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Construction of a top-down holographic dual of thermal QCD-like
theories (equivalence class of theories which are UV-conformal, IR-
confining and have fundamental quarks) at intermediate ’t Hooft
coupling and the G-structure (torsion classes) classification of the
underlying geometries (in the Infra Red (IR)/non-conformal sector
in particular) of the non-supersymmetric string/M-theory duals,
have been missing in the literature. We take the first important
steps in this direction by studying the M theory dual of large-N
thermal QCD-like theories at intermediate gauge and ’t Hooft cou-
plings and obtaining the O(l6p) corrections arising from the O(R4)
terms to the “MQGP” background (M-theory dual of large-N
thermal QCD-like theories at intermediate gauge/string coupling,
but large ’t Hooft coupling) of [1]. The main Physics lesson learnt
is that there is a competition between non-conformal IR enhance-
ment and Planckian and large-N suppression and going to orders
beyond the O(l6p) is necessitated if the IR enhancement wins out.
The main lesson learnt in Math is in the context of the differ-
ential geometry (G-structure classification) of the internal man-
ifolds relevant to the string/M-theory duals of large-N thermal
QCD-like theories, wherein we obtain for the first time inclusive of
the O(R4) corrections in the Infra-Red (IR), the SU(3)-structure
torsion classes of the type IIA mirror of [2] (making contact en
route with Siegel theta functions related to appropriate hyperellip-
tic curves, as well as the Kiepert’s algorithm of solving quintics),
and the G2/SU(4)/Spin(7)-structure torsion classes of the seven-
and eight-folds associated with itsM theory uplift.
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1. Introduction

The study of the dynamics of non-Abelian gauge theories at finite temper-
atures is essential to studying various physical processes, like electroweak
and hadronic matter and various other phenomena. No effective theory de-
veloped over the years has given a suitable explanation for the intermediate
coupling regime. The results for the intermediate coupling regime have been
obtained by extrapolating the results obtained via perturbation theory. In
recent years, gauge/gravity duality has provided a simple, classical com-
putational tool for understanding the strongly coupled systems and over-
come the theoretical limitations in study of non-Abelian gauge theories. In
its simplest form for maximally supersymmetric SU(Nc) Yang-Mills theory
(N = 4 SYM), in the Nc →∞ limit, the gauge/gravity duality provides a
tool for analysing its properties in the large ‘t Hooft coupling limit. The
gauge/gravity duality also allows us to study the corrections to the infinite
coupling limit. These corrections appear as higher order derivative correc-
tions on the gravity side. The effect of these corrections to the action are
incorporated in the background metric and fluxes, perturbatively by consid-
ering perturbations of the equations of motion. However, other than higher-
derivative corrections quartic in the Weyl tensor, or of the Gauss-Bonnet
type, in AdS5 × S5, dual to supersymmetric thermal Super Yang-Mills [3],
there is little known about top-down string theory duals at intermediate
’t Hooft coupling of thermal QCD-like theories. In this work, we address
precisely this issue. We include terms quartic in the eleven-dimensional Rie-
mann curvature R in the eleven-dimensional supergravity action that appear
as O(l6p)(lp being the 11D Planckian length)-corrections in the M-theory
dual of large-N thermal QCD-like theories (equivalence class of theories
which are UV-conformal, IR-confining and have fundamental quarks).
Physics motivation behind this work: Significance of higher order derivative
corrections is not just only related to corrections to the infinite coupling
limit. They also serve as the leading quantum gravity corrections to the
M-Theory action to study the compactifications ofM-Theory on compact
eight-dimensional manifolds. The study of warped compactification of M-
Theory on eight-dimensional compact manifolds is very interesting. Con-
ceptually, on one hand this compactification allows for the study of three-
dimensional effective theories with small amounts of supersymmetry. On the
other hand it allows us to study the lifting of three-dimensional theories to
four space-time dimensions for a certain class of eight-dimensional manifolds
usingM-Theory to F-theory limit. In the past, vacua for warped compact-
ifications of M-Theory on compact eight-dimensional manifolds have been
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studied by including the higher derivative terms to the action. The leading
quantum gravity corrections toM-Theory actions are fourth order, R4, and
third order, R3G2, in the eleven-dimensional Riemann curvature R , where
G is the field strength of M-Theory three form. The terms of O(R4) have
been used in past [8], while terms involving third order have been recently
analyzed in [9]. The construction of a top-down holographic dual of thermal
Quantum Chromodynamics (QCD) at intermediate ’t Hooft coupling has
been missing in the literature. This work takes important steps to fill this
gap by studying the M theory dual of large-N thermal QCD-like theories
at high temperatures, at intermediate gauge and ’t Hooft couplings by ob-
taining the O(l6p) corrections to the M-Theory uplift of [2] as constructed
in [1].
Mathematics motivation behind this work: The study of the differential geom-
etry of fluxed compatifications involving non-Kähler six-folds in Heterotic
string theory via the study of SU(3)-structure torsion classes, was initi-
ated in [10]; SU(3) and G2-structure torsions classes of respectively six- and
seven-folds in respectively type II and M-theory flux compactifications was
extensively studied in [11–14]. SU(3)- and G2-structure torsion classes of
type IIB/A holographic dual of thermal QCD-like theories and their M-
theory uplift in the intermediate/large “r” (the radial coordinate in the
gravity dual which corrsponds to the energy on the gauge theory side), i.e.,
Ultra-Violet (UV)-Infra-Red (IR) interpolating region/UV region were ob-
tained in the second reference in [15] and [16]. In this work, for the first time,
we classify the underlying six-, seven- and eight-dimensional geometries at
small r, i.e., the IR, inclusive of the aforementioned O(l6p)-corrections in
the D = 11 supergravity action, as regards their SU(3), G2, SU(4), Spin(7)-
torsion classes (note these corrections vanish in the very large-r limit, i.e.,
the deep UV, wherein G-structure approaches G-holonomy), both in the
SYZ type IIA mirror of the type IIB holographic dual constructed in [2] of
thermal QCD-like theories, as well as itsM-theory uplift.

The following are the main results of this work.

• The M-theory dual of thermal QCD-like theories inclusive of O(l6p)-
corrections, was obtained.

• Proposition:
1) The non-Kähler warped six-foldM6, obtained as a cone over a com-

pact five-fold M5, that appears in the type IIA background corre-
sponding to the theM-theory uplift of thermal QCD-like theories
at high temperatures, in the neighborhood of the Ouyang embed-
ding (32) of the type IIB flavor D7-branes [20] (that figure in the
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type IIB string dual of thermal QCD [2]) effected by working in the
neighborhood of small θ1,2 (such as (33)), in the MQGP limit (1)
and inclusive of the O(l6p) corrections (lp being the 11D Planckian
length),
– is a non-complex manifold (though the deviation from

W
SU(3)
1,2 = 0 being N -suppressed),

– W
SU(3)
4 ∼WSU(3)

5 (upon comparison with [14], interpreted as
“almost” supersymmetric [in the large-N limit]).

2) The G2-structure torsion classes of the seven-fold M7 (part of the
eleven-fold
M11(x

0, x1,2,3, r, θ1, θ2, ϕ1, ϕ2, ψ, x
10) which is a warped product

of S1 ×w R
3 and a cone over M-theory-S1-fibration over M5:

p21(M11) = p2(M11) = 0, pa being the a-th Pontryagin class, and
solves the D = 11 supergravity equations of motion (20)) are:
WG2

M7
=WG2

14 ⊕WG2

27 .
3) Inclusive of an S1-valued x0 at finite temperature, referred to hence-

forth as the thermal circle, the SU(4)/Spin(7)-structure torsion

classes ofM8(r, θ1,2, ϕ1,2, ψ, x
10, x0) areW

SU(4)/Spin(7)
M8

=W
SU(4)
2 ⊕

W
SU(4)
3 ⊕WSU(4)

5 /W
Spin(7)
1 ⊕WSpin(7)

2 .

Organization of the remainder of the paper

The remainder of the paper is organized as follows. Section 2 is a short
review of the type IIB string theoretic dual of large-N thermal QCD-like
theories as obtained in [2], as well as its Strominger-Yau-Zaslow type IIA
mirror and theM theory uplift of the same as constructed in [1]. Section 3
begins with a summary of the O(R4) terms in D = 11 supergravity that are
considered in the remainder of the paper. The O(l6p)(lp being the D = 11
Planck length) corrections to the M-Theory uplift in the “MQGP” limit
as obtained in [1], near the ψ = 2nπ, n = 0, 1, 2-branches are consequently
obtained in 3.1 and for ψ ̸= 2nπ, n = 0, 1, 2 in 3.2. There are three main lem-
mas in 3.1 pertaining to working in the neighborhood of ψ = 2nπ-branches.
The first is on comparing the large-N behaviors of two O(R4l6p) terms in the
D = 11 supergravity action; the second is on the M-theory metric inclu-
sive of O(l6p) corrections, and the third is on the consistency of setting the
O(l6p) corrections to theM-theory three-form potential, to zero. Subsection
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3.2 has an analogous lemma working in the neighbhorhood of ψ ̸= 2nπ-
coordinate patch. Section 4 discusses the major Physics lessons learnt. Sec-
tion 5 through four sub-sections, discusses the SU(3)/G2/SU(4), Spin(7)-
structure torsion classes in 5.1/5.2/5.3/5.4. Section 5 has five main lem-
mas. The first, in 5.1, is on the type IIA metric components along the
compact directions. The second, also in 5.1, is on the underlying type IIA
internal six-fold being non-complex and yet satisfying a relation of [14] for
supersymmetric compactification. The third, in 5.2, is on the evaluation of
the G2-structure torsion classes of the relevant seven-fold which is a cone
over a six-fold that is itself an M-theory circle fibration over a compact
five-fold. Inclusive of a “thermal circle”, the fourth, in 5.3, is on the SU(4)-
structure torsion classes of the underlying eight-fold. Finally, the fifth is
on the evaluation of Spin(7)-structure torsion classes of the aforementioned
eight-fold. The nine lemmas together imply the proposition stated in Section
1. Section 6 is a summary of the results obtained in the paper and a sum-
mary of the applications of the same to Physics as obtained in [4], [5]. There
are four supplementary appendices - a long appendix A on the equations
of motion for the metric perturbations (fMN ) and their explicit solutions
obtained inclusive of the aforementioned O(R4) terms in the IR, both near
the ψ = 2nπ, n = 0, 1, 2-branches in A.1 leading up to 3.1, and near the
ψ ̸= 2nπ, n = 0, 1, 2 coordinate patches in A.2 leading up to 3.2. Appendix
B has a step-by-step discussion of the Kiepert’s algorithm for diagonal-
izing the M5(θ1,2, ϕ1,2, ψ) metric leading to the evaluation of G-structure
torsion classes for M6(r, θ1,2, ϕ1,2, ψ), M6(r, θ1,2, ϕ1,2, ψ)×w S1(x10) and
S1(x0)×w

(

M6(r, θ1,2, ϕ1,2, ψ)×w S1(x10)
)

. Appendix C lists out the non-
trivial “structure constants” of the algebra of the fufnbeings/sechsbeins in
section 4. Appendix D gives some calculational details relevant to showing
that one can, up to O(l6p)-corrections, consistently set the corrections at the
same order in theM-theory three-form potential, to zero. Finally appendix
E gives details of the G2 structure torsion classes W1,7.

2. String/M-theory dual of thermal QCD - a quick review
of (and results related to) [1, 2]

In this section, we provide a short review of the UV complete type IIB
holographic dual - the only one we are aware of - of large-N thermal QCD-
like theories constructed in [2], its Strominger-Yau-Zaslow (SYZ) type IIA
mirror at intermediate string coupling and its subsequentM-Theory uplift
constructed in [1, 16], as well as a summary of results in applications of the
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same to the study of transport coefficients and glueball-meson phenomenol-
ogy.

We begin with the UV-complete type IIB holographic dual of large-N
thermal QCD-like theories as constructed in [2] which built up on the zero-
temperature Klebanov-Witten model [17], the non-conformal Klebanov-
Tseytlin model [18], its IR completion as given in the Klebanov-Strassler
model [19] and Ouyang’s [20] inclusion of flavor in the same, as well as
the non-zero temperature/non-extremal version of [21] (wherein the non-
extremality function and the ten-dimensional warp factor simultaneously
vanished at the horizon radius), [22] (which was valid only at large temper-
atures) and [23, 24] (which addressed the IR), in the absence of flavors. The
authors of [2] considered N D3-branes placed at the tip of a six-dimensional
conifold, M D5-branes wrapping the vanishing S2 and M D5-branes dis-
tributed along the resolved S2 and placed at the anti-podal points relative
to the M D5-branes. Denoting the average D5/D5 separation by RD5/D5,
roughly speaking, r > RD5/D5, would correspond to the UV. The Nf flavor
D7-branes (holomorphically embedded via Ouyang embedding [20] in the
resolved conifold geometry) are present in the UV, the IR-UV interpolating
region and dip into the (confining) IR (without touching the D3-branes; the
shortest D3−D7 string corresponding to the lightest quark). In addition,
Nf D7-branes are also present in the UV and the UV-IR interpolating re-
gion but not the IR, for the reason given below. In the UV, there is SU(N +
M)× SU(N +M) color symmetry and SU(Nf )× SU(Nf ) flavor symmetry.
As one goes from r > RD5/D5 to r < RD5/D5, there occurs a partial Higgsing
of SU(N +M)× SU(N +M) to SU(N +M)× SU(N) because in the IR,
i.e., at energies less than RD5/D5, the D5-branes are integrated out result-
ing in the reduction of the rank of one of the product gauge groups (which
is SU(N + number of D5− branes)× SU(N + number of D5− branes)).
Similarly, the D5-branes are “integrated in” in the UV, resulting in the
conformal Klebanov-Witten-like SU(M +N)× SU(M +N) product color
gauge group [17]. The gauge couplings, gSU(N+M) and gSU(N), were shown
in [19] to flow oppositely with the flux of the NS-NS B through the van-
ishing S2 being the obstruction to obtaining conformality which is why M
D5-branes were included in [2] to cancel the net D5-brane charge in the
UV. Also, as the number Nf of the flavor D7-branes enters the RG flow of
the gauge couplings via the dilaton, their contribution therefore needs to
be canceled by Nf D7-branes. The RG flow equations for the gauge cou-
pling gSU(N+M) - corresponding to the relatively higher rank gauge group
- can be used to show that the same flows towards strong coupling, and
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the relatively lower rank SU(N) gauge coupling flows towards weak cou-
pling. One can show that the strongly coupled SU(N +M) is Seiberg-like
dual to weakly coupled SU(N − (M −Nf )). Under a Seiberg-like dual-
ity cascade1 all the N D3-branes are cascaded away with a finite M left
at the end in the IR. One will thus be left with a strongly coupled IR-
confining SU(M) gauge theory the finite temperature version of which is
what was looked at in [2]. So, at the end of the Seiberg-like duality cas-
cade in the IR, the number of colors Nc gets identified with M , which in
the ‘MQGP’ limit can be tuned to equal the value in QCD, i.e., 3. Now,
Nc can be written as the sum of the effective number Neff(r) of D3-branes
and the effective number Meff of the fractional D3-branes: Nc = Neff(r) +
Meff(r); Neff(r) is defined via F̃5 ≡ dC4 +B2 ∧ F3 = F5 + ∗F5 where
F5 ≡ NeffVol(Base of Resolved Warped Deformed Conifold), and Meff is
defined via Meff =

∫

S3 F̃3(= F3 − τH3) (the S3 being dual to eψ ∧
(sin θ1dθ1 ∧ dϕ1 −B1 sin θ2 ∧ dϕ2), wherein B1 is an asymmetry factor de-
fined in [2], and eψ ≡ dψ + cos θ1 dϕ1 + cos θ2 dϕ2). (See [2, 25] for details.).
The finite temperature on the gauge/brane side is effected in [2] in the grav-
itational dual via a black hole in the latter. Turning on of the temperature
(in addition to requiring a finite separation between the M D5-branes and
M D5-branes so as to provide a natural energy scale to demarcate the UV)
corresponds in the gravitational dual to having a non-trivial resolution pa-
rameter of the conifold. IR confinement on the brane/gauge theory side,
like the KS model [19], corresponds to having a non-trivial deformation (in
addition to the aforementioned resolution) of the conifold geometry in the
gravitational dual. The gravity dual is hence given by a resolved warped
deformed conifold wherein the D3-branes and the D5-branes are replaced
by fluxes in the IR, and the back-reactions are included in the 10D warp
factor as well as fluxes. Hence, the type IIB model of [2] is an ideal holo-
graphic dual of thermal QCD-like theories because: (i) it is UV conformal
(with the Landau poles being absent), (ii) it is IR confining, (iii) the quarks
transform in the fundamental representation of flavor and color groups, and
(iv) it is defined for the entire range of temperature - both low (i.e., T < Tc
corresponding to a vanishing horizon radius in the gravitational dual ) and
high (i.e., T > Tc corresponding to non-vanishing horizon radius in the grav-
itational dual).

1Even though the Seiberg duality (cascade) is applicable for supersymmetric
theories, for non-supersymmetric theories such as the holographic type IIB string

theory dual of [2], the same is effected via a radial rescaling: r → e
−

2π
3gsMeff r [20]

under an RG flow from the UV to the IR.
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Now, we give a brief review the type IIA Stominger-Yau-Zaslow (SYZ)
mirror [26] of [2] and its M-Theory uplift at intermediate gauge coupling,
as constructed in [1]. Now, to construct a holographic dual of thermal QCD-
like theories, one would have to consider intermediate gauge coupling (as
well as finite number of colors) − dubbed as the ‘MQGP limit’ defined in
[1] as follows:

(1) gs
<∼ 1,M,Nf ≡ O(1), N ≫ 1,

gsM
2

N
≪ 1.

From the perspective of gauge-gravity duality, this therefore requires looking
at the strong-coupling/non-perturbative limit of string theory -M theory.

The M-Theory uplift of the type IIB holographic dual of [2] was con-
structed in [1] by working out the SYZ type IIA mirror of [2] implemented
via a triple T duality along a delocalized special Lagrangian (sLag) T 3 −
which could be identified with the T 2-invariant sLag of [27] with a large
base B(r, θ1, θ2) [15, 16] 2 Let us explain the basic idea. Consider the afore-
mentioned N D3-branes oriented along x0,1,2,3 at the tip of conifold and
the M D5-branes parallel to these D3-branes as well as wrapping the van-
ishing S2(θ1, ϕ1). A single T-dual along ψ yields N D4-branes wrapping
the ψ circle and M D4-branes straddling a pair of orthogonal NS5-branes.
This pair of NS5-branes correspond to the vanishing S2(θ1, ϕ1) and the
blown-up S2(θ2, ϕ2) with a non-zero resolution parameter a - the radius
of the blown-up S2(θ2, ϕ2). Now, two more T-dualities along ϕ1 and ϕ2,
convert the aforementioned pair of orthogonal NS5-branes into a pair of
orthogonal Taub-NUT spaces, the N D4-branes into N color D6-branes
and the M straddling D4-branes also to color D6-branes. Similarly, in the
presence of the aforementioned Nf flavor D7-branes, oriented parallel to
the D3-branes and “wrapping” a non-compact four-cycle Σ(4)(r, ψ, θ1, ϕ1),

2Consider D5-branes wrapping the resolved S2 of a resolved conifold geometry
as in [28], which, globally, breaks SUSY [29]. As in [11], to begin with, a delocal-
ized SYZ mirror is constructed wherein the pair of S2s are replaced by a pair of
T 2s, and the correct T-duality coordinates are identified. Then, when uplifting the
mirror toM theory, it was found that a G2-structure can be chosen that is in fact,
free, of the aforementioned delocalization. For the delocalized SYZ mirror of the
resolved warped deformed conifold uplifted toM-Theory with G2 in [1], the idea is
precisely the same. Also, as shown in the second reference of [15] and [16], the type
IIB/IIA SU(3) structure torsion classes in the MQGP limit and in the UV/UV-IR
interpolating region (and as will be shown in Sec. 4 of this paper, also in the IR
and inclusive of O(l6p) corrections), satisfy the same relationships as satisfied by
corresponding supersymmetric conifold geometries [14].
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upon T-dualization yield Nf flavor D6-branes “wrapping” a non-compact
three-cycle Σ(3)(r, θ1, ϕ2). An uplift toM-Theory will convert theD6-branes
to KK monopoles, which are variants of Taub-NUT spaces. All the branes
are hence converted into geometry and fluxes, and one ends up with M-
Theory on a G2-structure manifold. Similarly, one may perform identical
three T-dualities on the gravity dual on the type IIB side, which is a re-
solved warped-deformed conifold with fluxes, to obtain another G2 structure
manifold, yielding theM-Theory uplift of [1, 16].

To the best of our knowledge, [1] is the only holographicM-Theory dual
of thermal QCD that is able to:

• yield a deconfinement temperature Tc from a Hawking-Page phase
transition at vanishing baryon chemical potential consistent with the
very recent lattice QCD results in the heavy quark [30] limit

• yield a conformal anomaly variation with temperature compatible with
the very recent lattice results at high (T > Tc) and low (T < Tc) tem-
peratures [30]

• Condensed Matter Physics: inclusive of the non-conformal corrections,
obtain:
1) a lattice-compatible shear-viscosity-to-entropy-density ratio (first

reference in [15])
2) temperature variation of a variety of transport coefficients includ-

ing the bulk-viscosity-to-shear-viscosity ratio, diffusion coefficient,
speed of sound (the last reference in [15]), electrical and thermal
conductivity and the Wiedemann-Franz law (first reference in [15]);

• Particle Phenomenology: obtain:
1) lattice compatible glueball spectroscopy [31]
2) meson spectroscopy (first reference of [32])
3) glueball-to-meson decay widths (second reference of [32])

• Mathematics: provide, for the first time, an SU(3)-structure (for type
IIB (second reference of [15])/IIA [16] holographic dual) and G2-
structure [16] torsion classes of the six- and seven-folds in the UV-
IR interpolating region/UV, relevant to type string/M-Theory holo-
graphic duals of thermal QCD-like theories at high temperatures.
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3. O(l6
p
) corrections to the background of [1]

in the MQGP limit

In this section, we discuss how the equations of motion (EOMs) starting
from D = 11 supergravity action inclusive of the O(R4) terms in the same
(which provide the O(l6p) corrections to the leading order terms in the ac-
tion), are obtained and how the same are solved. The actual EOMs are
given in Appendix A - EOMs in A.1 obtained near the ψ = 2nπ, n = 0, 1, 2
coordinate patches (wherein GM

rM ,M ̸= r and GM
x10N , N ̸= x10 vanish) and

EOMs in A.2 obtained away from the same. The solutions of the EOMs are
similarly split across subsections 3.1 and 3.2.

Let us begin with a discussion on the O(R4)-corrections to the N =
1, D = 11 supergravity action. There are two ways of understanding the
origin of these corrections. One is in the context of the effects ofD-instantons
in IIB supergravity/string theory via the four-graviton scattering amplitude
[33]. The other is D = 10 supersymmetry [34]. Let us discuss both in some
detail.

• Let us first look at interactions that are induced at leading order in
an instanton background in both, the supergravity and the string de-
scriptions, including a one-instanton correction to the tree-level and
one loop R4 terms [33]. The bosonic zero modes are parameterised by
the coordinates corresponding to the position of the D-instanton. The
fermionic zero modes are generated by the broken supersymmetries.
The physical closed-string states can be expressed in terms of a light-
cone scalar superfield Φ(x, θ), θa(=1,...,8) being an 8s SO(8) spinor. The
16-component (indexed by A) broken supersymmetry chiral spinor can
be decomposed under SO(8) into ηa, η̇ȧ. The Grassmann parameters
are fermionic supermoduli corresponding to zero modes of λ - the di-
latino - and must be integrated over together with the bosonic zero
modes, yµ. The simplest open-string world-sheet that arises in a D-
brane process is the disk diagram. An instanton carrying some zero
modes corresponds, at lowest order, to a disk world-sheet with open-
string states attached to the boundary. An instanton carrying some
zero modes corresponds, at lowest order, to a disk world-sheet with
open-string states attached to the boundary. The one-instanton terms
in the supergravity effective action can be deduced by considering on-
shell amplitudes in the instanton background. The integration over
the fermionic moduli absorbs the sixteen independent fermionic zero
modes. The authors of [33] considered a contact term proportional
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to λ16 arising in IIB supergravity from the nonlocal Green function
which at long distances looks like a momentum-independent term in
the S-matrix with sixteen external on-shell dilatinos:

e2πiW1ϵA1···A16λA1 . . . λA16 .

The same result is also obtained in string theory from diagrams with
sixteen disconnected disks with a single dilatino vertex operator and
a single open-string fermion state attached to each one. The overall
factor of e2πiW1 , which is characteristic of the stringy D-instanton , is
evaluated at χ = ℜW1 = 0 in the string calculation. Consider now am-
plitudes with four external gravitons. The leading term in supergravity
is again one in which each graviton is associated with four fermionic
zero modes. Integration over yµ generates a nonlocal four-graviton in-
teraction. In the corresponding string calculation the world-sheet con-
sists of four disconnected disks to each of which is attached a single
closed-string graviton vertex and four fermionic open-string vertices.
Writing the polarization tensor as ζµrνr = ζ(µr ζ̃νr), and evaluating the
fermionic integrals in a special frame as described in [33], in terms of
its SO(8) components, one obtains the following result for ⟨h⟩4 3 :

(3) ⟨h⟩4 = −
1

2
ηaγ

ij
abηb η̇ȧγ

mn
ȧḃ
η̇ḃRijmn

where: γijab =
1
2γ

[i
aȧγ

j]
ȧb, γ

i being the generators of Cl8 Clifford algebra

and Rijmn ≡ kikmζ(j ζ̃n) is the linearized curvature. The result contains

3In both, string theory and supergravity, the four-graviton scattering result is
given as an integral of the product of four factors of “⟨h⟩4” defined as the tadpole
associated with the disk with four fermion zero modes coupled to the graviton and
the self dual fourth-rank antisymmetric tensor:

(2) ⟨h⟩4 = ϵ̄0γ
ρµτ ϵ0 ϵ̄0γ

λντ ϵ0 ζµνkρkλ,

ϵ0 corresponding to the broken supersymmetry - the only covariant combination of
four ϵ0’s, two physical momenta and the physical polarization tensor.
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two parity-conserving terms 4

(6) A4({ζ(r)h }) = Ce2iπW1

∫

d10yei
∑

r kr·y

×
(

ti1j1···i4j4tm1n1···m4n4
− 1

4
ϵi1j1···i4j4ϵm1n1···m4n4

)

×Rm1n1

i1j1
Rm2n2

i2j2
Rm3n3

i3j3
Rm4n4

i4j4
.

• In [34], it is shown that the eleven-dimensional O(R4) corrections have
an independent motivation based on supersymmetry in ten dimensions.
This was shown to follow from its relation to the term C(3) ∧X8 in
the M-theory effective action which is known to arise from a variety
of arguments, e.g. anomaly cancellation [35]. The expression X8 is the
eight-form in the curvatures that is inherited from the term in type
IIA superstring theory [36] which is given by

(7) −
∫

d10xB ∧X8 = −
1

2

∫

d10x

√

−gA(10)ϵ10BX8,

where

(8) X8 =
1

192

(

tr R4 − 1

4
(tr R2)2

)

.

There are two independent ten-dimensional N = 1 super-invariants
which contain an odd-parity term ([37] and previous authors):

(9) I3 = t8tr R
4 − 1

4
ϵ10Btr R4

4The integral over the dotted and undotted spinors in the four-graviton scattering
amplitude factorizes and can be evaluated by using,

(4)

∫

d8ηaηa1 · · · ηa8 = ϵa1···a8 ,

∫

d8η̇ȧη̇ȧ1 · · · η̇ȧ8 = ϵȧ1···ȧ8 .

Substituting into the four-graviton scattering amplitude the following tensors ap-
pear

ϵa1a2···a8γ
i1j1
a1a2
· · · γi4j4a7a8

= ti1j1···i4j4 = ti1j1···i4j48 +
1

2
ϵi1j1···i4j4

ϵȧ1ȧ2···ȧ8γ
i1j1
ȧ1ȧ2
· · · γi4j4ȧ7ȧ8

= ti1j1···i4j48 = ti1j1···i4j4 − 1

2
ϵi1j1···i4j4 ,(5)

t8 symbol defined in (13).
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and:

(10) I4 = t8(tr R
2)2 − 1

4
ϵ10B(tr R2)2.

Using the fact that

(11) t8t8R
4 = 24t8tr(R

4)− 6t8(tr R
2)2,

it follows that the particular linear combination,

(12) I3 −
1

4
I4 =

1

24
t8t8R

4 − 48ϵ10B X8

contains both the ten-form B ∧X8 and t8t8R
4. The R refers to the

curvature two-form, ϵ10 is the ten-dimensional Levi-Civita symbol and
the t8 symbol is defined as follows:

(13)

tN1...N8

8 =
1

16

(

−2
(

GN1N3GN2N4GN5N7GN6N8 +GN1N5GN2N6GN3N7GN4N8

+GN1N7GN2N8GN3N5GN4N6
)

+ 8
(

GN2N3GN4N5GN6N7GN8N1 +GN2N5GN6N3GN4N7GN8N1

+GN2N5GN6N7GN8N3GN4N1
)

− (N1 ↔ N2)− (N3 ↔ N4)− (N5 ↔ N6)− (N7 ↔ N8)
)

,

wherein GM1M2 is the metric inverse.

The N = 1, D = 11 supergravity action inclusive of O(l6p) terms, is hence
given by:

(14) SD=11 =
1

2κ211

[

∫

M11

√
GR+

∫

∂M11

√
hK

− 1

2

∫

M11

√
GG2

4 −
1

6

∫

M11

C3 ∧G4 ∧G4

+

(

4πκ211
) 2

3

(2π)432.213

(

∫

M
d11x
√
GM

(

J0 −
1

2
E8

)

+ 32.213
∫

C3 ∧X8 +

∫

t8t8G
2R3 + ·

)]

− Sct,
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where:

J0 = 3 · 28(RHMNKRPMNQRH
RSPRQRSK(15)

+
1

2
RHKMNRPQMNRH

RSPRQRSK)

E8 =
1

3!
ϵABCM1N1...M4N4ϵABCM ′

1N
′

1...M
′

4N
′

4
RM

′

1N
′

1
M1N1

. . . RM
′

4N
′

4
M4N4

,

t8t8G
2R3 = tM1...M8

8 t8N1....N8
GM1

N1PQGM2

N2

PQR
N3N4

M3M4
R N5N6

M5M6
R N7N8

M7M8
;

κ211 =
(2π)8l9p

2
;

κ211 being related to the eleven-dimensional Newtonian coupling constant,
and G = dC with C being theM-theory three-form potential with the four-
form G being the associated four-form field strength.

In the spirit of completion of the 1-loop O(R4) in the presence of
NS-NS B in type IIA compatible with T duality, and hence defining
the torsionful spin connection, Ω± ≡ Ω± 1

2H,Hab = Habµ dxµ, and X8 ≡
X8(R(Ω+))+X8(R(Ω−))

2 , where R(Ω+) = R(Ω) + 1
2dH+ 1

4H ∧H, the ten di-
mensional X8 shifts by an exact form [9] 5:

(16) X8 =
1

192(2π)4

[(

trR4 − 1

4
(trR2)2

)

+ d

(

1

2
tr
(

H∇HR2 +HR∇HR+HR2∇H
)

− 1

8

(

trR2 trH∇H+ 2trHR trR∇H
)

1

16
tr
(

2H3(∇HR+R∇H) +HRH2∇H+H∇HH2R
)

− 1

2

(

trH∇H trRH2 + trR∇H trH3 + tr∇HH2 trHR
)

+
1

32
tr∇HH5 − 1

192
tr∇HH2 trH3

+
1

16
trH(∇H)3 − 1

64
trH∇H tr(∇H)2

)]

.

5To be consistent with the notation of the rest of the paper, we have dropped the
ˆover eleven-dimensional objects in (17); when wedged with C it will be understood
that the objects like the metric, curvature, etc. are eleven-dimensional and when
wedged with B, ten dimensional.



✐

✐

“11-Misra” — 2024/3/4 — 16:00 — page 3816 — #16
✐

✐

✐

✐

✐

✐

3816 V. Yadav and A. Misra

Defining the O(1, 10)-valued one-form Gabc ≡ 4Gµνρλdx
µeaνebρecλ, the M-

theory uplift of the first two lines of (16) of type IIA, yields [9] 6:

(17) B2 ∧X8 −→
1

192(2π)4

[

C ∧
(

trR4 − 1

4
(trR2)2

)

+G ∧
(1

4

(

RabRbcGcde∇Gdae + 2RabGbceRcd∇Gdae +RabRbc∇GcdeGdae
)

− 1

24

(

trR2 ∧ Gabe∇Gbae + 6RabGbaeRcdGdce
)

+ · · ·
)]

.

In this paper, we restrict ourselves only to the first line in (17). Given that
the same was shown to vanish [1], perhaps to be T-duality invariant, the
sum of the terms in the second and third lines of (17) too yield zero. We
have not proven the same.

The action in (14) is holographically renormalizable by construction of
appropriate counter terms Sct. This is seen as follows. It can be shown
[5] that the bulk on-shell D = 11 supergravity action inclusive of O(R4)-
corrections is given by:

(18) Son−shell
D=11 = −1

2

[

−2S(0)
EH + 2S

(0)
GHY + β

(

20

11
SEH − 2

∫

M11

√

−g(1)R(0)

+ 2SGHY −
2

11

∫

M11

√

−g(0)gMN
(0)

δJ0

δgMN
(0)

)

]

.

The UV divergences of the various terms in (18) are summarized below:

∫

M11

√−gR
∣

∣

∣

∣

UV−divergent

,

∫

∂M11

√
−hK

∣

∣

∣

∣

UV−divergent

∼ r4UV log rUV,

∫

M11

√−ggMN δJ0
δgMN

∣

∣

∣

∣

UV−divergent

∼ r4UV

log rUV
.(19)

6Strictly speaking, (17) is valid when M11 is a trivial S1 fibration over an M10

and Gµνρx10 ̸= 0, Gµνρλ = 0. We, near the ψ = 2nπ-coordinate patches, have M11

as a warped product of theM-theory circle and M10, which for a delocalized (IR-
valued in this paper) value of r can be thought of as a trivial circle fibration. The
Gµνρλ arising from AIIA ∧HIIA, via

∫

G ∧ ∗G, results in a UV-divergent contribu-
tion which is canceled off by an appropriate boundary flux term [51].
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It can be shown [5] that an appropriate linear combination of the bound-

ary terms:
∫

∂M11

√
−hK

∣

∣

∣

r=rUV

and
∫

∂M11

√
−hhmn ∂J0

∂hmn

∣

∣

∣

r=rUV

serves as the

appropriate counter terms to cancel the UV divergences (19) 7.
The EOMS are:

RMN −
1

2
gMNR−

1

12

(

GMPQRG
PQR
N − gMN

8
GPQRSG

PQRS
)

= −β
[

gMN

2

(

J0 −
1

2
E8

)

+
δ

δgMN

(

J0 −
1

2
E8

)]

,

d ∗G =
1

2
G ∧G+ 32213 (2π)4 βX8,(20)

where [38]:

(21) β ≡
(

2π2
) 1

3
(

κ211
) 2

3

(2π)4 32212
∼ l6p,

RMNPQ, RMN ,R in (14)/(20) being respectively the elven-dimensional Rie-
mann curvature tensor, Ricci tensor and the Ricci scalar.

Now, one sees that if one makes an ansatz:

gMN = g
(0)
MN + βg

(1)
MN ,

CMNP = C
(0)
MNP + βC

(1)
MNP ,(22)

then symbolically, one obtains:

(23) β∂
(√−g∂C(1)

)

+ β∂
[

(√−g
)(1)

∂C(0)
]

+ βϵ11∂C
(0)∂C(1)

= O(β2) ∼ 0[up to O(β)].

One can see that one can find a consistent set of solutions to (23) wherein

C
(1)
MNP = 0 up to O(β). This will be shown after (44). Assuming that one

7For consistency, one needs to impose the following relationship between the UV-
valued effective number of flavor D7-branes of the parent type IIB dual, NUV

f and

log rUV: N
UV
f = (log rUV)

15
2

logN .
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can do so, henceforth we will define:

δgMN = βg
(1)
MN = GMQGP

MN fMN (r),(24)

no summation implied. The first equation in (20) will be denoted by
EOMMN in Appendix A. Appendix A has all the EOMs listed. The dis-
cussion in the same is divided into two sub-sections: the EOMs and their
solutions for fMN s are worked out for the ψ = 0, 2π, 4π-branches in A.1 and
for ψ = ψ0 ̸= 2nπ, n = 0, 1, 2 in A.2.

One can show:

(25)

δJ0
MQGP, IR

−−−−−−−→ 3× 28δRHMNKR RSP
H

(

RPQNKR
Q
RSM +RPSQKR

Q
MNR

+ 2
[

RPMNQR
Q
RSK +RPNMQR

Q
SRK

]

)

≡ 3× 28δRHMNKχHMNK

= −δgM̃Ñ

[

gMÑRHÑNKχHMNK + gNÑRHMM̃KχHMNK

+ gKM̃RHMNÑχHMNK +
1

2

(

gHÑ [DK1
, DN1

]χM̃N1K1

H

+ gHÑDM1
DN1

χ
M1[Ñ1M̃ ]
H − gHH̃DH̃DN1

χ
Ñ [N1M̃ ]
H

)]

,

where:

(26) χHMNK ≡ R RSP
H

[

RPQNKR
Q
RSM +RPSQKR

Q
MNR

+ 2
(

RPMNQR
Q
RSK +RPNMQR

Q
SRK

)]

.
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Further:

(27) δE8 ∼ −
2

3
δgM̃Ñg

N ′

1Ñ ϵABCM1N1,,,M4N4ϵABCM ′

1N
′

1...M
′

4N
′

4

×RM
′

1M̃
M1N1

R
M ′

2N
′

2

M2N2
R
M ′

3N
′

3

M2N2
R
M ′

4N
′

4

M4N4

+
δgM̃Ñ

3

[

2ϵABCM1Ñ,,,M4N4ϵABCM ′

1N
′

1...M
′

4N
′

4
gN

′

1Ñ1gM
′

1M̃

×DÑ1
DM1

(

R
M ′

2N
′

2

M2N2
R
M ′

3N
′

3

M2N2
R
M ′

4N
′

4

M4N4

)

+ ϵABCM1N1,,,M4N4ϵABCM ′

1N
′

1...M
′

4N
′

4
gN

′

1Ñ1gM
′

1M̃

× [DÑ1
, DM1

]
(

R
M ′

2N
′

2

M2N2
R
M ′

3N
′

3

M2N2
R
M ′

4N
′

4

M4N4

)

− 2ϵABCM1M̃,,,M4N4ϵABCM ′

1N
′

1...M
′

4N
′

4
gN

′

1ÑgM
′

1L̃

×DL̃1
DM1

(

R
M ′

2N
′

2

M2N2
R
M ′

3N
′

3

M2N2
R
M ′

4N
′

4

M4N4

)

]

,

where, e.g., [39]

(28) ϵABCM1M2,,,M8ϵABCM ′

1M
′

2...M
′

8
R
M ′

1M
′

2

M1M2
R
M ′

3M
′

4

M3M4
R
M ′

5M
′

6

M5M6
R
M ′

7M
′

8

M7M8

= −3!8!δM1

N1]
...δM8

M ′

8]
R
M ′

1M
′

2

M1M2
R
M ′

3M
′

4

M3M4
R
M ′

5M
′

6

M5M6
R
M ′

7M
′

8

M7M8
.

Writing: TMN ≡ G PQR
M GNPQR − gMN

8 G2, the O(l6p) “perturbations”

T
(1)
MN therein will be given by:

T
(1)
MN = T (1)

MN + T (2)
MN −

gMN

2
δgPP

′T (3)
PP ′ ,(29)

where:

T (1)
MN ≡ 3δgPP

′

gQQ
′

GMPQRGNP ′Q′R′ ≡ δgPP ′CMNPP ′ ,

T (2)
MN ≡ −

δgMN

8
GPQRSG

PQRS ≡ −δgMN

8
G2,

T (3)
PQ ≡ gQQ

′

gRR
′

gSS
′

GPQRSGP ′Q′R′S′ .(30)

In the IR (i.e. small-r limit), the various EOMs, denoted by EOMMN

henceforth, corresponding to perturbation of the first equation of (20) up
to O(β), and their solutions, have been obtained in appendix A: near
the ψ = 2nπ, n = 0, 1, 2-patches in A.1, and near the ψ ̸= 2nπ, n = 0, 1, 2-
patch (wherein, unlike ψ = 2nπ, n = 0, 1, 2-patches, some GM

rM ,M ̸= r and
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GM
x10N , N ̸= x10 components are non-zero) in A.2. The EOMs are obtained

by expanding the coefficients of f
(n)
MN , n = 0, 1, 2 near r = rh and retaining

the LO terms in the powers of (r − rh) in the same, and then performing
a large-N -large-| log rh|-logN expansion. It is shown in A.1 that near the
ψ = 2nπ, n = 0, 1, 2-patches the EOMs reduce to fifteen independent EOMs
and four consistency checks, and in A.2 in ψ = ψ0 (arbitrary but different
from 2nπ, n = 0, 1, 2)-branches to seven independent EOMs and one consis-
tency check equation. In the following pair of subsections - 3.1 and 3.2 - we
present the final results for theM-theory metric components up to O(β).

3.1. Near ψ = 2nπ, n = 0, 1, 2-coordinate patches
and near r = rh

In this sub-section, we will obtain the EOMs and their solutions, in the
IR, near the ψ = 0, 2π, 4π-coordinate patches for the M theory black hole
solution dual to thermal QCD-like theories at high temperature:

(31) ds211 = e−
2φIIA

3

[

1
√

h(r, θ1,2)

(

−g(r)dt2 +
(

dx1
)2

+
(

dx2
)2

+
(

dx3
)2
)

+
√

h(r, θ1,2)

(

dr2

g(r)
+ ds2IIA(r, θ1,2, ϕ1,2, ψ)

)

]

+ e
4φIIA

3

(

dx11 +A
F IIB

1 +F IIB
3 +F IIB

5

IIA

)2
,

where A
F IIB
i=1,3,5

IIA are the type IIA RR 1-forms obtained from the triple T/SYZ-
dual of the type IIB F IIB

1,3,5 fluxes in the type IIB holographic dual of [2], and

g(r) = 1− r4h
r4 . For simplicity, we will be restricting to the Ouyang embed-

ding:

(32)
(

r6 + 9a2r4
)

1

4 e
i

2
(ψ−ϕ1−ϕ2) sin

θ1
2
sin

θ2
2

= µ,

µ being the Ouyang embedding parameter assuming |µ| ≪ r
3

2 , effected, e.g.,
by working in the neighborhood of:

(33) θ1 =
αθ1

N
1

5

, θ2 =
αθ2

N
3

10

;αθ1,2 ≡ O(1)

(wherein an explicit SU(3)-structure for the type IIB dual of [2] and its
delocalized SYZ type IIA mirror [1], and an explicit G2-structure for its
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M-Theory uplift [1] was worked out in [16]). Note, using (C31) - (C33) and
arguments similar to the ones given in [11], one can show that our results
are independent of any delocalization in θ1,2. The EOMs, corresponding to
the O(l6p) variation of (20) (via the substitution of (22) into (20)) will be
labelled as EOMMN in this section and appendix A.
This brings us to the first main lemma of this paper:
Lemma 1: In the neighborhood of the Ouyang embedding of flavorD7-branes
[20] (that figure in the type IIB string dual of thermal QCD-like theories
at high temperatures[2]) effected by working in the neighborhood of small
θ1,2 (assuming a vanishingly small Ouyang embedding parameter), in the
MQGP limit (1), limN→∞

E8

J0
= 0, limN→∞

t8t8G2R3

E8
= 0.

Proof:

• One can show that the leading-order-in-N contribution to J0 is given
by:

(34) J0 =
1

2
Rϕ2rθ1rRrψθ1rR

rϕ1r
ϕ2

Rψrϕ1r
−Rϕ2rθ1rRϕ1rθ1rR

rϕ1r
ϕ2

Rθ1rθ1r,

where, e.g., near (33),

Rϕ2rθ1r ∼ ( 1

N )
5/4

(9a2+r2)(r4−rh4)α3
θ1

∑

n1,n2,n3:n1+n2+n3=6 a
2n1r2n2r

2n3
h

gs5/4Nf 2r4(r2−3a2)3(6a2+r2)3 log3(N)α2
θ2

Rϕ1rθ1r ∼ −
gs7/4MN11/20Nf 5/3 log

5
3 (N) log(r)

∑

n1,n2,n3:n1+n2+n3=6 a
2n1r2n2r

2n3
h

r4(r2−3a2)(6a2+r2)(9a2+r2)(r4−rh4)αθ1α
2
θ2

Rrψθ1r ∼ −
gs7/4MN3/20Nf 5/3 log

5
3 (N) log(r)αθ1

∑

n1,n2,n3:n1+n2+n3=6 a
2n1r2n2r

2n3
h

r4(r2−3a2)(6a2+r2)(9a2+r2)(r4−rh4)α2
θ2

R rϕ1r
ϕ2

∼ −
a4
(

1
N

)21/20 (
9a2 + r2

)2
(

1
log(N)

)4/3
(

r4 − rh4
)2
αθ2Σ1

gsNf
4/3r6 (r2 − 3a2)2 (6a2 + r2)2 α2

θ1

Rθ1rθ1r ∼
∑

n1,n2,n3:n1+n2+n3=6 a
2n1r2n2r2n3

h

r2 (r2 − 3a2)2 (6a2 + r2) (9a2 + r2) (r4 − rh4)
,

Rψ rϕ1r
∼ −

N2/5
∑

n1,n2,n3:n1+n2+n3=6 a
2n1r2n2r2n3

h

r2 (r2 − 3a2)2 (6a2 + r2) (9a2 + r2) (r4 − rh4)α2
θ1

,(35)

where Σ1 is defined in (A2), and
∑

n1,n2,n3:n1+n2+n3=6 a
2n1r2n2r2n3

h =

−81a8r4 + 243a8rh
4 + 27a6r6 − 36a6r2rh

4 + 15a4r8 − 27a4r4rh
4 +

a2r10 − 2a2r6rh
4. In (35) and henceforth, r/a/rh in fact would imply

r/a/rh
RD5/D5

(see the last reference in [15]). Substituting (35) into (34), one
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therefore obtains:

J0 ∼
a10

(

1

logN

)8/3

M( 1

N )
7/4

(9a2+r2)(r4−rh4) log(r)Σ1

∑

n1,n2,n3:n1+n2+n3=6 a
2n1r2n2r

2n3
h√

gsNf 5/3r16(3a2−r2)8(6a2+r2)7α3
θ2

(36)

∼
(

1

N

)7/4

.

For an arbitrary but small θ1,2, one can show that:

J0∼
a10

(

1

logN

)8/3

M( 1

N )
29/20

(9a2+r2)(r4−rh4) log(r)(19683
√
6 sin6 θ1+6642 sin2 θ2 sin3 θ1−40

√
6 sin4 θ2)

√
gsNf 5/3r16(3a2−r2)8(6a2+r2)7 sin3 θ2

(37)

×
∑

n1,n2,n3:n1+n2+n3=6

a2n1r2n2r2n3

h .

• For evaluating the contribution of E8, (28), one notes that one needs
to pick out eight of the eleven space-time indices (and anti-symmetrize
appropriately). Let us consider
RM1N1

M1N1
RM2N2

M2N2
RM3N3

M3N3
RM4N4

M4N4
which will be one of the

kinds of terms one will obtain using (28). After a very long and careful
computation, one can then show that for arbitrary small θ1,2 and not
just restricted to (33), the above contributes a 1

N2 via the following
most dominant term in the MQGP limit:

E8 ∋ Rtx
1

tx1Rx
2x3

x2x3Rrθ1rθ1

(

Rψx
10

ψx10 +Rϕ1ψ
ϕ1ψ

+Ryz ϕ2ψ

)

(

∼ O
(

1

N2

))

.

(38)

A similar computation for the other types of summands in (28) yield
a similar N dependence. Consequently, E8

J0
∼ 1

Nα , α > 0.

• Summing first w.r.t. M3,4, N3,4 in (15), one obtains
(39)
χ1(r,⟨θ1,2⟩)
N31/20 G N1MN

M1
G N2

M2
MNR

N5N6

M5M6
R N7N8

M7M8
tN1N2x0θ2N5N6N7N8

tM1M2x0ϕ2M5M6M7M8

as the LO term in N . Summing w.r.t. M5,6, N5,6, one obtains

(40)
χ2(r; ⟨θ1,2⟩)
N31/10

GN1MN
M1

G N2

M2
MNR

N7N8

M7M8
tN1N2x0θ2N7N8

tM1M2x0ϕ2M7M8
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up to LO in N . Finally, summing w.r.t. M7,8, N7,8 one obtains:

(41)
χ3(r, ⟨θ1,2⟩)
N93/20

G N1MN
M1

G N2

M2
MN tN1N2x0θ2x0θ2x0θ2t

M1M2x0ϕ2x0ϕ2x0ϕ2 ,

and restricted to (32)∩(33) one obtains:

(42) t8t8G
2R3

∣

∣

(32)∩(33) ∼
χ4(r; ⟨θ1,2⟩
N111/20

,

which is large-N suppressed as compared to the J0 and E8.
Hence, (36)-(37) along with (42), one proves Lemma 1, and obtains

the following hierarchy:

(43) t28G
2R3 < E8 < J0.

Henceforth, E8, t
2
8G

2R3 (and their variations) will be disregarded as com-
pared to J0 (and its variation) in the MQGP limit.
We now come to the second lemma of this paper:
Lemma 2: The O(β)-corrected M-theory metric of [1] in the MQGP
limit near the ψ = 2nπ, n = 0, 1, 2-branches up to O((r − rh)2) [and up to
O((r − rh)3) for some of the off-diagonal components along the delocalized
T 3(x, y, z)] - the components which do not receive an O(β) corrections, are
not listed in (44) - is given below:

Gtt = GMQGP
tt

[

1 +
1

4

4b8
(

9b2 + 1
)3 (

4374b6 + 1035b4 + 9b2 − 4
)

βM
(

1
N

)9/4
Σ1

(

6a2 + rh
2
)

log(rh)

27π (18b4 − 3b2 − 1)5 logN2Nfrh2α
3
θ2
(9a2 + rh2)

(r − rh)2
]

Gx1,2,3x1,2,3 = GMQGP
x1,2,3x1,2,3

[

1− 1

4

4b8
(

9b2 + 1
)4 (

39b2 − 4
)

M
(

1
N

)9/4
β
(

6a2 + rh
2
)

log(rh)Σ1

9π (3b2 − 1)5 (6b2 + 1)4 logN2Nfrh2 (9a2 + rh2)α
3
θ2

(r − rh)2
]

Grr = GMQGP
rr

[

1 +

(

− 2
(

9b2 + 1
)4
b10M

(

6a2 + rh
2
) (

(r − rh)2 + rh
2
)

Σ1

3π (−18b4 + 3b2 + 1)4 logNN8/15Nf (−27a4 + 6a2rh2 + rh4)α
3
θ2

+ Czz
(1) − 2Cθ1z

(1) + 2Cθ1x
(1)

)

β

]

Gθ1x = GMQGP
θ1x

[

1 +

(

−
(

9b2 + 1
)4
b10M

(

6a2 + rh
2
) (

(r − rh)2 + rh
2
)

Σ1

3π (−18b4 + 3b2 + 1)4 logNN8/15Nf (−27a4 + 6a2rh2 + rh4)α
3
θ2

+ Cθ1x
(1)

)

β

]

Gθ1z = GMQGP
θ1z

[

1 +

(

16
(

9b2 + 1
)4
b12
(

(r−rh)3
rh3 + 1

)

Σ1

243
√
2π3 (1− 3b2)10 (6b2 + 1)8 gs9/4 logN4N7/6Nf

3 (−27a4rh + 6a2rh3 + rh5)α
7
θ1
α6
θ2

+ C
(1)
θ1z

)

β

]
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Gθ2x = GMQGP
θ2x

[

1 +

(

16
(

9b2 + 1
)4
b12
(

(r−rh)3
rh3 + 1

)

Σ1

243
√
2π3 (1− 3b2)10 (6b2 + 1)8 gs9/4 logN4N7/6Nf

3 (−27a4rh + 6a2rh3 + rh5)α
7
θ1
α6
θ2

+ C
((1)
θ2x

)

β

]

Gθ2y = GMQGP
θ2y

[

1 +
3b10

(

9b2 + 1
)4
Mβ

(

6a2 + rh
2
)

(

1− (r−rh)2
rh2

)

log(rh)Σ1

π (3b2 − 1)5 (6b2 + 1)4 logN2N7/5Nf (9a2 + rh2)α
3
θ2

]

Gθ2z = GMQGP
θ2z

[

1 +

(

3
(

9b2 + 1
)4
b10M

(

6a2 + rh
2
)

(

1− (r−rh)2
rh2

)

log(rh)Σ1

π (3b2 − 1)5 (6b2 + 1)4 logN2N7/6Nf (9a2 + rh2)α
3
θ2

+ Cθ2z
(1)

)

β

]

Gxy = GMQGP
xy

[

1 +

(

3
(

9b2 + 1
)4
b10M

(

6a2 + rh
2
)

(

(r−rh)2
rh2 + 1

)

log(rh)α
3
θ2
Σ1

π (3b2 − 1)5 (6b2 + 1)4 logN2N21/20Nf (9a2 + rh2)α
6
θ2l

+ C(1)
xy

)

β

]

Gxz = GMQGP
xz

[

1 +
18b10

(

9b2 + 1
)4
M
(

6a2 + rh
2
)

(

(r−rh)2
rh2 + 1

)

log3(rh)Σ1

π (3b2 − 1)5 (6b2 + 1)4 logN4N5/4Nf (9a2 + rh2)α
3
θ2

]

Gyy = GMQGP
yy

[

1−
3b10

(

9b2 + 1
)4
M
(

1
N

)7/4 (
6a2 + rh

2
)

log(rh)Σ1

(

(r−rh)2
r2h

+ 1
)

π (3b2 − 1)5 (6b2 + 1)4 logN2Nfrh2 (9a2 + rh2)α
3
θ2

]

Gyz = GMQGP
yz

[

1 +

(

64
(

9b2 + 1
)8
b22M

(

1
N

)29/12 (
6a2 + rh

2
)

(

(r−rh)3
rh3 + 1

)

log(rh)Σ3

27π4 (3b2 − 1)15 (6b2 + 1)12 gs9/4 logN6Nf
4rh3 (rh2 − 3a2) (9a2 + rh2)

2 α7
θ1
α9
θ2

+ C(1)
yz

)

β

]

Gzz = GMQGP
zz

[

1 +

(

C(1)
zz −

b10
(

9b2 + 1
)4
M
(

rh
2 − (r−rh)3

rh

)

log(rh)Σ1

27π3/2 (3b2 − 1)5 (6b2 + 1)4
√
gs logN2N23/20Nfα

5
θ2

)

β

]

Gx10x10 = GMQGP
x10x10

[

1−
27b10

(

9b2 + 1
)4
M
(

1
N

)5/4
β
(

6a2 + rh
2
)

(

1− (r−rh)2
rh2

)

log3(rh)Σ1

π (3b2 − 1)5 (6b2 + 1)4 logN4Nfrh2 (9a2 + rh2)α
3
θ2

]

,

(44)

where Σ1,3 are defined in (A2), and GMQGP
MN are theM theory metric com-

ponents in the MQGP limit at O(β0) [32]. The explicit dependence on θ1,2
of the M-theory metric components up to O(β), using (33), is effected by
the replacemements: αθ1 → N

1

5 sin θ1, αθ2 → N
3

10 sin θ2 in (44). Also, see
footnote 5.
We now present the third lemma of this paper:

Lemma 3: C
(1)
MNP = 0 up to O(β) is a consistent solution of (20).

Proof: The eleven-fold M11 in the M theory uplift as obtained in [1] is a
warped product of S1(x0)× Rconformal andM7(r, θ1,2, ϕ1,2, ψ, x

10), the latter
being a cone over M6(θ1,2, ϕ1,2, ψ, x

10) where M6(θ1,2, ϕ1,2, ψ, x
10) has the

following nested fibration structure:

M6(θ1,2, ϕ1,2, ψ, x10)←− S1(x10)
↓

M5(θ1,2, ϕ1,2, ψ)←−M3(ϕ1, ϕ2, ψ)
↓

B2(θ1, θ2)

.

As shown in [1], p21(M11) = p2(M11) = 0 up to O(β0) where pa is the a-th
Pontryagin class of M11. This hence implies that X8 = 0 up to O(β0).
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Now, (23) implies:
(45)

∑

N,P∈{t,x1,2,3,r,θ1,2,ϕ1,2,ψ,x10}
β∂M

(

√

−g(0)g(0)NP g(0)NP fNP∂
[MC

M1M2M3]
(0)

)

∼ 0,

where the “(0)” implies the O(β0)-terms of [1, 16, 32] and the ∼ im-
plies equality up to O(β2) corrections. For simplicity we work near the
ψ = 2nπ, n = 0, 1, 2-branches (resulting in the decoupling of M5(t, x

1,2,3, r)

and M6(θ1,2, ϕ1,2, ψ, x
10) and g

(0)
MN being diagonal for M = r, x10 [16]) re-

stricted to the Ouyang embedding (effected by the delocalized limit wherein
one works in the neighborhood of θ10 =

αθ1

N
1
5
, θ20 =

αθ2

N
3
10

(see footnote 5)

wherein, as also mentioned in 3.1, an explicit SU(3)-structure for the type
IIB dual as well as its delocalized Strominger-Yau-Zaslow (SYZ) type IIA
mirror as string theory duals of large-N thermal QCD-like theories, and an
explicit G2-structure for its M-theory uplift [1], was worked out in [16];
using (C31) - (C33) and arguments similar to the ones given in [11], one
can show that our results are independent of any delocalization in θ1,2).
Using the non-zero components of CMNP : Cθ1,2 ϕ1,2/ψ x10 [1], one can show
that (45) implies:
(46)
∑

N,P∈{t,x1,2,3,r,θ1,2,ϕ1,2,ψ,x10} β∂r
(

√

−g(0)g(0)NP g(0)NP fNP g
rr
(0)∂rC

M1M2x10

(0)

)

δM3

x10 ∼ 0,

where M1,M2 = θ1,2, ϕ1,2, ψ or precisely θ1,2, x, y, z where the delocalized
T 3(x, y, z) coordinates are defined near r = r0 ∈IR as [1] 8:

(48)

x =
√

h2 [h(r0, θ10,20)]
1

4 sin θ10 r0ϕ1,

y =
√

h4 [h(r0, θ10,20)]
1

4 sin θ20 r0ϕ2,

z =
√

h1 [h(r0, θ10,20)]
1

4 r0ψ,

8As explained in [40], the T 3-valued (x, y, z) are defined via:

ϕ1 = ϕ10 +
x

√
h2 [h(r0, θ10,20)]

1
4 sin θ10 r0

,

ϕ2 = ϕ20 +
y

√
h4 [h(r0, θ10,20)]

1
4 sin θ20 r0

ψ = ψ0 +
z

√
h1 [h(r0, θ10,20)]

1
4 r0

,(47)

and one works up to linear order in (x, y, z). Up to linear order in r, i.e., in the IR,
it can be shown [13] that θ10,20 can be promoted to global coordinates θ1,2 in all
the results in the paper.
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h being the delocalized warp factor [2]:
(49)

h(r0, θ10,20) =
L4

r40

[

1 + 3gsM2
eff

2πN logr0

{

1 +
3gsNeff

f

2π

(

logr0 +
1
2

)

+
gsNeff

f

4π log
(

sin θ102 sin θ202
)

}

]

,

wherein Meff was defined in Section 2 and N eff
f is defined via the type

IIB axion C0 =
Neff
f

4π (ψ − ϕ1 − ϕ2) (by standard monodromy arguments); the
squashing factors are defined below [2]:

(50) h1 =
1

9
+O

(

gsM
2

N

)

, h2 =
1

6
+O

(

gsM
2

N

)

, h4 = h2 +
4a2

r20
,

(a being the radius of the blown-up S2).
One immediately notes from (46) that (45) is identically satisfied for

M1,2,3 ∈ x0,1,2,3, r. The set of 5C2 equations (46) for M1,2 ∈ θ1,2, x, y, z, and
M3 = x10 are considered in Appendix D where one sees that in the IR: r =

χrh, χ = O(1) [and a(the resolution parameter)=
(

b+O
(

gsM2

N

))

rh [15]],

all ten of these equations substituting in the solutions for fMN from 3.1,
reduce to:

(51) βN
αf
f (logN)αlogN

(

Nα1FM1M2

θ1x
(b, χ, αθ1,2 , rh)C

(1)
θ1x

+Nα2

∑

(M,N)=(z,z),(θ1,z),(θ2,z)

FM1M2

MN (b, χ, αθ1,2 , rh)C
(1)
MN

)

= 0,

where αf = 2, 3;αlogN = 1, 2;α1 > α2 and C
(1)
MN are the constants of inte-

gration appearing in the solutions (44) to the O(β)-corrections to the M
theory metric components of [1, 16, 32] (44). Hence, up O(β) and LO in
N , (45) is identically satisfied if:

(52) C
(1)
θ1x

= 0 in (44),

and up to O(β) and NLO in N (assuming as in (A52), b ∼ 1√
3
), additionally:

{

FM1M2

θ1z,θ2z,zz
= 0
}

,

implying :

C(1)
zz = 2C

(1)
θ1z
, C

(1)
θ2z

= 0 in (44).(53)

One therefore sees that one can consistently set C
(1)
MNP = 0 up to O(β).
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3.2. Near ψ ̸= 2nπ, n = 0, 1, 2, and Near r = rh

In this sub-section we will be looking at the EOMs and their solutions
near the ψ = ψ0 ̸= 2nπ, n = 0, 1, 2-branches (wherein some GM

rM ,M ̸= r and
GM
x10N , N ̸= x10 components are non-zero) near r = rh.
One can show that leading-order-in-N contribution to J0 for small θ1,2

(i.e. corresponding to the Ouyang embedding of type IIB D7-branes’ em-
bedding [20] for vanishing small µOuyang) is given by:

J0 ∼
1

2
Rx

10tθ2tRtθ1θ2tR
tx10t

x10 Rθ1tx10t,(54)

where:

Rx
10tθ2t ∼ a2N

17

20 sin θ1 sin
2 θ2

(

9a2r4 + 9a2rh
4 + r6 + r2rh

4
)

(gs − 1)gs5/4logN
2MNf

4 sin
(

ψ0

2

)

r (6a2 + r2) (r4 − rh4)2 log(r)

(55)

Rtθ1θ2t ∼
gs5/2

(

1

logN

)4/3

M2Nf 8/3 sin2(ψ0
2 )(9a

2+r2)(r4−rh4)(r4+rh4) log(r)

N3/2r6 sin3 θ1 sin3 θ2(6a2+r2)

R tx10t
x10 ∼ −

(

1
logN

)4/3
sin4

(

ψ0

2

)

(

9a2 + r2
) (

r4 + rh
4
)

Nf
4/3 sin4 ϕ20r2 sin

4 θ2 (6a2 + r2) (r4 − rh4) log(r)

Rθ1tx10t ∼
(

1
N

)3/4
sin
(

ψ0

2

)

sin2 θ1
(

9a2 + r2
) (

r4 − rh4
) (

r4 + rh
4
)

gs11/4MNf
2 sin2 ϕ20r6 sin θ2 (6a2 + r2) log2(r)

.

yields:
(56)

J0 ∼ −
a2

(

1

logN

)14/3

sin6(ψ0
2 )(9a

2+r2)4(r4+rh4)4

N7/5(gs−1)gs3/2Nf 14/3 sin6 ϕ20r15 sin6 θ2(6a2+r2)4(r4−rh4) log3(r)
.

We now arrive at the fourth lemma of this paper:
Lemma 4: The following is the final result as regards the O(β)-corrected

M-theory metric of [1] in the MQGP limit in the ψ ̸= 2nπ, n = 0, 1, 2-
branches, e.g., near (33), up to O((r − rh)2) - the components which do
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not receive an O(β) corrections, are not listed in (57):
(57)

Gθ1θ2 = GMQGP
θ1θ2

[

1 +

(

κθ1θ2κ
2
b sin

2
(

ψ0

2

)

rh
2
(

1
N

)2α+ 3

2

√
gsNf

6 sin2 ϕ20(r − rh)2α2
θ2

+ Cθ1θ2
(1)

)

β

]

Gyy = GMQGP
yy

[

1 +

(

−
256N3/5 sin2 ϕ20rh

4α2
θ2

9(gs − 1) (rh2 − 3a2)2 log2(N)α6
θ1
log2 (9a2rh4 + rh6)

×
{

κyyN
3/10 sin2

(

ψ0

2

)

(

9a2 + rh
2
)

(log(rh)− 1)
((

9a2 + rh
2
)

log
(

9a2rh
4 + rh

6
)

− 8
(

6a2 + rh
2
)

log(rh)
)2

√
gsNf

6 sin2 ϕ20rh2 (6a2 + rh2)
3 (r − rh)2 log4(rh)α2

θ2
log8 (9a2rh4 + rh6)

+ Cθ1θ2
(1)

})

β

]

Gθ1y = GMQGP
θ1y

[

1 +
κθ1yβgsκbM16 sin4

(

ψ0

2

)

rhβN
−α

Nf
5 sin2 ϕ20(r − rh)3 log

9

2 (rh)α
4
θ1
α3
θ2

]

Gθ1z = GMQGP
θ1z

[

1 +
κθ1zβgs

15/2κbM sin4
(

ψ0

2

)

rhβN
−α

gs13/2Nf
5 sin2 ϕ20(r − rh)3 log

9

2 (rh)α
4
θ1
α3
θ2

]

Gxy = GMQGP
xy [1 +

κxyβ
√
gs(3gs − 4)κb

(

1
N

)2/5
sin4

(

ψ0

2

)

βN−α

(gs − 1)2Nf
6 sin2 ϕ20 log(N)(r − rh) log

11

2 (rh)αθ1α
2
θ2

]

Gyz = GMQGP
yz

[

1 +
κyzβgsκ

2
b logNM sin2

(

ψ0

2

)

rh
3βN−2α− 11

10 log2(rh)

(gs − 1)Nf
5 sin2 ϕ20(r − rh)3α3

θ1
α3
θ2

]

Gxz = GMQGP
xz

[

1 +

(

C(1)
xz −

κxzΣ̃2

√
2π11/2

√
gs(3gs − 4)κb sin

4
(

ψ0

2

)

βN−α− 2

5

(gs − 1)2Nf
6 sin2 ϕ20(r − rh) log

13

2 (rh)αθ1α
2
θ2

)

β

]

,

where κθ1θ2, θ1y, θ1z, xy, xz, yz ≪ 1, κyy ∼ O(1) and Σ̃2 is defined in (A80)
and α ∈ Z

+ appearing via (A52). Analogous to working near the ψ = 2nπ-
coordinate patches, the explicit dependence on θ1,2 of the M-theory met-
ric components up to O(β), using (33), is effected by the replacemements:
αθ1 → N

1

5 sin θ1, αθ2 → N
3

10 sin θ2 in (57). Also, see footnote 5. The Physics
implication of (57) is similar to (58) arising from (44).

4. Physics Lessons Learnt - IR-enhancement
large-N/Planckian-suppresion competition and when

O(l6
p
) is (not) enough

Based on the results of this paper and its applications as discussed in detail
in [4], [5], we now discuss the Physics lessons learnt as a consequence of
working out the O(R4)/O(l6p) corrections to theM-theory dual of large-N
thermal QCD-like theories.

The main Physics-related take-away of Section 3, e.g. from (44), can be
abstracted from the following table:
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S. No. GM
MN IR Enhancement Factor N Suppression

(logRh)
m

Rn
h

,m, n ∈ Z
+ Factor

in the O(R4) Correction in the O(R4) Correction

1 GM
R1,3 logRh N− 9

4

2 GM
rr,θ1x

1 N− 8

15

3 GM
θ1z,θ2x

R−5
h N− 7

6

4 GM
θ2y

logRh N− 7

5

5 GM
θ2z

logRh N− 7

6

6 GM
xy logRh N− 21

20

7 GM
xz (logRh)3 N− 5

4

8 GM
yy logRh N− 7

4

9 GM
yz

logRh

R7
h

N− 29

12

10 GM
zz logRh N− 23

20

11 GM
x10x10

logR3
h

R2
h

N− 5

4

Table 1: IR Enhancement vs. large-N Suppression in O(R4)-Corrections in
the M-theory Metric in the ψ = 2nπ, n = 0, 1, 2 Patches; Rh ≡ rh

RD5/D5
≪ 1,

RD5/D5 being the D5−D5 separation

One notes that in the IR: r = χrh, χ ≡ O(1), and up to O(β):

(58) fMN ∼ β
(logRh)m
RnhNβN

, m ∈ {0, 1, 3} , n ∈ {0, 2, 5, 7} , βN > 0.

Now, |Rh| ≪ 1. As estimated in [41], | logRh| ∼ N
1

3 , implying there is a
competition between Planckian and large-N suppression and infra-red en-
hancement arising from m,n ̸= 0 in (58). One could choose a heirarchy:
β ∼ e−γβNγN , γβ , γN > 0 : γβN

γN > 7N
1

3 +
(

m
3 − βN

)

logN (ensuring that
the IR-enhancement does not overpower Planckian suppression - we took
the O(β) correction to GM

yz , which had the largest IR enhancement, to set

a lower bound on γβ,N/Planckian suppression). If γβN
γN ∼ 7N

1

3 , then one
will be required to go to a higher order in β. This hence answers the question,
when one can truncate at O(β).
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5. Differential geometry or (IR) G-structure torsion classes
of non-supersymmetric string/M-theory duals including

the O(R4) corrections

The use of G-structure torsion classes is a very useful tool for classifying, spe-
cially non-Kähler geometries. A complete classification of the SU(n) struc-
tures relevant to non-supersymmetric string vacua, does not exist [53]. In
the literature, in the context of SU(3)-structure manifolds, classes of max-
imally symmetric non-supersymmetric vacua that break supersymmetry in
a controllable way, have been constructed, e.g. [54] wherein the first vac-
uum of this type was obtained by compactifying type IIB/F-theory with
O3 planes on conformally CY manifolds (SU(3)-structure manifolds with
W1 =W2 =W3 = 0 and 3W4 = 2W5); type II vacua of this type were stud-
ied in [55] and classified using calibrations in [56], and similar solutions in
heterotic string theory were obtained in [57] - see [58] for G2 structures
relevant to non-supersymmetric vacua in heterotic(M-)SUGRA.

A classification of SU(3)/G2/Spin(7)/Spin(4) structures relevant to
non-supersymmetric (UV-complete) string theoretic dual of large-N ther-
mal QCD-like theories, and its M-theory uplift, has been missing in the
literature. This is what we aim at achieving in this section.

Using the results for Ricci scalar of M6(r, θ1, θ2, ϕ1, ϕ2, ψ),
M7(r, θ1, θ2, ϕ1, ϕ2, ψ, x

10), M8(x
0, r, θ1, θ2, ϕ1, ϕ2, ψ, x

10) that figure in
the string/M-theory dual of large-N thermal QCD-like theories in this
work, in terms of the:

1) SU(3)-structure torsion classes [59], it is observed:

R(M6(r, θ1, θ2, ϕ1, ϕ2, ψ))(59)

= 15|W1|2 − |W2|2 − |W3|2 + 8⟨W5,W4⟩ − 2|W4|2 + 4d ∗ (W4 +W5)

̸= 0

(⟨, ⟩ denoting Mukai pairing),

2) G2-structure torsion classes [60], it is observed::

R(M7(r, θ1, θ2, ϕ1, ϕ2, ψ, x
10))(60)

= 12δW7 +
21

8
W 2

1 + 30|W7|2 −
1

2
|W14|2 −

1

2
|W27|2,
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3) Spin(7)-structure torsion classes [61], it is observed:

(61) R(M8(x
0, r, θ1, θ2, ϕ1, ϕ2, ψ, x

10)) =
49

18
||θ||2 − 1

12
||T ||2 + 7

2
δθ,

where: θ = 1
7 ∗ (δΦ ∧ Φ) , T = −δΦ− 7

6 ∗ (θ ∧ Φ), Φ being the
Spin(7) fundamental four-form. Note, that the eight-fold
M8(x

0, r, θ1, θ2, ϕ1, ϕ2, ψ, x
10) admits a Spin(7) structure if

p21(M8)− 4p2(M8) + 8χ(M8) = 0 [61], pa(M8) being the a-th
Pontryagin class of M8. Given that M8 could be thought of as
elliptic/T 2(x0, x10) fibration over M6(r, θ1, θ2, ϕ1, ϕ2, ψ), using the
Kunneth formula one sees that χ(M8) = χ(T 2)χ(M6) = 0. In the
delocalized limit, also modifying the arguments of [1] (which showed
X8 = 0 as p21(M11 = R

3 ×M8) = p2(M11) = 0), one can show that the
p21(M8) = p2(M8) = 0.

In this section, we will derive in the IR near the ψ = 2nπ, n = 0, 1, 2-
branches the non-zero SU(3)-structure torsion classes of the six-fold relevant
to the type IIA mirror, the G2-structure torsion classes of the seven-fold and
the SU(4)- and Spin(7)-structure torsion classes of the eight-fold relevant
to theM-Theory uplift of the type IIA mirror. As in Section 3, for simplic-
ity, we work near the Ouyang embedding (assuming a very small Ouyang
embedding parameter). But as mentioned later, using (C31) - (C33), based
on arguments of [11], one can see that the results of Table 1 in Section 5,
will still remain valid for arbitrary θ1,2. For arbitrary ψ, using the results of
subsection 3.2, it is expected that the results of Table 1 in Section 5 will go
through, though the co-frames will be considerably modified. We postpone
this discussion to a later work.

5.1. SU(3)-Structure Torsion Classes of the Type IIA Mirror

Generically for SU(n > 2)-structures, the intrinsic torsion decomposes into
five torsion classes Wi=1,...,5 [62], i.e.,

(62) T ∈ Λ1 ⊗ su(n)⊥ =

5
⊕

i=1

Wi.
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The adjoint representation 15 of SO(6) decomposes under SU(3) as 15 =
1 + 8 + 3 + 3̄. Thus, su(3)⊥ ∼ 1⊕ 3⊕ 3̄, and:

T ∈ Λ1 ⊗ su(3)⊥ = (3⊕ 3̄)⊗ (1⊕ 3⊕ 3̄)

= (1⊕ 1)⊕ (8⊕ 8)⊕ (6⊕ 6̄)⊕ (3⊕ 3̄)⊕ (3⊕ 3̄)′

≡W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5.

The SU(3) structure torsion classes can be defined in terms of J, Ω, dJ, dΩ
and the contraction operator ⌟ : ΛkT ⋆ ⊗ ΛnT ⋆ → Λn−kT ⋆, J being given by:

J = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6

(the metric being understood to be given in terms of the coframes as: ds26 =
∑6

i=1 (de
a)2), and the (3,0)-form Ω being given by

Ω = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6).

W1 =W+
1 +W−

1 with :

dΩ+ ∧ J = Ω+ ∧ dJ =W+
1 J ∧ J ∧ J,

dΩ− ∧ J = Ω− ∧ dJ =W−
1 J ∧ J ∧ J ;

(dΩ+)
(2,2) =W+

1 J ∧ J +W+
2 ∧ J,

(dΩ−)
(2,2) =W−

1 J ∧ J +W−
2 ∧ J ;

W3 = dJ (2,1) − [J ∧W4]
(2,1),

W4 =
1

2
J⌟dJ,

W5 =
1

2
Ω+⌟dΩ+.(63)

We now proceed to work out the coframes {ea}. This brings us to the
next lemma:

Lemma 5: The non-zero components of the type IIA metric near ψ =
0, 2π, 4π coordinate patch, e.g. near (33), obtained from theM theory metric
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of Sec. 3 inclusive of the O(R4) corrections are given by:
(64)

GIIA
θ1x = −gs

7/4 logNMN11/20Nf

(

r2 − 3a2
)

log(r)

3
√
2π5/4r2αθ1α

2
θ2

− βCθ1x(1)gs7/4 logNMN11/20Nf

(

rh
2 − 3a2

)

log(rh)

3
√
2π5/4rh2αθ1α

2
θ2

GIIA
θ1z =

gs
7/4 logNMN3/20Nfαθ1

(

r2 − 3a2
)

log(r)

2
√
2π5/4r2α2

θ2

+
βCθ1z

(1)gs
7/4 logNMN3/20Nfαθ1

(

r2 − 3a2
)

log(r)

2
√
2π5/4r2α2

θ2

GIIA
θ2x =

gs
7/4MN13/20Nf log(r)

(

36a2 log(r) + r
)

3
√
2π5/4rα3

θ2

+
βCθ2x(1)gs7/4MN13/20Nf log(r)

(

36a2 log(r) + r
)

3
√
2π5/4rα3

θ2

GIIA
θ2y =

√
2 4
√
π 4
√
gsN

7/20αθ2
9α2

θ1

−
βCθ2y(1)gs7/4M 4

√
N
√

1
Nf 4/3Nf

5/3α2
θ1
log(r)

(

36a2 log(r) + r
)

2
√
2π5/4rα3

θ2

GIIA
θ2z = −

gs
7/4M 4

√
NNfα

2
θ1
log(r)

(

36a2 log(r) + r
)

2
√
2π5/4rα3

θ2

−
βCθψ(1)gs7/4M 4

√
NNfα

2
θ1
log(r)

(

36a2 log(r) + r
)

2
√
2π5/4rα3

θ2

GIIA
xx = 1−

27b10
(

6b2 + 1
) (

9b2 + 1
)3
βM

(

1
N

)5/4 (
19683

√
6α6

θ1
+ 6642α2

θ2
α3
θ1
− 40

√
6α4

θ2

)

log3(rh)

2π (3b2 − 1)5Nfrh2α
3
θ2
(6b2 logN + logN)4

GIIA
yy = 1 +

27
(

9b2 + 1
)3
βb10M

(

1
N

)5/4 (−19683
√
6α6

θ1
− 6642α2

θ2
α3
θ1
+ 40

√
6α4

θ2

)

log3(rh)

2π (3b2 − 1)5 (6b2 + 1)3 logN4Nfrh2α
3
θ2

GIIA
zz =

2N3/5

27α2
θ2

+
2βC

(1)
zz N3/5

27α2
θ2

GIIA
xy =

2
√

2
3N

7/10

9α2
θ1
αθ2

+
2
√

2
3βCϕ1ϕ2

(1)N7/10

9α2
θ1
αθ2

GIIA
xz = − 4N

81α2
θ1
α2
θ2

+
2b10

(

9b2 + 1
)3
βM 4

√

1
N

(

19683
√
6α6

θ1
+ 6642α2

θ2
α3
θ1
− 40

√
6α4

θ2

)

log3(rh)

3π (3b2 − 1)5 (6b2 + 1)3 logN4Nfrh2α
2
θ1
α5
θ2

GIIA
yz = −

√

2
3N

3/10

3αθ2
−

√

2
3βCϕ2ψ

(1)N3/10

3αθ2
.

To work out the co-frames corresponding to (64), one diagonalizes
Gmn(r, θ1,2, ϕ1,2, ψ) or equivalently Gm̃ñ(θ1,2, ϕ1,2, ψ) for which one needs
to solve the following secular equation - a quintic:

(65) P (x) ≡ x5 +Ax4 +Bx3 + Cx2 + Fx+G = 0,

where:

A = −2N3/5(βC(1)zz + 1)

27α2
θ2

,

B = − 16N2

6561α4
θ1
α4
θ2
,

C =
16N2(βC(1)zz − 2βCyz(1))

6561α4
θ1
α4
θ2
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F =
32
√
π
√
gsN

27/10

531441α8
θ1
α2
θ2

,

G = −2gs
4logN2M2N12/5Nf

2

19683π2r4rh4α
6
θ1
α4
θ2

×
(

rh
2
(

3a2 − r2
)

log(r)(β(Czz(1) − 2Cθ1z(1))− 1)

+ βC(1)θ1x
r2
(

3a2 − rh2
)

(βCzz(1) + 1) log(rh)
)

×
(

βCθ1x(1)r2
(

3a2 − rh2
)

log(rh) + rh
2
(

3a2 − r2
)

log(r)
)

(66)

Using Umemura’s result [63] on expressing the roots of an algebraic
polynomial of degree n in terms of Siegel theta functions of genus g(> 1) =

[(n+ 2)/2] : θ

[

µ
ν

]

(z,Ω) for µ, ν ∈ Rg, z ∈ Cg and Ω being a complex

symmetric g × g period matrix of the hyperelliptic curve Y 2 = P (Z) with
Im(Ω) > 0, and defined as follows:

θ

[

µ
ν

]

(z,Ω) =
∑

n∈Zg
eiπ(n+µ)

TΩ(n+µ)+2iπ(n+µ)T (z+ν).

Hence for a quintic, one needs to use Siegel theta functions of genus three.
The period matrix Ω will be defined as follows:

Ωij = σikρkj

where

σij ≡
∮

Aj

dZ Z i−1

√

Z(Z − 1)P (Z)
and

ρij ≡
∮

Bj

Z i−1

√

Z(Z − 1)(Z − 2)P (Z)
,

{Ai} and {Bi} being a canonical basis of cycles satisfying: Ai ·Aj = Bi ·
Bj = 0 and Ai ·Bj = δij ; σ

ij are normalization constants determined by:
σikσkj = δij . Umemura’s result then is that a root:

1

2

(

θ

[

1
2 0 0
0 0 0

]

(0,Ω)

)4(

θ

[

1
2

1
2 0

0 0 0

]

(0,Ω)

)4
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×
[

(

θ

[

1
2 0 0
0 0 0

]

(0,Ω)

)4(

θ

[

1
2

1
2 0

0 0 0

]

(0,Ω)

)4

+

(

θ

[

0 0 0
0 0 0

]

(0,Ω)

)4(

θ

[

0 1
2 0

0 0 0

]

(0,Ω)

)4

−
(

θ

[

0 0 0
1
2 0 0

]

(0,Ω)

)4(

θ

[

0 1
2 0

1
2 0 0

]

(0,Ω)

)4
]

.

However, using the results of [64], one can express the roots of a quintic in
terms of derivatives of genus-two Siegel theta functions as follows:

x0 =









σ22
d

dz1
θ





1
2

1
2

0 1
2



((z1,z2),Ω)−σ21
d

dz2
θ





1
2

1
2

0 1
2



((z1,z2),Ω)

ξθ





1
2 0
0 1

2



((z1,z2),Ω)θ





1
2 0
0 0



((z1,z2),Ω)θ





0 1
2

1
2 0



((z1,z2),Ω)θ





0 1
2

0 0



((z1,z2),Ω)









z1=z2=0

,

x1 =









σ22
d

dz1
θ





0 1
2

0 1
2



((z1,z2),Ω)−σ21
d

dz2
θ





0 1
2

0 1
2



((z1,z2),Ω)

ξθ





0 0
0 1

2



((z1,z2),Ω)θ





0 0
0 0



((z1,z2),Ω)θ





1
2

1
2

0 0



((z1,z2),Ω)θ





0 1
2

1
2 0



((z1,z2),Ω)









z1=z2=0

,

x2 =









σ22
d

dz1
θ





0 1
2

1
2

1
2



((z1,z2),Ω)−σ21
d

dz2
θ





0 1
2

1
2

1
2



((z1,z2),Ω)

ξθ





0 0
1
2

1
2



((z1,z2),Ω)θ





0 0
0 0



((z1,z2),Ω)θ





1
2

1
2

0 0



((z1,z2),Ω)θ





0 1
2

0 0



((z1,z2),Ω)









z1=z2=0

,

x3 =









σ22
d

dz1
θ





1
2 0
1
2

1
2



((z1,z2),Ω)−σ21
d

dz2
θ





1
2 0
1
2

1
2



((z1,z2),Ω)

ξθ





1
2

1
2

1
2

1
2



((z1,z2),Ω)θ





0 0
0 0



((z1,z2),Ω)θ





0 0
1
2 0



((z1,z2),Ω)θ





1
2 0
0 0



((z1,z2),Ω)









z1=z2=0

,

x4 =









σ22
d

dz1
θ





1
2 0
1
2 0



((z1,z2),Ω)−σ21
d

dz2
θ





1
2 0
1
2 0



((z1,z2),Ω)

ξθ





1
2

1
2

1
2

1
2



((z1,z2),Ω)θ





0 0
0 1

2



((z1,z2),Ω)θ





0 0
1
2

1
2



((z1,z2),Ω)θ





1
2 0
0 1

2



((z1,z2),Ω)









z1=z2=0

,

where:

ξ ≡ −Aπ2∑5
m=1

[

σ22
d

dz1
θ[ηm]((z1,z2),Ω)−σ21

d

dz2
θ[ηm]((z1,z2),Ω)

d

dz1
θ[ηm]((z1,z2),Ω) d

dz2
θ[η6]((z1,z2),Ω)− d

dz2
θ[ηm]((z1,z2),Ω) d

dz1
θ[η6]((z1,z2),Ω)

]

z1=z2=0

,
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[η1] ≡
[

1
2

1
2

0 1
2

]

, [η2] ≡
[

0 1
2

0 1
2

]

, [η3] ≡
[

0 1
2

1
2

1
2

]

,

[η4] ≡
[

1
2 0
1
2

1
2

]

, [η5] ≡
[

1
2 0
1
2 0

]

, [η6] ≡
[

1
2

1
2

1
2 0

]

.

The symmetric period matrix corresponding to the hyperelliptic curve w2 =
P (z) is given by:

(

Ω11 Ω12

Ω12 Ω22

)

=
1

σ11σ22 − σ12σ21

(

σ22 −σ12
−σ21 σ11

)(

ρ11 ρ12
ρ21 ρ22

)

,

where σij =
∫

Z∗Aj
Zi−1dZ√
P (Z)

and ρij =
∫

z∗Bj
Zi−1dZ√
P (Z)

where Z maps the Ai and

Bj cycles to the Z−plane. However, both results are not amenable to actual
calculations due to the non-trivial period matrix computations.

The quintic (65) is solved using the Kiepert’s algorithm described very
nicely in the wonderful book [65]. The details of the same are given in
Appendix B. Utilising the results of Appendix B, we will now work out the
SU(3) torsion classes of M6(r, θ1,2, ϕ1,2, ψ) and prove the following lemma:

Lemma 6: In the neighborhood of (θ10 =
αθ1
N

1
5
, θ20 =

αθ20

N
3
10
, ψ = 2nπ), n =

0, 1, 2, the SU(3)-structure torsion classes WM6

i=1,2,3,4,5 ̸= 0 (implying M6 is a
non-complex manifolds) with W4 ∼W5.

Proof: In the neighborhood of (θ10 =
αθ1
N

1
5
, θ20 =

αθ20
N

3
10
, ψ = 2nπ), n = 0, 1, 2,

in the MQGP limit (1), inverting the co-frames of Appendix C :

dθi=1/2 =

6
∑

a=2

Θiae
a,

dx =

6
∑

a=2

Xaea,

dy =

6
∑

a=2

Yaea,

dz =

6
∑

a=2

Zaea,(67)

and (C31)-(C33):

ea = eaθ1(r)dθ1 + eaθ2(r)dθ2 + eax(r)dx+ eay(r)dy + eaz(r)dz,(68)
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and defining:

(69) e1 =
√

GM
rr dr,

one notes that:

(70) dea = Ωabe
1 ∧ eb,

where the “structure constants” Ωab are defined as under:

Ωab ≡
(

eaθ1 ′(r)Θ1b + eaθ2 ′(r)Θ2b + eax ′(r)Xb + eay ′(r)Yb + eaz ′(r)Zb
)

√

GM
rr

.

(71)

The components of Ωabs after a small-β large-N small-a expansion are given
in (D1). The two-form associated with the almost complex structure is given
by:

(72) J = e12 + e34 + e56,

and the nowhere vanishing (3, 0)−form Ω is given by:

(73) Ω =
(

e1 + ie2
)

∧
(

e3 + ie4
)

∧
(

e5 + ie6
)

≡ Ω+ + iΩ−,

where ea1....ap ≡ ea1 ∧ ....eap . The five SU(3)-structure torsion classes are de-
noted by W1,2,3,4,5.
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One sees:

dJ = Ω32e
124 − Ω42e

312 +Ω52e
126 − Ω62e

512 + (Ω35 +Ω62) e
154

+ (Ω36 − Ω54) e
146 + (Ω33 +Ω44) e

134 + (Ω45 +Ω63) e
315

+ (−Ω46 − Ω53) e
316 + (Ω55 +Ω66) e

156,

dΩ+ = −
(

Ω23e
1345 +Ω26e

1645 +Ω55e
2415 +Ω22e

1236 +Ω24e
1436

+Ω25e1536 + (Ω22Ω44 +Ω55) e
1245 + (Ω35 − Ω46) e

2165

+ (Ω34 +Ω56) e2416 − (Ω33 +Ω66) e
2136 + (Ω53 − Ω64) e

2413

− (Ω43 +Ω65) e
2135

)

,

dΩ− = Ω24e
1435 +Ω26e

1635 − Ω23e
1346 − Ω25e

1546 − Ω66e
2416

+ (Ω22 +Ω33 +Ω55) e
1235 + (−Ω34 +Ω65) e2145

+ (−Ω36 − Ω45) e
2165 + (Ω54 +Ω63) e

2314

+ (Ω56 − Ω43) e
2316 − (Ω22 +Ω44) e

1246,(74)

implying:

2W4 = J⌟dJ = Ω32e
4 − Ω42e

3 +Ω52e
6 − Ω62e

5(75)

+ (Ω33 +Ω44) e
1 + (Ω55 +Ω66) e

1.

Now, substituting (D1) - (D3), one sees that the O(l0p) terms in Ω62 goes like
(

12.5− 43.6a
2

r2

)

√

1− r4h
r4 which assuming a = rh

(

0.6 + gsM2

N

)

[31], vanishes

for r ∼ 1.25rh. Similarly, the O(l0p) term in Ω24 can be proportional to the

O(l0p) term in −Ω42, i.e., O(1)a
2

r2 for r ∼ 0.5
√

4 +O(1)a. Thus:

(76) W4 ≈
Ω32e

4 +Ω52e
6 +Ω66e

1

2
.

2W5 = Ω+⌟dΩ+ = Ω23e
4 − Ω25e

6 +
(

Ω[43] +Ω[65]

)

e2 +Ω24e
3(77)

+ (2Ω22 +Ω33 +Ω44 + 2Ω55 +Ω66) e
1.

Now, one sees that the O(l0p) terms in
(

Ω[43] +Ω[65]

)

e2 for the aforemen-

tioned IR-valued r would vanish for
αθ1
αθ2
∼ 1.3

αrg
7
8
s

√
MNf

, where | log r| = αrN
1

3

[41]. Also, from (D1) - (D3), one sees that: 2Ω22 +Ω33 +Ω44 + 2Ω55 +Ω66 ≈
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Ω66. Thus:

(78) W5 ∼
Ω23e

4 − Ω25e
6 +Ω66e

1

2

|Ω23,25|<|Ω66|−→ Ω66e
1

2
∼W4.

This mimics supersymmetric [14, 66] IIA mirror though for a non-complex
manifold - see below. As:

Ω+ ∧ dJ = −
(

Ω(46) +Ω(53)

) J3

6
≡W+

1 J
3,(79)

implying:

(80) W+
1 = −

(

Ω(46) +Ω(53)

)

6
.

Similarly, as:

Ω− ∧ dJ =
(

Ω(36) − Ω(45)

) J3

6
≡W−

1 J
3,(81)

implying:

(82) W−
1 =

(

Ω(36) − Ω(45)

)

6
.

Also, using the notation: Ei1 ∧ ....Eip ∧ Ēj1 ∧ ....Ējq ≡ Ei1....ipj̄1....j̄q , one
notes that:

(dJ)(2,1) =
1

4
(Ω32 − iΩ42)E

11̄2 +
1

4
(Ω52 − Ω62)(83)

+
1

8
(−2Ω45 + 2Ω63 +Ω46 +Ω53)E

213̄

+
1

8
(−Ω45 +Ω63 + iΩ46 + iΩ53)E

2̄13

+
i

4
(Ω55 +Ω66)E

33̄1.
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Therefore:

W3 = (dJ)(2,1) − (J ∧W4)
(2,1)(84)

=

(

Ω32

4
− Ω32

4
+ i

Ω42

2

)

E11̄2

+

[

1

4
(Ω52 − Ω62)−

1

2
(Ω52 − iΩ62)

]

E11̄3

+
1

8
(−2Ω45 + 2Ω63 +Ω46 +Ω53)E

213̄

+
1

8
(−Ω45 +Ω63 + iΩ46 + iΩ53)E

2̄13 − 1

2
(Ω52 − iΩ62)E

22̄3

− i (Ω33 +Ω44 +Ω55 +Ω66)E
22̄1 + (iΩ42 − Ω32)E

33̄2

+

[

i

4
(Ω55 +Ω66)−

i

2
(Ω33 +Ω44 +Ω55 +Ω66)

]

E33̄1.

To determine W±
2 , one notes that:

− (dΩ+)
2,2 =

(

iΩ23 − Ω24

8

)

E22̄1̄3 +

(

iΩ23 +Ω24

8

)

E22̄13̄

(85)

−
(

Ω26 + iΩ25

8

)

E33̄12̄ +

(

Ω26 − iΩ25

8

)

E33̄1̄2

+

(−2Ω22 +Ω33 − Ω44 +Ω66

8
+
i

8

(

Ω(34) +Ω(56)

)

)

E11̄23̄

+

(

2Ω22 − Ω33 +Ω44 − Ω66

8
− i

8

(

Ω[34] +Ω[56]

)

)

E11̄2̄3

− (Ω35 − Ω46)

4
E11̄33̄ +

1

4
(Ω53 − Ω64)E

11̄22̄

= −
(

W+
1 J

2 +W+
2 ∧ J

)

,

and this implies:

W+
2 = α1E

11̄ + β1E
22̄ + γ1E

33̄ + α2E
12̄ + β2E

23̄(86)

+ γ2E
13̄ + α3E

1̄2 + β3E
2̄3 + γ3E

1̄3,



✐

✐

“11-Misra” — 2024/3/4 — 16:00 — page 3841 — #41
✐

✐

✐

✐

✐

✐

OnM-theory dual of large-N thermal QCD-like theories 3841

where:

α1 = −i
[

W+
1 +Ω53 − Ω64

2

]

+
i

4

(

Ω[53] − Ω[64] +W+
1

)

β1 = −
i

4

(

Ω[53] − Ω[64] +W+
1

)

γ1 = −
i

4

(

W+
1 − Ω[53] +Ω[64]

)

,

α2 = −
Ω26 − iΩ25

8
,

γ2 =
Ω24 + iΩ23

8

β2 =
−2Ω22 +Ω33 − Ω44 +Ω66

8
+
i

8

(

Ω[56] +Ω[34]

)

,

α3 =
Ω26 − iΩ25

8
,

β3 =
2Ω22 − 3Ω33 +Ω44 − Ω66

8
+
i

8

(

Ω[43] +Ω[65]

)

.(87)

5.2. G2-Structure Torsion Classes of the Seven-Fold in the
M-Theory Uplift

Given that the adjoint of SO(7) decomposes underG2 as 21→ 7⊕ 14 where
14 is the adjoint representation of G2, one obtains:

(88) T ∈ Λ1 ⊗ g⊥2 =W1 ⊕W14 ⊕W27 ⊕W7.

We now present the seventh lemma:
Lemma 7: In the neighborhood of (θ10 =

αθ1

N
1
5
, θ20 =

αθ20

N
3
10
, ψ = 2nπ), n =

0, 1, 2, the G2-structure torsion classes of M7 - a cone over a six-fold which
is an M-theory S1-fibration over a compact five-fold M5(θ1, θ2, ϕ1, ϕ2, ψ) -
are given by: WG2

M7
=W14 ⊕W27.

Proof: Now, near the ψ = 0, 2π, 4π-branches, the M-Theory coframe e7 =
√

GM
x10x10dx10. Further, the three-form Φ corresponding to a G2 structure is

given by [67]:

Φ = e−ΦIIA

fabce
abc + e−

2

3
ΦIIA

J ∧ dx10(89)

= e−ΦIIA (

e135 − e146 − e236 − e245
)

+
e−

2

3
ΦIIA

√

GM
x10x10

(

e3417 + e5617
)
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dΦ = −e
−ΦIIA

Φ′
IIA

√

GM
rr

(

−e1236 − e1245
)

− 2

3

e−
2

3
ΦIIA

Φ′
IIA

√

GM
rr G

M
x10x10

J ∧ e17
(90)

= e−ΦIIA

(

−Ω24e
1436 − Ω25e

1536 − Ω66e
2316 − Ω23e

1345 − Ω26e
1645

− (Ω33 +Ω22) e
1236 − (Ω22 +Ω44 +Ω55) e

1245 + (Ω35 − Ω46) e
2156

+ (Ω53 − Ω64) e
2314 − (Ω43 +Ω65) e

2315 + (Ω34 +Ω56) e
2146

)

+
e−

2

3
ΦIIA

√

GM
x10x10

(

Ω32e
1247 − Ω42e

3127 +Ω52e
1267 − Ω62e

5127 + (Ω35 +Ω64) e
1547

+ (Ω36 − Ω54) e
1467 + (Ω33 +Ω44) e

1347 + (Ω45 +Ω63) e
3157

− (Ω46 +Ω53) e
3167 + (Ω55 +Ω66) e

1567

)

= 4W1 ∗7 Φ− 3W7 ∧ Φ− ∗7W27.

Similarly:

d ∗7 Φ = −e
−ΦIIA

Φ′
IIA

√

GM
rr

(

e12467 − e12357
)

− 2

3

e−
2

3
ΦIIA

Φ′
IIA

√

GM
rr

e13456

(91)

= e−ΦIIA

(

Ω23e
13467 +Ω25e

15467 − Ω43e
21367 − Ω44e

21467 − Ω45e
21567

+Ω22e
12467 +Ω63e

24137 +Ω65e
24157 +Ω66e

24167 − Ω22e
12357 − Ω24e

14357

− Ω26e
16357 +Ω33e

21357 +Ω34e
21457 +Ω36e

21657 − Ω54e
23147

− Ω55e
23157 − Ω56e

23167 +
e24617 − e23517

2
√

GM
rr G

M
x10x10

)

+ e−
2

3
ΦIIA

(

Ω32e
12456 +Ω33e

13456 − Ω42e
31256 − Ω44e

31456

+Ω52e
34126 +Ω55e

34156 − Ω62e
34512 − Ω66e

34516

)

= −4W7 ∧ ∗7Φ− 2 ∗7 W14.
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One hence obtains (see App. E for details):

W1 =W7 = 0,

W27 = − ∗7 dΦ,
W14 = −

1

2
∗7 d ∗7 Φ.(92)

5.3. SU(4)-Structure Torsion Classes of the Eight-Fold in the
M-Theory Uplift

The SU(4)-structure torsion classes are given by [68]:

Λ1 ⊗ su(4)⊥ = (4⊕ 4̄)⊗ (1⊕ 6⊕ 6̄)(93)

= (4⊕ 4̄)⊕
(

20⊕ 20
)

⊕
(

20⊕ 20
)

⊕ (4⊕ 4̄)⊕ (4⊕ 4̄)

=W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5,

where:

dJ4 =W1⌟Ω̄4 +W3 +W4 ∧ J4 + c.c.

dΩ4 =
8i

3
W1 ∧ J2

4 +W2 ∧ J4 + W̄5 ∧ Ω4.(94)

We are now set to present the eighth lemma:
Lemma 8: In the neighborhood of (θ10 =

αθ1
N

1
5
, θ20 =

αθ20

N
3
10
, ψ = 2nπ), n =

0, 1, 2, the SU(4)-structure torsion classes of M8(r, θ1,2, ϕ1,2, ψ, x
10, x0) are

W
SU(4)
M8

=W
SU(4)
2 ⊕WSU(4)

3 ⊕WSU(4)
5 .

Proof: Near the ψ = 0, 2π, 4π-branches, defining:

e7 =
√

GM
x10x10dx

10,

e0 =
√

GM
00 dx

0,(95)
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using which construct E4 = e7 + ie0. Defining:
(96)

ζ12a ≡

[

(

e1θ1 ′ + ie2θ1 ′)Θ1a +
(

e1θ2 ′ + ie2θ2 ′)Θ2a +
(

e1x ′ + ie2x ′)Xa +
(

e1y ′ + ie2y ′)Ya +
(

e1z ′ + ie2z ′)Za
]

√

GM
rr

,

ζ34a ≡

[

(

e3θ1 ′ + ie4θ1 ′)Θ13 +
(

e3θ2 ′ + ie4θ2
′)Θ2a +

(

e3x ′ + ie4x ′)Xa +
(

e3y ′ + ie4y ′)Ya +
(

e3z ′ + ie4z ′)Za
]

√

GM
rr

,

ζ56a ≡

[

(

e5θ1 ′ + ie2θ1 ′)Θ1a +
(

e5θ2 ′ + ie6θ2 ′)Θ2a +
(

e5x ′ + ie6x ′)Xa +
(

e5y ′ + ie6y ′)Ya +
(

e5z ′ + ie6z ′)Za
]

√

GM
rr

,

where a = 2, ..., 6, one obtains:

dE1 =
i

2

ζ122
√

GM
rr

E1 ∧ Ē1 +
ζ12(3−i4)
√

GM
rr

E1 ∧ E2 +
ζ12(3+i4)
√

GM
rr

Ē1 ∧ Ē2(97)

+
ζ12(3−i4)
√

GM
rr

E1 ∧ E3 +
ζ12(3+i4)
√

GM
rr

Ē1 ∧ Ē3 ++
ζ12(3+i4)
√

GM
rr

E1 ∧ Ē2

+
ζ12(3−i4)
√

GM
rr

Ē1 ∧ E2 +
ζ12(5+i6)
√

GM
rr

Ē1 ∧ E3 +
ζ12(5−i6)
√

GM
rr

E1 ∧ Ē3,

etc., where, e.g., ζ12(3±i4) ≡ ζ123 ± iζ124. One obtains:

W1 =W4 = 0,

W3 + W̄3 = dJ.(98)

Writing:

(99) Ω4 = Ω3 ∧ E4,
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one obtains:

dΩ4 =
i

2

ζ122
√

GM
rr

E11̄234 +
i

4

ζ12(3+i4)
√

GM
rr

E1̄2̄234 +
ζ12(3+i4)

4
√

GM
rr

E1̄3̄234(100)

+
ζ12(3+i4)

4
√

GM
rr

E12̄234 +
ζ12(5−i6)

4
√

GM
rr

E13̄234

−
(

i

4

ζ34(3+i4)
√

GM
rr

E11̄2̄34 +
ζ23(3+i4)

4
√

GM
rr

E11̄3̄34 +
ζ34(3−i4)

4
√

GM
rr

E11̄234

)

+
ζ564(3+i4)
√

GM
rr

E121̄2̄34 +
ζ56(3+i4)

4
√

GM
rr

E121̄3̄4 +
ζ56(5+i6)

4
√

GM
rr

E121̄34

+

(

GM
x10x10

′

8
√

GM
x10x10GM

rr

− i GM
00

′

8
√

GM
00G

M
rr

)

(

E1 + Ē1̄
)

∧ Ω4

−
(

GM
x10x10

′

8
√

GM
x10x10GM

rr

+ i
GM

00
′

8
√

GM
00G

M
rr

)

Ω3 ∧ E1̄4̄

−
(

GM
x10x10

′

8
√

GM
x10x10GM

rr

+ i
GM

00
′

8
√

GM
00G

M
rr

)

Ω3 ∧ E14̄

=W2 ∧ J4 +W5 ∧ Ω4,

implying:

W5 =

(

GM
x10x10

′

8
√

GM
x10x10GM

rr

− i GM
00

′

8
√

GM
00G

M
rr

)

E1(101)

+

(

GM
x10x10

′

8
√

GM
x10x10GM

rr

− i GM
00

′

8
√

GM
00G

M
rr

+
i

2

ζ122
√

GM
rr

)

E1̄

+
ζ12(3+i4)

4
√

GM
rr

E2̄ +
ζ12(5−i6)

4
√

GM
rr

E3̄;

W2 = −i
ζ12(3+i4)

4
√

GM
rr

E134 +
ζ12(3+i4)

4
√

GM
rr

E1̄24 − i
ζ34(3+i4)

4
√

GM
rr

E2̄34

−
ζ56(3+i4)

4
√

GM
rr

E23̄4 +
α1

4
√

GM
rr

E33̄4 +
α1

4
√

GM
rr

E22̄4

+
α1

4
√

GM
rr

E11̄4,
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where:

α1 = i
(

ζ23(3+i4) + ζ56(3+i4)
)

= −α2,

α3 = −i
(

ζ56(3+i4) − ζ23(3+i4)
)

.(102)

5.4. Spin(7)-Structure Torsion Classes of the Eight-Fold in the
M-Theory Uplift

The Spin(7)-torsion classes are given by:

(103) Λ1 ⊗ Spin(7)⊥ = (8⊕ 7)⊗ 7 = 8⊕ 48 =W1 ⊕W2,

where:

(104) W1 = Ψ⌟dΨ,

where Ψ is a Spin(7)-invariant self-dual four-form:

Ψ = e1234 + e1256 + e1278 + e3456 + e3478 + e5678 + e1357(105)

− e1268 − e1458 − e1467 − e2358 − e2367 − e2457 + e2468.

We now present the final lemma:

Lemma 9: In the neighborhood of (θ10 =
αθ1

N
1
5
, θ20 =

αθ20

N
3
10
, ψ = 2nπ), n =

0, 1, 2, the Spin(7)-torsion classes are given by: W
Spin(7)
M8

=W
Spin(7)
1 ⊕

W
Spin(7)
2 .

Proof: Hence:

dΨ =

6
∑

a=2

[

Ω3a

(

e1a456 + e1a478 + e21a58 + e21a67
)

(106)

− Ω4a

(

e21a68 + e31a56 + e31a78 − e21a57
)

+Ω5a

(

e341a6 + e1a678 − e231a8 − e241a7
)

− Ω6a

(

e3451a + e51a78 + e231a7 − e241a8
)

+Ω7a

(

e341a8 + e561a8 + e2361a
)

+Ω2a

(

−e1a358 − e1a367 − e1a457 + e1a468
)

]

+
GM
x10x10

′

2
√

GM
x10x10GM

rr

e24517

− GM
x0x0

′

2
√

GM
x0x0GM

rr

(

e34718 + e56718 − e23518 + e24618
)

,
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implying W1 =
∑8

a=1 Λa ({Ωbc}) ea and non-trivial W2.
Now, W2 is identified with the space of three-forms: Λ3

48 =
{γ ∈ Λ:γ ∧Ψ = 0} [69]. From (105), one sees that such a three-form will
be given by:

γ =
∑

a,n ̸=1:21 components

α[ab]e
1ab +

∑

c,d ̸=1,2:15 components

β[cd]e
2cd(107)

+
∑

e,f ̸=1,2,3:10 components

κ[ef ]e
3ef

+
∑

g,h ̸=1,2,3,5:3 componentsi

ω[gh]e
5gh,

along with one constraint on the 49 α[ab], β[cd], κ[ef ], ω[gh] coefficients in (107).

6. Summary and future directions

Finite (gauge/’t Hooft) coupling top-down non-conformal holography is a
largely unexplored territory in the field of gauge-gravity duality. The only
Ultra Violet-complete top-down holographic dual of thermal QCD-like the-
ories that we are aware of, was proposed in [2]. Later, the type IIA mirror
of the same at intermediate gauge/string coupling was constructed and the
M theory uplift of the same were constructed in [1, 16]. Other than higher-
derivative corrections quartic in the Weyl tensor, or of the Gauss-Bonnet
type, in AdS5 × S5, dual to supersymmetric thermal Super Yang-Mills [3],
there is little known about top-down string theory duals at intermediate
’t Hooft coupling of thermal QCD-like theories. This paper fills this gap by
working out theM theory dual of thermal QCD-like theories at intermediate
’t Hooft coupling in the IR.

The following is a summary of the important results obtained in this
work.

1) We work out the O(l6p) corrections to the M-Theory metric worked
out in [1, 16] arising from the O(R4) terms in D = 11 supergravity. We
realize that in the MQGP limit of [1], the contribution from the J0 (and
its variation) dominate over the contribution from E8 and its variation
as a consequence of which E8 has been disregarded. The computations
have been partitioned into two portions - one near the ψ = 2nπ, n =
0, 1, 2 patches and the other away from the same (wherein there is no
decoupling of the radial direction, the six angles and the M-Theory
circle).
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2) We also note that there is a close connection between finite (’t Hooft)
coupling effects in the IR and non-conformality (which being effected
via the effective number of the fractional D3-branes, vanishes in the
UV) as almost all corrections to the M-Theory metric components
of [1, 16] in the IR arising from the aforementioned O(R4) terms in
D = 11 supergravity action, vanish when the number of fractional D3-
branes is set to zero.

3) The importance of the higher derivative corrections arises from
the competition between the non-conformal Infra-Red enhancement
(logRh)

m

Rn
h

,Rh ≡ rh
RD5/D5

,m = 0, 1, 2, 3, n = 0, and the Planckian and

large-N suppression
l6p

NβN
, βN > 0 in the O(l6p) corrections to the M-

theory dual [1, 16] of thermal QCD-like theories. As | logRh| ∼ N
1

3

[41], for appropriate values of N , it may turn out that this correc-
tion may become of O(1), and thereby very significant. This would
also then imply that one will need to consider higher order corrections
beyond O(l6p).

4) • On the mathematical side, using Lemmas 1 - 9 of sections 4 and 5,
the main result of this work, in addition to providing for the first
time the O(l6p)-corrections to theM-theory dual of thermal QCD-
like theories of [1], is Proposition 1 stated in Section 1. We work out
the fundamental two-form and the nowhere vanishing holomorphic
three-form of the six-fold obtained by an M-Theory circle reduc-
tion of theM-Theory dual obtained. This enabled us to work out
the SU(3)-structure torsion classes of the aforementioned six-fold
M6(r, θ1,2, ϕ1,2, ψ) relevant to the type IIA SYZ mirror, the G2-
structure torsion classes of the seven-fold M7(r, θ1,2, ϕ1,2, ψ, x

10) as
well as the SU(4)-structure and Spin(7)-structure torsion classes of
the eight-fold M8(x

0, r, θ1,2, ϕ1,2, ψ, x
10) relevant to theM-Theory

uplift. Table 1 summarizes the G-structure torsion classes’ results.
Table 2 summarizes the G-structure torsion classes’ results.
• Along the Ouyang embedding (for very small [modulus of
the] Ouyang embedding parameter) effected, e.g., near the ψ =
2nπ, n = 0, 1, 2-patches in the MQGP limit, the large-base of the
delocalized T 2-invariant sLag-fibration relevant to constructing the
delocalized SYZ type IIA mirror in [1, 16] of the type IIB dual of
thermal QCD-like theories in [2] manifests itself in the O(R4) cor-
rections to the co-frames that diagonalize the mirror six-fold metric

in the following sense. It is only the constant of integration C(1)zz
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S. No. Manifold G-Structure Non-Trivial Torsion Classes

1. M6(r, θ1, θ2, ϕ1, ϕ2, ψ) SU(3) T IIA
SU(3) =W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5 :W4 ∼W5

2. M7(r, θ1, θ2, ϕ1, ϕ2, ψ, x
10) G2 TM

G2
=W14 ⊕W27

3. M8(x
0, r, θ1, θ2, ϕ1, ϕ2, ψ, x

10) SU(4) TM
SU(4) =W2 ⊕W3 ⊕W5

4. M8(x
0, r, θ1, θ2, ϕ1, ϕ2, ψ, x

10) Spin(7) TM
Spin(7) =W1 ⊕W2

Table 2: IR G-Structure Classification of Six-/Seven-/Eight-Folds in the
type IIA/M-Theory Duals of Thermal QCD-Like Theories (at High Tem-
peratures)

appearing in the solution to the fzz EOM corresponding to the
(delocalized version of the) U(1)-fiber S1(ψ) - part of the (delo-
calized version of) T 3(ψ, ϕ1, ϕ2) orthogonal to the aforementioned
large base B3(r, θ1, θ2) - that determines in the MQGP limit, the
aforementioned l6p corrections in the IR to the MQGP results of the
co-frames and hence G-structure torsion classes.

5) Brief summary of published) applications of the results of this
paper: We had decided to first work out applications of the results ob-
tained in this paper to a variety of issues in Physics also including com-
parison (for some of the issues) with experiments/phenomenological
data available, and after successfully doing so in [4], [5], submit an
abridged version of the original version of this work (that was posted
on the arXiv last year, arXiv:2004.07259[hep-th], cross-listed with
math.dg), to ATMP.
• As an application of the results of this paper modified to a thermal
M-theory dual of thermal QCD-like theories at low temperatures,
we now summarize in the context ofMχPT, the main result of [4]
(involving both the authors):
– O(R4)-large-N connection: In the context of low energy cou-

pling constants (LECs) of the SU(3) χPT Lagrangian in the
chiral limit at O(p4), as shown in detail in [4] (and briefly ex-
plained in Section 4) as an application of the O(R4) corrections
to theM-theory uplift of large-N thermal QCD-like theories,
matching the values of the one-loop renormalized coupling con-
stants up to O(p4) with experimental/lattice results shows that
there is an underlying connection between large-N suppression
and higher derivative corrections.

– MχPT and Flavor Memory: As shown in [4] (involving both
the authors), matching the phenomenological value of the



✐

✐

“11-Misra” — 2024/3/4 — 16:00 — page 3850 — #50
✐

✐

✐

✐

✐

✐

3850 V. Yadav and A. Misra

1-loop renormalized coupling constant corresponding to the
O(p4) SU(3) χPT Lagrangian term “

(

∇µU †∇µU
)2
”, with the

value obtained from the type IIA dual of thermal QCD-like
theories inclusive of the aforementioned O(R4) corrections, re-
quired the O(R4) corrections arising from the contributions
arising from the corrections to the metric along the compact
S3 part of the non-compact four-cycle “wrapped” by the fla-
vor D7-branes of the parent type IIB theory, to have a definite
sign (negative). The thermal supergravity background dual to
type IIB (solitonic) D3-branes at low temperatures, includes
R
2 × S1( 1

MKK
). By taking the MKK → 0 limit (to recover a

boundary four-dimensional QCD-like theory after compacti-
fying on the base of a G2-structure cone), remarkably, via a
delicate cancelation between some of the aforementioned con-
tributions arising from the O(R4) metric corrections with a
resultant contribution solely along the vanishing S2 (with the
abovementioned S3, an S1 fibration over the vanishing S2) of
the parent type IIB suviving, we derive and hence verify the
MχPT requirement of the sign. We also referred to this as
“Flavor Memory” in [5] (involving both the authors).

• As an application of the results of this paper as well as the same
modified to M-theory duals of thermal QCD-like theories at re-
spectively high and low temperatures, we now summarize in the
context of obtaining Deconfinement temperature, the main result
of [5] (involving both the authors): :
– UV-IR Mixing and Flavor Memory: Performing a semiclassi-

cal computation [50] in [5] (involving both the authors), by
matching the actions at the deconfinement temperature of the
M-theory uplifts of the thermal and black-hole backgrounds
at the UV cut-off, it was shown that one obtains a relation-
ship in the IR between the O(R4) corrections to theM-theory
metric along the M-theory circle in the thermal background
and the O(R4) correction to a specific combination of theM-
theory metric components along the compact part of the four-
cycle “wrapped” by the flavor D7-branes of the parent type
IIB (warped resolved deformed) conifold geometry - the lat-
ter referred to as “Flavor Memory” in the context of MχPT
above.

– Non-Renormalization of Tc: We further showed in [5] that the
LO result for Tc also holds even after inclusion of the O(R4)
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corrections. The dominant contribution from the O(R4) terms
in the large-N limit arises from the t8t8R

4 terms, which from a
type IIB perspective in the zero-instanton sector, correspond to
the tree-level contribution at O

(

(α′)3
)

as well as one-loop con-
tribution to four-graviton scattering amplitude and obtained
from integration of the fermionic zero modes. As from the type
IIB perspective, the SL(2,Z) completion of these R4 terms [33]
suggests that they are not renormalized perturbatively beyond
one loop in the zero-instanton sector, this therefore suggests the
non-renormalization of Tc at all loops inM-theory at O(R4).

– Tc from Entanglement Entropy: With an obvious generaliza-
tion of [6] toM-theory, the entanglement entropy between two
regions by dividing one of the spatial coordinates of the ther-
mal M-theory background into a segment of finite length l
and its complement, was also calculated in [5]. Like [6], there
are two RT surfaces - connected and disconnected. There is a
critical value of l - denoted by lcrit - such that if l < lcrit , corre-
sponding to the confined phase then it is the connected surface
that dominates the entanglement entropy, and if l > lcrit cor-
responding to the deconfined phase then it is the disconnected
surface that dominates the entanglement entropy. This is in-
terpreted as confinement-deconfinement phase transition.

– Non-Renormalization of Tc from Entanglement Entropy: Re-
markably, when evaluating the deconfinement temperature
from an entanglement entropy computation in the thermal
gravity dual, due to an exact and delicate cancelation between
the O(R4) corrections from a subset of the abovementioned
metric components, one sees that there are consequently no
corrections to Tc at quartic order in the curvature supporting
the conjecture made in on the basis of a semiclassical compu-
tation.

6) Future directions:
• Math:

– Almost Contact Metric Structure, Contact Structure
and SU(3)/SU(2) structure from G2 structure: Using the
G2 structure seven-fold M7 of theM-theory uplift of large-N
thermal QCD-like theories inclusive of O(R4) corrections as
obtained in this work, equipped with a positive form φ and the
G2 metric gG2

, it can be shown that the same is equipped with



✐

✐

“11-Misra” — 2024/3/4 — 16:00 — page 3852 — #52
✐

✐

✐

✐

✐

✐

3852 V. Yadav and A. Misra

an Almost Contact Metric Structure (ACMS) (J,R, σ, gG2
) [71,

72], R being a unit vector field with J being a vector-valued
one-form on M7: J

i
j = −φijkRk and σ being a one-form: σi =

gG2

ij R
j . It will be very interesting to explicitly construct the

R and hence J and σ, and verify if the ACMS so obtained is
also a contact structure [75]. Using results of [73], it will also
be extremely interesting to explicitly obtain an embedding of
SU(3) and SU(2) structures in G2 structure and using the
results of [74], an Almost Contact 3-Structure (AC3S) [75].

– For simplicity, we worked out the aforementioned G-Structures
near the ψ = 2nπ, n = 0, 1, 2-branches restricted to small-
parameter Ouyang embedding, but as mentioned towards the
beginning of Section 4, using (C31) - (C33) and ideas of [11],
the results of Table 1 are independent of angular delocaliza-
tion in θ1,2. As regards independence of the results of Table
1 of ψ-delocalization, using the results of Section 3, one sees
that the secular equation needed to be solved to diagonalize
the M7(r, θ1,2, ϕ1,2, ψ, x

10) will be a septic P7 = 0. Hence, one
needs to use Siegel theta functions of genus four. The period
matrix Ω will be defined as follows:

Ωij = σikρkj

where

σij ≡
∮

Aj

dZ Z i−1

√

Z(Z − 1)P7(Z)

and

ρij ≡
∮

Bj

Z i−1

√

Z(Z − 1)(Z − 2)P7(Z)
,

{Ai} and {Bi} being a canonical basis of cycles satisfying:
Ai ·Aj = Bi ·Bj = 0 and Ai ·Bj = δij ; σ

ij are normalization
constants determined by: σikσkj = δij . Umemura’s result then
is that a root is given by:

1

2

(

θ

[

1
2 0 0 0
0 0 0 0

]

(0,Ω)

)4(

θ

[

1
2

1
2 0 0

0 0 0 0

]

(0,Ω)

)4
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×
[

(

θ

[

1
2 0 0 0
0 0 0 0

]

(0,Ω)

)4(

θ

[

1
2

1
2 0 0

0 0 0

]

(0,Ω)

)4

+

(

θ

[

0 0 0 0
0 0 0 0

]

(0,Ω)

)4(

θ

[

0 1
2 0 0

0 0 0 0

]

(0,Ω)

)4

−
(

θ

[

0 0 0 0
1
2 0 0 0

]

(0,Ω)

)4(

θ

[

0 1
2 0 0

1
2 0 0 0

]

(0,Ω)

)4
]

.

However, it will again be a non-trivial task to evaluate the
period integrals. Alternatives will be deferred to a later work.

• Physics: In the context of intermediate ’t Hooft coupling top-down
holography, there is no known literature on applying gauge-gravity
duality techniques to studying the perturbative regime of thermal
QCD-like theories so as to be able to explain, e.g., low-frequency
peaks expected to occur in spectral functions associated with trans-
port coefficients, from M theory. In higher dimensional (Gauss-
Bonnet or quartic in the Weyl tensor) holography, in the past cou-
ple of years using previously known results, it has been shown by
the (Leiden-)MIT-Oxford collaboration [3] that one obtains low fre-
quency peaks in correlation/spectral functions of energy momen-
tum tensor, per unit frequency, obtained from the dissipative (i.e.
purely imaginary) quasi-normal modes. As an extremely crucial
application of the results of our paper, for the first time, spec-
tral/correlation functions involving the energy momentum tensor
with the inclusion of the O(l6p) corrections in theM theory (uplift)
metric of [1] can be evaluated and hence one would be able to make
direct connection between previous results in perturbative thermal
QCD-like theories (e.g., [70]) as well as QCD plasma in RHIC ex-
periments, andM theory. Further, the temperature dependence of
the speed of sound, the attenuation constant and bulk viscosity can
also be obtained from its solution, as well as the O(l6p) and the non-
conformal corrections to the conformal results thereof. One could
see if one could reproduce the known weak-coupling result from
M theory that the ratio of the bulk and shear viscosities goes like
the square of the deviation of the square of the speed of sound
from its conformal value (the last reference in [15]). Generically,
the dissipative quasi-normal modes in the spectral functions at low
frequencies can be investigated to study the existence of peaks at
low frequencies in transport coefficients, thus making direct contact
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with perturbative QCD results as well as (QCD plasma in) RHIC
experiments.
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Appendix A. Equations of motion

This appendix discusses the form of the equations of motion (EOMs) satis-
fied by fMN s inclusive of the O(l6pR4) corrections to the M-Theory up-
lift of [1] as well as their solutions. A.1 works out the same near the
ψ = 2nπ, n = 0, 1, 2-patches, and A.2 near the ψ ̸= 2nπ, n = 0, 1, 2-patch.

The EOMs have been obtained expanding the coefficients of f
(p)
MN , p = 0, 1, 2

near r = rh and retaining the LO terms in the powers of (r − rh) in the
same, and then performing a large-N -large-| log rh|-logN expansion the
resulting LO terms are written out. We should keep in mind that near
the ψ = ψ0 ̸= 2nπ, n = 0, 1, 2-patch, some GM

rM ,M ̸= r and GM
x10N , N ̸= x10

components are non-zero, making this exercise much more non-trivial.
As the EOMs are too long, they have not been explicitly typed but their

forms have been written out. The solutions of the EOMs are discussed in
detail.

A.1. EOMs for fMN and Their Solutions Near
ψ = 2nπ, n = 0, 1, 2-Branches and Near r = rh

Working in the IR, the EOMs near the ψ = 0 2π 4π-branches near r = rh
as described in Section 5.2, can be written as follows:

EOMMN :

2
∑

p=0

2
∑

i=0

a
(p,i)
MN

(

rh, a,N,M,Nf , gs, αθ1,2
)

(r − rh)if (p)MN (r)(A1)

+ βFMN

(

rh, a,N,M,Nf , gs, αθ1,2
)

(r − rh)α
LO
MN = 0,
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where M,N run over the D = 11 coordinates, f
(p)
MN ≡ dpfMN

drp , p = 0, 1, 2,
αLO
MN = 0, 1, 2, 3 denotes the leading order (LO) terms in powers of r − rh

in the IR when the O(β)-terms are expanded in a Taylor series about
r = rh, and Fθ1θ2 = Fθ2θ2 = 0 (i.e. EOMθ1θ2 and EOMθ2θ2 are homogeneous
up to O(β)).

In the EOMs in this appendix and their solutions in Section 3:

Σ1 ≡ 19683
√
6α6

θ1 + 6642α2
θ2α

3
θ1 − 40

√
6α4

θ2

(A2)

Global−→ N
6

5

(

19683
√
6 sin6 θ1 + 6642 sin2 θ2 sin

3 θ1 − 40
√
6 sin4 θ2

)

,

Σ2 ≡
(

387420489
√
2α12

θ1 + 87156324
√
3α2

θ2α
9
θ1 + 5778054

√
2α4

θ2α
6
θ1

− 177120
√
3α6

θ2α
3
θ1 + 1600

√
2α8

θ2

)

Global−→ N
12

5

(

387420489
√
2 sin12θ1 +87156324

√
3 sin2θ2 sin

9 θ1

+ 5778054
√
2 sin4 θ2 sin

6 θ1 − 177120
√
3 sin6 θ sin3θ1 +1600

√
2 sin8 θ2

)

.

The following EOMs’ solutions will be obtained assuming f ′′θ1y(r) = 0.
One can show that one hence ends up 15 independent EOMs and four that
serve as consistency checks. We now discuss all below.

(i) EOMtt:
(A3)
4
(

9b2 + 1
)3 (

4374b6 + 1035b4 + 9b2 − 4
)

βb8M
(

1
N

)9/4
Σ1

(

6a2 + rh
2
)

log(rh)

27π (18b4 − 3b2 − 1)5 logN2Nfrh2α
3
θ2
(9a2 + rh2)

− 6
(

rh
2 − 2a2

)

ft(r)

rh (rh2 − 3a2) (r − rh)

− 32
√
2
(

9b2 + 1
)4
βb12

(

1
N

)3/20
Σ1(r − rh)

81π3 (1− 3b2)10 (6b2 + 1)8 gs9/4 logN4N61/60Nf
3rh4α

7
θ1
α6
θ2
(−27a4 + 6a2rh2 + rh4)

+ 2ft
′′(r) = 0,

where Σ1 is defined in (A2).
As, the solution to the differential equation:

(A4) 2ft
′′(r) +

Γft1ft(r)

r − rh
+ Γft2(r − rh) + Γft3 = 0,
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is given by:
(A5)
1

2

[

− 1

Γft1

{

(r − rh)2
(

Γft1Γft2(r − rh)I1
(√

2
√

Γft1(rh − r)
)

G2,1
1,3

(

√

Γft1(rh − r)√
2

,
1

2

∣

∣

∣

∣

∣

−3
2

−1
2 ,

1
2 ,−5

2

)

+ Γft1Γft3I1

(√
2
√

Γft1(rh − r)
)

G2,1
1,3

(

√

Γft1(rh − r)√
2

,
1

2

∣

∣

∣

∣

∣

−1
2

−1
2 ,

1
2 ,−3

2

)

+K1

(√
2
√

Γft1(rh − r)
)

[

√
2
√

Γft1(rh − r)
(

2Γft2I4

(√
2
√

Γft1(rh − r)
)

− Γft1Γft3 0F̃1

(

; 3;
1

2
Γft1(rh − r)

))

+ 8Γft2I3

(√
2
√

Γft1(rh − r)
)

])}

+
√
2c1

√

Γft1(rh − r)I1
(√

2
√

Γft1(rh − r)
)

−
√
2c2

√

Γft1(rh − r)K1

(√
2
√

Γft1(rh − r)
)

]

.

To prevent the occurency of a (logarithmic) singularity at r = rh, one sets:
c2 = 0 which yields:

(A6) ft(r) =
1

4
Γft3(r − rh)2 +O

(

(r − rh)2
)

,

where:
(A7)

Γft3 ≡
4b8(9b2+1)

3
(4374b6+1035b4+9b2−4)βM( 1

N )
9/4

Σ1(6a2+rh
2) log(rh)

27π(18b4−3b2−1)5 logN2Nfrh2α3
θ2

(9a2+rh2)
,

where Σ1 is defined in (A2).
(ii) EOMx1x1 :

(A8)

− 6rh
(

57a4 + 14a2rh
2 + rh

4
)

f(r)

(rh2 − 3a2) (6a2 + rh2) (9a2 + rh2) (r − rh)
+ 2f ′′(r)

− 4
(

9b2 + 1
)4 (

39b2 − 4
)

βb8M
(

1
N

)9/4
Σ1

(

6a2 + rh
2
)

log(rh)

9π (3b2 − 1)5 (6b2 + 1)4 logN2Nfrh2α
3
θ2
(9a2 + rh2)

− 32
√
2
(

9b2 + 1
)4
βb12

(

1
N

)3/20
Σ1(r − rh)

81π3 (1− 3b2)10 (6b2 + 1)8 gs9/4 logN4N61/60Nf
3rh4α

7
θ1
α6
θ2
(−27a4 + 6a2rh2 + rh4)

= 0.

This yields:



✐

✐

“11-Misra” — 2024/3/4 — 16:00 — page 3857 — #57
✐

✐

✐

✐

✐

✐

OnM-theory dual of large-N thermal QCD-like theories 3857

(A9) f(r) =
1

4
γf2(r − rh)2 +O

(

(r − rh)3
)

,

where:
(A10)

γf2 ≡ −
4b8
(

9b2 + 1
)4 (

39b2 − 4
)

M
(

1
N

)9/4
β
(

6a2 + rh
2
)

log(rh)Σ1

9π (3b2 − 1)5 (6b2 + 1)4 logN2Nfrh2 (9a2 + rh2)α
3
θ2

.

(iii) EOMθ1x:
(A11)
− 3fθ1z

′′(r) + 2fθ1x
′′(r)− 3fθ2y

′′(r)

−
4
(

9b2 + 1
)4
βb10M 5

√

1
NΣ1

(

6a2 + rh
2
)

3π (−18b4 + 3b2 + 1)4 logN 3
√
NNfα

3
θ2
(rh2 − 3a2) (9a2 + rh2)

− 32
√
2
(

9b2 + 1
)4
βb12

(

1
N

)3/20
Σ1(r − rh)

81π3 (1− 3b2)10 (6b2 + 1)8 gs9/4 logN4N61/60Nf
3rh4α

7
θ1
α6
θ2
(−27a4 + 6a2rh2 + rh4)

= 0.

Choosing the two constants of integration obtained by solving (A11) in such
a way that the Neumann b.c. at r = rh : f ′θ1x(r = rh) = 0, one obtains:

(A12)

fθ1x(r) =

(

−
(

9b2 + 1
)4
b10M

(

6a2 + rh
2
) (

(r − rh)2 + rh
2
)

Σ1

3π (−18b4 + 3b2 + 1)4 logNN8/15Nf (−27a4 + 6a2rh2 + rh4)α
3
θ2

+ Cθ1x
(1)

)

β

+O(r − rh)3

(iv) EOMθ1y:
(A13)
− 6f ′′(r) + 2fzz

′′(r)− 2fx10x10
′′(r)− 3fθ1z

′′(r)− 3fθ2y
′′(r)− 3fxz

′′(r)− 2ft
′′(r)

32
√
2
(

9b2 + 1
)4
βb12

(

1
N

)3/20
Σ1(r − rh)

81π3 (3b2 − 1)10 (6b2 + 1)8 gs9/4 logN4N61/60Nf
3rh4α

7
θ1
α6
θ2
(rh2 − 3a2) (9a2 + rh2)

= 0.

The equation (A13) can be shown to be equivalent to a decoupled second
order EOM for fxz. Then, expanding the solution around the horizon and

requiring the constant of integration C
(1)
xz appearing in the O(r − rh)0 term

to satisfy:
(A14)

−
32
(

9b2 + 1
)4
b12β

(

19683
√
3α6

θ1
+ 3321

√
2α2

θ2
α3
θ1
− 40
√
3α4

θ2

)

729π3 (1− 3b2)10 (6b2 + 1)8 gs9/4 logN4N7/6Nf
3 (−27a4rh + 6a2rh3 + rh5)α

7
θ1
α6
θ2

− 4
(

9b2 + 1
)4
b10Mrh

2β log(rh)Σ1

81π3/2 (3b2 − 1)5 (6b2 + 1)4
√
gs logN2N23/20Nfα

5
θ2

+ C(1)
xz = 0,
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one obtains:

(A15)

fxz(r) =
18b10

(

9b2 + 1
)4
Mβ

(

6a2 + rh
2
)

(

(r−rh)2
rh2 + 1

)

log3(rh)Σ1

π (3b2 − 1)5 (6b2 + 1)4 logN4N5/4Nf (9a2 + rh2)α
3
θ2

.

(v) EOMθ1z:
(A16)

2fθ1z
′′(r)− 32

√
2b12(9b2+1)4β( 1

N )
3/20

Σ1(r−rh)
81π3(1−3b2)10(6b2+1)8gs9/4 logN4N61/60Nf 3rh4α7

θ1
α6
θ2
(−27a4+6a2rh2+rh4)

= 0.

Choosing the two constants of integration obtained by solving (A16) in such
a way that the Neumann b.c. at r = rh : f ′θ1z(r = rh) = 0, one obtains:

(A17)

fθ1z(r) =

(

16(9b2+1)4b12( 1

N )
3/20

(

(r−rh)3

rh
3 +1

)

(19683
√
3α6

θ1
+3321

√
2α2

θ2
α3
θ1
−40

√
3α4

θ2
)

243π3(1−3b2)10(6b2+1)8gs9/4 logN4N61/60Nf 3(−27a4rh+6a2rh3+rh5)α7
θ1
α6
θ2

+ C
(1)
θ1z

)

β +O(r − rh)3.

(vi) EOMθ2x:
(A18)

2fθ2x
′′(r)− 32

√
2b12(9b2+1)4β( 1

N )
3/20

Σ1(r−rh)
81π3(1−3b2)10(6b2+1)8gs9/4 logN4N61/60Nf 3rh4α7

θ1
α6
θ2
(−27a4+6a2rh2+rh4)

= 0.

(A19)

fθ2x(r) =

(

16(9b2+1)4b12( 1

N )
3/20

(

(r−rh)3

rh
3 +1

)

(19683
√
3α6

θ1
+3321

√
2α2

θ2
α3
θ1
−40

√
3α4

θ2
)

243π3(1−3b2)10(6b2+1)8gs9/4 logN4N61/60Nf 3(−27a4rh+6a2rh3+rh5)α7
θ1
α6
θ2

+ C
((1)
θ2x

)

β

(vii) EOMθ2y:
(A20)

2fθ2y
′′(r) +

12
(

9b2 + 1
)4
βb10M

(

1
N

)7/5
Σ1

(

6a2 + rh
2
)

log(rh)

π (3b2 − 1)5 (6b2 + 1)4 logN2Nfrh2α
3
θ2
(9a2 + rh2)

− 32
√
2
(

9b2 + 1
)4
βb12

(

1
N

)3/20
Σ1(r − rh)

81π3 (1− 3b2)10 (6b2 + 1)8 gs9/4 logN4N61/60Nf
3rh4α

7
θ1
α6
θ2
(−27a4 + 6a2rh2 + rh4)

= 0.

Choosing the two constants of integration obtained by solving (A20) in
such a way that the Neumann b.c. at r = rh : f ′θ2y(r = rh) = 0, and requir-

ing the constant of integration C
(1)
θ2y

that figures in the O(r − rh)0-term to
satisfy:
(A21)

16(9b2+1)4b12(19683
√
3α6

θ1
+3321

√
2α2

θ2
α3
θ1
−40

√
3α4

θ2
)

243π3(1−3b2)10(6b2+1)8gs9/4 logN4N7/6Nf 3(−27a4rh+6a2rh3+rh5)α7
θ1
α6
θ2

+ C
(1)
θ2y

= 0,
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one obtains:

(A22)

fθ2y =
3b10(9b2+1)4Mβ(6a2+rh2)

(

1− (r−rh)2

rh
2

)

log(rh)Σ1

π(3b2−1)5(6b2+1)4 logN2N7/5Nf (9a2+rh2)α3
θ2

+O
(

(r − rh)3
)

.

(viii) EOMθ2z

(A23)

12
(

9b2 + 1
)4
βb10M

√

1
NΣ1

(

6a2 + rh
2
)

log(rh)

π (3b2 − 1)5 (6b2 + 1)4 logN2N2/3Nfrh2α
3
θ2
(9a2 + rh2)

− 32
√
2
(

9b2 + 1
)4
βb12

(

1
N

)3/20
Σ1(r − rh)

81π3 (1− 3b2)10 (6b2 + 1)8 gs9/4logN
4N61/60Nf

3rh4α
7
θ1
α6
θ2
(−27a4 + 6a2rh2 + rh4)

+ 2fθ2z
′′(r) = 0.

Choosing the two constants of integration obtained by solving (A23) in
such a way that the Neumann b.c. at r = rh : f ′θ2z(r = rh) = 0, one obtains:

(A24)

fθ2z =

(

3(9b2+1)4b10M(6a2+rh2)
(

1− (r−rh)2

rh
2

)

log(rh)(19683
√
6α6

θ1
+6642α2

θ2
α3
θ1
−40

√
6α4

θ2
)

π(3b2−1)5(6b2+1)4logN2N7/6Nf (9a2+rh2)α3
θ2

+ Cθ2z
(1)

)

β.

(ix) EOMxx:
(A25)
fzz(r)− 2fθ1z(r) + 2fθ1ϕ1

(r)− fr(r)

+
81
(

9b2 + 1
)4
βb10M

(

1
N

)53/20
α4
θ1

(

19683
√
6α6

θ1
+ 6642α2

θ2
α3
θ1
− 40

√
6α4

θ2

) (

rh
2 − 3a2

)2 (
6a2 + rh

2
)

log(rh)

16π (3b2 − 1)5 logN2Nf (6ab2 + a)4 αθ2 (9a
2 + rh2)

= 0.

Substituting (A12), (A17) and (A39) into (A25), one obtains:

fr(r) =

(

− 2
(

9b2 + 1
)4
b10M

(

6a2 + rh
2
) (

(r − rh)2 + rh
2
)

Σ1

3π (−18b4 + 3b2 + 1)
4
logNN8/15Nf (−27a4 + 6a2rh2 + rh4)α3

θ2

+ Czz
(1) − 2Cθ1z

(1) + 2Cθ1x
(1)

)

β +O(r − rh)3.(A26)
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(x) EOMxy:
(A27)

2fxy
′′(r) +

12
(

9b2 + 1
)4
βb10M

(

1
N

)21/20
Σ1

(

6a2 + rh
2
)

log(rh)

π (3b2 − 1)5 (6b2 + 1)4 logN2Nfrh2α
3
θ2
(9a2 + rh2)

− 32
√
2
(

9b2 + 1
)4
βb12

(

1
N

)3/20
Σ1(r − rh)

81π3 (1− 3b2)10 (6b2 + 1)8 gs9/4 logN4N61/60Nf
3rh4α

7
θ1
α6
θ2
(−27a4 + 6a2rh2 + rh4)

= 0.

Choosing the two constants of integration obtained by solving (A28) in such
a way that the Neumann b.c. at r = rh : f ′xy(r = rh) = 0, one obtains:

(A28)

fxy(r) =

(

3(9b2+1)4b10M(6a2+rh2)
(

(r−rh)2

rh
2 +1

)

log(rh)α3
θ2
Σ1

π(3b2−1)5(6b2+1)4 logN2N21/20Nf (9a2+rh2)α6
θ2l

+ C
(1)
xy

)

β +O (r − rh)3 .

(xi) EOM xz:
(A29)

− 8ft
′′(r) +

24
(

9b2 + 1
)4
βb10M

(

1
N

)3/4
Σ1

(

9a2 + rh
2
)

log(rh)

π3/2 (3b2 − 1)5 (6b2 + 1)4
√
gs logN2Nfα

2
θ1
α5
θ2

− 64
√
2
(

9b2 + 1
)4
βb12

(

1
N

)3/20
Σ1(r − rh)

81π3 (1− 3b2)10 (6b2 + 1)8 gs9/4 logN4N61/60Nf
3rh4α

7
θ1
α6
θ2
(−27a4 + 6a2rh2 + rh4)

= 0.

The solution is given as under:

(A30) ft(r) =
1

16
γft2(r − rh)2 +O

(

(r − rh)3
)

,

where:

(A31) γft2 ≡
24b10

(

9b2 + 1
)4
βM

(

1
N

)3/4
Σ1

(

9a2 + rh
2
)

log(rh)

π3/2 (3b2 − 1)5 (6b2 + 1)4
√
gs logN2Nfα

2
θ1
α5
θ2

.

Consistency with (A7) requires (as in [32] wherein rh ∼ N−α, α > 0):

(A32) rh =
8
√
π 4
√
4374b6 + 1035b4 + 9b2 − 4 8

√
gs
(

1
N

)3/8√
αθ1αθ2

3 4
√
2
√
b (9b2 + 1)3/4

.

Note 4374b6 + 1035b4 + 9b2 − 4 > 0 for b given as in (A52).
(xii) EOMyy:
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(A33)

2fϕ2ϕ2

′′(r) +
12
(

9b2 + 1
)4
βb10M

(

1
N

)7/4
Σ1

(

6a2 + rh
2
)

log(rh)

π (3b2 − 1)5 (6b2 + 1)4 logN2Nfrh2α
3
θ2
(9a2 + rh2)

− 32
√
2
(

9b2 + 1
)4
βb12

(

1
N

)3/20
Σ1(r − rh)

81π3 (1− 3b2)10 (6b2 + 1)8 gs9/4 logN4N61/60Nf
3rh4α

7
θ1
α6
θ2
(−27a4 + 6a2rh2 + rh4)

= 0

Choosing the two constants of integration obtained by solving (A33) in such
a way that the Neumann b.c. at r = rh : f ′yy(r = rh) = 0, and choosing the

constant of integration C
(1)
yy appearing in the O(r − rh)0-term to satisfy:

(A34)
16(9b2+1)4b12(19683

√
3α6

θ1
+3321

√
2α2

θ2
α3
θ1
−40

√
3α4

θ2
)

243π3(1−3b2)10(6b2+1)8gs9/4 logN4N7/6Nf 3(−27a4rh+6a2rh3+rh5)α7
θ1
α6
θ2

+ C
(1)
yy = 0,

one obtains:

(A35)

fyy(r) = −
3b10(9b2+1)4M( 1

N )
7/4
β(6a2+rh2) log(rh)Σ1

(

(r−rh)2

h2r2
+1

)

π(3b2−1)5(6b2+1)4 logN2Nfrh2(9a2+rh2)α3
θ2

+O
(

(r − rh)3
)

.

(xiii) EOMyz:
(A36)

2fϕ2ψ
′′(r)− 128

√
2b22(9b2+1)8β2M( 1

N )
3/5

Σ1
2(6a2+rh2)(r−rh) log(rh)

27π4(3b2−1)15(6b2+1)12gs9/4 logN6N109/60Nf 4rh6α7
θ1
α9
θ2
(rh2−3a2)(9a2+rh2)2

= 0.

Choosing the two constants of integration obtained by solving (A40) in such
a way that the Neumann b.c. at r = rh : f ′x10x10(r = rh) = 0, one obtains:

(A37)

fyz(r) =

(

64
(

9b2 + 1
)8
b22M

(

1
N

)3/5 (
6a2 + rh

2
)

(

(r−rh)3
rh3 + 1

)

log(rh)

27π4 (3b2 − 1)15 (6b2 + 1)12 gs9/4 logN6N109/60Nf
4rh3 (rh2 − 3a2) (9a2 + rh2)

2 α7
θ1
α9
θ2

×
(

387420489
√
2α12

θ1 + 87156324
√
3α2

θ2α
9
θ1 + 5778054

√
2α4

θ2α
6
θ1 − 177120

√
3α6

θ2α
3
θ1 + 1600

√
2α8

θ2

)

+ C(1)
yz

)

β +O(r − rh)3.

(xiv) EOMzz:
(A38)

2fzz
′′(r)− 32

√
2
(

9b2 + 1
)4
βb12

(

1
N

)3/20
Σ1(r − rh)

81π3 (1− 3b2)10 (6b2 + 1)8 gs9/4 logN4N61/60Nf
3rh4α

7
θ1
α6
θ2
(−27a4 + 6a2rh2 + rh4)

+
4
(

9b2 + 1
)4
βb10M

(

1
N

)23/20
Σ1(r − rh) log(rh)

9π3/2 (3b2 − 1)5 (6b2 + 1)4
√
gs logN2Nfrhα

5
θ2

= 0.
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Choosing the two constants of integration obtained by solving (A38) in such
a way that the Neumann b.c. at r = rh : f ′zz(r = rh) = 0, one obtains:

(A39)

fzz(r) =

(

C
(1)
zz −

b10(9b2+1)4M
(

rh2− (r−rh)3

rh

)

log(rh)Σ1

27π3/2(3b2−1)5(6b2+1)4
√
gs logN2N23/20Nfα5

θ2

)

β +O(r − rh)3.

(xv) EOMx10x10 :
(A40)
4
(

9b2 + 1
)3
βb8M

(

1
N

)5/4
Σ1

(

6a2 + rh
2
) (

9b4(27 logN + 16) + 3b2(9 logN − 8)− 8
)

log3(rh)

π (3b2 − 1)5 (6b2 + 1)4 logN5Nfrh2α
3
θ2
(9a2 + rh2)

− 4
(

9b2 + 1
)4
βb10M

(

1
N

)23/20
Σ1(r − rh) log(rh)

9π3/2 (3b2 − 1)5 (6b2 + 1)4
√
gs(logN)2Nfrhα

5
θ2

+ 2fx10x10
′′(r) = 0.

Choosing the two constants of integration obtained by solving (A40) in such
a way that the Neumann b.c. at r = rh : f ′x10x10(r = rh) = 0, and requiring

the constant of integration C
(1)
x10x10 appearing in the O(r − rh)0 to satisfy:

(A41)

(

9b2 + 1
)4
b10Mrh

2β log(rh)Σ1

27π3/2 (3b2 − 1)5 (6b2 + 1)4
√
gs logN2N23/20Nfα

5
θ2

+ C
(1)
x10x10 = 0,

one obtains:

(A42)

fx10x10 = −27b10(9b2+1)4M( 1

N )
5/4
β(6a2+rh2)

(

1− (r−rh)2

rh
2

)

log3(rh)Σ1

π(3b2−1)5(6b2+1)4 logN4Nfrh2(9a2+rh2)α3
θ2

+O(r − rh)3.

The remaining EOMS provide consistency checks and are listed below:

• EOMrr:

(A43)
3αh

(

9b2 + 1
)3
βb10MΣ1

π (3b2 − 1)5 (6b2 + 1)3 logN2N11/12Nfrh2α
3
θ2

− fθ1z
′′(r)
4

− fθ2y
′′(r)

4
− fxz

′′(r)
4

= 0.

• EOMθ1θ1

(A44)
fzz(r)

2
− fyz(r) +

fyy(r)

2

−
32
√
2 4
√
π
(

9b2 + 1
)3
βb12

(

1
N

)7/10 (−19683α6
θ1
+ 216

√
6α2

θ2
α3
θ1
+ 530α4

θ2

)

Σ1

(

6a2rh + rh
3
)

(r − rh)2

14348907 (1− 3b2)4 gs7/4 logNN4/5α8
θ1
(9a2 + rh2) (6b2rh + rh)

3 (108b2Nfrh2 +Nf )
2 = 0.
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• EOMθ1θ2

(A45)

−
441N3/10

(

2rh
2α3

θ1
fx10x10(r) + rh

2α3
θ1
fθ2y(r)

)

512α3
θ2
(rh2 − 3a2) log(rh)

−
3
√

3
2gs

3/2M 10
√
NNfrh

(

9a2 + rh
2
) (

108b2rh
2 + 1

)2
fr(r)(r − rh)

π3/2α3
θ1
(−18a4 + 3a2rh2 + rh4)

= 0.

• EOMθ2θ2 :

(A46) fzz(r)− fx10x10(r)− 2fθ1z(r)− fr(r) = 0.

One can show that by requiring:

C(1)
zz − 2C

(1)
θ1z

+ 2C
(1)
θ1x

= 0,

(A47)

C(1)
zz − 2Cyz = 0,

|Σ1| ≪ 1,

2b10
(

9b2 + 1
)4
Mrh

2β
(

6a2 + rh
2
)

Σ1

3π (−18b4 + 3b2 + 1)4 logNN8/15Nf (−27a4 + 6a2rh2 + rh4)α
3
θ2

− 2Cθ1x
(1) = 0,

(A43)-(A46) will automatically be satisfied.

A.2. ψ ̸= 2nπ, n = 0, 1, 2 near r = rh

Working in the IR, the EOMs near r = rh and up to LO in N , can be written
as follows:

(A48) EOMMN :

2
∑

p=0

2
∑

i=0

b
(p,i)
MN

(

rh, a,N,M,Nf , gs, αθ1,2
)

(r − rh)if (p)MN (r)

+ β
HMN

(

rh, a,N,M,Nf , gs, αθ1,2
)

(r − rh)γLO
MN

= 0,

where as in A.1, M,N run over the D = 11 coordinates, f
(p)
MN ≡ dpfMN

drp , p =
0, 1, 2, γLOMN = 1, 2 denotes the leading order (LO) terms in powers of r − rh
in the IR when the O(β)-terms are Laurent-expanded about r = rh.

One can show that a set of ten linearly independent EOMs for the
O(l6pR4) corrections to the MQGP metric, with the simplifying assumtion
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fθ1θ1 = fθ1x10 = fx10x10 = 0, reduce to the following set of seven equations
and one that serves as a consistency check.

(a) EOMtt:

(A49) α
f ′

θ1θ2

tt (r − rh)2f ′θ1θ2(r) +
αβttβ

r − rh
= 0,

where:
(A50)

α
f ′

θ1θ2

tt ≡
12× 4a2

(

1
N

)2/5
sin2

(

ψ0

2

)

(

9a2 + rh
2
)

log(rh)

π(gs − 1)gs sin
2 ϕ20 (6a2 + rh2)α

2
θ2

αβtt ≡
8192× 16π9/2a2 10

√

1
N sin4

(

ψ0

2

)

β
(

9a2 + rh
2
)2

(log(rh)− 1)
((

9a2 + rh
2
)

log
(

9a2rh
4 + rh

6
)

− 8
(

6a2 + rh
2
)

log(rh)
)2

729× 16(gs − 1)gs3/2Nf
6 sin4 ϕ20rh2 (6a2 + rh2)

4 log3(rh)α
4
θ2
log8 (9a2rh4 + rh6)

.

whose solution is given by:
(A51)

fθ1θ2(r) =





υθ1θ2N
3/10 sin2

(

ψ0

2

)

(

9a2 + rh
2
)

(log(rh)− 1)
((

9a2 + rh
2
)

log
(

9a2rh
4 + rh

6
)

− 8
(

6a2 + rh
2
)

log(rh)
)2

√
gsNf

6 sin2 ϕ20rh2 (6a2 + rh2)
3 (r − rh)2 log4(rh)α2

θ2
log8 (9a2rh4 + rh6)

+ Cθ1θ2
(1)



β

=





υ̃θ1θ2
(

1− 3b2
)2 (

9b2 + 1
)

N3/10 sin2
(

ψ0

2

)

β

(6b2 + 1)3
√
gsNf

6 sin2 ϕ20rh2(r − rh)2 log9(rh)α2
θ2

+ Cθ1θ2
(1)



β +O
(

1

N7/10

)

,

where υθ1θ2 ∼ O(1), υ̃θ1θ2 ≪ 1.
Assuming:

(A52) b =
1√
3
− κbr2h (log rh)

9

2 N− 9

10
−α,

one obtains:

(A53) fθ1θ2(r) =





˜̃υθ1θ2κ
2
b sin

2
(

ψ0

2

)

rh
2
(

1
N

)2α+ 3

2

√
gsNf

6 sin2 ϕ20(r − rh)2α2
θ2

+ Cθ1θ2
(1)



β,

where ˜̃υθ1θ2 ≪ 1.

(b) EOMry

(A54) αθ1θ2ry fθ1θ2(r) + αyyryfyy(r) = 0,
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where:
(A55)

αθ1θ2ry ≡
7π17/4

(

108a2 + rh
)

α4
θ1
αθ2 log

4
(

9a2rh
4 + rh

6
)

768
√
3(gs − 1)2gs19/4M3

(

1
N

)3/20
Nf

3 sin4 ϕ20rh2 log
3(rh)

,

αyyry ≡
7
√
3π17/4 logN2

(

1
N

)9/20 (
108a2 + rh

) (

rh
2 − 3a2

)2
(2 log(rh) + 1)2α10

θ1
log6

(

9a2rh
4 + rh

6
)

65536(gs − 1)gs19/4M3Nf
3 sin6 ϕ20rh6 log

5(rh)αθ2
,

and one obtains:

(A56)

fyy(r) = −
256N3/5 sin2 ϕ20rh

4α2
θ2

9(gs − 1) (rh2 − 3a2)2 log2(N)α6
θ1
log2 (9a2rh4 + rh6)

×





υyyN
3/10 sin2

(

ψ0

2

)

(

9a2 + rh
2
)

(log(rh)− 1)
((

9a2 + rh
2
)

log
(

9a2rh
4 + rh

6
)

− 8
(

6a2 + rh
2
)

log(rh)
)2

√
gsNf

6 sin2 ϕ20rh2 (6a2 + rh2)
3 (r − rh)2 log4(rh)α2

θ2
log8 (9a2rh4 + rh6)

+ Cθ1θ2
(1)



β,

where υyy ∼ O(1).

Even though fyy(r) is numerically suppressed as the same is O
(

10−7
)

apart from an O
(

l6p
)

-suppression - the latter of course common to most

fMN s - fyy(r), near r = rh for O(1) Cθ1θ2 (1), goes like
N

9
10

r2
h

log11 rh

(r−rh)2 . To ensure

fyy remains finite one has to forego the assumption that Cθ1θ2
(1) is O(1).

Around a chosen (ψ0, ϕ20), writing r = rh + ϵr, ϵ << rh close to the horizon,
by assuming Cθ1θ2

(1) = Cθ1θ2
(1)(ψ0, ϕ20):

(A57)
δθ1θ2

(

9a2 + rh
2
) (

rh
2 − 3a2

)2
sin2

(

ψ0

2

)

ϵr3
√
gs
(

1
N

)3/10
Nf

6rh2 (6a2 + rh2)
3 log9(rh)α

2
θ2
sin2 ϕ20

+ Cθ1θ2
(1)(ψ0, ϕ20) = 0,

(wherein δθ1θ2 ≪ 1) which would imply one can consistently set fyy(r) = 0 up
to O(β). The idea is that for every chosen value of (ψ0, ϕ20), once upgraded
to a local uplift, using the ideas similar to [11], one can show that the same
will correspond to a G2 structure.

(c) EOMx1x1

(A58)
αβttβ

4
(

1− r
rh

)

(r − rh)
+ αθ1ϕ2

x1x1fθ1y(r)(r − rh) = 0,
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where:

(A59) αθ1ϕ2

x1x1 ≡ −

√

3π
2

(

rh
2 − 3a2

) (

9a2 + rh
2
)

α4
θ1
log2

(

9a2rh
4 + rh

6
)

32(gs − 1)gs5/2MNNf sin
2 ϕ20 (6a2 + rh2) log(rh)αθ2

,

and obtain:
(A60)

fθ1y(r) = −
υ̃θ1ya

2βgsMN9/1016 sin4
(

ψ0

2

)

β
(

9a2 + rh
2
)

(log(rh)− 1)
((

9a2 + rh
2
)

log
(

9a2rh
4 + rh

6
)

− 8
(

6a2 + rh
2
)

log(rh)
)2

Nf
5 sin2 ϕ20 (6a2 + rh2)

3 (rh3 − 3a2rh) (r − rh)3 log2(rh)α4
θ1
α3
θ2
log10 (9a2rh4 + rh6)

=
υθ1yb

2
(

3b2 − 1
) (

9b2 + 1
)

βgsMN9/10 sin4
(

ψ0

2

)

β

(6b2 + 1)3Nf
5 sin2 ϕ20rh(r − rh)3 log9(rh)α4

θ1
α3
θ2

,

where υ̃θ1y ∼ O(100), υθ1y ≪ 1, yielding:

(A61) fθ1y(r) =

˜̃υθ1y
√
2π4βgsκbM16 sin4

(

ψ0

2

)

rhβN
−α

Nf
5 sin2 ϕ20(r − rh)3 log

9

2 (rh)α
4
θ1
α3
θ2

.

where ˜̃υθ1y ≪ 1.

(d) EOMθ1z

(A62) αθ1ϕ2

yx10fθ1y(r) + αθ1zyx10fθ1z(r) + αyyyx10fyy(r) = 0,

where:

αθ1ϕ2

yx10 ≡ −
υθ1z logN

(

1
N

)3/10 (
rh

2 − 3a2
)

(log(rh) + 1)α9
θ1
log4

(

9a2rh
4 + rh

6
)

gs13/2(gs − 1)M4Nf
5 sin4 ϕ202 sin

(

ψ0

2

)

rh2 log
5(rh)

(A63)

αθ1zyx10 = −αθ1ϕ2

yx10 = αyyyx10 ,

and obtain:
(A64)

fθ1z(r) =
υθ1z logN

(

1
N

)3/10 (
rh

2 − 3a2
)

(2 log(rh) + 1)α9
θ1
log4

(

9a2rh
4 + rh

6
)

(gs − 1)gs13/2M4Nf
5 sin4 ϕ202 sin

(

ψ0

2

)

rh2 log
5(rh)

,

υθ1z ∼ O(1), yielding:
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(A65) fθ1z(r) =
υ̃θ1z × 16

√
2π4βgs

15/2κbM sin4
(

ψ0

2

)

rhβN
−α

gs13/2Nf
5 sin2 ϕ20(r − rh)3 log

9

2 (rh)α
4
θ1
α3
θ2

where υ̃θ1z ≪ 1.

(e1) EOMxy

(A66)
αβttβ

R tt

rφ1

(r − rh)2
+ α

f ′′

xy

rϕ1
(r − rh)f ′′xy(r) + α

f ′

xy

rϕ1
(r − rh)f ′xy(r) = 0,

where:
(A67)

R tt

rφ1

≡ 3
(

1
N

)3/5
rh
(

9a2 + rh
2
)

αθ2 log
3
(

9a2rh
4 + rh

6
)

160
√
π
√
gs sinϕ10 sin

(

ψ0

2

)

αθ1 (24(gs − 1)2 (6a2 + rh2) log(rh) + (2gs − 3) (9a2 + rh2) log (9a2rh4 + rh6))
,

α
f ′′

xy

rϕ1
≡

5(gs − 1) sinϕ12 sin
(

ψ0

2

)

rh
(

9a2 + rh
2
)

729
√
6πgs3/2Nf sin

2 ϕ20 (6a2 + rh2) log(rh)αθ1α
3
θ2
log2 (9a2rh4 + rh6)

(

112(gs − 1)gsNfψ
2 log(rh)

(

81α3
θ1 + 5

√
6α2

θ2

)

− 1

rh2

{

243α3
θ1 log

2
(

9a2rh
4 + rh

6
)

×
[

log(rh)

(

6a2(gs logNNf − 4π) + 4gsNf

(

rh
2 − 3a2

)

log

(

1

4
αθ1αθ2

)

+ rh
2(8π − gs(2 logN + 3)Nf )

)

+ gsNf

(

3a2 − rh2
)

(

logN − 2 log

(

1

4
αθ1αθ2

))

+ 18gsNf

(

rh
2 − 3a2(6rh + 1)

)

log2(rh)

]})

,

which yields:
(A68)

fxy(r) =

e
−
α
f′xy
rφ1

r

α
f′′xy
rφ1









αβttα
f ′

xy

rϕ1

2β(r − rh)e
α
f′xy
rφ1

rh

α
f′′xy
rφ1 Ei

(

α
f ′
xy

rφ1
(r−rh)

α
f′′xy
rφ1

)

− αβttα
f ′′

xy

rϕ1
α
f ′

xy

rϕ1
βe

α
f′xy
rφ1

r

α
f′′xy
rφ1 + 2α

f ′′

xy

rϕ1

3c
(89)
1 R tt

rφ1

(rh − r)









2α
f ′′
xy

rϕ1

2α
f ′
xy

rϕ1
R tt

rφ1

(r − rh)
+ c

(89)
2

= − αβttβ

2(α
f ′′
xy

rϕ1
R tt

rφ1

)(r − rh)
+

(

αβttα
f ′

xy

rϕ1
β log(r − rh)

2α
f ′′
xy

rϕ1

2R tt

rφ1

+
γαβttα

f ′

xy

rϕ1
β

2α
f ′′
xy

rϕ1

2R tt

rφ1

−
αβttα

f ′

xy

rϕ1
β log

(

α
f′′xy
rφ1

α
f′xy
rφ1

)

4α
f ′′
xy

rϕ1

2R tt

rφ1

+

αβttα
f ′

xy

rϕ1
β log

(

α
f′xy
rφ1

α
f′′xy
rφ1

)

4α
f ′′
xy

rϕ1

2R tt

rφ1

−
α
f ′′

xy

rϕ1
c1e

−
α
f′xy
rφ1

rh

α
f′′xy
rφ1

α
f ′
xy

rϕ1

+ c2

)

+O (r − rh) ∼
b2
(

3b2 − 1
)

β
√
N sin4

(

ψ0

2

)

β
(

3b2
(

8gs
2 − 10gs − 1

)

+ 4gs
2 − 6gs + 1

)

(6b2 + 1)3 (gs − 1)2
√
gs logNNf

6 sin2 ϕ20rh2(r − rh) log10(rh)αθ1α2
θ2

,

implying:
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(A69) fxy(r) =
υxyβ

√
gs(3gs − 4)κb

(

1
N

)2/5
sin4

(

ψ0

2

)

βN−α

(gs − 1)2Nf
6 sin2 ϕ20 log(N)(r − rh) log

11

2 (rh)αθ1α
2
θ2

,

where υxy ≪ 1.

(e2) EOMθ1x (consistency)

(A70) α
f ′

xy

θ1x
f ′xy(r) +

αβθ1xβ

(r − rh)2
= 0,

where:
(A71)

α
f ′

xy

θ1x
≡ −

4gs
5/4 logNMNf sin

2
(

ψ0

2

)

(

rh
2 − 3a2

) (

9a2 + rh
2
)

(2 log(rh) + 1)

36
√
2π7/4

(

1
N

)13/20
sin2 ϕ20rh2 (6a2 + rh2) log(rh)αθ1α

4
θ2

αβθ1x ≡
a2gs

3/4MN23/20 sin6
(

ψ0

2

)

β
(

9a2 + rh
2
)2

(log(rh)− 1)
((

9a2 + rh
2
)

log
(

9a2rh
4 + rh

6
)

− 8
(

6a2 + rh
2
)

log(rh)
)2

2187
√
3(gs − 1)Nf

5 sin4 ϕ20rh3 (6a2 + rh2)
4 log2(rh)α

2
θ1
α6
θ2
log10 (9a2rh4 + rh6)

,

which obtains as its LHS:

(A72)
υθ1xb

2
(

1− 3b2
)2 (

9b2 + 1
)2
βgs

3/4MN23/20 sin
(

ψ0

2

)

β

(gs − 1)Nf
5rh (6b2 + 1)4 sin4 ϕ20(r − rh)2 log9(rh)α2

θ1
α6
θ2

=
υ̃θ1xβgs

3/4κ2bM sin6
(

ψ0

2

)

rh
3β
(

1
N

)2α+ 13

20

(gs − 1)Nf
5 sin4 ϕ20(r − rh)2α2

θ1
α6
θ2

,

where υθ1x, υ̃θ1x ≪ 1 that in the MQGP limit, is vanishingly small.
(f) EOMrθ1

(A73) aθ1yrθ1fθ1y(r) + axyrθ1fxy(r) + ayzrθ1fyz(r) +
aβrθ1β

(r − rh)2
= 0,

where:
(A74)
aθ1yrθ1 ∼ −

logN
(

108a2 + rh
) (

rh
2 − 3a2

)

(2 log(rh) + 1)α7
θ1
log4

(

9a2rh
4 + rh

6
)

(gs − 1)gs3M2 5

√

1
NNf

2 sin4 ϕ20rh4 log
3(rh)α

2
θ2

,

axyrθ1 ∼
sin2

(

ψ0

2

)

(

108a2 + rh
)

α6
θ1
log2

(

9a2rh
4 + rh

6
)

gs3M2
(

1
N

)2/5
Nf

2 sin4 ϕ20rh2 log
2(rh)α

2
θ2

,

ayzrθ1 ∼ −
sin2

(

ψ0

2

)

(

108a2 + rh
)

α6
θ1
log2

(

9a2rh
4 + rh

6
)

gs3M2
(

1
N

)2/5
Nf

2 sin4 ϕ20rh2 log
2(rh)α

2
θ2

,

aβrθ1 ∼ −
a2gs

3/4MN13/20 sinϕ10 sin
5
(

ψ0

2

)

β
(

9a2 + rh
2
)2

(log(rh)− 1)
((

9a2 + rh
2
)

log
(

9a2rh
4 + rh

6
)

− 8
(

6a2 + rh
2
)

log(rh)
)2

(gs − 1)Nf
5 sin4 ϕ20rh3 (6a2 + rh2)

4 (r − rh)2 log2(rh)αθ1α5
θ2
log10 (9a2rh4 + rh6)

,
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that yields:

(A75) fyz(r) =
υyzb

2
(

1− 3b2
)2 (

9b2 + 1
)

βgs logNMN7/10 sin2
(

ψ0

2

)

β

(6b2 + 1)3 (gs − 1)Nf
5 sin2 ϕ20rh(r − rh)3 log7(rh)α3

θ1
α3
θ2

where υyz ≪ 1, implying:

(A76) fyz(r) =
υ̃yzβgsκ

2
b logNM sin2

(

ψ0

2

)

rh
3βN−2α− 11

10 log2(rh)

(gs − 1)Nf
5 sin2 ϕ20(r − rh)3α3

θ1
α3
θ2

.

where υ̃yz ≪ 1.

(g) EOMxx

(A77) a
f ′

xy
xx f

′
xy(r) + af

′

xz
xx f

′
xz(r) = 0,

where:
(A78)
a
f ′

xy
xx ∼

−

(

2π3α2
θ1
α4
θ2
log2

(

9a2rh
4 + rh

6
)

+ 360(gs − 1)gs
3M2Nf

2 sin2
(

ψ0

2

)

log2(rh)α
2
θ2
+ 243× 4

√
6(gs − 1)gs

3M2Nf
2 sin2

(

ψ0

2

)

log2(rh)α
3
θ1

)

(gs − 1)gs7/2M2
(

1
N

)7/10
Nf

2 sin2
(

ψ0

2

)

log2(rh)α
6
θ1
α2
θ2
log (9a2rh4 + rh6)

,

af
′

xz
xx ≡

−
rh
(

9a2 + rh
2
)

α2
θ2

(gs − 1)gs7/2M2
(

1
N

)7/10
Nf

2 sin2 ϕ20ψ2 (6a2 + rh2) log
2(rh)α

6
θ1
log3 (9a2rh4 + rh6)

×
(

κ
(1)
xx (gs − 1)gs

3M2Nf
2 sin2 ϕ20 sin

2
(

ψ0

2

)

(

6a2 + rh
2
)

log2(rh)
(

4α2
θ2
− 27
√
6α3

θ1

)

log2
(

9a2rh
4 + rh

6
)

(9a2rh + rh3)α
4
θ2

+
κ
(2)
xx (gs − 1)2gs

3M2Nf
2 sin6

(

ψ0

2

)

log(rh)α
6
θ1
log
(

9a2rh
4 + rh

6
)

rhα
6
θ2

+
κ
(3)
xx × 64(gs − 1)3gs

3M2Nf
2 sin6

(

ψ0

2

)

(

6a2 + rh
2
)

log2(rh)α
6
θ1

(9a2rh + rh3)α
6
θ2

−
14π3 sin2 ϕ20

(

6a2 + rh
2
)

α2
θ1
log4

(

9a2rh
4 + rh

6
)

9a2rh + rh3

)

,

which yields:

(A79)

fxz(r) =



C(1)
xz −

υxzΣ̃2

√
2π11/2

√
gs(3gs − 4)κb sin

4
(

ψ0

2

)

βN−α− 2

5

(gs − 1)2Nf
6 sin2 ϕ20(r − rh) log

13

2 (rh)αθ1α
2
θ2



β.

where υxz ≪ 1:
(A80)

Σ̃2 ≡ (40(gs−1)gs3M2Nf 2 sin2(ψ0
2 )α

2
θ2
+108

√
6(gs−1)gs3M2Nf 2 sin2(ψ0

2 )α
3
θ1
+8π3α2

θ1
α4
θ2
)

(−4(gs−1)gs3M2Nf 2ψ2α2
θ2
+108

√
6(gs−1)gs3M2Nf 2 sin2(ψ0

2 )α
3
θ1
+8π3α2

θ1
α4
θ2
)
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Appendix B. The Kiepert’s algorithm for solving the quintic
(65) and diagonalization of the SYZ type IIA

mirror inclusive of O(R4) corrections

In this appendix, we give the details pertaining to solving the quintic (65)
to help in obtaining the G-structure torsion classes of six-, seven- and eight-
folds in Section 4. This appendix is based on techniques and results sum-
marized in [65], and laid out as a five-step algorithm in this appendix.

• Step 1 Consider the Tschirnhausen transformation to convert general
quintic (65) to the principal quintic:

(C1) z5 + 5az2 + 5bz + c = 0,

where:

(C2) z = x2 − ux+ v.

In (C2) u is determined by:

(C3) 2A4 + u
(

4A3 − 13AB + 15P
)

+ u2
(

2A2 − 5B
)

− 8A2B + 10AP + 3B2 − 10F = 0,

whose root, e.g., near (33) that we work with is:

(C4) u =
4iN

27
√
15α2

θ1
α2
θ2

+
13βC

(1)
zz N3/5

135α2
θ2

.

The global small-θ1,2-uplift of (C4) will be: u = iκβ
0

u

sin2 θ1 sin2 θ2
+ κβuC

(1)
zz

sin2 θ2
.

Using (C4), v is given by:

v =
−Au−A2 + 2B

5
(C5)

= − 32N2

32805α4
θ1
α4
θ2

+
8iβC

(1)
zz N8/5

3645
√
15α2

θ1
α4
θ2

.
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The global small-θ1,2-uplift of (C5) will be: − κβ
0

v

sin4 θ1 sin4 θ2
+ κβv iβC

(1)
zz

sin θ21 sin
4 θ2

.

The constants a, b and c in (C1) are given by:

a =
1

5

(

F
(

3Au+ 2B + 4u2
)

− P
(

Au2 +Bu+ P + u3
)

−G(2A+ 5u)− 10v3
)

b =
1

5

(

−10av −G
(

4Au2 + 3Bu+ P + 5u3
)

+ F
(

Bu2 + F + Pu+ u4 + 4u3
)

− 5v4
)

c = −F
(

u5 +Au4 +Bu3 + Cu2 + Fu+G
)

− v5 − 5av2 − 5bv.(C6)

It should be noted that the vanishingly small numerical pre-factors
appearing in (C6) are compensated by very large powers of N .

• Step 2 To transform the principal quintic to the Brioschi quintic:

(C7) y5 − 10Zy3 + 45Z2y − Z2 = 0,

via the Tschirnhausen transformation:

(C8) zk =
λ+ µyk
y2k
Z − 3

,

λ in (C8) is determined by the quadratic:

(C9) λ2
(

a4 + abc− b3
)

− λ
(

11a3b− ac2 + 2b2c
)

− 27a3c+ 64a2b2 − bc2 = 0.

Defining:

f ≡ uv
(

u10 + 11u5v5 − v10
)

T ≡ u30 + 522u25v5 − 10005u20v10 − 10005u10v20 − 522u5v25 + v30

Z ≡ f5

T 2
,(C10)

one determines:

µ ≡
√

λb+ c

Za
.(C11)
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• Step 3: We now discuss the transformation of the Brioschi quintic to
the Jacobi sextic:

(C12) s6 − 10fs3 +Hs+ 5f2 = 0,

where:

H ≡ −u20 + 228u15v5 − 494u10v10 − 228u5v15 − v20..(C13)

Defining:

∆ ≡ 1

Z

g2 ≡
(

1−1728Z
Z2

)
1

3

12

g3 ≡
√

g32 −∆

27
,(C14)

one solves the cubic:

(C15) x3 − g2
4
x− g3

4
= 0.

The roots of (C15), e.g., near (33) are given by:

E i = κEi, C
β0

N5/3 3

√

1

α10
θ1
α10
θ2

+
κEi, C

β
√
β

√

C
(1)
zz N22/15

3

√

α7
θ1
α10
θ2

,

(C16)

where i = 1, 2, 3 and |κEi,C β0/β | ≪ 1. The global small-θ1,2-

uplift of (C16) is E i = κ̃Ei, C β0
3

√

1
sin10 θ1 sin10 θ2

+
κ̃
Ei, C

β
√
β
√
C

(1)
zz

3
√
sin7 θ1 sin10 θ2

Defining, L ≡ 4
√
E1−E3− 4

√
E1−E2

4
√
E1−E2+ 4

√
E1−E3

, e.g., near (33), L = −1 + (2.2 +

0.4i) 8
√
β

4

√

C
(1)
zz

20

√

1
N

4
√
αθ1 , whose global small-θ1,2-uplift will be: L =

−1 + κL, C
8
√
β

4

√

C
(1)
zz

4
√
sin θ1.

The Jacobi nome q is defined as:

(C17) q =

∞
∑

j=0

qj

(

L

2

)4j+1

,
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wherein e.g., near (33):

q0 = 1

q1 = 2

q2 = 15

q3 = 150

q4 = 1707

q5 = 20, 910

q6 = 268, 616

q7 = 3, 567, 400

q8 = 48, 555, 069

q9 = 673, 458, 874

q10 = 9, 481, 557, 398

q11 = 135, 119, 529, 972

q12 = 1, 944, 997, 539, 623

q13 = 28, 235, 172, 753, 886

.......(C18)

The value of q, e.g., near (33), appears to converge to a form:

q = −0.7 + 4
√

β

√

C
(1)
zz Cq 10

√

1

N

√
αθ1 ,(C19)

whose global small-θ1,2-uplift will be: q = −0.7 + 4
√
β

√

C
(1)
zz Cq

√

sinθ1
The roots, e.g., near (33), are given by:
1)

√
s∞ =

√
5

∆
1

6

∑∞
j:−∞(−)jq 5(6j+1)2

12

∑∞
j:−∞(−)jq (6j+1)2

12

;(C20)

appears to converge to:

√

S∞ =
(11.4 + 18031i) (αθ1αθ2)

10/3

N5/3

−
(160.2 + 266468i) 4

√
β

√

C
(1)
zz Cqα23/6

θ1
α
10/3
θ2

N53/30
,(C21)
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whose global small-θ1,2-uplift will be: κβ
0

S∞
(sin θ1 sin θ2)

10/3 −
κβS∞

4
√
β

√

C
(1)
zz Cq sin23/6 θ1 sin10/3 θ2.

2)

√

Sk = −
1

∆
1

6

∑∞
j:−∞(−)jεk(6j+1)2q

(6j+1)2

60

∑∞
j:−∞(−)jq (6j+1)2

12

,(C22)

e.g., near (33), yielding:

Si =
κβ

0

Si, C
(αθ1αθ2)

10/3

N5/3
+
κβSi, C

√

C
(1)
zz Cq 4

√
βα

10/3
θ2

α
23/6
θ1

N53/30
,(C23)

i = 0, 1, ..., 8, whose global small-θ1,2-uplift will be: Si =

−κβ0

Si
(sin θ1 sin θ2)

10/3 + κβSi
4
√
β

√

C
(1)
zz Cq sin23/6 θ1 sin10/3 θ2. It

turns out that seven of the nine Sis, have |κβ0,β
Si, C
| ≫ 1 and the

remaining two have moduli much less than unity.
The roots of the Jacobi sextic are related to those of the Brioschi
quintic via:

(C24) yk =
1√
5
(S∞ − Sk) (Sk+2 − Sk+3) (Sk+4 − Sk+1) ,

yielding, e.g., near (33),

yi =
κβ

0

yi, C
α5
θ1
α5
θ2

N5/2
−
κβyi, C

4
√
β

√

C
(1)
zz Cqα11/2

θ1
α5
θ2

N13/5
,

(C25)

i = 0, 1, ..., 5 and |κβ0,β
yi, C
| ≫ 1. It should be noted that the large nu-

merical factors in the numerators of (C23) and (C25) are balanced off
by the large powers of N - numerically taken to be 102 − 103 - in the
denominators of the same. The global small-θ1,2-uplift of (C25) will

be: yi = κ̃β
0

yi, C
sin5 θ1 sin

5 θ2 − κβyi, C 4
√
β

√

C
(1)
zz Cq sin11/2 θ1 sin5 θ2.

• Step 4: Hence, the roots of the principal quintic using zk =
λ+µyk
y2
k
Z
−3

can be obtained. One notes that the same involve vanishing small
numerical prefactors accompanied by very large powers of N .
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• Step 5: Now, finally the roots xk of the original quintic are given by:
(C26)

xk =
−(zk − v)

(

Au2 +Bu+ C + u3
)

− (A+ 2u)(zk − v)2 −G
(zk − v) (2Av +B + 3u2) +Au3 +Bu2 + F + Cu+ u4 + (zk − v)2

.

The above, e.g., near (33), yields the six roots, five of which are:

xi ̸=1 =
0.07N3/5

α2
θ2

+
κβ

0

xi r
6α61

θ2
α64
θ1

gs6 logN3M3N311/10Nf
3 log3(r)

(C27)

+
κβxi

√

C
(1)
zz CqN9/10 4

√
β

α2
θ2
α
3/2
θ1

,

and,

x1 =
0.07N3/5

α2
θ2

+
κβ

0

x1r
6α61

θ2
α64
θ1

gs6 logN3M3N311/10Nf
3 log3(r)

(C28)

−
κβx1

√

C
(1)
zz Cq

√
N 4
√
β
√
αθ1

α2
θ2

,

wherein |κβ0

xk | ≫ 1, |κβxk | ≪ 1 where κβ
0

xi ≈ 101−3

(κβxk)
2 , k = 0, 1, ..., 4, whose

global small-θ1,2-uplift are given as under:

xi =
κ̃β

0

xi

sin2 θ2
+

κ̃β
0

xi r
6 sin61θ2 sin

64 θ1

gs6 logN3M3Nf
3 log3(r)

+
κ̃βxi

√

C
(1)
zz Cq 4

√
β

sin2 θ2 sin
3/2 θ1

.(C29)

Strictly speaking, one ought to also consider the
√
β, β

3

4 , β terms
in x0,1,2,3,4. Their forms however is extremely cumbersome. To cap-
ture the essence of the results that one gets if one were to actu-
ally do so, in the following what is being assumed is that one is
working near the type IIB Ouyang’s D7-brane embedding coordi-
nate patches effected via delocalization parameters αθ1,2 ∼ O(1) and
small values of θ1,2, and setting N ∼ 102, gs ∼ 0.1,M = Nf = 3, and

r in the IR estimated as r (∈ IR) ∼ N− fr
3 with fr ∼ 1 [4], [5]. One

can then show, e.g., in x0 that by working in the neighborhood
of (θ10 =

αθ1
N

1
5
, θ20 =

αθ20
N

3
10
, ψ = 2nπ), n = 0, 1, 2, one obtains the follow-

ing β-dependent terms: O(10−14) 4
√
β +O(10−13)

√
β +O(10−10)β

3

4 +
O(1)β. Hence, by choosing β ∼ O(10−19), one sees that the most dom-
inant terms are the β

1

4 and the β terms which are both of the same
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order. This is hence the reason why we will work with corrections in
the co-frames up to O(β 1

4 ) and as explained above, this will capture
the essence of the exact calculation up to O(β). Further one notes
that in (C29), the very large numerical factors in one of the two O(β0)
terms in the each of the five xi’s are compensated by very large N -
suppression factors in the denominators.

Denoting the matrix with entries uij (i = 1, ..., 5 indexing the eigenvector
and j = 1, ..., 5 indexing the column vector element of the ith eigenvector
ui) and embedding the same in a 6× 6 matrix U with Uab, a/b = r, i then:

6
∑

a=1

(ea)2 =
(

dr dθ1 dθ2 dx dy dz
)

(C30)

× U

















Grr 0 0 0 0 0
0 x0 0 0 0 0
0 0 x1 0 0 0
0 0 0 x2 0 0
0 0 0 0 x3 0
0 0 0 0 0 x4

















UT

















dr
dθ1
dθ2
dx
dy
dz

















.

The co-frames are hence given by:
(C31)
e1 =

√

Grrdr,

e2 =

√

√

√

√

κ21;β0 csc2 (θ2) + κ22,β0

r6 sin61 (θ2) sin
64 (θ1)

gs6 logN3M3Nf
3 log3(r)

+ κ21;β

4
√
β

√

C
(1)
zz Cq

sin
7

2 (θ2)

×
[dθ1

(

κ2θ1,1;β0

gs7/4 logNMNf (0.25a2−0.06r2) sin(θ1) csc(θ2) log(r)
r2 + κ2θ1;2;β

4
√
β
√
C

(1)
zz Cqgs7/4 logNMNf (1.8a2+2.5r2) csc(θ2) log(r)

r2
√

sin(θ1)

)

4
√
N

+ dθ2

(

κ2θ2,1;β0

gs
7/4MNf sin

2 (θ1) csc
2 (θ2) log(r)

(

3a2 log(r) + 0.08r
)

4
√
Nr

+ κ2θ2;2;β

4
√
β

√

C
(1)
zz Cqgs21/4M3Nf

3 sin
9

2 (θ1) csc
6 (θ2) log

3(r)
(

a2r2 log(r) + r3
)

N3/4r3

)

+ dx

(

κ2x,1;β0 sin2 (θ1) csc (θ2) + κ2x;2;β

4
√
β

√

C
(1)
zz Cqgs7/2M2Nf

2 log2(r) sin
9

2 (θ1) csc
5 (θ2)

(

3.6a2r log(r) + 4.8r2
)

√
Nr2

)

+ dy

(

1− κ2y,1;β0

gs
7/2M2Nf

2 sin4 (θ1) csc
4 (θ2) log

2(r)
(

3a2 log(r) + 0.08r
)2

√
Nr2

− κ2y;1;β
4
√
β

√

C
(1)
zz Cq

sin
3

2 (θ1)

)

+ dz

(

κ2z,1;β0 sin (θ2)− κ2z;1;β
4
√
β

√

C
(1)
zz Cq sin (θ2)

sin
3

2 (θ1)

)

]
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e3 =

√

κ31;β0 csc2 (θ2) + κ32;β0

r6 sin61 (θ2) sin
64 (θ1)

gs6 logN3M3N311/10Nf
3 log3(r)

− κ31;β 4
√
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(C33)
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.

In (C31)–(C33), κa=1,...,6
θ1,2/x/y/z;1;β

≪ 1. Except for e4, however, all the rest have
an IR-enhancement factor involving some power of log r appearing in the
contributions picked up from the O(R4) terms. Further, these contributions
also receive near-Ouyang-embedding enhancements around small θ1,2 - which
also provide the most dominant contributions to all the terms of the action.
Also, κa1;β0 ≫ 1 but are accompanied by IR-suppression factors involving
exponents of r along with near-Ouyang-embedding enhancements around
small θ1,2.

Now, (C31)–(C33) can be inverted - in Section 3, for simplicity, one

restricts to the Ouyang embedding
(

r6 + 9a2r4
) 1

4 e
i

2
(ψ−ϕ1−ϕ2) sin θ1

2 sin θ2
2 =

µ, µ being the Ouyang embedding parameter assuming |µ| ≪ r
3

2 , effected,
e.g., by working near the θ1 =

αθ1

N
1
5
, θ2 =

αθ2

N
3
10
-coordinate patch (wherein an

explicit SU(3)-structure for the type IIB dual of [2] and its delocalized SYZ
type IIA mirror [1], and an explicit G2-structure for itsM-Theory uplift [1]
was worked out in [16]).
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Appendix C. Ωabs appearing in (71)

The components of the “structure constants” of (71) Ωabs after a small-β
large-N small-a expansion are given as under:
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θ2
g
1/4
s N

1/3
f

√

1− r4h
r4

Ω65 = −

(

1
| log r|

)4/3
4

√

1
N

(

48.5a2

r2 + 32.3
)

g
1/4
s N

1/3
f

√

1− r4h
r4
−
ω65

3

√

1
| log r|

√

C(1)zz Cqgs3/2M 4
√
NNf

4
√
βα

5/2
θ1

rα5
θ2
g

1

4
s N

1

3

f

√

1− r4h
r4

Ω66 = −
| log r|2/3gs7/2M2

(

1
N

)7/20
Nf

2
(

0.3a2

r2 + 0.2
)

α4
θ1

α4
θ2
g
1/4
s N

1/3
f

√

1− r4h
r4

+
ω66

3

√

1
| log r|

√

C(1)zz Cqgs3/2M 4
√
NNf

4
√
βα

5/2
θ1

rα5
θ2
g

1

4
s N

1

3

f

√

1− r4h
r4
.
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wherein the numerical constants ωab ≪ 1; it turns out that in Ω4a, a =
2, 3, 4, 5, 6, these very small numerical pre-factors arising in the higher deriva-
tive contribution to the “structure constants”, are maximally compensated
by the highest positive powers of N (amongst the other Ω′

abs, a ̸= 4).

Appendix D. Equation (46) relevant to proving result 3

In this appendix, we will show that the equation (46):

∑

N,P∈{t,x1,2,3,r,θ1,2,ϕ1,2,ψ,x10}
β∂r

(

√

−g(0)g(0)NP g(0)NP fNP g
rr
(0)∂rC

M1M2x10

(0)

)

δM3

x10 = 0,

is satisfied by setting the constant of integration C
(1)
θ1x

, to zero up to LO
in β and N ; up to O(β) and NLO in N , one would additionally require

C
(1)
θ1z
− 2C

(1)
zz = C

(1)
θ2z

= 0.

• (M1,M2) = (θ1, θ2):
One can show that near r = χrh, χ = O(1), (46) reduces to:

(E1)

β
1

4π19/4gs5/4χ5α8
θ1
α4
θ2

{

27 logN

(

1

N

)3/20

Nf
2rh

3

(

(

1

N

)2/5
(

−162b4 + 9b2
(

χ6 + χ2
)

+ 4χ8
)

×
(

0.01α7
θ2(Czz

(1) − 2C
(1)
θ1z

) + 0.09C
(1)
θ2z
gs

3/2 log rhMNfα
8
θ1

)

−
√
3π3/2b4C

(1)
θ1x
α4
θ1α

3
θ2

)}

∼ β logNr
3
h

N
3

20

N2
f

g
5

4
s

C
(1)
θ1x
,

where the “∼” in (E1) and henceforth implies equality up to NLO-in-N
terms. Therefore by setting:

(E2) C
(1)
θ1x

= 0,

(46) is satisfied in the IR 9.

• (M1,M2) = (θ1, x):

9If one wishes to also consider the NLO-in-N term in (E1), one sees

that one needs to impose the additional constraints: 0.01α7
θ2
(Czz

(1) − 2C
(1)
θ1z

) +

0.09C
(1)
θ2z
gs

3/2 log rhMNfα
8
θ1

= 0 - see (53).



✐

✐

“11-Misra” — 2024/3/4 — 16:00 — page 3882 — #82
✐

✐

✐

✐

✐

✐

3882 V. Yadav and A. Misra

Working in the IR, i.e., r = χrh, χ = O(1), one an show that (46)
yields:

(E3)

β
N2
f r

3
h

gs



Fθ1xθ1x
(b, χ, αθ1,2 , rh)C

(1)
θ1x

logN

N
7

10

+
1

N
11

10

∑

(M,N)=(z,z),(θ1,z),(θ2,z)

Fθ1xMN (b, χ, αθ1,2)C
(1)
MN





∼ β
N2
f r

3
h

gs
Fθ1xθ1x

(b, χ, αθ1,2 , rh)C
(1)
θ1x

logN

N
7

10

,

[wherein the notation used is FM1M2

MN , (M,N) ∈
{(θ1, x), (θ1, z), (θ2, z), (z, z)}], which again would vanish at (E2).

We will, for the remaining eight equations, given only the equivalents
of (E3) below (assuming one is working in the IR, i.e., r = χrh, χ =
O(1))
• (M1,M2) = (θ1, y):

One obtains:
(E4)

β
N2
f r

3
h logN

gs



N
2

5Fθ1yθ1x
(b, χ, αθ1,2 , rh)C

(1)
θ1x

+
∑

(M,N)=(z,z),(θ1,z),(θ2,z)

Fθ1yMN (b, χ, αθ1,2 , rh)C
(1)
MN





∼ β
N2
f r

3
hN

2

5

gs
Fθ1yθ1x

(b, χ, αθ1,2 , rh)C
(1)
θ1x
,

which again would vanish at (E2).

• (M1,M2) = (θ1, z)
One obtains:

(E5)

β
N2
f r

3
h logN

gs



N
1

10Fθ1zθ1x
(b, χ, αθ1,2 , rh)C

(1)
θ1x

+
1

N
3

10

∑

(M,N)=(z,z),(θ1,z),(θ2,z)

Fθ1zMN (b, χ, αθ1,2 , rh)C
(1)
MN





∼ β
N2
f r

3
hN

1

10

gs
Fθ1zθ1x

(b, χ, αθ1,2 , rh)C
(1)
θ1x
,

which again would vanish at (E2).

• (M1,M2) = (θ2, x)
One obtains:

(E6)

βMN3
f

√
gs (logN)2





1

N
7

5

Fθ2xθ1x
(b, χ, αθ1,2 , rh)C

(1)
θ1x

+
1

N
9

5

∑

(M,N)=(z,z),(θ1,z),(θ2,z)

Fθ2xMN (b, χ, αθ1,2 , rh)C
(1)
MN





∼ βMN3
f

√
gs (logN)2

1

N
7

5

Fθ2xθ1x
(b, χ, αθ1,2 , rh)C

(1)
θ1x
,



✐

✐

“11-Misra” — 2024/3/4 — 16:00 — page 3883 — #83
✐

✐

✐

✐

✐

✐

OnM-theory dual of large-N thermal QCD-like theories 3883

which again would vanish at (E2).

• (M1,M2) = (θ2, y)
One obtains:

(E7)

βMN3
f

√
gs (logN)2





1

N
3

10

Fθ2yθ1x
(b, χ, αθ1,2 , rh)C

(1)
θ1x

+
1

N
7

10

∑

(M,N)=(z,z),(θ1,z),(θ2,z)

Fθ2xMN (b, χ, αθ1,2 , rh)C
(1)
MN





∼ βMN3
f

√
gs (logN)2

1

N
3

10

Fθ2yθ1x
(b, χ, αθ1,2 , rh)C

(1)
θ1x
,

which again would vanish at (E2).

• (M1,M2) = (θ2, z)
One obtains:

(E8)

βMN3
f

√
gsr

3
h (logN)2





1

N
3

5

Fθ2zθ1x
(b, χ, αθ1,2 , rh)C

(1)
θ1x

+
1

N

∑

(M,N)=(z,z),(θ1,z),(θ2,z)

Fθ2zMN (b, χ, αθ1,2 , rh)C
(1)
MN





∼ βMN3
f

√
gsr

3
h (logN)2

1

N
3

5

Fθ2zθ1x
(b, χ, αθ1,2 , rh)C

(1)
θ1x
,

which again would vanish at (E2).

• (M1,M2) = (x, y)
One obtains:

(E9)

βMN3
f gs

9

4 (logN)2





1

N
5

4

Fxyθ1x(b, χ, αθ1,2 , rh)C
(1)
θ1x

+
1

N
33

20

∑

(M,N)=(z,z),(θ1,z),(θ2,z)

FxyMN (b, χ, αθ1,2 , rh)C
(1)
MN





∼ βMN3
f gs

9

4 (logN)2
1

N
5

4

Fxyθ1x(b, χ, αθ1,2 , rh)C
(1)
θ1x
,

which again would vanish at (E2).

• (M1,M2) = (x, z)
One obtains:

(E10)

βMN3
f (logN)2





1

N
23

20

Fxzθ1x(b, χ, αθ1,2 , rh)C
(1)
θ1x

+
1

N
31

20

∑

(M,N)=(z,z),(θ1,z),(θ2,z)

FxyMN (b, χ, αθ1,2 , rh)C
(1)
MN





∼ βMN3
f (logN)2

1

N
23

20

Fxzθ1x(b, χ, αθ1,2 , rh)C
(1)
θ1x
,

which again would vanish at (E2).

• (M1,M2) = (y, z)
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One obtains:
(E11)

βMN3
f g

3

4
s (logN)2





1

N
1

20

Fyzθ1x(b, χ, αθ1,2 , rh)C
(1)
θ1x

+
1

N
9

20

∑

(M,N)=(z,z),(θ1,z),(θ2,z)

FyzMN (b, χ, αθ1,2 , rh)C
(1)
MN





∼ βMN3
f g

3

4
s (logN)2

1

N
1

20

Fyzθ1x(b, χ, αθ1,2 , rh)C
(1)
θ1x
,

which again would vanish at (E2).

Appendix E. Details of G2 structure of
M7(r, θ1,2, φ1,2, ψ, x

10)|Ouyang−embedding[parent type IIB]∩|µOuyang|≪1

The details of the evaluation of τ0,1 in the neighborhood of the Ouyang
embedding of the flavor D7-branes in the parent type IIB theory assuming
a infinitesimal modulus of the Ouyang embedding parameter µOuyang, are
provided below.

The four intrinsic G2-structure torsion classes are then given by [76]

W1 =
1

7
dΦ⌟ ∗7 Φ,

W7 = −
1

12
dΦ⌟Φ =

1

12
Φ ∧ ∗7dΦ,

W14 =
1

2
(d ∗7 Φ⌟Φ− ∗7d ∗7 Φ)− 2W7⌟Φ = − ∗7 d ∗7 Φ+ 4W7⌟Φ,

W27 = ∗7dΦ−W1Φ+ 3W7⌟ ∗7 Φ.(E1)

E.1. W7(M7(r, θ1,2, φ1,2, ψ, x
10)

Utilizing, W7 = ∗7 (Φ ∧ ∗7dΦ), let us first evaluate Φ ∧ ∗7dΦ. One sees that,
(E2)
Φ ∧ ∗7dΦ = e−2ΦIIA (

Ω25e
135247 − Ω23e

135267 − (Ω43 +Ω65)e
135467 − Ω24e

135257 − Ω26e
146237

+(Ω34 +Ω56)e
146357 − (Ω66 +Ω22 +Ω33)e

236457 − (Ω22 +Ω44 +Ω55)e
245367

)

− e−
5

3
ΦIIA

√

GM
x10x10

(

−(Ω45 +Ω63)e
135246 − (Ω36 +Ω54)e

146235
)

− 4

3

e−
5

3
ΦIIA

√

(

GM
x10x10

)2
GM
rr

e234567

+
e−

4

3
ΦIIA

GM
x10x10

(

Ω33 +Ω44)e
347256 − (Ω55 +Ω66)e

567234 +Ω32e
127356 +Ω42e

127456 − Ω52e
127345

+Ω62e
127346

)
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From appendix C, the most dominant Ωijs are given as under:
(E3)

Ω34 =
| log r|2/3gs7/2 logN2M2

(

1
N

)17/20
Nf

2
(

28.1a2

r2 + 5.2
)

α2
θ1

g
1

4
s N

1

3

f αθ2

√

1− r4h
r4

−
ω34

3

√

1
| log r|

√

C(1)zz Cqgs3/2M 20

√

1
NNf

4
√
βα

5/2
θ1

α4
θ2
g

1

4
s N

1

3

f

√

1− r4h
r4
,

Ω36 = −
| log r|2/3gs13/4M2

(

1
N

)7/20
Nf5/3α4

θ1

√

1
α2
θ2

√

1− rh4

r4

(

0.2 − 0.3a2

r2

)

α3
θ2

+
ω36

3

√

1
| log r|

4
√
β

√

C(1)zz Cqgs5/4M 4
√
NNf2/3α

5/2
θ1

√

1− rh4

r4

α5
θ2

;

Ω54 =
| log r|2/3gs7/2 logN2M2

(

1
N

)17/20
Nf

2
(

4.8a2

r2 + 4.8
)

α2
θ1

√

1
α2
θ2

rg
1

4
s N

1

3

f

√

1− r4h
r4

−
ω54

3

√

1
| log r|

√

C(1)zz Cqgs3/2M 20

√

1
NNf

4
√
βα

5/2
θ1

rα4
θ2
g
1/4
s N

1/3
f

√

1− r4h
r4

Ω56 = −
| log r|2/3gs7/2M2

(

1
N

)7/20
Nf

2
(

0.27a2

r2 + 0.18
)

α4
θ1

α4
θ2
g

1

4
s N

1

3

f

√

1− r4h
r4

+

ω56
3

√

1
| log r|

√

C(1)zz Cqgs3/2M 4
√
NNf

4
√
βα

5/2
θ1

α5
θ2
g

1

4
s N

1

3

f

√

1− r4h
r4
,

where ωij ≪ 1. The M-theory metric components GM
x10x10 , GM

rr are given
by:
(E4)

GM
rr =







√
gs
(

6a2 + r2
)

2 3
√
3 6
√
π 3
√
Ar2 (9a2 + r2)

(

1− r4h
r4

)







+

[

3A
√
N −

96πa2gsM
2
√

1
NNf (c1 + c2 log(rh))

9a2 + r2

+
9

32
AgsM2

√

1

N

(

−64a2r2(c1 + c2 log(rh))

(6a2 + r2) (9a2 + r2)
− log(r)(Ags + 12gsNf + 8π)

π2

)

)

]

+ β

{

32/3A2/3√gs
√
Nr2

(

6a2 + r2
)

(Cbhzz − 2Cbhθ1z + 2Cbhθ1x)
2 6
√
π (9a2 + r2)

(

r4 − r4h
)

}
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GM
x10x10

=

{

16π4/3
(

64πa2gsM
2Nf (c1 + c2 log(rh)) +AN

(

9a2 + r2
))

3 3
√
3A7/3N (9a2 + r2)

}

−β
[{

−19683
√
6α6

θ1
− 6642α2

θ2
α3
θ1
+ 40

√
6α4

θ2

A4/3 (3b2 − 1)5Nfr
4
hα

3
θ2

(

9a2 + r2h
)

}

(

48 32/3 3
√
πb10

(

9b2 + 1
)4
M
(

1
N

)5/4
r
(

6a2 + r2h
)

(r − 2rh) log
3(rh)

(6b2 logN + logN)4

)]

where using [77],
(E5)

A ≡ 4

[

−Nf log

(

4
√
N

(9a2r4 + r6)
1

4 αθ1αθ2

)

+
2π

gs

]

r∈IR−→ Nf log r
r∈IR−→ NfN

1

3 .

Replacing αθ1 → N
1

5 sin θ1 and αθ2 → N
3

10 sin θ2:
(E6)
Ωβ

0

22 ∼ Ωβ
0

23 ∼ Ω25β0 ∼ Ωβ
0

32 ∼ Ωβ
0

33 ∼ Ωβ
0

35 ∼ −Ωβ
0

42 ∼ Ωβ
0

43 ∼ Ωβ
0

45 ∼ Ωβ
0

46 ∼ Ωβ
0

52 ∼ Ωβ
0

53 ∼ −Ω55

∼ Ωβ
0

62 ∼ Ωβ
0

63 ∼ −Ωβ
0

65 ∼
1

N
1

4 | ln r| 43
r∈IR−→ 1

N
4

3

f N
25

36

;

Ωβ
0

24 ∼ −Ωβ
0

26 ∼ −Ωβ
0

36 ∼ Ωβ
0

56 ∼ Ωβ
0

66 ∼
| log r| 23
N

3

4

r∈IR−→
N

2

3

f

N
19

36

;

Ω34 ∼ Ωβ
0

54 ∼
(logN)2 | log r| 23

N
3

4

r∈IR−→
(logN)2N

2

3

f

N
19

36

.

We thus see:
(E7)

Φ ∧ ∗7dΦ(r ∈ IR)) ∼ e−2ΦIIA

(Ω34 +Ω56) e
146357 − e−

5

3
ΦIIA

√

GM
x10x10

(Ω36 − Ω54) e
146235

r∈IR−→ (logN)2

N
3

4 | log r| 43
r∈IR−→ 1

NαW7

e146357 +
αΦIIAGx10x10

| log r| (Ω36 − Ω54) e
146235,

where αW7
> 1. Now, from (E3), one can show that:

(Ω36 − Ω54)
β0

= 0,(E8)
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for ∀r ∼
√

3
2a ∈IR - note that r =

√
3a is the interface of the UV and IR-UV

interpolating regions. Therefore,

W7 [= ∗7 (Φ ∧ ∗7dΦ)]|Ouyang−embedding[parent type IIB]∩|µOuyang|≪1(E9)

= − dΦ⌟Φ|Ouyang−embedding[parent type IIB]∩|µOuyang|≪1

= O
(

1

Nα>1

)

∼ 0

(

as work only up to O
(

1

N

))

,

as stated in (92).

E.2. W1(M7(r, θ1,2, φ1,2, ψ, x
10))

One can show that:
(E10)

W1 =
1

7
dΦ⌟ ∗7 Φ =

2

7

e−
5

3
ΦIIA

√

GM
x10x10

(Ω53 − Ω64)
r∈IR−→∼ 1

| log r| (Ω53 − Ω64) .

Using results of appendix C,
(E11)
(Ω53 − Ω64)

β0

=

√

1− rh4

r4

(

(

1
| log r|

)4/3
4

√

1
N

(

28.7a2

r2 + 19.1
)

− | log r|2/3gs7/2logN2M2( 1

N )
17/20

Nf 2α2
θ1

(

5.3− 5.2a2

r2

)

αθ2

)

4
√
gs 3
√

Nf

and replacing αθ2 → N
3

10 sin θ2 to get the conjectured result ∀θ1,2, ϕ1,2, ψ
but in the neighborhood of the Ouyuang embedding in the parent type IIB
theoryone can show
(E12)
(Ω53 − Ω64)

β0

=

(

5.2| log r|5/3gs
7

2 logN2M2
(

1
N

)3/5
Nf

2α2
θ1

(

a2 − 1.02r2
)

+ 28.7 3

√

1
| log r|αθ2

(

a2 + 0.67r2
)

)

N
1

4
+ 3

10 (sin θ2) log r

√

1− rh4

r4

One can further show that (guided by [77]) assuming | log r| ∼ α| log r|IRN
1

3 ,
for
(E13)

r =

[

0.99 +
0.095|κr|

α| log r|5/3gs7/2logN
2M2Nf

2α2
θ1

+O
(

(

1

logN

)4
)]

a ∈ IR,
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W1 ∼

√

1− rh4

r4

| log r|2N 11

20 sin θ2

( |κr|
N

2

25

)

a2
r∈IR−→ O

(

1

NαW1
>1

)

a2(E14)

∼ 0

(

as work only up to O
(

1

N

))

,

for κr < 0.
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