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We discuss a new perspective on the dualities among seven-
dimensional M-theory on elliptically fibered K3 surfaces, eight-
dimensional (8D) heterotic strings on T 2, and 8D F-theory on el-
liptic K3 surfaces. There are several distinct small-fiber F-theory
limits of a single M-theory, and we deduce that the distinct F-
theory limits of an identical M-theory generally include both an
F-theory limit, wherein a discrete gauge symmetry forms, and an-
other F-theory limit, wherein a discrete gauge symmetry does not
form.

We also discuss constraints imposed on the degrees of discrete
gauge groups and on the continuous gauge groups formed in F-
theory on K3 surfaces by applying a formula that is known to
hold for genus-one fibrations of K3 surfaces, and by utilizing the
existence of the Jacobian fibrations.
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1. Introduction

The web of dualities among the versions of superstring theories, M-theory
[1], and F-theory have been discussed, and numerous efforts have been made
to test dualities among the theories. In this note, we discuss a novel aspect
of these dualities. In F-theory [2–4], compactification spaces have genus-
one fibrations. However, given a space that admits a genus-one fibration,
the choice of the genus-one fibration structure is not unique; for example,
elliptic K3 surfaces generally admit several distinct elliptic fibrations. In this
study, we interpret this degree of freedom when choosing distinct elliptic
fibration structures occurring in the F-theory moduli from the M-theoretic
and heterotic perspectives.

In this work, we discuss eight-dimensional (8D) F-theory on elliptic K3
surfaces, dual seven-dimensional (7D) M-theory on K3 surfaces, and dual
8D heterotic strings on 2-torus T 2.

There are two goals in this study:
One goal is to interpret the degree of freedom when choosing several ellip-

tic fibration structures of an elliptic K3 surface when the complex structure
of that K3 surface is fixed from M-theoretic and heterotic perspectives.

The other goal is to introduce a method to constrain the degree of a
discrete gauge group and to determine the potential for continuous gauge
groups that can form in F-theory on an elliptic K3 surface, utilizing lattice
structures of the K3 surface. This second theme is related to the first theme,
as we will explain briefly.

We utilize a lattice-theoretic approach to deal with the two areas. This
approach has the following advantage: when the complex structure of a K3
surface is known, it does not necessarily yield the equation of an elliptic fi-
bration of the K3 surface. Furthermore, if one elliptic fibration of an elliptic
K3 surface is obtained, it is not simple to deduce the equations for other
elliptic fibrations from that equation. It is difficult to obtain the Weier-
strass equations of distinct elliptic fibration structures of a K3 surface with
a known complex structure owing to these difficulties. There are lattice-
theoretic techniques that avoid these difficulties when analyzing elliptic fi-
bration structures of elliptic K3 surfaces without relying on the standard
Weierstrass techniques, which enable us to deal with these two issues.

With respect to the first goal, given an elliptically fibered K3 surface
with a fixed complex structure, it is not simple to determine all genus-one
fibrations of that K3 surface. Generally, an elliptic K3 surface admits both
elliptic fibrations with a global section and genus-one fibrations without a
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global section. Fortunately, when an elliptic K3 surface has Picard number
12 or larger, a mathematical method is known to classify all elliptic fibra-
tions with a global section. This method is known as the Kneser–Nishiyama
method [5, 6]. The lattice structures of K3 surfaces contain essential geo-
metric information of the surfaces. The Kneser–Nishiyama method uses a
specific lattice, which is referred to as the transcendental lattice of a K3
surface, to classify all types of elliptic fibrations with a global section of the
K3 surface.

Two distinct elliptic fibrations of a K3 surface with a fixed complex
structure have different singularity types and different Mordell–Weil groups;
therefore, different gauge groups form in F-theory on distinct elliptic fibra-
tions of a K3 surface with a fixed complex structure 1. Furthermore, a dis-
crete gauge group forms in F-theory on a genus-one fibration lacking a global
section [8] 2, but a discrete gauge group does not form in F-theory on an
elliptic fibration with a section 3.

When the complex structure of an elliptic K3 surface is fixed, M-theory
on that K3 surface yields a single theory; however, the gauge group formed in
F-theory on that K3 surface depends on a fibration structure chosen among
the elliptic/genus-one fibrations that the K3 surface admits. These distinct
theories, which are obtained as F-theory on distinct fibration structures,
correspond to different small-fiber F-theory limits of a single M-theory on
the K3 surface.

We find that distinct small-fiber F-theory limits of an identical M-theory
on an elliptic K3 surface generally include both a theory wherein a discrete
gauge group forms, and a theory wherein a discrete gauge symmetry does
not form, as we discuss in Section 3.2.

The Kneser–Nishiyama method applies to complex K3 surfaces with
Picard numbers greater than or equal to 12 [47]. The K3 surface with Picard
number 20 is called an attractive K3 surface. Attractive K3 surfaces have
the characteristic property that their complex structures are determined by
the transcendental lattices [48, 49], and the structures of the attractive K3
surfaces enable us to analyze in detail the physics of F-theory on the surfaces.
We also choose one attractive K3 surface as a sample, and explicitly apply
the method to F-theory on this surface to demonstrate how the method

1This fact was used to explore statistically the four-dimensional (4D) F-theory
flux vacua on K3 × K3 in [7].

2For recent progress of F-theory on genus-one fibrations without a section and
discrete gauge groups in F-theory can also be found, e.g., in [9–24].

3Studies of F-theory models on elliptic fibrations admitting a global section can
be found, for example, in [25–46].
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works. Our proposed method applies to M-theory and F-theory on other
attractive K3 surfaces. The method also applies to K3 surfaces with other
Picard numbers greater than or equal to 12 after appropriate modifications.

Distribution of the gauge groups over 4D F-theory flux vacua over K3 ×
K3 4 utilizing the Kneser–Nishiyama method was studied in [7]. We utilize
the lattice theoretic approach and the Kneser–Nishiyama method to ana-
lyze the dualities of M-theory, heterotic strings, and F-theory moduli in the
context of the present study.

An application of the Kneser–Nishiyama method reveals that every at-
tractive K3 surface admits two elliptic fibrations with a section, whose singu-
larity types include E2

8 and D16, respectively [7]. Using an argument similar
to that given in [54, 55], we explain that the fibration with the singular-
ity type that includes E2

8 can be seen as a stable degeneration [56, 57] 5,
wherein a K3 surface degenerates into the sum of two extremal rational
elliptic surfaces intersecting along an elliptic curve.

The two fibrations whose singularity types include E2
8 and D16 are two

distinct fibrations of an identical attractive K3 surface. They correspond to
E8 × E8 and SO(32) heterotic strings, respectively, where every attractive
K3 surface admits two elliptic fibrations whose singularity types include E2

8 ,
and D16 implies that limits of an M-theory on an attractive K3 surface
includes 8D E8 × E8 and SO(32) heterotic theories.

This can be seen as an indication of the well-known property that the
moduli spaces of E8 × E8 and SO(32) heterotic strings are connected upon
toroidal compactification [63, 64]. A related discussion can be found in [65].

The second theme concerns discrete gauge groups formed in F-theory
on K3 surfaces. The Kneser–Nishiyama method only applies to elliptic fi-
brations with a section of K3 surfaces, and genus-one fibrations lacking a
global section of a K3 surface cannot be studied using this method. Thus,
the method does not provide a way to analyze the discrete gauge symmetries
formed in F-theory on K3 surfaces.

Still, some other lattice theoretic techniques 6 can be used to investigate
the geometries of genus-one fibrations of K3 surfaces without a section, and

4Studies of M-theory and F-theory on K3 × K3 can also be found, for example,
in [18, 19, 50–53].

5Heterotic/F-theory duality [2–4, 56, 58] is strictly formulated when the stable
degeneration is considered on the F-theory side. Recent progress on the stable
degenerations can be found, e.g., in [7, 55, 59–62].

6Studies of lattice structures of the geometry and applications to string theory
can be found, for example, in [54, 55, 66, 67].
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discrete gauge symmetries that form in F-theory on K3 surfaces can be
studied. We utilize the determinants of the transcendental lattices of K3
surfaces and the existence of the Jacobians 7 to impose constraints on the
discrete and continuous gauge groups formed in F-theory. In some cases,
these conditions impose strong constraints on the degrees of possible discrete
gauge groups that can form in F-theory compactifications on K3 surfaces.
Utilizing both the discriminant of a K3 surface and the existence of the
Jacobian can be a novel approach to studying a discrete gauge group formed
in F-theory.

In this work, we focus on F-theory on attractive K3 surfaces to apply
this approach. A characteristic property of attractive K3 surfaces whereby
their complex structures are labeled by triplets of integers simplifies some
of the arguments, and this property makes the analysis more transparent.
After some small adjustments, the approach also applies to F-theory on K3
surfaces of other Picard numbers.

A K3 genus-one fibration always has the Jacobian fibration. An original
genus-one fibration and the Jacobian fibration have the identical singularity
types, and their discriminant loci are identical, but their complex structures
are generally different. Considering the relation of their discriminants im-
pose constraints on the gauge group formed in F-theory on the genus-one
fibration.

We impose constraints on the degree of the potential discrete gauge
symmetry that can form in F-theory by utilizing a lemma in [69] 8 on a
relation that holds between the Picard lattices of a genus-one fibered K3
surface and the Jacobian surface in Section 4.

Local model constructions [72–75] have been emphasized in recent F-
theory model buildings. However, because studying the geometry from the
global perspective is necessary to discuss the issues pertaining to gravity
and the early universe, we analyze the geometry globally in this work. It is
widely known in mathematics that the lattice theoretic approach is useful
when analyzing the geometric structures of elliptic K3 surfaces. In this work,
we utilize a lattice theoretic approach to analyze the structures of elliptic K3
surfaces. We employ dualities to apply the results to M-theory and heterotic
strings.

In Section 2, we briefly review attractive K3 surfaces, the Kneser–
Nishiyama method and extremal rational elliptic surfaces. We apply these

7Construction of the Jacobian of an elliptic curve is discussed in [68].
8This lemma follows from result in [70]. See also [71] for a related discussion.
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notions to study physics of M-theory, heterotic strings and F-theory in Sec-
tions 3 and 4.

In Section 3, we discuss from M-theoretic and heterotic perspectives via
the dualities the fact one observes in the F-theory moduli on K3 surface
that, even when the complex structure of K3 surface is fixed, there remains
freedom in choosing genus-one/elliptic fibration structures of the surface. A
relation to the stable degeneration limit is also discussed. Summary of the
results is stated in Section 3.1.

In Section 3.4, we choose as a sample a point in the complex structure
moduli of 8D F-theory that corresponds to an attractive K3 surface, and we
demonstrate how different F-theory limits with distinct gauge groups can be
obtained from an identical M-theory. We do not exhaustively compute all
the elliptic fibrations with a section of the sample K3 surface. Exhaustive
computations of the elliptic fibrations with a section of some attractive K3
surfaces can be found, e.g. in [5, 76] 9, and a method similar to those in the
references yields all the elliptic fibrations with a section of the sample K3
surface that we discuss in this work. We only discuss a few representative
elliptic fibrations with a section that allow for consistency checks.

In Section 4, we discuss that lattice structures of K3 surfaces and the
existence condition of the Jacobian fibration impose constraints on discrete
gauge symmetries and continuous gauge groups formed in F-theory. We find
that for some cases these conditions uniquely determine the degree of the
potential discrete gauge symmetry that can form in F-theory.

We state our concluding remarks and we also mention problems left
unsolved in Section 5.

2. Reviews of attractive K3 surfaces and lattice-theoretic

techniques

We briefly review attractive K3 surfaces, extremal fibrations, and the
Kneser–Nishiyama method. These play a role in the analysis of the du-
alities of M-theory, heterotic strings, and F-theory in Section 3, and we
discuss constraints on discrete and continuous gauge groups in F-theory in
Section 4.

9[77] also computed elliptic fibrations with a section of K3 surfaces via the
Kneser–Nishiyama method. Another method to compute elliptic fibrations of a
K3 surface can be found in [78].
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2.1. Attractive K3 surfaces

Attractive K3 surfaces are K3 surfaces with Picard number twenty 10. Gen-
erally, K3 surfaces of Picard number ρ has complex structure moduli of
dimension 20− ρ; therefore, the attractive K3 surfaces yield a set of dis-
crete points in the complex structure moduli of whole algebraic complex K3
surfaces.

The complex structures of the attractive K3 surfaces are known to be
labelled by triplets of integers modulo a group action of GL2(Z) [48, 49].
The orthogonal complement of Néron-Severi lattice embedded inside the
K3 lattice, H2(K3,Z), is referred to as the transcendental lattice. For an
attractive K3 surface, the transcendental lattice is a positive-definite even
lattice, whose intersection matrix is given by size-two integral matrix of the
following form:

(2.1)

(

2a b
b 2c

)

,

where integers a, b, c satisfy the relation a ≥ c ≥ b ≥ 0. The complex struc-
ture of an attractive K3 surface is uniquely specified by the transcendental
lattice [48, 49]. When the transcendental lattice TS of an attractive K3 S
has intersection matrix (2.1), we denote this attractive K3 by S[2a b 2c] in
this note.

Generally an elliptic K3 surface is known to possess multiple distinct
elliptic fibrations. Fixing the complex structure of a K3 surface does not
specify the theory when F-theory is compactified on a K3 surface; there
still remains the freedom in choosing several distinct elliptic fibrations, and
distinct fibrations yield different theories. Distinct elliptic fibrations of an
elliptic K3 surface (with a fixed complex structure) have different singularity
types and different Mordell–Weil groups. The gauge groups formed in F-
theory on distinct fibrations are different. Additionally, when an elliptic K3
surface admits a genus-one fibration lacking a global section, one can also
consider F-theory on this genus-one fibration.

When a complex K3 surface S has Picard number twenty and the
Mordell–Weil group of an elliptic fibration with a section, e : S → P1, is fi-
nite, then the fibration e is referred to as an extremal fibration. The complex
structures, singularity types and the Mordell–Weil groups of the extremal

10We follow the convention of the term utilized in [79] to call such a K3 surface
an attractive K3 in this note.



✐

✐

“8-Kimura” — 2024/2/15 — 0:45 — page 3728 — #8
✐

✐

✐

✐

✐

✐

3728 Yusuke Kimura

K3 surfaces were completely classified by the authors in [80]. We analyze an
extremal K3 surface as an illustrative example in Section 3.4.

We utilize in Section 3 the following equality that holds for elliptic K3
surfaces S with a section by the Shioda–Tate formula [81–83]:

(2.2) ρ(S) = 2 + rkM + rkMW(S),

wherein ρ(S) denotes the Picard number of the K3 surface S, M repre-
sents the root lattice generated by the components of the reducible singular
fibers not meeting the zero-section, and rk MW(S) denotes the rank of the
Mordell–Weil group of the surface S.

The singular fiber types of an elliptic surface were classified, and j-
invariants and the monodromies of the singular fibers were also deduced,
by Kodaira [84, 85], and the authors in [86, 87] discussed techniques to yield
the singular fiber types of an elliptic surface. The singular fiber types of an
elliptic surface, j-invariants and the monodromies of the singular fibers are
listed in Table 1.

Type of singular fiber j-invariant monodromy order of monodromy singularity type

I∗0 regular −

(

1 0
0 1

)

2 D4

In ∞

(

1 n
0 1

)

infinite An−1

I∗m ∞ −

(

1 m
0 1

)

infinite D4+m

II∗ 0

(

0 −1
1 1

)

6 E8

II 0

(

1 1
−1 0

)

6 none.

III∗ 1728

(

0 −1
1 0

)

4 E7

III 1728

(

0 1
−1 0

)

4 A1

IV ∗ 0

(

−1 −1
1 0

)

3 E6

IV 0

(

0 1
−1 −1

)

3 A2

Table 1: Types of the singular fibers, their j-invariants, monodromies, and
the corresponding singularity types [84, 85]. “Regular” for type I∗0 fiber
indicates that the j-invariant of I∗0 -type fiber can take any finite value in C.

We study some extremal fibrations of an attractive K3 surface in Section
3 that are obtained as a deformation of the stable degeneration limit. We will
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find in Section 3.4 that one of such extremal fibrations of K3 surface can be
viewed as a deformation of the sum of two extremal rational elliptic surfaces.
Here, extremal rational elliptic surfaces are rational elliptic surfaces with a
section whose Mordell–Weil groups are finite. The extremal rational elliptic
surfaces were classified in [88]. For the reader’s convenience, the classification
result [88] of the extremal rational elliptic surfaces is shown in Table 2.
The complex structure of an extremal rational elliptic surface is uniquely
determined by the types of the singular fibers except the surface X[0∗, 0∗](j)
with two type I∗0 fibers, as discussed in [88]. (The complex structure of the
surface X[0∗, 0∗](j) depends on the j-invariant, j, of the fiber of the elliptic
fibration.) Owing to this fact, the extremal rational elliptic surface with a
type II∗ fiber and a type II fiber, for example, is denoted as X[II∗, II].
X[II∗, 1,1] is used to represent the extremal rational elliptic surface with a
type II∗ fiber and two type I1 fibers. We simply use n to represent a type
In fiber, and m∗ is employed to represent a type I∗m fiber in the notation.
The same notational convention was employed in [54].

extremal rational
elliptic surface

singular fiber type singularity type

X[II∗, II] II, II∗ E8

X[III∗, III] III, III∗ E7A1

X[IV ∗, IV ] IV , IV ∗ E6A2

X[0∗, 0∗](j) I∗0 , I
∗
0 D2

4

X[II∗, 1,1] II∗, I1, I1 E8

X[III∗, 2,1] III∗, I2, I1 E7A1

X[IV ∗, 3,1] IV ∗, I3, I1 E6A2

X[4∗, 1,1] I∗4 , I1, I1 D8

X[2∗, 2,2] I∗2 , I2, I2 D6A
2
1

X[1∗, 4,1] I∗1 , I4, I1 D5A3

X[9, 1, 1, 1] I9, I1, I1, I1 A8

X[8, 2, 1, 1] I8, I2, I1, I1 A7A1

X[6, 3, 2, 1] I6, I3, I2, I1 A5A2A1

X[5, 5, 1, 1] I5, I5, I1, I1 A2
4

X[4, 4, 2, 2] I4, I4, I2, I2 A2
3A

2
1

X[3, 3, 3, 3] I3, I3, I3, I3 A4
2

Table 2: Singular fiber types and singularity types of the extremal rational
elliptic surfaces [88] are shown.
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2.2. Kneser–Nishiyama method

In this note, we utilize lattice-theoretic approaches, particularly a method
called the Kneser–Nishiyama method [5, 6], to analyze the structures of el-
liptic K3 surfaces. The method is used to study the dualities of M-theory,
heterotic strings and F-theory. We briefly review the Kneser–Nishiyama
method here. When a K3 surface admits an elliptic fibration with a sec-
tion, the method provides a way to determine all the elliptic fibrations with
a global section. The method does not yield a genus-one fibration lacking
a global section when a K3 surface admits such genus-one fibration. The
Kneser–Nishiyama method determines the singular fibers and Mordell–Weil
groups of elliptic fibrations with a section.

Because we utilize some lattice-theoretic terms in the discussions of Sec-
tions 3 and 4, we review some lattice-theoretic language here. By lattice, we
indicate a free Z-module of a finite rank equipped with a symmetric integral
non-degenerate bilinear form. When the square of every element x in L,
x2 = x · x, is even, the lattice L is referred to as an even lattice . When M is
a sublattice of the lattice L, the orthogonal complement of M inside L, M⊥,
is the sublattice of L consisting of the elements in L that are orthogonal to
every element in M ; namely, the orthogonal complement M⊥ consists of the
elements in L, y, that have x · y = 0 for every element x in M . When M
embeds inside the lattice L, M ⊂ L, the embedding is said to be primitive
when the quotient lattice, L/M , is a free Z-module. For a bases {ei} of the
lattice L, the determinant of an intersection matrix (ei · ej)ij is referred to
as the discriminant of the lattice L, disc L. When the lattice L has the dis-
criminant ±1, it is said to be unimodular. The unimodular lattices include
the hyperbolic plane H and E8 lattice.

The Kneser–Nishiyama method applies to complex K3 surfaces of Picard
numbers greater than or equal to 12 [47]. The Kneser–Nishiyama method
works as follows: When a K3 surface S has the transcendental lattice TS ,
we consider the primitive embedding of the lattice TS [−1] into E8 ⊕H l,
where H denotes the hyperbolic plane, whose intersection matrix is given as
(

0 1
1 0

)

, and when the K3 surface S has Picard number ρ, l = 20− ρ. When

the K3 surface S is attractive, then l = 0. Then, we take the orthogonal
complement of TS [−1] inside E8 ⊕H l; to line up with the notation used in
[5], we denote the orthogonal complement as T0. Once T0 is obtained, one
can deduce elliptic fibrations of the K3 surface S.

When T0 is computed, the Kneser–Nishiyama method deduces the ellip-
tic fibrations of the K3 S by primitively embedding T0 into the Niemeier
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lattices. The negative-definite unimodular even lattices of rank 24 are re-
ferred to as the Niemeier lattices, and they are classified into 24 isometric
types [89]. Each type is uniquely determined by the root lattice. The root
lattices of the 24 types of Niemeier lattices are shown in Table 3.

E3
8 D2

5A
2
7

E8D16 D6
4

E2
7D10 D4A

4
5

E7A17 A24

E4
6 A2

12

E6D7A11 A3
8

D24 A4
6

D2
12 A6

4

D9A15 A8
3

D3
8 A12

2

D4
6 A24

1

D6A
2
9 0

Table 3: 24 root types of the Niemeier lattices as classified in [89]. The
lattice E3

8 is itself a Niemeier lattice.

The inequivalent ways that one can primitively embed T0 into the
Niemeier lattices precisely correspond to the types of the elliptic fibrations
with a section that the K3 surface S admits, as described in [5]. When T0 is
primitively embedded into a Niemeier lattice, the root lattice of the orthog-
onal complement yields the singularity type of an elliptic fibration of K3 S.
One can also compute the Mordell–Weil group from the orthogonal comple-
ment. This method is exhaustive, and one can deduce all elliptic fibrations
of K3 S using this method [5] 11. There are 24 types of Niemeier lattices, and
for each type, there are several ways to embed T0 into a Niemeier lattice.
Thus, an elliptic K3 surface generally has several elliptic fibrations with a
section.

When the Picard number of a K3 surface is small, the rank of T0 becomes
large and applying the Kneser–Nishiyama method becomes difficult. This

11There always exists an elliptic fibration with a section for each primitive em-
bedding of T0 into a Niemeier lattice when a complex K3 surface has a Picard
number greater than or equal to 12 [47].
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method is particularly useful when the Picard number of a K3 surface is
large. When a K3 surface is attractive, the rank of T0 is six.

The Kneser–Nishiyama method was applied to several K3 surfaces of
high Picard numbers, and T0 and elliptic fibrations are deduced for these
K3 surfaces in [5]. These K3 surfaces include S[2 1 2], namely the attractive

K3 surface whose transcendental lattice has the intersection matrix

(

2 1
1 2

)

.

This attractive K3 surface has the smallest discriminant, which is three [90].
T0 of the attractive K3 surface S[2 1 2] is isometric to E6 [5]. Because E6

is a root lattice, when this T0 primitively embeds into a Niemeier lattice,
it embeds inside the root lattice. There are only six Niemeier lattices into
which E6 primitively embeds. Owing to this, there are six elliptic fibrations
for the attractive K3 S[2 1 2], and their singularity types are: E2

8A2, E7D10,
E3

6 , D16A2, D7A11, A17. Two fibrations have Mordell–Weil rank one, and the
other four fibrations have Mordell–Weil rank zero. The six elliptic fibration
types of the surface S[2 1 2] and their Mordell–Weil groups are shown in
Table 4.

Fibration type singularity type MW group

no.1 E2
8 A2 0

no.2 D16A2 Z2

no.3 E7D10 Z⊕ Z2

no.4 A17 Z⊕ Z3

no.5 E3
6 Z3

no.6 D7A11 Z4

Table 4: Elliptic fibration types of the attractive K3 surface S[2 1 2], their
singularity types and their Mordell–Weil groups [5].

Because the attractive K3 S[2 1 2] has the smallest discriminant, it does
not have a genus-one fibration without a Section [69]. Physics of F-theory
on some of these fibrations was studied in [7, 90].

Attractive K3 S[2 1 2] also appears as the Jacobian fibration of a genus-
one fibration in Section 4.

For situations where T0 is reducible or T0 is not a root lattice, the compu-
tations of the Kneser–Nishiyama method become more complicated. When
T0 is reducible, the number of ways in which it embeds into the Niemeier
lattices increases, yielding an increased number of types of elliptic fibrations.
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3. Dualities of 7D M-theory on K3, 8D F-theory on K3, and

8D heterotic strings on T
2

3.1. Summary of results

We discuss a new perspective on the dualities of 7D M-theory on elliptic
K3 surface, and 8D heterotic strings on T 2 and 8D F-theory on elliptic
K3 surfaces. Generally, an elliptic K3 surface with a fixed complex struc-
ture admits several distinct elliptic fibrations with a section and genus-one
fibrations without a global section. They have distinct singularity types;
therefore, F-theory on these distinct fibrations yields different theories with
different gauge groups. F-theory on an elliptic K3 surface depends not only
on its complex structure, but the theory also depends on the fibration struc-
ture chosen among the freedom of multiple fibrations that the K3 surface
possesses.

On the heterotic side, these distinct theories over a fixed complex struc-
ture on the F-theory moduli correspond to different theories, and on the
heterotic side, these can be seen as mainly coming from the freedom of the
choices of the vector bundles over T 2.

However, on the M-theory side, the theory only depends on the complex
structure of an elliptic K3 surface; different theories on the F-theory side
coming from the choices of fibration structures for an elliptic K3 surface
with a fixed complex structure corresponds to a single theory. From the M-
theoretic perspective, these distinct theories arising on the F-theory side can
be viewed as the different small-fiber F-theory limits of a single theory on
the M-theory side. Given an M-theory on an elliptic K3 surface, there are
several ways to take small-fiber limit of F-theory, and the resulting F-theory
limit is not unique; there are several different F-theory limits. This freedom
when choosing different small-fiber F-theory limits precisely corresponds to
the distinct fibration structures of an elliptic K3 surface with a fixed complex
structure.

A discrete gauge group arises on a genus-one fibration lacking a global
section [8], while a discrete gauge group does not arise on an elliptic fibration
with a global section. As stated previously, an elliptic K3 surface generally
admits both an elliptic fibration with a section and a genus-one fibration
without a section. Therefore, starting from an M-theory on K3, a discrete
gauge group arises in F-theory limit on a genus-one fibration lacking a global
section of that K3 surface, while a discrete gauge group does not form in the
F-theory limit on an elliptic fibration with a global section of that K3 surface.
Because the different fibration structures of an elliptic K3 surface correspond
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to the ways of taking the F-theory limits, we conclude that starting from an
M-theory on an elliptic K3 surface, the formation of a discrete gauge group
in an F-theory limit depends on the way that one takes an F-theory limit of
the M-theory on the K3 surface.

We also find that on the heterotic side, the different F-theory limits orig-
inating from a single M-theory include both E8 × E8 and SO(32) heterotic
theories. This is a manifestation of the well-known fact that the moduli
spaces of these two versions of the heterotic theories are connected upon
toroidal compactification [63, 64]. The relationship with the stable degener-
ation limit is also discussed.

We discuss these in Sections 3.2–3.4 by analyzing the fibrations struc-
tures of elliptic K3 surfaces using a mathematical method called the Kneser–
Nishiyama method. This technique is reviewed in Section 2.2.

3.2. M-theoretic perspective

We study F-theory on distinct elliptic/genus-one fibrations of an elliptic K3
surface when its complex structure is fixed from the M-theoretic perspec-
tive. M-theory on an elliptic K3 surface with a fixed complex structure is
a unique theory, but F-theory on the distinct fibrations of the K3 surface
yields different theories with different gauge groups. These different theories
on the F-theory side can be viewed as different small-fiber F-theory limits
of a single M-theory. Distinct elliptic fibrations with a section of an elliptic
K3 surface with a fixed complex structure have different singularity types
and different Mordell–Weil groups, depending on the fibration structures.
The non-Abelian gauge groups and the numbers of U(1) formed in F-theory
differ for distinct elliptic fibrations with a section of an elliptic K3 surface
when its complex structure is fixed [7]. In other words, taking different F-
theory limits of an identical M-theory leads to theories with distinct gauge
groups on the F-theory side.

Furthermore, an elliptic K3 surface generally admits both an elliptic
fibration with a section and a genus-one fibration without a global section. A
discrete gauge symmetry does not form in F-theory on the former fibration,
whereas a discrete gauge symmetry forms in F-theory on the latter fibration.
They also lead to distinct F-theory limits. Starting from an identical M-
theory, a discrete gauge symmetry arises in some F-theory limits, but a
discrete gauge symmetry does not arise in the other F-theory limits.

The Kneser–Nishiyama method [5, 6] applied to a K3 surface yields the
elliptic fibrations with a section exhaustively, as we reviewed in Section 2.2.
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The Kneser–Nishiyama method applies to any complex K3 surface with a
Picard number greater than or equal to 12 [47].

Given a K3 surface with a Picard number greater than or equal to 12,
one can compute T0 from the transcendental lattice, and the orthogonal
complements of the primitive embeddings of T0 into the Niemeier lattices ex-
haustively yield the elliptic fibrations with a section of that K3 surface; this
is known as the Kneser–Nishiyama method. Because there are 24 Niemeier
lattices, and there are generally several different ways to embed T0 into a
Niemeier lattice, this method yields several distinct elliptic fibration types
for a K3 surface with a fixed complex structure. Because the method ex-
haustively yields all elliptic fibrations with a section of a K3 surface with
Picard number greater than or equal to 12, this implies that a general K3
surface of Picard number greater than or equal to 12 has multiple distinct
elliptic fibrations with a section.

Distinct elliptic fibrations with a section of a K3 surface that has a fixed
complex structure have different singularity types and different Mordell–Weil
groups; F-theory compactifications on such distinct elliptic fibrations yield
different non-Abelian gauge groups and different numbers of U(1) factors [7].
They correspond to different small-fiber F-theory limits of a single M-theory
on the K3 surface.

The Kneser–Nishiyama method provides a method to determine the
gauge groups formed in F-theory limits on elliptic fibrations with a sec-
tion of a K3 surface (when it has a Picard number greater than or equal
to 12).

We provide an illustration of these in Section 3.4.
Furthermore, as we stated previously, a K3 surface generally admits a

genus-one fibration lacking a global section as well as an elliptic fibration
with a section. This implies that a discrete gauge symmetry forms in a cer-
tain F-theory limit of an M-theory on a K3 surface, but a discrete symmetry
does not form in other F-theory limits of the same M theory. Whether a dis-
crete symmetry forms depends on the F-theory limit that one takes. We
demonstrate this point by utilizing an attractive K3 surface S[6 3 6] as a
sample, whose transcendental lattice has the intersection matrix as follows:

(3.1)

(

6 3
3 6

)

.

The attractive K3 surface S[6 3 6] admits a genus-one fibration with a 3-
section, but lacks a global section, with singularity type E3

6 , as discussed in
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[18] 12. The application of the Kneser–Nishiyama method to the attractive
K3 surface S[6 3 6] shows that this K3 surface also admits an elliptic fibration
with a section, as we now explain. T0 for any attractive K3 surface admits
a primitive embedding into the E8 lattice by construction. Therefore, for
any attractive K3, T0 primitively embeds inside the Niemeier lattice E3

8 ,
where T0 is embedded inside an E8 lattice, and the orthogonal complement
of this embedding includes E2

8 [7]. Therefore, an elliptic fibration with a
section corresponding to this embedding contains two type II∗ fibers. For
the attractive K3 surface S[6 3 6], the orthogonal complement of T0 inside
E8 does not contain a root element; thus, the root lattice of the orthogonal
complement of T0 inside the lattice E3

8 is E2
8 . Therefore, the attractive K3

surface S[6 3 6] admits an elliptic fibration with a section whose singularity
type is E2

8 . The application of the Shioda–Tate formula [81–83] applied to
this fibration reveals that the Mordell–Weil rank of this fibration is two, and
two U(1) factors are formed in F-theory on this fibration.

Two F-theory limits, on the genus-one fibration without a section and the
elliptic fibration that we just described, of M-theory on K3 surface S[6 3 6]

yield very different theories; a discrete Z3 gauge symmetry and e
3
6 gauge

algebra form [18] in the F-theory limit on the genus-one fibration lacking
a global section, while e

2
8 ⊕ u(1)2 gauge algebra forms in the F-theory limit

on the elliptic fibration with a section, and a discrete gauge group does not
form in the latter limit.

3.3. Heterotic perspective

As we discussed, on the F-theory side when the complex structure of a K3
surface is fixed, there is still a degree of freedom when choosing the fibration
structures. On the 8D heterotic side on T 2, this freedom mainly corresponds
to the choices of the vector bundles. The distinct F-theory limits of a single
M-theory owing to the degree of freedom of fibration structures also yields
different theories on the heterotic side.

As limits of an identical M-theory on a K3 surface with a fixed complex
structure, these different theories include both E8 × E8 and SO(32) heterotic
theories. This can be seen at the points in the F-theory moduli, where K3
surfaces are attractive.

This follows from an observation that, given any attractive K3 surface, it
admits two elliptic fibrations with a section, whose singularity types include

12As we will demonstrate in section 4, when the K3 surface S[6 3 6] has a genus-one
fibration lacking a global section, the genus-one fibration must have a 3-section.
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E2
8 andD16 [7]. T0 computed in the context of the Kneser–Nishiyama method

for an attractive K3 surface primitively embeds inside an E8 of the Niemeier
lattice E3

8 , and T0 also primitively embeds inside E8 of the Niemeier lattice
whose root type is E8D16. The orthogonal complements of these embeddings
of T0 inside the Niemeier lattice E3

8 and the Niemeier lattice whose root
type is E8D16 yield two elliptic fibrations with a section for the attractive
K3 surface whose singularity types include E2

8 and D16 [7].
When the orthogonal complement of T0 inside E8 does not contain a root

element, the singularity types of the resulting elliptic fibrations are E2
8 and

D16. When T0 has a special structure, the orthogonal complement T0 inside
E8 contains a root element. For such special situations, the singularity types
of the two fibrations take one of the following three forms: E2

8A2 and D16A2,
E2

8A
2
1 and D16A

2
1, and E2

8A1 and D16A1. The attractive K3 surface S[2 1 2]

has two elliptic fibrations with a section whose singularity types are E2
8A2

and D16A2 [5]. The attractive K3 surface S[2 0 2] has two elliptic fibrations
with a section whose singularity types are E2

8A
2
1 and D16A

2
1.

General attractive K3 surfaces with singularity type E2
8

13 that we just
described above are obtained via the sum,X[II∗, 1,1] ∪X[II∗, 1,1] of two copies
of the extremal rational elliptic surfaces X[II∗, 1,1] glued together along the
line of the argument, as in [54, 55] 14. They stably degenerate into a pair of
rational elliptic surfaces X[II∗, 1,1].

The two elliptic fibrations with a section whose singularity types are
E2

8A2 and E2
8A

2
1 can be viewed as special limits of stable degenerations

[54]: As we stated, for the attractive K3 surface S[2 1 2] the singularity type
becomes E2

8A2, and this surface can be viewed as a special limit of the
sum of two copies of the extremal rational elliptic surface X[II∗, II] glued
together, at which two type II fibers collide and they are enhanced to a
type IV fiber [54]. Here, X[II∗, 1,1] and X[II∗, II] represent extremal rational
elliptic surfaces with one type II∗ fiber and two type I1 fibers, and an
extremal rational elliptic surface with one type II∗ fiber and one type II
fiber, respectively, as mentioned in Section 2.1.

We also stated that the attractive K3 surface S[2 0 2] has an elliptic fi-
bration with the singularity type E2

8A
2
1 as discussed in [5]. This K3 elliptic

13The Shioda–Tate formula indicates that attractive K3 surfaces with singularity
type E2

8 have Mordell–Weil rank two. They correspond to special points in the
complex structure moduli of K3 surfaces whose singularity type is E2

8 , at which the
Mordell–Weil rank is enhanced to two.

14Some of the attractive K3 surfaces with the singularity type E2
8 can be obtained

via the sum, X[II∗, II] ∪X[II∗, II] of two copies of the extremal rational elliptic
surfaces X[II∗, II].
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fibration can be viewed as a special limit of the reverse of the stable degen-
eration wherein two copies of extremal rational elliptic surfaces, X[II∗, 1,1],
are glued together, at which two pairs of two type I1 fibers collide, and they
are enhanced to type I2 fibers [54].

It is clear that the two fibrations of an attractive K3 surface whose
singularity types include E2

8 and D16 correspond to E8 × E8 and SO(32)
heterotic theories. They can be viewed as two different limits of a single
M-theory on an attractive K3 surface.

This can be viewed to reflect a well-known fact that the moduli spaces
of E8 × E8 and SO(32) heterotic strings are connected upon the toroidal
compactification [63, 64].

3.4. Sample

To illustrate some of the discussions in Sections 3.1–3.3, we consider an
example here. As mentioned in Section 2.1, the complex structures of the
attractive K3 surfaces are labeled by the triplets of integers, 2a, b, 2c, where
they satisfy the relation a ≥ c ≥ b ≥ 0. This is owing to the fact that the
complex structure of an attractive K3 surface is specified by the transcen-
dental lattice [48, 49], and the intersection matrix of the transcendental
lattice can be expressed as a 2×2 even symmetric integral matrix.

We particularly consider an attractive K3 surface whose transcendental

lattice has the following intersection matrix:

(

12 0
0 4

)

. We denote this at-

tractive K3 surface as S[12 0 4]. Choosing this surface specifies a point in the
8D F-theory moduli on K3 surfaces; however, there still remains freedom
when choosing the elliptic/genus-one fibration structures of the surface.

We use the Kneser–Nishiyama method to determine the elliptic fibra-
tions with a section of the surface S[12 0 4]. T0 of the K3 surface S[12 0 4] is
a rank-six negative-definite lattice A3A2(−4) [77]. The orthogonal comple-
ments of this T0 primitively embedded inside the Niemeier lattices classify
the types of elliptic fibrations with a section of the surface S[12 0 4]. We
computed some of the fibrations with a section.

One can embed T0 = A3A2(−4) into Niemeier lattice E3
8 as A3 ⊂ E8,

A2 ⊂ E8, (−4) ⊂ E8. The orthogonal complement of this embedding is
D5E6D7 which yields an elliptic fibration with a global section with singu-
larity type E6D7D5. This yields an extremal fibration. e6 ⊕ so(14)⊕ so(10)
gauge algebra forms in the F-theory limit on this fibration. Because an ex-
tremal fibration has Mordell–Weil rank zero, the gauge group does not have
a U(1) factor.
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One can also consider embedding T0 = A3A2(−4) into a Niemeier lattice
whose root type is E8D16 with A2 ⊂ E8, A3 ⊕ (−4) ⊂ D16. The orthogonal
complement of this yields an elliptic fibration with singularity type E6D9A3.
This is also an extremal fibration.

One can also consider embedding T0 = A3A2(−4) into a Niemeier lattice
whose root type is E2

7D10 with A2 ⊂ E7, A3 ⊕ (−4) ⊂ D10. The orthogonal
complement of this yields an elliptic fibration with singularity type E7A5A

2
3.

This is also an extremal fibration.
Another way of embedding is to embed T0 = A3A2(−4) into a Niemeier

lattice whose root type is E2
7D10 with A2 ⊂ E7, (−4) ⊂ E7, A3 ⊂ D10. The

orthogonal complement of this embedding yields an elliptic fibration with
a section with singularity type D7D5A5A1. This yields another extremal
fibration.

One can also consider embedding T0 = A3A2(−4) into a Niemeier lattice
whose root type is E6D7A11 with A2 ⊂ E6, A3 ⊕ (−4) ⊂ D7. The orthogonal
complement of this yields an elliptic fibration with singularity type A11A3A

2
2.

This also results in an extremal fibration.
The authors in [80] classified the extremal fibrations of the attractive

K3 surfaces. The five extremal fibrations of the K3 surface S[12 0 4] that we
computed using the Kneser–Nishiyama method are perfectly consistent with
the results in Table 2 in [80]. (They correspond to fibrations No.250, 253,
261, 167, 83 in Table 2 in [80], respectively.)

We can also deduce non-extremal fibrations. We consider embedding
T0 = A3A2(−4) into Niemeier lattice whose root type is E6D

2
7A11 with

A3 ⊕ (−4) into D7 and A2 ⊂ A11. The orthogonal complement of this yields
an elliptic fibration with a section whose singularity type is E6A8A3. The
Shioda–Tate formula [81–83] applied to an elliptic K3 surface states that,
the rank of the lattice generated by fiber components not meeting the zero-
section and the rank of the Mordell–Weil group add to the Picard number
of the K3 surface minus two. Because attractive K3 surface S[12 0 4] has Pi-
card number twenty, and the singularity rank of the fibration that we just
computed is seventeen, owing to the Shioda-Tate formula, we deduce the
Mordell–Weil rank of the fibration with singularity type E6A8A3 is one. F-
theory on this elliptic fibration has one U(1) factor. e6 ⊕ su(9)⊕ su(4)⊕ u(1)
gauge algebra forms in F-theory limit on this fibration.

Another non-extremal fibration is obtained via embedding T0 into
Niemeier lattice whose singularity type is E2

7D10, with A3 ⊂ E7, (−4) ⊂ E7,
A2 ⊂ D10. The orthogonal complement of this yields an elliptic fibration
with a section whose singularity type is D7D5A3A

2
1. Using an argument
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similar to that we discussed previously, this fibration also has Mordell–Weil
rank one, and U(1) is formed in F-theory on this fibration.

The seven elliptic fibrations of K3 surface S[12 0 4] correspond to seven
different F-theory limits of an identical M-theory on S[12 0 4], and different
non-Abelian gauge groups form, and the numbers of U(1) factors formed in
the theories are different in these limits.

Using an argument similar to that given in [54, 55], one finds that an
elliptic fibration with singularity type E7A5A

2
3 of the K3 surface S[12 0 4] is

obtained as a deformation of the sum,X[III∗, 2,1] ∪X[6, 3, 2, 1], of two extremal
rational elliptic surfaces,X[III∗, 2,1] andX[6, 3, 2, 1], where two I2 fibers collide,
and they are enhanced to a type I4 fiber, and a type I3 fiber and a type
I1 collide and they are enhanced to a type I4 fiber. K3 surface S[12 0 4]

with an elliptic fibration f : S[12 0 4] → P1 with singularity type E7A5A
2
3

stably degenerates into two extremal rational elliptic surfaces X[III∗, 2,1] and
X[6, 3, 2, 1], at which heterotic/F-theory duality becomes precise.

4. Lattice theoretic application to discrete gauge groups

A discrete Zn gauge group arises in F-theory on a genus-one fibration with
an n-section, but lacks a global section [8]. Here, we discuss the application
of the lattice theory approach to a discrete gauge symmetry in F-theory.

Analyzing lattice structures of the geometry imposes a constraint on the
degree of a multisection possessed by a genus-one fibration. In the context of
F-theory, this analysis constrains the degree of the discrete gauge symmetry.

Here, we utilize a lemma in [69]. The lemma in [69] is a statement on a
relation that holds between the determinant of the Picard lattice of a genus-
one fibered K3 surface S and the determinant of the Picard lattice of the
Jacobian fibration J(S). On this note, we mainly focus on the application
of the lemma in [69] to attractive K3 surfaces. With some appropriate mod-
ifications to our argument, a similar discussion applies to K3 surfaces that
have other Picard numbers.

When applied to the attractive K3 surfaces, the lemma in [69] that we
utilize here states 15 that: given a genus-one fibered K3 surface S of degree
n, i.e., the genus-one fibration has an n-section, and J(S) is its Jacobian
fibration, then the following relation holds between the determinants of the

15The determinants of the Picard lattice and the transcendental lattice of a K3
surface have the same absolute values [91].



✐

✐

“8-Kimura” — 2024/2/15 — 0:45 — page 3741 — #21
✐

✐

✐

✐

✐

✐

The duality of M-theory, heterotic strings, and F-theory 3741

transcendental lattices of K3 surface S and the Jacobian fibration J(S):

(4.1) detTS = n2detTJ(S)

This relation, together with the existence of the Jacobian fibration of
a K3 genus-one fibration, imposes on the degree n of a multisection of a
genus-one fibration. We use the attractive K3 surface S[6 3 6] as a sample,
and we show how the approach applies to F-theory and a discrete gauge
symmetry on this attractive K3.

The transcendental lattice of attractive K3 surface S[6 3 6] has the in-

tersection matrix

(

6 3
3 6

)

; therefore, it has the determinant 27. Owing to

the equality (4.1), if attractive K3 S[6 3 6] admits a genus-one fibration, the
square of the degree of a multisection that the fibration possesses must di-
vide 27. Thus, a unique possibility of the degree of a multisection is 3; if
S[6 3 6] admits a genus-one fibration lacking a global section, then it must
have a 3-section.

Every genus-one fibered K3 surface has the Jacobian fibration. Using this
fact, we can impose further constraints on the genus-one fibrations. Because
the degree of a genus-one fibration of S[6 3 6] must be three if it admits a
genus-one fibration without a section, the determinant of the transcendental
lattice –or more concisely the discriminant, of the Jacobian fibration is then
3 owing to equation (4.1). It is known that 3 is the smallest value among
the discriminants of the attractive K3 surfaces, and an attractive K3 surface
with discriminant 3 is unique and isomorphic to the attractive K3 surface
S[2 1 2]. An explanation of this in the context of string theory can be found
in [90]. From these results, we conclude that the Jacobian of any genus-one
fibration of S[6 3 6] lacking a global section must be the attractive K3 surface
S[2 1 2].

Because the singularity type of a genus-one fibration and that of the
Jacobian fibration are identical, this means that a genus-one fibration of
S[6 3 6] has a singularity type identical to an elliptic fibration with a section
of S[2 1 2]. The author in [5] classified the types of elliptic fibrations of the K3
surface S[2 1 2], and determined that the K3 surface S[2 1 2] has six fibration
types with singularity types: E3

6 , E
2
8A2, D16A2, D7A11, E7D10, and A17.

We deduce from these results that if S[6 3 6] admits a genus-one fibration
without a section, then it must have a 3-section, and the singularity type
of the genus-one fibration must be one of the six types: E3

6 , E
2
8A2, D16A2,

D7A11, E7D10, and A17.
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In the string theoretic language, this implies that if a discrete gauge
group arises in F-theory on S[6 3 6], then it must be a Z3 symmetry, and
the continuous gauge group factor formed in this theory must be one of the
following: E3

6/Z3, E
2
8 × SU(3), SO(32)× SU(3)/Z2, SO(14)× SU(12)/Z4,

E7 × SO(20)/Z2 × U(1), SU(18)/Z3 × U(1) 16.
It was shown in Section 4 in [18] that attractive K3 surface S[6 3 6] admits

a genus-one fibration with a 3-section, but lacks a global section, with the
singularity type E3

6 . Therefore, we confirm that our analysis is consistent
with the result obtained in [18]. In this study, we do not determine whether
the attractive K3 surface S[6 3 6] admits another genus-one fibration without
a section.

More generally, a similar argument applies to an attractive K3 surface
with discriminant n2m, where n is a prime and m is square-free. If this
K3 surface admits a genus-one fibration lacking a global section, it must
have an n-section and the Jacobian surface must have the discriminant m.
If the complex structure of the Jacobian surface can be determined, then
the Kneser–Nishiyama method applies to the Jacobian surface and one can
constrain the possible singularity types to finite candidates. Thus, one learns
that if a discrete gauge symmetry arises in F-theory on an attractive K3
surface with discriminant n2m, it must be a discrete Zn symmetry and one
can limit candidates for continuous gauge group formed in the theory to
finite possibilities.

We considered attractive K3 surface S[12 0 4] in Section 3.4. We would
like to apply the previously discussed topic to this attractive K3 surface. The
attractive K3 surface S[12 0 4] has discriminant 48; therefore, if it admits a
genus-one fibration that lacks a global section, then the fibration has either
a 4-section or a bisection.

If a genus-one fibration without a section of the surface has a 4-section,
then owing to the equation (4.1), the Jacobian surface must have discrim-
inant 3. Thus, the Jacobian K3 surface is isomorphic to S[2 1 2]. Similar to
what we have previously argued, the singularity type of the genus-one fibra-
tion with a 4-section must be one of the six types: E3

6 , E
2
8A2, D16A2, D7A11,

E7D10, and A17.

16The Mordell–Weil groups of the elliptic fibration types of the K3 surface of
discriminant 3, S[2 1 2] were obtained in [5]. These are presented in Table 4. The
Mordell–Weil rank yields the number of U(1) factors formed in F-theory on Jacobian
fibration [4]. The fundamental group π1(G) of the gauge symmetry, G, formed in F-
theory on an elliptic fibration, is isomorphic to the torsion part of the Mordell–Weil
group of the elliptic fibration, as discussed in [92–94].
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If a genus-one fibration without a section of the surface has a bisection,
from (4.1), we deduce that the Jacobian surface of this fibration must have
the discriminant 12.

We do not determine whether or not attractive K3 surface S[12 0 4] actu-
ally admits a genus-one fibration without a section with a bisection or with
a 4-section.

5. Conclusions

In the F-theory moduli, compactification spaces admit several elliptic/genus-
one fibrations, and we discussed how this can be viewed from M-theoretic
and heterotic perspectives when the compactification spaces are K3 surfaces
in the F-theory moduli. The different fibration structures of an elliptic K3
surface correspond to the different small-fiber F-theory limits of a single
M-theory.

Elliptic K3 surfaces generally admit both elliptic fibrations with a section
and a genus-one fibration without a section. This physically means that
considering F-theory on an elliptic fibration with a global section and on
a genus-one fibration lacking a global section, starting from an M-theory
on an elliptic K3 surface, one obtains both an F-theory limit wherein a
discrete gauge symmetry does not form, and another F-theory limit wherein
a discrete gauge symmetry forms.

We analyzed the elliptic fibrations with a section of elliptic K3 sur-
faces, particularly when the surfaces are attractive, applying a mathemati-
cal method known as the Kneser–Nishiyama method. This method studies
the lattice structures of K3 surfaces and extracts information of the gauge
groups formed in F-theory on K3 surfaces. We studied the points in the
F-theory moduli of K3 surfaces where the surfaces are attractive, and we
discussed the M-theoretic and heterotic perspectives of these points.

Different fibration structures of an attractive K3 surface include, on the
heterotic side, both E8 × E8 and SO(32) heterotic theories. This implies
that these theories originate from an identical M-theory, and this can be
viewed as a reflection of the fact that the moduli spaces of E8 × E8 and
SO(32) heterotic strings are connected upon toroidal compactification.

We also discussed some connections to the stable degeneration limit for
attractive K3 surfaces.

The Kneser–Nishiyama method classifies the elliptic fibrations with a
section of complex K3 surfaces with Picard numbers greater than or equal to
12 [47]. However, this method does not classify genus-one fibrations without
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a section of such surfaces. It would be interesting to search for a method to
classify genus-one fibrations that lack a global section.

Analyzing the lattice structures of the attractive K3 surfaces, we ex-
plained that the discriminants and the existence of the Jacobian fibrations
limit the possible degrees of a discrete gauge group and candidates for the
continuous gauge group formed in F-theory on an attractive K3 surface. For
some attractive K3 surfaces that have specific complex structures, these con-
ditions uniquely determine the degree of a discrete gauge group if a discrete
gauge group is formed in F-theory on the attractive K3 surface.

Elliptic fibrations of the attractive K3 surface S[12 0 4] include an ellip-
tic fibration with a section with singularity type E6D9A3, as discussed in
Section 3.4. By employing reasoning that is similar to that given in [55, 95],
the gauge group formed in the heterotic dual of the 8D F-theory model on
this fibration does not allow for a perturbative interpretation. Because ev-
ery attractive K3 surface admits an elliptic fibration with a section whose
singularity type includes E2

8 [7], S[12 0 4] admits an elliptic fibration with
singularity type E2

8 . The equation for the fibration with singularity type E2
8

of S[12 0 4] presumably admits a transformation to an elliptic fibration with
singularity type E6D9A3. Using the argument given in [55, 95], from the
perspective of non-geometric heterotic strings [29, 55, 95–105], the gauge
groups that do not allow for perturbative interpretation are understood as
the nonperturbative effect of the insertion of 5-branes on the heterotic side.
Through a transformation between two elliptic fibrations, we expect that
the gauge group formed in the heterotic dual of F-theory on the fibration
with singularity type E6D9A3 can be understood to result from the nonper-
turbative effect of the insertion of 5-branes.
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