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Construction of a top-down holographic dual of thermal QCD-like
theories (equivalence class of theories which are UV-conformal, IR~
confining and have fundamental quarks) at intermediate 't Hooft
coupling and the G-structure (torsion classes) classification of the
underlying geometries (in the Infra Red (IR)/non-conformal sector
in particular) of the non-supersymmetric string/ M-theory duals,
have been missing in the literature. We take the first important
steps in this direction by studying the M theory dual of large-N
thermal QCD-like theories at intermediate gauge and ’t Hooft cou-
plings and obtaining the O(I$) corrections arising from the O(R*)
terms to the “MQGP” background (M-theory dual of large-N
thermal QCD-like theories at intermediate gauge/string coupling,
but large 't Hooft coupling) of [I]. The main Physics lesson learnt
is that there is a competition between non-conformal IR enhance-
ment and Planckian and large-INV suppression and going to orders
beyond the O(I) is necessitated if the IR enhancement wins out.
The main lesson learnt in Math is in the context of the differ-
ential geometry (G-structure classification) of the internal man-
ifolds relevant to the string/M-theory duals of large-N thermal
QCD-like theories, wherein we obtain for the first time inclusive of
the O(R?*) corrections in the Infra-Red (IR), the SU(3)-structure
torsion classes of the type ITA mirror of [2] (making contact en
route with Siegel theta functions related to appropriate hyperellip-
tic curves, as well as the Kiepert’s algorithm of solving quintics),
and the Go/SU(4)/Spin(7)-structure torsion classes of the seven-
and eight-folds associated with its M theory uplift.
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1. Introduction

The study of the dynamics of non-Abelian gauge theories at finite temper-
atures is essential to studying various physical processes, like electroweak
and hadronic matter and various other phenomena. No effective theory de-
veloped over the years has given a suitable explanation for the intermediate
coupling regime. The results for the intermediate coupling regime have been
obtained by extrapolating the results obtained via perturbation theory. In
recent years, gauge/gravity duality has provided a simple, classical com-
putational tool for understanding the strongly coupled systems and over-
come the theoretical limitations in study of non-Abelian gauge theories. In
its simplest form for maximally supersymmetric SU(N.) Yang-Mills theory
(N =4 SYM), in the N. — oo limit, the gauge/gravity duality provides a
tool for analysing its properties in the large ‘t Hooft coupling limit. The
gauge/gravity duality also allows us to study the corrections to the infinite
coupling limit. These corrections appear as higher order derivative correc-
tions on the gravity side. The effect of these corrections to the action are
incorporated in the background metric and fluxes, perturbatively by consid-
ering perturbations of the equations of motion. However, other than higher-
derivative corrections quartic in the Weyl tensor, or of the Gauss-Bonnet
type, in AdSs x S°, dual to supersymmetric thermal Super Yang-Mills [3],
there is little known about top-down string theory duals at intermediate
't Hooft coupling of thermal QCD-like theories. In this work, we address
precisely this issue. We include terms quartic in the eleven-dimensional Rie-
mann curvature R in the eleven-dimensional supergravity action that appear
as O(Zg)(lp being the 11D Planckian length)-corrections in the M-theory
dual of large-N thermal QCD-like theories (equivalence class of theories
which are UV-conformal, IR-confining and have fundamental quarks).

Physics motivation behind this work: Significance of higher order derivative
corrections is not just only related to corrections to the infinite coupling
limit. They also serve as the leading quantum gravity corrections to the
M-Theory action to study the compactifications of M-Theory on compact
eight-dimensional manifolds. The study of warped compactification of M-
Theory on eight-dimensional compact manifolds is very interesting. Con-
ceptually, on one hand this compactification allows for the study of three-
dimensional effective theories with small amounts of supersymmetry. On the
other hand it allows us to study the lifting of three-dimensional theories to
four space-time dimensions for a certain class of eight-dimensional manifolds
using M-Theory to F-theory limit. In the past, vacua for warped compact-
ifications of M-Theory on compact eight-dimensional manifolds have been
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studied by including the higher derivative terms to the action. The leading
quantum gravity corrections to M-Theory actions are fourth order, R*, and
third order, R3G?, in the eleven-dimensional Riemann curvature R , where
G is the field strength of M-Theory three form. The terms of O(R?*) have
been used in past [§], while terms involving third order have been recently
analyzed in [9]. The construction of a top-down holographic dual of thermal
Quantum Chromodynamics (QCD) at intermediate 't Hooft coupling has
been missing in the literature. This work takes important steps to fill this
gap by studying the M theory dual of large-N thermal QCD-like theories
at high temperatures, at intermediate gauge and 't Hooft couplings by ob-
taining the O(lg) corrections to the M-Theory uplift of [2] as constructed
in [1].

Mathematics motivation behind this work: The study of the differential geom-
etry of fluxed compatifications involving non-Kéahler six-folds in Heterotic
string theory via the study of SU(3)-structure torsion classes, was initi-
ated in [10]; SU(3) and Ga-structure torsions classes of respectively six- and
seven-folds in respectively type II and M-theory flux compactifications was
extensively studied in [IIHI4]. SU(3)- and Ga-structure torsion classes of
type IIB/A holographic dual of thermal QCD-like theories and their M-
theory uplift in the intermediate/large “r” (the radial coordinate in the
gravity dual which corrsponds to the energy on the gauge theory side), i.e.,
Ultra-Violet (UV)-Infra-Red (IR) interpolating region/UV region were ob-
tained in the second reference in [I5] and [16]. In this work, for the first time,
we classify the underlying six-, seven- and eight-dimensional geometries at
small r, i.e., the IR, inclusive of the aforementioned (’)(lg)—corrections in
the D = 11 supergravity action, as regards their SU(3), G2, SU(4), Spin(7)-
torsion classes (note these corrections vanish in the very large-r limit, i.e.,
the deep UV, wherein G-structure approaches G-holonomy), both in the
SYZ type ITA mirror of the type IIB holographic dual constructed in [2] of
thermal QCD-like theories, as well as its M-theory uplift.

The following are the main results of this work.

e The M-theory dual of thermal QCD-like theories inclusive of O(lg)-
corrections, was obtained.

e Proposition:

1) The non-Kahler warped six-fold Mg, obtained as a cone over a com-
pact five-fold M5, that appears in the type ITA background corre-
sponding to the the M-theory uplift of thermal QCD-like theories
at high temperatures, in the neighborhood of the Ouyang embed-
ding of the type IIB flavor D7-branes [20] (that figure in the
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type IIB string dual of thermal QCD [2]) effected by working in the
neighborhood of small 61 (such as (33)), in the MQGP limit
and inclusive of the O(IS) corrections (I, being the 11D Planckian
length),
— is a mnon-complex manifold (though the deviation from
ng(g) = 0 being N-suppressed),
- Wf ve W5S ve) (upon comparison with [I4], interpreted as
“almost” supersymmetric [in the large-N limit]).
2) The Gs-structure torsion classes of the seven-fold M7 (part of the
eleven-fold
My (20, 2123 1,01, 02, ¢1, ¢2, 1, #10) which is a warped product
of 8! x,R3 and a cone over M-theory-S!-fibration over Ms:
p?(My1) = p2(My1) = 0, p, being the a-th Pontryagin class, and
solves the D = 11 supergravity equations of motion ) are:
Wiz =W e Wwee.
3) Inclusive of an S'-valued z° at finite temperature, referred to hence-
forth as the thermal circle, the SU(4)/Spin(7)-structure torsion
classes of Mg(r, 012, ¢1.2,1, 210, 2°) are Wig(@/Spm(?) = WQSUM) @

WSV g U yySpin(D) g,y Spin(),

Organization of the remainder of the paper

The remainder of the paper is organized as follows. Section 2 is a short
review of the type IIB string theoretic dual of large-N thermal QCD-like
theories as obtained in [2], as well as its Strominger-Yau-Zaslow type IIA
mirror and the M theory uplift of the same as constructed in [I]. Section 3
begins with a summary of the O(R*) terms in D = 11 supergravity that are
considered in the remainder of the paper. The (’)(lg)(lp being the D =11
Planck length) corrections to the M-Theory uplift in the “MQGP” limit
as obtained in [I], near the ¢ = 2nm,n = 0, 1, 2-branches are consequently
obtained in 3.1 and for ¥ # 2nm,n = 0, 1,2 in 3.2. There are three main lem-
mas in 3.1 pertaining to working in the neighborhood of ¥ = 2nw-branches.
The first is on comparing the large-N behaviors of two (’)(R‘VS) terms in the
D = 11 supergravity action; the second is on the M-theory metric inclu-
sive of (’)(lg) corrections, and the third is on the consistency of setting the
(’)(lg) corrections to the M-theory three-form potential, to zero. Subsection
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3.2 has an analogous lemma working in the neighbhorhood of ¢ # 2nnz-
coordinate patch. Section 4 discusses the major Physics lessons learnt. Sec-
tion 5 through four sub-sections, discusses the SU(3)/G2/SU(4), Spin(7)-
structure torsion classes in 5.1/5.2/5.3/5.4. Section 5 has five main lem-
mas. The first, in 5.1, is on the type IIA metric components along the
compact directions. The second, also in 5.1, is on the underlying type ITA
internal six-fold being non-complex and yet satisfying a relation of [I4] for
supersymmetric compactification. The third, in 5.2, is on the evaluation of
the Ga-structure torsion classes of the relevant seven-fold which is a cone
over a six-fold that is itself an M-theory circle fibration over a compact
five-fold. Inclusive of a “thermal circle”, the fourth, in 5.3, is on the SU(4)-
structure torsion classes of the underlying eight-fold. Finally, the fifth is
on the evaluation of Spin(7)-structure torsion classes of the aforementioned
eight-fold. The nine lemmas together imply the proposition stated in Section
1. Section 6 is a summary of the results obtained in the paper and a sum-
mary of the applications of the same to Physics as obtained in [4], [5]. There
are four supplementary appendices - a long appendix A on the equations
of motion for the metric perturbations (fy;n) and their explicit solutions
obtained inclusive of the aforementioned O(R*) terms in the IR, both near
the ¥ = 2nm,n = 0,1, 2-branches in A.1 leading up to 3.1, and near the
¥ #£ 2nm,n = 0,1, 2 coordinate patches in A.2 leading up to 3.2. Appendix
B has a step-by-step discussion of the Kiepert’s algorithm for diagonal-
izing the M;5(61,2, ¢1.2,%) metric leading to the evaluation of G-structure
torsion classes for Mg(r,012,$1.2,9), Mg(r,012,d12,9) Xu S (21%) and
SY(20) x4 (Mg(r, 01,2, 1,2, %) X SH(x1?)). Appendix C lists out the non-
trivial “structure constants” of the algebra of the fufnbeings/sechsbeins in
section 4. Appendix D gives some calculational details relevant to showing
that one can, up to O(lg)—corrections, consistently set the corrections at the
same order in the M-theory three-form potential, to zero. Finally appendix
E gives details of the G2 structure torsion classes Wy 7.

2. String/M-theory dual of thermal QCD - a quick review
of (and results related to) [, 2]

In this section, we provide a short review of the UV complete type IIB
holographic dual - the only one we are aware of - of large-N thermal QCD-
like theories constructed in [2], its Strominger-Yau-Zaslow (SYZ) type ITA
mirror at intermediate string coupling and its subsequent M-Theory uplift
constructed in [IJ, [16], as well as a summary of results in applications of the
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same to the study of transport coefficients and glueball-meson phenomenol-
ogy.

We begin with the UV-complete type IIB holographic dual of large-N
thermal QCD-like theories as constructed in [2] which built up on the zero-
temperature Klebanov-Witten model [17], the non-conformal Klebanov-
Tseytlin model [I8], its IR completion as given in the Klebanov-Strassler
model [19] and Ouyang’s [20] inclusion of flavor in the same, as well as
the non-zero temperature/non-extremal version of [2I] (wherein the non-
extremality function and the ten-dimensional warp factor simultaneously
vanished at the horizon radius), [22] (which was valid only at large temper-
atures) and [23, 24] (which addressed the IR), in the absence of flavors. The
authors of [2] considered N D3-branes placed at the tip of a six-dimensional
conifold, M D5-branes wrapping the vanishing S? and M D5-branes dis-
tributed along the resolved S? and placed at the anti-podal points relative
to the M D5-branes. Denoting the average D5/D5 separation by RD5/1757
roughly speaking, r > R - /D5 would correspond to the UV. The N; flavor
D7-branes (holomorphically embedded via Ouyang embedding [20] in the
resolved conifold geometry) are present in the UV, the IR-UV interpolating
region and dip into the (confining) IR (without touching the D3-branes; the
shortest D3 — D7 string corresponding to the lightest quark). In addition,
Ny D7-branes are also present in the UV and the UV-IR interpolating re-
gion but not the IR, for the reason given below. In the UV, there is SU(N +
M) x SU(N + M) color symmetry and SU(Ny) x SU(Ny) flavor symmetry.
As one goes from r > RD5/[T5 tor < RD5/ﬁ5> there occurs a partial Higgsing
of SUN + M) x SU(N + M) to SU(N + M) x SU(N) because in the IR,
i.e., at energies less than R /D5 the D5-branes are integrated out result-
ing in the reduction of the rank of one of the product gauge groups (which
is SU(N + number of D5 — branes) x SU(N + number of D5 — branes)).
Similarly, the D5-branes are “integrated in” in the UV, resulting in the
conformal Klebanov-Witten-like SU(M + N) x SU(M + N) product color
gauge group [I7]. The gauge couplings, gsu(n+m) and gsy (), were shown
in [19] to flow oppositely with the flux of the NS-NS B through the van-
ishing S? being the obstruction to obtaining conformality which is why M
D5-branes were included in [2] to cancel the net D5-brane charge in the
UV. Also, as the number Ny of the flavor D7-branes enters the RG flow of
the gauge couplings via the dilaton, their contribution therefore needs to
be canceled by Ny D7-branes. The RG flow equations for the gauge cou-
pling gsu(v4ar) - corresponding to the relatively higher rank gauge group
- can be used to show that the same flows towards strong coupling, and
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the relatively lower rank SU(N) gauge coupling flows towards weak cou-
pling. One can show that the strongly coupled SU(N + M) is Seiberg-like
dual to weakly coupled SU(N — (M — N¢)). Under a Seiberg-like dual-
ity cascadeﬂ all the N D3-branes are cascaded away with a finite M left
at the end in the IR. One will thus be left with a strongly coupled IR-
confining SU(M) gauge theory the finite temperature version of which is
what was looked at in [2]. So, at the end of the Seiberg-like duality cas-
cade in the IR, the number of colors N, gets identified with M, which in
the ‘MQGP’ limit can be tuned to equal the value in QCD, i.e., 3. Now,
N, can be written as the sum of the effective number Neg(r) of D3-branes
and the effective number M g of the fractional D3-branes: N, = Neg(r) +
Meg(r); Neg(r) is defined via Fy=dCy + By A F5 = F5 + +F; where
F5 = Neg Vol(Base of Resolved Warped Deformed Conifold), and Mg is
defined via Meg = [g F3(= F3 —7H3) (the S® being dual to ey A
(sin61dfy A dp1 — By sinfa A dgy), wherein Bj is an asymmetry factor de-
fined in [2], and ey, = dip + cos 61 do1 + cos Oy des). (See [2,25] for details. ).
The finite temperature on the gauge/brane side is effected in [2] in the grav-
itational dual via a black hole in the latter. Turning on of the temperature
(in addition to requiring a finite separation between the M D5-branes and
M D5-branes so as to provide a natural energy scale to demarcate the UV)
corresponds in the gravitational dual to having a non-trivial resolution pa-
rameter of the conifold. IR confinement on the brane/gauge theory side,
like the KS model [19], corresponds to having a non-trivial deformation (in
addition to the aforementioned resolution) of the conifold geometry in the
gravitational dual. The gravity dual is hence given by a resolved warped
deformed conifold wherein the D3-branes and the D5-branes are replaced
by fluxes in the IR, and the back-reactions are included in the 10D warp
factor as well as fluxes. Hence, the type IIB model of [2] is an ideal holo-
graphic dual of thermal QCD-like theories because: (i) it is UV conformal
(with the Landau poles being absent), (ii) it is IR confining, (iii) the quarks
transform in the fundamental representation of flavor and color groups, and
(iv) it is defined for the entire range of temperature - both low (i.e., T' < T,
corresponding to a vanishing horizon radius in the gravitational dual ) and
high (i.e., T' > T, corresponding to non-vanishing horizon radius in the grav-
itational dual).

!Even though the Seiberg duality (cascade) is applicable for supersymmetric
theories, for non-supersymmetric theories such as the holographic type IQIB string
theory dual of [2], the same is effected via a radial rescaling: r — e~ 59 Vet 1 [20]
under an RG flow from the UV to the IR.
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Now, we give a brief review the type ITA Stominger-Yau-Zaslow (SYZ)
mirror [26] of [2] and its M-Theory uplift at intermediate gauge coupling,
as constructed in [I]. Now, to construct a holographic dual of thermal QCD-
like theories, one would have to consider intermediate gauge coupling (as
well as finite number of colors) — dubbed as the ‘MQGP limit’ defined in
[1] as follows:
gsM?

(1) 9s X 1L,M, Ny = O(1), N> 1, &5

< 1

From the perspective of gauge-gravity duality, this therefore requires looking
at the strong-coupling/non-perturbative limit of string theory - M theory.

The M-Theory uplift of the type IIB holographic dual of [2] was con-
structed in [I] by working out the SYZ type ITA mirror of [2] implemented
via a triple T duality along a delocalized special Lagrangian (sLag) T3 —
which could be identified with the T?invariant sLag of [27] with a large
base B(r, 01, 62) [15] [16] E|Let us explain the basic idea. Consider the afore-
mentioned N D3-branes oriented along %23 at the tip of conifold and
the M D5-branes parallel to these D3-branes as well as wrapping the van-
ishing S2?(01,¢1). A single T-dual along 1 yields N D4-branes wrapping
the 9 circle and M D4-branes straddling a pair of orthogonal N S5-branes.
This pair of N.S5-branes correspond to the vanishing S?(61,¢1) and the
blown-up S2%(f2, ¢2) with a non-zero resolution parameter a - the radius
of the blown-up S?(6, ¢2). Now, two more T-dualities along ¢; and ¢s,
convert the aforementioned pair of orthogonal NS5-branes into a pair of
orthogonal Taub-NUT spaces, the N D4-branes into N color D6-branes
and the M straddling D4-branes also to color D6-branes. Similarly, in the
presence of the aforementioned Ny flavor DT7-branes, oriented parallel to
the D3-branes and “wrapping” a non-compact four-cycle X (r, 1, 61, ¢1),

2Consider D5-branes wrapping the resolved S? of a resolved conifold geometry
as in [28], which, globally, breaks SUSY [29]. As in [I1], to begin with, a delocal-
ized SYZ mirror is constructed wherein the pair of $%s are replaced by a pair of
T?s, and the correct T-duality coordinates are identified. Then, when uplifting the
mirror to M theory, it was found that a Ga-structure can be chosen that is in fact,
free, of the aforementioned delocalization. For the delocalized SYZ mirror of the
resolved warped deformed conifold uplifted to M-Theory with G5 in [I], the idea is
precisely the same. Also, as shown in the second reference of [15] and [16], the type
IIB/ITIA SU(3) structure torsion classes in the MQGP limit and in the UV/UV-IR
interpolating region (and as will be shown in Sec. 4 of this paper, also in the IR
and inclusive of O(lg) corrections), satisfy the same relationships as satisfied by
corresponding supersymmetric conifold geometries [14].
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upon T-dualization yield Ny flavor D6-branes “wrapping” a non-compact

three-cycle ©G)(r, 61, ¢b2). An uplift to M-Theory will convert the D6-branes
to KK monopoles, which are variants of Taub-NUT spaces. All the branes
are hence converted into geometry and fluxes, and one ends up with M-
Theory on a (Ga-structure manifold. Similarly, one may perform identical
three T-dualities on the gravity dual on the type IIB side, which is a re-
solved warped-deformed conifold with fluxes, to obtain another G structure
manifold, yielding the M-Theory uplift of [T}, [16].

To the best of our knowledge, [I] is the only holographic M-Theory dual
of thermal QCD that is able to:

e yield a deconfinement temperature T, from a Hawking-Page phase
transition at vanishing baryon chemical potential consistent with the
very recent lattice QCD results in the heavy quark [30] limit

e yield a conformal anomaly variation with temperature compatible with
the very recent lattice results at high (T' > T¢.) and low (T' < T.) tem-
peratures [30]

e Condensed Matter Physics: inclusive of the non-conformal corrections,
obtain:

1) a lattice-compatible shear-viscosity-to-entropy-density ratio (first
reference in [15])

2) temperature variation of a variety of transport coefficients includ-
ing the bulk-viscosity-to-shear-viscosity ratio, diffusion coefficient,
speed of sound (the last reference in [15]), electrical and thermal
conductivity and the Wiedemann-Franz law (first reference in [15]);

e Particle Phenomenology: obtain:
1) lattice compatible glueball spectroscopy [31]
2) meson spectroscopy (first reference of [32])
3) glueball-to-meson decay widths (second reference of [32])

e Mathematics: provide, for the first time, an SU(3)-structure (for type
IIB (second reference of [15])/ITA [I6] holographic dual) and Go-
structure [I6] torsion classes of the six- and seven-folds in the UV-
IR interpolating region/UV, relevant to type string/M-Theory holo-
graphic duals of thermal QCD-like theories at high temperatures.
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3. O(l) corrections to the background of [I]
in the MQGP limit

In this section, we discuss how the equations of motion (EOMs) starting
from D = 11 supergravity action inclusive of the O(R*) terms in the same
(which provide the O(I$) corrections to the leading order terms in the ac-
tion), are obtained and how the same are solved. The actual EOMs are
given in Appendix A - EOMs in A.1 obtained near the ¢ = 2nm,n =0, 1,2
coordinate patches (wherein Gf’lM,M # 1 and Gy, N # 2% vanish) and
EOMs in A.2 obtained away from the same. The solutions of the EOMs are
similarly split across subsections 3.1 and 3.2.

Let us begin with a discussion on the O(R*)-corrections to the N =
1, D = 11 supergravity action. There are two ways of understanding the
origin of these corrections. One is in the context of the effects of D-instantons
in IIB supergravity/string theory via the four-graviton scattering amplitude
[33]. The other is D = 10 supersymmetry [34]. Let us discuss both in some
detail.

e Let us first look at interactions that are induced at leading order in
an instanton background in both, the supergravity and the string de-
scriptions, including a one-instanton correction to the tree-level and
one loop R* terms [33]. The bosonic zero modes are parameterised by
the coordinates corresponding to the position of the D-instanton. The
fermionic zero modes are generated by the broken supersymmetries.
The physical closed-string states can be expressed in terms of a light-
cone scalar superfield ®(z, §), §%(=18) being an 8, SO(8) spinor. The
16-component (indexed by A) broken supersymmetry chiral spinor can
be decomposed under SO(8) into 1% 7% The Grassmann parameters
are fermionic supermoduli corresponding to zero modes of A - the di-
latino - and must be integrated over together with the bosonic zero
modes, y*. The simplest open-string world-sheet that arises in a D-
brane process is the disk diagram. An instanton carrying some zero
modes corresponds, at lowest order, to a disk world-sheet with open-
string states attached to the boundary. An instanton carrying some
zero modes corresponds, at lowest order, to a disk world-sheet with
open-string states attached to the boundary. The one-instanton terms
in the supergravity effective action can be deduced by considering on-
shell amplitudes in the instanton background. The integration over
the fermionic moduli absorbs the sixteen independent fermionic zero
modes. The authors of [33] considered a contact term proportional
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to A6 arising in IIB supergravity from the nonlocal Green function
which at long distances looks like a momentum-independent term in
the S-matrix with sixteen external on-shell dilatinos:

2miWiehr-Aus Ay,

The same result is also obtained in string theory from diagrams with
sixteen disconnected disks with a single dilatino vertex operator and
a single open-string fermion state attached to each one. The overall
factor of e2™"1_ which is characteristic of the stringy D-instanton , is
evaluated at x = RW7 = 0 in the string calculation. Consider now am-
plitudes with four external gravitons. The leading term in supergravity
is again one in which each graviton is associated with four fermionic
zero modes. Integration over y* generates a nonlocal four-graviton in-
teraction. In the corresponding string calculation the world-sheet con-
sists of four disconnected disks to each of which is attached a single
closed-string graviton vertex and four fermionic open-string vertices.
Writing the polarization tensor as ¢#rr = ¢ ¢¥)  and evaluating the
fermionic integrals in a special frame as described in [33], in terms of
its SO(8) components, one obtains the following result for (h)4 E| :

1 . .
(h)y = —inavffbnb MYy My Rijmn

where: 72]1; = %'ygavg]l,ifyi being the generators of Clg Clifford algebra

and R;jmn = kikmgj Cn) is the linearized curvature. The result contains

3In both, string theory and supergravity, the four-graviton scattering result is
given as an integral of the product of four factors of “(h),” defined as the tadpole
associated with the disk with four fermion zero modes coupled to the graviton and
the self dual fourth-rank antisymmetric tensor:

(2)

(h)s = €Y' eq €07 €0 Cuvkipkx,

€o corresponding to the broken supersymmetry - the only covariant combination of
four €y’s, two physical momenta and the physical polarization tensor.
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two parity-conserving terms E|

©) A((G]) = Ce [ aoyei = ke
1

11J1° 4] t1J1 %4
x|t I tmlnl---m4n4 - 16 7t J Emlnl---m4n4>

X R Ry R R

e In [34], it is shown that the eleven-dimensional O(R*) corrections have
an independent motivation based on supersymmetry in ten dimensions.
This was shown to follow from its relation to the term C®) A Xg in
the M-theory effective action which is known to arise from a variety
of arguments, e.g. anomaly cancellation [35]. The expression Xg is the
eight-form in the curvatures that is inherited from the term in type
ITA superstring theory [36] which is given by

1
(7) — / d%zB A Xg = -3 / d'02/ —gA10) ¢ B X,
where
(8) Xy = — (& B* - Ler B2
57192 4 '

There are two independent ten-dimensional N = 1 super-invariants
which contain an odd-parity term ([37] and previous authors):

1
(9) I3 = tgtr R4 — ZeloBtr R4

4The integral over the dotted and undotted spinors in the four-graviton scattering
amplitude factorizes and can be evaluated by using,

(4) /d877a77a1 Cep8 = A /dgﬁdﬁal ...7'71'18 — aras

Substituting into the four-graviton scattering amplitude the following tensors ap-
pear

1191, , A4 — 421017000404 42171700404 110404
ealaz"'a87a1a2 ’Ya7as =t - t8 €

i1 iajs _gisdiids _ girjieinia _ L ivimiaia

(5) €aras--asVajas " Varas 2

tg symbol defined in .
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and:

(10) Iy = ty(tr B2)2 — %eloB(tr R2)2.
Using the fact that

(11) tstg RY = 24tgtr(R") — 6tg(tr R?)?,
it follows that the particular linear combination,

1 1
(12) I— L= ﬂtgth‘* — 48¢19B X3

contains both the ten-form B A Xg and tgtgR*. The R refers to the
curvature two-form, €19 is the ten-dimensional Levi-Civita symbol and
the tg symbol is defined as follows:

(13)
tévl...NS — %6<_2(GN1N3GN2N4GN5N7GN6N8 + GN1N5GN2N6GN3N7GN4N8
+ GN1N7GN2N8GN3N5GN4N6)
4 S(GN2N3GN4N5GN6N7GNSN1 4 GN2N5GN6N3GN4N7GN8N1

+ GN2N5GN6N7GNBN3GN4N1)

— (N1 < No) — (N3 ¢ Nu) — (N5 ¢ Ng) — (N7 Ng)),

wherein GM:Mz ig the metric inverse.

The N = 1, D = 11 supergravity action inclusive of O(lg) terms, is hence
given by:

1
(14) Sp=11 = YCE [ vVGR+ VhEK
2K’11 My, OM,

. \FGGi—é/ C5 NGy NGy

2 Mll Mll

drm2))
_|_(7mll)</ e/ GM <J0_;E8>
M

(2m)*32.213

+ 32.213/03 A Xs + /t8t8G2R3 + ) — S,
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where:

(15)  Jo=3-28(RIMNK Ry v RSP RO Rse
1
+ iRHKMNRPQMNRHRSPRQRSK)

1 A ’ ’ ! /
BCM,N,...MyN. M{N MN
Es = 3¢ Ve e agon Ny M N R Ny - R N,

2p3 _  M;...Mg,8 N, PQ Ns N3Ny N5Ng N7Ng,
tstsG“R° = tg tny .. NG, G, R, Basoar, Basy i
879
_ @n)°t,

k11 = 5

K%, being related to the eleven-dimensional Newtonian coupling constant,
and G = dC with C being the M-theory three-form potential with the four-
form G being the associated four-form field strength.

In the spirit of completion of the 1-loop O(R*) in the presence of
NS-NS B in type ITA compatible with T duality, and hence defining
the torsionful spin connection, Qi = Q=+ 1H, H® = szdw“, and Xg =
X(RQEXREO)) - where R(Q4) = R(Q) + 2dH + TH A H, the ten di-
mensional Xg shifts by an exact form [9]

16) X = 1y | (! - or?)

1
+d (2tr (HVHR? + HRVHR + HR*VH)

1
-3 (trR* trHVH + 2trHR trRVH)

1
6t (2H3(VHR + RVH) + HRH*VH + HVHH R)

1
— 5 (WHVH RN + RV K + trVHH? trHR)

1 5 1 2 3
—t — —t t
=+ D) rVHH 192 rVHH trH

1 3 1 2
g TH(VH) — trHVH (V) )]

5To be consistent with the notation of the rest of the paper, we have dropped the
“over eleven-dimensional objects in ; when wedged with C' it will be understood
that the objects like the metric, curvature, etc. are eleven-dimensional and when
wedged with B, ten dimensional.
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Defining the O(1, 10)-valued one-form G*°¢ = 4Gm,p,\dx“ea”ebpec>‘, the M-
theory uplift of the first two lines of of type IIA, yields [9] ﬂ

_ 1 1
1 BoANX _ trR* — = (trR?)?
(17) Ba A 8—>192(2W)4[C’/\<rR 4(rR)>
1
+GA (1 (RabRbcgcdevgdae + 2RabgbceRcdvgdae + RabRbcvgcdegdae)

_ i <trR2 A Gabeyghae GRabgbaeRcdgdce) 1. )]

In this paper, we restrict ourselves only to the first line in . Given that
the same was shown to vanish [I], perhaps to be T-duality invariant, the
sum of the terms in the second and third lines of too yield zero. We
have not proven the same.

The action in is holographically renormalizable by construction of
appropriate counter terms S°. This is seen as follows. It can be shown
[5] that the bulk on-shell D = 11 supergravity action inclusive of O(R*)-
corrections is given by:

2
(18) Son-shell — [ 250 1259+ <0SEH —2 / _gRO
My

oJi
—|—2SGHY—/ \/—9©g A({)Na MON>]

The UV divergences of the various terms in are summarized below:

, V_hK

UV —divergent OM 1,

§Jo
1 — MN
(19) /Mu V=99 51N

ViR

Mll

~ T‘%V log Tuv,
UV —divergent

4
Tuv

UV —divergent 10g rov

6Strictly speaking, is valid when My, is a trivial S fibration over an Mg
and G, pz10 # 0,Gpupn = 0. We, near the ¢ = 2nm-coordinate patches, have My
as a warped product of the M-theory circle and Mg, which for a delocalized (IR-
valued in this paper) value of r can be thought of as a trivial circle fibration. The
G py arising from AUTA A HUA yig J G A %G, results in a UV-divergent contribu-
tion which is canceled off by an appropriate boundary flux term [51].
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It can be shown [5] that an appropriate linear combination of the bound-
ary terms: faMu \/—hK‘ and faMU /[ hhmn 8%[571

r=ruv

serves as the
T=Tuv,

appropriate counter terms to cancel the UV divergences (19)
The EOMS are:

1 1
Ryn — igMN,R ~ 13 (GMPQRG]\I:QR - gMTNGPQRSGPQRS)

gMN 1 0 1
=5 |25 (=38 + g (0= 3|

1
(200  dxG=SGAGH 32213 (27)* B X,
where [38]:

) (),

(21) ’ (2m)tg2212 P

Rynpg, Rvn, R in / being respectively the elven-dimensional Rie-
mann curvature tensor, Ricci tensor and the Ricci scalar.
Now, one sees that if one makes an ansatz:

gMN = gj(\%v + ﬂg%,
(22) Crunp = Ciyp + BCY v ps

then symbolically, one obtains:

(23) 89 <¢Tgao<1>) + 0 [(\/?g)(” ac@)} + BenndCc®@ac®
= O(B%) ~ O[up to O(B)].

One can see that one can find a consistent set of solutions to wherein
C’](é,)N p =0 up to O(B). This will be shown after . Assuming that one

"For consistency, one needs to impose the following relationship between the UV-
valued effective number of flavor D7-branes of the parent type IIB dual, N}JV and

15
(logruv) 2

log ryv: N}JV = LB
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can do so, henceforth we will define:
(24) Sgarn = Baspn = G fan (1),

no summation implied. The first equation in will be denoted by
EOM ),y in Appendix A. Appendix A has all the EOMs listed. The dis-
cussion in the same is divided into two sub-sections: the EOMs and their
solutions for fasns are worked out for the ¢ = 0, 27, 4w-branches in A.1 and
for ¥ =g # 2nm,n =0,1,2 in A.2.

One can show:

(25)
MQGP, IR
0Jg ——— 3 x 285RHMNKR§SP (RPQNKRQRSM + RPSQKRQMNR

+2 [RPM NQ RQRSK + RpNmqQ RQSRK} )

=3 x 285RHMNKXHMNK

— _59M]\~f gMNRHNNKXHMNK +gNNRHMMKXHMNK

. - 1 - .
+9KMRHMNNXHMNK + 5 (gHN[DKUDNI]XJ]\{/INlKl

+ 9"V Das, Dy M — 977Dy Dy, xﬁ[NlM]) ] ,

where:

o [RPQNKRQRSM + Rpsor R v

+ 2 (RPMNQRQRSK + RPNMQRQSRK>] .

(26) xmmMNE = Ry
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Further:

Nj N ABC’M Ni,,,M4N.
(27) 6Es ~ —- 59MN9 T e ABCO M NG MUN;,

M; N, M;N;

M{N; R
M> N> MyNy

x RM M1N1R LN, R

0G 7 S S y
NIN | o ABCM, N, ,MN. NINy M N
+ 3 2e ! reABOMING. MINIG VTG

. M;3N; M; Ny M, N,
X D, Dy (R VAT L VAN LI V)

ABCM,; Ny,,,M4N. N!N;, MM
+e P e ABOMI Ny MINLG TG

MN} M{N} ,M;N}
x [Dy,, D] <R RTINS 14\44N4>

ABCM, M,,,MyN. NI!N M!L
—2¢ ! “MeABCMINI. . MINIG g

M N}

M/ N, M/N!
- 2 3 3 4 4
x Dj Dy, (R YR L YA i M4N4)]7

where, e.g., [39]

MM M; M} MM M5 M}
(28) EABCMlMQ,,,Mg 1 2 R RMSMER 8

eaBeM My MR R My M, M- M
My MM, MM, MM, 5 MLM],
= _3'8'5N] 5MZ]R ' f/llMQR ’ M3M4RM5M2 ]2\347M8.
Writing: Ty = GMPQRGNPQR — ”%Ga the (’)(lg) “perturbations”
T]%V therein will be given by:

(29) Titn = Tark + Tagh — 209" T3,

where:

Tk = 30977 99 GrrporGuror = 6977 Cunpp,
5 )
Tith = 00N GrpqpeGPns = —SIMN g2,

(30) T(Q) QQQ/QRR/ 55 GporsGrqQ s -

In the IR (i.e. small-r limit), the various EOMs, denoted by EOM s n
henceforth, corresponding to perturbation of the first equation of up
to O(B), and their solutions, have been obtained in appendix A: near
the ¥ = 2nm,n =0, 1, 2-patches in A.1, and near the ¢ # 2nm,n =0,1, 2-
patch (wherein, unlike 1) = 2nm, n = 0, 1, 2-patches, some G%, M #r and
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GM o N # 2% components are non-zero) in A.2. The EOMs are obtained
by expanding the coefficients of f](\;])\,, n=20,1,2 near r = r;, and retaining
the LO terms in the powers of (r — rp) in the same, and then performing
a large-N-large-|log rp,|-log N expansion. It is shown in A.1 that near the
Y =2nm,n =0, 1, 2-patches the EOMs reduce to fifteen independent EOMs
and four consistency checks, and in A.2 in ¢ = v (arbitrary but different
from 2nm,n = 0, 1,2)-branches to seven independent EOMs and one consis-
tency check equation. In the following pair of subsections - 3.1 and 3.2 - we
present the final results for the M-theory metric components up to O(f3).

3.1. Near ¢ = 2nmw,n = 0,1, 2-coordinate patches
and near r = 7y,

In this sub-section, we will obtain the EOMs and their solutions, in the
IR, near the @ = 0, 27, 4m-coordinate patches for the M theory black hole
solution dual to thermal QCD-like theories at high temperature:

(31) ds? =e” = [h(l(g) (_g(r)dt2 + (dx1)2 + (dx2)2 + (dxg)z)
T, 01,2

dr?

+ h(T’, 9172) (g(r)

+ dsfia (1, 01,2, h1.2, ¢)>]

41TA 1IB 1B 1B\ 2
E 11 FiP+FIP 4 Fy
+e s (daz + Ay ,

where Aﬂq’;l’:"s are the type ITA RR 1-forms obtained from the triple T/SYZ-
dual of the type IIB FE& fluxes in the type IIB holographic dual of [2], and
g(r)y=1- :—i For simplicity, we will be restricting to the Ouyang embed-
ding:

15 0 0
(32) (r6 + 9a2r4) 1z (V=91=92) gjy 51 sin 52 =L,

i being the Ouyang embedding parameter assuming |u| < 72, effected, e.g.,
by working in the neighborhood of:

(33) 0= 0 0y = 22iay = 0(1)

N 10
(wherein an explicit SU(3)-structure for the type IIB dual of [2] and its
delocalized SYZ type ITA mirror [1], and an explicit Go-structure for its
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M-Theory uplift [I] was worked out in [16]). Note, using - and
arguments similar to the ones given in [11], one can show that our results
are independent of any delocalization in 6 2. The EOMs, corresponding to
the O(I5) variation of (via the substitution of (22) into (20))) will be
labelled as EOM;n in this section and appendix A.

This brings us to the first main lemma of this paper:

Lemma 1: In the neighborhood of the Ouyang embedding of flavor D7-branes
[20] (that figure in the type IIB string dual of thermal QCD-like theories
at high temperatures[2]) effected by working in the neighborhood of small
612 (assuming a vanishingly small Ouyang embedding parameter), in the
MQGP limit , iy 00 £5 = 0,limy 0 % =0.

Proof:

e One can show that the leading-order-in-N contribution to Jy is given
by:

T¢1TR’¢J

5 e — R¢2T91TR¢1T91TR r¢>1TR491

1
(34) Jo = §R¢2T01TR7’¢917"R 2 roir’

where, e.g., near (33)),

2nq ,r2n2 ,',.2'"'3
h

(2)"*(9a*+r2) (=i )ag, 5

R¢27"917’ ~ ni,ng,n3:ny+no+ngz3==06 a
9:%/4N*r4(r2=3a?)* (6a2+r2)” log®(N)ag,
R N _957/4MN11/20Nf5/3 log§ (N) log(r) an"”2,”3:’”1+n2+”3:5 a2"1r2"2ri"3
1rosr r4(7‘2—3(12)(6a2+r2)(9a2+T2)(r4—rh4)a910432
R ~ _957/4MN3/20Nf5/3 log%(N) log(r)ce, Zn],n2,713:n1 +no+ng=6 a2n17,2n2rina
0T r4(r2—3a2)(6a2+r2)(9a2+T2)(r4—rh4)a§2
4/3
4 (1\21/20 4 o 2)2 1 4 4)2
réLr a (N) (90’ +r ) log(N) (T ~—Th ) 059221
Ry, ™~ = 1 2 2
2 gsNf4/376 (12 — 3a2)? (6a2 + 2) ag.
214 ,.2n2,.2N3
R91 ~ an,ng,ng:n1+n2+n3:6 a r U
0 )
T2 (r2 — 3a2)? (62 + 12) (9a2 4 r2) (4 — rpt)
2/5 214 ,.2n2,.2N3
(35) Rw ~ N an,ng,n3:n1+n2+n3:6 a r Th
Té1r 2 (12 2)2 (62 4 92 2 4 .2) (4 4y 42
72 (r? —3a?)” (6a% 4+ 1r?) (9a® + r2) (r* — rpt) g,
2n1r2n27a2n3 _

where Y7 is defined in 1} and an,ng,n3:n1+n2+n3:6 a
—81a®r* + 243a8r,* + 27a°r5 — 36a%r%r,* + 15a*r8 — 27a*r*r,* +

a’r!9 — 242702 In and henceforth, r/a/rp, in fact would imply
é/ai/ri (see the last reference in [I5]). Substituting into , one

D5/D5
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therefore obtains:

(36)

8/3 ne
I mw) M) ) ) log(r)®) T 2 p2na
0 ~Y

L\
(%)

For an arbitrary but small 6, 2, one can show that:

ni,mg,nging +ngtng=6 4

1/gstE’/?’rw(3a2—7"2)8(6(12—&-7"2)70422

(37)
Jo " (am)

)29/20 (9a2+7r2)(r*—ry*) 10g('r)(19683\/ésin6 0,-+6642 sin? 0, sin® 6, —40v/6 sin* 92)

Vs N£573r16(3a2—12)%(6a2+12)" sin® 0,
2n1,.2n5,.2n3
X E a r Ty

Nn1,N2,N3:N1+N2+n3=06

S
N

e For evaluating the contribution of Fg, , one notes that one needs
to pick out eight of the eleven space-time indices (and anti-symmetrize
appropriately). Let us consider
RMNy o RMEN: 0 RN RMiN o which will be one of the
kinds of terms one will obtain using . After a very long and careful
computation, one can then show that for arbitrary small ¢ 2 and not
just restricted to , the above contributes a ﬁ via the following

most dominant term in the MQGP limit:

(38)

' pas® oy pato 1) 1
By 3 R0 R s R g, (R o + RO+ R ) <N © <N2>> '

A similar computation for the other types of summands in yield
1

a similar N dependence. Consequently, % ~ s> 0.
e Summing first w.r.t. M3 4, N34 in , one obtains
(39)

X1(r,(01.2)) NiMN ~ N N5 Ng N Ng
GM1 GM2 MNR Ry,

My Mo po Ms Mg M M,
N31/20 M5 Mg Mo Mg tN1N2I092N5N6N7NSt 1M2° o2 M5 Mo Mo Ms

as the LO term in N. Summing w.r.t. M5 ¢, N5 6, one obtains

x2(7; (61,2))

N{MN ~ N. N7 N; My Mox° g M7 M,
(40) = myme O Gar) MNRy R N Naaoou Ny s £
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up to LO in N. Finally, summing w.r.t. M7y, N7g one obtains:

(41) X3(T7 <91,2>)G NlMNG]\]}/E

My Mox®poz® pox®
N98/20 M, " MNEN, Naa09,a00,000, 11 20 920 020002

)

and restricted to ﬁ one obtains:

253 xa(r; (01,2)
(42) tgtgG R ‘ﬂ ~ Wv

which is large-N suppressed as compared to the Jy and Ej.

Hence, — along with , one proves Lemma 1, and obtains
the following hierarchy:

(43) t23G%R3 < Fy < Jp.

Henceforth, Eg,t2G?R3 (and their variations) will be disregarded as com-
pared to Jp (and its variation) in the MQGP limit.

We now come to the second lemma of this paper:

Lemma 2: The O(p)-corrected M-theory metric of [I] in the MQGP
limit near the ¥ = 2nm,n = 0, 1, 2-branches up to O((r — r4)?) [and up to
O((r —r3,)3) for some of the off-diagonal components along the delocalized
T3(x,y, z)] - the components which do not receive an O(j3) corrections, are
not listed in - is given below:

9/4

vaap [, 1468 (962 + 1)% (437405 + 1035b% + 962 — 4) M (£)*" £y (60> +13,2) log(ry) ,
Gy =Gy, 1+ - - 5 - = - - (r—rp)
277 (18b* — 30% — 1)” log N2Ngrp,2a (942 + 142)
. oMace [1 1465 (962 + 1)" (3902 — 4) M (&) 8 (6a2 + 142) log(ry) %1 )2]
71,234,123 = 123 123 - 3 4 P P b 9 r=r
o it 4 om (362 — 1) (66% + 1) log N2Nyry.? (902 + 12) o, g
G,, = GMQGP |1 | 2(9 + 1)4 B1OM (6a? +13°) ((r = ra)® + 74%) T
e 31 (—18b% + 362 + 1) log NNS/15N} (~27a% + 6a2ry? + ry) o
+ .2 —2C,. 0 + 209.5“) B
; 962 + 1) b1OM (602 + r42) ((r — )2 +722) O
Go.x :GQI?GP L ( ) > 4 ( u 7"{ )((7 ) 7‘11 ) ! . +Colx(l) B
v 3w (—18b% 4 3b2 +1)" log NN®/B Ny (=27a* + 6ar),2 + r4t) o
4 (r=rn)?
aar 16 (962 + 1) 12 (—w + 1) ol "y
Gy =Gy |1+ p - 272010 /77 3 N3 y ST —— 1+ (5. |8
243273 (1 - 36%)'° (662 4 1)° g%/ log NANT/SN® (=2Ta'ry, + 6a2ry® + 14%) af af,
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(44)

- (T Tn)3
b = | 243273 (1 — 3112)10 (6b% + 1) 9594 log N4N7/6N/ (—27a’ry, + 6a?ry3 + rp,?) ‘!(7)]““32 822

2110 (Qp2 4arn(an2 2 _ (r=rn)? -
v N 3010 (962 + 1) M8 (6% + %) (1~ 530 ) log(ra) T
2y 02y | 7 (362 — 1)° (662 + 1)*log N2NT/5N (9a2 + 142) oy,
r 2 4310 2 2 _ =)\ 60 (r
o ], (PO ) (1
: b2 7 (302 — 1)° (602 + 1)" log N2NT/6 N (902 + 13,2) o =)
3 (9% + 1)4 blOM (6a% +142) ((T:’i';)z + 1) 1<1g(1-h)a2221 0
= . — +C{
7 (362 — 1)° (602 + 1)*log N2N2L/20N¢ (9a2 + 742) af, i )P
18510 (982 + 1) M1 (602 + rp?) (5228 1) 10g3(7'h)21:|

Gy =GR 0T |14 <

7 (32 — 1)° (602 + 1)*log NANS/AN} (9a2 + 73,2) aof,
r 2110 (gp2 A (62 2 - (r—rh)2
. (902 +1)* M ($)7* (602 + m?) log(ri) =1 (552 + 1)
W 7 (362 — 1)° (662 + 1)* log N2N ;74,2 (9a2 + th) o,
64 (907 + 1) 022 ()™ (602 + 12) (U552 + 1) log(ra)%s
G. = GMACP ] 4 _ o Lo ) g
o 274 (302 — 1)'° (662 + 1)"? 9,94 log NS N 473 ()2 — 3a2) (9a2 + 1,2) 0} af, 7 )’
b (902 +1)" M (2 = 20 Y log(r) 3
8
2773/2 (302 — 1)° (6b2 + 1)* /s log N2NZ/20N o,

Gurz = G.:izQGP 1+

Goe =GP |1 4 <C§i’ -

27610 (952 + 1) Ar (L) =r) .
Gprogro = GMQGP |1 — 750 (9 +‘ )" M (%) 8 (60> +12) ( 7) og®(rn) 21 7
L (36> —1)° (602 + 1)*log NANgry2 (902 + rp?) o,

where X1 3 are defined in , and GMQGP are the M theory metric com-
ponents in the MQGP hrnlt at O(3°) [ ] The explicit dependence on 612
of the M-theory metric components up to O(B), using (3 , is effected by
the replacemements: oy, — N sin 01, ap, > N i sin 0> in 1.' Also, see
footnote 5.

We now present the third lemma of this paper:

Lemma 3: C](\})N p =0 up to O(p) is a consistent solution of .

Proof. The eleven-fold M, in the M theory uplift as obtained in [I] is a
warped product of S1(2°) X Reonformal and Mz(r, 01 2, ¢1.2, 1, #10), the latter
being a cone over Mg(01.2, ¢1.2,1,710) where Mg(01.2, ¢1.2,9, %) has the
following nested fibration structure:

Mg (01,2, 12,0, 319) «— S (210)
i
M5 (01,2, 01,2,¢) — M3z(d1, d2,7)
i
82(91302)

As shown in [1], p?(Mi1) = p2(M11) = 0 up to O(8Y) where p, is the a-th
Pontryagin class of Mi;. This hence implies that Xg = 0 up to O(8Y).
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Now, implies:

(45)
> B < —g<0>g<°>NPg§333pra[Mc?§;M2M”) ~0,
N,Pe{t,xt23,r,01 2,¢1,2,9,21}

where the “(0)” implies the O(B%)-terms of [I, 16, B32] and the ~ im-
plies equality up to O(S?) corrections. For simplicity we work near the
Y = 2nm,n = 0,1, 2-branches (resulting in the decoupling of M;(t, =123, r)
and Mg (012, ¢1.2,,21%) and 91(\2)1\7 being diagonal for M = r, 19 [16]) re-
stricted to the Ouyang embedding (effected by the delocalized limit wherein
one works in the neighborhood of 619 = %,920 = ae.jo (see footnote 5)

wherein, as also mentioned in 3.1, an explici‘g SU (3)—st11ructure for the type
IIB dual as well as its delocalized Strominger-Yau-Zaslow (SYZ) type IIA
mirror as string theory duals of large-N thermal QCD-like theories, and an
explicit Ga-structure for its M-theory uplift [I], was worked out in [16];
using - and arguments similar to the ones given in [I1], one
can show that our results are independent of any delocalization in 6 2).
Using the non-zero components of Cynp : Cy, , 4, ,/4 210 [1], one can show
that implies:

(46)

DN, PE{t a2 01 261 5,010} DO (v —g(o)g(O)NPQJ(\%fNngS)3rCmM)lMﬂm) §Mz ~0,

where My, My = 012, ¢1,2,% or precisely 0 2,2,y,z where the delocalized
T3(z,y, ) coordinates are defined near r = 7 €IR as [I] ﬂ

x = +\/hg [h(ro, 910,20)]i sin 610 To¢1,
(48) y = \/ha [R(ro, 910,20)]i sin 69 o2,
z = \/hy [h(ro, 910,20)]i rov,

8As explained in [40], the T3-valued (z,y, ) are defined via:

X
1= d10 + — 7
Vha [h(rg, 010,20)] * sin b1 1o
Yy
$2 = P20 + -
Vha [h(rg, 010,20)]* sin s 1o
z
(47) W =0 +

1 5
Vhi [h(ro,6010,20)]* 7o

and one works up to linear order in (z,y, z). Up to linear order in r, i.e., in the IR,
it can be shown [13] that 61920 can be promoted to global coordinates 6 o in all
the results in the paper.
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h being the delocalized warp factor [2]:
(49)

L
ra

h(ro,010,20) =

1+ 3g M ) { 39217\:;“ (logro + %) + gell f log (blneé“ 511192”)}} )
wherein Mg Was deﬁned in Section 2 and N off is defined via the type

IIB axion Cy = 47T (1/1 ¢1 — ¢2) (by standard monodromy arguments); the
squashing factors are defined below [2]:

1 gsM? 1 gsM? - 4a?
(50) h1—9+0< N >7h2—6+0( N ;h4—h2+¥7

(a being the radius of the blown-up S?).

One immediately notes from that (45]) is identically satisfied for
Miss € 20123 The set of °Cy equations for My o € 612,2,y, 2, and
M3 = 210 are considered in Appendix D where one sees that in the IR: r =
Xx7h, x = O(1) [and a(the resolution parameter)= (b+ O (#)) ry, [15]],
all ten of these equations substituting in the solutions for fa;ny from 3.1,
reduce to:

91.1’

51) BNF (log N)™os~ [ N MMz (h y a,, 7) CFY)
f 611’ )

+ N Z FJA\/?}VMQ (b’ X5 0591,27771)0](\})]\/') = 07
(M,N)=(2,z),(01,2),(02,z)

where ay = 2,3;a10s 8y = 1,251 > a2 and C](\/II)N are the constants of inte-
gration appearing in the solutions to the O(f)-corrections to the M
theory metric components of [1, [16, 32] (44]). Hence, up O(3) and LO in
N, is identically satisfied if:

(52) sl =0 in (14),
and up to O() and NLO in N (assuming as in 1) b~ 7) additionally:
M,y Mo —
{‘F91z,92z,2z - O} )
implying :
(53) ol =20, i) = 0in (44,

12

One therefore sees that one can consistently set C'](\})N p=0up to O(p).
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3.2. Near ¥ # 2nw,n = 0,1,2, and Near r = rp

In this sub-section we will be looking at the EOMs and their solutions
near the 1) = ¢y # 2nm,n = 0, 1, 2-branches (wherein some G%, M # r and
Gé‘{‘o ~» N # 210 components are non-zero) near r = 7y,

One can show that leading-order-in-N contribution to Jy for small 67 2
(i.e. corresponding to the Ouyang embedding of type IIB D7-branes’ em-
bedding [20] for vanishing small jtQuyang) is given by:

1 10 10
(54) Jo ~ SR 02t Rig 0, Rt 'R o),
where:
(55)

17 . .
a? Nz sin 0y sin? 05 (9a?r* + 9a®rp? + 10 + 12y )

R.Ilotezt ~
(gs — 1)gs>/4log N2M N sin (%) r(6a2 + r2) (rt — rp4)? log(r)

4/3 ,
gs°/? (710;1\7 ) M?2N;8/3 sin? ( % ) (9a2+72)(r*—rp*) (ri*+r,*) log(r)
N3/276 sin3 0, sin® 0> (6a2+12)
4/3
v (etw) st () (007 40) ()
Nf4/3 sin ¢oor? sin 6y (6a2 + 12) (r4 — 1r,4) log(r)
(%)3/4 sin (%) sin® 6, (9a2 + r2) (r4 — rh4) (r4 + rh4)

Rig,0,t ~

R

Rel 1 ~
Lot gs'V/AM N % sin? ¢or6 sin 0 (6a2 + r2) log?(r)
yields:
(56)
14/3
Jo ~ @ (i) " s (40 92 +2) (4!

" N7/5(g.—1)g.3/2N ;73 8in® ¢hogr 15 sin® 05 (6a2+12) (r4—r,*) log®(r) *

We now arrive at the fourth lemma of this paper:

Lemma 4: The following is the final result as regards the O(3)-corrected
M-theory metric of [I] in the MQGP limit in the ¢ # 2nm,n =0,1,2-
branches, e.g., near , up to O((r —ry)?) - the components which do
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not receive an O(f3) corrections, are not listed in (57):
(57)

OGP Ko,0, K7 Sin (¢“) Th (N)ZH%
Goo, = Gy Q°F 11 4 — +Co0, M | B
102 \/ngf sin’ 020(1"71“;,,)2@92

256N3/5 SiIl2 ¢207’h4ag
1+ |- > :
9(gs — 1) (2 = 3a2)* log>(N)af log® (9a%ry* + 1)
{/{ny3/10 sin? (%) (9(1,2 + rhz) (log(rp) — 1) ((9(12 + rhz) log (9(1,27714 + rhs) -8 (6(1,2 + 77,,2) log(rh))2
X

\/gﬁNfe sin? gogri2 (602 + 14,2)% (r — )2 10g4(7‘h)04§2 log® (9a2r* + 14,5)

Goy = Ggf,‘,}GP 1+

MQGP
Gyy = Gyy

Kg,yB9skp M16 sin? (%0) rp BN
Nf5 sin? pog (r — 74)3 logﬂ (rh) 0‘3 O‘gj

#0,B95" 2k, M sin (U") nANTS
9513/2Nf sin? dog (r — "h)310g2 (’h)%,%j

ey BVF(30s = D () sin® (1) BN
(g5 — 1)2Ny5 sin® a0 log(N) (r — 12 log # (1 )as, o3,
Ky=Bgsk log NM sin? (17“) P BN 2071 log? ()

(g5 — D)% sin® oo (r — rp)30) o, }

Gy, = G337 |1+

0,z

Gy = G20 1 +

Gy = GMQGP 1+

5 11/2 39, — 4 N—a—2
Gm:Gi’iQGP 1+ (oﬂbm /oo~ () )5}

2
13
(gs — 1)2N5 sin? goo(r — r4) log 2 (rn)ag, 03,

where Kg,0,, 01y, 612, zy, 22, vz <K 1, Kyy ~ O(1) and Y, is defined in
and o € ZT appearing via . Analogous to working near the ¢ = 2nn-
coordinate patches, the explicit dependence on 601 of the M-theory met-
ric components up to (9(5), using |.l is effected by the replacemements:

L= N sin 01, a92 — N sin 02 1 . Also, see footnote 5. The Physics

1mphcat10n of (57)) is similar to arising from (|44 .

4. Physics Lessons Learnt - IR-enhancement
large- N /Planckian-suppresion competition and when
O(l3) is (not) enough

Based on the results of this paper and its applications as discussed in detail
in [4], [B], we now discuss the Physics lessons learnt as a consequence of
working out the O(R*)/O(I5) corrections to the M-theory dual of large-N
thermal QCD-like theories.

The main Physics-related take-away of Section 3, e.g. from , can be
abstracted from the following table:
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S. No. G/A\/f/‘N IR Enhancement Factor N Suppression
(logR#)m, m,n € Z+ Factor
in the EQ(R‘l) Correction | in the O(R*) Correction

1 GM, log Ry, N—i
2 GMy . 1 N~
3 é\l/tz,GQx Ri:S Nf%
4 Gt log R, N3
5 Gé‘jz log Ry, N6
6 G log Ry, N2
7 oM (log Rp)> N1
8 Gt log R N3
9 | Gy e NE
10 Gé\;‘ log Ry, N~ %
3 5

11| GM logljh N~i

Table 1: IR Enhancement vs. large-N Suppression in O(R*)-Corrections in
the M-theory Metric in the ¢ = 2nm,n = 0, 1,2 Patches; Ry, = z— < 1,

D5/D5

RDWDir’ being the D5 — D5 separation

One notes that in the IR: r = xry, x = O(1), and up to O(S):

(log Rp)™

(58) RPN B

fun ~ B , m€{0,1,3}, n€{0,2,5,7}, By >0.

Now, |Ru| < 1. As estimated in [41], |log Rp| ~ N3, implying there is a
competition between Planckian and large-N suppression and infra-red en-
hancement arising from m,n #% 0 in . One could choose a heirarchy:
B~ e—vﬁNWN’,w’ny >0:9N™ >TNs + (% — BN) log N (ensuring that
the IR-enhancement does not overpower Planckian suppression - we took
the O(p) correction to G?/);‘, which had the largest IR enhancement, to set
a lower bound on 73 x/Planckian suppression). If yg NV ~ TN é, then one
will be required to go to a higher order in 5. This hence answers the question,

when one can truncate at O(f3).
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5. Differential geometry or (IR) G-structure torsion classes
of non-supersymmetric string/M-theory duals including
the O(R*) corrections

The use of G-structure torsion classes is a very useful tool for classifying, spe-
cially non-Ké&hler geometries. A complete classification of the SU(n) struc-
tures relevant to non-supersymmetric string vacua, does not exist [53]. In
the literature, in the context of SU(3)-structure manifolds, classes of max-
imally symmetric non-supersymmetric vacua that break supersymmetry in
a controllable way, have been constructed, e.g. [54] wherein the first vac-
uum of this type was obtained by compactifying type IIB/F-theory with
O3 planes on conformally CY manifolds (SU(3)-structure manifolds with
Wi =Wy = W3 =0 and 3W, = 2W5); type II vacua of this type were stud-
ied in [55] and classified using calibrations in [56], and similar solutions in
heterotic string theory were obtained in [57] - see [58] for G structures
relevant to non-supersymmetric vacua in heterotic(M-)SUGRA.

A classification of SU(3)/Ga/Spin(7)/Spin(4) structures relevant to
non-supersymmetric (UV-complete) string theoretic dual of large-N ther-
mal QCD-like theories, and its M-theory uplift, has been missing in the
literature. This is what we aim at achieving in this section.

Using the results for Ricci scalar of Mg(r, 61,02, ¢1,d2,7),
Mz (r, 01,0, ¢1, d2,1p, '), Mg(2°,7, 01,0, ¢1,d2,1p, ') that figure in
the string/M-theory dual of large-N thermal QCD-like theories in this
work, in terms of the:

1) SU(3)-structure torsion classes [59], it is observed:

(59) R(Mﬁ(r7 917 027 ¢17 ¢27 1/})>
= 15|W |2 — |[Wa|? — W] + 8(Ws, Wy) — 2|Wy|? + 4d « (W4 + W)
£ 0

({,) denoting Mukai pairing),

2) Ga-structure torsion classes [60], it is observed::

(60)  R(Mq(r,01,02, 61, d2,,2'%))
21 1 1
— 126W5 + §Wl2 + 30|+ |2 — §|W14|2 —~ §|W27|2,
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3) Spin(7)-structure torsion classes [61], it is observed:

49 1 7
(61)  R(Ms(a”, 7,061,602, 61, 6,9, 5™)) = L I0I1* = S IITII* + 500,

where: 6 = % *x (0PAND), T =—-00— % x (O AN®P), & Dbeing the
Spin(7) fundamental four-form. Note, that the eight-fold
Mg(z% 7, 01,00, d1, 2,9, 2%)  admits a  Spin(7) structure if
p(Ms) — 4p2(Ms) +8x(Ms) =0 [61], pa(Ms) being the a-th
Pontryagin class of Mg. Given that Mg could be thought of as
elliptic/T? (2%, 210) fibration over Mg(r, 01,02, ¢1, p2,7)), using the
Kunneth formula one sees that x(Ms) = x(T?)x(Mg) =0. In the
delocalized limit, also modifying the arguments of [I] (which showed
Xg = 0 as p}(My; = R3 x Mg) = pa(My1) = 0), one can show that the
pi(Mg) = pa(Ms) = 0.

In this section, we will derive in the IR near the ¢ = 2nm,n =0,1, 2-
branches the non-zero SU (3)-structure torsion classes of the six-fold relevant
to the type ITA mirror, the Go-structure torsion classes of the seven-fold and
the SU(4)- and Spin(7)-structure torsion classes of the eight-fold relevant
to the M-Theory uplift of the type ITA mirror. As in Section 3, for simplic-
ity, we work near the Ouyang embedding (assuming a very small Ouyang
embedding parameter). But as mentioned later, using - , based
on arguments of [11], one can see that the results of Table 1 in Section 5,
will still remain valid for arbitrary 6y . For arbitrary 1, using the results of
subsection 3.2, it is expected that the results of Table 1 in Section 5 will go
through, though the co-frames will be considerably modified. We postpone
this discussion to a later work.

5.1. SU(3)-Structure Torsion Classes of the Type ITA Mirror

Generically for SU(n > 2)-structures, the intrinsic torsion decomposes into
five torsion classes Wi—1 5 [62], i.e.,

(62) T e A ® su(n)*

@
E
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The adjoint representation 15 of SO(6) decomposes under SU(3) as 15 =
1+8+43+3. Thus, su(3)* ~1® 3@ 3, and:

TeAMNosuB)r=303)210303)
=(lel)oB@a8)a(6a6)d3a3)d (3a3)
=W oWy W3 Wy Ws.

The SU(3) structure torsion classes can be defined in terms of J, Q, dJ, d§2
and the contraction operator 1 : AFT* @ A"T* — A"~*T* J being given by:

J=e' N2+ e net +e® Al

(the metric being understood to be given in terms of the coframes as: ds2 =
Z?Zl (de*)?), and the (3,0)-form  being given by

Q= (e' +ie?) A (€2 +ie*) A (e® +ie).
Wi = Wi + Wi with :

AU NT = Qe ANdJ =W TANJTNAJ,
AV NT=Q_ NdT=W7JANJAJ;
(dQ4) 32D =WHIAT+ Wi A,

Q)22 =W IAT+ Wy AJ;
W3 = dJ@YD — [J AW,
1
Wi = Jad,
1
(63) W5 = 50 dy.

We now proceed to work out the coframes {e®}. This brings us to the
next lemma:

Lemma 5: The non-zero components of the type ITA metric near ¢ =
0, 2w, 47 coordinate patch, e.g. near , obtained from the M theory metric
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of Sec. 3 inclusive of the O(R?) corrections are given by:

(64)
GUA _ _g57/4 log N]WNH/ZONf (7’2 — 3a2) log(r) B BC(;l,,,;(l)gsw4 log N]WNH/QONJ: (r;,2 — 3@2) log(rp,)
Oz 3\/571’5/41"2(1910432 3\[7r5/4r;,2a91a3
GUA _ g7/ log N]\IN3/20Nfa91 (r* — 3a?) log(r) BCy, . Vg, 1og NAMNJ/QONfag (r? — 3a?) log(r)
[2%:1 2\/5#5/47‘26132 2[7(5/47“ a
GUA _ 957/4A1N13/20Nf log(r) (SGa2 log(r) + 7“) N ,Bcez,t(l)gs”‘l]MN“/ZONf log(r) (36(12 log(r) + r)
far 3\/5#5/47“043 3\[7r5/4ra'32
citn _ VEUTYGNT 0y, BowDos T MYN e Ny, log(r) (3602 log(r) + 1)
02y 90%1 2\f7r5/47“a92
oua _ 95 "MVNNyag, log(r) (36a” log(r) +7)  BCyy g7/ "M VNN;aj log(r) (36a° log(r) + 1)
022 2\/571’5/47‘0(3 2\/571-5/47.(132
GiA 27610 (662 + 1) (92 + 1)° BM (4)** (19683608 + 664203, af, — 40V6a} ) log®(ry)
o 2 (362 — 1)° Nyr, 20, (662 log N + log N)*
aia g TP+ 1)° 86100 ()" (~19683v/6a§, — 664202, af, + 40v/6a, ) log*(rs)
W o (32 — 1)° (662 4 1) 10gN4Nfrh o3
oA _ o N3/5 QﬂCg)N?’/‘%
2103, 2707,
G — 2\[N7/w + 2/28C5,4, VNT/10
a 904(9 @, 909 g,
A AN 2010 (967 + 1)° BM ¢/ L (19683v/60f, + 664203 af, — 40v/6ad, ) log? (ry,)
=- +
= 8lag ag, 3 (362 — 1)° (662 + 1) log NANgrp2af of,
" \/§N3/10 \/gﬁcmw(l)]vg/lo
o = - - .
g, 3ap,

To work out the co-frames corresponding to , one diagonalizes
Gn(r, 01,2, ¢1,2,1) or equivalently Gui(61,2,¢1,2,%) for which one needs
to solve the following secular equation - a quintic:

(65) P(z) = 2° + A2? + Ba® + Ca®> + Fx + G =0,
where:

CaN3S(aet +1)

2704(32 ’
16N?
B=— 1 1
656104910492,
o _ 168 (pel) —26C,. 1)

65610/‘,}1 0/52
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e 32\/7?\/9*5]\]27/10

5314410421a§2 ’
2gs410g N2M2N12/5Nf2
G=- 6 4
196837r2r47“h40401a02
X <7"h2 (3(12 - 7"2) IOg(T)(ﬁ(sz(l) - 26912(1)) - 1)
+6C51r? (3a% —12) (8C.. M + 1) log(rh)>
(66) X <ﬁ691x(1)r2 (3@2 — rh2) log(rp) + 2 (3@2 — 7’2) log(r))

Using Umemura’s result [63] on expressing the roots of an algebraic
polynomial of degree n in terms of Siegel theta functions of genus g(> 1) =

[(n+2)/2] : 9[ /: ] (2,9Q) for pu,v e RY,z € CY and € being a complex

symmetric g x g period matrix of the hyperelliptic curve Y2 = P(Z) with
Im(Q) > 0, and defined as follows:

H _ im(ntp) T Q(n+p)+2ir(ntp) T (2+v)
0 [ Y ] (z,9Q) ;q e .

Hence for a quintic, one needs to use Siegel theta functions of genus three.
The period matrix € will be defined as follows:

Qij = o™ py;
where
Zi—l
0ij :j{ dZ
A; Z(Z-1)P(2)
and

B Zifl
P = 7{9 VZ(Z -_1(Z -2P2)

{A;} and {B;} being a canonical basis of cycles satisfying: A; - A; = B; -
Bj =0 and A; - B; = d;;; 0% are normalization constants determined by:
alkakj = 5;». Umemura’s result then is that a root:

2(o[§ 5 5Joo) (o[4 3 §Jom)

o O
o O
O N
O o=
@)

O o=
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JE[E o oToa) (] 4 o]om)
+<9{ 0 8}(0,9))%9[8 é 8](0,9))4
(38 SJem) ([ d b]om)]

However, using the results of [64], one can express the roots of a quintic in
terms of derivatives of genus-two Siegel theta functions as follows:

o O

r 11 11 7
022ﬁ9|: 6 g ((Zl,Zg),Q)—U?léo[ (2) ; }((21,22)79)
To = T 0 T 0 0 1 0 1 ’
_§9|: (2) % :|((51722)7Q)9|: 8 0 :|((21722)-,Q)9[ % (2) :|((Z1 52)a9)9|: 0 6 :|((Z1’Z2)7Q)_ -
21=20=0
_ 0 1 0 1 -
Mﬁo[ 0 ? }((zl,zg,m—mﬁe{ 0 7 ]((zl,Zz)ﬂ)
3 3
n= 0 0 0 0 Tl 0 1 7
_59{ 0 % }((zl,n),ﬂ)!?[ 0 0 }((21,22)@)9[ (2) (2) }((zl h)ﬂ)ﬁ{ % (2) }((h@z)-ﬂ)_ o
r 0o i 0o 1 ]
022i0|: 1 f }((ZI,ZQ),Q)—M%G{ 1 i :|((z1 22),)
T = 22 T 1 2 1 ’
_50{ g g }((ZI,ZQ),Q)e[ 8 8 }((21,22),9)9[ (5) g }((zl,@),n)a[ 8 8 :|((z1,22),Q)— o
_ 1 1 -
o‘zzﬁ@[ i 1 ((zl,@),sz)—anﬁa i 1| ((z2).9)
I3 = — 2 2 2 2 .
‘ i1 0 0 00 Lo ’
_59[ % ; :|((z1,22),Q)0|: 0 0 }((21,22),9)9{ % 0 :|((Z1,22),Q)9|: (2) 0 ]((ZI,ZZ),Q)_ o
r 1 9 1 7]
azzia{ ? 0 ((z1,22) Q) =021 320 | § o |2
3 2
= T 0 0 0 0 T 0 ’
59[ i i }((2’1,22)«,9)9[ 0 1 }((2’1,22):9)9[ 101 :|((2112’2)¢Q)9|: (2] 1 }((2’1,22)«,9)
L 2 2 2 2 2 2 4 ==0
where:

= _Ag2%7
E=—Ar Zm:l |:ie[n,"]((zl722),Q>é9[7]5](<21,Zg),Q)fie[nm]((Z’hzz),Q)'—le[nﬁ]((zl,ZZ)yQ)

dzg dzy

22 7 0[m]((21,22),Q) =021 300 ((21,22).9) }
b
1=22=0
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| m=[2 4] =3 1]
| =[] 8] we[} 4]

The symmetric period matrix corresponding to the hyperelliptic curve w
P(z) is given by:

( Qi1 Q2 > _ 1 ( 022  —O012 ) < P11 P12 >
Qg Qoo 011092 — 012021 \ —021  O11 p21 p22 )’

where o = fZ*A]. 27;1(22) and pij = fZ*Bj % where Z maps the Az and

= |
(4] = [

|
.

NI~ O N~
= O N[N =
o= O O
O O NI
D=0 I= NI O
O NI NN

2:

Bj cycles to the Z—plane. However, both results are not amenable to actual
calculations due to the non-trivial period matrix computations.

The quintic is solved using the Kiepert’s algorithm described very
nicely in the wonderful book [65]. The details of the same are given in
Appendix B. Utilising the results of Appendix B, we will now work out the
SU(3) torsion classes of Mg(r, 612, ¢1.2,1) and prove the following lemma:

Lemma 6: In the neighborhood of (A1 = ~4 ;sf% , =2nm),n =
0,1,2, the SU(3)-structure torsion classes W;Z{ , 5, 5 # 0 (implying Mg is a
non-complex manifolds) with Wy ~ Ws.

a020 =

1
5

Proof: In the neighborhood of (619 = %,020 = ;920 s =2nm),n=0,1,2,

3
10

in the MQGP limit , inverting the co—SframeS of Appendix C :

6
dbi—y/2 = Z O;q€”,
) a=2
dx = Z X,e?,
agQ
dy = Yae",
a=2

6
(67) dz =3 Zet,
a=2

and (C31)-(C33):

(68) e = %1 (r)do, + e (r)dOy + e (r)dz + e™(r)dy + e**(r)dz,
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and defining:

(69) el = /GMar,
one notes that:

(70) de® = Qupel N eb,

where the “structure constants” €1, are defined as under:

(71)
0, — (6“91 "(1)O1p + €% ' (1)Oqp + €% (1) Xy + e ' (1)) + 27 /(T)Zb)
ab = .
GM

rr

The components of €2,;s after a small-g large- N small-a expansion are given
in (D1)). The two-form associated with the almost complex structure is given
by:

(72) J=e?+ e 4 e,

and the nowhere vanishing (3,0)—form Q is given by:

(73) Q= (e +ie*) A (e* +ie?) A (7 +ie®) = Q4 +iQ,

where e~ = e A ....e%. The five SU(3)-structure torsion classes are de-
noted by W1’273’475.
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One sees:

dJ = 9326124 . 9426312 + 9526126 — 9626512 + (235 + Q62) eld
+ (36 — Vs4) €0 + (V33 + Qua) '3 + (s + Qg3) €31°
+ (=46 — Qs3) €10 + (U5 + Qp6) €°,
i, = — <92361345 4 Qe o215 4 001236 | (), 1436
+ Qosersss + (2044 + Qs5) €2 4+ (Q35 — Qugp) €219°
+ (34 + Vs6) 2116 — (33 + Q) €210 + (3 — Qpa) 2413
— (3 + Qe65) 62135) ,

Q. = 92461435 + Q2661635 o 92361346 . 92561546 o 96662416
+ (a2 + Qa3 + Qs5) 2% + (= Q34 + Qp5) €2145
+ (= Q36 — Quz) €19° 4 Q54 + Qp3) 2314

(74) + (D56 — Quz) €210 — (Qga + Qua) €',
implying:
(75) 2Wy = JidJ = 93264 — 94263 + Q52€6 — 96265

+ (33 + Qua) ! + (s5 + Qes) €'

Now, substituting 1) - 1) one sees that the O(lg) terms in Qg goes like
(12.5 — 43.62—2) - :—% which assuming a = ry, <0.6 + %) [31], vanishes

for r ~ 1.25r},. Similarly, the O(lg) term in {294 can be proportional to the
O(19) term in —Qyp, i.e., O(l);‘f—z for r ~ 0.54/4 + O(1)a. Thus:

- Q32€4 -+ 95266 + 96661
~ 5 .

(76) Wy

(77) 2Ws = Q4 1dQ2y = 92364 — Qpse’ + (9[43} + 9[65]) e 4+ Qoqe?
+ (202 + Q33 + Qg + 2055 + Qgg) €.

Now, one sees that the O(lg) terms in (Q[43] + 9[65]) e? for the aforemen-
1.3

tioned IR-valued r would vanish for Z—:l ~ , where |logr| = o, N's
2 Nf

args
[41]. Also, from (D1)) - (D3)), one sees that: 2Q99 + Q33 + Quq + 2Qs55 + Qg ~
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966‘ Thus:

Q2364 - Q2566 + 96661 ‘923,25|<|966| 96661

(78) W ~ :

~ Wy.

This mimics supersymmetric [14) [66] ITA mirror though for a non-complex
manifold - see below. As:

J3
(79) Qp AT == (Que) + Uss)) 5 = W,
implying:
Q) + Q2
(50) W= _ (Que) + )

Similarly, as:

J3 _
(81) Qf VAN dJ == (9(36) Q(45)) ] Wl J3,
implying:
Q36) — 2
(82) e = (o)~ as)

6

Also, using the notation: E® A ...E» A E A ... .El = Eil""ipjl“"%, one
notes that:

(83) (dJ)®V = = (Qgy — iQ49) E'? + (952 — Qg2)

—~

(=205 + 2063 + Qug + Qs3) B>

(—Qus + Qs + Qg + iQ53) E213

+ +  + .-lk\'—‘

(Qs5 + Qgp) B3,

| .00 =00l
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Therefore:

(84) W3 = (dJ)®Y — (J AWy &Y

(%2 0 00\
4 4 2

1 1 . =
+ {4 (252 — Qe2) — 3 (Q52 — 1962)} EY3

1 _
+t3 (=295 + 2Q63 + Qup + Q53) B21
1 5 1 5
+ g (—945 + Qg3 + 146 + iQ53) E?13 5 (Q52 — iQGQ) E2%
— i (33 + Qs + Qs + Q) B + (iQug — Qzp) B3

7 7 3
+ [4 (955 + 966) — 5 (933 + Quq + Q55 + 966):| E331,

To determine ng, one notes that:

(85)
(92 = <i923 - Q24) 2208 <i923 + 924) 2213
8 8

<Q26 + i925> 12 (926 - 1925) 312

NE 8
(

2090 + 933 — Qua + Q6

(Qa) + 9(56>)> B
2Q99 — Q33 + Q44 — Qs

E
8
i ,,
+ ~3 (s + Q[56])> EH?
Q35 — O 1 195
_ (235 i 46)E1133 + 1 (Qs5 — 964)E1122
=— (W2 + W5 AJ),

and this implies:

(86) W2+ — O[lElI + 51E22 4 ,YIE?)S + OéQElQ + B2E23
+ "}/QElg + Oé3E12 + ,33E23 + ’}’3E13,
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where:
Wi+ Q53 — Q i
oy =—i | — 253 =+ 1 (Qps3) — Qo) + W7")
)
pr = 1 (Qps3) — Qe + W7")
)
m=-7 (Wi — Qpsg) + Qqy)
Qg —ifdos
ag = ————0——,
8
Qog + 1823
Y=
—2Q99 + Q33 — Quq + O )
fa = 2 32 %+ 3 (se) + Qjs4p)
Qg — 1805
BT
2099 — 3033 + ygq — Qg )
(87) B3 = 3 t3 (Qug) + Qes)) -

5.2. G-Structure Torsion Classes of the Seven-Fold in the
M-Theory Uplift

Given that the adjoint of SO(7) decomposes under G as 21 — 7 & 14 where
14 is the adjoint representation of Ga, one obtains:

(88) TeAN g =W & Wiy ® Wor @ Wr.

We now present the seventh lemma:

Lemma 7: In the neighborhood of (619 = ;Bi , 020 = ;ef%’ Y =2nm),n =
0, 1,2, the Ga-structure torsion classes of My - a cone over a six-fold which
is an M-theory S'-fibration over a compact five-fold Mz (61,02, ¢1, P2, 1) -

are given by: Wﬂ% = Wig ® Wor.

Proof: Now, near the 1 = 0, 2, 4r-branches, the M-Theory coframe e’ =
\ /Gi\{‘o 10 dz'0. Further, the three-form ® corresponding to a Gy structure is
given by [67]:

(89) @ =e " fupe™ +e 5 T A da!®
73<I)IIA

_HIIA e 3
e P (6135 146 236 6245 + 63417+€5617)

(& — €
\/ Gﬁoxm
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(90)
—CI)HA / _gq>IIA /
e 2 e s
dd = — 'A/{IA (—61236 - 61245 - g ITA T A 617
v GTT \/ GMGi\floxlo
_HIIA
—e P —92461436 - 92561536 - 96662316 . 92361345 o 92661645

— (Q33 + Qo2) €30 — (Voo + Qs + Qs5) 2% + (Qg5 — Qug) €317

+ (Q53 — Q1) €31 — (Qus + Qes) 2315 + (a4 + Qs6) 62146)

_2plIA
=@

+ —
\/ Gé\foxm

+ (Q36 _ 954) e1467 + (933 + 944) 61347 + (945 + 963) 63157

124 12 12 12 154
<932€ T Q22T 4 Q50657 — Q2e®27 + (Q35 4 Qpa) €7

— (946 + 953) 63167 4 (955 + 966) 61567)

= 4W1 *7 b — 3W7 NP — >I<7W27.

Similarly:
(91)
e7(I)IIA / 2 e_gi,IIA /
3
d 7 Pd=— ITA (612467 o 612357) - 1A 613456

VGM 3 JGM
_HIIA
_ 0 (Q% IB6T | ) 16T _ () 21367 _ () (21467 _ () 21567

+ 922612467 + Q63624137 + 965624157 + 966624167 o 922612357 o 924614357

1 21 214 21 2314
*9266 6357+9336 357%@346 57+QS66 657795463 7

03157 93167 624617 _ 623517
— Qs5€ — Qe 4+ —
2\/ G}{\ﬂgé\ﬁ)xm

_2plIA
Te 3<I> <932€12456 4 Q33€13456 _ 942631256 _ 944631456

F QupeP126 4 () (BAI56 _ (0 (34512 966634516>

= —4W7 N %70 — 2 x7 W1y,
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One hence obtains (see App. E for details):

Wy =W, =0,
W27 = — %7 d@,
1
(92) W14 = —5 *7 d *7 d.

5.3. SU(4)-Structure Torsion Classes of the Eight-Fold in the
M-Theory Uplift

The SU (4)-structure torsion classes are given by [68]:

(93) A'®@su()r =492 2 (1563 6)
=4®4)® (20020)® (20020)® (4®4)® (4D 4)
=W e Wod W3 Wy b Ws,

where:

dJy = Wl_lQ4 + W3+ Wy A Jy+ c.c.
8i )
(94) dQy = gwlAJZ+W2AJ4+W5AQ4.

We are now set to present the eighth lemma:

Lemma 8: In the neighborhood of (619 = %, Oo0 = ;ef%’ W =2nm),n =
0,1,2, the SU(4)-structure torsion classes of Ms(r, 012, ¢1.2,%, 20, 20) are
WJ\S/'[U(4) _ W2SU(4) . WéSU(ZL) © WE)SU(4).

8

Proof: Near the ¢ = 0, 27, 4m-branches, defining:

el = \/G/\flo wdazlo,
(95) ¥ = \/Glda®,
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using which construct E* = ¢ 4 ie®. Defining:

(96) _ _
( 160, l+762€ I) @1 + ( 102 /+“,29 )®2a+ (c]z /+Z‘62z /) Xa+ (e]y /+i62y /) ya+ (G]Z I+i(322 /) Za
Ci2a =
Y
(6391 /+i6'10] /) O13 + (6392 l+’ie492 /) Oy + (631 ’Jrie“ r) X, + (63,11 [ iel /) Vo + (632 ! +ie'1z /) Z,
(340 = =
VG
((:‘59‘ /Jrz-eze. /) ela 4 (6502 ’ + ieﬁez /) OZa + ((:‘5” ’ +i661 I) X, + (65y /+i66y /) V. + (652 ! + ieo‘z /) Z,
Cs6a = =
VG

where a = 2, ..., 6, one obtains:

v G2 1L Ci2(3— 1 o C12(34i4) =

— E ANE E NE“+ ——FF

2,/G \/@ V/GM
MEl A B 4 S @1 F1 B9 L S124i0)

€12(3 14) N i C12 (5+16) ElA E3 C12 El A E3

V GTT‘ \% GT‘T GT‘T‘

A E?

(97) dE' =
A E?

+

etc., where, e.g., (12(3+i4) = C123 £ iC124. One obtains:

Wi =W, =0,
(98) Ws + W5 = d.J.

Writing:

(99) Q4 = Qg A E47
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one obtains:

7: _
(100) 40, = : (122 11234

rr

3845

i C12(3+i4) C12(3+i4) piz23a C12(3+i4) Ei323

C12(3+i4) 13234, $12(5-i6) 13234
+ E + ——F
1,/GM 4/GM

G

C564(3+i4) B

+
/GM

_ (’5(34(3%4) 11234

121234

C23(3+z‘4)

C56(3+z4) Cs6(3+i1) p1isa

1/GM

+
GM 41/ GM
1834, $34(3-i4)

JoE:Tn 11234
GM 44/ GM
C56(5+i6) 12134

1/aM

> EP+E AQy

Mt
G’00

( x“’xlo
8\ / G mxm G%

GMGM

< xloxm
8\ / mexlo G%

.MGMGﬁ>

<8MGﬁ%mGM 8 GMGM

=WoANJy+ W5 AQy,

implying:

> gl

(101) < 1:10110
8 \ / Ga:l[)xlo GT/‘\;I

. Gy >E1
MGMGM
,/\/l /

( .',EIOLL’IO
8 \ / Gzloxlﬂ G#

. 3( )E
8MG%GM T2

Ca+it) pa | C12(5-i6) S12(5-6) g,

Gy

C12(3+i4)

WQZ—Z
44/ GM

 Co6(3+i4)

G
+—

4/GM

/GM
4.12(34—@4) 124 .C34(3+i4) 534

E —
am N

aj E224

aj 334+
4,/GM 44/GM

114

)
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where:

o1 =i (Cog(34i) + Cs6(3+i0)) = — 02,
(102) a3 = —i (Coo(3+i4) — Cos(34ia)) -

5.4. Spin(7)-Structure Torsion Classes of the Eight-Fold in the
M-Theory Uplift

The Spin(7)-torsion classes are given by:

(103) A @ Spin(T)r = (8@ T)©7=8@48 = W, © W,
where:
(104) Wi = U.dU,

where W is a Spin(7)-invariant self-dual four-form:

=€ (& e e e e e
105 N 1234 4 1256 | 1278 | 3456 , 3478 | 5678 , 1357
_ 1268 1458 (1467 _ 2358 _ 2367 _ 2457 | 2468

We now present the final lemma:

Lemma 9: In the neighborhood of (00 = %,920: ;"%‘J, =2nm),n =
0,1,2, the Spin(7)-torsion classes are given by: WSpm(7) WISPM(?)EB
Spin(7

WQ pin( )
Proof: Hence:
(106)

6
AU — Z Qs (€1a456 1 ladT8 | 21a58 | 21a67)

- a
a=2

_ Q4a 621(168 + 631a56 + 631a78 _ 821(157

4 Qs (34106 4 10678 _ 231a8 _ e241a7)

(
(
— Qpq (31510 4 (5178 4 (23107 _ 2las
+ Q74 (3341‘18 + e961a8 + e2361a)

(-

M /
G:pwxm 624517

24/GM, . GM

GM
2020 PATI8 | 56718 _ 23518 624618)

21 [GM GM

1a358 1a367 o ela457 + ela468

e +

?
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implying W7 = 22:1 Ao ({Q%c}) €* and non-trivial Wa.

Now, W, is identified with the space of three-forms: Aig =
{vy € Ay AT =0} [69]. From (105)), one sees that such a three-form will
be given by:

(107) = Z a[ab]elab + Z B[cd]GQCd
a,n#1:21 components ¢,d#1,2:15 components
+ Z Klef] edef
e,f#1,2,3:10 components

+ Z w[gh} €5gh,

g,h#1,2,3,5:3 componentsi

along with one constraint on the 49 a4}, Bjcd)s Klef]> Wign) coefficients in (107)).
6. Summary and future directions

Finite (gauge/’t Hooft) coupling top-down non-conformal holography is a
largely unexplored territory in the field of gauge-gravity duality. The only
Ultra Violet-complete top-down holographic dual of thermal QCD-like the-
ories that we are aware of, was proposed in [2]. Later, the type IIA mirror
of the same at intermediate gauge/string coupling was constructed and the
M theory uplift of the same were constructed in [, [16]. Other than higher-
derivative corrections quartic in the Weyl tensor, or of the Gauss-Bonnet
type, in AdSs x S°, dual to supersymmetric thermal Super Yang-Mills [3],
there is little known about top-down string theory duals at intermediate
't Hooft coupling of thermal QCD-like theories. This paper fills this gap by
working out the M theory dual of thermal QCD-like theories at intermediate
't Hooft coupling in the IR.

The following is a summary of the important results obtained in this
work.

1) We work out the O(IS) corrections to the M-Theory metric worked
out in [I} [16] arising from the O(R*) terms in D = 11 supergravity. We
realize that in the MQGP limit of [I], the contribution from the Jy (and
its variation) dominate over the contribution from Eg and its variation
as a consequence of which Eg has been disregarded. The computations
have been partitioned into two portions - one near the ¢ = 2nmw,n =
0, 1,2 patches and the other away from the same (wherein there is no
decoupling of the radial direction, the six angles and the M-Theory
circle).
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2)

4)
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We also note that there is a close connection between finite (*t Hooft)
coupling effects in the IR and non-conformality (which being effected
via the effective number of the fractional D3-branes, vanishes in the
UV) as almost all corrections to the M-Theory metric components
of [, 16] in the IR arising from the aforementioned O(R*) terms in
D = 11 supergravity action, vanish when the number of fractional D3-
branes is set to zero.

The importance of the higher derivative corrections arises from
the competition between the non-conformal Infra-Red enhancement

wﬂzh =2 m=0,1,2,3,n =0, and the Planckian and
Ry RD5/D5 o

large-N suppression %, By > 0 in the (’)(lg) corrections to the M-
theory dual [I 16] of thermal QCD-like theories. As |logRp| ~ N3
[41], for appropriate values of N, it may turn out that this correc-
tion may become of O(1), and thereby very significant. This would
also then imply that one will need to consider higher order corrections
beyond O(I5).

e On the mathematical side, using Lemmas 1 - 9 of sections 4 and 5,
the main result of this work, in addition to providing for the first
time the O(lg)—corrections to the M-theory dual of thermal QCD-
like theories of [I], is Proposition 1 stated in Section 1. We work out
the fundamental two-form and the nowhere vanishing holomorphic
three-form of the six-fold obtained by an M-Theory circle reduc-
tion of the M-Theory dual obtained. This enabled us to work out
the SU(3)-structure torsion classes of the aforementioned six-fold
Me(r, 61,2, $1,2,1) relevant to the type IIA SYZ mirror, the G-
structure torsion classes of the seven-fold Mz7(r, 01 2, ¢1,2,, 219 as
well as the SU (4)-structure and Spin(7)-structure torsion classes of
the eight-fold Mg(z°, 1,01 2, ¢12,%, 2'9) relevant to the M-Theory
uplift. Table 1 summarizes the G-structure torsion classes’ results.
Table 2 summarizes the G-structure torsion classes’ results.

e Along the Ouyang embedding (for very small [modulus of
the] Ouyang embedding parameter) effected, e.g., near the 1 =
2nm,n = 0,1, 2-patches in the MQGP limit, the large-base of the
delocalized T%-invariant sLag-fibration relevant to constructing the
delocalized SYZ type ITA mirror in [I [16] of the type IIB dual of
thermal QCD-like theories in [2] manifests itself in the O(R*) cor-
rections to the co-frames that diagonalize the mirror six-fold metric
in the following sense. It is only the constant of integration c§?
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S. No. Manifold G-Structure Non-Trivial Torsion Classes
L. My (r, 01,02, p1, 62, 9) SUB)  [THe =WioW o Ws e Wie Ws: Wy~ Ws
2. M7 (r, 01, 02, b1, da, ¥, x10) Gs TH = Wiq & War
3. | Mg(a0, 101,04, 41, 2, 0, 210) SU(4) Té‘{‘,m =Wod W5 & Ws
4. Mg(2%, 1,01, 0, 61, 2, ¢, ™) Spin(7) Té\[/}in(ﬂ =W e

Table 2: IR G-Structure Classification of Six-/Seven-/Eight-Folds in the
type IIA/M-Theory Duals of Thermal QCD-Like Theories (at High Tem-
peratures)

appearing in the solution to the f,, EOM corresponding to the
(delocalized version of the) U(1)-fiber S'(z) - part of the (delo-
calized version of) T3(v, ¢1, ¢2) orthogonal to the aforementioned
large base Bs(r,01,62) - that determines in the MQGP limit, the
aforementioned lg corrections in the IR to the MQGP results of the
co-frames and hence G-structure torsion classes.

5) Brief summary of published) applications of the results of this
paper: We had decided to first work out applications of the results ob-
tained in this paper to a variety of issues in Physics also including com-
parison (for some of the issues) with experiments/phenomenological
data available, and after successfully doing so in [{)], [3], submit an
abridged version of the original version of this work (that was posted
on the arXiv last year, arXiv:2004.07259[hep-th], cross-listed with
math.dg), to ATMP.

e As an application of the results of this paper modified to a thermal
M-theory dual of thermal QCD-like theories at low temperatures,
we now summarize in the context of MxPT, the main result of [4]
(involving both the authors):

— O(R*)-large-N connection: In the context of low energy cou-
pling constants (LECs) of the SU(3) xPT Lagrangian in the
chiral limit at O(p*), as shown in detail in [4] (and briefly ex-
plained in Section 4) as an application of the O(R*) corrections
to the M-theory uplift of large-N thermal QCD-like theories,
matching the values of the one-loop renormalized coupling con-
stants up to O(p*) with experimental /lattice results shows that
there is an underlying connection between large-N suppression
and higher derivative corrections.

— MxPT and Flavor Memory: As shown in [4] (involving both
the authors), matching the phenomenological value of the
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1-loop renormalized coupling constant corresponding to the
O(p*) SU(3) xPT Lagrangian term “(VMUTV“U)Q”, with the
value obtained from the type ITA dual of thermal QCD-like
theories inclusive of the aforementioned O(R*) corrections, re-
quired the O(R*) corrections arising from the contributions
arising from the corrections to the metric along the compact
S3 part of the non-compact four-cycle “wrapped” by the fla-
vor D7-branes of the parent type IIB theory, to have a definite
sign (negative). The thermal supergravity background dual to
type IIB (solitonic) D3-branes at low temperatures, includes
R? x Sl(ﬁw). By taking the Mgk — 0 limit (to recover a
boundary four-dimensional QCD-like theory after compacti-
fying on the base of a Gg-structure cone), remarkably, via a
delicate cancelation between some of the aforementioned con-
tributions arising from the O(R*) metric corrections with a
resultant contribution solely along the vanishing S? (with the
abovementioned S3, an S! fibration over the vanishing S?) of
the parent type IIB suviving, we derive and hence verify the
MxPT requirement of the sign. We also referred to this as
“Flavor Memory” in [5] (involving both the authors).

e As an application of the results of this paper as well as the same
modified to M-theory duals of thermal QCD-like theories at re-
spectively high and low temperatures, we now summarize in the
context of obtaining Deconfinement temperature, the main result
of [5] (involving both the authors): :

— UV-IR Mizing and Flavor Memory: Performing a semiclassi-
cal computation [50] in [5] (involving both the authors), by
matching the actions at the deconfinement temperature of the
M-theory uplifts of the thermal and black-hole backgrounds
at the UV cut-off, it was shown that one obtains a relation-
ship in the IR between the O(R*) corrections to the M-theory
metric along the M-theory circle in the thermal background
and the O(R*) correction to a specific combination of the M-
theory metric components along the compact part of the four-
cycle “wrapped” by the flavor D7-branes of the parent type
IIB (warped resolved deformed) conifold geometry - the lat-
ter referred to as “Flavor Memory” in the context of MyxPT
above.

— Non-Renormalization of T,: We further showed in [5] that the
LO result for T, also holds even after inclusion of the O(R*)
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corrections. The dominant contribution from the O(R*) terms
in the large-V limit arises from the tstg R* terms, which from a
type IIB perspective in the zero-instanton sector, correspond to
the tree-level contribution at O ((0/ )3) as well as one-loop con-
tribution to four-graviton scattering amplitude and obtained
from integration of the fermionic zero modes. As from the type
IIB perspective, the SL(2,7Z) completion of these R* terms [33]
suggests that they are not renormalized perturbatively beyond
one loop in the zero-instanton sector, this therefore suggests the
non-renormalization of T, at all loops in M-theory at O(R%).

— T, from Entanglement Entropy: With an obvious generaliza-
tion of [6] to M-theory, the entanglement entropy between two
regions by dividing one of the spatial coordinates of the ther-
mal M-theory background into a segment of finite length [
and its complement, was also calculated in [5]. Like [6], there
are two RT surfaces - connected and disconnected. There is a
critical value of [ - denoted by I.. - such that if [ < .., corre-
sponding to the confined phase then it is the connected surface
that dominates the entanglement entropy, and if [ > l..; cor-
responding to the deconfined phase then it is the disconnected
surface that dominates the entanglement entropy. This is in-
terpreted as confinement-deconfinement phase transition.

— Non-Renormalization of T, from Entanglement Entropy: Re-
markably, when evaluating the deconfinement temperature
from an entanglement entropy computation in the thermal
gravity dual, due to an exact and delicate cancelation between
the O(R*) corrections from a subset of the abovementioned
metric components, one sees that there are consequently no
corrections to T, at quartic order in the curvature supporting
the conjecture made in on the basis of a semiclassical compu-
tation.

6) Future directions:
e Math:
— Almost Contact Metric Structure, Contact Structure
and SU(3)/SU(2) structure from G structure: Using the
G structure seven-fold M7 of the M-theory uplift of large-INV
thermal QCD-like theories inclusive of O(R*) corrections as
obtained in this work, equipped with a positive form ¢ and the
G2 metric gg,, it can be shown that the same is equipped with
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an Almost Contact Metric Structure (ACMS) (J, R, 0, g9¢,) [71]
72], R being a unit vector field with J being a vector-valued
one-form on My: lef = —cpé.kRk and ¢ being a one-form: o; =
gngj . It will be very interesting to explicitly construct the
R and hence J and o, and verify if the ACMS so obtained is
also a contact structure [75]. Using results of [73], it will also
be extremely interesting to explicitly obtain an embedding of
SU(3) and SU(2) structures in G structure and using the
results of [74], an Almost Contact 3-Structure (AC3S) [75].
For simplicity, we worked out the aforementioned G-Structures
near the ¥ = 2nm,n =0,1,2-branches restricted to small-
parameter Ouyang embedding, but as mentioned towards the
beginning of Section 4, using - and ideas of [11],
the results of Table 1 are independent of angular delocaliza-
tion in 6q2. As regards independence of the results of Table
1 of i-delocalization, using the results of Section 3, one sees
that the secular equation needed to be solved to diagonalize
the Mz(r, 61 2, $1.2,9,71%) will be a septic P; = 0. Hence, one
needs to use Siegel theta functions of genus four. The period
matrix {2 will be defined as follows:

Qij = 0" py;
where
Zifl
oij E}{ dZ
Aj \/Z(Z - 1)P7(2)
and

B Zifl
Pi= 72 VZEZ-DE -2Pi(2)

{A;} and {B;} being a canonical basis of cycles satisfying:
Ai-Aj=DB;-B; =0 and A; - Bj = d;;; 0" are normalization
constants determined by: aikakj = 5; Umemura’s result then
is that a root is given by:

1
Lo e s Jen) (5 8 oJon)
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However, it will again be a non-trivial task to evaluate the
period integrals. Alternatives will be deferred to a later work.

e Physics: In the context of intermediate 't Hooft coupling top-down
holography, there is no known literature on applying gauge-gravity
duality techniques to studying the perturbative regime of thermal
QCD-like theories so as to be able to explain, e.g., low-frequency
peaks expected to occur in spectral functions associated with trans-
port coefficients, from M theory. In higher dimensional (Gauss-
Bonnet or quartic in the Weyl tensor) holography, in the past cou-
ple of years using previously known results, it has been shown by
the (Leiden-)MIT-Oxford collaboration [3] that one obtains low fre-
quency peaks in correlation/spectral functions of energy momen-
tum tensor, per unit frequency, obtained from the dissipative (i.e.
purely imaginary) quasi-normal modes. As an extremely crucial
application of the results of our paper, for the first time, spec-
tral/correlation functions involving the energy momentum tensor
with the inclusion of the (’)(lg) corrections in the M theory (uplift)
metric of [I] can be evaluated and hence one would be able to make
direct connection between previous results in perturbative thermal
QCD-like theories (e.g., [70]) as well as QCD plasma in RHIC ex-
periments, and M theory. Further, the temperature dependence of
the speed of sound, the attenuation constant and bulk viscosity can
also be obtained from its solution, as well as the O(lg) and the non-
conformal corrections to the conformal results thereof. One could
see if one could reproduce the known weak-coupling result from
M theory that the ratio of the bulk and shear viscosities goes like
the square of the deviation of the square of the speed of sound
from its conformal value (the last reference in [I5]). Generically,
the dissipative quasi-normal modes in the spectral functions at low
frequencies can be investigated to study the existence of peaks at
low frequencies in transport coefficients, thus making direct contact
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with perturbative QCD results as well as (QCD plasma in) RHIC
experiments.
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Appendix A. Equations of motion

This appendix discusses the form of the equations of motion (EOMs) satis-
fied by farns inclusive of the (’)(lgR4) corrections to the M-Theory up-
lift of [I] as well as their solutions. A.1 works out the same near the
Y = 2nm,n = 0,1, 2-patches, and A.2 near the 9 # 2nmw,n = 0, 1, 2-patch.
The EOMs have been obtained expanding the coefficients of f ](\%V, p=20,1,2
near r = 7, and retaining the LO terms in the powers of (r —ry) in the
same, and then performing a large-N-large-|logry|-log N expansion the
resulting LO terms are written out. We should keep in mind that near
the ¥ = g # 2nm,n = 0,1, 2-patch, some G%, M # r and Gﬁ{loN, N # 10
components are non-zero, making this exercise much more non-trivial.

As the EOMs are too long, they have not been explicitly typed but their
forms have been written out. The solutions of the EOMs are discussed in
detail.

A.1. EOMs for fysn and Their Solutions Near
¥ = 2nmw,n = 0,1, 2-Branches and Near r = rp

Working in the IR, the EOMs near the ¢ = 0 27 4m-branches near r = ry,
as described in Section 5.2, can be written as follows:

2 2
(A1) EOMuy: 3> alyy (rn,a, N, M, Ny, gs, ap,,) (r — 1) fion (r)
p=0 i=0

+ BFun (rhya, N, M, Ny, gs, aq, ) (r —13) 5> =0,
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where M, N run over the D =11 coordinates, f](\%] = dpdf#,p: 0,1,2,
04%40]\, =0,1,2,3 denotes the leading order (LO) terms in powers of r — ry,
in the IR when the O(f)-terms are expanded in a Taylor series about
r=rp, and Fp,9, = Fo,0, = 0 (i.e. EOMy,9, and EOMy,y, are homogeneous
up to O(B)).

In the EOMs in this appendix and their solutions in Section 3:

(A2)
51 = 19683v60g, + 664203, o), — 40v/6ag,
Global nr (19683\/6’ sin® ) + 6642 sin? 6y sin® 6; — 40v/6 sin’ 02> ,

¥y = (387420489v/2042 + 87156324v/303, 0, + 5778054v/20, 0,

— 177120V/3a§ o), + 1600\/50432)
OBt N (387420489 2 sinj? +87156324v/ 3 sing, sin” 0y

+ 5778054v/2sin’ 0 sin® 01 — 17712013 sin® 0 sing, +1600v/2sin® 2.

The following EOMs’ solutions will be obtained assuming fy, (r) = 0.
One can show that one hence ends up 15 independent EOMs and four that
serve as consistency checks. We now discuss all below.

(1) EOMttI
(A3)

4 (962 + 1)° (437485 4 10356 + 962 — 4) BB M (£)*/* 1 (602 + 7,2) log(ry)

27 (18b* — 3b% — 1)° log N2Nyr,203 (9a2 + 14,2)
6 (rp? — 2a?) fi(r)
C o (2 = 3a2) (r — 1)
2 4 5112 (133/20
32v2 (907 + 1) 12 ()7 T E(r — 1)
8173 (1 — 3bQ)10 (602 + 1)8 gs9/4log N4NGI/("OJ\QB7“;14&51 0422 (—27a* + 6a2rp2 + rp*)

+2f"(r) =0,

where ¥ is defined in (A2)).
As, the solution to the differential equation:

r
(A4) 2" (r) + :,_“fig) + Ty, (r—rn) + T, =0,
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is given by:
(A5)

=y : T (rn—r) 1
2 {Tfﬂ {(' —rn)? (Fqufu( =)l <\/§ Ty (rp— 7.)> G (fTé
1

Tp(rp—r) 1
T, Tp 0y (V24T (r 77'>G2‘1 Voialh T 2
I f,.1< fu(rn—7) | Gi3 NG '3

_ 1
+ K (\[ L. (rn—r ) {f Ly, (rn—7) <2Ff,214 (\[ Ly (rn —T)) -, Lpy0F1 (?3% 5T (rn — T)))

+8Ty, s <\/§ Ty, (rn— r)>:| > }
Va0 (VBT = 1)) = VB [Ty = s (VBT - ))} :

To prevent the occurency of a (logarithmic) singularity at r = rj, one sets:
c2 = 0 which yields:

(A6) Fulr) =3T3 (r = 1) + O ((r —0)?).

where:
(A7)
4% (962 +1)° (43746°+1035b* +-95% —4) M ( & )*/* 51 (602 +74,2) log(r1)

L = 277 (1867—3b2—1)° log N2Nyr520_(9a2+7,2) )

where ¥ is defined in (A2)).
(il) EOM_1y1:
(A8)
67y, (57@4 + 14(12Th2 + Th4) f(’f') 2f//( )
(rp? = 3a?) (6a® + rp2) (9a2 + r42) (r —rp) "
4 (907 +1)" (3007 — 4) BOSM ()" 51 (6a% + %) log(r)
97 (362 —1)° (662 + 1)* log N2N 1,203 (9a2 + 13,2)
82v/2 (96 + 1) 8612 ()™ 2 (r — 1)
8173 (1 — 362)™° (662 + 1) g,9/4 log N4N61/60N (3r) 407 o, (—27a* 4 6a%ry? + 1)

=0.

This yields:
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1
(Ag) f(T) = 17f2 (T - T'h)2 + @ ((T - Th)g) )
where:
(A10)
o abB (962 + 1) (3962 — 4) M (L)”* B (602 + r,2) log(rh) 1
= 97 (362 — 1)° (662 + 1)* log N2Nygrp? (902 + 112) o, '

(iii) EOMy,
(A11)
- 3f912”(7') + 2f01$//(r) - 3f92y//(7’)

4(96% +1)" BH1OM {/ L5y (602 + 2)
3w (—18b* + 30 + 1)* log NV/NNsad (r? — 3a2) (9a2 + 73.2)

3/20
- 32v2 (9% + 1) 5012 (1) 81 (r — ) Y
8173 (1 — 3b2)'% (602 + 1)° g,9/4 log NANSVEON Spydaf of (—27at + 6a2r2 + ryt)

Choosing the two constants of integration obtained by solving (A11)) in such
a way that the Neumann b.c. at r =1y, : fy . (r = r;) = 0, one obtains:

(A12)
(962 + 1) 6100 (6a2 + 742) ((r — 74)2 + 74%) T ®
)=~ =+ Co,z
fo.z(r) < 3m (—18b% + 3b2 + 1)* log NN/ N (—27a* + 6a2ry? + %) o - 2
+O(r — )3
(iv) EOMy,:
(A13)
- 6f"(7‘) + 2fzz/l(r) - 2le°f61°”(r) - 3f91z”(7“) - 3f02y//(r) - 3fzz”(7’) - 2ft”(r>
32v2 (962 + 1) 8612 (L)Y 54 (r — 1) L

8173 (362 — 1)'0 (602 + 1)° 9,94 log NANSV/SON Srydaf of (rp2 — 3a2) (9a2 +132)

The equation (A13)) can be shown to be equivalent to a decoupled second
order EOM for f,.. Then, expanding the solution around the horizon and

requiring the constant of integration oL appearing in the O(r — r3,)° term

to satisfy:
(A14)
32 (9 + 1) 6125 (19683v/3a§, + 3321v203 . — 40v/3a,)

72073 (1 — 362) "0 (662 + 1)® 9,9/ log NANTION? (=27a'ry, + 6a2ry3 + 145) o af,
4 (962 + 1) 010 M7y 2B log(ry) %1
81m%/2 (362 — 1)° (662 + 1)* /g log N2N23/20N paif

+ C:(clz) =Y
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one obtains:

(A15)
18610 (907 + 1) M8 (60 + 12) (555 + 1) log?(ra) =1
zz\T") =
Jax(r) 7 (302 — 1)° (662 + 1)" log NAN5/4 N (9a2 4 73,2) g,
(v) EOMg, .:
(A16)

3/20

2fe,." (1) — 32v262 (96 +1)"B( %) Sa(r—rn)
12 81m3(1-3b2)"°(662+1)%g,%/* log N*N61/SON *ry4a] af (—27a*+6a2r,2+r,?)

=0.

Choosing the two constants of integration obtained by solving (A16)) in such
a way that the Neumann b.c. at r =1y, : fy  (r =73,) = 0, one obtains:

(A7)

: 3
16(9b2+1)“b12(§)“/2"(%H)(19683\/§a21+3321\/§a§2a31740\/50432) (1) .
fo2(r) 34373 (1=30%) ™0 (6b3-+1)°g, %/t log N NSN3 (—27atry 1603 +ra®)af, of, T Co.z | B+ O —rp).

(vi) EOMy,.,:
(A18)
2o () — 32v/26'2(9624+1)* B( £ ) *° Sy (r—r1) _0
022 8173 (1—3b%)°(6b2+1)%g,9/* log NANSV/SON 57, 4a] of (—27at+6a’r),?+r,t)

(A19)

4 1\3/20 ( (r—rp)8
)= 16(90+1)"6'2 ()" (24 41) (19683v/3a$, +3321v203, a3, —40v/3ai, ) o) 5
b2 24373 (1—3b) " (66°+1)%g.%/* log N*N61/60 N (3(—2Ta*r,+6a’ry3+ry5)af af, Oz

(vii) EOMg,:
(A20)
N (962 +1)* BB1OM (£)7° 1 (602 + 742) log(rn)
Y 7 (362 — 1) (662 + 1)* log N2Nyrp 20 (9a2 + 742)
32v2 (962 +1)* 8612 ()21 (r — )
8173 (1 - 362)10 (602 + 1)° g, %4 log NANSUON 3y 4a] af (—27at + 6a2ry? + 13t)

=0.

Choosing the two constants of integration obtained by solving (A20)) in
such a way that the Neumann b.c. at r =7y, : féQy(r =rp) = 0, and requir-

ing the constant of integration C’(g;)/ that figures in the O(r — rp,)%term to
satisfy:
(A21)

16(962+1)b12(19683+/3a§ +3321v/203 af —40v/30a}, )

24373(1—3b2)"° (6b2+1)%g,9/4 log N4 N7/6 N ;3 (—27a*r,+6a2r,3+71,5)af af
f 01 %oy

Oy — 0
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one obtains:

(A22)
3b0(907+1)* MB(6a>+r,) (1— =42 ) log(ra) 5 X
f02y = 7(362—1)°(6b2+1)" log N2N7/5Nf(9a2+7“h2)agz @ ((T' — Th) ) .

(viii) EOMs,
(A23)
12 (96% +1)" Bb1OM /L5y (6a + 742) log(rs)
(362 —1)° (602 + 1)* log N*N2/3Nyr),20 (9a2 + 142)
B 32v2 (962 + 1) 8612 (L) Sy (r — 1)
8173 (1 — 3b2)1 (602 + 1)® g,9/4log N4N61/60Nf3rh4a;1 af (=27a* + 6arp? + ryt)
+ 2f922”(r) =0.

Choosing the two constants of integration obtained by solving (A23)) in
such a way that the Neumann b.c. at r =7y, : fy (7 = r3) = 0, one obtains:

(A24)

)2
fo = 3(907+1)*01°M (602-+r,?) (1— =242 ) log(r4) (19683v/Bag, +664203, a3, —40v6a3, ) +C,.. 08
022 = (352 —1)° (66>+1)log N2N7/6N; (92> +74?)as, et ’

(ix) EOMgg:
(A25)
foa(r) = 25,2 (r) 4+ 20,0, (r) — fr(r)
L8 (962 + 1)" 6100 (£)** 0 (19683/6af, + 664203 ad — 40v/6a, ) (ra? — 3a?)” (6a% + r42) log(rs)
167 (362 — 1)°log N2Nj (6ab? + a)” ag, (902 + 13,2)

=0.

Substituting (A12), (A17) and (A39)) into (A25]), one obtains:

) 2 (962 + 1) 1M (6a2 + r42) ((r — 74)2 +742) T
r )= —
37 (—18b% + 362 + 1)" log NN8/15N (—27a* + 6022 + i) o,

(A26)  +C..M —2C,. D+ 20911(”) B4 O(r — ).
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(x) EOM,:
(A27)

2wy (r) +

192 (91)2 + 1)4ﬂb10]\/[ (&)21/20 2, (6a2 + T}LQ) log(ry,)

7 (362 — 1)° (662 + 1)* log N2Nyry 203 (9a2 + 73,2)
32v/2 (962 + 1) 8612 (£)*/ 2 51 (r — 1)
813 (1 —362)' (662 + 1)° g,/4log NANSU/SON Brytaf of (—27a + 6a%r),2 + 1p%)

Choosing the two constants of integration obtained by solving (A28)) in such
a way that the Neumann b.c. at r = ry, : f,, (r = r,) = 0, one obtains:

(A28)
3(9b2+1)4b10M(6a2+rh2)(“:}#4-1) log(ra)ag, 1 (1) 3
fxy (7') = 71-(3b2—1)5(6b2+1)4 log N2N21/20Nf(9a2+rhz)ag2l I Ca:y ﬁ + O (7" = Th) .

(xi) EOM ,.:
(A29)

—8f"(r)+

24 (962 +1)* B61OM (£)** 21 (902 + r42) log(rn)

m3/2 (362 — 1)° (662 + 1)* /g5 log N2Nya3 of
642 (962 +1)* 8612 (L)1 (r — )
813 (1 —362)' (662 + 1)° g,%/4log NANSVSON Brptaf of (—27a + 6a%r),2 + rpt)

=0.

The solution is given as under:

(A30) Filr) = 57l =1 4 O (0 =),
where:

2410 (962 + 1) BM ()" 1 (92 + 132) log(ra)

m3/2 (362 — 1)° (62 4 1)* Vs log N2Nyaj ap

(A31) Vo =

Consistency with (A7) requires (as in [32] wherein rp, ~ N™% a > 0):

4 3/8
/AT + 10356% + 902 — 4/gs (L4)¥* /oo,
39/2vb (962 + 1)%/4

Note 437468 + 10356 + 9b? — 4 > 0 for b given as in (A52).
(xii) EOM,,:

(A32) rh =
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(A33)

2f¢2¢2 " (T’) +

12 (962 + 1) B61OM (£)7* 24 (6a2 + 32) log(ry)
7 (302 — 1) (6b2 + 1) log N2Ngrp2ag (902 + 142)
32V2 (902 + 1) 812 ()20 5 (r = )

_ : =0
8173 (1 — 362)' (602 4 1)® g,9/4 1og NANSUSON Brpdal of (—27at + 6a2ry? + ry?)

Choosing the two constants of integration obtained by solving (A33)) in such
a way that the Neumann b.c. at r =ry, : fz’/y(r =rp,) = 0, and choosing the

constant of integration Cé? appearing in the O(r — r;,)’-term to satisfy:
(A34)

16(96°+1)"b12(19683v/3a +3321v/203, a3, —40v/3a}) C(l) —0
24373 (1—3b2)1°(6b2+1)°g, /4 1ogN4N7/6Nf3(—27a4r;,,+6a2rh3+r;,,5)6¥51‘132 + oo
one obtains:
(A35)

3b1°(9b2+1)4M(%)7/4B(6a2+rh2)log(rh)El(“;;:5’2—4-1) o .

Fyy(r) == 7(862—1)° (66> +1)" log N2 N;r,2(9a2 +742)a, + <(T ~7n) ) .

(xiii) EOM,,:
(A36)
128v/2622 (962 4+1)° 82 M (L )*/°£12(6a%+7,,2) (r—71,) log(rn)

" o
2fup" (1) 27 (362 1) (662 +1) 2 g.%/4 log NO N 109/ N 77, 607 o (r,2—3a2)(9a2+7,2)° 0.

Choosing the two constants of integration obtained by solving ((A40) in such
a way that the Neumann b.c. at 7 =7, : fLio,10(r = rp) = 0, one obtains:

(A37)
64 (907 + 1)°02M (§)"° (602 + 42) (552 + 1) log(rn)
A=
Tt = { o7 (362 — 1)15 (602 + 1) g,9/4 log NON10Y/6ON 473 (2 — 3a2) (9a2 + 13,2) of of,

x (387420489\/%2,? + 87156324V/30j, ), + 5778054720, o, — 177120V/30, 03, + 1600\/50122) + CLQ) B+ O(r — )3

(xiv) EOM,,:
(A38)
32v2 (962 +1)" 8612 (1) 21 (r — 1)
2fzzﬂ(r) _ N 1\r Th
8173 (1 — 362)™° (602 + 1)% g,%/4 log N4]\f61/60]\7f3T'h4agl0422 (—27a* + 6a%rp? + rpt)
4.(962 + 1) Bo1OM ()0 S (r — ra) log(rn)
9m3/2 (362 — 1)° (662 + 1)* \/g; log N2Nyrpaf,
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Choosing the two constants of integration obtained by solving (A38)) in such
a way that the Neumann b.c. at r = ry, : fL (r = r,) = 0, one obtains:

(A39)
_ [~ blo(9b2+1)4M(rhz_%) log(rn )= ,
el = || @5 = 27m/2 (362 —1)° (66> +1)* /g log N2 N?3/2° N aj, B+O(r —ms)”.

(xv) EOM_10410:
(A40)
4(96% +1)° BEM (£)°/" 51 (6a% + r12) (96*(27log N + 16) + 3b2(9log N — 8) — 8) log?(r,)
(302 — 1)5 (6b2 + 1)4 log N5Nfrh2a22 (9a2 + rp2)
4.(962 + 1) o100 ()™ S (r — 1) log(rs)
©9m3/2 (302 — 1)° (662 + 1)* /g5 (log N)2Nyryaf,

5/4

+ 2fz11)zlt)//(7') = 0

Choosing the two constants of integration obtained by solving (A40)) in such
a way that the Neumann b.c. at 7 =7y, : fl.0,.0(r = r) = 0, and requiring

the constant of integration c®) 10 appearing in the O(r — ry,)" to satisfy:

0z

4
(96> +1)" b'Mr,%Blog(r) 1 Lo g
27m3/2 (362 — 1)° (662 + 1) /g5 log N2N23/20N ol ’

T T

(A41)

one obtains:

(A42)
2
27610(962+1)* M (£ )" B(6a2+742) (1— 74 ) log? (ra) %1 5 5
St = = m(3b2—1)7 (6b2+1)" log N4 Ny, (9a2+71,2) 0, + O = a)°.

The remaining EOMS provide consistency checks and are listed below:

e EOM,.,:

3, (902 + 1)° B1OME,
7 (362 — 1) (662 + 1)’ log N2N1/12Nprj 203

_ fo." (r) _ fouy" (1) _ fui"(r)
4 4 4

(A43)

=0.

L EOl\/Iglg1
(A44)

fzz2(’r) _ fyz(",) + T

3227 (962 +1)° 8612 ()71 (~1968308, + 216602, af + 5308 ) £y (6a2ry, + r4%) (r — r4)?
14348907 (1 — 362)" g,7/4log NN*/50§ (92 + 13,2) (6621, + 11,)” (108b2Nyry2 + Ny)*

Syy (1)

=0.
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[ ] EOM9192
(A45)
441 N3/10 (2rh2a§’1 Jzrog10(r) + rh2a§1f92y(r))

5120 (rp? — 3a?)log(ry)
3\/§g53/2M VNNgry, (9a% + rp?) (108b%r,% + 1)2 fr(r)(r —rmp)

7r3/20z§’1 (—18a* + 3a?rp2 + %)

e EOMy,,:

(A46) fa2(r) — farogo(r) —2fp,(r) — fr(r) = 0.
One can show that by requiring:
(A47)

ol —2ci) 120 =0,
oV 20, =0,
2] <1,
2010 (962 + 1) Mry25 (6a2 + 142) T1
37 (—18b% + 3b2 4+ 1) log NN8/I5 N (—27a% + 602732 + r44) ap

(A43)-(A46) will automatically be satisfied.

A2, Y #2nmt,n =0,1,2 near r = 1y

Working in the IR, the EOMs near r = rj, and up to LO in N, can be written
as follows:

2

2
(A48) EOMpyn : Zbg\l/}’]l\), (rh,a,N, M, Nf,gs,agl’z) (r— rh)if](\ﬁ)N(r)
p=0 i=0
HMN (rhva’a Na Mo Nf7gS7a91,2)

(r — rh)%lflofv

+ 8

=0,

where as in A.1, M, N run over the D = 11 coordinates, f](\%\, = dpj:};N ,p=
0,1,2, ’y]I(PN = 1,2 denotes the leading order (LO) terms in powers of r — ry,
in the IR when the O(/3)-terms are Laurent-expanded about r = 7.

One can show that a set of ten linearly independent EOMs for the

(’)(lgR4) corrections to the MQGP metric, with the simplifying assumtion
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fo,0, = fo,zr0 = frr0410 = 0, reduce to the following set of seven equations
and one that serves as a consistency check.

(a) EOMttl
B
fo 2 auB
(A49) (1 —1n)" fo,0,(r) + =0,
T —Th
where:
(A50)
Fovom 12 x 4a® (%)2/5 sin? (%) (902 + r4%) log(rs)
G = 7(gs — 1)gs sin® goo (602 + r12) o,
aft _ 8192 x 167%/24? ]{/Tsm (W) B (Qa + 7 ) (log(rp) — 1) ((9(12 + rhz) log (9u27';l4 + 7‘h6) —8(6a + 7‘h2) log(rh))ZA

729 x 16(gs — 1)953/21\7f sin? agrp? (6a? + r;12)4 log3(r;,,)of'€12 log® (9a2r4 + r1,9)

whose solution is given by:
(A51)
Up,6, N3/ 10 sin (UU) (9a% +742) (log(rn) — 1) (90> + r3,2) log (9a2r* + 3,5) — 8 (602 + 1y, )105(”1)) o
)= e 3
Jou0u(1) \/ﬁNf sin? pogrp2 (602 + 14, )q (r— 7';1)2log“l(m)az2 log® (9a2rp4 +11,5) o

Vg, 6, (1 — 3p% ) (91) + 1) N3/10 in2 (%) 5
) +Co0,V | B+ 0O < )
e N7/10

(602 + 1) \/El\f sin? goorp2(r — )2 log? (rh)og

where vy g, ~ O(1), Ug,p, < 1.
Assuming:

1 9 0
(A52) b= 75 ryrs (logrp)z N7,

one obtains:

3

Ug 92’% sin (%) Th (%)20&5
2 2 2 + 091(92(1) 5)
A /gst S ¢20(T — ’I“h) 0402

(A53) fo.0,(r) =

where 1591.92 < 1

(b) EOM,.,

(A54) a1 fo.0,(r) + &Y iy (r) =
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where:
(A55)

0,0,
Y

Trl7/4 (108(1 + Th) Ctg ag, 1Og4 (9a2rh4 + rhﬁ)
768v/3(gs — 1)2g5194M3 (L)% N sin? doori? log3 ()
= 7V3r 14 log N2 (£)*° (108a2 + 1) (rn? — 3a2)” (21og(rs) + 12010 log® (9a%r* + r4°)
v 65536(gs — 1)gs'/*MN? sin® goory© log® (ri) o,

(0%

)

and one obtains:

(A56)

256 N3/5 sin2 door 0‘0
fyy(r) = —

9(gs — 1) (rp2 — 3a2)? logz(N)a()] log? (9a2rpt + 145)
N3/10 sin ( ) (9(1 +rp ) (log(rp) — 1) ((Qa +rp ) log (Qa Rt + rh,G) -8 (6a2 + 7’;,2) log(rh))2
X +Co0, ) | 8

V35N sin? ¢ogry2 (6a2 + rp2)° (r — )2 log* (rn)og, log® (9a2r4 + r45)

where vy, ~ O(1).

Even though f,,(r) is numerically suppressed as the same is O (10_7)
apart from an O (lg)—suppression - the latter of course common to most

NlO

2 log!

fmns - fyy(r), near r =1y, for O(1) Cp,0,V, goes like = W To ensure

fyy remains finite one has to forego the assumption that Co,0, V) is O(1).
Around a chosen (v, ¢ag), writing r = 7, + €., € << 1, close to the horizon,

by assuming 6’9192(1) = 09192(1)(1/107 $20):

06,6, (9612 + Th2) (’rh2 - 3a2) sin (wo)
Js ( )3/10 N¢57,2 (6a2 + rp2)? logg(rh)ozg2 sin? ¢y
+ Co,0,M (0, $20) = 0,

(A7)

(wherein dg,p, < 1) which would imply one can consistently set fy,(r) = 0 up
to O(B). The idea is that for every chosen value of (1g, ¢29), once upgraded
to a local uplift, using the ideas similar to [L1], one can show that the same
will correspond to a G structure.

(C) EOMxlzl

B8
(A58) Wl B g () — ) =0,
4(1——) (r—rh)
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where:

(A59) 0102 = \/37( ra’ —3a%) (9a° + ra%) 0f, log? (9a?r,* +11,9)
= T 32(g, — 1)g. EMN Ny sin® oo (602 + r4) log(ra) g,

and obtain:

(A60)

ﬁolyazﬁgs]\"INg/mlein4 (%) Ié) (9(12 + ,,h‘Z) (log(rp) — 1) ((9(12 + 7'h2) log (9a27'h’1 + th) -8 (Ga2 —+ rhz) log(rh))2
Ng®sin? g (602 + 742)° (3 — 3a2ry) (r — )3 log? (r) o, of, log™® (9a2ry* + 11,5)
Vo, (307 = 1) (962 + 1) B, MN/Osint () 5
(662 + 1)* N sin? goory (r — 4)3 log® (ry)af

Jouy(r) = —

where 0g,, ~ 0(100), vg,, < 1, yielding:

591yﬁ7r4,895mbM16 sin* (%) rRBN—¢

A61 f91 T) = 5
( ) y(1) Nf5 sin? ghoo(r — r3)3 log 2 (Th)aglagz

where 1:191y < 1.

(d) EOMg, »

91 2
(A62) A% fouy (1) + Al fo,= (1) + Al fyy (r) = 0,
where:

(AG3)
3/10
it _ V02108 N ()" (ri? — 30%) (log(rs) + ) log" (9a%ryt + )
9813/2(95 — 1)M4Nf5 sin% P902 sin (%) Th2 10g5(7“h>

yxl() —

0 0
ajiie = —ay s = al,
and obtain:
(A64)

vg,zlog N (5 )3/10 (rn?® — 3a®) (21og(rp) + 1)ag, log* (9ary* + 715

2 log®(13,)

9
felz(r) = 0
(gs - 1)9513/2M4Nf5 Sin4 ¢202 sin (%)

vy, » ~ O(1), yielding:
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., X 16v/27%8g,15/2ky M sin® (%) rn BN
A65 fo,2(r) = 5
(465) (r) gs'3/2N 4% sin? gog(r — )3 log2 (rh)agl g,
where Ug,, < 1.
(el) EOM,,
ap i /

(A66) B (r—ra)? +alz (= ) () 5 () fay () = 0,
where:
(A6T)

3 (% )J/ 1 (9a% + 142) ag, log® (9a?ry? + 74°)
5 160y s dnosin () aa, (250 — 1)7 (602 + 712) og(rs) + (24, — 3) 90 + 747) ok (9071 + 71)
N 5(gs — 1) sin ¢12sin (%) Th 9(1 +7rp )
Gron = 729v/67mgs3/2 N sin? ¢ag (602 + 74 )log(rh)aglag log? (9a2rp4 + r45)

1
_ 7“7{243”2] l()g2 (9(127'h4 + 7‘/16)
. 1
X [log(rh) ([5(12(gS log NNy — 47) + 4g,Ny (rhz — 3a2) log <ZQ3‘092) +72(87m — gs(2log N + 3)Nf))

1
+ 95Ny (3(1 —rp ) (long 2log (Zagla&)) + 18ngf( 2 — 3a> (6rp, + 1) )log2(rh):| })

which yields:
(A68)

/
oJzv,
b1

. ) .
R 3 I T al e, B Ty N 89
e “ro afta{;y] 2B(r —rp)e “ror Ei <% uttafz"arj Be "o + 20, 3(:(1 >Rﬁ(rh -r)

ré1

f-ry(r) =

Foy o F
20,5 2y Rr% (r—rp)

oy
B fiy B I N
ag s Blog aga ! Blog .
(“u“fwm‘)g(T—rh) ,ﬂ,“()f:;g e ( e o
=- e L ,
,/ v xy 2 w 2 l 2
T Toraaalima  aall R g
o5 B (362 — 1) VN sin® (%) B (307 (89,% — 10, — 1) + 49, — 69, + 1)
TO1

S R, +O(r—ry)~
o

(662 +1)° (g5 — 1)2,/gs log NN® sin? oory,2(r — r4) log'* (1) g, 03,

implying:

(112(% —1)guNyv? log(r) (81(12‘ + 5f6a§2)

+ césg)
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2/5 . —@
nyﬁ@(Sgs - 4)K'b (%) / Sln4 (%) ’BN
(95 — 1)2N5 sin? a9 log(N) (r — r3,) log ™ (rp)ag, 03,

(AG9)  fay(r) =

where v, < 1.

(e2) EOMp,, (consistency)

B
«

(A70) s )+ B =0,
where:
()
agi; _ gs°/*log NM N 5,1111d ( “) (ra? = 3a?) (9a® + rp?) (21og(ry) + 1)

! 36v2r7/4 (&) /20 in 2 oo (6a2 +742) log(rn)ap, o,

5 a?gs3/* M N?3/20 gin (7”') B (9a +rp ) (log(rp) — 1) ((9(12 + ThZ) log (Qazrh4 + rhﬁ) -8 (60,2 + 7‘112) 10;};(7";,))2

QA = P ond 2 P N s

2187v/3(gs — 1) Nf sin? ooy (6a2 + 71,2)* log (7’;1)(15]&02 log!® (9a2ry4 + r45)
which obtains as its LHS:
vaob? (1= 30%)% (962 + 1)* B9,/ M N/ sin ()
(9s — )N Pry (652 + 1) sin® goo (1 — )2 log” (ri )3,
13
@61:1:5953/4” M sin® ( ) ﬁ ( )2a+20

(A72) -
Q,

(gs - 1)Nf Sin4 ¢20(T‘ — ’r‘h)QO[el agz

where vg, », Ug,» < 1 that in the MQGP limit, is vanishingly small.
(f) EOM,,

B
T z aT’ 16
(A73) a2y fouy(r) + agg fuy(r) + alf fu(r) + _6 =0,
(r—rp)
where:
(AT4)

log N (1082 + 1y, (ra? — 3a?) (2log(rn) + l)ue, log* (9a’ryt + 715)
(g5 — 1)gs> M2 {/ 3 Ny* sin® gooritlog? (i) o, ’
sin’ (‘/’”) (1(]8(1 +rh) ag lot (Qa Th +rh )
g3 M2 (% )Z/’]\f sin® goory? log? (rh)ag
sin ('/’0) (108a* + r1,) af 10(r (9a®ryt + 11,5)
gs3M?2 ( )Z/O]\f sin? poorp2 log? (1;1)00 '

a2g 34 MN13/20 sin ¢y sin® (“') B (9a®+ry ) (log(ry) — 1) ((9a + %) log (9a2r* + %) — 8 (64 + 13,?) log(rh))2

(gs — 1)N4? sin? gogry, (6a2 + 14, 2t (1 — )2 IOEZ(M)OLB,OL(EZ log!® (9a2ry4 + 71,5) ’

01 Y o
rg, ™~

701

vz,

6,

~

g,
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that yields:

b2 (1= 362)% (962 + 1) By, log NMNT/W0sin? (L)
(AT5)  fy.(r) = ( 3>
09

(65 +1)7 (g5 — )N sin? gagra(r — r3,)% log” (ra)af, af,

where vy, < 1, implying:

6yzﬁgsmz log N M sin® (%) rﬁﬂ]\ﬁza*% logQ(rh)

(A76) f z(r) = 3
! (gs — 1)N° sin? oo (r — rh)3agl 0532

where 0,, < 1.

(g) EOMg,

(A77) a’fw? f:ry( )+a’f”fxz( ) - 7

where:

(AT8)

(27\' ag 0‘9 log? <9uz'rh4 + 7‘hf’) +360(gs — 1)g53]\12N/2 sin? (ﬂ) logz(rh)ag +243 x 4v/6(gs — 1)9531\121\“}2 sin? (”") log? (rn)ey )

(g9s — 1)gs72M2 (%) /]OJ\f sin’ (“")l()g (Th)ﬂ(; (15 log (9a2rp* + 15)

azx

Th (9(12 + rh2) ag
(95 — 1)gs7/202 ()71 N2 sin? g (6a2 + 742) log (v, )  log? (9a2ryt +1,5)
K

X
+

ngﬁ(qs  1)g,AMN 2 sin? g sin? (w) (6% + )log w) (4o 727\[09 )10" (9a?rp* + r4°)
( (9a2ry, +143) ("91
'gng;)(gh — 120 3M Ny sin (w) log(rp)a, log (9a2ry* + 1) w8 x 64(gs — 1)3g>M2Ny? sin (‘7 (6a% + 74) log?(rs)af)
’h("g + (9a2ry, + 7y )(
147 sin? ¢y (6a® + 14?) af 10?, (9a?ry* + 7'h6)>
9a2ry, + rp3 '

which yields:

(A79)

O

V222V 21 /2, [g5(3gs — 4)kpsin® (L) BN 75

(9s — 1)2Nf6 sin? gog (1 — 73) log73 (rp)ag, agz

/—\

\_/
SN}
»

fez(r) = Ca(c? -

where v,, < 1:

(A80)
(40(ga—1)g:> M2 N2 sin? (22 ) a3 +108v/6(g.—1)g.> M2 N, sin? (L ) a3 +8m3a3 o, )
2 (—4(gs—1)g53M2Nf2w2a§2+108\/6(gs—1)gs3M2Nf2 sin? ( C) )agl +8miag, oz‘;Q)

3

M
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Appendix B. The Kiepert’s algorithm for solving the quintic
(65) and diagonalization of the SYZ type ITA

mirror inclusive of O(R*) corrections

In this appendix, we give the details pertaining to solving the quintic (65))
to help in obtaining the G-structure torsion classes of six-, seven- and eight-
folds in Section 4. This appendix is based on techniques and results sum-
marized in [65], and laid out as a five-step algorithm in this appendix.

e Step 1 Consider the Tschirnhausen transformation to convert general
quintic to the principal quintic:

(C1) 25+ 5az2% + 5bz + ¢ =0,
where:

(C2) 2= —ux +v.
In u is determined by:

(C3) 2A" +u (44° — 13AB + 15P)
+u” (24° — 5B) —8A’B + 10AP + 3B* — 10F = 0,

whose root, e.g., near (33) that we work with is:

4iN 1380 ) N3/5
(C4) Y TVTBa o2 13502
27V 150y og, ag,
The global small-0; p-uplift of (C4) will be: u = e 4 MC
Using (C4)), v is given by:
—Au— A? + 2B
(C5) b= +
32N2 8iBC Y N8/5

328050 o, 36451503
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The global small-0y p-uplift of (C5) will be: — s 4 FHAC
The constants a,b and ¢ in (C1]) are given by:

a= %(F(3Au—|—2B+4u2) —P(Au2+Bu—i—P+u3)
— G(2A+ 5u) — 101}3)
b= é(—lOav -G (4Au2 +3Bu+ P + 5u3)
+ F (Bu? + F + Pu+u* + 4u*) — 50%)
(C6) c=—F (v’ + Au* + Bu® + Cu® + Fu + G) — v° — 5av* — 5bv.
It should be noted that the vanishingly small numerical pre-factors

appearing in ((C6|) are compensated by very large powers of N.

e Step 2 To transform the principal quintic to the Brioschi quintic:
(C7) y® —10Zy3 +452%y — 7% = 0,

via the Tschirnhausen transformation:

A
Ye _ 3
Z

A in (C8]) is determined by the quadratic:
(C9) A2 (a4 + abe — b3) - A (11a3b —ac® + 2b20)
— 27a’c + 64a%b* — b = 0.

Defining:

f=uv (ulo + 11uv® — vlo)
T = u® + 5220”0 — 10005u*"v"" — 1000560 — 522u°v* + v

5
(C10) Z = %

one determines:

(C11) 1

[Ab+c
Za
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e Step 3: We now discuss the transformation of the Brioschi quintic to
the Jacobi sextic:

(C12) s —10fs® + Hs +5f% =0,
where:
(C13) H = —u? + 228u!505 — 49401010 — 228u501° — %0,
Defining;:
1
A=—
Z
( 171Z7228Z) %
g2 = 12
95— A
Cl14 =
( ) g3 27 )

one solves the cubic:

(C15) — %x — ”%3 = 0.

The roots of (C15)), e.g., near are given by:

. ¢ P/B oW n22/15
i ‘ 80 5/3 1 Rgi ¢ zz
&' =kei ¢ 7 NP Q10,10 + )
0102 3 Ozg Otéo
1 2

where ¢=1,2,3 and |kgic 50/5|<< 1. The global small-6; o-

. P 8. /Br/ L)
3 : T BY 3 1 Kei, ¢ VBV C::
uphft of (016) is &= kei, € \/ sin’® 6, sin'® 6, + /sin” 0, sin'© 0,

Defining, L = ;Vg:gz;;vgtgi, e.g., near , L=-1+(22+

0.4i) /B CY %/ L wag,, whose global small-6; o-uplift will be: L =
1+ kg, c/By CLY smoy.

The Jacobi nome ¢ is defined as:

) 70\ 4t
(017) q= Zoq]‘ <2) )
]:

(C16)
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wherein e.g., near (33]):

g =1

Q=2

q2 =15

q3 = 150

qs = 1707

g5 = 20,910

q¢ = 268,616
g7 = 3,567,400

s = 48,555,069

qo = 673,458,874

q10 = 9,481, 557, 398

g1 = 135,119,529, 972

q12 = 1,944,997, 539, 623

q13 = 28,235,172, 753, 836
c18)

The value of ¢, e.g., near (33)), appears to converge to a form:

(C19) ——0.7+ /By cle, ¥ ! N Vo

whose global small-6; 2 uphft will be: ¢ = —0.7+ /B ZZ C \/sing,
The roots, e.g., near , are given by:

1)
. 5(65+1)2
VB 2=
(CQO> VS0 = Al joo T (6j+1)2 ;
6 3 (—)]q 12

appears to converge to:
Vo = (11.4 + 18031i) (v, g, ) 1073
oo N5/3

23/6 10/3
~(160.2 + 266468i)v/By/ C S
N53/30 '

(C21)
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whose global small-6; o-uplift will be: ﬂgio (sin 6 sin 69)

mgw VB Cgi)Cq sin23/6 9, sin'0/3 9.
2)

10/3 _

. 2
00 i k(6j+1)2  (Gith7

1 Zj:—oo(_)Jg (67+1) q oo
00 (65+1)2 ’

As Zj:—oo(_)jq 12

e.g., near , yielding:

(C22) VS = -

0 10/3 23 6
W ¢ (ag,a0,) 8 kg o\ Ce,Bay Yoy
N5/3 N53/30 ’

(C23) S; =

1=20,1,...,8, whose global small—91 o2-uplift will be: S; =

—H’g (sin 61 sin 62) 10/3 4 /iﬁ VB ZZ C sin23/6 91 sint0/3 g, It
furns out that seven of the nine S;s, have ’chi: c/>1 and the
remaining two have moduli much less than unity.
The roots of the Jacobi sextic are related to those of the Brioschi
quintic via:
1

NG

yielding, e.g., near ,

(C24) Uk = —= (Soo — Sk) (Sk+2 — Sk+3) (Sk+a — Sk+1)

ﬂa %%, %, cVB C’éiC 11/2

Vi= —Er N13/5 =,

(C25)

1=0,1,....,5 and |Iﬁ750%’ > 1. It should be noted that the large nu-
merical factors in the numerators of (C23) and (C25) are balanced off
by the large powers of N - numerically taken to be 10? — 103 - in the
denominators of the same. The global small-; o-uplift of (C25) will
be: y; = HB C sin® 6, sin® 6y — /1 \f\/ C’,gz)C sin!1/2 61 sin® 6.

A1y
D
can be obtained. One notes that the same involve vanishing small
numerical prefactors accompanied by very large powers of N.

e Step 4: Hence, the roots of the pr1n01pal quintic using zp =
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e Step 5: Now, finally the roots x; of the original quintic are given by:
(C26)
—(zk —v) (Au* + Bu+ C + u?) — (A+2u)(z, —v)* — G

kT o —v) (2Av + B+ 3u2) + Auwd + Bu + F + Cu+ u® + (2 — 0)2
The above, e.g., near , yields the six roots, five of which are:
0.07N3/3 KB 168l abs
(C27) Tipt =~y + — — 31"12/1091 s
g, gs%log N3M3N N2 log®(r)
ﬁm/ Je N9/10f
3/2
aez%1
and,
0.07N3/5 Ko rSaflag
(028) xIr = 2 3 3
g, 958 log N3 M3N311/10 N3 1og?(r)
Kdml \/ zz C f\f\/ael
0492
wherein mﬁi\ > 1, mﬁ,@y < 1 where nﬁo ~ (10;7)32,k =0,1,...,4, whose
Kz
global small-61 o-uplift are given as under: '
(C20) . gﬁf kﬁ” r6 singi sin%4 6, Rg Céi)cq{ﬁ
;=

+ .
sin?fy  g,5log N3M3Nf3 log®(r)  sin? 6y sin®/2 6,

Strictly speaking, one ought to also consider the +/, B§ B terms
in x0,1,2,34. Their forms however is extremely cumbersome. To cap-
ture the essence of the results that one gets if one were to actu-
ally do so, in the following what is being assumed is that one is
working near the type IIB Ouyang’s D7-brane embedding coordi-
nate patches effected via delocalization parameters ag, , ~ O(1) and
small values of 012, and setting N ~ 102,95 ~ 0.1, M = Ny =3, and
r in the IR estimated as r (€ IR) ~ N—% with fr~1 M), [5]. One
can then show e.g., in xy that by Working in the neighborhood

of (610 = N— , 000 = "E , =2nm),n =0, 1,2, one obtains the follow-
ing 3-dependent termS' O(1074) /B + O(10713)/B + O(10710)8% +

O(1)5. Hence, by choosing B~ O(10~19), one sees that the most dom-
inant terms are the 5 1 and the 8 terms which are both of the same
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order. This is hence the reason why we will work with corrections in
the co-frames up to O(B%) and as explained above, this will capture
the essence of the exact calculation up to O(f). Further one notes
that in (C29), the very large numerical factors in one of the two O(38)
terms in the each of the five z;’s are compensated by very large N-
suppression factors in the denominators.

Denoting the matrix with entries u;; (i = 1, ..., 5 indexing the eigenvector
and j = 1,...,5 indexing the column vector element of the ith eigenvector
u;) and embedding the same in a 6 x 6 matrix U with Uy, a/b = r,i then:

6
(C30) D (M= {(dr dby dby dov dy dz)
a=1

Gy 0 0 0 0 0 dr

0 2 0 0 0 0 do,

0 0 21 0 0 0 | dos

XUT 0 0 0 2 0 0 |Y ] d

0 0 0 0 23 O dy

0 0O 0 0 0 x4 dz

The co-frames are hence given by:
(C31)
el = /Gyar,

76 sin! (0y) sin®* (0;) 2 \1/3\/ Cz(i)cq
——— K3 7
958 log N3M3N 2 log?(r) 58 ging (62)

2y | K2 2 2
e’ = Jhl;ﬁ(, csc? (62) + K3 o

a6, [ k2 9.7/ log NMN;(0.25a2—0.0672) sin(6:) csc(2) log(r) 42 VBV O C,9.7/4 log NM Ny (1.8a242.5r2) csc(ds) log(r)
1\ Fo,,1580 72 60128 72 /sin(01)
X
VN
+ dby </<2 gs"/AM Ny sin? (61) csc? (62) log(r) (3a® log(r) + 0.08r)
4 Vi 30
02,1, VNr
s VB Cg)ngSZl/‘l]\Ist's sin? (61) esc® (62) log3(r) (a?r?log(r) + 3)
+ K2 N3/43
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d 5 9s7PM2Ny?sin? (61) csct (602) log?(r) (3a% log(r) + 04087’)2 . VB Cg)Cq
+dy( 1 -k 5 IR HC —
VNr sinz (61)

VB Cgi)C,, sin (63) >}

+dz (H,Z 1.0 8in (62) — HZ.M 3
w ’ sinz (61)
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6 sin®! (6) sin (6,)
3 5 76 8in%! (65) sin®* (64 _ . - s
€= \/"1 go 52 (62) + ki, 80 9:51og N3MB3N3I/I0N 3 logh(r "1 VBV C 4 Cq\/ sin (1) csc? (62)
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+
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+ Ko,1.8 N3/4,3
. De,9.72M2N 2 01) 05) oy 0.00049a2 log(r) + 0.000014r)*
+d | kg e 4 = ! s e ]ir?z/o zg o ( o) ul + K10 sin’ (01) ese (62)
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rayl1 1 5 gﬁ/‘ZMZNf? sin (61) csc! (62) log?(r) (0.0004942 log(r) + 0000014]‘)2
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(C33)

765in%! (02) sin® (6;) f\/ C

I I . 6
€7 = \| K7 go csc? (B2) + K5 go— — —KSy

g9 log ;"\“'*‘1\1*"3\"{5 log(r) sins (6)
" 6 97 log NMNy (34.9a2 — 11,67”2) sin (61) csc (62) log(r) VB C’ng(lg,.T/'1 log NM Ny (()A()G'-lr2 — 5.8u2) csc (62) log(r)
x| dby | Kg,1,80 T2 + Ko, N\ J5in (01)

16, g.7/*MN; sin’ (Ul)csc‘((h)log( 7)(0.5a2 log(r)+0.014r) | 6 VBV CLYCog. /4 MN; \/5in(6:) esc? (62) log(r) (2.9a° log(r)+0.17)
9y | kg, 1380 + hg,,8

T

+

d (1 6 g,;7/2ﬂr12;\"f2 sin? (61) csct (02) log?(r) (15.625(14 log?(r) 4 0.875a%r log(r) + 0.012257‘2)
a — Ky.1.80
Y y;153¢ /N2
o VB Cg,)ngj/ZAMZNfZ sin? (61) csc* (62) log?(r) (*d1 log?(r) — [).lazrlog('r))
S
wlif VNr?

2 Cy (2
+dx (h, 1580 sin? (01) csc (0a) — n” ;\‘F\/jcq\/sm (61) csc (02) ) +dz (hz| g0 sin (02) + K ],gw)].

sin2 (6;)

In (C31)—(C33 Iigl 21 :C/S/z,l,,@ < 1. Except for e*, however, all the rest have
an R—enhancement actor involving some power of logr appearing in the
contributions picked up from the O(R*) terms. Further, these contributions
also receive near-Ouyang-embedding enhancements around small 0; 5 - which
also provide the most dominant contributions to all the terms of the action.
Also, H(f;ﬁg > 1 but are accompanied by IR-suppression factors involving
exponents of r along with near-Ouyang-embedding enhancements around
small 01 2.

Now, f can be inverted - in Secltion 3, for simplicity, one
restricts to the Ouyang embedding (7’6 + 9(127“4)Z ez (W=d1=2) gjp 91 sin 622 =
1, p being the Ouyang embedding parameter assuming |u| < r% effected,
e.g., by working near the 6; = N “2--coordinate patch (Wherem an
explicit SU(3)-structure for the type I1B dual of [2] and its delocalized SYZ
type ITA mirror [1], and an explicit Ge-structure for its M-Theory uplift [I]
was worked out in [16]).
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Appendix C. Q,s appearing in (|71

The components of the “structure constants” of (71) Q4s after a small-g
large-N small-a expansion are given as under:
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(D2)
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wherein the numerical constants wg < 1; it turns out that in Q44,a =
2,3,4,5,6, these very small numerical pre-factors arising in the higher deriva-
tive contribution to the “structure constants”, are maximally compensated
by the highest positive powers of N (amongst the other Q/ s, a # 4).

Appendix D. Equation (46| relevant to proving result 3

In this appendix, we will show that the equation :

> B0, ( —9© g(O)NPgﬁv%fNPQZS)GTC%lMﬂm) 5Ms = 0,
N,Pe{tx12:3,r,0, 2,061,2,9,210}
is satisfied by setting the constant of integration C(gllg)ﬂ, to zero up to LO
in  and N; up to O(S) and NLO in N, one would additionally require
cih a0 2o o

o (My, M) = (61, 09):
One can show that near r = yrp, x = O(1), (46]) reduces to:
(E1)

1 8/20 2.3 1 2o 4 2 6 2 8
ﬁ47r19/4%5/4x5a2 o 2710gN(N) N¢’ry, <N) (—162b" +90% (x° + x*) + 4x°)

X (0.01ag2(czz<1> —2051) + 0,095 g%/ logrhMNfagl) V32 O b of, >}

logNr N?
~ 8= G
4

zU
9s

where the “~” in (E1|) and henceforth implies equality up to NLO-in-/V
terms. Therefore by setting:

(E2) it =,

911
is satisfied in the IRﬂ
[ ] (Ml,Mg) = (91,1‘):

9If one wishes to also consider the NLO-in-N term in 7 one sees
that one needs to impose the additional constraints: 0.01evj (CZ - 20912)

0.090&2953/2 logrnMNyag =0 - see (53).
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Working in the IR, i.e., 7 = x7p, x = O(1), one an show that

yields:

(E3)
N2rd log N 1
B Sk fgf;f(b7)(7a91,zarh)célli =+ —x Z fz}?v(b7X7a01,z)C](\/})1\/
9s Nio Y (MN)=(2,2),(61,2),(02,2)
Nirp log N

~p—L hfgff(b,Xﬂel,yTh)Céi; gl ;

s N 1o

) . . M, M,
[wherein the notation used is Fun > (M,N) €

{(01,7),(01,2), (02, 2), (2, 2z)}], which again would vanish at (E2)).

We will, for the remaining eight equations, given only the equivalents
of (E3)) below (assuming one is working in the IR, i.e., r = xry, x =
O(1))

o (M, M3) = (01,y):
One obtains:
(E4)
6N?T?L log N

g NE;&?;(@X’O‘91Azarh)c<l) + Z ‘/—-gﬁ\f(b’ X ael,zvrh)cj(\/ll)N>

O,z
(M,N):(Z,Z)7(91 1Z)a<927z)
N2r3N3
~ B FY (b, x, a6, . 7h)Cl)

Js 0, 612

which again would vanish at (E2]).

d (MlvMQ) = (0172)
One obtains:
(E5)
ﬂN?rZ log N
9s

. 1

Nﬁ}—gfi(bv)(v aﬁl,zvrh)céia)c + NL Z ‘7:19\}7\7(})7 X CV<91,2’’,.}L)Cl(\}f)!\/)
Y (MN)=(2,2),(01,2),(02,2)

NZ3 N

~ B F (b, X, 00,2 ) Cs

which again would vanish at (E2]).
o (My, M) = (62, x)
One obtains:
(E6)

. 1
BMN?}\/gs (log N)?

z
5

‘7:9912«:(b7X7o‘91»27rh)Cé|la>r + 92 Z ‘7:‘ZEN(Z77 X7a91.277‘h)01(\?1\1)

*(M.N)=(2,2),(61,2),(62.2)

1 -
~ BMN?}\/g; (log N)? T Fo (b, x, a9, ,, ) Cy,
5
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which again would vanish at (E2]).

o (My, Ms) = (62,y)
One obtains:
(E7)

1 . 1
BMN? /g5 (log N)? ( e FO (b, x, g, ) C)

iy > FO (b, X0 g, ) Oy
10 (M,N)=(2,2),(01,2),(02,2)

(2%

1 o
~ BMNG5s (10 N)? = Fit (b, 00, ),

which again would vanish at (E2]).
o (My, M) = (62, 2)

One obtains:
(E8)

1
BMN}\/gsris (log N)? (

N3

1 4, (1)
e Fora(b,x, g, ,,71)Co o

; 1 ;
‘Fgf;(bv>(:a9|,z7rh)célli + N Z ]:}?/ﬁv(bvx’ aGu.zvrh)C](LpN
(M,N)=(2,2),(01,2),(02,2)

~ BMN}\/gsri (log N)?

which again would vanish at (E2]).

o (M, M) = (z,y)
One obtains:
(E9)
p 1

. 1
BMN}gsi (log N)? -

T (b, Xvael.w?‘h)co(llg)c NE Z Fain (b, x, agl)z,rh)Cj(&)N)
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which again would vanish at (E2]).

o (My, Ms) = (z,2)
One obtains:

(E10)
MN? (og N)2 | - 722 (1 om 1 F (b o
BMN7 (log N) NE b0, X, o, 5, Th) 91"+N% > 2w (0 x5 o, mh)Cppy
(M,N)=(z,2),(61,2),(02,2)
f 1
~ BMNG (10 N)* 5 T30, X 00,0070)Cipl

which again would vanish at (E2]).
b <M17M2) - (y,Z)
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One obtains:
(E11)

. 2 1
BMNigé (log N)?

L
20
1

1
20

z 1 z
]:glz(b X a@],zarh)céii + o Z E\%N(&Xaaﬁ,zvrh)cj(\/l[)jv)

0 (MN)=(2,2),(61,2),(02.2)

3
~ BMN}gd (log N)* — F3%, (b, X, s, . ) Cy ),

which again would vanish at (E2]).

Appendix E. Details of G, structure of

10
M7 (Ir’ 01’2’ ¢1’2’ 1/)’ € )|Ouyang—embedding[parent type IIB]N|ptouyang|<K1

The details of the evaluation of 791 in the neighborhood of the Ouyang
embedding of the flavor D7-branes in the parent type IIB theory assuming
a infinitesimal modulus of the Ouyang embedding parameter jiouyang, are
provided below.

The four intrinsic Ga-structure torsion classes are then given by [70]

1
Wi = cdbxr @,

1 1
— DD = —D o
Wr = —2d®.® = =& Axrde,

1
Wis = 3 (d#7 PP — s7d %7 D) — 2W7uD = — %7 d 7 O + 4W7 D,
(El) Wor = %7d® — W1 ® + 3Wr i *7 ©.

E.1. Wy (Mz(r, 61,2, P1,2, 9, z'°)

Utilizing, Wy = %7 (® A x7d®), let us first evaluate ® A x7d®. One sees that,
(E2)
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From appendix C, the most dominant €2;;s are given as under:
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where w;; < 1. The M-theory metric components GQ{’U 10, GM are given
by:
(E4)
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oM { 1674/3 (64ma’gs M2Ny(c1 + colog(ry)) + AN (9a2 + 12)) }
ot 3V3AT/3N (9a2 + r2)
—19683v/6af — 664207 aj + 40v/6ay
- H A3 (362 = 1)° Nyriad (9a2 +12) }
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where using [77],
(E5)
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4/ N 2 1
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. 1, 3 .
Replacing ap, — N5 sinf and oy, — N 10 sin 0:
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1 €IR 1
U VAP o LARPUR o - P " ,
62 63 65 NZ|1nr|§ NéNg

f
[3“ BO 30 |10g7"% relR N;
QQ4N_Q26N_Q36NQ56NQ£36N 5 T 19
) N 36
o (log N)2|logr|5 , log N)? N2
0~ 2 Q08N lowrl1 ey (0820 27
N1 N 36
We thus see:
(ET)
eig@IIA

D A #7d®(r € TR)) ~ e 22" (Qg4 + Qs6) 146357 — (Qa6 — Q) 146235

2
relR (log N) relR 1 146357 QPUAG 14 10 146235
— = (Q36 — Q54 € ;

— — —
Ni|logr|s Newr | log 7|

where aypy, > 1. Now, from (E3), one can show that:

(E8) (Q36 — 954)ﬂO =0,



On M-theory dual of large-IN thermal QCD-like theories 3887

for Vr ~ \/ga €IR - note that » = v/3a is the interface of the UV and IR-UV
interpolating regions. Therefore,

(Eg) W+ [: %7 (Q) A *7d‘1>)]

‘ Ouyang—embedding[parent type IIB]N|guouyang| <1

- d(I)J‘I)‘Ouyang—embedding[parent type IIB]N|pouyang | <1

1 1
=0 <N“>1> ~0 <as work only up to O (N>> ,

as stated in (92).

E.2. Wl(M7(’l“, 01,27 ¢1,29 d)a wlO))

One can show that:
(E10)

_5 (I)IIA

2es”
TGN,

Using results of appendix C,
(E11)
(3 — Q64)”

E 2/3 2 27 r2( 1\17/20 s 2 o 9 _ 5.2a2
- LY LT (esa +191) - [log r[*/4g."/2log N*M?2(%)'"/*" N a3, (53 2 )
rd [Tog 7] N r? : @,

2

1

Ora — O rEIRN
(Q53 — Qeu) — Tog 7]

1
W1 = ?d(I)J *7 P = (953 — 964) .

4953 Nf

and replacing ag, = N i sin 02 to get the conjectured result V02, ¢12,v
but in the neighborhood of the Ouyuang embedding in the parent type 11B
theoryone can show

(E12)
(53 — Q60)”

(5.2\ logr(*3g,Flog N2M? (£)*° N3 (0 — 1.02¢%) +28.7¢/ il ag, (a® + 0.67r2)) "
N N5 (sin 6,) log 7 b ot

One can further show that (guided by [77]) assuming |logr| ~ a|10gr|m]\7§,
for
(E13)

0.095|, | ( 1 >4
r= 099 + Lo IR,
a|10gr|5/3.gs7/210g N2M2Nf20131 ( log N
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V1= 1
(E14) Wl ~ ( ’K’F’ ) CL2 relR O ( ) CL2

11 2
|log 7|2 N 20 sinfy \ N2s
1
~ 0 <as work only up to O <N>> ,

for k, < 0.
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