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Asymptotics of the eigenvalues and Abel

basis property of the root functions of

new type Sturm-Liouville problems

O. Sh. Mukhtarov, K. Aydemir, and S. Y. Yakubov

The main goal of this study is to investigate the main spectral
properties of a new type Sturm-Liouville problems(SLP’s). The
problems studied here differs from the classical SLP’s in that,
the equation contain an abstract linear operator which can be
non-selfadjoint and unbounded in the Hilbert space of square-
integrable functions, and the boundary conditions contain an ad-
ditional transmission conditions at an internal singular point. So,
SLP’s under consideration are not purely differential.

We emphasize that this type of non-classical SLP’s which in-
cludes an abstract linear operator in differential equation, was
studied by the authors of this work for the first time in the lit-
erature. Naturally, the study of such type non-classical SLP’s are
much more complicated than the classical purely differential SLP’s,
because it is not clear how to apply the known methods of the
Sturm-Liouville theory to problems of this type. The main diffi-
culties lie in the derivation of such important spectral properties
as the discreteness of the spectrum and the completeness of the
corresponding eigenfunctions.

First, we establish isomorphism and coerciveness with respect
to the spectral parameter for the corresponding nonhomogeneous
problem. Based on these results and using our own approaches we
prove that the spectrum of the main problem is discrete. Then
we derive some asymptotic formulas for the eigenvalues. Finally
it is shown that the system of root functions (i.e. eigen and as-
sociated functions) form an Abel basis of order α, for all α > 1.
The obtained results are new even in the case when the problem
under consideration does not contain an additional transmission
conditions.
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1. Introduction

Self-adjoint boundary value problems(BVPs, for short) are of significant
importance in many models of applied mathematics and quantum me-
chanics in spherical and cylindrical geometries. Among these BVPs, the
Sturm-Liouville problems is a typical one. Many physical processes, such
as the vibration of strings, the interaction of atomic particles, electrody-
namics of complex medium, aerodynamics, polymer rheology or the earth’s
free oscillations yields Sturm-Liouville eigenvalue problems(see, for example,
[14, 23, 33, 35–38] and references cited therein). Generally, the separation of
variables method was applied on the two-order partial differential equation
to obtain a Sturm-Liouville problem for each independent variable. This
method is a cornerstone in the study of partial differential equations, and
is a major element in physical problems. For example, consider a boundary
value problem for the one-dimensional wave equation

ρ0utt = (kux)x, 0 ≤ x ≤ L,

u(0, t) = u(L, t) = 0,

for the longitudinal displacement u(x; t) of a string of length L with mass-
density ρ0(x) and stiffness k(x), both of which we assume are smooth, strictly
positive functions on 0 ≤ x ≤ L. Looking for separable time-periodic solu-
tions we get Sturm-Liouville problem

−(kφ′)′ = λρ0φ, φ(0) = φ(L) = 0.

Sturm Liouville theory was developed collaboratively by Charles-Franciois
Sturm (1803- 1855) and Joseph Liouville (1809-1882) in order to generalise
a relatively disorganised array of second order linear differential equations
used to model physical problems. These included Bernoulli’s work on vi-
brating strings and Liouville’s own work on heat conduction [25]. In 1910
Hermann Weyl [43] gave the first rigorous treatment, in the case of an equa-
tion of Sturm-Liouville type, of cases where continuous spectra can occur.
The theory was particularly significant because it provided the first qualita-
tive theory of differential equations, and was thus very useful for solutions
that could not be solved explicitly. These problems involve self-adjoint (dif-
ferential) operators which play an important role in the spectral theory
of linear operators and the existence of the eigenfunctions. The develop-
ment of classical, rather than the operatoric, Sturm-Liouville theory in the
years after 1950 can be found in various sources; in particular in the texts
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of Atkinson [4], Coddington and Levinson [12], Levitan and Sargsjan [26]
and Naimark [32]. Spectral problems associated with differential operators
having only a discrete spectrum and depending polynomially on the spectral
parameter have been considered by Gohberg and Krein [15], and by Keldysh
[22]. They studied the spectrum and principal functions of such problems
and showed the completeness of the principal functions in the corresponding
Hilbert function space. There are a lot of studies about the spectrum of such
operators [1, 2]. For the background and applications of the boundary value
problems to different areas, we refer the reader to the monographs and some
recent contributions as [1, 3, 5–9, 11, 17, 19, 20, 27, 30, 31, 39]. Note that
in recent years, there has been growing interest in boundary- value prob-
lems with interior singularities(see, for example, [6, 7, 9, 11, 16, 30, 41] and
references cited therein).

In this study we shall investigate some spectral aspects of a new type
Sturm-Liouville equation involving an abstract linear operator A, namely
the ”differential” equation

(1.1) Lu ≡ p(x)u′′ +Au = λu x ∈ [−1, 0) ∪ (0, 1]

together with boundary conditions at the end-points x = −1, 1 given by

(1.2) L1u ≡ α0u(−1) + α1u
′(−1) = 0

(1.3) L2u ≡ β0u(1) + β1u
′(1) = 0

and the transmission conditions at the point of singularity x = 0 given by

(1.4) u′(0−) = γ0u(0
−) + δ0u(0

+) = 0

(1.5) u′(0+) = γ1u(0
−) + δ1u(0

+) = 0

where p(x) = p1 for x ∈ [−1, 0), p(x) = p2 for x ∈ (0, 1]; pi, αi, βij , δi, γi (i =
0, 1) are real numbers; p1 ̸= 0, p2 ̸= 0, |α0|+ |α1| ≠ 0, |β0|+ |β1| ≠ 0; λ is
a complex spectral parameter. Transmission problems appear frequently in
various fields of physics and technics [38, 41, 42]. For instance, in electrostat-
ics and magnetostatics the model problem which describes the heat transfer
through an infinitely conductive layer is a transmission problem (see, [34]
and the references listed therein). Another completely different field is that
of “hydraulic fracturing” (see, [10]) used in order to increase the flow of oil
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from a reservoir into a producing oil well. Further examples can be found in
Dautray and Lions [13, 24].

1.1. Examples

We emphasize that the non-classical Sturm-Liouville problems of the form
(1.1)–(1.5) containing an abstract linear operator A in the equation was in-
vestigated by the authors of this study for the first time in the literature.
The results obtained in this paper are applicable to a wide class of bound-
ary value problems, the spectral properties of which have not been studied
previously. To verify this let us give some interesting examples.

1. The ”Sturm-Liouville equations” s of the forms

p(x)u′′(x) + q(x)u′(
x

2
) + r(x)u(

x

3
) = λu(x), x ∈ [−1, 0) ∪ (0, 1]

and

p(x)u′′(x) + q(x)u′(ξ1) + r(x)u(ξ0) = λu(x), x ∈ [−1, 0) ∪ (0, 1]

or more general equations of the form

p(x)u′′(x) + q(x)u′(φ1(x)) + r(x)u(φ0(x)) = λu(x), x ∈ [−1, 0) ∪ (0, 1]

together with the same boundary and transmission conditions (1.2)–(1.5) are
the special cases of the considered problem (1.1)–(1.5), because the linear
operator

Au := q(x)u′(φ1(x)) + r(x)u(φ0(x))

acted compactly from the Hilbert space W 2
2 (−1, 0)⊕W 2

2 (0, 1) into the
Hilbert space L2(−1, 0)⊕ L2(0, 1) and acted boundedly from the Hilbert
space W 1

2 (−1, 0)⊕W 1
2 (0, 1) into the Hilbert space L2(−1, 0)⊕ L2(0, 1)( i.e.

this operator satisfies the conditions of the main Theorems 4.3, 4.4 and
5.2), where p(x) = p1 for x ∈ [−1, 0), p(x) = p2 for x ∈ (0, 1], p1 ̸= 0, p2 ̸= 0;
p1, p2 are real numbers; ξ0, ξ1 ∈ (−1, 0) ∪ (0, 1) are arbitrary points; the real-
valued functions q(x), r(x), φ0(x) and φ1(x) are continuous on [−1, 0) ∪ (0, 1]
with the finite limits q(0±), r(0±), φ0(0±) and φ1(0±); φ0(x) and φ1(x) are
mappings of (−1, 0) ∪ (0, 1) into itself.

2. The ”Sturm-Liouville equations” of the forms
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p(x)u′′(x) + q(x)u′(φ1(x)) + r(x)u(φ0(x))

+

1∑

i=0

( 0−∫

−1

K1i(x, t)u
(i)(t)dt+

1∫

0+

K2i(x, t)u
(i)(t)dt

)

= λu(x), x ∈ [−1, 0) ∪ (0, 1]

together with the same boundary and transmission conditions (1.1)–(1.5)
are special cases of the problem (1.1)–(1.5) where the Kernels Kji(x, t)(i =
0, 1, j = 1, 2) x, t ∈ [−1, 0) ∪ (0, 1] are continuous functions.

1.2. Some remarks

It is well known that the classical Sturm-Liouville problems has infinitely
many real eigenvalues and the corresponding eigenfunctions forms an or-
thonormal basis in the Hilbert space of square-integrable functions. But the
eigenvalues of the problem (1.1)–(1.5) may be also nonreal complex num-
bers. However, the leading term in the asymptotic formulas of the eigen-
values of the problem (1.1)–(1.5) is the same as for the classical Sturm-
Liouville problems and the corresponding eigen -and associated functions
forms an Abel basis in the Hilbert space of square-integrable functions
(see, Theorems 4.3, 4.4 and 5.2 below). It is also known that the Abel ba-
sis property is stronger than the completeness, but weaker than the basis
with parantheses(see, [44]). Moreover, in the case when the linear oper-
ator A acts boundedly from the Hilbert space W 1

2 (−1, 0)⊕W 1
2 (0, 1) into

the Hilbert space L2(−1, 0)⊕ L2(0, 1) the asymptotic term for our problem
(1.1)–(1.5) is the same as for the classical SLP’s(i.e. this asymptotic term
has the form O(n)), but when this operator acts compactly from the Hilbert
spaceW 2

2 (−1, 0)⊕W 2
2 (0, 1) into the Hilbert space L2(−1, 0)⊕ L2(0, 1), then

the asymptotic term for our problem (1.1)–(1.5) takes on a weaker form
o(n2)(see, Theorems 4.3 and 4.4 below).

2. Some auxiliary facts and results

Let E and F be two Banach spaces, for which a set-theoretical inclusion E ⊂
F holds, and the linear space F induces on E the linear structure coinciding
with the structure of the linear space E and let J be the embedding operator
from E to F , i.e. Jx = x for all x ∈ E. If this operator is continuous, we
say that the embedding E ⊂ F is continuous. Similarly if the operator J is
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compact then the embedding E ⊂ F is said to be a compact embedding. If
E = F , i.e. the subset E ⊂ F is dense in the Banach space F , then we say
that the embedding E ⊂ F is dense.

Throughout in this study, the notation of inclusion ”⊂” must be under-
stood in the set-theoretical and in the topological meaning. Let E1 and E2

be two complex Banach spaces, both linearly and continuously embedded in
a Banach space E. Then the pair {E1, E2} are said to be an interpolation
couple. Let us define the linear space E1 + E2 by

E1 + E2 = {u ∈ E|there are u1 ∈ E1 and u2 ∈ E2 such that u = u1 + u2}

It is known that this linear space forms the Banach space (see,[40]) with
respect to the norm given by

∥u∥E1+E2
= inf{∥u1∥E1

+ ∥u2∥E2
| u1 ∈ E1, u2 ∈ E2 u1 + u2 = u}

where the infimum is taken over all representations u = u1 + u2 in the de-
scribed way. It is easy to see that for any t > 0 the functional K(t, u) defined
on E1 + E2 by

K(t, u) = inf{∥u1∥E1
+ t∥u2∥E2

| u1 ∈ E1, u2 ∈ E2 u1 + u2 = u}

is an equivalent norm in the Banach space E1 + E2. An interpolation space
for interpolation couple {E1, E2} by K-method is defined as follows(see [40])

{E1, E2}θ,p := {u : u ∈ E1 + E, ∥u∥{E1,E2} := (

∞∫

0

Kp(t, u)

t1+θp
dt)

1

p <∞}

Due to [[40], Triebel 1.3.3] there exists a positive number Cθ,p, such that for
all u ∈ E1 ∩ E2

∥u∥(E1,E2)θ,p ≤ Cθ,p∥u∥1−θ
E1

∥u∥θE2
.(2.1)

Applying the well-known Young inequality to the right hand of the last
inequality we have that for each ϵ > 0 there exists C(ϵ) > 0 such that for all
u ∈ E0 ∩ E1

∥u∥(E1,E2)θ,p ≤ ϵ∥u∥E1
+ C(ϵ)∥u∥E2

.(2.2)
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Definition 2.1. The Sobolev space Wn
2 (a, b)(n = 0, 1, 2, ...) is the Hilbert

space consisting of all functions f ∈ L2(a, b) that have square-integrable gen-
eralized derivatives f ′, f ′′, ..., f (n) on (a, b) with the inner-product

⟨f, g⟩Wn
2 (a,b) =

n∑

k=0

⟨f (k), g(k)⟩L2(a,b).

where that under W 0
2 (a, b) we mean L2[a, b].

Definition 2.2. Let [a,b] be any finite interval, 0 < s ̸= integer be any real
number and let n be any integer such that n > s. For such s the interpolation
space W s

2 (a, b) is defined as

W s
2 (a, b) := (Wn

2 (a, b), L2(a, b))1− s

n
,2(2.3)

Remark 2.3. It is known that(see,for example [40]) the equality (2.3) is
hold even in the case when s is also integer.

Below we shall use the direct sum of Sobolev spaces W s
2 (−1, 0)⊕

W s
2 (0, 1) of functions on (−1, 0) ∪ (0, 1) belonging toW s

2 (−1, 0) andW s
2 (0, 1)

in (−1, 0) and (0, 1) respectively, with the norm

∥f∥W s
2
:= (∥f∥2W s

2 (−1,0) + ∥f∥2W s
2 (0,1)

)1/2.

From inequalities (2.1) and (2.3) we have the following Lemma.

Lemma 2.1. Let 0 ≤ s ≤ 2. Then there is a constant C > 0 such that for
all u ∈W 2

2 (−1, 0)⊕W 2
2 (0, 1) and λ ∈ C the following inequality holds:

|λ|2−s∥u∥W s
2
≤ C(∥u∥W 2

2
+ |λ|2∥u∥L2

)(2.4)

By using (2.2) and (2.3) we have

Lemma 2.2. Let k ≥ 0 any real number. Then for each ϵ > 0 there is a

constant C(ϵ) > 0 such that for all u ∈W
k+ 1

2

2 (−1, 0)⊕W
k+ 1

2

2 (0, 1) the fol-
lowing inequality holds

∥u∥W k
2
≤ ϵ∥u∥

W
k+1

2
2

+ C(ϵ)∥u∥L2
(2.5)

Lemma 2.3. Let the following conditions be satisfied:
i)H1 and H2 are separable Hilbert spaces and H1 ⊂ H2
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ii)The embedding operator J : H1 → H2 is densely defined and continu-
ous.

iii)The operator B acts compactly from H1 into H2. Then for any ϵ > 0
there exist a constant C(ϵ) > 0 such that

∥Bu∥H2
≤ ϵ∥u∥H1

+ C(ϵ)∥u∥H2
(2.6)

for all u ∈ H.

Proof. The proof follows immediately from [[31], Lemma 1.2.8/3]. □

Denoting

L3u = u′(0−)− γ0u(0
−)− δ0u(0

+) = 0

and

L4u = u′(0+)− γ1u(0
−)− δ1u(0

+) = 0

we shall define the operator £0 in the Hilbert space L2(−1, 0)⊕ L2(0, 1) by
domain of definition

D(£0) =
{

u|u ∈W 2
2 (−1, 0)⊕W 2

2 (0, 1), Lνu = 0, ν = 1÷ 4
}

(2.7)

and action low £0u = p(x)u′′. Throughout in below we shall assume that
D(A) ⊃ D(£0) and define the operator £ in the Hilbert space L2(−1, 0)⊕
L2(0, 1) by domain of definition D(£) = D(£0) and action low

£(u) = p(x)u′′ +Au.

Remark 2.4. Note that under spectrum and root functions of the problem
(1.1)–(1.5) we mean the spectrum and root functions of the operator £,
respectively.

Theorem 2.5. If p1δ0 = a2γ1, then the operator £0 is densely defined and
symmetric.

Proof. Denote by C∞
0 [−1, 0)⊕ C∞

0 (0, 1] the set of infinitely differentiable
functions in [−1, 0) ∪ (0, 1], each of which vanishes on some neighborhoods of
the points x = −1, x = 0 and x = 1. It is well-known that this set is dense in
the Hilbert space L2(−1, 0)⊕ L2(0, 1). Since C

∞
0 [−1, 0)⊕ C∞

0 (0, 1] ⊂ D(£0)
we have that D(£0) is also dense in the Hilbert space L2(−1, 0)⊕ L2(0, 1).
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Further, by using Lagrange’s formula we can derive easily that

(£0u, v)L2
= (u,£0v)L2

+ p1W (u, v;x)|0−

−1 + p2W (u, v;x)|0+

1 .(2.8)

Since both u and v satisfy the boundary conditions (1.2)–(1.3) it follows
that

W (u, v;−1) =W (u, v; 1) = 0.(2.9)

Furthermore, from the transmission conditions (1.4)–(1.5) we have

p1W (u, v; 0−) + p2W (u, v; 0+) = −p1(γ0)u(0−) + δ0u(0
+)v(0−)

+p1(γ0)v(0
−) + δ0v(0

+)u(0−)− p2(γ1)u(0
−) + δ1u(0

+)v(0+)

+p2(γ1)v(0
−) + δ1v(0

+)u(0+)

= −(p1δ0 − p2γ1)(u(0
+)v(0−)− u(0−)v(0+)) = 0.(2.10)

Putting (2.9) and (2.10) in (2.8) yields

(£0u, v)L2
= (u,£0v)L2

,(2.11)

for all u, v ∈ D(£0). The proof is complete. □

3. Separation results for the corresponding

nonhomogeneous problem

Consider the following nonhomogeneous problem

(3.1) Lu− λu(x) = f(x), Lvu = fv, v = 1÷ 4.

for arbitrary f ∈ L2(−1, 0)⊕ L2(0, 1), fv ∈ C, v = 1÷ 4. The next theorem
is crucial for further consideration.

Theorem 3.1. Let the following conditions be satisfied:
1. p1δ0 = p2γ1
2. The operator A acts compactly from the Hilbert space W 2

2 (−1, 0)⊕
W 2

2 (0, 1) to the Hilbert space L2(−1, 0)⊕ L2(0, 1).
Then for any ϵ > 0 (small enough) there exists Rϵ > 0 such that for all

λ ∈ C satisfying | arg λ± π
2 | > ϵ, |λ| > Rϵ, the operator ℑ(λ) : u→ ((£−

λI)u, L1u, L2u, L3u, L4u) is an isomorphism from W 2
2 (−1, 0)⊕W 2

2 (0, 1)
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onto L2(−1, 0)⊕ L2(0, 1)⊕ C4 and the following coercive estimate holds

|λ|∥u∥L2
+ |λ| 12 ∥u∥W 1

2
+ ∥u∥W 2

2
≤ C(ϵ)(∥f∥L2

+ |λ| 14 (|f1|+ |f2|
+ |f3|+ |f4|))(3.2)

where C(ϵ) is the constant which is dependent only on ϵ > 0

Proof. Let us define the linear functionals ℓi(u)(i = 1÷ 4) by the equal-
ities ℓ1u = α0u(−1), ℓ2u = β0u(1), ℓ3u = −γ0u(0−)− δ0u(0

−) and ℓ4u =
−γ1u(0−)− δ1u(0

+). Let u ∈W 2
2 (−1, 0)⊕W 2

2 (0, 1) be any solution of the
problem (3.1). Denoting g(x) = f(x)− (Au)(x), gi = fi − ℓi(u)(i = 1÷ 4)
consider the differential equation

p(x)u′′ − λu = g(x), x ∈ [−1, 0) ∪ (0, 1](3.3)

together with boundary conditions

α1u
′(−1) = g1, β1u

′(1) = g2(3.4)

and with transmission conditions

u′(0−) = g3, u′(0+) = g4(3.5)

By applying the Theorem 3 in [31] to the problem (3.3)–(3.5) we obtain
immediately the next a priori estimate

|λ|∥u∥L2
+ |λ| 12 ∥u∥W 1

2
+ ∥u∥W 2

2
≤ C(ϵ)(∥g∥L2

+ |λ| 14
4∑

i=1

|gi|)

≤ C(ϵ)[(∥f∥L2
+ |λ| 14

4∑

i=1

|fi|) + (∥Au∥L2
+ |λ| 14

4∑

i=1

|ℓiu|)](3.6)

for the solution of problem (3.1). Let us estimate the right hand of this
inequality. Since the operator A is compact from W 2

2 (−1, 0)⊕W 2
2 (0, 1) into

L2(−1, 0)⊕ L2(0, 1), by virtue of Lemma 2.3 for any δ > 0 there exist a
constant C(δ) such that

∥Au∥L2
≤ δ∥u∥W 2

2
+ C(δ)∥u∥L2

(3.7)

By virtue of (3.6) and Lemma 2.3 it follows that, for any δ > 0 there is a
constant C(δ) > 0 such that

∥Au∥L2
≤ (δ + C(δ)|λ|−1)(∥u∥W 2

2
+ |λ| 12 ∥u∥L2

)(3.8)
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Since the embedding C[a, b] ⊂W 1
2 [a, b] is continuous for arbitrary finite in-

terval [a, b], then by virtue of Lemma 2.2 we find that for each δ > 0 there
exists a constant C = C(δ) > 0 such that

|ℓvu| ≤ C∥u∥W 1
2
≤ δ∥u∥

W
3
2
2

+ C(δ)∥u∥L2
(3.9)

for all u ∈W
3

2

2 (−1, 0)⊕W
3

2

2 (0, 1). Now applying Lemma 2.1 we find

∥u∥
W

3
2
2

≤ |λ|− 1

4 (∥u∥W 2
2
+ |λ|∥u∥L2

).(3.10)

Putting this in the previous inequality gives us the inequality

|λ| 14 |ℓvu| ≤ (δ + C(δ)|λ|− 3

4 )(∥u∥W 2
2
+ |λ|∥u∥L2

)(3.11)

Making use the inequalities (3.6)–(3.11) we get

2∑

k=0

|λ|1− k

2 ∥u∥W k
2
≤ C(ϵ)(∥f∥L2

+ |λ| 14
4∑

v=1

|fv|)

+ C(ϵ)(δ + C(δ)|λ|−1

4 )(∥u∥W 2
2
+ |λ|∥u∥L2

)

in the angle G±
ϵ := {λ ∈ C | |argλ± π

2 | > ϵ} for sufficiently large |λ|. It is
obvious that for any fixed ϵ > 0 we can choose δ > 0 so small and |λ| so
large that C(ϵ)(δ + C(δ)|λ|−1

4 ) < 1. Consequently, for λ ∈ G±
ϵ sufficiently

large in modulus we obtain a priori estimate (3.2). From this estimation
it follows that for λ ∈ G±

ϵ , sufficiently large in modulus a solution of the
problem (3.1) in W 2

2 (−1, 0)⊕W 2
2 (0, 1) is unique. Now by applying the

Theorem 2 from [31] we have that for such λ the operator ℑ(λ) from
W 2

2 (−1, 0)⊕W 2
2 (0, 1) into (L2(−1, 0)⊕ L2(0, 1))⊕ C4 is Fredholm i.e. the

range of ℑ(λ) is closed subset of the space (L2(−1, 0)⊕ L2(0, 1))⊕ C4 and
dimker£(λ) = dim co ker£(λ) <∞. Consequently, the range of ℑ(λ) coin-
cide with the whole space (L2(−1, 0)⊕ L2(0, 1))⊕ C4. From this and the
fact that the operator £(λ) is injective, the statement of the theorem fol-
lows. □

Corollary 3.1. Let the conditions of the previous theorem be satisfied.
Then for any ϵ > 0 there exists Rϵ > 0 such that all complex numbers λ sat-
isfying | arg λ± π

2 |> ϵ, | λ |> Rϵ are regular values of the operator £ and for
the resolvent operator R(λ,£) : L2(−1, 0)⊕ L2(0, 1) → L2(−1, 0)⊕ L2(0, 1)
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the following inequality holds:

∥R(λ,£)∥ ≤ C(ϵ)|λ|−1.

Proof. Putting f1 = f2 = f3 = f4 in (3.2) we have, in particular, that

|λ|∥u∥L2
≤ C(ϵ)∥f∥L2

,

that is,

|λ|∥R(λ,£)f∥L2
≤ C(ϵ)∥f∥L2

.

The proof is complete. □

Corollary 3.2. Under conditions of the Theorem 3.1 the resolvent op-
erator R(λ,£) acts boundedly from L2(−1, 0)⊕ L2(0, 1) into W 2

2 (−1, 0)⊕
W 2

2 (0, 1).

Proof. Again, f1 = f2 = f3 = f4 in (3.2) we have, in particular, that

∥u∥W 2
2
≤ C(ϵ)∥f∥L2

so

|λ|∥R(λ,£)f∥W 2
2
≤ C(ϵ)∥f∥L2

which completes the proof. □

By using the above results we can prove the next result.

Theorem 3.2. Let p1δ0 = p2δ1. Then the operator £0 is self-adjoint.

Proof. By Theorem 2.5 that the operator £0 is densely defined and symmet-
ric. Taking into account the corollary 3.1 and applying the familiar theorem
of Functional Analysis about the extensions of symmetric operators. (see
[40]) it follows that the operator £0 is closed symmetric operator and both
index defect of this operator is equal to zero, i.e. the operator £0 is self-
adjoint. □

4. Discreteness of the spectrum and asymptotic

behaviour of eigenvalues

At first let us give some needed definitions. Let S be unbounded closed linear
operator in separable complex Hilbert space H and let λ0 be any eigenvalue
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of this operator. Then the linear manifold Mλ0
:= ∪∞

n=1Ker(S − λ0I)
n is

called a root lineal of S according to eigenvalue λ0. Elements of this lineal
are called a root vectors of S. The dimension of the lineal Mλ0

is called an
algebraic multiplicity of the eigenvalue λ0. The spectrum of operator S is
called discrete if whole spectrum σ(S) consist only of eigenvalues with finite
multiplicity and the set of eigenvalues has not finite limit point. For such
operators by N(r, S) we denote the number of eigenvalues belonging to the
ball | λ |≤ r provided that each of eigenvalues counted according to their
algebraic multiplicity. Let Φ be any subset of the complex plane C. Then by
N(r,Φ, S) we denote the number of eigenvalues of operator S belonging to
{λ ∈ C| | λ |≤ r} ∩ Φ provided thateach of eigenvalues counted according to
their algebraic multiplicity;

(N(r,Φ, S) =
∑

λn∈{λ:|λ|≤r}∩Φ}

1 )

Denote ψ±
α = {λ :| arg(±λ) |< α}, R+ = {x ∈ R : x > 0} and R− = {x ∈ R :

x < 0}. If there is no danger of confusion, we shall write N±(r, α, S) instead
of N(r, ψ±

α , S) and N±(r, α) instead of N(r,R±, S). The operator B is called
p-subordinate(where 0 ≤ p ≤ 1) to S if its domainD(B) ⊃ D(S) and if there
exist b > 0 such that

∥Bu∥ ≤ b∥Su∥p∥u∥1−p forall u ∈ D(S).(4.1)

It is known that if S is self-adjoint with discrete spectrum and the operator
B is p-subordinate to S(0 ≤ p < 1), then the spectrum of S +B is also
discrete (see [15], Lemma V.10.1).

Lemma 4.1. Let S be self-adjoint with discrete spectrum and let B is p-
subordinate(0 ≤ p < 1) to S and T = S +B. Then the spectrum T lies in
the set |Imλ| ≤ b|λ|p (b is the same constant as in (4.1)) and for all δ > 0
and α with 0 < α < π

2 , there are c1 > 0 and c2 > 0 such that

∥N±(τ, α, T )−N±(r, α, S)∥ ≤ c1(N±(τ + b(1 + δ)τp, S)

− N±(τ − b(1 + δ)τp, S) + c2)(4.2)

Proof. The proof follows immediately from the propositions [[28] Lemma
2.1], Theorem 2.3 and Remark 2.4 □

Suppose that the operators has at least one regular point λ0. Then the
operatorB is called compact with respect to the operator S , ifD(B) ⊃ D(S)
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and if BR(λ0, S) is compact. If S is self-adjoint with discrete spectrum and
B is p-subordinate(0 ≤ p < 1) to S , then B is compact with respect to the
operator S. It is known that, if S is self-adjoint with discrete spectrum and
B is compact with respect to the operator S, then the operator S +B has
also discrete spectrum. (see, [15], Lemma V.10.1)

Lemma 4.2. [28] Let S be self-adjoint with discrete spectrum and let B be
compact with respect to S and T = S +B Then, if the number of positive
eigenvalues of the operator S is infinite and

lim
r −→ ∞
ε −→ 0

N+ (r(1 + ε), S)

N+(r, S)
= 1.

then for each α(0 < α < π
2 ) the relation

lim
r−→∞

N+ (r, α, T )

N+(r, S)
= 1.(4.3)

is hold

Now we shall derive asymptotic formulas for eigenvalues of the problem
(1.1)–(1.5) for various type abstract operators A appearing in the equation.
In particular case, we shall prove that there are infinitely many eigenvalues.

Theorem 4.3. Let us satisfy the following conditions
1. p1δ0 = p2γ1.
2. The operator A acted boundedly from W 1

2 (−1, 0)⊕W 1
2 (0, 1)

to L2(−1, 0)⊕ L2(0, 1), i.e. there is C > 0 such that ∥Au∥L2
≤

C∥u∥W 1
2

for all u ∈W 1
2 . Case1. If p1p2 < 0 then the eigenvalues of

(1.1)–(1.5) can be arranged as one two sequences {λn,1}∞1 and {λn,2}∞1
with asymptotic behaviour

(4.4) λn,1 = −p1π2n2 +O(n), λn,2 = −p2π2n2 +O(n)

Case 2. If p1p2 > 0 then the eigenvalues of (1.1)–(1.5) can be arranged as
sequence {λn}∞1 with asymptotic behaviours

(4.5) λn = − p1p2
p1 + 2

√
p1p2 + p2

π2n2 +O(n).

Proof. Since the embedding W 2
2 (−1, 0)⊕W 2

2 (0, 1) ⊂ L2(−1, 0)⊕ L2(0, 1) is
compact (see, [18]) by virtue of corollary 3.2 the resolvent operator R(λ,£)
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is compact in the space L2(−1, 0)⊕ L2(0, 1). Consequently spectrum of the
operators £0 and £ are discrete. In view of Theorem 3.2 the operator £0

is self-adjoint. At the other hand, by applying the multiplicative inequality
(2.1) we have

(4.6) ∥u∥W 1
2
≤ C∥u∥1/2W 2

2
∥u∥1/2L2

, u ∈W 1
2 (−1, 0)⊕W 1

2 (0, 1)

Without loss of generality we shall assume that λ = 0 is not eigenvalue of
£0. Otherwise we can find a real value µ0 /∈ σ(£0) and replace the spectral
parameter λ by λ− µ0. Applying corollary 3.2 we find that

(4.7) ∥Au∥L2
≤ C1∥u∥W 1

2
≤ C2∥u∥1/2W 1

2
∥u∥1/2L2

≤ C3∥£0u∥1/2L2
∥u∥1/2L2

for some Ci = const(i = 1, 2, 3) i.e. the operator A is 1
2 -subordinate to £0.

Let us find asymptotic behaviour of N±(r,£0) for r → ±∞. Consider the
case p1p2 < 0. Let p1 < 0, p2 > 0(the other case p1 > 0, p2 < 0 is totaly sim-
ilar). The eigenvalues of the operator £0 can be arranged as two infinite
series {λ̃n,1} and {λ̃n,2} with asymptotics

(4.8) λ̃n,1 = −p1π2n2 +O(n), λ̃n,2 = −p2π2n2 +O(n)

(see, [? ]). Then from (4.8) we can derive easily that

N+(r,£0) =
∑

λ̃n,1≤r

1 =
1√−p1π

√
r + o(1), r → ∞(4.9)

and

N−(r,£0) =
∑

−̃λn,2≤r

1 =
1√
p2π

√
r + o(1), r → ∞.(4.10)

Further, applying Lemma 4.2 to the operators £0 and A we get that there
is b > 0 such that

|N±(r, α,£)−N±(r, α,£0)| ≤ C1(N±(r + b
√
r,£0)−N±(r − b

√
r,£0))

+ C2(4.11)

for arbitrary α with 0 < α < π
2 , where C1 and C2 are some constants de-

pending only on α. Since

√
r + b

√
r −

√
r − b

√
r = O(1), as r → ∞(4.12)
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from (4.10) and (4.11) it follows that

(N±(r + b
√
r,£0)−N±(r − b

√
r,£0)) ≤ C, r → ∞(4.13)

for some C > 0. Hence, by virtue of (4.12) for arbitrary α with 0 < α < π
2 ,

there is a constant Cα such that

|N±(r, α,£)−N±(r, α,£0)| ≤ Cα(4.14)

Taking in view the fact that the spectrum of £0 is discrete and using Corol-
laries 3.1 and 3.2 we have that for all α, 0 < α < π

2 , the number of eigenvalues
of £ which are lying outside the angle ψ±

α = {λ : | arg(±λ)| < α} is finite.
Therefore from (4.10), (4.11) and (4.12) it follows that

N+(r,
π

2
,£) =

1√−p1π
√
r +O(1), r → ∞(4.15)

and

N−(r,
π

2
,£) =

1√
p2π

√
r +O(1), r → ∞(4.16)

Consequently in both left- and right half-plane the operator £ has infinitely
many eigenvalues. Denote by {λn,1}∞1 and {λn,2}∞1 all eigenvalues of oper-
ator £, which lies in the right and left half-plane respectively and arranged
as |λ1,i| ≤ |λ2,i| ≤ ... (i=1,2) according counted with their algebraic multi-
plicity. Then from (4.15) and (4.16) we have

(4.17) |λn,i| = |pi|π2n2 +O(n), n→ ∞(i = 1, 2)

Further, by virtue of Lemma 4.1, there is C > 0 such that

|Imλn,i|2 ≤ C|λn,i|, (i = 1, 2)(4.18)

and therefore for sufficiently large n(in fact, when |λn,i| ≥ C) we have

|Reλn,i|2 = |λn,i|2 − |Imλn,i|2(4.19)

≥ |λn,i|2 − C|λn,i| ≥ (|λn,i| − C)2, C = const

Consequently,

|Reλn,i| = |pi|π2n2 +O(n), and |Imλn,i| = O(n)(4.20)
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i.e.

(4.21) λn,i = −piπ2n2 +O(n), (i = 1, 2)

The proof for the case p1p2 > 0 is totally similar. The proof is complete. □

Theorem 4.4. Let the condition 1. of Theorem 4.3 be satisfied and let the
operator A from W 2

2 (−1, 0)⊕W 2
2 (0, 1) into L2(−1, 0)⊕ L2(0, 1) acts com-

pactly.
Case1. If p1p2 < 0 then the eigenvalues of the problem (1.1)–(1.5) can

be arranged as two sequence {λn,1}∞1 and {λn,2}∞1 with asymptotics

(4.22) λn,1 = −p1π2n2 + o(n2), λn,2 = −p2π2n2 + o(n2)

Case2. If p1p2 > 0 then the eigenvalues of the problem (1.1)–(1.5) can be
arranged as one sequence {λn}∞1 with asymptotics

(4.23) λn = − p1p2
p1 + 2

√
p1p2 + p2

π2n2 + o(n2).

Proof. We are already shown in the proof the Theorem 4.3, that the operator
£0 is self-adjoint with discrete spectrum and for the eigenvalues of this
operator the asymptotic formulas (4.4)(for p1p2 < 0 ) and (4.5) (for p1p2 >
0) are hold. At the other and, by virtue of the Corollary 3.2 the operator
R(λ,£0) is compact. Let us consider the case p1 < 0, p2 > 0. From (4.9) and
(4.10) it follows that

lim
r→∞
ε→0

N± (r(1 + ε),£0)

N±(r,£0)
= 1.(4.24)

By virtue of the lemma 4.2, from (4.9) and (4.10) it follows that

N±(r, α,£) = N±(r, α,£0) + o(
√
r), r → ∞(4.25)

for all α(0 < α < π
2 ).Taking in view the Corollary 3.1 we see that the relation

(4.25) is equivalent to the following asymptotic relation

(4.26) |λn,i| = |pi|π2n2 +O(n2), n→ ∞(i = 1, 2)

Further from Corollary 3.1 it follows that for all α(0 < α < π
2 ) there is nat-

ural number nα such that for all n ≥ nα

|Reλn,i|
|λn,i|

> cosα,
|Imλn,i|
|λn,i|

< sinα (i = 1, 2)(4.27)
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Consequently

lim
n→∞

|Reλn,i|
|λn,i|

= 1, lim
n→∞

|Imλn,i|
|λn,i|

= 0 (i = 1, 2)(4.28)

This means that

|Reλn,i| = |pi|π2n2 +O(n), |Imλn,i| = O(n)(4.29)

i.e.

(4.30) λn,i = −piπ2n2 +O(n), (i = 1, 2)

The proof is complete. □

5. The Abel basis of root functions of the problem

(1.1)–(1.5) Let H be a separable Hilbert space and S a unbounded closed
linear operator acting in this space with a dence domain D(S). Assume that
the spectrum of S is discrete and {λj}(j = 1÷∞) its eigenvalues which
arranged as |λ1| ≤ |λ2| ≤ .... Denote by mj the dimension of root lineal Mλj

and let f j1 , f
(j)
2 , ..., f

(j)
m(j) be any orthonormal basis of this root lineal. Let

ϵj > 0 any real numbers, so that ϵj < mini ̸=j |λi − λj |. Obviously the contour
|λi − λj | = ϵj surrounds only one eigenvalue(namely the eigenvalue λj) It is
known that (see, [18]) the range of the projection operator Pλk

(S) defined
as

Pλk
(S) := − 1

2πi

∮

|λ−λk|=ϵk

(λI − S)−1dλ

is contained in the root lineal Mλj
(S) and can be represented as

Pλk
(S)f =

mk∑

i=1

c
(k)
i f

(k)
i

for each f ∈ H. Under above assumptions the series(not necessarily conver-
gent)

f ∼
∞∑

j=1

(− 1

2πi

∮

|λ−λj |=ϵj

(λI − S)−1fdλ) =

∞∑

j=1

(

mj∑

i=1

c
(j)
i f

(j)
i )

is said to be a formal expansion of the vector f ∈ H in the series of root
vectors of S. Let θ and α any real positive numbers such that θ < π

2 and
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α < π
2θ . Assume that the eigenvalues λj(without, at least, finite number) of

the operator S are contained in the angle χθ = {λ ∈ C||argλ| < θ}. Then for
λα in this angle we mean λα := |λ|αeiαargλ. Consequently for each constant
t > 0 the function |e−λαt| exponentially tends to zero in the angle χθ for
|λ| → ∞. If

lim
t→+0

∥f −
∞∑

j=1

(− 1

2πi

∮

|λ−λj |=ϵj

e−λα
j t(λI − S)−1fdλ)∥ = 0

then the system of root vectors of S is said to be an Abel basis of order α
where for λk /∈ χθ the expression e−λα

k t is replace by 1.

Theorem 5.1. [28] If S is self-adjoint operator with discrete spectrum in
the Hilbert space and

(5.1) lim inf(N(r,R,S)/rs) <∞

for some s > 0 and if B is p-subordinate to S(0 ≤ p < 1), then for each
α > max{s− p+ 1, 0} the system of root vectors of the operator S +B forms
an Abel basis of order α in the Hilbert space H.

By using this theorem and the Theorem 4.4 we shall prove the next
result.

Theorem 5.2. Let the following conditions be satisfied:
1. p1δ0 = p2γ1.
2. The operator A acts boundedly from the Hilbert space W 1

2 (−1, 0)⊕
W 1

2 (0, 1) into the Hilbert space L2(−1, 0)⊕ L2(0, 1).
Then the system of root functions(i.e. eigen and associated functions) of

the main problem (1.1)–(1.5) forms an Abel basis of order α in the Hilbert
space L2(−1, 0)⊕ L2(0, 1) for arbitrary α > 1.

Proof. Consider the case p1 < 0, p2 > 0(the other cases are similar). Then
from (4.9) and (4.10) it follows that the condition (5.1) is satisfied for s = 1

2 .
Moreover, similarly to the proof of the Theorem 4.3 we can prove that the
operator A is 1

2 -subordinate to £0. Consequently, it is enough to apply the
Theorem 5.2 to the operators £0 and A to complete the proof. □

Remark 5.3. It is known that the property of a system of root vectors to
form an Abel basis of some order α > 0 is the internal property between
the completeness of root vectors and a basis with parentheses. Note that the
concept of an Abel basis was first introduced in [44].
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[6] K. Aydemir, H. Olǧar, O. Sh. Mukhtarov, Differential operator equa-
tions with interface conditions in modified direct sum spaces, Filomat
32 (3), 921–931 (2018).
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