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The Borel transform and linear nonlocal

equations: applications to zeta-nonlocal

field models

Alan Chavez, Humberto Prado, and Enrique G. Reyes

We define rigorously operators of the form f(∂t), in which f is an
analytic function on a simply connected domain. Our formalism
is based on the Borel transform on entire functions of exponential
type. We study existence and regularity of real-valued solutions for
the nonlocal in time equation

f(∂t)ϕ = J(t) , t ∈ R ,

and we find its more general solution as a restriction to R of an
entire function of exponential type. As an important special case,
we solve explicitly the linear nonlocal zeta field equation

ζ(∂2
t

+ h)ϕ = J(t) ,

in which h is a real parameter, ζ is the Riemann zeta function,
and J is an entire function of exponential type. We also analyse
the case in which J is a more general analytic function (subject to
some weak technical assumptions). This latter case turns out to be
rather delicate: we need to re-interpret the symbol ζ(∂2

t
+ h). We

prove that in this case the zeta-nonlocal equation above admits an
analytic solution on a simply connected domain determined by J .

The linear zeta field equation is a linear version of a field model
depending on the Riemann zeta function arising in p-adic string
theory [B. Dragovich, Zeta-nonlocal scalar fields, Theoret. Math.
Phys., 157 (2008), 1671–1677].
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1. Introduction

In this paper a nonlocal operator is an expression of the form f(∂t), in which
f is an analytic function, and a nonlocal equation is an equation in which
a nonlocal operator appears. It is of course well-known how to define the
action of f(∂t) on a given class of functions if the “symbol” f is a polynomial.
However, it is not obvious how to extend this definition to more general
symbols f : for instance, f may be beyond the reach of classical tools used
in the study of pseudo-differential operators (e.g., the derivatives of f may
not satisfy appropriated bounds, see [25, 31, 45]). We provide a rigorous
definition of f(∂t) for essentially any analytic function f —including the
Riemann zeta function ζ— in the main body of this work, using integral
transforms.

In our previous work [16] we use Laplace transform as an operator from
an appropriate Lebesgue space into a Hardy space in order to define properly
f(∂t) and to solve the equation f(∂t)ϕ = J for an appropriate function J .
We can think of two reasons why it is worthwhile to extend this approach,
in spite of its power:

1. Let us consider the function p : s 7→ s+ h, h ∈ R, and the symbol
(ζ ◦ p)(∂t). In [16] we show how to solve the equation (ζ ◦ p)(∂t)ϕ = ζ(∂t +
h)ϕ(t) = J(t) for appropriate functions J . But, if we take q : s 7→ s2 + h,
h ∈ R, we cannot use the approach presented in [16] to solve the equation
(ζ ◦ q)(∂t)ϕ = ζ(∂2t + h)ϕ = J , as we explain in great detail in Section 2
below. The importance of developing a theory able to deal with the latter
equation is that the operator ζ(∂2t + h) does appear in string theory research,
see [21–24].

2. The extended approach considered herein uses the full power of the
Borel transform (introduced in Subsection 3.1 below) instead of the Laplace
transform. Roughly speaking, if we use Borel transform we integrate over
appropriate closed curves in the plane, while if we use Laplace transform
we are restricted to integrating over the x-axis. This flexibility allows us to
deal with operators such as ζ(∂2t + h) and to obtain results on existence of
analytic solutions to nonlocal equations, instead of Lp-solutions as in [16].
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Further motivation for the work carried out herein is given later on in
this section. Before going into that, we make some short comments on our
general framework: we frame our discussion within classical analytic function
theory, see for instance [8]. We believe it is interesting to note that nonlocal
operators appear naturally in this abstract setting, for example, in the study
of the distribution of zeroes of entire functions, see [13, 14, 35] and references
therein. We present the following results (Lemma 1.1 and Theorem 1.2) as
an illustration:

The Laguerre-Pólya class, denoted by LP, is defined as the collection of
entire functions f having only real zeros, and such that f has the following
factorization [8, sections 2.6 and 2.7]:

f(z) = czmeαz−βz
2
∏

k

(
1 − z

αk

)
ez/αk ,

where c, α, β, αk are real numbers, β ≥ 0, αk ̸= 0, m is a non-negative inte-
ger, and

∑∞
k=1 α

−2
k <∞.

Let D be the differentiation operator and ϕ ∈ LP; the following lemma
presents one important instance in which the nonlocal operator ϕ(D) un-
derstood via power series, is in fact well defined, see [35, Theorem 8, p.
360].

Lemma 1.1. Let ϕ, f ∈ LP such that

ϕ(z) = e−αz
2

ϕ1(z) and f(z) = e−βz
2

f1(z) ,

where ϕ1, f1 have genus 0 or 1 and α, β ≥ 0. If αβ < 1/4, then ϕ(D)f ∈ LP.

The notion of the genus of a function is explained in [8, p. 22]. We have, see
[14, Theorem 1],

Theorem 1.2. Let ϕ, f ∈ LP such that

ϕ(z) = e−αz
2

ϕ1(z) and f(z) = e−βz
2

f1(z) ,

where ϕ1, f1 have genus 0 or 1 and α, β ≥ 0. If αβ < 1/4 and ϕ has infinitely
many zeros, then ϕ(D)f has only simple and real zeros.

We do not use this result explicitly in this paper, but zeroes of entire
functions are crucial in our theory, see for instance Theorem 3.17 and Ex-
ample 4.1 below, and so we expect that results such as Theorem 1.2 will
play a role in future developments.
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Now let us go back to our motivation and goals. As is the case with our
previous paper [16], our main motivation for the study of nonlocal equations
comes from Physics: nonlocal operators and equations can be found in the
Physics literature as far back as the 1950’s, see [42]. In this classical paper,
Pais and Uhlenbeck present the equation

(1.1) F (□)ψ = ρ ,

where (their notation)

(1.2) F (□) = ΠN
i=1(□

i − κ2i ) .

The relevance of this equation for field theory is discussed in depth in Sec-
tion 1 of [42]. In the same section, the authors state that “we will in fact
admit that N in (1.2) may tend to infinity provided the infinite product
thus arising is mathematically well defined”. If we consider the function
g(s) = ΠN

i=1(s
i − κ2i ), then (1.2) is an operator with “symbol” g, and in

light of known theorems in complex analysis (see for instance [43]) we may
understand Pais and Uhlenbeck’s statement as an invitation for the consid-
eration of general analytic functions as symbols. We remark that they do
use very general symbols later on in their paper. For example, the symbol
exp(f(s)) (s− κ2) (a special case of which is of importance for string theory,
see Equation (4.8) in [5]) appears in [42, Equation (11)].

Nowadays nonlocal equations are of interest for string theory, cosmology
and non-local theories of gravity. We refer the reader to [5–7, 12, 28] for
information on the last two topics. With respect to string theory, let us
mention two important equations:

(1.3) pa ∂
2
t ϕ = ϕp , a > 0 ,

and

(1.4)
(

(∂2x + 1)e−c∂
2
x − 2

)
ϕ = gϕ2 .

Equation (1.3) is the equation of motion for the tachyon field in p-adic string
theory, see [5, Equation (1.1)], [40, Equation (1.5)], and [21, 48, 49, 51], while
equation (1.4) is of interest for open string theory, see [5, Equation (1.2)]
and [18, Equation (14)]. These equations have been studied numerically and
by means of essentially formal arguments in e.g. [3, 4, 18, 40, 41, 48, 50, 51].
A linear version of (1.3) is considered in Section 4 of the inspirational paper
[5] by Barnaby and Kamran. Are there other analytic functions that appear



✐

✐

“3-Chavez” — 2024/1/26 — 18:56 — page 3491 — #5
✐

✐

✐

✐

✐

✐

Borel transform and zeta-nonlocal equations 3491

as symbols of meaningful nonlocal equations? Yes. In the paper [36] there
appear the symbols cos(s/k) and 2k sin2(s/2k), k > 0, in [34] the authors
study nonlocal actions for gravitation that depend on very general analytic
symbols f(s), see for instance [34, Equations (2) and (3)] and, more im-
portantly for us, in the intriguing paper [21], see also [22–24], B. Dragovich
constructs a field theory starting from (1.3) whose equation of motion (in
1 + 0 dimensions) is

(1.5) ζ

(
− 1

m2
∂2t + h

)
ψ = U(ψ) .

Here ζ is the Riemann zeta function as we noted before; m,h are real param-
eters and U is some nonlinear function. Here and hereafter, we understand
the Riemann zeta function as the analytic extension of the infinite series

ζ(s) =

∞∑

n=1

1

ns
, Re(s) > 1 ,

to the whole complex plane, except s = 1, where it has a pole of order 1.
Dragovich explains his construction further, and presents some alternative
equations arising from (1.3) that also depend of the function ζ, in the recent
preprint [24].

Now we are ready to state the main aim of this work. Our goal is to de-
velop a general theory for interpreting and solving linear nonlocal equations
of the form

(1.6) f(∂t)ϕ(t) = g(t) , t ∈ R ,

in which the symbol f is an arbitrary analytic function on a simply con-
nected domain and g is an appropriate (but fairly general) function. We
have presented a rigorous setting for (a restricted class of) equations (1.6)
in [16], using Laplace transform. However, as we explain in Section 2 below,
the important equation

(1.7) ζ

(
− 1

m2
∂2t + h

)
ϕ = J(t) ,

naturally motivated by (1.5), is beyond the reach of our Laplace transform
method. Given the importance of (1.5) and (1.7) for string theory, see [21–
24], and the appearance of interesting examples of equations of the general
form (1.6) in diverse physical theories, see e.g. [5, 6, 26, 34, 42], we believe
that our endeavour is indeed fully justified.
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We extend our previous methods —so as to encompass as allowable sym-
bols any function that is holomorphic in an appropriate domain— essentially
by moving from Laplace transform to Borel transform, as we explain at the
beginning of this section. We point out that we have previously used the
latter in [15], and we have found that “the Borel transform method” is in
fact of easy applicability. We remark immediately that the analysis of [15]
is restricted to symbols f (see Equation (1.6)) that are entire functions, and
to right hand side terms J that are functions of exponential type. Equations
such as (1.6) and (1.7) motivate us to remove these two restrictions. Thus,
this paper is an extension and generalization of both [15] and [16].

We finish this section with a brief summary of our analytic set-up and
a description of the contents of this work.

Let Ω ⊆ C be a simply connected domain. We denote by Exp(Ω) the
space of entire functions of finite exponential type such that its elements
have Borel transform with singularities in Ω (definitions are in Section 3).
Now let f be an holomorphic function in Ω; we use the Borel transform
to define f(∂t) as a linear operator on the space Exp(Ω) in a way that
evokes the definition of classical pseudo-differential operators via Fourier
transform, and then we find the most general solution to Equation (1.6) as
a restriction to R of a function in Exp(Ω). As essentially already announced,
our main example is the application of our theory to the following equation,
a normalized version of (1.7) with our signature conventions:

(1.8) ζ(∂2t + h)ϕ = J .

We organize this work as follows. In Section 2 we recall our work [16] and
we explain why Equation (1.8) cannot be studied with the tools developed
therein. In this section we also comment briefly on a possible physical mo-
tivation for the study of (1.8). In Section 3 we consider a general analytic
symbol f and we define the action of the operator f(∂t) on the space of
entire functions of exponential type using Borel transform. We also solve
Equation (1.6) and we prove that it admits analytic solutions. In Section 4
we apply the theory developed in Section 3 to the linear zeta-nonlocal scalar
field equation (1.8): we find that the zeroes of the Riemann zeta function
play an important role in representing its solution. Also in this section, we
introduce the space L>(R+) of all real functions g with domain [0,+∞)
such that: (a) there exist their Laplace transform L(g), and (b) L(g) has
an analytic extension to an angular contour. With its help, we study and
solve equation (1.8) for right hand side J in L>(R+). This study involves
some delicate limit procedures that take us outside the class of functions
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of exponential type that we used as domain for our operators. Finally, in
an appendix we formally derive some equations of motion of interest from a
mathematical point of view, including the zeta-nonlocal scalar field proposed
by B. Dragovich.

2. A preliminary discussion

As is discussed in Dragovich’s papers [21–24], see also the appendix of this
work, the following nonlocal equation

(2.1) ζ

(
□

2m2
+ h

)
ψ = U(ψ)

in which U(z) is an analytic non-linear function of z, appears naturally in
an interesting mathematical modification of p-adic string theory.

Motivated by Equation (2.1), in this section we make a preliminary in-
vestigation of linear equations in (1 + 0) dimensions of the form

(2.2) ζ(∂2t + h)ϕ = J .

in which we are using a signature so that □ = ∂2t , simply for comparison
purposes with our previous articles.

Before going into technical details, we comment on the possible physical
interest of (2.2). First, we point out that the Riemann zeta function and
its generalizations are ubiquitous in contemporary Mathematical Physics,
see for instance [27] and [2], and therefore the study of (2.2) seems to us to
be of interest on its own. Also, motivated by the analysis in [5, Section 4],
let us take a solution ψ0 to Dragovich’s equation (2.1) (particular solutions
for a special choice of U(ϕ) appear in [21]). Then, linearizing around ψ0 we
obtain the equation

ζ(∂2t + h)ϕ = U ′(ψ0)ϕ .

Equation (2.2) with J = 0 coincides with this equation if U ′(ψ0) = 0. Thus,
Equation (2.2) is a “driven” version of (a special case of) the linearized
Dragovich equation. Our theory allows us, in particular, to present rigorous
theorems on the explicit representation of solutions to (2.2) for a source
function g(z) satisfying diverse technical hypotheses, see Theorems 4.1, 4.2,
4.4 and Proposition 4.8. We finish this paragraph by remarking that of course
our theory is not tailored to Equation (2.2): it is applicable to any equation
of the form (1.6), as we show in Section 3.
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Now we begin our preliminary analysis of (2.2). We recall that in our
previous work [16], we study linear nonlocal equations (and its associated
Cauchy problem) using an approach based on Laplace transforms and the
Doetsch representation theorem, see [19]: If Lp([0,+∞)) is the standard
Lp-Lebesgue space and Hq(C+) is the Hardy space, there exists a cor-
respondence between these spaces determined by the Laplace transform
L : Lp([0,+∞)) → Hq(C+) for appropriated Lebesgue exponents p, q. In this
situation, we obtained exact formulas for the representation of the solution
for equations such as (1.6). (The approach of [16] supersedes previous work
[29, 30]). One of our results is the following theorem (The function r ap-
pearing in the statement of the theorem is a “generalized initial condition”,
see [16, Section 3]):

Theorem 2.1. Let us fix a function f which is analytic in a region D which
contains the half-plane {s ∈ C : Re(s) > 0}. We also fix p and p′ such that
1 < p ≤ 2 and 1

p + 1
p′ = 1, and we consider a function J ∈ Lp

′

(R+) such that
L(J) ∈ Hp(C+). We assume that the function (L(J) + r)/f is in the space
Hp(C+). Then, the linear equation

(2.3) f(∂t)ϕ = J

can be uniquely solved on Lp
′

(0,∞). Moreover, the solution is given by the
explicit formula

(2.4) ϕ = L−1

(L(J) + r

f

)
.

Moreover, using some technical assumptions (see [16, corollary 2.10]), the
representation formula (2.4) for the solution can be reduced to

(2.5) ϕ = L−1

(L(J)

f

)
+ L−1

(
r

f

)
.

The theory can be applied to various field models; in particular, it can be
applied to zeta-nonlocal field models of the form

ζ(∂t + h)ϕ = J .

for appropriate functions J , see [16, Section 4].
Now, let us denote by A(C+) the class of functions which are analytic in a

region D which contains the half-plane {s ∈ C : Re(s) > 0}. We can see that
for h > 1 the symbol ζ(s+ h) is in the class A(C+) while, if p(s) := s2, the
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symbol ζh ◦ p(s) := ζ(s2 + h) is not, as we explain presently. It follows from
this observation that for some non-analytic forces J (e.g. piecewise smooth

functions with exponential decay) we have L(J)
ζh◦p

̸∈ Hp(C+) , and therefore the
representation formula (2.5) of the solution breaks down. We conclude that
the study of Equation (2.2) requires a generalization of the theory developed
in [16].

First of all, we observe that the properties of the Riemann zeta function
(see for instance [16, Section 4]) imply that the symbol

(2.6) ζ(s2 + h) =

∞∑

n=0

1

ns2+h

is analytic in the region Γ := {s ∈ C : Re(s)2 − Im(s)2 > 1 − h}, which is
not a half-plane; its analytic extension ζ ◦ p has poles at the vertices of the
hyperbolas Re(s)2 − Im(s)2 = 1 − h, and its critical region is the set {s ∈
C : −h < Re(s)2 − Im(s)2 < 1 − h}. In fact, we recall from [16, Section 6]
that according to the value of h we have:

i) For h > 1, Γ is the region limited by the interior of the dark hyperbola
Re(s)2 − Im(s)2 = 1 − h containing the real axis:

The poles of ζ(s2 + h) are the vertices of dark hyperbola, indicated by two

thick dots. The trivial zeroes of ζ(s2 + h) are indicated by thin dots on the

imaginary axis; and the non-trivial zeroes are located on the darker painted

region (critical region).
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ii) For h < 1, Γ is the interior of the dark hyperbola Re(s)2 − Im(s)2 =
1 − h containing the imaginary axis:

The poles of ζ(s2 + h) are the vertices of dark hyperbola, indicated by two

thick dots. The trivial zeroes of ζ(s2 + h) are indicated by thin dots on the

real axis; the non-trivial zeroes are located on the darker painted region

(critical region).

iii) For h = 1, Γ is the interior of the cones limited by the curves y =
|x|, y = −|x|.

The pole of ζ(s2 + 1) is the origin (vertex of dark curves y = |x|, y = −|x|).
The trivial zeroes of ζ(s2 + h) are indicated by thin dots on the imaginary

axis; the non-trivial zeroes are located on the darker painted region (critical

region).

On the other hand, since the Riemann zeta function has an infinite
number of nontrivial zeroes in the critical strip (as famously proven by
Hadamard and Hardy, see [32] for original references), the function ζh ◦ p(·)
has also an infinite number of nontrivial zeroes on its critical region. We
denote by Z the set of all such zeroes. By i), ii) and iii) we have that Z is
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contained in the corresponding dark dotted region. Moreover

sup
z∈Z

|Re(z)| = +∞.

This analysis implies that the function L(J)/(ζh ◦ p) does not necessarily

belongs to Hp(C+) , and therefore the expression L−1
(
L(J)
ζh◦p

)
in the repre-

sentation of the solution (2.5) does not always make sense.
Thus, a new approach for the study of Equation (2.1) is necessary. As

stated in Section 1, the method that we use is based on the Borel transform,
see [8, 15, 25, 45] and references therein.

3. The general theory for nonlocal equations

3.1. Entire functions of exponential type

Definition 3.1. An entire function ϕ : C → C is said to be of finite ex-
ponential type τφ and finite order ρφ if τφ and ρφ are the infimum of the
positive numbers τ, ρ such that the following inequiality holds:

|ϕ(z)| ≤ Ceτ |z|
ρ

, ∀z ∈ C , and some C > 0.

When ρφ = 1, the function ϕ is said to be of exponential type, or of expo-
nential type τφ, if we need to specify its type. If we know the representation
of a entire function ϕ as a power series, then a standard way to calculate its
order, see [8, Theorem 2.2.2], is by using the formula

(3.1) ρ =

(
1 − lim

n→∞
sup

ln |ϕ(n)(0)|
n ln(n)

)−1

,

while its type is calculated as follows (see formula 2.2.12, page 11 in [8]):

(3.2) σ = lim
n→∞

sup |ϕ(n)(0)|1/n .

The space of functions of exponential type will be denoted by Exp(C).

Definition 3.2. Let ϕ be an entire function of exponential type τφ. If ϕ(z) =∑∞
n=0 anz

n; then, the Borel transform of ϕ is defined by

B(ϕ)(z) :=

∞∑

n=0

ann!

zn+1
.
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It can be checked that B(ϕ)(z) converges uniformly for |z| > τφ, see [45,
p. 106], and therefore it defines an analytic function on {z ∈ C : |z| > τφ}.

An alternative way to calculate the Borel transform of an entire function
ϕ of exponential type τφ is the use of the complex Laplace transform, see
[8]: if z = |z| exp(iθ) is such that |z| = r > τφ, then

(3.3) B(ϕ)(reiθ) = eiθ
∫ ∞

0
ϕ(teiθ)e−rtdt .

In particular, if z ∈ R is such that z > τφ, then B(ϕ) can be obtained as the
analytic continuation of its real Laplace transform:

(3.4) L(ϕ)(z) =

∫ ∞

0
ϕ(t)e−ztdt .

For ϕ ∈ Exp(C), we let s(B(ϕ)) denote the set of singularities of the
Borel transform of ϕ, and we also denote by S(ϕ) the conjugate diagram
of B(ϕ), this is, the closed convex hull of the set of singularities s(B(ϕ)).
The set S(ϕ) is a convex compact subset of C, and we can check that B(ϕ)
is an analytic function in S \ S(ϕ), where S is the extended complex plane
C ∪ {∞} and we have set B(ϕ)(∞) = 0.

Remark. Hereafter we will use the following notation: if Ω ⊂ C is a do-
main, then Ωc denotes the complement of Ω in the extended complex plane S.

Definition 3.3. Let Ω be a simple connected domain; we define the space
Exp(Ω) as the set of all entire functions ϕ of exponential type such that
its Borel transform B(ϕ) has all its singularities in Ω and such that B(ϕ)
admits an analytic continuation to Ωc. This continuation will continue being
denoted by B(ϕ).

Remark. Since Ωc is closed, the fact that B(ϕ) is analytic in Ωc means
that there exists an open set U ⊂ S such that B(ϕ) is analytic in U and
Ωc ⊂ U . Therefore, using the alternative definition of Borel transform (3.3),
we understand B(ϕ) as the analytic continuation of its real Laplace trans-
form (3.4).

Remark. In what follows, the Borel transform of ϕ ∈ Exp(Ω) always
refers to the complex function B(ϕ) together with an open set U in the ex-
tended plane S such that B(ϕ) is analytic in U and Ωc ⊂ U .
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Definition 3.4. For a function ϕ ∈ Exp(Ω), we define the set H1(ϕ) to
be the class of closed rectifiable and simple curves in C which are pairwise
homologous and contain the set s(B(ϕ)) in their bounded regions.

The following theorem is a classical result about the representation of
entire functions of exponential type.

Theorem 3.5. (Polya’s Representation Theorem). Let ϕ be a function of
exponential type and let γ ∈ H1(ϕ). Then,

ϕ(z) =
1

2πi

∫

γ
eszB(ϕ)(s)ds.

In particular, if ϕ is of type τ and R > τ , then

ϕ(z) =
1

2πi

∫

|s|=R
eszB(ϕ)(s)ds.

This theorem is discussed for instance in [45, p. 107] and [15]. A proof
appears in [8, Theorem 5.3.5].

Definition 3.6. If d is a distribution with compact support in C, we define
the P-transform of d by:

P(d)(z) :=< esz, d > , z ∈ C.

The P-transform is called the Fourier-Laplace transform in [45] and the
Fourier-Borel transform in Martineau’s classical paper [37]. For the partic-
ular case in which d = µ is a complex measure with compact support, the
P-transform is

P(µ)(z) =

∫

C

eszdµ(s) , z ∈ C.

Proposition 3.7. Let O ⊂ C be a simply connected domain; if µ is a com-
plex measure with compact support contained in O, then P(µ) ∈ Exp(O).
Conversely, given any function ϕ ∈ Exp(O), there exists a complex measure
µφ with compact support in O and such that P(µφ)(z) = ϕ(z). The mea-
sure µφ is not unique: it can be chosen to have support on any given curve
γ ∈ H1(ϕ).
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Proof. Let K be the support of the complex measure µ (which is of finite
variation). The P-transform of µ is

P(µ)(z) =

∫

C

eszdµ(s) ,

which is an entire function. Now, if R = sups∈K |s|, we have

|P(µ)(z)| ≤
∫

C

eR|z||dµ(s)| ≤ eR|z|||µ|| ,

that is, P(µ) is an entire function of exponential type.
It remains to show that s(B(P(µ))) ⊂ O. To do that, we compute the

Borel transform of P(µ) as the analytic continuation of its real Laplace
transform. Let z be a real number such that z > R. Then, we have

B(P(µ))(z) =

∫ +∞

0
e−ztP(µ)(t)dt

=

∫ +∞

0
e−zt

∫

K

estdµ(s)dt

=

∫

K

∫ +∞

0
e(s−z)tdtdµ(s)

=

∫

K

1

z − s
dµ(s) ,

in which we have used Fubini’s theorem. From these computations we have
that P(µ) ∈ Exp(O). In fact, the last integral is the analytic continuation
B(P(µ)).

To prove the converse implication, let γ ∈ H1(ϕ). Then, Polya’s rep-
resentation theorem (Theorem 3.5) means that ϕ can be represented as
ϕ(z) = P(µφ)(z) for the complex measure µφ defined by

(3.5) dµφ(s) := B(ϕ)(s)
ds

2πi
, s ∈ γ .

□
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Remark. The analogous of this proposition for general distributions can be
found in [15]. We prefer our version with complex measures because in this
work we do not use the machinary of distributions.

3.2. Functions of ∂t via Borel transform

Let Ω be a simply connected domain (equivalently, let Ω be a Runge do-
main, see [44, Prop. 17.2]). In what follows we denote by Hol(Ω) the set of
holomorphic functions on Ω.

Definition 3.8. Let f ∈ Hol(Ω), ϕ ∈ Exp(Ω), and assume that µφ is the
complex measure defined in 3.5 with compact support on a curve γ ∈ H1(ϕ)
so that P(µφ) = ϕ. We define the operator f(∂t)ϕ as

f(∂t)ϕ := P(fµφ) .

In Definition 3.8 we assume that the curve γ ∈ H1(ϕ), which defines
the measure µφ, is contained in the region Ω. By Cauchy’s Theorem, the
operator f(∂t) is independent of such a γ and therefore is well defined.

In this way, using the new measure fµφ and the definition of the P-
transform, we see that Equation (1.6) is understood as the following integral
equation

(3.6)

∫

γ
estf(s)B(ϕ)(s)

ds

2πi
= g(t), γ ∈ H1(ϕ) , ϕ ∈ Exp(Ω) .

We may wonder whether it is necessary to restrict ourselves to Runge do-
mains. Indeed, the counterexample below is proposed in [25, pag. 27] in
order to show that f(∂t)ϕ can be multivalued if Ω is not a Runge domain.
We reproduce it here for the sake of completeness.

Example 3.1. Set Ω = C \ {0}. We consider the symbol f(s) =
1

s
which

is holomorphic in Ω and the function ϕλ(z) = eλz, λ ∈ Ω. Then the set
s(B(ϕλ)) = {λ} and we have, for a closed curve γ in Ω containing λ, two
possible values for f(∂t)ϕλ(z): either

f(∂t)ϕλ(z) =
1

λ
(eλz − 1) ,

or

f(∂t)ϕλ(z) =
1

λ
eλz ,

depending on whether γ encloses the point {0} or not.
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The following proposition justifies some of the formal computations ap-
pearing in physical papers (see [5, 6] and references therein). It says that
the integral operator f(∂t) is locally (i.e., whenever f can be expanded as
a power series in an adequate ball contained in Ω) a differential operator of
infinite order.

Proposition 3.9. Let R > 0 and assume that BR(0) ⊂ Ω. Suppose that
ϕ ∈ Exp(Ω) is such that s(B(ϕ)) ⊂ BR(0) and take f ∈ Hol(Ω) with f(z) =∑∞

k=0 akz
k, |z| < R. Then, there exist a measure µφ supported on a curve

γ ∈ H1(ϕ) contained in BR(0) such that ϕ = P(µφ), and moreover

f(∂t)ϕ(t) = P(fµφ)(t) = lim
l→∞

l∑

k=0

ak(∂
k
t ϕ)(t),

uniformly on compact sets.

Proof. We note that, since s(B(ϕ)) is a discrete set, there exists a real
number δ > 0 such that dist(s(B(ϕ)), {s : |s| = R}) < δ. From [8, Theo-
rem 5.3.12] we have that τφ = supω∈s(B(φ)) |ω| is the type of ϕ, then there
exist a curve γ ⊂ (Bτφ(0))c ∩BR(0) such that γ ∈ H1(f). Let µφ be the
measure described by Theorem 3.7 supported on γ, then ϕ = P(µφ).

Moreover, using the measure µφ, we compute:

d

dz
ϕ(z) =

d

dz
P(µφ)(z) =

d

dz

∫

γ

eszdµφ(s) =

∫

γ

seszdµφ(s) = P(sµφ).

From this, we obtain

l∑

k=0

ak
dk

dzk
ϕ(z) − P(fµφ)(z) = P

({
l∑

k=0

aks
k − f(s)

}
µφ

)
(z) ,

and therefore

∣∣∣∣∣

l∑

k=0

ak
dk

dzk
ϕ(z) − P(fµφ,R)(z)

∣∣∣∣∣ =

∣∣∣∣∣∣

∫

γ

esz{
l∑

k=0

aks
k − f(s)}dµφ(s)

∣∣∣∣∣∣

≤
∫

γ

e|z||s|

∣∣∣∣∣

l∑

k=0

aks
k − f(s)

∣∣∣∣∣ |dµφ|(s) .
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Now we take limits as l → ∞. The result follows from the Lebesgue domi-
nated convergence theorem. We note that the convergence is uniform over
compact subsets of C. □

Thus, under the hypothesis of this proposition, we have seen that Equa-
tion (1.6) becomes locally the following infinite order differential equation:

(3.7)

∞∑

k=0

ak
dk

dtk
ϕ(t) = g(t).

Interestingly, Proposition 3.9 also shows that f(∂t) is linear on the space
of functions ϕ satisfying the hypothesis appearing therein. We now show that
linearity is true in general:

Lemma 3.10. The operator f(∂t) : Exp(Ω) → Exp(Ω) is linear.

Proof. For ϕ, ψ ∈ Exp(Ω) we have that s(B((ϕ+ ψ))) ⊆ s(B(ϕ)) ∪
s(B(ψ)) ⊂ Ω. Let γ ∈ H1(ϕ+ ψ) such that s(B(ϕ)) ∪ s(B(ψ)) is enclosed by
γ. This implies that γ ∈ H1(ϕ) , γ ∈ H1(ψ); then

f(∂t)(ϕ+ ψ)(t) = P(fµφ+ψ)(t) =

∫

γ
estf(s)B(ϕ+ ψ)(s)

ds

2πi

=

∫

γ
estf(s)B(ϕ)(s)

ds

2πi
+

∫

γ
estf(s)B(ψ)(s)

ds

2πi

= f(∂t)(ϕ)(t) + f(∂t)(ψ)(t).

□

Remark. We remark that, if ϕ, ψ ∈ Exp(Ω) then the inclusions H1(ϕ+
ψ) ⊆ H1(ϕ) and H1(ϕ+ ψ) ⊆ H1(ψ) do not necessarily hold. This is why
we had to choose an appropriated curve γ to carry out the above proof. For
example, let R > 2 and set λ ∈ C with |λ| = 3/2; also consider two functions
g1, g2 ∈ Exp1/2(C); then, the functions f1(z) = eλz + g1(z) and f2(z) =

−eλz + g2(z) are elements in Exp(BR(0)). Furthermore, if γ ∈ H1(f1 + f2)
with γ ⊂ B1/2(0)c ∩B1(0), then γ ̸∈ H1(f1) and also γ ̸∈ H1(f2).

Remark. Let us assume that Exp(Ω) is endowed with the topology of uni-
form convergence on compact sets. With this topology, the operator f(∂t) is
not bounded: It is enough to take Ω = C and as symbol f the identity map.
The following specific example shows less trivially that the linear operator
f(∂t) is not necessarily continuous:
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Let Ω = C \ R+
0 (a Runge Domain) and consider the symbol f(s) =

1

s
.

Then f ∈ Hol(Ω); we consider the sequence ϕn(z) = e
i

n
z − e

−i

n
z. We have

s(B(ϕn)) =

{
− i

n
,
i

n

}
⊂ Ω .

We can see that ϕn → 0 in the topology of uniform convergence on compact
sets. On the other hand we have (See Example 3.1)

f(∂t)(ϕn)(z) =
n

i

(
e
i

n
z + e

−i

n
z
)
,

and considering the compact ball Bk(0) with centre the origin and radius k,
we have

sup
z∈Bk(0)

|f(∂t)(ϕn)(z)| ≥ |f(∂t)(ϕn)(0)| = 2n

which goes to infinity when n→ ∞.

The following lemma says that nonlocal equations involving f(∂t) can be
solved in Exp(Ω). More precisely, the solution to the equation f(∂t)ϕ = g,
g ∈ Exp(Ω), is analytic of exponential type in Ω:

Lemma 3.11. The operator f(∂t) : Exp(Ω) → Exp(Ω) is surjective.

Proof. The surjectivity of the operator comes from the solvability of the
following equation

(3.8) f(∂t)ϕ = g, g ∈ Exp(Ω) .

Since the zet of zeros of f , Z(f) say, is a set of isolated points and g ∈
Exp(Ω), there is a curve γ ∈ H1(g) such that Z(f) ∩ γ = ∅. Also, there is a

measure µg suported on γ such that g = P(µg). Set ϕ = P(
µg
f

); i.e.

ϕ(z) =
1

2πi

∫

γ

ezηB(g)(η)

f(η)
dη .

It is evident that ϕ ∈ Exp(C), now we want to see that s(B(ϕ)) ⊂ Ω. For
that, let us calculate the Borel Transform of ϕ as the analytic continuation of
its real Laplace transform. Let z ∈ R be sufficiently large so that |Re(η)| < z
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for all η ∈ γ; we have

∫ +∞

0
e−ztϕ(t)dt =

∫ +∞

0
e−zt

1

2πi

∫

γ

ezηB(g)(η)

f(η)
dηdt

=
1

2πi

∫

γ

∫ +∞

0

et(η−z)B(g)(η)

f(η)
dη

=
1

2πi

∫

γ

B(g)(η)

f(η)(z − η)
dη ,

in which we have used Fubini’s Theorem. Therefore,

B(ϕ)(z) =
1

2πi

∫

γ

B(g)(η)

f(η)(z − η)
dη ,

and using Morera’s theorem, we can see that B(ϕ) is analytic in Ωc; thus
s(B(ϕ)) ⊂ Ω. On the other hand, it is not difficult to see that it satisfies
f(∂t)ϕ = g. □

3.3. A representation formula for solutions to f(∂t)φ = g

Proposition 3.12. Let f ∈ Hol(Ω) and denote Z(f) for the set of its zeros.
A function ϕ ∈ Exp(Ω) of exponential type τφ is solution to the homogeneous
equation f(∂t)ϕ = 0 if and only if there exist polynomials pk of degree less
than the multiplicity of the root sk ∈ Z(f) ∩Bτφ(0), such that

ϕ(t) =
∑

sk∈Z(f)
|sk|<τφ

pk(t)e
tsk .

Proof. (Sufficiency) in order to prove that the function

ϕ(t) =
∑

sk∈Z(f)
|sk|<τφ

pk(t)e
tsk ,

is solution to the homogeneous equation f(∂t)ϕ = 0, it is enough to see that
for a given k and sk ∈ Z(f) with |sk| < τφ, the following holds:

f(∂t)(pk(t)e
tsk) = 0.
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Indeed, we first note that for a natural number d and a complex number
ad, the Borel transform of ads

deλs is

B(ads
deλs) = ad

d!

(s− λ)d+1
.(3.9)

Now, let sk be a zero of f of order dk + 1, pk a polynomial of degree deg(pk) ≤
dk and suppose that γk ∈ H1(pk(z)ezsk); then, using linearity of the Borel
transform and the Cauchy theorem we have

f(∂t)
(
pk(t)e

tsk
)

=
1

2πi

∫

γk

etηf(η)B(pk(z)ezsk)(η)dη = 0 .

From these computations, we deduce that

f(∂t)


 ∑

sk∈Z(f):|sk|<τφ

pk(t)e
tsk


 = 0.

On the other hand, it is evident that

ϕ(t) =
∑

sk∈Z(f)
|sk|<τφ

pk(t)e
tsk ,

has exponential type τφ and from (3.9) we conclude that ϕ ∈ Exp(Ω) .
Before proving necessity, we must ensure finite dimensionality of a vector

space to be defined below. We write this fact as a separate result, because
it is interesting in its own right; after that we will finish the proof of this
proposition. □

We use the following notations. Let R be the closure of a bounded and
simply connected region which does not contain any singularity of f and
let γ denotes its boundary. We also denote by A(R) the set of continuous
functions that are analytic in the interior of R endowed with the supremum
norm and, for z ∈ C, we let Ez : R → C be the complex exponential function
Ez(ξ) = ezξ. Finally, we let

Mf,γ := cl(span{Ez · f : z ∈ C}) ,

where cl denotes closure in A(R).
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Lemma 3.13. Let {sk}Kk=1 be an enumeration of all the zeros of f in R
and let mk denote their corresponding multiplicities. Then

Mf,γ = {ψ ∈ A(R) : ψ is zero at sk(3.10)

with multiplicity ≥ mk, 1 ≤ k ≤ K} .

Proof. It is not difficult to see that Mf,γ is a subset of the set appearing in
the right hand side of (3.10). Let us prove the other inclusion. If ψ belongs

to the right hand side of (3.10), then
ψ

f
∈ A(R). Since R is compact with

connected complement, by Mergelyan’s Theorem (see [43, Theorem 20.5] and
[38, 39]) we know that the set of polynomials Pol is dense inA(R). Therefore,

given ϵ > 0 there is a polynomial p ∈ Pol such that ||ψ
f
− p||A(R) < ϵ. It

follows that ψ ∈ cl(f · Pol). Now we note that

Pol ⊂ cl(span{Ez : z ∈ C}).

Indeed, it is sufficient to note that the right hand side is an algebra which

contains 1 and ξ for any ξ ∈ R, and certainly, we have ξ = lim
n→∞

eξ1/n − 1

1/n
.

Therefore

ψ ∈ cl(f · Pol) ⊂ cl(span{f · Ez : z ∈ C}) .

□

A special case of this lemma is in [15, Lemma 5.4].

Lemma 3.14. Under the conditions of previous lemma, the space
A(R)/Mf,γ has dimension M = m1 +m2 + · · · +mK .

Proof. We can note that Mf,γ = (
∏K
k=1(z − sk)

mk) is a closed ideal of A(R).
First of all, given a complex number ω ∈ R and an integer number m > 0
we claim that the quotient space A(R)/((z − ω)m) has dimension m and
that a basis is given by the set β1 := {1, z − ω, (z − ω)2, · · · , (z − ω)m−1}
(here an overline indicates equivalence class). In fact, let α0, α1, · · · , αm−1

be complex numbers, then

m−1∑

l=0

αl(z − ω)l = 0 belongs to A(R)/((z − ω)m)
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if and only if
∑m−1

l=0 αl(z − ω)l ∈ ((z − ω)m). Thus, there exists a function
ψ ∈ ((z − ω)m) such that

∑m−1
l=0 αl(z − ω)l = ψ(z), and therefore

αl =
1

l!

dl

dzl
ψ(z)|z=ω = 0 , for 0 ≤ l ≤ m− 1 .

It follows that β1 is a linearly independent set. Now let h ∈ A(R)/((z − ω)m)

and consider the complex numbers αl =
1

l!

dl

dzl
h(z)|z=ω, l = 0, 1, · · · ,m− 1;

then

h(z) =

m−1∑

l=0

αl(z − s1)
l belongs to A(R)/((z − ω)m) .

As a second step, we show that for any k ∈ {1, 2, · · · ,K} the following equal-
ity holds

A(R)/Mf,γ = A(R)/((z − sk)
∑
K
j=1mj ) .

In fact, fix any k ∈ {1, 2, · · · ,K} and set h ∈ A(R)/Mf,γ , then

h(z) = r(z) +

K∏

i=1

(z − si)
miψ0(z) .

Also, we have

(z − si)
mi = ((z − sk) + (sk − si))

mi

=

mi∑

n=0

an(z − sk)
mi−n(sk − si)

n = (z − sk)
mi + pi(z) ,

where the polynomial pi has degree mi − 1; therefore we obtain

h(z) = r(z) +

K∏

i=1

(z − si)
miψ0(z) = r(z) + r1(z) + (z − sk)

∑
K
j=1mjψ0(z),

which implies that h ∈ A(R)/((z − sk)
∑
K
j=1mj ).
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Conversely, let h ∈ A(R)/((z − sk)
∑
K
j=1mj ). Then

h(z) = r(z) + (z − sk)
∑
K
j=1mjψ0(z) = r(z) +

K∏

i=1

(z − sk)
miψ0(z) .

Now, as in the previous step, we have

(z − sk)
mi = ((z − si) + (si − sk))

mi

=

mi∑

n=0

an(z − si)
mi−n(si − sk)

n = (z − si)
mi + pi(z) ,

where the polynomial pi has degree mi − 1. It follows that

h(z) = r(z) + r1(z) +

K∏

i=1

(z − si)
miψ0(z) ,

which implies that h ∈ A(R)/Mf,γ . Therefore, using the first step, we con-
clude that m1 +m2 + · · · +mK is the dimension of the quotient space
A(R)/Mf,γ , as claimed. □

As an immediate consequence of this lemma we have:

Corollary 3.15. Let Ω ⊂ C be an unbounded domain and assume that f ∈
Hol(Ω) has an infinite number of zeros {sk} with multiplicity mk for k ∈
{1, 2, 3, · · · }. Then the space A(Ω)/Mf has infinite dimension, where

Mf = {ψ ∈ Hol(Ω) : ψ is zero at sk

with multiplicity ≥ mk, 1 ≤ k <∞} .

Now we proceed to finish the proof of Proposition 3.12.

Proof. Let ϕ ∈ Exp(Ω) be given. From [8, Theorem 5.3.12] we have that its
type is τφ = maxω∈s(B(φ)) |ω|. Since s(B(ϕ)) ⊂ Ω and is a discrete set, we can
find a curve γ in Ω whose enclosed region R contains the set s(B(ϕ)) (i.e
γ ∈ H1(ϕ)) and such that it also contains all zeros si ∈ Ω of the symbol f
with |si| < τφ . Let {si}ki=1 be an enumeration of the zeros of f in R∩Bτφ(0)
and let mi denote their corresponding multiplicities. We note also that (using
Proposition 3.7) we know that there exist a measure µ supported on γ ∈
H1(ϕ) such that ϕ = P(µ).



✐

✐

“3-Chavez” — 2024/1/26 — 18:56 — page 3510 — #24
✐

✐

✐

✐

✐

✐

3510 A. Chavez, H. Prado, and E. G. Reyes

Now, we note that an element h ∈ A(R)/Mf,γ is completely determined
by the following set

(3.11)

{
dj

dzj
h(z)|z=si : 0 ≤ j ≤ mi − 1; 1 ≤ i ≤ k

}
.

From Lemma 3.14, we have that A(R)/Mf,γ has dimension m1 +m2 + · · · +
mk; therefore its dual space has the same dimension. Moreover, it is not
difficult to see that the following collection of linear functionals

{
di,j =

dj

dzj
|z=si : 0 ≤ j ≤ mk − 1; 1 ≤ i ≤ k

}
,

are m1 +m2 + · · ·mk-elements in the space (A(R))∗ which annihilate Mf,γ ;
therefore they induces the following m1 +m2 + · · ·mk-linearly independent
elements in the dual space of A(R)/Mf,γ

{d̃i,j : 0 ≤ j ≤ mk − 1; 1 ≤ i ≤ k} ;

where d̃i,j(ϕ) = di,j(ϕ) for ϕ ∈ A(R)/Mf,γ . Consequently, every element ϱ ∈
(A(R)/Mf,γ)∗ can be written in the form

ϱ =

k∑

i=1

mi−1∑

j=0

ai,j d̃i,j

for some ai,j ∈ C. Now, given and element ϕ ∈ A(R), there exist a unique
r ∈ A(R) such that ϕ = r in A(R)/Mf,γ , and using the characterization
given in (3.11) we have

ϱ(ϕ) = ϱ(r) =

k∑

i=1

mi−1∑

j=0

ai,jdi,j(r) =

k∑

i=1

mi−1∑

j=0

ai,j
dj

dzj
(ϕ)|z=si .

On the other hand, from the equation P(f · µ) = 0 we have that the measure
µ defines a functional on A(R) which annihilates Mf,γ and it induces a
functional µ̃ on A(R)/Mf,γ . Therefore, there exist complex numbers bi,j
such that

µ̃ =

k∑

i=1

mi−1∑

j=0

bi,j d̃i,j .
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Then, we have

ϕ(t) = P(µ)(t) =

∫

γ
etzdµ(z) = µ̃(etz) =

k∑

i=1

mi−1∑

j=0

ai,j
dj

dzj
(etz)|z=si

=

k∑

i=1



mi−1∑

j=0

ai,jt
j


 etsi

=

k∑

i=1

pi(t)e
tsi .

The proof of Proposition 3.12 is finished. □

Corollary 3.16. Let R > 0 and f ∈ Hol(BR(0)). Then, a function ϕ ∈
Exp(BR(0)) of exponential type τφ is a solution of the homogeneous equation
f(∂t)ϕ = 0, if and only if there exist polynomials pk of degree less than the
multiplicity of the root sk ∈ Z(f) ∩Bτφ(0), such that

ϕ(t) =
∑

sk∈Z(f)
|sk|<τφ

pk(t)e
tsk .

In particular, if the symbol f is an entire function, we deduce Theo-
rem 5.1 in [15] from Corollary 3.16. The following theorem is an easy appli-
cation of the previous results; it generalizes Proposition 3.12.

Theorem 3.17. Let f ∈ Hol(Ω) and g ∈ Exp(Ω). Then a function ϕ ∈
Exp(Ω) of exponential type τφ is solution for the non-homogeneous equation
f(∂t)ϕ = g if and only if there exist polynomials pk of degree less than the
multiplicity of the root sk ∈ Z(f) ∩Bτφ(0), such that

ϕ(t) = P
(
µg
f

)
(t) +

∑

sk∈Z(f)
|sk|<τφ

pk(t)e
tsk .

4. Linear zeta-nonlocal field equations

We apply the theory developed in the previous section to the following linear
zeta-nonlocal field equation:

(4.1) ζ(∂2t + h)ϕ = g ,
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in which h is a real parameter. Its solution depends crucially on the prop-
erties of g: we show that if g is of exponential type then so is ϕ, and solving
(4.1) explicitly is rather straightforward. However, if the data g is not of
exponential type, analysis become very delicate. We consider this problem
in 4.2, in which we assume that the Laplace transform L(g) exists and it
has an analytic extension to an appropriated angular contour in the plane.

Hereafter we use freely notation introduced in Section 2.

4.1. Zeta-nonlocal field equation with source function in Exp(Ω)

Equation (4.1) can be solved completely in the space of entire functions of
exponential type. Since Equation (4.1) depends on the values of h, we study
it in three different cases:

4.1.1. Case h > 1. In this case the symbol ζh ◦ p(s) = ζ(s2 + h) has
poles i

√
h− 1 and −i

√
h− 1. As we have already pointed out, the behavior

of ζh ◦ p(s) can be represented in the following picture:

The poles of ζ(s2 + h) are the vertices of dark hyperbola, indicated by two thick

dots. The trivial zeros of ζ(s2 + h) are indicated by thin dots on the imaginary

axis; and the non-trivial zeros are located on the darker painted region (critical

region).

Now, let us consider the simply connected domain

Ω := C \
{
s ∈ C : Re(s) ≥ 0, |Im(s)| =

√
h− 1

}
.

We see that the symbol ζh(s) is holomorphic in Ω, and therefore for a source
function g ∈ Exp(Ω), equation (4.1) is the following integral equation for
the measure µφ:

(4.2) P((ζh ◦ p) · µφ)(t) = g(t) .
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Theorem 4.1. Let g ∈ Exp(Ω). Then a function ϕ ∈ Exp(Ω) of expo-
nential type τφ is solution for the integral equation (4.2) if and only if
there exist polynomials pk of degree less than the multiplicity of the root
sk ∈ Z(ζh ◦ p) ∩Bτφ(0), such that

ϕ(t) =

∫

γ

ets

ζ(s2 + h)
dµg(s) +

∑

sk∈Z(ζh◦p)
|sk|<τφ

pk(t)e
tsk .

Where γ ∈ H1(g) and enclose the root sk ∈ Z(ζh ◦ p) ∩Bτφ(0).

Remark. In this theorem (and also in the results that follow) we find that
the solution φ(t) depends on polynomials pk(t). These polynomials are cal-
culated using the zeroes (and their orders) of the function ζh ◦ p, see Propo-
sition 3.6 and Theorem 3.11. We comment further on this in Subsection 4.2.

On the other hand, we can note that for given R <
√
h− 1, the domain

Ω contains the ball BR(0), and since the symbol ζh ◦ p(s) is analytic in this
ball, it can be expressed there in its Taylor series representation, say

ζ(s2 + h) =

∞∑

k=0

ak(h)sk , |s| < R .

Therefore, using proposition 3.9, in the space Exp(BR(0)) we have that
equation (4.1) can be viewed as the following infinite order differential equa-
tion

(4.3)

∞∑

k=0

ak(h)
dk

dtk
ϕ(t) = g(t) .

In this situation, we have the following result:

Theorem 4.2. Let R <
√
h− 1 and g ∈ Exp(BR(0)).Then, a function ϕ ∈

Exp(BR(0)) of exponential type τφ is solution of the infinite order zeta-
nonlocal field equation (4.3) if and only if there exist polynomials pk of degree
less than the multiplicity of the root sk ∈ Z(ζh ◦ p) ∩BR(0), such that

ϕ(t) =

∫

|s|=R

ets

ζ(s2 + h)
dµg(s) +

∑

sk∈Z(ζh◦p)
|sk|<τφ

pk(t)e
tsk .
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4.1.2. Case h < 1. In this case we have that
√

1 − h and −
√

1 − h are
the poles of the symbol ζh ◦ p. The behavior of ζh ◦ p is represented in the
following picture

The poles of ζ(s2 + h) are the vertices of dark hyperbola, indicated by two thick

dots. The trivial zeros of ζ(s2 + h) are indicated by thin dots on the real axis; the

non-trivial zeros are located on the darker painted region (critical region).

Therefore choosing as our region Ω the following domain:

Ω := C \
{
s ∈ C : Im(s) ≥ 0, |Re(s)| =

√
1 − h

}
,

we can obtain theorems for the equation ζ(∂2t + h)ϕ = g which are similar
to Theorem 4.1 and Theorem 4.2.

4.1.3. Case h = 1. In this case there is a pole at s = 0. We saw that
the behavior of ζ1 ◦ p is represented in the following picture

The pole of ζ(s2 + 1) is the origin (vertex of dark curves y = |x|, y = −|x|). The

trivial zeros of ζ(s2 + h) are indicated by thin dots on the imaginary axis; the

non-trivial zeros are located on the darker painted region (critical region).
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Let Ω, be the region

Ω := C \ {s ∈ C : Re(s) ≥ 0, |Im(s)| = 0} .

Since we cannot construct a ball around the origen in which ζ1 ◦ p is analytic,
we cannot obtain a result analogous to Theorem 4.2 for the equation

ζ(∂2t )ϕ = g ,

this is, we do not have an “infinite order equation” but a genuine nonlocal
equation. On the other hand, it is possible to state a result analogous to
Theorem 4.1. We omit details.

4.2. Zeta-nonlocal field equation with source function in L>(R+)

Now we consider the case in which the source function g(t), t ≥ 0 is an
analytic function not necessarily of exponential type. We assume that it
possesses Laplace transform, and therefore there exists a real number a such
that the following integral

L(g)(z) =

∫ ∞

0
e−tzg(t)dt ,

converges absolutely and uniformly on the half-plane {z ∈ C : Re(z) > a},
and for which the function z → L(g)(z) is analytic. We also assume that
L(g) has an analytic extension to the left of Re(s) = a until a singularity
a0, and that this new region of analyticity has an angular contour κ∞ as its
boundary.

Hereafter we denote by L>(R+) the space of analytic functions that
possess the properties described above.

The problem of interest in this situation is to solve the following equation

(4.4) ζ(∂2t + h)f = g,

for a given g ∈ L>(R+), where the operator ζ(∂2t + h) needs to be properly
defined in order to have a correctly posed problem. The solution of Equa-
tion (4.4) if it exists, will not necessarily be an entire function of exponential
type.

Let g ∈ L>(R+) and let the first singularity of the analytic extension of
L(g) up to an angular contour κ∞ be a0 = 0. Now consider an angle π

2 <
ψ ≤ π, a positive real number r > 0 and let κr be a finite angular contour
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contained in κ∞. Concretely, κr is composed by a circular sector of radius
δ centered at the origen and the respective rays of opening ±ψ as in the
following picture:

Now, let us pick the complex measure

dµr(s) := Xκr(s)L(g)(s)
ds

2πi
,

where Xκr denotes the characteristic function of the contour κr. This mea-
sure allows us to define the following function gr : C → C using P-transform:

gr(z) := P(µr)(z) =

∫

κr

ezsL(g)(s)
ds

2πi
.

Lemma 4.3. We have:

1) The function gr is an entire function of order 1 and exponential type
r.

2) For each r > 0, the analytic continuation of the Borel Transform of gr
is B(gr)(z) = K ∗ µr(z), where K(z) = 1/z, and its conjugate diagram
is the convex hull of the contour κr. In particular, if we consider the
measure

dµgr(s) = K ∗ µr(s)
ds

2πi
,

then gr = P(µr) = P(µgr).

Proof. We prove item 1. Let r > 0 fixed; first, we note that for n ≥ 0

g(n)r (0) =

∫

κr

snL(g)(s)
ds

2πi
.
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Now, defining

Mr :=
1

2π

∫

κr

|L(g)(s)ds| ,

we obtain

ln |g(n)r (0)|
n lnn

≤ ln rnMr

n lnn
=
n ln r + lnMr

n lnn
,

which approaches zero as n→ ∞. Therefore using formula (3.1) we obtain
the order of gr as

ρ =

(
1 − lim

n→∞
sup

ln |g(n)r (0)|
n ln(n)

)−1

= 1

With this information, we compute the type of gr using formula (3.2),

σ = lim
n→∞

sup |g(n)r (0)|1/n.

It is not difficult to see that σ ≤ r; we will conclude that σ = r by consid-
ering the region of analyticity of the Borel transform of gr using item 2.

2. Since κr is compact we have

gr(z) =

∫

κr

∞∑

n=0

(sz)n

n!
L(g)(s)

ds

2πi
=

∞∑

n=0

zn

n!

∫

κr

snL(g)(s)
ds

2πi
=

∞∑

n=0

an
n!
zn ,

where

an :=

∫

κr

snL(g)(s)
ds

2πi

and we have used uniform convergence. Now, for |z| > r we have,

B(gr)(z) =

∞∑

n=0

an
zn+1

=

∞∑

n=0

∫

κr

1

z

(s
z

)n
L(g)(s)

ds

2πi
=

∫

κr

1

z − s
L(g)(s)

ds

2πi
.

This calculation means that the analytic continuation of the Borel transform
for gr is

B(gr)(z) =

∫

κr

1

z − s
L(g)(s)

ds

2πi
=

∫

C

K(z − s)dµr(s) = K ∗ µr(z) ,

which is an analytic function for every z ∈ C− κr. As a by product we have
that the conjugate diagram of B(gr) is the convex hull of the contour κr.
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Moreover, this means that the type of the function gr must be τgr ≥ r, so that
by using the calculus in Item 1 we conclude that τgr = r. This completes the
proof of Item 1. Finally we note that the description of the Borel transform
of gr implies that gr is recovered via P-Transform from the measure

dµgr(s) = K ∗ µr(s)
ds

2πi
.

□

4.2.1. The truncated equation. In this subsection we consider the fol-
lowing ”truncated” equation

(4.5) ζ(∂2t + h)fr = gr , h > 1 ,

for each r > 0. We note that in the case h > 1, the poles of the function
are i

√
h− 1 and −i

√
h− 1, and therefore we analyse Equation (4.5), in the

domain

Ω := C \ {s ∈ C : Re(s) ≥ 0, |Im(s)| =
√
h− 1} ,

which was used in subsection 4.1.
The following theorem shows that Equation (4.5) is well posed in the

space Exp(Ω).

Theorem 4.4. A general solution to Equation (4.5) in the space Exp(Ω),
is provided by the function
(4.6)

ϕr(z) :=

∫

γ′

esz
K ∗ µr(s)
ζ(s2 + h)

ds

2πi
=

∫

κr

esz
L(g)(s)

ζ(s2 + h)

ds

2πi
+

Nr∑

j=1

pj(z)eτjz ,

where γ′ ∈ H1(gr) is such that it encloses the zeros {τj , j = 1, 2, · · · , Nr}
of the function ζ(s2 + h) which lie in the closed ball Br(0), and pj(z) are
polynomials of degree ord(τj) − 1.

Proof. By Theorem 3.17 we know that a solution for the Equation (4.5) is

∫

γ′

esz
B(gr)(s)

ζ(s2 + h)

ds

2πi
=

∫

γ′

esz
K ∗ µr(s)
ζ(s2 + h)

ds

2πi
,

where γ′ is the curve in the following picture
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Since the conjugate diagram S for B(gr)(z) is the convex hull of the con-
tour κr, we can decompose the circle {z : |z|′ = r} into three pieces γ1, γ2, γ3
in which γ1 is in the region of analyticity of ζ(s2 + h) and contains the set S
in its interior, while the other two closed paths contain the zeros of ζ(s2 + h)
in its interior, as in the following picture

Therefore,

ϕr(z) =

∫

|s|′=r
esz

K ∗ µr(s)
ζ(s2 + h)

ds

2πi
(4.7)

=

∫

γ1

esz
K ∗ µr(s)
ζ(s2 + h)

ds

2πi
+

∫

γ2

esz
K ∗ µr(s)
ζ(s2 + h)

ds

2πi

+

∫

γ3

esz
K ∗ µr(s)
ζ(s2 + h)

ds

2πi
.
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We compute the first integral. Using Fubini’s Theorem and the Cauchy
integral formula, we obtain

∫

γ1

esz
K ∗ µr(s)
ζ(s2 + h)

ds

2πi
=

∫

γ1

esz

ζ(s2 + h)

∫

κr

1

s− ω
L(g)(ω)

dω

2πi

ds

2πi

=

∫

κr

L(g)(ω)

∫

γ1

esz

ζ(s2 + h)

1

s− ω

ds

2πi

dω

2πi

=

∫

κr

eωz

ζ(ω2 + h)
L(g)(ω)

dω

2πi
.

Now the second integral. Using Fubini’s theorem again we have

∫

γ2

esz
K ∗ µr(s)
ζ(s2 + h)

ds

2πi
=

∫

κr

L(g)(ω)

∫

γ2

esz

ζ(s2 + h)

1

(s− ω)

ds

2πi

dω

2πi
,

but now we cannot apply Cauchy’s integral formula as before, since the zeros
of ζ(s2 + h) are now poles of the function

(4.8) F (s) =
esz

ζ(s2 + h)

1

(s− ω)
;

but, we can use the Residue Theorem. Let τj be a zero of the function
ζ(s2 + h) lying inside the region enclosed by the curve γ2. We have,

Res(F, τj) =

ord(τj)−1∑

l=0

hl(ω, τj)z
leτjz ,

for some functions hl. Now we let N2,r be the number of zeros of the function
ζ(s2 + h) inside the region enclosed by the curve γ2. We conclude that the
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second integral becomes

∫

γ2

esz
K ∗ µr(s)
ζ(s2 + h)

ds

2πi
=

∫

κr

L(g)(ω)

N2,r∑

j=1



ord(τj)−1∑

l=0

hl(ω, τj)z
leτjz


 dω

2πi

=

N2,r∑

j=1

ord(τj)−1∑

l=0

zleτjz
∫

κr

L(g)(ω)hl(ω, τj)
dω

2πi

=

N2,r∑

j=1

ord(τj)−1∑

l=0

Al(τj)z
leτjz

=

N2,r∑

j=1

aj(z)eτjz ,

where we have defined the polynomials

aj(z) :=

ord(τj)−1∑

l=0

Al(τj)z
l .

Finally, let N3,r be the number of zeros of the function ζ(s2 + h) inside the
region enclosed by the curve γ3. We use the same strategy as above for the
third integral in (4.7) and we obtain

∫

γ3

esz
K ∗ µr(s)
ζ(s2 + h)

ds

2πi
=

N3,r∑

j=1

bj(z)eτjz,

Putting Nr = N2,r +N3,r as the number of zeros inside of the closed
ball Br(0), and setting pj = aj for j = 1, 2, · · · , N2,r and pj = bj for j =
1, 2, · · · , N3,r we obtain equality (4.6) and the theorem is proved. □

In what follows we consider only the particular solution

(4.9) ϕr(z) =

∫

κr

esz
L(g)(s)

ζ(s2 + h)

ds

2πi

to Equation (4.5). This solution is obtained from Theorem 4.4 by using a
curve γ1 as in the following picture
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One reason for considering only this expression is that the contribution
of the second summand in (4.6) “can be ignored”, since it corresponds to a
solution of the homogeneous equation ζ(∂2t + h)fr = 0. Also, we note that
it is still an open problem whether the zeros of the Riemann Zeta function
are simple or not (see for example [1, 11, 17]); consequently, we do not even
know a precise upper bound for the degree of the polynomials pj appearing
in Theorem (4.4)! Such an information could be used, for example, for the
study of the uniform convergence of the sequence of partial sums determined
for the second summand in (4.6) for each r.

Remark. On the other hand, from [9, 10, 46, 47], we know that the first
zeros of the Riemann zeta function are simple; therefore the first zeros of
ζ(s2 + h) are also simple. Let r > 0 and suppose that the curve γ′ ∈ H1(gr)
encloses the first known simple zeros of ζ(s2 + h); then, in this situation the
full representation formula for the solution given in Theorem 4.4 is more
concrete. This situation is treated in the example that follows.

Example 4.1. From the work [47] (and references therein) we know that
at least the first 1.500.000.001 zeros of the Riemann Zeta function are simple
and are located at the critical line; therefore the first zeros of ζ(s2 + h) are
also simple. This implies that the first terms of the sequence of sums in the
representation formula (4.6) are easy to calculate.

In fact, let r > 0 be such that the curve γ′ ∈ H1(gr) encloses the first
3.000.000.002 simple zeros of the shifted Riemann Zeta function ζ(s2 + h).
Let j ∈ {1, 2, 3, · · · , 3.000.000.002} and let τj be the corresponding simple
zero. If we define

ζj = lim
s→τj

ζ(s2 + h)

s− τj
,
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then, applying the residue theorem to the function F defined in Equa-
tion (4.8) we obtain

Res(F, τj) =
eτjz

ζj(τj − ω)
.

Therefore, from the proof of Theorem 4.4 we have that the representation
formula of the solution is reduced to

ϕr(z) =

∫

κr

esz
L(g)(s)

ζ(s2 + h)

ds

2πi
+

Nr∑

j=1

cje
τjz ,

where cj are the following complex numbers:

cj :=
1

ζj

∫

κr

L(g)(ω)

ζj(τj − ω)

dω

2πi
.

4.2.2. A particular solution. The proof of the following lemma can be
found in [20, Theorem 36.1]

Lemma 4.5. Let g ∈ L>(R+) and let κ be the angular contour of the do-
main of the analytic extension of L(g) with centre a0 = 0 and half-angle of
opening ψ, where π

2 < ψ ≤ π. Then, the function

g∞(z) :=

∫

κ∞

ezsL(g)(s)
ds

2πi
,

is analytic in an angular region with horizontal bisector and half-angle of
opening ψ − π

2 .

Let us denote by Dψ the angular region with horizontal bisector and half-
angle of opening ψ − π

2 arising in the previous lemma, see [20, figure 32,
p. 243]. We note that g∞ is analytic in Dψ. We can estimate ψ.

We can see that the real functions y = |x| and y = −|x| are asymptotes
to the region which contain the zeros of ζ(s2 + h). Therefore, the angle ψ
satisfies 3π

4 < ψ ≤ π. This gives us a natural fixed angular region D 3π

4
on

which the function g∞ is analytic, since D 3π

4
⊂ Dψ for all 3π

4 < ψ ≤ π.

Proposition 4.6. Let a0 = 0 be the first singularity of the analytic exten-
sion of L(g) and also let 3π

4 < ψ ≤ π be the angle described in lemma 4.5.
Then, on compact subsets of Dψ ⊂ C we have:
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1) The sequence {gr}r>0 converge uniformly to

g∞(z) =

∫

κ∞

ezsL(g)(s)
ds

2πi
.

2) The sequence {fr}r>0 converge uniformly to

f∞(z) :=

∫

κ∞

esz
L(g)(s)

ζ(s2 + h)

ds

2πi
.

In particular both conclusions hold on D 3π

4
.

Proof. We prove Item 1. Let K be a compact subset of Dψ; since it is closed
and bounded, there is a positive number δ such that the distance between
Dψ and ∂K (the topological boundary of K) is at least δ. Also, there exist
a positive number A and angles θ1, θ2 satisfying π

2 − ψ < θ1 < θ2 < ψ − π
2 ,

such that for all z ∈ K

a. |z| ≥ A, and

b. θ1 < θz < θ2, where θz denotes the angle of z with the real line, z =
|z| exp(iθz).

Therefore, for z ∈ K we have

|gr(z) − g∞(z)| =

∣∣∣∣
∫

κ∞−κr

eszL(g)(s)
ds

2πi

∣∣∣∣

≤
∣∣∣∣
∫ ∞

r
ete

iψzL(g)(teiψ)eiψ
dt

2π

∣∣∣∣

+

∣∣∣∣
∫ ∞

r
ete

−iψzL(g)(te−iψ)e−iψ
dt

2π

∣∣∣∣ .

Let lz = |z|; for the first integral, we have

∣∣∣∣
∫ ∞

r
ete

iψzL(g)(teiψ)eiψ
dt

2π

∣∣∣∣ =

∣∣∣∣
∫ ∞

r
etlze

i(ψ+θz)L(g)(teiψ)eiψ
dt

2π

∣∣∣∣

≤
∫ ∞

r
etlz cos(ψ+θz)

∣∣∣L(g)(teiψ)
∣∣∣ dt

2π
.

By the Riemann-Lebesgue Lemma we have that L(g) is bounded, and there-
fore |L(g)(teiψ)| ≤ML(g) for t ≥ r. Also, π

2 < θ1 + ψ < ψ + θz < θ2 + ψ <
3π
2 , which implies that cos(ψ + θz) < −B < 0, for some B > 0. Therefore,

we have



✐

✐

“3-Chavez” — 2024/1/26 — 18:56 — page 3525 — #39
✐

✐

✐

✐

✐

✐

Borel transform and zeta-nonlocal equations 3525

∫ ∞

r
etlz cos(ψ+θz)

∣∣∣L(g)(teiψ)
∣∣∣ dt

2π
≤ML(g)

∫ ∞

r
etlz cos(ψ+θz)

dt

2π

≤
∫ ∞

r
e−tlzB

dt

2π
=

1

lzB
e−rlzB

≤ 1

AB
e−rAB .

For the second integral, we have −3π
2 < θ1 − ψ < θz − ψ < θ2 − ψ < −π

2 ,
and therefore there is a constant C > 0 such that cos(θz − ψ) < −C < 0.
Then

∣∣∣∣
∫ ∞

r
ete

−iψzL(g)(te−iψ)e−iψ
dt

2π

∣∣∣∣ =

∫ ∞

r
etlz cos(θz−ψ)

∣∣∣L(g)(te−iψ)
∣∣∣ dt

2π

≤ML(g)

∫ ∞

r
etlz cos(θz−ψ)

dt

2π

≤
∫ ∞

r
e−tlzC

dt

2π
=

1

lzC
e−rlzC

≤ 1

AC
e−rAC .

These computations allow us to conclude that given ϵ > 0 there is r0 > 0
such that for every r > r0 and for every z ∈ K we have the estimate:

|gr(z) − g∞(z)| ≤ 1

AB
e−rAB +

1

AC
e−rAC < ϵ .

Item 2 follows from the fact that the function
1

ζ(s2 + h)
is bounded on

the angular contour κ∞ for |s| → ∞. □

Let us now denote the angle ψ described in Lemma 4.5 by ψ(g). From
the result in Proposition 4.6 we have the following remark

Remark. We have

1) Proposition 4.6 implies that the function g∞ is an anlytic function
which extends g; that is g∞(t) = g(t) ∀t ∈ R+.

2) The sequences {fr}r>0 and {gr}r>0 are sequences of entire functions
of increasing exponential type r. On the other hand, functions f∞ and
g∞ from Proposition 4.6 are, generally speaking, neither entire nor of
finite exponential type.
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3) In principle the functions g∞ and f∞ depend on ψ, with 3π
4 < ψ ≤

ψ(g): for each angle ψ in ]3π4 , ψ(g)] and each r > 0, we obtain the finite

angular contour κψr (which is part of the infinite angular contour κψ),
the sequence of functions {fψr }r>0 and {gψr }r>0, and the limit functions
gψ∞ and fψ∞. We also note that for ψ1 ≤ ψ2 in ]3π4 , ψ(g)] the functions

gψ2
∞ and fψ2

∞ are analytic extensions of gψ1
∞ and fψ1

∞ respectively.

Motivated by this remark and Proposition 4.6, we define the following
nonempty set:

W(g) :=

{
fψ∞ : ψ ∈ ]

3π

4
, ψ(g)]

}
.

Also, we denote by Ω 3π

4
the reflexion of D 3π

4
with respect to the imaginary

axis. We define the operator ζ̃(∂2t + h) on W(g) as follows:

Definition 4.7. Let fψ∞ ∈ W(g) and let fψr ∈ Exp(Ω 3π

4
) be a family which

satisfies Equation (4.5) and such that fψr → fψ∞ in the the topology of uni-
form convergence on compact subsets of Dom(fψ∞). Then,

(4.10) ζ̃(∂2t + h)fψ∞ := lim
r→∞

ζ(∂2t + h)fψr ,

where the limit is also taken in the topology of uniform convergence on com-
pact subsets of Dom(fψ∞).

Because of [20, Theorem 25.1] the limit appearing in the right hand side
of Equation (4.10) does not depend on the choice of the angle ψ. By the same
reason the function fψ∞ does not depend on ψ. Thus we can use Definition 4.7
to interpret Equation (4.4) in the case in which the data g ∈ L>(R+): we
look, for a fixed ψ, a solution fψ∞ in the set W(g) to the following equation:

(4.11) ζ̃(∂2t + h)fψ∞ = g ,

and we understand Equation (4.11) in the following limit sense:

lim
r→∞

ζ(∂2t + h)fψr = lim
r→∞

gψr = gψ∞ ,

where the sequences {fψr }r>0 and {gψr }r>0 are in Exp(Ω 3π

4
) and they are

related as in Proposition 4.6. We recall once more that limit is taken under
the topology of uniform convergence on compact subsets of Dom(fψ∞), and
that gψ∞ do not depend on the angle ψ (again because of [20, Theorem 25.1],).
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Proposition 4.8. Let us consider the particular angle ψ = ψ(g) defined

after Proposition 4.6. The solution to Equation (4.11) is the function f
ψ(g)
∞ ∈

W(g) given in Proposition 4.6.

Proof. From Proposition 4.6, we recall that

fψ(g)∞ (z) =

∫

κψ(g)

esz
L(g)(s)

ζ(s2 + h)

ds

2πi
,

and that there exist a function g
ψ(g)
∞ given by

gψ(g)∞ (z) =

∫

κψ(g)

ezsL(g)(s)
ds

2πi
.

on the domain Dom(f
ψ(g)
∞ ). The analytic function g

ψ(g)
∞ extends the function

g defined in principle on R+.

Furthermore, there exist explicit sequences {fψ(g)r }r>0 and {gψ(g)r }r>0 in
Exp(Ω 3π

4
) given by:

fψ(g)r (z) =

∫

κ
ψ(g)
r

esz
L(g)(s)

ζ(s2 + h)

ds

2πi
,

and

gψ(g)r (z) =

∫

κ
ψ(g)
r

eszL(g)(s)
ds

2πi
.

These sequences, for each r > 0, satisfy the following truncated equations
on Exp(Ω 3π

4
)

(4.12) ζ(∂2t + h)fψ(g)r = gψ(g)r .

Furthermore, in Proposition 4.6 we proved that on compact subsets of

Dom(f
ψ(g)
∞ ), the following two uniform limits holds

a).

lim
r→∞

gψ(g)r (z) = gψ(g)∞ (z) ,

b).

lim
r→∞

fψ(g)r (z) = fψ(g)∞ (z) .
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Therefore, taking limits in Equation (4.12) and using items a) and b), the

following equality hold (on Dom(f
ψ(g)
∞ ))

lim
r→∞

ζ(∂2t + h)fψ(g)r (z) = lim
r→∞

gψ(g)r (z) = gψ(g)∞ (z) .

That is, on Dom(f
ψ(g)
∞ ) we have

ζ̃(∂2t + h)fψ(g)∞ = gψ(g) .

In particular

ζ̃(∂2t + h)fψ(g)∞ (t) = g(t) in R+ .

□

Appendix: Some Zeta-nonlocal scalar fields

4.3. Equations of motion

Following Dragovich’s work [21], we show how to deduce several mathemat-
ical interesting nonlocal scalar field equations whose dynamics depends on
the Riemann zeta function, Hurwitz-zeta function and also on a Dirichlet-
Taylor series.

Recall that, given a prime number p, the Lagrangian formulation of the
open p−adic string tachyon is

(4.13) Lp =
mD
p

g2p

p2

p− 1

(
−1

2
ϕp−□/(2m2

p)ϕ+
1

p+ 1
ϕp+1

)
,

where □ is the D’Alembert operator defined by □ := −∂2t + △x, in which
△x is the Laplace operator and we are using metric signature (−,+, · · · ,+),
following [21]. This Lagrangian is defined only formally; as we have shown
here, the terms appearing therein are well-defined in the 1 + 0 case, see also
[15, 16, 30]. The equation of motion for (4.13) is

p−□/(2m2
p)ϕ = ϕp.

Dragovich has considered the model

L =

∞∑

n=1

CnLn =

∞∑

n=1

Cn
mD
n

g2n

n2

n− 1

(
−1

2
ϕn−□/(2m2

n)ϕ+
1

n+ 1
ϕn+1

)
,
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in which all lagrangians Ln given by (4.13) are taken into account. Explicit
lagrangians L depend on the choices of the coefficients Cn. Some particular
cases are considered bellow.

4.3.1. The Riemann zeta function as a symbol. This is the case in
[21] and one of our main motivations. We recall once again that the Riemann
zeta function is defined by (see for instant [32])

ζ(s) :=

∞∑

n=1

1

ns
, Re(s) > 1 .

It is analytic on its domain of definition and it has an analytic extension to
the whole complex plane with the exception of the point s = 1, at which it
has a simple pole with residue 1.

If we consider the explicit coefficient

Cn =
n− 1

n2+h
,

in which h is a real number, Dragovich’s Lagrangian becomes

Lh =
mD

g2

(
−1

2
ϕ

∞∑

n=1

n−□/(2m2
n)−hϕ+

∞∑

n=1

n−h

n+ 1
ϕn+1

)
.

We write Lh in terms of the zeta function and, in order to avoid convergence
issues, we replace the nonlinear term for an adequate analytic function G(ϕ).
The Lagrangian Lh becomes:

Lh =
mD

g2

(
−1

2
ϕζ(

□

2m2
+ h)ϕ+G(ϕ)

)
.

The equation of motion is

ζ(
□

2m2
+ h)ϕ = g(ϕ) ,

in which g = G′.

4.3.2. Dirichlet zeta function as symbol. Let us consider χ a Dirichlet
character modulo m and let us define

Cn =
χ(n)(n− 1)

n2+h
.
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We recall that a L-Dirichlet series is of the following form:

L(s, χ) =

∞∑

n=1

χ(n)

ns

following Dragovich’s approach, we can consider the Lagrangian

Lh =
mD

g2

(
−1

2
ϕL(

□

2m2
+ h, χ)ϕ+ F (φ)

)

and the corresponding equation of motion

(4.14) L(
□

2m2
+ h, χ)ϕ = f(ϕ) ,

in which f = F ′.

4.3.3. Almost periodic Dirichlet series as symbol. Let {an} be a
sequence of complex numbers. A Dirichlet series is a series of the form

F (s) :=

∞∑

n=1

an
ns

.

Then, for a given sequence {an}, if we consider the coefficients

Cn =
an(n− 1)

n2+h
,

we arrive at the following Lagrangian and equation of motion:

Lh =
mD

g2

(
−1

2
ϕF (

□

2m2
+ h)ϕ+D(ϕ)

)
,

(4.15) F (
□

2m2
+ h)ϕ = d(ϕ) ,

in which d = D′.
A particular case of this equation is the equation with dynamics depend-

ing on Dirichlet series with almost periodic coefficients: following [33], we
consider a piecewise continuous, 1-periodic and L2-function f : R → C with
Fourier expansion f(x) =

∑∞
k=−∞ bke

2πikx; the particular symbol of interest
for equation (4.15) is the following almost periodic Dirichlet series:

Fα(s) :=

∞∑

n=1

f(nα)

ns
.
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