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The main purpose of this paper is to give a generalization of
Dijkgraaf-Witten theory. We construct a TQFT for E-oriented
manifolds using a pairing of spectra µ : E ∧ F → G and a repre-
sentative of an F -cohomology class of the classifying space of a
finite group. If E = HZ, F = G = HU(1) and the pairing is in-
duced by the Z-module structure of U(1), then the TQFT repro-
duces Dijkgraaf-Witten theory. For the case that each of spectra
E,F,G is given as the K-theory spectrum KU , we further gener-
alize our construction based on non-commutative settings.
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1. Introduction

The main goal of this paper is to give a generalization of Dijkgraaf-Witten
theory. Our strategy is to use a categorical group version of generalized
(co)homology theory or KK-theory in order to construct a Lagrangian clas-
sical field theory which yields a TQFT via an integral.

Dijkgraaf-Witten invariant for n-manifolds is an invariant for oriented
closed n-manifolds which is constructed from a singular cohomology class
α ∈ Hn(BΓ;U(1)) of the classifying space BΓ of a finite group Γ [5], [18],
[8], [6], [7]. The class α induces a U(1)-valued characteristic number for
classifying maps on closed n-manifolds. Dijkgraaf-Witten invariant of an
n-manifold X is defined via an integral of the characteristic number over
classifying maps on X.

Dijkgraaf-Witten theory is a TQFT which extends the Dijkgraaf-Witten
invariant: An ((n-1)+1)-dimensional TQFT consists of two assignments. It
assigns a linear space to a closed (n-1)-manifolds and a linear map to an n-
bordism. We require that these assignments are compatible with each other
in the sense that TQFT is given as a strong symmetric monoidal functor
from n-cobordism category to a category of linear spaces [3]. A functor Z
from a cobordism category to a linear category over a commutative field
F yields an invariant for top dimensional closed manifolds. The n-bordism
∅ → Xn ← ∅ in the domain cobordism category determined by closed n-
manifold corresponds to a morphism Z(Xn) : Z(∅)→ Z(∅). Moreover if we
have an isomorphismHom(Z(∅), Z(∅)) ∼= F, then Z(Xn) produces a number
in the ground field F. We say that the invariant extends to a functor Z.

R. Dijkgraaf and E. Witten proposed a method to construct a (2+1)-
dimensional Dijkgraaf-Witten theory starting from a singular cocycle of the
classifying space BΓ of a finite group Γ [5]. M. Wakui constructed (2+1)-
dimensional TQFT in a rigorous way based on Dijkgraaf-Witten’s idea [18].
D. Freed and F. Quinn generalized Dijkgraaf-Witten theory to a higher
dimensional TQFT starting from a singular cocycle of BΓ [8]. They also
simplified the construction of the topological action by using a canonical
integral of an n-cocycle on an closed oriented (n-1)-manifold, which is valued
at some torsors. They refer to the topological action as a Lagrangian classical
field theory. A. Sharma and A. A. Voronov reformulated Dijkgraaf-Witten
theory using a categorical framework [15]. The canonical integral introduced
by Freed and Quinn is well-understood under the categorical framework of
Sharma and Voronov. G. Heuts and J. Lurie generalized Dijkgraaf-Witten
theory focusing on the ambidexterity of the target category of local systems
on spaces of connections [9].
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We introduce a generalized Dijkgraaf-Witten invariant using a general-
ized cohomology class of the classifying space BΓ. Some of main ingredients
for the construction are a ring spectrum E, two spectra F,G, a pairing
E ∧ F → G and an F -cohomology class of α ∈ Fn(BΓ). We define an in-
variant Zφ,α for closed E-oriented n-manifolds where we explain φ in sub-
section 3.1. It gives a generalization of Dijkgraaf-Witten invariant in the
sense that our result is reduced to Dijkgraaf-Witten invariant if we con-
sider E = HZ, F = HU(1), the Eilenberg-Maclane spectra associated with
abelian groups Z, U(1). In that case, the pairing is induced by the HZ-
module structure of HU(1).

For a ring spectrum E, we define a cobordism category CobEn−1. We con-

struct a TQFT Ẑφ̂,α̂ which is defined on the category CobEn−1 and extends
the invariant Zφ,α. Here, α̂ is a representative α of the class α ∈ Fn(BΓ).

On the one hand, we also introduce another invariant Zψ,β for closed
KU -oriented n-manifolds. Here, β is a KK-theory class in KK(A,C(BΓ)⊗
B) (see subsection 3.2) where A,B are C*-algebras. One of its advantage is
that it becomes possible to cooperate with non-commutative settings. In ad-
dition, it gives a generalization of the previous invariant Zφ,α under the con-
dition E = F = G = KU . In fact, Zψ,β coincides with Zφ,α if A = C0(R

n),
B = C and the class α corresponds to the class β under the homomorphism
KUn(BΓ)→ KK(C0(R

n), C(BΓ)).
We construct a TQFT Ẑψ̂,β̂ which is defined on the category CobKUn−1

and extends the invariant Zψ,β . Here, β̂ is a representative of the class β ∈
KK(A,C(BΓ)⊗B).

Since the invariants Zφ,α and Zψ,β coincide to each other under some
conditions mentioned before, the dimension of linear spaces assigning to (n-
1) closed manifolds coincide to each other. In fact, Z(Y n−1 × S1) coincides
with the dimension of the linear space Z(Y n−1) if Z = Zφ,α, Zψ,β is defined
on a closed (n-1)-manifold Y n−1. Nonetheless, we do not have a natural
isomorphism between Ẑφ̂,α̂ and Ẑψ̂,β̂ . It seems necessary to construct a ‘map’
between classes of representatives of KUn(BΓ) and KK(Sn, C(BΓ)) in an
appropriate way, but we do not yet have such a ‘map’.

Note that the TQFT we construct is partial unless the generalized
(co)homology theory satisfies some condition which ordinary (co)homology
theory satisfies automatically. The object class of its domain cobordism cat-
egory CobEn−1 consists of (n-1)-manifolds Y n−1 such that En(Y

n−1) ∼= 0
where n is the top dimension of manifolds we deal with.
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The construction basically follows the approach of Sharma-Voronov.
Sharma-Voronov use categorical (co)homology group to extend character-
istic number of n-dimensional closed BΓ-manifolds to (n− 1) dimension
where the extended characteristic number is called Lagrangian classical field
theory in the literature. We formulate a categorical framework for general-
ized (co)homlogy theory and KK-theory. The categorical group version of
singular (co)homology theory applied by A. Sharma and A. A. Voronov is
due to A. del R̀ıoa, J. Mart̀ınez-Morenob, E. M. Vitale [1]. We introduce
a categorical group version of generalzied (co)homology theory and KK-
theory based on a fundamental groupoid of certain simplicial sets. Sharma
and Voronov constructed a Lagrangian classical field theory using the cap
product associated with that categorical (co)homology theory. We use a
pairing of generalized (co)homology theories or the Kasparov product of
KK-theory to construct a Lagrangian classical field theory.

We only explain the construction of TQFT starting from a generalized
cohomology class. We give a categorical framework of KK-theory which is
used to construct the TQFT using a KK-theory class in a parallel way given
in this paper.

In this paper, we use the notion of spectrum and smash product following
Adams [2], Switzer [16]. E = {En, sn} is a spectrum if En is a pointed CW-
complex and sn : ΣEn → En+1 is a pointed CW-embedding for n ∈ Z. There
are some natural equivalences under which the smash product is associative,
commutative, and has the sphere spectrum as a unit upto coherent natural
equivalence.

A. del R̀ıoa, J. Mart̀ınez-Morenob, E. M. Vitale [1] call by (co)homology
categorical group the categorical group version of (co)homology theory in-
duced by a chain complex of categorical groups. We follow the convention by
calling by generalized (co)homology categorical group (resp. KK categori-
cal group) the categorical group version of generalized (co)homology group
(KK-group).

The organization of this paper is as follows. In section 2, we introduce
some notations which appear very often throughout this paper. In section 3,
we define generalized Dijkgraaf-Witten invariants. In section 4, we give the
main results of this paper without precise meaning of notations. From sec-
tion 5 to section 7, we construct a TQFT based on generalized (co)homology
theory. In section 5, we introduce a symmetric categorical group version of
generalized (co)homology theory. In section 6, we construct a classical field
theory using generalized (co)homology theory. In section 7, we apply push-
forward to the result in section 6 in order to obtain a TQFT for E-oriented
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manifolds. In section 8, we give some computations of the TQFT’s. In sec-
tion 9, we give a remark about the symmetric monoidal functors φ̂, ψ̂ which
are used to construct the TQFT’s. In section 10, we introduce a symmetric
categorical group version of KK-theory.
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2. Notations

• Let X,Y be spaces. We denote by Map(X,Y ) the set of maps from X
to Y . We denote by MAP (X,Y ) the simplicial set whose k-skeleton
MAP (X,Y )k is given by

Map(X ×△(k), Y ),(1)

where△(k) is the k-simplex. Then the face maps and degeneracy maps
on simplices induce face maps and degeneracy maps ofMAP (X,Y )k’s.
Similarly, we define a simplicial setMAP∗(X,Y ) for based spacesX,Y
where the k-skeleton is given by

Map∗(X ∧ (△(k))+, Y ).(2)

• About bicategories, we follow the terminologies introduced in [14]. We
introduce following notations of several categories.
1) Gpd is the 2-category of groupoids, functors and natural transfor-

mations.
2) CW∗ is the 2-category whose objects are given as based CW-spaces

and the morphism category CW∗(X,Y ) is given as the fundamen-
tal groupoid Π1MAP∗(X,Y ) where MAP∗(X,Y ) is the simplicial
set consisting of based maps from X to Y .

3) 2Cat is a 2-category of 2-categories, strict homomorphisms and
strict transformations.
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4) VectF is the category of finite-dimensional vector spaces over the
field F and linear homomorphisms.

5) For an abelian group M , we define a symmetric categorical group
MTor as follows. Its object class consists of M -torsors (i.e. prin-
cipal M -bundle over a point). Its morphism class consists of M -
equivariant maps between M -torsors. For two M -torsors T, T ′,
we define T ⊗ T ′ obtained by dividing the product T × T ′ by
(t, t′) ∼ (mt,mt′), m ∈M . Then the assignment (T, T ′) 7→ T ⊗ T ′

determines a functor ⊗ :MTor×MTor→MTor which gives a
symmetric categorical group structure toMTor in an obvious way.

3. Generalized Dijkgraaf-Witten invariants

Let F be a commutative field with characteristic zero. In this section, we
define two F-valued invariants which are denoted by Zφ,α and Zψ,β through-
out this paper. The invariant Zφ,α(X

n) ∈ F is defined for closed E-oriented
n-manifolds Xn where E is a ring spectrum. Its definition also depends
on choices of a pairing of spectr µ : E ∧ F → G, an F -cohomology class
α ∈ Fn(BΓ) and a group homomorphism φ : G0(pt)→ F×. If we consider
E = HZ, F = G = HU(1), F = C and the inclusion φ : G0(pt) ∼= U(1)→
C×, then the invariant Zφ,α reproduces the Dijkgraaf-Witten invariant [5],
[8]. Due to this fact, we regard it as a generalization of the Dijkgraaf-Witten
invariant. The invariant Zψ,β(X

n) ∈ F is defined for closed KU -oriented n-
manifolds. Its definition also depends on choices of two C*-algebras A,B,
a KK-group class β ∈ KK(A,C(BΓ)⊗B) and a group homomorphism
ψ : KK(A,SnB)→ F×. Here,KK(A,SnB) is theKK-group corresponding
to C*-algebras A and SnB.

3.1. An invariant Zϕ,α from generalized (co)homology theory

In this paper, we use the notion of spectrum following Adams [2], Switzer
[16]. The notion of spectra is actually not that essential in this section since
we only need the generalized (co)homology theories induced by spectra.
Nonetheless, we use it in order to relate the invariants defined in this section
with TQFT’s constructed later.

Let E be a ring spectrum. Suppose that we are given a pairing of
spectra µ : E ∧ F → G.. Then the pairing µ induces a Kronecker pairing
⟨ , ⟩ : En(BΓ)⊗ Fn(BΓ)→ G0(pt).

Let α ∈ Fn(BΓ) be an F -cohomology class of the classifying space.
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Definition 3.1. For an E-oriented closed n-manifold Xn and a continuous
map f : Xn → BΓ, we define

Sα(X
n, f)

def.
= ⟨f∗[Xn]E , α⟩ ∈ G0(pt),(3)

where [Xn]E ∈ En(X
n) is the fundamental class of the E-oriented manifold

Xn.

Definition 3.2. We define two abelian monoids ME
n (T ) and Mn

E(T ;N)
where T is a space and N is an abelian monoid:

ME
n (T )

def.
= {(Xn, f : Xn → T )}/ ∼,

Mn
E(T ;N)

def.
= Hom(ME

n (T ), N).

The equivalence relation ∼ is defined by

(X, f) ∼ (X ′, f ′)⇔ ∃α : X
∼=
→ X ′ s.t. f ′ ◦ α ≃ f.

Following Turaev [17], we call the pair (Xn, f : Xn → T ) as a T -manifold
and ME

n (T ) the set of equivalence classes of T -manifolds. We give the
set ME

n (T ) an abelian monoid structure using the disjoint union. Then
Mn

E(T ;N) is the set of homomorphisms between monoids ME
n (T ), N .

It is easy to check that the assignment T 7→ME
n (T ) is covariant so

that T 7→Mn
E(T ;N) is contravariant. For a continuous map f : T → T ′,

we denote the induced maps by f∗ : ME
n (T )→ME

n (T
′), f∗ : Mn

E(T
′;N)→

Mn
E(T ;N).

Definition 3.3. Let c : BΓ→ pt be the collapsing map. Consider the field
F as an abelian monoid using its multiplication structure. We define a map
c! : M

n
E(BΓ;F)→Mn

E(pt;F) by

c!(I)
def.
=

∑

f :Xn→BΓ

I(Xn, f)

♯Aut(f∗(EΓ))
∈ F.

Here, f runs on the set of homotopy classes of continuous maps.

In order to check that this definition is well-defined, one should check
that c!(I) gives a homomorphism from ME

n (pt) to the multiplicative monoid
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F. Note that I(Xn
0 , f0) · I(X

n
1 , f1) = I(Xn

0 ⨿X
n
1 , f0 ⨿ f1) ∈ F0(∗) since I ∈

Mn
E(BΓ;F) so that we obtain

c!(I)(X
n
0 ) · c!(I)(X

n
1 ) = c!(I)(X

n
0 ⨿X

n
1 ) ∈ F.(4)

We define a generalized Dijkgraaf-Witten invariant for closed E-oriented
manifolds as follows.

Definition 3.4. Let φ : F0(pt)→ F× be a group homomorphism. We de-

fine Sφ,α
def.
= φ∗(Sα) and Zφ,α

def.
= c!(Sφ,α). In other words, for an E-oriented

closed n-manifold Xn, we define

Zφ,α(X
n)

def.
=

∑

f :Xn→BΓ

φ(Sα(X
n, f))

♯Aut(f∗(EΓ))
∈ F.(5)

3.2. An invariant Zψ,β from KK-theory

K-theory for C*-algebras and analytic K-homology are generalized into a
common framework called KK-theory [4]. KK-theory is a bivariant functor
(A,B) 7→ KK(A,B) from the category of C*-algebras and homomorhisms to
the category of abelian groups and homomorphisms, which is contravariant
with respect to A and covariant with respect to B.

We have a natural isomorphism KUk(Z,Z
′) ∼= KK(C0(Z\Z

′), C0(R
k))

for a pair of finite CW complexes (Z,Z ′) (Theorem 4 [13]). Here the left
hand side is the homology theory defined by the spectrum KU . If Zk is
a compact KU -oriented k-manifold, then its KU -orientation lives in the
KK-group KK(C(Zk\∂Zk), C0(R

k)). We denote it by [Zk]aKU .
As a technical assumption, we fix a CW complex structure of the clas-

sifying space BΓ, whose r-skeleton BΓ(r) is compact and Hausdorff for ev-
ery r ∈ Z>0. Since a smooth k-manifold Zk has a k-dimensional CW com-
plex structure, the celluar approximation theorem induces an equivalence of
groupoids,

Π1MAP (Zk, BΓ(r))→ Π1MAP (Zk, BΓ), r ≥ k + 2.(6)

We fix a large r ≥ n+ 3 where n+ 1 is the largest dimension of manifolds

which we deal with in this paper. Let us denote by Π1MAP f (Zk, BΓ)
def.
=

Π1MAP (Zk, BΓ(r)). For such r, we denote

KK(A,C(BΓ)⊗B)
def.
= KK(A,C(BΓ(r))⊗B).(7)
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This assumption is necessary since the *-algebra formed by C-valued con-
tinuous maps on BΓ does not induce a C*-algebra in general.

Let A,B be C*-algebras and let β ∈ KK(A,C(BΓ)⊗B). We define
an action funcional for principal Γ-bundles over closed KU -oriented n-
manifolds.

Definition 3.5. Let Xn be a closed KU -oriented n-manifold. For an object
f ∈ Π1MAP f (Xn, BΓ), we define

Sβ(X
n, f)

def.
= f∗[Xn]aKU ⊗C(Xn) β ∈ KK(A,SnB)(8)

where ⊗C(Xn) is the Kasparov product contracting C(Xn).

We define a generalized Dijkgraaf-Witten invariant Zψ,β for closed
KU -oriented n-manifolds as follows. Again, one can check that Zψ,β ∈
Mn

KU (pt;F).

Definition 3.6. Let ψ : KK(A,SnB)→ F× be a group homomorphism.

We define Sψ,β
def.
= ψ∗(Sβ) and Zψ,β

def.
= c!(Sψ,β). In other words, for a closed

KU oriented n-manifold X, we define

Zψ,β(X
n)

def.
=

∑

[f ]

ψ(Sβ(X
n, f))

♯Aut(f∗(EΓ))
∈ F.(9)

Here, f runs on the set π0(MAP f (Xn, BΓ)) ∼= [Xn, BΓ(r)].

4. Main results

In this section, we outline our main results without giving precise definition
of notations. In subsection 4.1, we give one of our main theorems that the
invariant Zφ,α extends to a TQFT Ẑφ̂,α̂. We give explanation that it yields
the Dijkgraaf-Witten theory [8] as its corollary. In subsection 4.2, we give
our other main theorem that the invariant Zψ,β extends to a TQFT Ẑψ̂,β̂ .
In subsection 4.3, we summarize their constructions. In subsection 4.4, we
explain the main feature of our construction.

4.1. A TQFT Ẑϕ̂,α̂ from generalized (co)homology theory

Let E be a ring spectrum. We denote by CobEn−1 a cobordism category
of E-oriented smooth manifolds whose top dimension is n ∈ Z>0. Its object
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class consists of (n-1)-dimensional closed E-oriented smooth manifolds Y n−1

such that

En(Y
n−1) ∼= 0.(10)

Here, En denotes the n-th E-homology group. The morphism class of the
category CobEn−1 consists of n-dimensional smooth E-oriented cobordisms
connecting such objects. Due to the additivity of E-homology with respect to
disjoint union of spaces, the disjoint union of E-oriented manifolds induces
a symmetric monoidal structure on the category CobEn−1.

In section 5, we construct a delooping of the abelian group G0(pt) which
is given by a symmetric categorical group G(= Ĝ−1(S

0)) such that

π1(G) ∼= G0(pt),(11)

as abelian groups. Then our main theorem is stated as follows.

Main theorem 1.(see Theorem 7.2) Let α be a representative of the F -
cohomology class α ∈ Fn(BΓ). Let φ̂ : G→ F×Tor be a symmetric monoidal
functor such that π1(φ̂) = φ : G0(pt)→ F×. The invariant Zφ,α for closed
E-oriented n-manifolds extends to a strong symmetric monoidal functor,

Ẑφ̂,α̂ : (CobEn−1,⨿)→ (VectF,⊗).(12)

It is a generalization of the Dijkgraaf-Witten theory [5],[8] : We substi-
tute the following spectra into E,F ,

E = HZ, F = G = HU(1).(13)

Here HM is the Eilenberg Maclane spectrum associated with an abelian
group M . Let φ : U(1) ∼= G0(pt) = H0(pt;U(1))→M = C× be the inclu-
sion. Then it is lifted to an equivalence of symmetric categorical groups,
φ̂ : G→ C×Tor (see section 9). Under these assumptions, the strong sym-
metric monoidal functor Ẑφ̂,α̂ in the theorem gives the Dijkgraaf-Witten
theory. In fact, the cobordism category CobEn−1 is isomorphic to the cobor-
dism category of oriented manifolds since any closed k-manifold Zk satisfies
Hk+1(Z

k;Z) ∼= 0.
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4.2. A TQFT Ẑψ̂,β̂ from KK-theory

Let A,B be C*-algebras. In section 10, we construct a delooping of the
abelian group KK(A,SnB) which is given as a symmetric categorical group
G(= KK(A,Sn+1B)) such that

π1(G) ∼= KK(A,SnB),(14)

as abelian groups.

Main Theorem 2. Let A,B be C*-algebras. Let β be a representative
of the KK-theory class β ∈ KK(A,C(BΓ)⊗B). Let ψ̂ : G→ F×Tor be a
symmetric monoidal functor such that π1(ψ̂) = ψ : KK(A,SnB)→ F×. The
invariant Zψ,β extends to a strong symmetric monoidal functor,

Ẑψ̂,β̂ : (CobKUn−1,⨿)→ (VectF,⊗).(15)

4.3. Outline of the construction

We summarize the construction of TQFT’s. In order to extend our Dijkgraaf
invariant to a TQFT, we firstly extend our Lagrangian classical field theory
or characteristic number of BΓ-manifolds. As the Dijkgraaf-Witten invariant
is obtained using the push-forward in Definition 3.3, we apply a push-forward
c! : Cobn−1

E (BΓ;VectF)→ Cobn−1
E (pt;VectF) to the extended characteris-

tic number to obtain a TQFT.
We only consider the generalized cohomology case here, but it is possible

to discuss the KK-theory case in a parallel way. It is helpful to recall the
definition of the invariant Zφ,α. For each closed n-manifold Xn which has
an appropriate orientation with respect to some spectrum, we are given
a set of finite gauge fields over which a Lagrangian classical field theory
Sφ,α is defined. Sφ,α is understood as a characteristic number of closed BΓ-
manifolds obtained by composing following maps:

ME
n (BΓ)→ En(BΓ)

⟨α,−⟩
→ G0(pt)

φ
→ F

×(16)

The first step is that we extend the characteristic number Sφ,α to closed
(n− 1)-manifolds. We denote it by Ŝφ̂,α̂, which is defined by composing
following functors,

CobE,repn−1 (BΓ)
ΦBΓ→ Ên+1(Σ

2BΓ+)
⟨α̂,−⟩
→ Ĝ−1(S

0)
φ̂
→ F

×Tor.(17)
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Here, the symmetric monoidal functor ΦBΓ is defined in section 6.
Dijkgraaf-Witten invariant Zφ,α(X

n) is defined via an integral of the
functional Sφ,α over finite gauge fields. Our strategy to construct TQFT’s
is parallel to the construction of the invariant Zφ,α. In fact, there exists
a push-forward c! : CobnE(BΓ;VectF)→ CobnE(pt;VectF), which is called
finite path integral in the literature. The symmetric monoidal functor
c!Ŝφ̂,α̂ ∈ CobnE(pt;VectF) obtained by applying it to the extended char-
acteristic number is the TQFT we want.

We should give a remark about Ê•. In order to extend invariants to
codimension-one manifolds, we start with a categorical framework of abelian
groups, i.e. symmetric categorical groups.

We lift the generalized (co)homology groups and KK-theory groups to
categorical groups as follows. Both of generalized (co)homology groups and
KK-theory groups can be defined as a homotopy set π0(Mor(a, b)) of a
space Mor(a, b) for appropriate object a, b, which are spectra for the former
case and C*-algebras for the latter case. Our categorical group version of
generalized (co)homology groups and KK-theory groups are constructed on
the fundamental groupoid Π1Mor(a, b).

4.4. Main feature of the construction

In previous research on Dijkgraaf-Witten theory [5] [18] [8] [15], the functor
ΦBΓ is constructed implicitly by using simplicial data of manifolds. Tri-
angulations of manifolds and the classifying space are used in Dijkgraaf-
Witten, Wakui, and the singular nerve of manifolds is used in Freed-Quinn,
Sharma-Voronov. In particular, the morphism assigned by ΦBΓ is induced
by the natural transformation associated in the 2-exact sequence of categori-
cal (singular) homology groups in Sharma-Voronov. The main feature of our
construction is that we do not need such auxiliary data. We construct cor-
responding morphisms by using a homotopy associated with every bordism.
In this subsection, let us explain the idea.

For a moment, we deal with arbitrary manifolds. Let Y be a closed
(n− 1)-manifold. We denote by B′

0(Y ) the quotient space Y ×D1/Y × ∂D1

where D1 def.
= {t ∈ R | − 1 ≤ t ≤ 1}. For a n-bordism X from Y0 to Y1, we

construct B′
1(Y0

i0→ X
i1← Y1) = B′

1(X) as follows. We glue the boundaries of
Y1 × [−1, 0]⨿X × {0} ⨿ Y1 × [0, 1] to obtain a bundle L over D1, i.e. we
identify,

• (y1, 0) ∼ (i1(y1), 0) where y1 ∈ Y1
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• (y0, 0) ∼ (i0(y0), 0) where y0 ∈ Y0

Let us write the projection to D1 by π : L→ D1. We define B′
1(X) as the

quotient space L/π(∂D1). Then B′
0(Y ), B′

1(X) are naturally determined by
Y,X respectively. We have a homotopy h denoted in the following diagram,

(18)

B′
1(Y0 → X ← Y1)

B′
0(Y0)

h
=⇒ B′

0(Y1)

B′
0(X)

q1

q0

The upper two maps are obtained by collapsing Y1 × [−1, 0] and Y0 × [0, 1]
respectively. The lower two maps are induced from the inclusions.

A continuous map g : Y → BΓ induces a map B′
0(g) : B

′
0(Y )→ B′

0(BΓ).
Let us consider a bordism between BΓ-manifolds. In other words, we are
given a bordism X from Y0 to Y1 and continuous maps gk : Yk → BΓ, f :
X → BΓ such that the restriction of f to boundaries coincides with g0 ⨿ g1.
Then we can construct a homotopy from B′

0(g0) ◦ q1 to B′
0(g1) ◦ q0 by using

the previous homotopy h.
Let E = {En, sn} be a spectrum. From now on, we consider E-oriented

manifolds and bordisms. An (n− 1)-th E-homology class of Y is repre-
sented by a map from the sphere spectrum Sn+1 to E ∧ Σ∞Σ2Y +. Note
that we have a homeomorphism between spaces Σ2Y + and B′

0(Y ) defined
above. Hence, we consider a representative of an (n− 1)-th E-homology
class of Y as a map to E ∧ Σ∞B′

0(Y ). Then a continuous map g : Y → BΓ
and a representative of an E-orientation of Y (as an E-homology class)
gives a map S(Y, g) from the sphere spectrum Sn+1 to E ∧ Σ∞B′

0(BΓ).
For an E-oriented BΓ-bordism (X, f) between E-oriented BΓ-manifolds
(Y0, g0), (Y1, g1), we obtain a homotopy S(X, f) from S(Y0, g0) ◦ q1 to
S(Y1, g1) ◦ q0:

B′
1(Y0 → X ← Y1)

B′
0(Y0)

S(X,f)
=⇒ B′

0(Y1)

B′
0(BΓ)

q1

q0

S(Y0g0)

S(Y1g1)
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The above constructions might be sufficient to understand what are assigned
to objects and morphisms from the TQFT’s, however it is hard to check
whether the assignments give a functor, i.e. whether commutative diagrams
in the domain are sent to commutative diagrams in the target. It is the
reason that we use bundles over the 2-disk D2 not over the 1-disk D1 in
Definition 6.3.

Let us recall how the homotopy h is obtained. One might realize that
the maps in the diagram (18) are nothing but the collapsing maps πu from
D1/∂D1 to U/∂U ∼= S1 where U is a subspace of D1 with a homeomorphism
u to the 1-disk D1 if one focuses on their base spaces. Then the homotopy h
is obtained from a homotopy between πu and πv where we consider another
embedding v : D1 → D1. More generally, given a manifold Tn and an embed-
ding u : Dn → Tn, we have such collapsing map πu : Tn → Dn/∂Dn ∼= Sn,
and if two embeddings are connected by an isotopy i, then i induces a ho-
motopy between πu and πv.

5. Generalized (co)homology categorical group

In this section, we introduce a categorical group version of generalized
(co)homology theory It is defined as the fundamental groupoid of a space
of morphisms between spectra whose 0-th homotopy set gives the gen-
eralized (co)homology group. The abelian group structure on generalized
(co)homology group is lifted to the groupoid as a symmetric categorical
group structure.

In subsection 5.1, we introduce a simplicial set consisting of morphisms
between spectra, and discuss some properties of its fundamental groupoid.
In subsection 5.2, we define categorical generalized (co)homology group de-
noted by Ên(X) and Ên(X) for a pointed space X.

5.1. Preliminaries

We follow [2], [16] with respect to the notion of spectra. We say that E =
{En, sn} is a spectrum if En’s are pointed CW complexes and sn : ΣEn →
En+1’s are pointed CW-embeddings. For two spectra E,F , a map is a family
of celluar maps fn : En → Fn between CW-complexes which intertwines the
structure maps sn’s. For two spectra E,F , a morphism is an equivalence class
of a pair (f,E′) : E → F where E′ ⊂ E is cofinal subspectrum and f : E′ →
F is a map of spectra. Here, E′ ⊂ E is cofinal if there exists k ∈ N such that
Σke ⊂ E′

n+k for any cell e of En. Two pairs (f,E′), (g, E′′) are equivalent
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if f |E′∩E′′ = g|E′∩E′′ . We denote by Mor(E,F )n the set of morphisms of
degree n from E to F .

Definition 5.1. We define a simplicial set MOR(E,F )n = X for two
spectra E,F . Let its m-skeleton Xm be Mor(E ∧△(m)+, F )n. Here, E ∧
△(n)+ = {En ∧△(n)+} is given by the smash product of a spectrum and a
pointed CW-complex. We use the face maps and degeneracy maps between
simplices △(n) to define the face maps and degeneracy maps between Xm’s.

For two subspectra E′, E′′ of E, if two morphisms f ′ : E′ → F , f ′′ : E′′ →
F coincide on E′ ∩ E′′, then they are glued into a unique morphism f :
E′ ∪ E′′ → F . Hence, we see that the simplicial set MOR(E,F )n satisfies
the Kan condition [11], [12] so that its fundamental groupoid ofMOR(E,F )
is well-defined.

Next, we lift the composition of morphisms to a simplicial map between
MOR(E,F )’s:

Definition 5.2. We define a simplicial map,

MOR(E,F )×MOR(F,G)→MOR(E,G).(19)

It suffices to define a map which is compatible with face maps and degeneracy
maps,

Mor(E ∧ (△(n))+, F )×Mor(F ∧ (△(n))+, G)→Mor(E ∧ (△(n))+, G)
(20)

( f , g ) 7→ h(21)

We define h by taking compositions of the following maps where f ∈
Mor(E ∧ (△(n))+, F ), g,∈Mor(F ∧ (△(n))+, G):

E ∧ (△(n))+
∆
→ E ∧ (△(n)×△(n))+(22)
∼=
→ (E ∧ (△(n))+) ∧ (△(n))+(23)

f
→ F ∧ (△(n))+(24)
g
→ G.(25)

Since the composition simplicial map defined above satisfies the asso-
ciativity strictly, it follows that (19) is natural with respect to E,F,G. For
example, if we write by ∗ the one-point simplicial set, then f ∈Mor(E,F )
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induces a simplicial map f̂ : ∗ →MOR(E,F ). Then we obtain a simplicial
map from (19):

MOR(F,G)→ ∗×MOR(F,G)(26)

f̂
→MOR(E,F )×MOR(F,G)(27)

→MOR(E,G)(28)

If we denote it by f∗ :MOR(F,G)→MOR(E,G), then we have (g ◦ f)∗ =
f∗ ◦ g∗ due to the associativity of the composition simplicial map. Therefore
we obtain the following proposition.

Proposition 5.3. The composition simplicial map induces a functor be-

tween fundamental groupoids,

Π1MOR(E,F )×Π1MOR(F,G)→ Π1MOR(E,G).(29)

This composition functor satisfies the associativity strictly, has a strict unit,

and it is natural with respect to E,F,G.

From now on, we discuss an additivity of MOR(E,F ) with respect
to E. Note that we have a bijection Mor(E ∨ E′, F )→Mor(E,F )×
Mor(E′, F ), which extends to a simplicial isomorphismMOR(E ∨ E′, F )→
MOR(E,F )×MOR(E′, F ). Hence, we obtain the following proposition.

Proposition 5.4. Let E,E′, F be spectra. Let us denote by i : E → E ∨ E′,
i′ : E′ → E ∨ E′ the canonical inclusions. They induce an isomorphism of

groupoids:

Π1MOR(E ∨ E′, F )→ Π1MOR(E,F )×Π1MOR(E′, F ).(30)

By definition, π0(MOR(E,F )) is the homotopy set of morphisms from
E to F . It is well-known that the set of homotopy set of morphisms of
spectra has an abelian group structure. It is explained as follows. Note that
we have an equivalence MOR(E,F ) ≃MOR(S ∧ E,F ) where we denote
by S the sphere spectrum. The sphere spectrum has a cogroup structure in
the homotopy category of spectra with the wedge product as its monoidal
structure: We have a pinch map S1 → S1 ∨ S1 which extends to a morphism
of spectra S → S ∨ S. Since S2 → S2 ∨ S2 gives an abelian cogroup in the
homotopy category of pointed spaces with the wedge product as its symmet-
ric monoidal structure, we see that S → S ∨ Sgives an abelian cogroup in
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the homotopy category of spectra. Therefore the set π0(MOR(S ∧ E,F ))
has an abelian group structure since we have MOR((S ∨ S) ∧ E,F ) ∼=
MOR(S ∧ E,F )×MOR(S ∧ E,F ). In a similar way, Π1(S ∧ E,F ) inherits
a symmetric categorical group structure.

Proposition 5.5. By Proposition 5.4, we have a symmetric monoidal iso-

morphism:

Π1MOR(S ∧ (E ∨ E′), F )→ Π1MOR(S ∧ E,F )⊕Π1MOR(S ∧ E,F )

Let E,F, F ′ be spectra. Denote the canonical inclusions by i : F → F ∨
F ′, i′ : F ′ → F ∨ F ′. They induce a functor f by

Π1MOR(S ∧ E,F )⊕Π1MOR(S ∧ E,F ′)→ Π1MOR(S ∧ E,F ∨ F ′)

(a, b) 7→ i∗(a)⊕ i′∗(b)

If p : F ∨ F ′ → F and p′ : F ∨ F ′ → F ′ denotes the projections, we obtain a
functor g,

Π1MOR(S ∧ E,F ∨ F ′)→ Π1MOR(S ∧ E,F )⊕Π1MOR(S ∧ E,F ′)

a 7→ (p∗(a), p′∗(a))

Proposition 5.6. The functors f, g are lifted to an adjoint equivalence of

symmetric categorical groups with canonical inverses.

Proof. Since p ◦ i = idF , p
′ ◦ i′ = idF ′ and p ◦ i′ and p′ ◦ i are collaps-

ing morphisms, g(f(a, b)) = f(i∗(a)⊕ i′∗(b)) = (p∗(i∗(a)⊕ i′∗(b)), p
′
∗(i∗(a)⊕

i′∗(b))) = (a⊕ (p ◦ i′)∗(b), (p′ ◦ i)∗(a)⊕ b) ∼= (a, b). Hence we obtain a natu-
ral isomorphism η : g ◦ f ∼= id which is natural with respect to E,F, F ′.

On the one hand, f induces an equivalence of groupoids since its π0, π1
induce isomorphisms Therefore, there exists a unique natural isomorphism
ϵ : id ∼= f ◦ g such that f, g, η, ϵ gives an adjoint equivalence of groupoids.

The functor g is obviously a (strict) symmetric monoidal functor preserv-
ing canonical inverses due to definitions. Although it is not that obvious for
the functor f , the functor f is enhanced naturally to a symmetric monoidal
functor preserving canonical inverses using the adjoint equivalence f, g, η, ϵ.
Then f, g, ϵ, η give an adjoint equivalence of symmetric categorical groups
with canonical inverses. □
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5.2. Construction

Definition 5.7. Let E be a spectrum. For a pointed space X, we define a
symmetric categorical group Ên(X) and Ên(X) by

Ên(X)
def.
= Π1MOR(S ∧ Σ∞X,E)−n,(31)

Ên(X)
def.
= Π1MOR(S,E ∧ (S ∧ Σ∞X))n.(32)

By definition, we have following isomorphisms of abelian groups.

π0(Ê
n(X)) ∼= Ẽn(X),(33)

π0(Ên(X)) ∼= Ẽn(X).(34)

Here, the right hand side denotes the reduced E-(co)homology groups. More-
over, for the fundamental groups of groupoids Ên(X), Ên(X), we have the
following proposition.

Proposition 5.8. Let E be a spectrum and X be a pointed space. We have

following isomorphisms of abelian groups.

π1(Ê
n(X)) ∼= Ẽn−1(X),(35)

π1(Ên(X)) ∼= Ẽn+1(X).(36)

Proof. We sketch the proof for the first claim.

π1(Ê
n(X)) ∼= π1(MOR(S ∧ Σ∞X,E)−n)(37)

∼=Mor(S ∧ Σ∞X ∧ S1, E)−n/homotopy(38)
∼=Mor(S ∧ Σ∞X,E)−n+1/homotopy(39)

∼= Ẽn−1(X)(40)

□

The symmetric categorical group version of generalized (co)homology
theory defined above is motivated by [15], [1]. Sharma-Voronov used a sym-
metric categorical group version of ordinary (co)homology theory to con-
struct the Dijkgraaf-Witten theory. Their categorical (co)homology group is
based on [1], i.e. it is induced from a chain complex of categorical groups.
Then a universal element u ∈ Hn(HMn;M [0]) induces an equivalence of
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symmetric monoidal categories:

ˆHM
n
(X) = Π1MOR(S ∧ Σ∞X,HM)n → Hn(X;M [0]).(41)

Here HM be the Eilenberg-MacLane spectrum associated with an abelian
group M , and Hn(X;M [0]) is the categorical group described in Sharma-
Voronov [15]. M [0] is the discrete symmetric categorical group induced by
the abelian group M .

Proposition 5.9. The inclusions X → X ∨X ′ and X → X ∨X ′ induce

the following symmetric monoidal isomorphism:

Ên(X ∨X ′)→ Ên(X)⊕ Ên(X ′).(42)

Proof. It follows from Proposition 5.5. □

Proposition 5.10. We have a symmetric monoidal adjoint equivalence

which is natural with respect to X,Y, Y ′:

Ên(X ∨X
′)→ Ên(X)⊕ Ên(X

′).(43)

Proof. It follows from Proposition 5.6. □

Consider a pairing of spectra µ : E ∧ F → G ∧ S where E,F,G are
spectra. The pairing µ induces a pairing of symmetric categorical groups
F̂n(X)× Êm(X)→ Ĝm−n(S0) as a functor. It is constructed by composing
the following simplicial maps.

MOR(S ∧ Σ∞X,F )−n ×MOR(S,E ∧ (S ∧ Σ∞X))m

→MOR(S,E ∧ F )m−n(44)

→MOR(S,G ∧ S)m−n = Ĝm−n(S0)(45)

Remark 5.11. For a pointed continuous map f : X → Y , there is an as-
sociated long cofiber sequence X → Y → Cf → ΣX → ΣY → ΣCf → · · · ,
which is called Puppe sequence. If we applying generalized (co)homology
theory to this sequence, then we obtain a long exact sequence which may be
used to prove well-known long exact sequences.

On the one hand, there is lifted versions of long exact sequences given
by Theroem 4.2 [1]. They are called 2-exactness and relative 2-exactness
where 2-exactness implies relative 2-exactness. We have a relative 2-exact
sequence of our categorical (co)homology groups associated with Puppe se-
quence. Let f : X → Y be a based map. The long cofiber sequence X →
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Y → Cf → ΣX → ΣY → ΣCf → · · · associated with f induces a relative
2-exact sequence:

Ên(X) Ên(Y ) Ên(Cf ) Ên(ΣX) · · ·

0

0

0

Ên(X) Ên(Y ) Ên(Cf ) Ên(ΣX) · · ·

0

0

0

Its proof essentially comes from the (usual) exact sequence of generalized
(co)homology groups.

6. Classical theory from generalized (co)homology

In this section, we construct a Lagrangian classical field theory Ŝφ̂,α̂ for
E-oriented manifolds as a symmetric monoidal functor where E is a ring
spectrum. It is possible to regard Ŝφ̂,α̂ as an extension of the invariant Sφ,α
of BΓ-manifolds in Definition 3.1. The construction is, in fact, applied to
arbitrary space instead of BΓ.

Definition 6.1. Consider a diagram of spaces R,

R0 → R01 ← R1.(46)

Such a diagram is called a cospan, but we call it as a 1-diagram of spaces in

this paper. We write by ∂0(R)
def.
= R1 and ∂1(R)

def.
= R0.

Let us consider the following commutative diagram of spaces R,

R0 R01 R1

R02 R012 R12

R2
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Let us call such a diagram as a 2-diagram of spaces. We define 1-diagram
∂k(R) for k = 0, 1, 2 as follows.

• ∂0(R)
def.
= R1 → R12 ← R2 .

• ∂1(R)
def.
= R0 → R02 ← R2 .

• ∂2(R)
def.
= R0 → R01 ← R1 .

We call a diagram consisting of one space by 0-diagram. For a 0-diagram

R, we define A0(R)
def.
= D2 ×R.

Let R = R0
i
→ R01

j
← R1 be a 1-diagram as above. We use the maps i, j

in the diagram to glue the following disjoint union of

⨿k
(
Rk × {re

√
−1πt ∈ D2 | k ≤ t ≤ k + 1}

)
(47)

⨿
(
R01 × {−1 ≤ r ≤ 1, r ∈ D2}

)
.

Here, we regard the 2-disk embedded in C. We denote the space by A1(R).
Let R be a 2-diagram as above. We glue following spaces using the maps

associated with the diagram R.

• ⨿k
(
Rk × {re

2πt/3 | k ≤ t ≤ k + 1}
)

• R01 × {r ∈ D
2} ⨿R12 × {re

2π/3 ∈ D2} ⨿R02 × {re
4π/3 ∈ D2}

• R012 × {0}

Here, r denotes a non-negative real number. We detnoe by the space A2(R).

Remark 6.2. We have an obvious projection Ak(R)→ D2 for a k-diagram
R. We consider Ak(R) as a bundle over D2 via the projection

Definition 6.3. We define a pointed space Bk(R) for a k-diagram R by

Bk(R)
def.
= Ak(R)/Ak(R)|∂D2(48)

For a morphism between k-diagrams f : R→ R′, we denote by Bk(f) :
Bk(R)→ Bk(R

′) the induced continuous map.
Fix orientation preserving embeddings θ1,k : D

2 → D2 for k = 0, 1 such
that

D2\θ1,k(D
2) = {re

√
−1πt ∈ D2 | k < t < k + 1, r ̸= 0}.(49)
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Then θ1,k is lifted to an embedding θ̄1,k : A0(∂kR)→ A1(R) for a 1-diagram
R. It induces a pointed map q1,k : B1(R)→ B0(∂kR) for k = 0, 1.

In a similar way, we define q2,k : B2(R)→ B1(∂kR) where k = 0, 1, 2 and
R is a 2-diagram of spaces. Fix orientation preserving embeddings θ2,k :
D2 → D2 for k = 0, 1, 2 such that

D2\θ2,k(D
2) = {re

√
−12πt/3 ∈ D2 | k < t < k + 1, r ̸= 0}.(50)

It is lifted to an embedding θ̄2,k : A1(∂kR)→ A2(R) for a 2-diagramR, which
induces a pointed map q2,k : B2(R)→ B1(∂kR).

Definition 6.4. Let L be a compact n-manifold possibly with boundary.
We define a category C(L) of embeddings from n-disk Dn into L. For two
embeddings i0, i1 : D

n → L, a pre-morphism j is given as an embedding
j : Dn × [0, 1]→ L× [0, 1] such that

• j(x, t) = (jt(x), t)

• j(x, 0) = i0(x) and j(x, 1) = i1(x)

We identify two pre-morphisms j0, j1 if there exists an embedding h : (Dn ×
[0, 1])× [0, 1]→ (L× [0, 1])× [0, 1] such that

• h(x, t, 0) = j0(x, t) and h(x, t, 1) = j1(x, t)

• h(x, 0, s) = i0(x) and h(x, 1, s) = i1(x)

We define the composition j′♯j of pre-morphisms j : i0 → i1 and j′ : i1 → i2
as

(j′♯j)(x, t)
def.
=

{
(j2t(x), t) if 0 ≤ t ≤ 1/2

(j′2t−1(x), t) if 1/2t ≤ 1.
(51)

Let us define a functor χL : C(L)→ Π1Map(L/∂L,Dn/∂Dn). For an
object i of C(L), i.e. an embedding i : Dn → L, we define a map χL(i) ∈
Map(L/∂L,Dn/∂Dn) as the collapsing map L/∂L→ i(Dn)/i(∂Dn) ∼=
Dn/∂Dn. For a morphism j from i0 to i1, we define a homotopy χL(j) = h
from χL(i0) to χL(i1) by

h(x, t)
def.
=

{
[y] if j(y, t) = (x, t) ∈ L× [0, 1]

∗ otherwise
(52)
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Remark 6.5. Suppose that a 1-diagram R = (R0 → R01 ← R1) is con-
stant. Then q1,k : B1(R)→ B0(∂kR) coincides with χL(θ1,k) ∧ idR+

01
. Similar

claim holds for 2-diagrams.

Definition 6.6. Let us define a symmetric monoidal category CobE,repn−1 (T )
for a space T .

A triple (Y, g, ξ) is an object of CobE,repn−1 (T ) if the followings hold:

• Y is a closed E-oriented (n− 1)-manifold such that En(Y ) ∼= 0.

• g : Y → T is a continuous map.

• ξ ∈ Ên+1(B0(Y )) which represents the E-orientation of Y .

We define a morphism as an equivalence class of pre-morphisms which
we explain from now on. A quintuple (X,Y0, Y1, f, η) is a pre-morphism from
(Y0, g0, ξ0) to (Y1, g1, ξ1) if the followings hold:

• X is an E-oriented bordism from Y0 to Y1 which are closed E-oriented
manifolds such that En(Y0) ∼= 0 ∼= En(Y1).

• f : X → T is a continuous map whose restriction to boundaries coin-
cides with the map g0 ⨿ g1 : Y0 ⨿ Y1 → T .

• η ∈ Ên+1(B1(X)) represents the E-orientation of X. Here, B1(X) de-
notes B1(R) where R is the 1-diagram of spaces Y0 → X ← Y1 where
the maps are inclusions.

We define the identity in the category as follows. For an object (Y, g, ξ),
we define its identity as the class [Y × [0, 1], g ◦ π, ξ′] where π : Y × [0, 1]→
Y is the projection and ξ′ is a representative of the E-orientation of Y ×
[0, 1].

We define the composition in the category as follows. For two pre-
morphisms (X,Y0, Y1, f, η), (X

′, Y1, Y2, f ′, η′), we define their composition
as the class of a pre-morphism (X ′ ◦X,Y0, Y2, f ′♯f, η′′) where f ′♯f is the
map obtained by gluing f, f ′ and η′′ is a representative of E-orientation of
X ′ ◦X.

Then the data of CobE,repn−1 (T ) defined above forms a category. We
construct a symmetric monoidal category structure on the category
CobE,repn−1 (T ). We define its ‘tensor product’ by

(Y, g, ξ)⨿ (Y ′, g′, ξ′)
def.
= (Y ⨿ Y ′, g ⨿ g′, ξ ⊕ ξ′)(53)
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Then there are obvious associator and left (right) unit morphisms. Note
that the associator is induced by the associator of the monoidal structure of
Ên+1(Y ⨿ Y

′ ⨿ Y ′′).

Definition 6.7. Let us define a symmetric monoidal functor ΦT :
CobE,repn−1 (T )→ Ên+1(B0(T )). For simplicity, we denote by f∗ = Ên+1(f)

for a continuous map f and h∗∗ = Ên+1(h) for a homotopy h.
Let (Y, g, ξ) be an object of CobE,repn−1 (T ). We define ΦT (Y, g, ξ) by

ΦT (Y, g, ξ)
def.
= B0(g)∗ξ ∈ Ên+1(B0(BΓ)).(54)

Let [X,Y0, Y1, f, η] be a morphism from (Y0, g0, ξ0) to (Y1, g1, ξ1) in the cat-
egory CobE,repn−1 (T ). In order to define ΦT (X,Y0, Y1, f, η), we choose and fix
a morphism γ : θ1,1 → θ1,0 in the category C(L), L = D2. The bordism X

induces a 1-diagram R = (R0 → R01 ← R1) = (Y0
i1→ X

i0← Y1). Then we are
given following diagram. Note that we have B0(ik) ◦ q1,k = χL(θ1,k) ∧ idR+

01
.

Hence, the morphism γ induces a homotopy hX : B0(i1) ◦ q1,1 → B0(i0) ◦
q1,0 upto homotopy, i.e. hX is a morphism in Π1Map(B1(R), B0(R01)). Note
that we have unique morphism κ1 : (q1,1)∗η → ξ0 and κ0 : (q1,0)∗η → ξ1 since
Ên+1(B0(Yk))’s are simply connected by assumptions. We define

ΦT [X,Y0, Y1, f, η]
def.
= (B0(g1)∗κ0) ◦ (B0(f)∗(hX)∗∗η) ◦ (B0(g0)∗κ1) ,(55)

which is a morphism from B0(g0)∗ξ0 to B0(g1)∗ξ1 in the category
Ên+1(B0(BΓ)).

We define a natural morphism ΦT ((Y, g, ξ)⨿ (Y ′, g′ξ′))→ ΦT (Y, g, ξ)⊕
ΦT (Y

′, g′, ξ′) as the morphism B0(g ⨿ g
′)∗(ξ ⊕ ξ′)→ B0(g)∗(ξ)⊕B0(g

′)∗(ξ′)
induces by the monoidality of the monoidal functor B0 and monoidal cate-
gory Ên+1(BΓ).

Proposition 6.8. ΦT gives a symmetric monoidal functor.

Proof. We prove that ΦT sends an identity morphism to an identity mor-
phism. Let [Y × [0, 1], g ◦ π, ξ′] be an identity morphism on the object
(Y, g, ξ) ∈ CobE,repn−1 (T ). We have,

ΦT ([Y × [0, 1], g ◦ π, ξ′]) = B0(g ◦ π)∗(hY×[0,1])∗∗η(56)

= B0(g)∗ ◦B0(π)∗(hY×[0,1])∗∗η.(57)

Note that the target category of the functor B0(π)∗ is Ên+1(B0(Y )) which is
simply-connected by the assumption En(Y ) ∼= 0. Hence, B0(π)∗(hY×[0,1])∗∗η
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is the identity morphism on B0(g)∗ξ so that ΦT sends an identity morphism
to an identity morphism.

We prove that ΦT preserves the composition of morphisms. Let us
consider a 2-diagram R such that R012 = X ′ ◦X, ∂2R = (Y0 → X ← Y1),
∂0R = (Y1 → X ′ ← Y2), ∂1R = (Y0 → X ′ ◦X ← Y2). We set the structure
map (R02 → R012) = (X ′ ◦X → X ′ ◦X to be the identity map, (R12 →
R012) = (X ′ → X ′ ◦X and (R01 → R012) = (X → X ′ ◦X) to be inclusions.
We choose isotopies of embeddings k′0, k

′
1, k

′
2 given in the diagram below:

(58)

A2(R)

A1(∂aR)
k′
c=⇒ A1(∂bR)

A0(Rc)

θ̄2,a

θ̄2,b

θ̄

θ̄

Here, a < b and {a, b, c} = {0, 1, 2}. Then the isotopy k′c induce a homotopy
kc:

(59)

B2(R)

B1(∂aR)
kc=⇒ B1(∂bR)

B0(Rc)

They can be denoted as follows.

• k0 : q1,1 ◦ q2,1 → q1,1 ◦ q2,2

• k1 : q1,1 ◦ q2,0 → q1,0 ◦ q2,2

• k2 : q1,0 ◦ q2,0 → q1,0 ◦ q2,1



✐

✐

“7-Kim” — 2024/2/15 — 0:05 — page 3702 — #26
✐

✐

✐

✐

✐

✐

3702 Minkyu Kim

We can choose such kc’s satisfying the following commutative diagrams in
Π1Map(B2(R), B0(R012)).
(60)

B0(i0) ◦ q1,1 ◦ q2,2 B0(i0) ◦ q1,1 ◦ q2,1 B0(i2) ◦ q1,0 ◦ q2,1

B0(i1) ◦ q1,0 ◦ q2,2 B0(i2) ◦ q1,0 ◦ q2,0

B0(i1) ◦ q1,1 ◦ q2,0

hX

k0

hX′◦X

k2

k1

hX′

Here, we denote by ik : Yk → X ′ ◦X the inclusion for k = 0, 1, 2.

ΦT (X
′, Y1, Y2, f ′, η′) ◦ ΦT (X,Y0, Y1, f, η)(61)

= ΦT (X
′, Y1, Y2, f ′, q2,0ω) ◦ ΦT (X,Y0, Y1, f, q2,2ω)(62)

=
(
B0(g2)∗κ′2

)
◦
(
B0(f

′)∗(hX′)∗∗q2,0ω
)
◦
(
B0(g1)∗κ′1

)
(63)

◦ (B0(g1)∗κ1) ◦ (B0(f)∗(hX)∗∗q2,2ω) ◦ (B0(g0)∗κ0)(64)

Note that κ′1 ◦ κ is the unique morphism connecting its source and target.
Hence, we have κ′1 ◦ κ = (k1)∗∗ω.

ΦT (X
′ ◦X,Y0, Y2, f ′♯f, η′′)(65)

= ΦT (X
′ ◦X,Y0, Y2, f ′♯f, q2,1ω)(66)

=
(
B0(g2)∗κ′2

)
◦
(
B0(f

′♯f)∗(hX′◦X)∗∗q2,1ω
)
◦ (B0(g0)∗κ0)(67)

Above all, we can check that

ΦT (X
′ ◦X,Y0, Y2, f ′♯f, η′′) = ΦT (X

′, Y1, Y2, f ′, η′) ◦ ΦT (X,Y0, Y1, f, η)

due to the uniqueness of κa, κ
′
a’s and the commutative diagram (60).

The symmetric monoidality of the functor ΦT is shown using the
monoidal structure of category Ên+1(BΓ), functor B0(−), and the sym-
metric monoidal equivalence in Proposition 5.10. □

Definition 6.9. Let α̂ ∈ F̂n+2(B0(BΓ)) be an object. It induces a symmet-
ric monoidal functor ⟨α̂,−⟩ : Ên+1(B0(BΓ))→ Ĝ−1(S

0). For a symmetric
monoidal functor φ̂ : Ĝ−1(S

0)→ F×Tor, we define a symmetric monoidal
functor Ŝφ̂,α̂ : CobEn−1(BΓ)→ F×Tor by composing following symmetric
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monoidal functors:

CobE,repn−1 (BΓ)
ΦBΓ→ Ên+1(B0(BΓ))

⟨α̂,−⟩
→ Ĝ−1(S

0)
φ̂
→ F

×Tor,(68)

and using the equivalence CobE,repn−1 (BΓ)→ CobEn−1(BΓ); (Y, g, ξ) 7→ (Y, g).

Remark 6.10. Let φ̂ : Ĝ−1(S
0)→ F×Tor be a symmetric monoidal func-

tor. Then α̂ 7→ Ŝφ̂,α̂ gives a symmetric monoidal functor F̂n+2(B0(BΓ))→
Cobn−1

E (BΓ;F×Tor).

7. Quantum theory from generalized (co)homology

In this section, we construct a TQFT for E-oriented manifolds starting from
a representative α̂ of a class α ∈ Fn(BΓ). It is obtained by applying a push-
forward to our classical Lagrangian classical field theory. The TQFT yields
an invariant for closed E-oriented n-manifolds which coincides with the gen-
eralized Dijkgraaf-Witten invariant defined in subsection 3.1.

There exists a push-forward functor Cobn−1
E (BΓ;VectF)→

Cobn−1
E (pt;VectF). It is constructed by using the ambidexterity of

the category VectF [9]. We sketch the construction. Let C,D be categories
and F : C→ D be a functor. We suppose following assumptions.

• The categories F−1(d), F−1(l) are finite groupoids for an object d and
a morphism l in D.

• Let l : d0 → d1, l
′ : d1 → d2 be morphisms in D. Suppose that the

canonical functor F−1(l)p ×q F
−1(l′)→ f−1(l′ ◦ l) induces a equiva-

lence of categories where p : F−1(l)→ F−1(d1), q : F
−1(l)→ F−1(d1)

are projections.

For an object d ∈ D, we denote by f−1(d) the homotopy fiber category,
i.e. the category of pair (c, u) such that c ∈ C and u : F (c)→ d is an iso-
morphism. For a morphism l : d0 → d1 in D, we also denote by F−1(l) the
homotopy fiber category, i.e. the category of triples (h, u, v) such that h is a
morphism in C, u ◦ F (h) ◦ v = l and u, v are isomorphisms in the category
D. Under the assumptions, we construct a functor F! : Fun(C,VectF)→
Fun(D,VectF) as follows. Let f ∈ Fun(C,VectF), i.e. f is a functor from
C to VectF.

• (F!(f)) (d)
def.
= lim
←−

f |F−1(d) for d ∈ D.
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• Let l : d0 → d1 be a morphism in D. We define a morphism (F!(f)) (l)
from (F!(f)) (d0) to (F!(f)) (d1) by composing the following maps,

(69)

lim
←−

f ◦ π0
∼=
→ lim
−→

f ◦ π1

lim
←−

f |F−1(d0) lim
−→

f |F−1(d1)

∼=
← lim
←−

f |F−1(d1)

where πk : F
−1(l)→ F−1(dk) is the projection for k = 0, 1. Here, we

use the first assumption above and the ambidexterity of the category
VectF .

Then the assignment F!f defined previously gives a functor from D to
VectF due to the second assumption above. Note that for the func-
tor c∗ : CobEn−1(BΓ)→ CobEn−1(pt), we have equivalences (c∗)−1(Y ) ≃
Π1Map(Y,BΓ) and (c∗)−1(X) ≃ Π1Map(X,BΓ) where Y,X are an object
and a morphism in the category CobEn−1(pt) respectively. Hence, c∗ satis-
fies the first assumption above. Moreover, it satisfies the second assumption
since the following diagram forms a homotopy pull-back diagram induced
by restrictions where X : Y0 → Y1, X

′ : Y1 → Y2 are bordisms.

Π1Map(X ′ ◦X,BΓ)

Π1Map(X,BΓ) Π1Map(X ′, BΓ)

Π1Map(Y1, BΓ)

Definition 7.1. We define Ẑφ̂,α̂ ∈ Cobn−1
E (pt;VectF) by

Ẑφ̂,α̂
def.
= c!(Ŝφ̂,α̂).(70)

Theorem 7.2. Let φ̂ : Ĝ−1(S
0)→ F×Tor be a symmetric monoidal

functor. Let φ be the homomorphism π1(φ̂) : G0(pt) ∼= π1(Ĝ−1(S
0))→

π1(F
×Tor) ∼= F×. The invariant Zφ,α in Definition 3.4 extends to a strong

symmetric monoidal functor:

Ẑφ̂,α̂ : (CobEn−1,⨿)→ (VectF,⊗).(71)
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More precisely, we have

inv : π0(Cobn−1
E (pt;VectF))→Mn

E(pt; k),(72)

[Ẑφ̂,α̂] 7→ Zφ,α.(73)

Proof. We consider the previous discussion for C = CobEn−1(BΓ),D =
CobEn−1(pt) = CobEn−1, F = c∗. For the object ∅ ∈ CobEn−1 (the null space),
we have F−1(∅) ≃ ∗ so that lim

←−
f |F−1(∅) ∼= F as vector spaces. Let (X, ∅, ∅)

be a morphism between null spaces in the category CobEn−1. Note that

we have F−1(X, ∅, ∅) ≃ Π1Map(X,BΓ). Hence, to compute inv[Ẑφ̂,α̂], we

check where 1 ∈ F ∼= Ẑφ̂,α̂(∅) is sent by Ẑφ̂,α̂(X) where X is an E-oriented
n-bordism which is closed. Recall the definition of corresponding morphism
in (69), then we obtain the followings.

(1 | f : X → BΓ) 7→ ( Sϕ,α(X,f)
♯Aut(f∗EΓ) | f : X → BΓ)

1 ∈ F
∑

f
Sϕ,α(X,f)
♯Aut(f∗EΓ)

It proves the claim since
∑

f
Sϕ,α(X,f)
♯Aut(f∗EΓ) = Zφ,α(X) ∈ F. □

8. Examples

8.1. Untwisted theory

In this subsection, we give some computations for the simplest case: α̂ ∼= 0.
We first give results under the simplest case: α̂ = 0 strictly. If we have a
strict equality α̂ = 0, then it is easy to compute Ẑφ̂,α̂. Since Ẑφ̂,α̂ depends
on α̂ naturally, we only need to consider the case of α̂ ∼= 0.

Let α̂ ∈ F̂n+2(B0(BΓ)) be the unit. i.e. it is a collapsing morphism be-
tween some spectra. Since α = 0 ∈ Fn(BΓ), it is obvious that Sα(X

n, f) =
0 ∈ G̃0(S

0). For a connected closed E-oriented n-manifold Xn, we have

Zφ,α(X) =
♯Hom(π1(X),Γ)

♯Γ
∈ F.(74)
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In particular, for a E-oriented closed connected (n− 1)-dimensional mani-
fold Y such that En(Y ) ∼= 0, we have

dimF(Ẑφ̂,α̂(Y )) =
♯Hom(π1(Y × S

1),Γ)

♯Γ
.(75)

8.2. The case of Γ = Z/2, E = F = HZ/2

In that case, we have Fn(BΓ) = Hn(BZ/2;Z/2) = Hn(RP∞;Z/2) ∼= Z/2
so that we have only one nontrivial class α = wn1 where w1 denotes the first
Stiefel Whitney class. We write Zφ,α = Zwn

1
for short.

For simplicity, let us denote by τX the map H1(X;Z/2)→
Hn(X;Z/2) ; z 7→ zn for an n-manifold X.

Let n be arbitrary natural number. For closed n-manifold X whose first
betti number is 1, we have

Zwn
1
(Xn) =

{
1 τX = 0

0 τX ̸= 0
(76)

We give two examples as such manifolds X, the real projective space RPn

and the Dold manifold P (m, l), m, l ≥ 1. Based on this computation, we
can compute the dimension of vector spaces. We have Zwn

1
(RPn) = 0 and

Zwn
1
(P (m, l)) = 1 where m+ 2l = n. If the first Betti number of a closed

(n− 1)-manifold Y is zero, then we have

dimFẐwn
1
(Y ) = 1(77)

It is easy to check that if Y is 1-connected, then the linear space Zφ̂,α is
one-dimensional in general, but in this case, we have more general results.

Let us suppose that n = 2k for some natural number k. For such spe-
cific n, it is possible to compute all of the Dijkgraaf-Witten invariants of
manifolds.

Zwn
1
(Xn) =

{
1 τX = 0

0 τX ̸= 0
(78)

For example, we have

Zwn
1
(Σg) = 22g−1,(79)
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where Σg is the closed surface with genus g. Also we have

Zwn
1
(Kn1 × Ln2) = 2β1(Kn1 )+β1(Ln2 )−1,(80)

where n1, n2 are nonnegative integers such that n1 + n2 = n. Thus, we have

dimFẐwn
1
(Y ) = 2β1(Y ).(81)

The above computations follow from the proposition below.

Proposition 8.1. Let X be a closed n-manifold. If β1(X) = 1 or n = 2k

for some k, then we have

Zwn
1
(X) =

1

2

∏

k

(1 + φ(⟨[X], vnk ⟩)) ∈ F(82)

where we take a basis vk’s of H1(X;Z/2).

Proof. 2Żwn
1
(X) = ♯Γ · Zφ,α is defined as a sum of ⟨f∗[X], wn1 ⟩ =

⟨[X], (f∗w1)
n⟩ where f ranges over [X,RP∞]. If we use the isomorphism

[X,RP∞]→ H1(X;Z/2); [f ] 7→ f∗(w1), one sees that 2 · Zwn
1
(X) coincides

with the sum of ⟨[X], vn⟩ where v ranges over H1(X;Z/2). Thus if β1(X) =
1, then the claim is true. If n = 2k for some k, then we have

∑

v

φ(⟨[X], vn⟩) =
∑

a1,···aN

∏

k

φ(⟨[X], vnk ⟩)
ak =

∏

k

(1 + φ(⟨[X], vnk ⟩)).(83)

Here, ak runs over Z/2. The claim is proved. □

9. ϕ̂ from ϕ

We give some remarks with respect to the symmetric monoidal functor φ̂.
We put φ̂. Note that the symmetric monoidal functor φ̂ always induces a
group homomorphism π1(φ̂) : G→M by applying the 1st homotopy group
of φ̂. Here, G is an abelian group π1(Ĝ−1(S

0)) ∼= G̃0(S
0). In this section, we

give a sufficient condition that a group homomorphism φ : G→M naturally
induces such a symmetric monoidal functor φ̂.

Proposition 9.1. Let H be a symmetric categorical group. Set H as the

automorphism group H(1H, 1H) where 1H is the unit of the symmetric cate-

gorical group H. If H is 0-connected, then for an object 1H ∈ H the follwing
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assignments form a symmetric monoidal functor:

TH : H→ HTor

a 7→ H(1H, a)

(a
f
→ b) 7→ (H(1H, a)

f∗
→ H(1H, b)).

Proof. The assignment form a functor H→ Set obviously. Let us determine
a H-torsor structure of TH(a) = H(1H, a) for a ∈ H. Due to the monoidal
structure of H, we have a map (g, x) 7→ g · x defined by the following com-
postions.

H×H(1H, a) = H(1H, 1H)×H(1H, a)→ H(1H ⊗ 1H, 1H ⊗ a) ∼= H(1H, a)

Then the coherence of structure morphisms of H shows that the correspon-
dence (g, x) 7→ g · x gives an action ofH on the set TH(a). We show that this
action is free. If g · x = x, then we have the following commutative diagram
in H:

1H a 1H

1H ⊗ 1H 1H ⊗ a 1H ⊗ 1H

x x

id⊗x
∼= ∼=

g⊗x
∼=

Hence we obtain g = id1H ∈ H(1H, 1H) due to the coherence of structure
morphisms.

On the one hand, since H(1H, a) is not empty, there exists an isomor-
phism H(1H, a) ∼= H(1H, 1H). Then since the action of H on H(1H, a) ∼=
H(1H, 1H) is free, the H-set H(1H, a) is a H-torsor.

Finally, we have natural isomorphisms of H-torsors by the structure
morphisms:

H(a0, a1)⊗H H(b0, b1) ∼= H(a0 ⊗ b0, a1 ⊗ b1),

where ⊗H denotes the tensor product of H-torsors. Due to this natural
isomorphism, TH becomes a symmetric monoidal functor. □

Consider the symmetric categorial group H = Ĝ−1(S
0). As a corollary,

we have a sufficient condition to obtain a symmetric monoidal functor φ̂ :
H→MTor starting form a group homomorphism φ : H →M where H is
the group π1(H) ∼= G̃0(S

0).

Corollary 9.2. Let φ : G0(pt)→M be a group homomorphism. Suppose

that the underlying groupoid of Ĝ−1(S
0) is 0-connected, i.e. π0(Ĝ−1(S

0)) ∼=
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π−1(G) ∼= 0. Denote by ×φM : GTor→MTor the symmetric monoidal

functor given by the asscoiated bundle construction. Then φ induces a sym-

metric monoidal functor φ̂ : Ĝ−1(S
0)→MTor via compostions of ×φM and

TĜ−1(S0) in Propostion 9.1.

10. KK categorical group

In this section, we construct a categorical group version of KK-theory as
the fundamental groupoid of a space of quasi-homomorphisms between C*-
algebras where its 0-th homotopy set gives KK-theory upto isomorphism.
The abelian group structure on KK-theory is lifted to that groupoid as a
symmetric categorical group structure.

In subsection 10.1, we introduce two simplicial sets formed by homo-
morphisms of C*-algebras and by quasi-homomorphisms of C*-algebras. In
subsection 10.2, we define a categorical group version of KK-theory as the
fundamental groupoid of the simplicial set of quasi-homomorphisms.

10.1. Preliminaries

Let A,B be C*-algebras. A map f : A→ B is a homomorphism if it is a
∗-homomorphism of ∗-algebras A,B. We denote by hom(A,B) the set of
homomorphisms from A to B. In this section, we introduce a simplicial set
structure ‘on’ the set of homomorphisms hom(A,B).

Definition 10.1. We define a simplicial set HOM(A,B) for C*-algebras
A,B. For n ∈ Z≥0, we define a set of n-simplices of HOM(A,B) as follows:

HOM(A,B)n
def.
= hom(A,C(△(n), B)).

Then the face maps and the degeneracy maps between simplices
△(n)’s induce a simplicial C*-algebra C(△(n), B)’s and a simplicial set
hom(A,C(△•, B)) = HOM(A,B).

Then the composition ◦ : hom(A,B)× hom(B,C)→ hom(A,C) and
the tensor product ⊗ : hom(A0, A1)× hom(B0, B1)→ hom(A0 ⊗B0, A1 ⊗
B1) are lifted as simplicial maps between HOM(−,−). In other words, we
have simplicial maps defined by the pointwise composition and the pointwise
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tensor product.

◦ : HOM(A,B)×HOM(B,C)→ HOM(A,C),(84)

⊗ : HOM(A0, A1)×HOM(B0, B1)→ HOM(A0 ⊗B0, A1 ⊗B1).(85)

Here, the left hand side denotes the direct product of simplicial sets.
We introduce a notation for iterated Cuntz algebra qMA for a C*-algebra

A following M. Joachim and S. Stolz [10].

Definition 10.2. For a C*-algebra A and a finite set M , we denote by
QMA a free product of copies of the C*-algebra A indexed by the power set
of M :

∗K⊂MA.

The iterated Cuntz algebra qMA is defined as the ideal in QMA generated
by the elements

qM (a)
def.
=

∑

K⊂M
(−1)♯KaK ∈ QMA , a ∈ A.

Let us fix a countably infinite set U. We construct a direct system
(qMA, πM,N ;M ⊂ U, ♯M < +∞) for a C*-algebra A. Let N ⊂M be finite
subsets in the set U. Let π′M,N : QMA→ QNA be the homomorphism in-

duced by aK 7→ aK if K ⊂ N and aK 7→ 0 otherwise. It induces a homomor-
phism πM,N : qMA→ qNA.

On the one hand, using a rank-one projection p ∈ K we define a di-
rect system (KM ⊗B, pM\N ⊗ (−);M ⊂ U, ♯M < +∞). Here K is the C*-
algebra formed by compact oeprators on a fixed countable Hilbert space
which is infinite dimensional. It determines a homomorphism pM\N ⊗ (−) :
KN ⊗B → KM ⊗B where pM\N is the projection obtained by taking tensor
products of copies of the projection p indexed by the set M\N .

The above direct systems induce a direct system (HOM(qMA,KM ⊗
B), jM,N ;M ⊂ U, ♯M < +∞) where jM,N : HOM(qNA,KN ⊗B)→
HOM(qMA,KM ⊗B) is defined as follows:

HOM(qNA,KN ⊗B)

HOM(qNA,KM ⊗B) HOM(qMA,KM ⊗B)

(pM\N⊗(−))∗

π∗
MN
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Definition 10.3. For C*-algebras A,B, we define a based simplicial set
Q(A,B) satisfying the Kan condition as:

Q(A,B)
def.
= lim
−→
M

HOM(qMA,KM ⊗B).

It is well-defined since every direct system in the category of simplicial sets
satisfying the Kan condition has a direct limit.

We define tensor product ⊗ : Q(A0, A1)×Q(B0, B1)→ Q(A0 ⊗
B0, A1 ⊗B1) as a simplicial map. Let M,N be finite subsets of the set U.
It is obtained from simplicial maps which is compatible with each direct
system,

⊗ : HOM(qMA0,K
M ⊗A1)×HOM(qNB0,K

N ⊗B1)

→ HOM(qM⨿N (A0 ⊗B0),K
M⨿N (A1 ⊗B1))

as compositions of the following simplicial maps:

HOM(qMA0,K
M ⊗A1)×HOM(qNB0,K

N ⊗B1)(86)
⊗
→ HOM(qMA0 ⊗ q

NB0, (K
M ⊗A1)⊗ (KN ⊗B1))(87)

∼=
→ HOM(qMA0 ⊗ q

NB0,K
M⨿N ⊗B)(88)

→ HOM(qM⨿N (A0 ⊗B0),K
M⨿N ⊗B)(89)

Here the final simplicial map is induced by the canonical homomorphism
qM⨿N (A0 ⊗B0)→ qMA0 ⊗ q

NB0.
In a similar way, we construct a composition ⊗D : Q(A,D)×Q(D,B)→

Q(A,B) as a simplicial map. For finite subsets M,N in the set U, we define
a simplicial map

⊗D : HOM(qMA,KM ⊗D)×HOM(qND,KN ⊗B)

→ HOM(qM⨿NA,KM⨿N ⊗B)
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as compositions of the following simplicial maps:

HOM(qMA,KM ⊗D)×HOM(qND,KN ⊗B)(90)

qN×(KM⊗(−))
→ HOM(qN (qMA), qN (KM ⊗D))(91)

×HOM(KM ⊗ qND,KM ⊗ (KN ⊗B))

χMN

→ HOM(qN (qMA),KM ⊗ qND)(92)

×HOM(KM ⊗ qND,KM ⊗ (KN ⊗B))
◦
→ HOM(qN (qMA),KM ⊗ (KN ⊗B))(93)
∼=
→ HOM(qM⨿NA,KM⨿N ⊗B)(94)

The second simplicial map χMN is induced by the canonical homomorphism
qN (KM ⊗D)→ KM ⊗ qND.

10.2. Construction

In this section, we introduce a categorical group version of KK-theory. Its
underlying groupoidKK(A,B) is defined as the fundamental groupoid of the
simplicial set Q(A,B) for C*-algebras A,B. Each element of z ∈ U induces
a categorical group structure on the groupoid where U is used to define
Q(A,B). The composition and the tensor product are defined. We explain
how KK(A,B) and KK(A,B) are related to each other.

In subsection 5.2, we introduce a categorical group version of generalized
(co)homology theory. Its monoidal structure essentially comes from the fact
that the pinch map Sn → Sn ∨ Sn gives a comultiplication on Sn. In analogy
to it, we shall introduce a monoidal structure on KK(A,B) using the fact
that a homomorphism K⊕K→ K gives a multiplication on K in some sense
(see Proposition 10.4). Here, K is a C*-algebra formed by compact operators
on a fixed infinite dimensional separable Hilbert space.

The assignment (A,B) 7→ Π1HOM(A,B) for arbitrary C*-algebras A,B
induces a 2-category Π1C

∗
•: The 2-category Π1C

∗
• consists of the following

data subject to the axioms of 2-categories:

1) The class of objects consists of C*-algebras.

2) For two objects A,B, a groupoid Π1HOM(A,B) is given, which is
the collection of morphisms. Π1HOM(A,B) denotes the fundamental
groupoid of the simplicial set HOM(A,B) satisfying the Kan condi-
tion.
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3) For three objects A,B,D, there is a functor which gives the composi-
tion:

◦ = ◦A,D,B : Π1HOM(A,D)×Π1HOM(D,B)→ Π1HOM(A,B).

4) For an object A, there is a simplicial map 1A : ∗ → Π1HOM(A,A)
which gives the identity with respect to the above compostion. Here,
∗ is a fixed one-point groupoid.

Proposition 10.4. Let K be the C*-algebra of compact operators on an

infinite dimensional separable Hilbert space H. Let us consider K as an object

of Π1C
∗
•. A unitary isomorphism H⊕H ∼= H of separable Hilbert spaces

gives K a structure of symmetric monoid in (Π1C
∗
•,⊕). Here (Π1C

∗
•,⊕) is

considered as the symmetric monoid in the 2-category 2Cat.

Proof. Let w : H⊕H ∼= H be a unitary isomorphism. It induces two unitary
isomorphisms w((12)3), w(1(23)) : H⊕H⊕H→ H according to the order of
applying w : H⊕H→ H, for example, w((12)3) is defined as follows:

H⊕H⊕H
w⊕idH→ H⊕H

w
→ H

Then there is a continuous path γ(t) in the space of unitary isomorphisms
from H⊕H⊕H to H under the norm topology such that γ(0) = w((12)3)

and γ(1) = w(1(23)).
Note that the unitary isomorphism w induces a homomorphism:

µ : K⊕K
j
→M2(K) ∼= K(H⊕H)

Ad(w)
→ K

Here j(x, y) =

(
x 0
0 y

)
. We consider the homomorphism µ as a morphism

in the category Π1C
∗
•. Then the continuous path γ(t) chosen above gives an

associator for µ. In fact, γ(t) gives a path in the simplicial set HOM(K⊕
K⊕K,K) which connects µ((12)3 and µ(1(23). It determines a morphism in
Π1HOM(K⊕K⊕K,K) which connects its objects µ((12)3 and µ(1(23). We
denote it as α. Note that α does not depend on the choice of γ since for
two different γ(t), γ′(t) they are homotopic to each other preserving their
boundary values due to the Kuiper’s theorem. Then α : µ((12)3) → µ(1(23))
satisfies the pentagon identity due to Kuiper’s theorem again.

We consider the zero homomorphism 0→ K as a morphism u : 0→ K in
the 2-category Π1C

∗
•. From now on we show that u gives a unit for µ. We take
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a continuous path γ′(t) in the space of isometries on H under the strong op-

erator topology, from idH : H→ H to the isometry H
idH⊕0
→ H⊕H

w
→ H.

We claim that γ′(t) induces a right unit cancellaration for µ. In fact,
via its adjoint homomorphism, γ′(t) induces a path in the simplicial set
HOM(K,K) which connects idK to µ ◦ (idK ⊕ u). It determines a mor-
phism in Π1HOM(K,K) which connects its objects idK to µ ◦ (idK ⊕ u).
We denote the morphism as r. Similarly, we define a left cancellaration l
which is a morphism in Π1HOM(K,K) which connects its objects idK to
µ ◦ (u⊕ idK). □

Corollary 10.5. A unitary isomorphism H⊕H ∼= H gives the groupoid

Π1HOM(A,B ⊗K) symmetric monoidal groupoid structure naturally.

Proof. From the object µ ∈ Π1HOM(K⊕K,K), we obtain a functor:

Π1HOM(A,B ⊗K)×Π1HOM(A,B ⊗K)
⊕
→ Π1HOM(A,B ⊗ (K⊕K))
µ◦
→ Π1HOM(A,B ⊗K)

Then α : µ((12)3) → µ(1(23)), r : µ ◦ (idK ⊕ u)→ idK, l : µ ◦ (u⊕ idK)→ idK
in the proof of Propostion 10.4 induce a structure of symmetric monoidal
groupoid on the groupoid Π1HOM(A,B ⊗K). □

By far, we showed that the fundamental groupoid Π1HOM(A,B ⊗K)
has a symmetric monoidal groupoid structure. From now on, we will show
that if the C*-algebra A is a Cuntz algebra associated with a C*-algebra,
then Π1HOM(A,B ⊗K) becomes a symmetric categorical group.

Definition 10.6. If (M,m) is a based set, then the C*-algebraQMA in Def-
inition 10.2 has a natural involution t defined as follows. Then for K ⊂M ,
let us define homomorphisms fK : A→ QA by aK 7→ aK\{m} if m ∈ K and
aK 7→ aK∪{m} if m /∈ K. Then the family fK ; K ⊂M gives a homomor-
phism QMA→ QMA. We define its restriction to qMA and denote it by t,
which is obviously an invoultion.

Lemma 10.7. For a homomorphism f ∈ hom(qA,B), the homomorphism

obtained from the following compositions is homtopic to the zero homomor-

phism. In particular, we can take a canonical one as such homotopy.

qA
∆
→ qA⊕ qA

f⊕(f◦t)
→ B ⊕B

j
→M2(B)
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Proof. The claim is equivalent with that qA→M2(qA);x 7→

(
x 0
0 t(x)

)

is homotopic to the zero homomorphism. For t ∈ I, homomorphisms g :

A→M2(QA); a 7→

(
a0 0
0 a1

)
and A→M2(QA); a 7→ R(t)

(
a0 0
0 a1

)
R(t)∗

induce a homomorphism ht : QA→M2(QA) by the universality ofQA. Here

we set R(t) =

(
cos(π2 t) sin(π2 t)
−sin(π2 t) cos(π2 t)

)
. Moreover, we have ht(x) ∈M2(qA) for

x ∈ qA ⊂ QA. By the continuity of ht with respect to t, ht : qA→M2(qA)
induces h0 ≃ h1 where h1 is the above homomorphism g and h0 = 0.

□

Lemma 10.8. The involution t : qA→ qA and the homotopy from j ◦
(idqA ⊕ t) ◦∆qA ≃ 0 : qA→M2(qA) in the proof of Lemma 10.7 give a

canonical inverse over the symmetric monoidal groupoid Π1HOM(qA,K⊗
B).

Proof. The homomorphism t : qA→ qA induces a based map

hom(qA,C(In,K⊗B))→ hom(qA,C(In,K⊗B))

which is an involution for n ≥ 0. Then it induces a based simplicial map
τ : HOM(qA,K⊗B)→ HOM(qA,K⊗B) which is also an involution.

Let us denote by h the homotopy from j ◦ (idqA ⊕ t) ◦∆qA ≃ 0 : qA→
M2(qA) in the proof of Lemma 10.7. Then h gives a morphism lA in
Π1HOM(qA,M2(qA)). Consider the following composition:

Π1HOM(qA,M2(qA))×Π1HOM(M2(qA),M2(K⊗B))

→ Π1HOM(qA,M2(K⊗B))

We obtain a natural isomorphism c from (j ◦ (idqA ⊕ t) ◦∆qA)
∗ to the con-

stant functor valued at the zero homomorphism. Since the composition
µ ◦ (1HOM(qA,K⊗B) × τ) ◦∆HOM(qA,K⊗B) coincides with the following com-
positions,

HOM(qA,K⊗B)
idM2(C)⊗
→ HOM(M2(C)⊗ qA,M2(C)⊗K⊗B)

∼= HOM(M2(qA),M2(K⊗B))
(j◦(idqA⊕t)◦∆qA)∗

−→ HOM(qA,M2(K⊗B))

(Ad(w))∗
→ HOM(qA,K⊗B)
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the natural isomorphism c induces a natural isomorphism from µ ◦
(1HOM(qA,K⊗B) × τ) ◦∆HOM(qA,K⊗B) to the constant functor valued at the
zero homomorphism. It completes the proof. □

Corollary 10.9. A based finite set (M,m) induces a structure of symmet-

ric categorical group on the fundamental groupoid Π1HOM(qMA,KM ⊗B)
which is natural with respect to A,B.

Proof. By applying Lemma 10.8 to

HOM(qMA,KM ⊗B) ∼= HOM(q(qM\{m}A),K⊗ (KM\{m} ⊗B)),

the claim is proved. □

Definition 10.10. We define a groupoid KK(A,B) as follows:

KK(A,B)
def.
= Π1Q(A,B).

Proposition 10.11. An element z ∈ U naturally gives a symmetric cat-

egorical group structure the groupoid KK(A,B). Also it has canonical in-

verses.

Proof. We have a simplicial isomorphism:

lim
−→
(M,z)

HOM(qMA,KM ⊗B)→ Q(A,B).

Here, (M, z) in the left hand side runs on the directed set consisting of finite
subsets of U based at z ∈ U. We obtain a SCG structure on the fundamental
groupoid Π1Q(A,B) of the simplicial set Q(A,B). □

Proposition 10.12. For a bijection of sets U⨿U ∼= U, we have a functor

natural with respect to C*-algebras A,B,D:

⊗D : KK(A,D)×KK(D,B)→ KK(A,B).

Proof. Recall that we constructed a natural pairing Q(A,D)×Q(D,B)→
Q(A,B) in subsection 10.1 where A,B,C are C*-algebras. By definitions it
induces a functor ⊗D : KK(A,D)×KK(D,B)→ KK(A,B) which is natu-
ral with respect to A,B,D. □
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By definitions, we have a natural isomorphism for C*-algebras A,B.

πn(HOM(A,B)) ∼= [A,SnB].

Here [A,B] denotes the set of homotopy classes of homomorphisms from
A to B. Thus, considering the Cuntz picture of KK-theory, we obtain a
natural isomorphisms of groups for C*-algebras A,B:

π0(KK(A,B)) ∼= KK(A,B),

π1(KK(A,B)) ∼= KK(A,SB).

Here, we consider the unit object of KK(A,B) as the basepoint to take
π1(KK(A,B)), but it holds for arbitrary basepoints since KK(A,B) has a
symmetric categorical group structure. Under these isomorphisms, the pair-
ing⊗D in Propostion 10.12 induces the Kasparov product⊗D : KK(A,D)×
KK(D,B)→ KK(A,B).

In the following statements, we explain ‘bilinearity’ of the functor
KK(−,−) with respect to the direct sum of C*-algebras. Proposition 10.13,
10.14 correspond to Proposition 5.5, 5.6 in generalized (co)homology settings
respectively.

Proposition 10.13. Let A,B,B′ be C*-algebra. Let B ⊕B′ → B and

B ⊕B′ → B′ be the canonical projections. They induce an isomorphism of

groupoids:

KK(A,B ⊕B′)→ KK(A,B)×KK(A,B′).(95)

Proof. The maps induced by applying π0, π1 to (30) are isomorphisms. Hence
(95) gives an equivalence of groupoids. Moreover, it is obvious that the
functor induces a bijection between object classes by definition of KK(−,−).
Therefore, (95) is an isomorphism of groupoids. □

Let A,A′, B be C*-algebras. Denote by the canonical inclusions i : A→
A⊕A′, i′ : A′ → A⊕A′. They induce a functor f by

KK(A,B)⊕KK(A′, B)→ KK(A⊕A′, B)

(a, b) 7→ i∗(a)⊕ (i′)∗(b)
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If p : A⊕A′ → A and p′ : A⊕A′ → A′ denotes the projections, we obtain a
functor g,

KK(A⊕A′, B)→ KK(A,B)⊕KK(A′, B)

a 7→ (p∗(a), (p′)∗(a))

Proposition 10.14. The functors f, g are lifted to an adjoint equivalence

of symmetric categorical groups with canonical inverses.

Proof. The proof proceeds in a parallel way to the proof of Proposition 5.6.
□

Remark 10.15. There is a Puppe exact sequence of KK-theory (see sec-
tion 19 [4]). It is an exact sequence associated with two C*-algebras, a ho-
momorphism of them and its cone. We also have a Puppe exact sequence
on the symmetric categorical group version of KK-theory in a similar way
with Remark 5.11.
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