriate to this overlap
to a broader class of examples.

The authors of [HLYY23] describe a relationship between Picard–Fuchs
equations and the Hasse–Witt matrices of Calabi-Yau varieties realized as
toric hypersurfaces. Their results extend results of Adolphson and Sperber
in [AS16] for Calabi-Yau hypersurfaces in projective space and prove a con-
jecture made by Vlasenko in [Vla18]. A more arithmetic and algorithmic
perspective on Hasse–Witt matrices and associated cohomology theories,
including an alternate proof of the conjecture, may be found in [BV19].

In this paper, we apply the results of [HLYY23] to characterize arith-
metic mirror symmetry phenomena for certain pencils of elliptic curves, K3
surfaces, or Calabi–Yau hypersurfaces in toric varieties. We thereby prove
the congruence for toric diagonal pencils conjectured in [MW16] and ob-
tain explicit examples of the relationships between periods and point counts
described in [HLYY23] and [BV19].

In more detail, given a reflexive polytope ∆, we use the vertices of the
polar polytope ∆◦ to define a pencil of Calabi–Yau varieties called the ver-
tex pencil (see Definition 2.5). Recall that two polytopes are combinatorially
equivalent if there is a bijection between their faces that preserves inclusions.
For example, any two simplices of the same dimension are combinatorially
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equivalent. We will use a stronger condition on polytopes (see also Defini-
tion 2.2): we say two combinatorially equivalent polytopes are a kernel pair
if the matrices given by their vertices have the same kernel. Using this no-
tion, we characterize combinatorially equivalent reflexive polytopes whose
vertex pencils share arithmetic properties. If a pair of polytopes are both
polar dual and a kernel pair we say they are a mirror kernel pair.

Key Lemma (see Lemma 3.4). Let ∆ and Γ be a kernel pair of n-
dimensional reflexive polytopes, and suppose ∆◦ and Γ◦ are also a kernel
pair. Let V∆ and VΓ be smooth toric varieties determined by maximal sim-
plicial refinements of the fans over the faces of ∆ and Γ, respectively. Let
X∆,ψ and XΓ,ψ be the corresponding vertex pencils. Then for any rational ψ
and prime p such that X∆,ψ and XΓ,ψ are smooth, their Hasse–Witt matrices
are the same.

The Key Lemma immediately implies a relationship between point
counts:

Corollary (See Corollary 3.5). Let ∆ and Γ be a kernel pair of n-
dimensional reflexive polytopes, and suppose ∆◦ and Γ◦ are also a kernel
pair. Let V∆ and VΓ be smooth toric varieties determined by maximal sim-
plicial refinements of the fans over the faces of ∆ and Γ, respectively. Let
X∆,ψ and XΓ,ψ be the corresponding vertex pencils. Then for any rational ψ
and prime p such that X∆,ψ and XΓ,ψ are smooth,

#X∆,ψ ≡ #XΓ,ψ (mod p).

The Key Lemma provides a combinatorial characterization of toric hy-
persurfaces that are “strong mirrors” in the sense of [Wan06]. Its proof uses
the relationship between Hasse–Witt matrices and Picard–Fuchs equations.

In § 2, in addition to reviewing necessary background in toric geometry,
we use the classification of Gorenstein Fano toric varieties in low dimensions
to obtain a complete list of mirror pairs of reflexive polytopes in dimensions
2 and 3 that are also kernel pairs. In 2 dimensions, these polytopes determine
Gorenstein Fano toric varieties that are weighted projective spaces, P1 × P1,
or certain finite quotients; in 3 dimensions, the possibilities are weighted
projective spaces, finite quotients of weighted projective spaces, and exam-
ples studied in [MW16]. The corresponding vertex pencils include examples
whose modularity properties were studied in [LY96] and [VY98]. We then
prove the Key Lemma in § 3.
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In § 4, we develop techniques for effective computation of HWp(XΓ,ψ)
(mod p) or, equivalently, #X∆,ψ ≡ #XΓ,ψ (mod p). We use these tech-
niques to study the arithmetic of vertex pencils associated to kernel pairs. We
first discuss a pencil of elliptic curves in P1 × P1 and its mirror, then study
collections of pencils of K3 surfaces associated to kernel pairs. Our main
theorem characterizes K3 vertex pencils associated to mirror kernel pairs
of polytopes that have hypergeometric structures. This theorem generalizes
examples studied by Dwork and Katz to the setting of toric hypersurfaces
and produces examples of K3 surface pencils whose moduli are related to
the moduli of elliptic curves in interesting ways.

Main Theorem. There are 32 mirror kernel pairs of three-dimensional
reflexive polytopes, of which 6 are self-dual. The mirror kernel pairs are
divided into 16 types with a common kernel; each type is associated to vertex
pencils with common Picard–Fuchs equations. Four of these types correspond
to vertex pencils of K3 surfaces with general Picard number 19 over C. If ∆
is a reflexive polytope of one of these four types, the Hasse–Witt invariant of
a member #X∆,ψ of the associated vertex pencil satisfies a hypergeometric
truncation relationship for any rational ψ, as given in the following table.

Associated to . . . Polytope pairs Hasse–Witt invariant

Fermat quartic in P3

(0, 4311),
(8, 3313),
(427, 427),
(429, 429)

[

3F2

(

1
2 ,

1
4 ,

3
4 ; 1, 1 | 256

ψ4

)](p−1)
mod p

Sextic in P(1, 1, 1, 3)
(2, 4317),
(85, 3726),
(741, 1943)

[

3F2

(

1
2 ,

1
6 ,

5
6 ; 1, 1 | 1728

ψ6

)](p−1)
mod p

Group I
(3, 4283),
(753, 754)

[

3F2

(

1
2 ,

1
3 ,

2
3 ; 1, 1 | −108

ψ3

)](p−1)
mod p

Group II
(10, 4314),
(433, 3316),
(436, 3321)

[

3F2

(

1
2 ,

1
4 ,

3
4 ; 1, 1 | 256

ψ4

)](p−1)
mod p

The hypergeometric parameters that we obtain are special; in the lan-
guage of [BCM15], they are defined over Q (see Definition 4.9) and cor-
respond to solutions with maximally unipotent monodromy at the origin.
In low dimensions, such parameters were classified in [RV01]. For 4F3 hy-
pergeometric functions, there are 14 cases. The properties of one-parameter
families of Calabi-Yau threefolds whose Picard-Fuchs equations are given
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by these parameters have been studied by many authors; see, for example,
[CYY08, DM07, CDLNT16] and the recent work of [LTYZ21]. In the case
of K3 surfaces, there are 4 multisets of hypergeometric parameters analo-
gous to the famous 14 cases for Calabi-Yau threefolds. Our main theorem
provides a uniform geometric realization for three of these four cases. We
show in Section 4.7 that the Picard-Fuchs equation of a highly symmet-
ric vertex pencil studied in [KLMSW13] is hypergeometric with parameters
(12 ,

1
2 ,

1
2 ; 1, 1). We thus obtain a geometric realization result as a corollary:

Corollary (See Corollary 4.11). Each of the four multisets of hypergeo-
metric parameters yielding 3F2 hypergeometric functions defined over Q with
maximally unipotent monodromy at the origin corresponds to the Picard-
Fuchs equation of a vertex pencil of K3 surfaces realized as hypersurfaces in
a Gorenstein Fano toric variety.

2. Toric hypersurfaces and Picard–Fuchs equations

2.1. Batyrev mirrors and special pencils

Our study is focused on particular families of hypersurfaces associated to
reflexive polytopes in combinatorially natural ways. We begin by reviewing
Batyrev mirror symmetry for toric Calabi–Yau hypersurfaces and estab-
lishing notation, then give combinatorial and geometric descriptions of the
particular objects of interest to us. For more detailed references for Batyrev
mirror symmetry, the reader may consult [CK99] for a more general expos-
itory treatment, or [Whi15] for a discussion focused on K3 hypersurfaces.
We take K3 hypersurfaces in the weighted projective space P(1, 1, 1, 3) and
their mirrors as a running example.

Let N ∼= Zk be a lattice, and let M ∼= Hom(N,Z) be the dual lattice.
Write NR andMR for the associated real vector spaces, and let ⟨ , ⟩ represent
the bilinear pairing on NR and MR induced by the duality of N and M . Let
∆ be a polytope in NR, and assume that ∆ contains the origin strictly in
its interior. The polar polytope of ∆ is given by

∆◦ = {w ∈MR | ⟨v, w⟩ ≥ −1 for all v ∈ ∆}.

Note that (∆◦)◦ = ∆. If ∆ and ∆◦ have vertices in the lattices N and M
respectively, each polytope is a reflexive polytope and we say that ∆ and ∆◦

are a mirror pair of polytopes.
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Example 2.1. Let ∆ be the simplex with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1),
and (−3,−1,−1). The polytope ∆ is reflexive and its polar dual is the sim-
plex ∆◦ with vertices (1,−1,−1), (−1, 5,−1), (−1,−1, 5), and (−1,−1,−1).

We will use a more restrictive combinatorial condition.

Definition 2.2. Let ∆ and Γ be combinatorially equivalent n-dimensional
reflexive polytopes with k vertices. If the kernels of the matrices whose
columns are given by the vertices of the polytopes ∆ and Γ are the same
submodule of Zk, we say ∆ and Γ are a kernel pair.

Example 2.3. Let ∆ be the simplex with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1),
and (−3,−1,−1), and let ∆◦ be its polar dual. Then ∆ and ∆◦ are a kernel
pair, with kernel generated by the element (3, 1, 1, 1) of Z4.

In a case such as Example 2.3, where two reflexive polytopes are both
a mirror pair and a kernel pair, we concatenate the adjectives and refer to
them as a mirror kernel pair.

We may use a lattice polytope to define a fan in two ways: by taking the
fan over the faces of the polytope, or by taking the normal fan to the poly-
tope, whose cones consist of the normal cones to each face of the polytope.
If ∆ and ∆◦ are a mirror pair, then these notions are dual: the fan over the
faces of ∆ is identical to the normal fan of ∆◦. One may also refine the fan
over the faces of a polytope using new one-dimensional cones corresponding
to the lattice points of a polytope.

The fan R over the faces of a reflexive polytope ∆ determines a k-
dimensional Gorenstein Fano toric variety VR. A general anticanonical hy-
persurface in VR is a Calabi-Yau variety. We may resolve singularities of the
ambient toric variety by refining the fan. In dimension k ≤ 4, if we take a
maximal simplicial refinement of R (using all of the lattice points of ⋄), the
resulting anticanonical hypersurface is a smooth k − 1-dimensional Calabi-
Yau manifold. In dimension k = 3, the situation is even better: not only
is the anticanonical hypersurface smoothed by maximal simplicial refine-
ment, so is the ambient toric variety (see [CK99, Corollary A.2.3]). Thus,
three-dimensional reflexive polytopes yield smooth K3 surfaces in smooth
toric varieties. A mirror pair of reflexive polytopes ∆ and ∆◦ yields mirror
families of Calabi-Yau varieties.

One may describe a toric variety associated to a reflexive polytope by us-
ing generalized homogeneous coordinates, so named because they generalize
the homogeneous coordinates used in projective space. In this construction,
if a fan Σ has q one-dimensional cones generated by polytope lattice points
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{v1, . . . , vq}, the toric variety VΣ is realized as a k-dimensional quotient of a
subset of Cq, and we have q generalized homogeneous coordinates z1, . . . , zq.

In more detail, for any subset S of {ρ1, . . . , ρq} such that S does not
span a cone of Σ, we let V (S) ⊆ Cq be the linear subspace defined by set-
ting zj = 0 for each cone ρj ∈ S, and we let Z(Σ) be the union of all such
V (S). Our toric variety will be a quotient of Cq − Z(Σ) by an appropriately
chosen subset of (C∗)q, which acts on this subset by coordinatewise multi-
plication. Let us write each of our generating lattice points vj in coordinates
as (vj1, . . . , vjk). Define a homomorphism ϕΣ : (C∗)q → (C∗)k by

(2.1) ϕΣ(t1, . . . , tq) 7→





q
∏

j=1

t
vj1
j , . . . ,

q
∏

j=1

t
vjk
j



 .

The toric variety VΣ associated with the fan Σ is given by the quotient

(2.2) VΣ = (Cq − Z(Σ))/Ker(ϕΣ).

Example 2.4. Let ∆ be the simplex with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1),
and (−3,−1,−1), and let ∆◦ be its polar dual. Take the fan R over the
faces of ∆. The one-dimensional cones of this fan are generated by v1 =
(1, 0, 0), . . . , v4 = (−3,−1,−1). The only subset of the vertices that does not
span a face of ∆, and therefore does not span a face of R, is {v1, . . . , v4}.
Thus, Z(R) is {(0, 0, 0, 0)}. The homomorphism ϕR : (C∗)4 → (C∗)3 is given
by ϕR(t1, . . . , t4) 7→

(

t1t
−3
4 , t2t

−1
4 , t3t

−1
4

)

. The kernel of ϕR consists of ele-
ments of the form (λ3, λ, λ, λ) for λ ∈ C∗, so VR is the weighted projective
space P(3, 1, 1, 1).

Now, consider the fan T over the faces of ∆◦. In this case, Z(T ) is
{(0, 0, 0, 0)} and the homomorphism ϕT : (C∗)4 → (C∗)3 is given by:

ϕR(t1, . . . , t4) 7→
(

t1t
−1
2 t−1

3 t−1
4 , t−1

1 t52t
−1
3 t−1

4 , t−1
1 t−1

2 t53t
1
4

)

.

The kernel of ϕT is generated by elements of the form (λ3, λ, λ, λ) for λ ∈ C∗

together with elements of the form (1, ζ, 1, 1) for ζ a cube root of unity. Thus,
VT is the orbifold P(3, 1, 1, 1)/C3, where C3 is the multiplicative abelian
group with 3 elements.

By refining the fans R and T using other lattice points of ∆ or ∆◦, one
can resolve singularities in the corresponding varieties.

Let us assume that Σ is a maximal simplicial refinement of the fan R
over the faces of ∆. In this case, the coordinates zi correspond to the non-
origin lattice points of ∆. We may use these coordinates to write explicit
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expressions for our Calabi-Yau hypersurfaces. Each lattice pointm in ∆◦ will
determine a monomial in the zi. Let us choose a coefficient αm associated to
each monomial and use this information to define a polynomial associated
to the vector of coefficients α:

(2.3) f̂α =
∑

m ∈M∩∆◦

αm

q
∏

j=1

z
⟨vj ,m⟩+1
j .

For a general choice of the αm, f̂α defines a smooth Calabi-Yau hypersurface.
For computational convenience, we will often work with the Laurent poly-
nomial fα obtained by restriction to the open torus. Explicitly, the Laurent
polynomial is given by:

(2.4) fα =
∑

m ∈M∩∆◦

αm

k
∏

i=1

x
⟨ei,m⟩
i ,

where the ei are standard basis vectors.
We may obtain interesting subfamilies of hypersurfaces by specializing

the αm in combinatorially natural ways, a strategy pursued for example in
[KLMSW13]. In particular, we may construct a one-parameter family by
taking the sum of the monomials corresponding to the vertices of ∆◦ and
deforming by the monomial corresponding to the origin:

Definition 2.5. Let ∆ and ∆◦ be a mirror pair of reflexive polytopes. The
vertex pencil X∆,ψ of Calabi-Yau hypersurfaces is the one-parameter family
given by solutions to the equation:

f̂∆,ψ =





∑

x ∈ vertices(∆◦)

k
∏

i=1

z
⟨vi,x⟩+1
i



+ ψ

k
∏

i=1

zi.

If ∆ is the simplex with vertices (1, 0, . . . , 0), . . . , (0, . . . , 0, 1),
(−1, . . . ,−1) in Rk, then f̂∆,ψ determines a one-parameter deformation of
the Fermat hypersurface zk+1

1 + · · ·+ zk+1
k+1 ; we view the vertex pencil as a

combinatorial generalization of this construction.
One may use these explicit expressions for Calabi-Yau hypersurfaces to

compute their Picard–Fuchs equations. Recall that a period is the integral of
a differential form with respect to a specified homology class. In particular,
periods of holomorphic forms encode the complex structure of varieties. The
Picard–Fuchs differential equation of a family of varieties is a differential
equation that describes the way the value of a period changes as we move
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through the family. Solutions to Picard–Fuchs equations for holomorphic
forms on Calabi-Yau varieties define the mirror map, which relates varia-
tions of complex structure of a family to variations of complexified symplec-
tic structure of the mirror family. The Fermat pencil and its Greene–Plesser
mirror have the same Picard–Fuchs equation. One may generalize this ob-
servation using the notion of a mirror kernel pair.

Lemma 2.6. Let ∆ and Γ be a kernel pair of reflexive polytopes, and sup-
pose ∆◦ and Γ◦ are also a kernel pair. Then the Picard–Fuchs equations of
the vertex pencils X∆,ψ and XΓ,ψ are the same.

Proof. By [MW16, Lemma 4.1], if R and T are the fans over the faces of
∆ and Γ respectively, then there exists a toric variety W and finite abelian
subgroups of the torus A and B such that V (R) =W/A and V (T ) =W/B.
Because ∆◦ and Γ◦ are also a kernel pair, the polynomials f̂∆,ψ and f̂Γ,ψ
determining the vertex pencils are identical. The vertex pencils may be dif-
ferent, due to the presence of finite quotient maps. But the Picard–Fuchs
equation is preserved under finite quotient maps, so it is the same in all
cases. □

Classical mirror symmetry posits a correspondence between complex and
Kähler moduli spaces of Calabi-Yau varieties. A key part of this correspon-
dence is the notion of a large complex structure limit point. In the case of
Calabi-Yau hypersurfaces in a Gorenstein Fano toric variety corresponding
to a reflexive polytope ∆, this point is determined by the origin of the poly-
tope ∆◦ in an appropriate moduli space construction (see [CK99, Chapter
6], [HLZ16]). Though the moduli space construction may in general be quite
intricate, in the case of our vertex pencils, the complex structure limit point
is simply ψ = ∞. We will make changes of variables as necessary in order to
invoke results depending on the complex structure limit point.

2.2. Kernel pairs in two and three dimensions

In low dimensions, one may use the database of reflexive polytopes incor-
porated in [S+20] to classify kernel pairs. The two-dimensional case is dis-
cussed in [MW16] in the context of elliptic curve hypersurfaces. There are
two mirror kernel pairs of reflexive triangles, a self-dual triangle, a kernel
pair of quadrilaterals corresponding to P1 × P1 and its mirror, a self-dual
quadrilateral, a self-dual pentagon, and a self-dual hexagon.

In three dimensions, there are 417 polytopes in the list of 4319 reflexive
polytopes that belong to a nontrivial kernel pair. Let us classify the mirror
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kernel pairs. The mirror kernel pairs may be clustered into larger sets of com-
binatorially equivalent polytopes with the same associated matrix kernels.
We list the simplices, which are associated to weighted projective spaces and
finite quotients of projective spaces, in Table 1, using the numbering from
the SageMath database of reflexive polytopes (see [S+20]).

Weights Polytope pairs

(1, 1, 1, 1) (0, 4311), (8, 3313), (427, 427), (429, 429)

(1, 1, 1, 3) (2, 4317), (85, 3726), (741, 1943)

(1, 1, 2, 2) (1, 4281), (742, 742), (743, 744)

(1, 1, 2, 4) (9, 4312), (428, 3315), (430, 3312), (431, 3314)

(1, 1, 4, 6) (88, 4318), (1946, 3725)

(1, 2, 2, 5) (31, 4255)

(1, 2, 3, 6) (89, 4228), (1944, 1948), (1947, 1947)

(1, 2, 6, 9) (745, 4282)

(1, 3, 4, 4) (87, 3727)

(1, 3, 8, 12) (1949, 4229)

(1, 4, 5, 10) (1114, 3993)

(1, 6, 14, 21) (4080, 4080)

(2, 3, 3, 4) (86, 1945)

(2, 3, 10, 15) (3038, 3038)

Table 1: Three-dimensional reflexive simplices and associated weights

The remaining mirror kernel pairs fall into two groups. We follow
[MW16] by referring to them as Group I and Group II. A representative for
Group I is given by reflexive polytope 3 in the [S+20] database, which has
vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0,−1), and (−1,−1, 0); a represen-
tative for Group II is given by reflexive polytope 10 in the [S+20] database,
which has vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (−2, 0,−1), and (−2,−1, 0). We
list the polytopes in each group in Table 2.

3. Hasse-Witt matrices for Calabi-Yau toric hypersurfaces

In this section, we combine results of [HLYY23] with the analysis of Picard–
Fuchs equations in the previous section to prove the Key Lemma.

Katz gave an algorithm for the Hasse-Witt matrix of a Calabi–Yau hy-
persurface in projective space:
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Group Polytope pairs

Group I
(3, 4283),
(753, 754)

Group II
(10, 4314),
(433, 3316),
(436, 3321)

Table 2: Three-dimensional non-simplex mirror kernel pairs

Algorithm 3.1 ([Kat72] (2.3.7.17)). Let X be a smooth Calabi-Yau hy-
persurface of degree d = n+ 1 in Pn that is given by an equation f̂ . Then
the Hasse-Witt matrix HWp(X) is given by the coefficient of (z0 · · · zn)

p−1

in f̂p−1.

Huang, Lian, Yau, and Yu extended this algorithm to the case of a
Calabi–Yau hypersurface in a smooth toric variety, writing their result in
terms of Laurent polynomials.

Algorithm 3.2 ([HLYY23] (Corollary 2.3)). Let fα be a Laurent poly-
nomial determining a smooth toric Calabi–Yau hypersurface X. Then the
Hasse-Witt matrix HWp(X) is given by the coefficient of the constant term
of fp−1

α .

The constant term of fp−1
α corresponds to the (z0 · · · zq)

p−1 term in general-
ized homogeneous coordinates. Samol and van Straten studied congruences
for the constant term of fp−1

α in [SvS15], using an analogy to periods that
the results of [HLYY23] and [BV19] make precise. We emphasize that al-
though Algorithm 3.2 is phrased in terms of the Laurent polynomial for
computational convenience, the underlying geometric object is a Calabi–
Yau hypersurface in a complete toric variety, not merely the big torus.

Huang, Lian, Yau, and Yu showed that the Hasse-Witt matrix of a
Calabi-Yau variety realized as a hypersurface in a smooth toric variety can
be described (mod p) as the truncation of a series expansion of the period
integral.

Theorem 3.3 ([HLYY23] (Theorem 1.2)). Let fα be a family of Lau-
rent polynomials determining a family of toric Calabi-Yau hypersurfaces, as
in Equation 2.4. Suppose γ is a large complex structure limit point, that is,
fγ has maximally unipotent monodromy.
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1) The Hasse-Witt matrix HWp is a polynomial in αm of degree p− 1.

2) The period integral I for the holomorphic form can be extended as a

holomorphic function at γ and has the form 1
α0

T
(

αm

α0

)

, where T
(

αm

α0

)

is a Taylor series in {αm

α0

| m ̸= 0} with integer coefficients.

3) The Hasse-Witt matrix satisfies the truncation relation

HWp ≡

[

T

(

αm
α0

)]p−1

(mod p),

where [·]p−1 represents the truncation of a series at degree p− 1.

We now apply Theorem 3.3 to vertex pencils obtained from combinato-
rially equivalent reflexive polytopes to prove our Key Lemma.

Lemma 3.4 (Key Lemma). Let ∆ and Γ be a kernel pair of n-
dimensional reflexive polytopes, and suppose ∆◦ and Γ◦ are also a kernel
pair. Let V∆ and VΓ be smooth toric varieties determined by maximal sim-
plicial refinements of the fans over the faces of ∆ and Γ, respectively. Let
X∆,ψ and XΓ,ψ be the corresponding vertex pencils. Then for any rational ψ
and prime p such that X∆,ψ and XΓ,ψ are smooth, their Hasse–Witt matrices
are the same.

Proof. Let B◦
∆ and B◦

Γ be the matrices whose columns are given by the
vertices of the polytopes ∆◦ and Γ◦, respectively. Consider the diago-
nal pencils f∆ and fΓ. We may write f∆,ψ as the Laurent polynomial
z
w1 + · · ·+ z

wℓ + ψz0 and z
w1 + · · ·+ z

wℓ + ψz0 and fΓ,ψ as the Laurent
polynomial zw

′

1 + · · ·+ z
w′

ℓ + ψz0, where {w1, . . . , wℓ} are the vertices of ∆
◦

and {w′
1, . . . , w

′
ℓ} are the vertices of Γ◦. By Algorithm 3.2, HWp(X∆,ψ) is

given by the constant term of (zw1 + · · ·+ z
wℓ + ψz0)p−1. Contributions

to the constant term are given by nonnegative integers α1, . . . , αℓ such
that α1w1 + · · ·+ αℓwℓ = 0. Thus, the vector (α1, . . . , αℓ) is an element of
the kernel of B◦

∆. Meanwhile, HWp(XΓ,ψ) is given by the constant term
of (zw

′

1 + · · ·+ z
w′

ℓ + ψz0)p−1. We see that the vector (α1, . . . , αℓ) yields
a contribution to HWp(X∆,ψ) if and only if it yields a contribution to
HWp(XΓ,ψ). □

Lemma 3.4 immediately yields a relationship between point counts
(mod p).

Corollary 3.5. Let ∆ and Γ be a kernel pair of n-dimensional reflexive
polytopes, and suppose ∆◦ and Γ◦ are also a kernel pair. Let V∆ and VΓ
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be smooth toric varieties determined by maximal simplicial refinements of
the fans over the faces of ∆ and Γ, respectively. Let X∆,ψ and XΓ,ψ be the
corresponding vertex pencils. Then for any rational ψ and prime p such that
X∆,ψ and XΓ,ψ are smooth,

#X∆,ψ ≡ #XΓ,ψ (mod p).

One common situation where the hypotheses of Theorem 3.4 and Corol-
lary 3.5 apply is that of reflexive simplices admitting a toric resolution of
singularities. Up to resolution of singularities, the toric variety determined
by a reflexive simplex is either a Gorenstein Fano weighted projective space
or a quotient of such a projective space by a finite abelian group. In particu-
lar, Theorem 3.4 applies to the Greene–Plesser mirrors of K3 hypersurfaces
in Gorenstein Fano weighted projective spaces. We suspect that the tech-
niques of [HLYY23] may be modified to apply to resolutions of singularities
of Calabi-Yau hypersurfaces in Gorenstein Fano weighted projective spaces
that are not themselves smooth, though pursuing such a hypothesis is be-
yond the scope of the current work.

Example 3.6. The weighted projective space WP(1, 2, 2, 5) is a Gorenstein
Fano threefold. As a toric variety, this space is determined by the three-
dimensional reflexive polytope ∆ with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1),
and (−5,−2,−2). The polar dual ∆◦ has vertices (1,−1,−1), (−1, 4,−1),
(−1,−1, 4), and (−1,−1,−1). ∆ and ∆◦ are combinatorially equivalent, and
the kernels of the matrices whose columns are given by their vertices form
the same submodule of Z4.

The pencil of K3 surfaces X∆,ψ is a resolution of singularities of the
diagonal pencil given by solutions to z100 + z51 + z52 + z23 + ψz0 · · · z3 = 0. Let
G be the group of diagonal symmetries of the pencil that preserve the holo-
morphic (2, 0)-form. Then G is a finite abelian group isomorphic to Z/5.
The Greene–Plesser mirror of X∆,ψ is the resolution of singularities of the
quotient X∆,ψ/G. But we may also obtain this mirror by taking the diagonal
pencilX∆◦,ψ within the toric variety corresponding to ∆◦. We conclude that,
for any rational ψ and prime p such that both X∆,ψ and its Greene-Plesser
mirror are smooth, both threefolds have the same Hasse–Witt matrix and
#X∆,ψ ≡ X∆◦,ψ (mod p).

Lemma 3.4 is powered by the relationship between periods and point
counts over finite fields. The periods of a general anticanonical Calabi-Yau
hypersurface in a Gorenstein Fano toric variety satisfy a GKZ generalized
hypergeometric system. When we specialize to a vertex pencil, we obtain
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varieties with special geometric and arithmetic properties. In the next sec-
tion, we study specific examples of elliptic curve and K3 surface vertex
pencils whose Picard–Fuchs equations are classical hypergeometric differ-
ential equations, and remark on the relationships between geometric and
arithmetic properties in this context.

4. Proof of the Main Theorem

We are now ready to prove our Main Theorem. First, we need polytopes
satisfying the hypothesis of our Key Lemma 1. In Section 2.2, we classified all
kernel pairs in three dimensions. The polytopes listed as Group I and Group
II in Table 2 determine vertex pencils of K3 surfaces whose general member
has Picard rank 19 over C; this corresponds to a natural one-parameter
complex deformation space. Of the polytopes listed in Table 1, only those in
weights (1, 1, 1, 1) and (1, 1, 1, 3) determine vertex pencils with this property.
(The vertex pencils corresponding to the other polytopes in the table fit
naturally into multiparameter families.)

In two dimensions, the most interesting case is the cross-polytope with
vertices (±1, 0) and (0,±1), and its polar dual. Geometrically, the two-
dimensional cross-polytope determines a family of elliptic curves in P1 × P1,
related to the Legendre family. We begin by studying this vertex pencil.
In doing so we establish the techniques for proving our Main Theorem and
remark on the connection to classical work of Igusa [Igu58].

We next prove the Main Theorem, i.e., we compute the Hasse-Witt ma-
trix as a truncated hypergeometric function for the four types of Picard rank
19. We follow the approach of [Sal13a, Algorithm 3], which allows us to com-
pute the hypergeometric parameters of a given Picard–Fuchs equation.

Picard-rank 19 K3 surfaces are very special. We make some remarks
on their connection to elliptic curves, related hypergeometric functions, and
modularity.

4.1. Elliptic curves in P1
× P1

Let ∆ be the cross-polytope with vertices (±1, 0) and (0,±1). The vertex
pencil X∆,ψ is a pencil of elliptic curves in P1 × P1. Applying the Griffiths–
Dwork method, one may show that its Picard–Fuchs equation is given by:

(4.1)
ψ

(ψ3 − 16ψ)
F (ψ) +

(3ψ2 − 16)

(ψ3 − 16ψ)
F ′(ψ) + F ′′(ψ) = 0.
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Proposition 4.1. The number of points of X∆,ψ is

NFp
(P1 × P1) ≡ 1 +

[

2F1

(

1

2
,
1

2
; 1 |

ψ2

16

)](p−1)

mod p,

where [·]n denotes the truncation of the series at the n-th term.

Proof. The companion matrix to the Picard–Fuchs equation 4.1 is





0 1
−ψ

(ψ3 − 16ψ)

(−3ψ2 + 16)

(ψ3 − 16ψ)



 .

This represents a linear system of differential equations of the form
d

dψ
y = A(ψ)y(ψ).

This system does not necessarily have regular singular points at 0 and
∞, but a simple change of basis gives an equivalent system which does (c.f.
[Beu09]).

We can thus write the system with a new matrix, given by





0 1
−ψ2

(ψ3 − 16ψ)
1 +

(−3ψ2 + 16)

(ψ3 − 16ψ)



 =





0 1
−ψ2

(ψ3 − 16ψ)

−2ψ2

(ψ3 − 16ψ)





=
1

ψ





0 1
−ψ2

(ψ2 − 16)

−2ψ2

(ψ2 − 16)





Changing variables so that z = ψ2, we get

1

z





0 1/2
−z

2(z − 16)

−z

(z − 16)





Now we can change variables so that z = 16λ, and we get

1

λ





0 1/2
−λ

2(λ− 1)

−λ

(λ− 1)





The system defined by this matrix has regular singular points at 0, 1,∞.
The eigenvalues of the residue at 0 will give us the β parameters of the
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hypergeometric function and the eigenvalues of the residue at ∞ will give
us the α parameters.

The residue at λ = 0 is
(

0 1/2
0 0

)

The eigenvalues are clearly 0, 0, and thus β = {0, 0}.
We change variables to get a system with simple pole at ∞, and get

1

ζ





0 −1/2
1

2(1− ζ)

1

(1− ζ)





The residue at ζ = 0 is
(

0 −1/2
1/2 1

)

which has eigenvalues α = {1/2, 1/2}.
Thus, this system is related to a hypergeometric function of the form

2F1

(

1

2
,
1

2
; 1 |

ψ2

16

)

.

Remark 4.2. An n-th order Picard Fuchs equation has maximally unipo-
tent monodromy if and only if it has indicial equation of the form (λ− ℓ)n

(see [CK99, §5.1] for a discussion). In the hypergeometric case, this condition
is equivalent to requiring that the β parameters be integers.

Notice that this monodromy group (with denominator parameter 1) does
have this desired property.

Finally, by Theorem 3.4 we now know that the truncated hypergeometric
function is our Hasse–Witt invariant, and that the number of points is

NFp
(P1 × P1) ≡ 1 +

[

2F1

(

1

2
,
1

2
; 1 |

ψ2

16

)](p−1)

mod p.

□

Remark 4.3. This hypergeometric function appears in many classical re-
sults. In Igusa’s work [Igu58], it is geometrically related to the Legendre
family of elliptic curves, and according to [Har98], based on work by [CN79],
it is also associated to the modular group Γ0(4).
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4.2. Fermat quartic in P3

The Fermat quartic is the K3 surface defined by

(4.2) X : x40 + x41 + x42 + x43 − 4ψx0x1x2x3 = 0.

Its Picard-Fuchs equation and Hasse-Witt matrix have been studied ex-
tensively, starting with the seminal work of Dwork [Dwo69, §6]. In [Sal13b],
using p-adic methods, we obtain that

NFp
(X) ≡ 1 +

[

3F2

(

1

2
,
1

4
,
3

4
; 1, 1 |

1

ψ4

)](p−1)

mod p.

4.3. Sextic in P(1, 1, 1, 3)

We consider the K3 surface family defined by

(4.3) x20 + x61 + x62 + x63 − ψx0x1x2x3 = 0.

The Picard-Fuchs differential equation for this pencil is

F ′′′(ψ) +
6ψ6 + 5184

ψ7 − 1728ψ
F ′′(ψ)(4.4)

+
7ψ6 − 5184

ψ8 − 1728ψ2
F ′(ψ) +

ψ3

ψ6 − 1728
F (ψ) = 0.

Proposition 4.4. Let X∆,ψ be the vertex pencil of K3 surfaces in 4.3.
Then,

NFp
(X) ≡ 1 +

[

3F2

(

1

2
,
1

6
,
5

6
; 1, 1 |

1728

ψ6

)](p−1)

mod p.

Proof. As in Section 4.1, we first write the companion matrix of the Picard–
Fuchs differential equation:









0 1 0
0 0 1

−ψ3

ψ6 − 1728

−7ψ6 + 5184

ψ2(ψ6 − 1728)

−6ψ6 − 5184

ψ(ψ6 − 1728)









A change of basis yields a linear system of differential equations with
regular singular points at 0 and ∞:
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1

ψ









0 1 0
0 1 1

−ψ6

ψ6 − 1728

−7ψ6 + 5184

ψ6 − 1728
2 +

−6ψ6 − 5184

ψ6 − 1728









=
1

ψ









0 1 0
0 1 1

−ψ6

ψ6 − 1728

−7ψ6 + 5184

ψ6 − 1728

−4ψ6 − 8640

ψ6 − 1728









We do a change of variables so that z = ψ6:

1

z









0 1/6 0
0 1/6 1/6
−z

6(z − 1728)

−7z + 5184

6(z − 1728)

−4z − 8640

6(z − 1728)









And finally, we do a change of variables so that the system has regular
singular points around 1, by letting λ = z

1728 :

1

λ









0 1/6 0
0 1/6 1/6
−λ

6(λ− 1)

−7λ+ 3

6(λ− 1)

−4λ− 5

6(λ− 1)









And now we can compute the hypergeometric denominator parameters
by computing the eigenvalues of the residue at 0:





0 1/6 0
0 1/6 1/6
0 −1/2 5/6



 ,

which are β = {0, 1/3, 2/3}. A simple change of variables gives us the system
centered at ∞, by letting ξ = 1

z
:

1

ξ









0 −1/6 0
0 −1/6 −1/6
1

6(1− ξ)

−3ξ + 7

6(1− ξ)

5ξ + 4

6(1− ξ)









And so we obtain the residue at ∞
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



0 −1/6 0
0 −1/6 −1/6
1/6 7/6 2/3



 ,

whose eigenvalues give us the numerator parameters, α = {1/6, 1/6, 1/6}.
Thus, the associated hypergeometric function is

3F2

(

1

6
,
1

6
,
1

6
;
1

3
,
2

3
|
ψ6

1728

)

.

By Theorem 3.3, we require that the Picard–Fuchs equation have max-
imally unipotent monodromy around 0. By Remark 4.2, this is clearly not
the case in the above computation. However, the change of variables sending
z to 1/ζ provides us with another hypergeometric differential equation that
does have the desired monodromy. In this particular instance, that hyper-
geometric function is

3F2

(

1

2
,
1

6
,
5

6
; 1, 1 |

1728

ψ6

)

.

And thus, the point count is

NFp
(X) ≡ 1 +

[

3F2

(

1

2
,
1

6
,
5

6
; 1, 1 |

1728

ψ6

)](p−1)

mod p.

□

4.4. Group I

We now consider K3 surface examples associated to the set of reflexive poly-
topes identified in [MW16] as Group I. This group contains four combina-
torially equivalent three-dimensional polytopes: reflexive polytope 3 in the
[S+20] database, with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0,−1), and
(−1,−1, 0), its polar dual polytope 4283, and the pair of polar polytopes
753 and 754. The kernel of the matrix whose columns are given by the ver-
tices of ∆ is the same submodule of Z5 for any polytope ∆ in Group I; since
the set is closed under polar duality, the same condition holds for polar
polytopes ∆◦.
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For any ∆ in Group I, the Picard-Fuchs differential equation for the
vertex pencil of K3 surfaces X∆,ψ is

F ′′′(ψ) +
6(ψ3 + 27)

ψ4 + 108ψ
F ′′(ψ)(4.5)

+
7ψ2

ψ4 + 108ψ
F ′(ψ) +

ψ

ψ4 + 108ψ
F (ψ) = 0.

Proposition 4.5. Let X∆,ψ be the vertex pencil of K3 surfaces associated
to the three-dimensional reflexive polytope with index 3, 4283, 753, or 784.
Then,

NFp
(X) ≡ 1 +

[

3F2

(

1

2
,
1

3
,
2

3
; 1, 1 | −

108

ψ3

)](p−1)

mod p.

Proof. Using the same approach described for Proposition 4.4, one finds that
the Picard–Fuchs equation is equivalent to the hypergeometric differential
equation satisfied by

3F2

(

1

3
,
1

3
,
1

3
;
1

3
,
1

6
| −

ψ3

108

)

.

Again, the associated Picard–Fuchs equation does not have maximally
unipotent monodromy around 0. By the same change of variables we can
resolve this, and obtain a hypergeometric differential equation that does have
the desired monodromy. In this particular instance, that hypergeometric
function is

3F2

(

1

2
,
1

3
,
2

3
; 1, 1 | −

108

ψ3

)

.

And thus, the point count is

NFp
(X) ≡ 1 +

[

3F2

(

1

2
,
1

3
,
2

3
; 1, 1 | −

108

ψ3

)](p−1)

mod p.

□

4.5. Group II

Similarly, we may analyze K3 surface examples associated to the set of reflex-
ive polytopes identified in [MW16] as Group II. This group contains six com-
binatorially equivalent three-dimensional polytopes: reflexive polytope 10 in
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the [S+20] database, with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (−2, 0,−1), and
(−2,−1, 0), its polar dual polytope 4314, the pair of polar polytopes 433 and
3316, and the pair of polar polytopes 436 and 3321. As before, the kernel of
the matrix whose columns are given by the vertices of ∆ is the same sub-
module of Z5 for any polytope ∆ in Group II, and the set is closed under
polar duality.

For any ∆ in Group II, the Picard-Fuchs differential equation for the
vertex pencil of K3 surfaces X∆,ψ is

(4.6) F ′′′(ψ) +
6(ψ3)

ψ4 − 256
F ′′(ψ) +

7ψ2

ψ4 − 256
F ′(ψ) +

ψ

ψ4 − 256
F (ψ) = 0.

Proposition 4.6. Let X∆,ψ be the vertex pencil of K3 surfaces associated
to the three-dimensional reflexive polytope with index 10, 4314, 433, 3316,
436, or 3321. Then

NFp
(X) ≡ 1 +

[

3F2

(

1

2
,
1

4
,
3

4
; 1, 1 |

256

ψ4

)](p−1)

mod p.

Proof. Again, using the same approach described for Proposition 4.4, one
finds that the Picard–Fuchs equation is equivalent to the hypergeometric
differential equation satisfied by

3F2

(

1

4
,
1

4
,
1

4
;
1

2
,
3

4
|
ψ4

256

)

.

The hypergeometric differential equation with maximally unipotent
monodromy around 0 corresponds to the hypergeometric function

3F2

(

1

2
,
1

4
,
3

4
; 1, 1 |

256

ψ4

)

.

And thus, the point count is

NFp
(X) ≡ 1 +

[

3F2

(

1

2
,
1

4
,
3

4
; 1, 1 |

256

ψ4

)](p−1)

mod p.

□

4.6. Symmetric square roots

Our vertex pencils are combinatorially natural one-parameter families of K3
surfaces. The vertex pencils associated to Group I or Group II all have Picard
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rank 19. This property is special: a general K3 hypersurface in the toric
variety obtained from polytope 3 (in Group I) or polytope 10 (in Group II)
would have Picard rank 2, for example (see [Whi15] for a discussion of such
computations). The Picard–Fuchs equations of Picard rank 19 K3 surfaces
have particularly nice properties:

Theorem 4.7. [Dor00] The Picard–Fuchs equation of a family of rank-19
lattice-polarized K3 surfaces can be written as the symmetric square of a
second-order homogeneous linear Fuchsian differential equation.

In our case, one can obtain the conclusion of Theorem 4.7 a bit more
quickly. A classical result on hypergeometric functions known as Clausen’s
formula (cf. [Bai64]) states that

2F1

(

a, b; a+ b+
1

2
|z

)2

= 3F2

(

2a, 2b, a+ b; 2a+ 2b, a+ b+
1

2
|z

)

.

Applying this to our two examples, we find that for the Group I hyper-
geometric functions,

(4.7) 2F1

(

1

6
,
1

3
; 1 | −

108

ψ3

)2

= 3F2

(

1

2
,
1

3
,
2

3
; 1, 1 | −

108

ψ3

)

,

and for Group II,

(4.8) 2F1

(

1

8
,
3

8
; 1|

256

ψ4

)2

= 3F2

(

1

2
,
1

4
,
3

4
; 1, 1 |

256

ψ4

)

.

The equations (4.7) and (4.8) relate our K3 surfaces to some very special
Gaussian hypergeometric functions. These hypergeometric functions are re-
lated to classical modular groups. In a process similar to the elliptic curves
case, by consulting [Har98] and [CN79], we see that

2F1

(

1

6
,
1

3
; 1|ψ

)

is associated to the modular group Γ0(3)+ (the + meaning it has all of its
Atkin Lehner involutions).

Finally, the hypergeometric function

2F1

(

1

8
,
3

8
; 1|ψ

)

is associated with the modular group Γ0(2)+.
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Remark 4.8. It would be tempting to say that Clausen’s formula or The-
orem 4.7 imply that the point counts for these two examples are quadratic
residues (mod p), but the true situation is more subtle. Due to translations
between truncated generalized hypergeometric functions and their finite field
analogs, this only works for certain primes. For example, for Group II and
the prime 13, the point count is not a quadratic residue for ψ = 1, 5, 8, 12.

4.7. Special hypergeometric parameters

Let us recall the following technical condition on hypergeometric function
parameters:

Definition 4.9 ([BCM15]). We say the hypergeometric function given
by the parameters (α1, . . . , αd) and (β1, . . . , βd−1) is defined over Q if the
coefficients of the polynomials

∏d
j=1(x− e2πiαj ) and

∏d−1
j=1(x− e2πiβj ) are

in Q.

Hypergeometric functions defined over Q satisfy many nice properties.
The multisets of parameters corresponding to 3F2 hypergeometric functions
defined over Q with maximally unipotent monodromy were classified in
[RV01]. The possible αj parameters are (12 ,

1
4 ,

3
4), (12 ,

1
6 ,

5
6), (12 ,

1
3 ,

2
3), and

(12 ,
1
2 ,

1
2); because we require maximally unipotent monodromy at the origin,

the βj parameters are always (1, 1).
We identified three of the four multisets of αj parameters as the Picard-

Fuchs equations of vertex pencils in our main theorem. The question of
whether we can obtain the remaining multiset of parameters in a similar
fashion naturally arises. In fact, the remaining parameters can also be ob-
tained as the Picard-Fuchs equation of a vertex pencil of K3 surfaces studied
by the second author and several collaborators:

Lemma 4.10 ([KLMSW13]). Let ∆ be the reflexive octahedron
with vertices (1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1, 1), (1, 1,−1), and
(−1,−1,−1). The Picard-Fuchs equation for the vertex pencil of ∆ satis-
fies

(4.9)
d3ω

dt3
+

6(t2 − 32)

t(t2 − 64)

d2ω

dt2
+

7t2 − 64

t2(t2 − 64)

dω

dt
+

1

t(t2 − 64)
ω,

where we have made the change of variables t = 1/ψ.

Using the methods described in the previous sections, one can
show that this Picard-Fuchs equation is hypergeometric with parameters
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3F2

(

1
2 ,

1
2 ,

1
2 ; 1, 1 | t

2

64

)

. Thus, we have proved the following geometric real-

ization result:

Corollary 4.11. Each of the four multisets of hypergeometric parameters
yielding 3F2 hypergeometric functions defined over Q with maximally unipo-
tent monodromy at the origin corresponds to the Picard-Fuchs equation of a
vertex pencil of K3 surfaces realized as hypersurfaces in a Gorenstein Fano
toric variety.
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