
✐

✐

“1-Vafa” — 2023/6/16 — 12:07 — page 1 — #1
✐

✐

✐

✐

✐

✐

ADV. THEOR. MATH. PHYS.
Volume 27, Number 1, 1–36, 2023
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and M-theory
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We propose a unifying model for FQHE which on the one hand
connects it to recent developments in string theory and on the
other hand leads to new predictions for the principal series of ex-
perimentally observed FQH systems with filling fraction ν = n

2n±1

as well as those with ν = m

m+2
. Our model relates these series to

minimal unitary models of the Virasoro and superVirasoro algebra
and is based on SL(2,C) Chern-Simons theory in Euclidean space
or SL(2,R)× SL(2,R) Chern-Simons theory in Minkowski space.
This theory, which has also been proposed as a soluble model for
2+1 dimensional quantum gravity, and its N=1 supersymmetric
cousin, provide effective descriptions of FQHE. The principal se-
ries corresponds to quantized levels for the two SL(2,R)’s such
that the diagonal SL(2,R) has level 1. The model predicts, con-
trary to standard lore, that for principal series of FQH systems the
quasiholes possess non-abelian statistics. For the multi-layer case
we propose that complex ADE Chern-Simons theories provide ef-
fective descriptions, where the rank of the ADE is mapped to the
number of layers. Six dimensional (2, 0) ADE theories on the Rie-
mann surface Σ provides a realization of FQH systems in M-theory.
Moreover we propose that the q-deformed version of Chern-Simons
theories are related to the anisotropic limit of FQH systems which
splits the zeroes of the Laughlin wave function. Extensions of the
model to 3+1 dimensions, which realize topological insulators with
non-abelian topologically twisted Yang-Mills theory is pointed out.
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2 Cumrun Vafa

1. Introduction

Since its discovery [1] fractional quantum Hall effect has attracted a great
deal of attention by both theorists and experimentalists. On the theory side,
with the proposal of Laughlin [2] as well as development of other theoretical
ideas such as hierarchy states of Haldane and Halperin [3, 4], and Jain’s
composite fermion theory [5], many of the observed filling fractions were
explained, including the prediction of abelian anyonic statistics. Moreover,
non-abelian statistics which was anticipated in [6] (see also [7]), was con-
nected to FQHE in [8, 9] and further extensions were considered [10] (see
also [11]). These constructions utilize Chern-Simons theory based on Wit-
ten’s discovery of non-abelian braiding in these theories [12]. To date neither
the abelian nor the non-abelian statistics has been fully verified experimen-
tally.

In this brief note we propose a new model for FQHE which connects it
on the one hand to recent developments in string theory and on the other
hand leads to new predictions for the principal series of FQHE’s with filling
fraction ν = n

2n±1 , as well as those with ν = m
m+2 . In particular our model

predicts that for principal series of FQHE’s, unlike the prediction of hierar-
chy states and composite fermion theory, the quasiholes possess non-abelian
statistics, related to Fusion algebra of (2n, 2n± 1) unitary CFT minimal
models. For the filling fraction ν = m

m+2 we obtain the fusion algebra of
SCFT unitary minimal models (m,m+ 2). Moreover the first in the CFT
series correspond to Laughlin’s ν = 1

3 and the first in the SCFT series to
Moore-Read state ν = 1

2 . The higher values of n can be obtained by com-
posite fermion model or hierarchy model and the ones with higher m can
be obtained from Read-Rezayi states. However, our models predict a dif-
ferent fusion algebra, and thus a different statistics than expected from the
corresponding constructions.1 In particular if our model is correct it would
predict that essentially all the observed cases of FQHE involve non-abelian
statistics, which is potentially a welcome news for quantum computing [13]!
For a nice review of constructions of non-abelian statistics in FQHE and
connection to quantum computing see [19]. Moreover our model predicts,
on a sharp edge, charged downstream and nuetral upstream currents which
distinguishes it for filling fraction ν = n/(2n+ 1) from the standard model
of FQH systems which predicts no upstream neutral currents. Moreover we
predict the Hall conductivity for these edge modes which is different from

1Except there are subtletlies for the fusion algerba coefficents of Degenerate fields
of Liouville theory, which we are currently studying [32].
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Fractional quantum Hall effect and M-theory 3

the hierarchy or composite models. Compared to the usual constructions
ours has the advantage of having essentially no adjustable parameters and
for the single layer FQHE the assumption of unitarity picks these sequences
in our construction.

Even though there is a relation between the fusion algebra of the quasi-
holes and the minimal models, it is important to note that the relation
to a CFT arises as descriptions on the 1+1 dimensional boundary of the
sample, which is echoed in the bulk by the associated monodromy struc-
ture of excitations in the 2+1 dimensional bulk. There are different bound-
ary conditions that we can have in our model. In one boundary condition,
which we identify as a superconducting interface, we obtain the minimal
model chiral blocks as effective description of the 1+1 edge modes which
propagate only in one direction. Another boundary condition, which is the
more standard one corresponding to a sharp edge, we get a different CFT
which has the same block structure as the minimal model, but which leads
to downstream charged currents and neutral upstream currents. The bulk
theory does not depend on the choice of the boundary condition and in ei-
ther case is given by Chern-Simons theory based on complex gauge group
SL(2,C) studied in [20] (see also [21, 22] and related work [23]), and its
supersymmetric cousin (for recent discussions of SL(2,C) Chern-Simons
theory see [30, 31]). More precisely, SL(2,C) has a pair of levels l = (k, σ),
where k is an integer (specifying the level of SU(2) ⊂ SL(2,C)) and σ is
a real parameter2. For l = (±1, 4n± 1) we obtain the principal series with
filling fractions ν = n

2n±1 . In the Minkowski signature this corresponds to
SL(2,R)× SL(2,R) Chern-Simons theory and for |k| = 1 the values for σ
which yield the principal series of filling fractions are exactly the ones which
would follow if we make the individual SO(2)’s in the SL(2,R)’s quantized
with levels (−2n, 2n± 1). It is natural to conjecture that the higher Jain
series with filling fractions ν = n

2nk′±1 correspond in our setup to the two
SL(2,R) levels being given by (−2n, 2nk′ ± 1), which would correspond to
the level k = 2n(k′ − 1)± 1 for the diagonal SL(2, R).

In [23] (p.75-76) Witten specifically suggests viewing minimal Virasoro
models in 2d as holographic realization of 2+1 gravity. In our context this
would suggest that the FQHE is holographically encoding 3d gravity and
large enough Laughlin quasi-holes are actually black-holes! In this context
the 1 + 1 dimensional edge theory on the boundary of the sample is holo-
graphic dual to the FQHE bulk interpreted as a gravitational theory. In
other words we can realize holography in the lab! It is natural to connect

2This is related to cosmological constant in the gravitational picture of the theory.
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4 Cumrun Vafa

our model to the observations in [24] involving an emergent geometry in
FQHE. Indeed the elements of Haldane’s proposal, and in particular the
appearance of SL(2,R)× SL(2,R) in his setup are in harmony with the
picture proposed here [25].

These constructions were motivated by string theory which in turn leads
to a proposal for the corresponding Hamiltonian. These involve compactifi-
cation of 6d (2, 0) theories on a surface

[

Σ×R
]

× S3
k,b2 , and Σ is identified

with the plane of the FQHE and R with time, S3
k is the lens space S3/Zk

and b2 is a squashing parameter3 for S3
k . There is an ADE classification for

6d (2, 0) theories and we identify the rank of the ADE with the number of
layers in the FQHE. This leads to our identification of the effective theory
of FQH systems with complex ADE Chern-Simons theories with the rank
of ADE corresponding to the number of layers. The A1 case, correponding
to single layer leads in Euclidean description, to SL(2,C) Chern-Simons
effective theory on Σ×R.

The organization of this paper is as follows: In section 2 we explain
the heuristic motivation for this model and the connection with Liouville
theory and 2d minimal CFT’s. Also discussed there is the connection with
non-abelian statistics for quasi-holes. In section 3 we propose a Hamiltonian
whose improved Berry’s connection is expected to yield the results outlined
in section 2 for the monodromy of the quasihole in Liouville theory. In sec-
tion 4 we sharpen our proposal by embedding it in string theory. Section
4.2 is a self-contained summary of the model and readers who are not inter-
ested in the motivation for our model can go directly to that section. The
string theory perspective leads to reformulation of the effective theory of the
(single layer) FQH systems in the bulk as complex SL(2,C) Chern-Simons
theory and provides various generalizations of it, including predictions of
new defects for FQHE, as well as potential applications to multi-layer and
anisotrpic FQH systems. We also explain the heterotic aspect of the edge
states for our model as well as the different choices of boundary condi-
tions. Moreover we comment on the possibility of lifting the construction
to one higher dimension and potentially exciting realization of topological
insulators with topologically twisted non-abelian gauge symmetry in 3+1
dimensions in the lab!

3We will be interested in the limit where b2 is a negative rational number, so this
is defined in the sense of analytic continuation.
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Fractional quantum Hall effect and M-theory 5

2. Basic idea

Let us start with the Laughlin wave function [2] for electrons at positions zi
and quasi-holes at positions ζa with filling fraction ν = 1/m, given by

ψ(zi, ζa) =
∏

i,a

(zi − ζa)
∏

i<j

(zi − zj)
1

ν exp(−B
∑

i

|zi|2)

This has proven to be a powerful model for FQHE (for a beautiful introduc-
tion to this subject see [14]) . This problem has been mapped to the study of
RCFT’s [9], whose basic blocks satisfy the Verlinde algebra [15], and which
has been elegantly systematized in [16] even though there is no full classifica-
tion. Consider c = 1 theory at radius R2 = ν, and consider the chiral vertex
operators V (zi) = exp(iϕ(zi)/

√
ν), and W (ζa) = exp(i

√
νϕ(ζa)). Then the

holomorphic part of the wave function (i.e. dropping the B-field part) can
be captured (up to prefactors depending only on ζa) by

ψ(zi, ζa) = ⟨
∏

i,a

V (zi)W (ζa)⟩

Moreover to compute physical amplitudes one considers

⟨O⟩ =
∫

d2zi
[

ψ∗(zi, ζa) O ψ(zi, ζa)
]

One can also add a chemical potential µ for the fermions and add to the
action µ

∫

d2z eiϕ/
√
ν for which the above term corresponds to the term µN

where N is the number of electrons. Moreover one imagines B field as be-
ing given by an additional smeared term by adding to the above exp

∫

Bϕ.
However already there is a clash with conformal field theory paradigm: In
conformal theories we usually do not integrate over the position of fields
unless they have dimension 1. In the condensed matter context we are dis-
cussing, this is not strictly necessary (see [18] and references therein)4 when
we have a B-field. However, in the absence of B-field, as in studying super-
conductor phases where we can ignore the B-field, the dimensions should
be 1. To make this natural for FQH system imagine a thin strip of material
which on both sides is in contact with a superconducting material. With this
in mind, it would be interesting to see what demanding marginality of this
operator would imply about the possible bulk theories. Our strategy would
be to first study implications that this would have in identifying the bulk

4We thank N. Read for discussions on this point.
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6 Cumrun Vafa

theory, and then using other boundary conditions such as the sharp edge
one which would be interesting for charged edge currents. Later in section
3.3 we return to the question of introducing back the magnetic field and
show how it can be incorporated in our setup.

Demanding that exp(iϕ/
√
ν) have dimension 1 is rather significant. In

the c = 1 model it has dimension h = 1
2ν ̸= 1. So how can this be rescued?

It is natural to add a background term to the action Q′Rϕ where R is the
curvature (which disappers in flat space), in order to make the dimension of
this field 1, without affecting the above realization of the wave function. In
such a case a vertex operator exp(αϕ) will have dimension

hα =
−1

2
(α(α+Q′))

To make the dimension of exp(iϕ/
√
ν) equal to 1, we need to take5

Q′
√
2
= Q =

1

b
+ b = i(

√
2ν − 1√

2ν
)

where

b =
−i√
2ν
.

Moreover the central charge of the 2d chiral theory is

c = 1 + 6Q2 = 1− 3
(2ν − 1)2

ν

If we put all the ingredients together, we get the Liouville theory (see [33]
and lectures in [34] for a review of Liouville theory)

S =

∫

d2z
[ 1

8π
∂ϕ∂ϕ+ iQ′Rϕ+ µ exp(iϕ/

√
ν)
]

Related ideas have recently been suggested independently in [35–37], but
with a different motivation and without fixing the relation between Q and ν
and which reach rather different conclusions from the present paper6. So far
we have assumed that ψ(zi) is a single valued wave function which in Laugh-
lin’s case is related to 1/ν = m ∈ Z. This is because electron’s wave function

5We have chosen an unconventional normalization of Liouville field in order to
make the dimension of the fields match the more familiar normalization for c = 1
theory.

6We thank A. Abanov for pointing out these papers to us.
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Fractional quantum Hall effect and M-theory 7

should be single valued. But now we overcome the condition that 1/ν ∈ Z
and propose the Liouville theory for all fractional values of ν as giving us
the overlaps ⟨ψ|ψ⟩ (i.e. the overlap of the multi-particle wave function ig-
noring the B-field term). It is known in the context of Liouville that one can
associate chiral blocks to the wave functions [38]. This gives us a prescrip-
tion as to how to compute overlaps of multi-valued wave functions. Roughly
speaking we can view them as wave function for suitable excitations which
can have non-trivial statistics, and so in particular the wave functions do
not have to be single valued. However this is not precise, because extracting
physical quantities from these wave functions is more subtle than the usual
prescription (as we review in the next section) and is not simply given by
∫

d2z ψ∗Oψ. In section 3 we will explain how this multi-valued wave func-
tion is related to a microscopic theory where we have well defined single
valued wave functions.

Relaxing the assumption that 1/ν is integer, we consider FQHE with
filling fraction ν = n

m . If we evaluate the central charge of the Liouville
theory for that case we get

c = 1− 6
(2n−m)2

2nm

which is the same as central charge of 2d CFT minimal model (2n,m) [39].
Note that m needs to be odd in this context as otherwise 2n and m are not
relatively prime! Moreover Liouville theory has a special set of fields (called
‘degenerate fields’) whose OPE [40] realize the operator algebra for the min-
imal model when restricted to −b2 a rational number7. Namely consider

Φr,s = exp
[

i(r − 1)
√
νϕ+ (s− 1)

1

2
√
ν

]

for 1 ≤ r < 2n, 1 ≤ s < m. Then these degenerate fields of Liouville realize
the operator algebra of the (2n,m) minimal models (see [17] for a review)8

Φr1,s1 × Φr2,s2 =

k=r1+r2−1
l=s1+s2−1

∑

k=1+|r1−r2|,k+r1+r2+1=0 mod 2
l=1+|s1−s2|,l+s1+s2+1=0 mod 2

Φk,l

7We thank Joerg Teschner for a discussion on this point.
8There are subtleties in this statement which arises because of analytic continu-

ation of Liouville theory from b2 > 0 to b2 < 0. See in particular [41–43].
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8 Cumrun Vafa

Strictly speaking the above discussion is in the context of a superconducting
boundary condition where the B-field is absent and the above algebra re-
flects the algebra of neutral currents in an interface with a superconductor.
We use this to identify what the bulk theory is (i.e. Chern-Simons theory
based on SL(2,C) guage group). We postpone this discussion to section
4, where we connnect it to string theoretic motivations for identifying the
bulk. As we discuss there, the same bulk theory with a different boundary
condition leads to FQH system with a sharp edge boundary, where the Φr,s

blocks are related to the downstream electric currents in the s label and
neutral upstream currents labeled by r. In particular if one considers Φ1,s,
these correspond to the usual s− 1 quasi-hole states, which correspond to
insertion of

∏

(zi − ζ)s−1 in the wave function, and form a closed operator
algebra generated by Φ1,2. Moreover, given that the quasi-hole operators cor-
respond to these operators, we deduce that quasi-holes will possess the same
non-abelian braiding properties as that of (2n,m) models. This is different
from the hierarchy state or composite fermion model construction of these
wave functions which predicts abelian statistics for quasiholes. In particular
taking the minimal quasi-hole Φ1,2 around another one (i.e. a 2π rotation)
is expected to lead, in our model, to two dimensional fusion channel and the
two phases one picks up are given by the formulas for dimensions of blocks

[

e2πi(h3,1−2h2,1), e2πi(h1,1−2h2,1)
]

=
[

e2πiν , e−2πi(3ν)
]

=
[

e2πi
n

m , e−6πi n

m

]

.

We can now further restrict the choices of m: Since the edge modes in
the FQHE should have correlations which fall off rather than grow with
distance we would need to restrict to theories which are unitary (see in
particular the discussion in [18]). Applying this to when the FQH system is
in an interface with superconductor, i.e. when the edge theory is given by
the Liouville theory, we should get unitary 2d CFT’s with central charge less
than 1 because b2 < 0, which fixes m = 2n± 1 and corresponds to (2n, 2n±
1) minimal model and filling fractions

ν =
n

2n± 1

So we find that the 2d unitary minimal models map exactly to the two prin-
cipal series of FQHE which have been experimentally observed! This is a
remarkable check of our proposal which connects representations of minimal
unitary 2d CFT’s to principal series already observed in FQHE! For the orig-
inal application of minimal unitary 2d CFT to critical phenomena see [44].
This is what we will obtain with a superconducting boundary condition. It
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Fractional quantum Hall effect and M-theory 9

is also natural to ask what we get with the sharp edge boundary condition
as is usually considered in the context of FQH system. This we will post-
pone to section 4, after we connect our model to SL(2,C) Chern-Simons
theory. There we will find that the sharp edge 1+1 dimensional theory has
a central charge given by (cL, cR) = (3− 6

2n , 3− 6
2n±1) and the blocks are

mixed between left- and right-moving sectors.
The above series give us only the odd denominator filling fractions and

it is natural to ask how one can obtain the even denominator ones as well.
This turns out to have a natural answer: We simply extend the Liouville
theory to N = 1 supersymmetric Liouville theory (see e.g. [45, 46]) whose
action is given by

S =

∫

d2z
[ 1

8π
∂ϕ∂ϕ+

1

2π

(

ψ∂ψ + ψ∂ψ
)

+ iQRϕ+ 2iµb2ψψebϕ + 2πb2µ2e2bϕ
]

where Q = b+ 1/b, With central charge 2
3c = ĉ = 1 + 2Q2. The case which

corresonds to (m,n) SCFT minimal models is when b2 = − n
m with n−m =

0 mod 2 and the unitary minimal series (m,m+ 2) corresponds to n = m+
2. The ψψebϕ term has dimension one. Note that the chiral wave function
this leads to in the free field realization is

Ψ =
∏

i<j

(zi − zj)
n

m Pf
[ 1

zi − zj

]

where Pf is the Pfaffian. The N = 1 unitary series corresponds to

Ψ =
∏

i<j

(zi − zj)
m+2

m Pf
[ 1

zi − zj

]

where m = 2, 3, .... The first element of the series, m = 2, corresponds to
the Moore-Read wave function [9]. The filling fractions we get for the uni-
tary N = 1 case are ν = m

m+2 . These values for filling fractions also arise
in Read-Rezayi’s construction [10] which generalizes the Moore-Read state,
but these models (except possibly for the m = 2 case) are distinct from ours.
The bulk theory in this case is a supersymmetric version of SL(2,C), and
the superconducting boundary conditions lead to supersymmetric Liouville
theory. As in the non-supersymmetric case, one can also consider the sharp
edge boundary condition in these cases as well.

So far the relation we have found is rather suggestive. In the next section
we propose a microscopic Hamiltonian motivated from string theory (see
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10 Cumrun Vafa

section 4) whose Berry’s connection, as we vary the position of quasiholes,
is known to lead to the braiding properties for the Liouville amplitudes, in
some limit. It is natural to expect a cousin of it also exists which gives the
one for supersymmetric Liouville amplitudes.

3. A microscopic description

Here we give a Hamiltonian description which is relevant for the Liouville
phase of the theory, i.e. the superconducting interface where the B-field is
absent. We first start with a simple model hamiltonian for a single particle
and then move on to the many particle case.

3.1. Hamiltonian construction from W (z)

We first discuss a single particle toy model and then we generalize it to
the case at hand. Consider a holomorphic function W (z). To this we will
associate a Hamiltonian for a particle which is a bi-spinor (i.e. has 2× 2 = 4
internal degrees of freedom) on the z-plane as follows:

H =
1

2
p2 +

1

2

∣

∣∂zW (z)|2 + ∂2W (z) · σ+ ⊗ σ− + ∂
2
W (z) · σ− ⊗ σ+

Then for each cricial point ∂W = 0 we get a ground state for this theory,
which turns out to have exactly zero energy (because this system secretly
enjoys 4 units of supersymmetry–see [47]). It can also be written as9

H =
1

2
p2 +

1

2

∣

∣∂zW (z)|2 +
[

∂2W (z) · b†LbR + ∂
2
W (z) · b†RbL

]

where b†L,R, bL,R form a pair of fermionic creation/annihilation operators
with the non-vanishing anti-commutations being

{bL, b†L} = 1, {bR, b†R} = 1

The non-abelian berry’s connection [48, 49] for the degenerate ground states
of this system as a function of parameters definingW satisfies a beautiful set
of equations known as the tt∗ geometry [50]. To compute this connection we
need to compute overlap between the ground state wave functions ⟨ψi|ψj⟩.

9In particular H = Q2 for a Q which the reader can easily identify.



✐

✐

“1-Vafa” — 2023/6/16 — 12:07 — page 11 — #11
✐

✐

✐

✐

✐

✐

Fractional quantum Hall effect and M-theory 11

Moreover the ground states can be labeled by chiral ring elements of W :

|ψj⟩ = ϕj(z)|0⟩

where the chiral ring is given by the monomials of z modulo setting ∂W = 0:

ϕj(z) ∈ R; R =
C[z]

∂W

To compute this, it turns out to be useful to introduce a basis of states known
as the D-brane states [52], which locally do not depend on the parameters
and so do not vary as we change parameters:

⟨ψi|ψj⟩ =
∑

α

⟨ψi|D+
α ⟩⟨D−

α |ψj⟩

D±
α are identifed with lines in z plane which when projected to W -plane

using W (z), correspond to straight lines in W plane emanating from the
critical point and going to Re(W) = ±∞. In particular α labels the critical
points. Then it can be shown that in the asymmetric limit where we rescale
W → βW and set β → 0, we obtain [52]

⟨D−
α |ψj⟩ =

∫

D−
α

dz ϕj(z) e
W (z)

and we find

⟨ψi|ψj⟩ =
∑

α

[

∫

D+
α

dz ϕi(z) e
−W (z)

][

∫

D−
α

dz ϕj(z) e
W (z)

]

=

∫

d2z ϕi(z)ϕj(z)e
W (z)−W (z)

Where in the last equality we used the Riemann bilinear identity, which is
somewhat of a formal step due to oscillatory nature of the integral. This
result suggests that we can pretend as if the wave functions are holomor-
phic and given by ψj(z) ∼ ϕj(z)e

W (z), except that the complex conjugate

wave function is not given by the usual ϕj(z)e
W (z) but by ϕj(z)e

−W (z). The
oscillatory nature of the integral which makes it convergent is precisely due
to this change in sign of W making the exponent purely imaginary. We wish
to emphasize that this is just an approximation to the actual wave function
which has the usual definition of inner product one is familiar with in the
context of quantum mechanics. One may ask in which limit is the compu-
tation of the inner product exact? Each one is exact if we set the other
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W to be small. So in the limit that we rescale W → βW and W → βW
and send β → 0 this inner product becomes exact10, and in particular when
W is quasi-homogeneous it is exact! We can view the D+

α as the analog of
‘conformal blocks’ for this theory. If we change the parameters of W and
bring it back to itself, then the individual D+

α undergo a transformation to
a linear combination [52] because as the D-branes defining the D+

α cross one
another, we get a Stokes phenomenon. So when we come back to the original
position the D+

α transform to a linear combination of the ones we had, and
this gives a monodromy matrix11:

D+
α →Mβ

αD
+
β .

So the eigenvalues of the Berry’s connection around loops can be computed
exactly in this limit. One may ask if there is any notion of tt∗ connection
which is independent of taking any limits. It turns out that tt∗ geometry
has an ‘improved connection’ [50]

∇i = Di + Ci

where Di is the Berry’s connection and Ci is given by the action of ϕi
on the vacua (for a recent review and extension of tt∗ geometry see [51]).
Unlike the Berry’s connection, ∇ is flat for all parameters. Since it does not
depend on any parameters the monodromy of this improved connection can
be computed in this limit, which yields the above monodromy of the chiral
wave functions.

3.2. The Hamiltonian

Now we come to the case of interest for us, and ask which Hamiltonian will
give us the wave function associated to the Liouville theory, which is moti-
vated from its connection with string theory, discussed in the next section.
This Hamiltonian has indeed been studied [53]. Consider N quasi-particles
each of which has in addition 4 degrees of freedom given by pairs of fermionic

10This is the UV limit of the theory in the context of 2d versions of this theory.
11In the language of the supersymmetric quantum mechanics, the eigenvlaues of

the specific mondromy associated withW → e2πiW are given by exp(2πiQR) where
QR are the R-charges of the Ramond ground state.
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creation/annihilation operators bi†L,R, b
i
L,R where the only non-vanishing anti-

commutators are

{bi†L , b
j
L} = δij , {bi†R, b

j
R} = δij

and consider the Hamiltonian given by

H =
1

2

∑

i

[

p2
i +Ai

zAi
z

]

+
1

ν

∑

i,j
i ̸=j

[ bi†Lb
j
R

(zi − zj)2
+

bj†R b
i
L

(zi − zj)2
]

where

Ai
z =

1

ν

∑

j
j ̸=i

1

zi − zj
, Ai

z =
1

ν

∑

j
j ̸=i

1

zi − zj

which corresponds to taking W = 1
ν

∑

i<j log(zi − zj). Thus, we have a

Hamiltonian involving two particle and three particle interactions12. More-
over we can introduce quasi-holes at ζa by adding to W

W →W +
∑

i,a

log(zi − ζa)

The reason for labeling the terms Ai
z by A, usually reserved for gauge po-

tential, is that if we consider ∂iAi
z we get

∂iAi
z =

2πi

ν

∑

j
j ̸=i

δ(zi − zj).

This looks like a magnetic field and suggests that each particle has trapped
1/ν units of magnetic flux. This is somewhat reminiscent of composite
fermions model [5].

However, this interpretation cannot be precise, because the form of the
interactions above is not the usual form one expects for electromagnetic in-
teractions: First of all, it does not contain p · A terms. Moreover with the

12Note that this Hamiltonian preserves Fermion number. Moreover one can show
that the ground state has fermion number zero. Thus if one is interested only in
the ground state, one can restrict the Hilbert space to the 2N ⊂ 22N dimensional
subspace. Interestingly enough, this is the same as the dimension of a Hilbert space
for N electrons, each of which has 2 spin states.
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above definition of the gauge fields, the Field strength is actually zero, be-
cause ∂zAz = ∂zAz. One may be tempted to ‘gauge away’ the |A|2 term by
redefining the wave function, but then this introduces p.A terms. Neverthe-
less it can be written in a form, familiar in the context of Dirac operator,
which behaves like a magnetic field. Namely we can rewrite H as

H = Q2

where

Q =
[

(bi†Lp
i
z + biLp

i
z) + (biRAi

z + bi†RAi
z)
]

If one can justify why the above Hamiltonian is a good description of frac-
tional quantum Hall effect (for rational values of ν and more specifically
for ν = n

2n±1) in the context of superconducting boundary conditions, we
will have arrived at the conclusion of the previous section. In particular,
this Hamiltonian, leads in the approximate sense we mentioned above, to
the Liouville wave functions where the corresponding blocks are given by
computing

Bα(ζa, ν) =

∫

D−
α

∏

i

dzi exp(W ) =

∫

D−
α

∏

i

dzi
∏

i,a

(zi − ζa)
∏

i<j

(zi − zj)
1/ν

These are known to compute the conformal blocks of Liouville theory (see
[54, 55]). This in particular will undergo monodromy as is expected for Liou-
ville conformal theory. For the 4-point quasi-holes we will get a 2 dimensional
space, whose braiding eigenvalues we already discussed for the 2 channels of
the fusion of Φ1,2 × Φ1,2. See in particular [56] for the explicit computation
of this monodromy for the corresponding 4-pt function.13

3.3. Adding back the magnetic flux and connections with the
standard approach to FQHE

The wave functions we obtain, using the Hamiltonians discussed above is
very similar to the Laughlin type wave functions considered for FQHE, with
one major difference: In those cases one has in addition a non-holomoprhic

13One may ask what is an effective Hamiltonian describing the dynamics of the
quasi-holes? This gets related to the open string-wave function [64]. It is argued in
[65] that this effective dynamics is captured by the Gaudin Hamiltonian (see also
related discussions in [53, 56]).
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Fractional quantum Hall effect and M-theory 15

term in the wave function given by

f(zi) exp(−B
∑

i

|zi|2)

It is imperative for us that the wave functions be holomorphic, or at least
meromorphic. How can we incorporate this in our setup? The most natural
thing to do in our context is to consider, instead of a uniform B field, a
lattice of fundamental units of B fluxes at lattice points ζab. In the usual
description of the wave function this would have the effect of introducing

∏

i,ab

1

(zi − ζab)

This is reflected in our set up as follows: The Liouville theory has a conser-
vation law for momenta at zero chemical potential, which is violated by the
curvature term by (2g − 2)(2ν − 1). For simplicity let us consider the g = 1
case, so we will not have to worry about this, i.e. consider the theory on the
torus. In this case, putting N fermions in the theory will violate the charge
by N units. To cancel this in the usual Liouville context one puts a charge
at infinity. However, another way of doing this is to introduce fluxes local-
ized at points which is accomplished by introducing exp[−i√νϕ(ζab)] . Let
Φ denote the total number of such flux quanta. Then Liouville conservation
demands that

νΦ = N.

This is the analog of the statement in the context of FQHE that for a given
ν, we have N/Φ = ν.

In the presence of such a term each particle picks up an additional term
for W given by

δW = −
∑

log(z − ζab)

and to find the allowed ground state configuration we need to study the
critical points

dδW

dz
= −

∑

ab

1

(z − ζab)
= 0

which leads to Φ− 1 distinct critical points. We need to distribute the N
states among these ground state choices. Since there are N = νΦ such par-
ticles even if we put fermionic statistics for them, we would have

(

Φ−1
νΦ

)

ground states for the Hamiltonian, which is a large number of states. This
is the analog of the problem which is faced in the standard approach to the
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FQHE where there are Φ lowest Landau levels, and one needs to fill only νΦ
of them. In the context of FQHE the question become which combination
of these hugely degenerate states has the lowest energy, when one includes
the electric repulsion between electrons. In the context of the supersymmet-
ric Hamiltonian we have been discussing, the ground states are degenerate
and this can be viewed as the analog of turning off the electric repulsion.
Then the question in the present context becomes, which states among these
hugely degenerate ground states of the supersymmetric system is ‘picked’
when we turn on interactions. It turns out that there is a distinguished state
among the ground states of the supersymmetric Hamiltonian, and that is
related to the fact that the operator state correspondence in this case maps
the identity operator to a canonical ground state which is represented by
the approximate holomorphic wave function of the Laughlin type we have
already discussed. That this is the one which will have the lowest energy
when repulsion is included is natural because the identity operator is the
combination of the critical points of W where we take as spread out a com-
bination of vacua as possible. It is interesting that in the present context the
degeneracy of the lowest Landau level, is mapped to the degeneracy of the
ground states of a supersymmetric system. It would be interesting to see if
this can lead to insights into FQHE based on supersymmetry.

In the presence of the magnetic fields the monodromy properties of the
defects becomes more complicated as the quasi-holes will have to also go
around ζab. It would be interesting to work out the consequences of this.
However, it is clear that in the present context if we create a region in the
sample where B-flux is excluded, i.e. the ζab are not placed in this region,
the monodromy properties of the quasi-holes we have discussed does not get
modified and leads to that of the minimal model monodromies.

4. Connections with string theory and identifying

the bulk theory

So far I have tried to motivate the discussion from the viewpoint of the
FQHE. However, to make the proposal more precise and identify the bulk
theory, I need to explain the main motivation for the present work. In section
4.1 I discuss the embedding in M-theory. This is somewhat technical and is
discussed mainly to explain the motivation. Readers not familiar with string
theory may wish to skip to section 4.2, which is largely independent, where
I spell out the proposal for the bulk theory.
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This work arose from the realization of an unexpected similarity between
what one does in a special context in string theory and the structures involv-
ing FQHE.14 It arose from the approach in [54] (building upon the earlier
work [97, 98]) which relates the computation of supersymmetric amplitudes
in these theories (the ‘refined topological string amplitudes’), to ADE ma-
trix models and to chiral blocks of the corresponding Toda theory via the
relation of matrix model to Toda theories. In particular the topological string
amplitudes (which can be viewed as wave functions [99, 100]) correspond to
the chiral blocks of Toda theory, from which the supersymmetric amplitudes
[101, 102] are obtained by taking their squares and integrating them. The
more natural limit from the viewpoint of topological string, unlike the geo-
metric case requiring b2 > 0, is also b2 < 0 (as we have been discussing in this
paper) and b2 = −1 corresponds to the unrefined topological string. Matrix
amplitudes are of the same form as the holomorphic part of the Laughlin
wave function, which is what originally attracted my attention to a possible
connection with FQHE.15

4.1. Embedding FQHE in M-theory

There has been many attempts to connect FQHE to modern developments in
string theory [58–63, 66]. Here we propose a connection between supersym-
metric N = 2 gauge theories in 4-dimensions which arise from compactifica-
tions of 6-dimensional (2, 0) theories on a 2d Riemann surface (the ‘Gaiotto
curve’) [67] and FQHE.

The (2, 0) theories are labeled by picking an ADE group. Moreover we
need to consider the partition function of this theory on S3

k,b2 , where b
2

(sometimes written as b2 = ϵ2/ϵ1) denotes the squashing parameter of S3
k ,

and S3
k is the lens space L(k, 1) = S3/Zk. In other words the worldvolume

of the 6d (2, 0) theories is taken to be

ADE (2, 0) theory on S3
k,b2 ×R× Σ

The spacetime worldvolume of the FQH system is identified with R× Σ
where R is taken as time and Σ as the space. We connect the rank of the
corresponding ADE with the number of layers for FQHE. So the single layer

14These ideas, and in particular the connection between FQHE and Liouville
theory arising in Gaiotto theory were originally developed in discussions with Mina
Aganagic and Sergei Gukov [57] to whom I am grateful.

15The potential connection between matrix models and Laughlin wave functions
was pointed out to me by Shahin Sheikh-Jabbari in 2003.
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case corresponds to the A1 theory. Moreover the filling fraction is given by
ν = −2ϵ2/ϵ1. We consider the Heegard decomposition of S3

k to two solid
tori (see [30, 90–93] for the discussion related to the present context) with
suitable identification of boundary of solid tori depending on k. Moreover
ϵ1, ϵ2 can be viewed as the radii of the two circles of the middle torus.
There are two natural circles in this geometry corresponding to the center
of the two solid tori. Note that each of these circles is associated to one
of the ϵi circles which does not shrink at the center of the tori, and we
denote them by S1

ϵi . Moreover this theory enjoys surface operators which is
fixed by choosing a point ζa ∈ Σ and a 2d plane of S3

k,b2 ×R, taken to be

S1
ϵi ×R ⊂ S3

k,b2 ×R. From the view point of Σ×R they can be viewed as
two distinct types of defects located at ζa ∈ Σ. Picking the defects to be given
by (r − 1, s− 1) copies of these two defects leads to the quasi-hole operators
in the FQHE that we discussed, namely Φr,s. The conjecture by [68]16 and
extensions by [69], adapted to this geometry [87], propose that the partition
function of these theories for k = 1 case are given by Liouville theory and
more generally by WADE Toda theories for the more general case which
we identify with the ‘superconduting boundary condition’ in FQH systems.
There are by now various derivations of these results [54, 86, 87, 89]. More
precisely the effective theory on Σ×R is expected to be the complexified
version of the ADE Chern-Simons theory with complexified level k + is,
where k is a positive integer (labelling the level of SU(2) ⊂ SL(2,C)). As
was pointed out in [20] unitarity is consistent with s being either a real or
purely imaginary number. We will be interested when s is purely imaginary
and write it as s = −iσ with σ > 0. Interestingly enough the pure imaginary
case was also the main interest in [20]. The Liouville theory arises for k =
1, i.e. when we have S3. The Liouville theory on boundary of the space
(with signature 1+1, which can be interpreted as edge modes) arises in this
construction by a specific boundary condition for fields [56]. For a discussion
of A1 case see [95, 96] in the context of real SL(2, R) Chern-Simons theory
and [30, 87] for the complex case. See also the discussion in the next section.

Our general setup naturally allows for the lens space extension given by
k ≥ 1 and recently studied in [31, 94]. For more general k the corresponding
conformal theory we get is roughly a mixture between Liouville theory and
an extra parafermionic system which enjoys a Zk symmetry. For general k

16More precisely these conjectures refer to S4 geometry, but one can connect it
to S3 ×R geometry along the lines suggested in [86].
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the b2 of Liouville is related to it by [31, 93, 94]17

2

k − σ
=

1 + b2

k
,

2

k + σ
=

1 + b−2

k
.

4.2. Complex Chern-Simons Theory as the
effective theory of FQHE

The discussions up to now can be viewed as motivations for the statement to
be made in this section, as we collect the various observations made in the
previous sections to make our proposal precise. It is well known that FQH
system in the IR can be described by a topological theory, Chern-Simons
theories being the prototypical examples. We propose that:

The effective IR theory describing a single layer FQH system is Chern-
Simons theory based on SL(2,C) (as well as its supersymmetric version).

More precisely we propose that the prinicpal series with filling fraction
ν = n/(2n± 1) (i.e. b2 = −(2n± 1)/2n) are described by complex Chern-
Simons theory SL(2,C) with

(k, σ) = (±1, 4n± 1)

k + σ

2
= 2n± 1, −k − σ

2
= 2n

(and similarly for supersymmetric version leading to the filling fractions
ν = m/(m+ 2) which we leave to the interested reader). The action for the
CS theory is given by [20]

S =
(k − σ)

8π

∫

M
Tr

(

AdA+
2

3
A3

)

+
(k + σ)

8π

∫

M
Tr

(

ĀdĀ+
2

3
Ā3

)

=
−2n

4π

∫

M
Tr

(

AdA+
2

3
A3

)

+
(2n± 1)

4π

∫

M
Tr

(

ĀdĀ+
2

3
Ā3

)

whereA is a complex SL(2,C) connection. The action almost splits, between
A and Ā. However, the fact that one is complex conjugate of the other is
what couples them in a non-trivial way. This is the formulation of the theory
in Euclidean three dimensional space. In the physical context of the 2 + 1

17I thank T. Dimofte and S. Gukov for discussions on this.



✐

✐

“1-Vafa” — 2023/6/16 — 12:07 — page 20 — #20
✐

✐

✐

✐

✐

✐

20 Cumrun Vafa

signature, instead of SL(2,C) we have SL(2,R)× SL(2,R), where the two
connections can be written as

A = ω − e Ā = ω + e

and (ω, e) are independent, but on-shell they get related and interpreted in
terms of the spin connection and vierbein respectively in the gravitational
context. The coefficient k of Chern-Simons terms has to be integer: In that
case we have ω identified with SO(2) ⊂ SL(2,R)diagonal and integrality of
spin demands quantization of k. In gravitational context e is not quantized.
In particular σ (related to cosmological constant) is not quantized. Never-
theless it is amusing that we are finding that the quantized values of σ which
would have been natural if the two SL(2, R)’s have independently integral
SO(2) charges leads precisely to the realized cases in FQHE! Changing σ in
the context of FQHE can be viewed as changing the density of electrons (or
equivalently the B-field) and so in a sense arbitrary values are also natural
from the perspective of FQH applicationl. The fact that the levels differ by
one unit simply reflects the fact that we have identified the principal series
with |k| = 1, and we can of course consider other relative shifts between the
two levels.

In FQHE chiral modes correspond to gapless edge modes (see [14] for a
discussion and references), thus it is natural to consider this theory in the
presence of a boundary. This will lead to different CFT’s on the boundary
with different values of (cL, cR). One boundary condition [25], which we iden-
tify with sharp edge in the FQH system, corresponding to the polarization
one usually chooses in quantization of it [20] and given by

δΨ

δAz̄
= 0 =

δΨ

δĀz
,

gives

(cL, cR) =
(

3− 12

k + σ
, 3 +

12

k − σ

)

=
(

3− 6

2n
, 3− 6

2n± 1

)

The usual (cL, cR) for a compact group would have been [12]

(cL, cR) =
(k dimG

k + h
, 0
)

Note that this is a rather unusual situation where the chiral blocks do not
factorize between left-moving and right-moving sector. This phenomenon
was discovered in the beautiful paper [20] and is a key point for our model
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of FQHE. This boundary condition we will identify with a sharp edge of the
FQH system, which can support edge currents. In quantizing the Hilbert
space there is one left- and one right-moving U(1)L,R which are the Cartan
of the two SL(2,R)’s. We identify the current of U(1)R with electric current.
The reason for this is that as was shown in eq.(5.3) of [20] (see also [88])
as far as the dependence of the partition function on the U(1) charges, the
characters will include θ(τ, z; τ̄ , z̄) functions of level (2n, 2n± 1) relative to
τ and τ̄ . This implies that U(1)R will have fractions r

2n±1 which is consistent
with our description of the system as realizing FQHE with ν = n

2n±1 . The
fact that in the bulk they should reproduce the non-trivial braidings of
SL(2,C) shows that they realize minimal model operator algebra, leading
to non-abelian braidings that we have already mentioned. In particular as we
take the basic quasi-hole around another one, we get two possible channels18

instead of one channel expected in abelian models, with phases

(

e
2πin

2n±1 , e−
6πin

2n±1

)

Let us consider (cL, cR) for the first few cases:

ν =
1

3
: (0, 1)

ν =
2

3
: (

3

2
, 1)

ν =
2

5
: (

3

2
,
9

5
)

ν =
3

5
: (2,

9

5
)

. . .

ν → 1

2
: (3, 3)

Naively one would expect that the unitarity completely fixes the first one to
be the usual c = 1 and with the radius of the boson fixed by the level of θ
function to be the usual description of Laughlin’s system of a chiral boson
at radius R2 = 1/3. However, even this case needs to be further studied: As
pointed out in [20] for pure imaginary s, which is the case of interest for us,
there is an ‘exotic hermitian structure’ on the Hilbert space. Nevertheless
it was shown there, that at least in genus 1 case, which is the only case of

18Except possibly for the ν = 1/3, as discussed below.
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relevance for our consideration in the 1 + 1 dimensional edge theory, there
is in addition a unitary structure if 0 < |σ−k

σ+k |sgn(k) < 1 and for our case this
is given by

0 <
∣

∣

σ − k

σ + k

∣

∣

sgn(k)
=

( 2n

2n± 1

)±1
= (2ν±)

±1 < 1

which is nicely satisfied. It is interesting that unitarity is related to proper-
ties of filling fraction for the principal series. It is clear that the unitarity
structure for the problem at hand is rather special and one cannot simply
borrow the technology familiar from the compact WZW models to the case
at hand. In addition, familiar corrections such as k → k + h in the compact
case, do not apply to the non-compact case [20]. Moreover our model has,
in addition to quasiholes, a rich structure of other modes with continuous
wave-like modes in these blocks. We leave a detailed study of this non-trivial
block structure and the corresponding character to a future work [25]. Re-
gardless of the explicit structure of the left-right mixed blocks, it is true
that the braiding properties of the defects are all determined by the bulk
SL(2,C) theory and as we have discussed, as a part of that, the quasi-hole
defects realize the operator algebra for (2n, 2n± 1) minimal models and the
associated braiding structure.

One can ask why are the results we are obtaining so different from the
conventional picture of the principal series? A hint comes from the fact that
for ν = 1/3 our description seems to be particularly close to the usual one.
In paricular, the fact that we are getting a system with (cL, cR) = (0, 1)
suggests that the wave function for the electrons are chiral and given by
the original Laughlin wave-function which is holomorphic19. However, for
higher values of (cL, cR), a key feature of our model is that blocks are not
purely holomorphic or anti-holomorphic. Therefore we expect that for higher
(cL, cR) the electron wave function is not purely holomorphic and it should
also have an anti-holomorphic dependence. We are currently studying details
of this for our model. We thus believe that the assumption of holomorphic
projection of the wave function, which is usually assumed in the conventional
approach, is what sets it apart from ours, except for the ν = 1/3 case. It
would be interesting to revisit the validity of this assumption in solving for
the electron wave function in numerical analysis of FQH systems for other
values of ν.

19The same is true for the Moore-Read state, where our construction would yield
a cL = 0.
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There are other boundary conditions possible for this theory. In general,
different boundary conditions can affect (cL, cR) → (cL − c, cR − c) by some
c which masses up some left-right chiral modes. Note that cL − cR is invari-
ant (at least mod 24 due to gravitational anomaly [20]), and from the above
formulas we obtain

cL − cR =
6Q2

k

where Q2 = (b+ 1
b )

2. Let us specialize to k = 1 case. In that case we get

cL − cR = cLiouville − 1

because cLiouville = 1 + 6Q2. So this suggests that we should be able to get
Liouville theory by a suitable boundary condition, and indeed this is the case
[56, 87] . Moreover, it also shows that there is a left-over right-moving piece
with cR = 1, which ends up being simply a free right-moving boson [87]20.
Note that with this boundary condition, there is no interesting current.
The reason for this identification is that the boundary condition leading
up to Liouville theory, sets the upper-triangular part of SL(2,C) current
⟨J+⟩ ≠ 0 which breaks the U(1) symmetries, i.e. higgses the U(1)’s, one of
which we are identifying with the EM current. This can only happen if the
EM is itself in a superconducting phase. We thus identify this boundary
condition as placing the material next to a superconductor. We therefore
predict that in these cases we should have a rich structure of neutral currents
(for a discussion of placing FQH material next to a superconductor see
e.g.[70]). There should be as many channels as the blocks of the minimal
model (2n, 2n± 1), without any electric currents.

This brings us full circle back to our original motivation: We connected
the choices of filling fractions for principal series to the unitary minimal
models of Virasoro and superVirasoro. The connection here is that the choice
of boundary condition which this entails gets rid of right-moving electric
modes and leads to a chiral theory with c < 1, which can be classified using
unitarity. With the sharp edge boundary we get, as already mentioned, a
related theory with (cL, cR) > (1, 1) (except for the very first one, which is

20If the boundary of Riemann surface is an annulus, which corresponds to the
S4 partition function [86], then we will have both a left-moving and a right-moving
Liouville as well as a left-moving and a right-moving boson. We identify this as plac-
ing the FQH system in contact with two superconducting boundary components.
This makes contact with AGT. Indeed it was already noted [68] that in addition to
Liouville they needed an extra U(1) boson to get the correct partition function of
2 M5 branes on S4, consistent with the extra c = 1 system.
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(0, 1)). It is then natural that with the sharp edge boundary we get filling
fractions which are compatible with the unitarity of superconducting edge
theory in case we had put the sample next to a superconductor!

In the sharp edge boundary, the electric current can be carried only in
one direction in our model. The electric current is carried by the U(1)R
(called the ‘downstream’) and the left-moving direction (the ‘upstream’),
is where the neutral mode propagates coming from our SL(2,R)L modes.
Our model therefore predicts that the electric current can only go in one
direction along the edge (correlated with the magnetic field). It turns out
that standard models that were originally constructed had electric currents
going in both directions (for half of the principal series). These were not
found in experiments. Later it was found how to remedy this and obtain
electric currents which only go downstream, at least in some cases, by going
to a new phase by taking into account disorder [71]. It is a nice feature of
our model that it predicts21 electric currents moving only downstream and
neutral currents moving upstream in essentially all cases. The proliferation
of neutral upstream currents is what our model predicts due to many left-
moving modes. Recent experimental results [73, 74] confirm such upstream
neutral currents which is difficult to reconcile with standard models of FQHE
for filling fractions ν = n

2n+1 which has no upstream currents.
Moreover for the standard series with filling fraction ν = n

2n±1 we have
the left- and right- moving central charges which will have their imprint on
thermal Hall conductivity [75], which (in fundamental units) is given by

σH = cL − cR =
∓6

2n(2n± 1)

Note that R refers to downstream direction throughout this paper. Studying
the thermal transport properties of the edge currents is another way to
distinguish this model from other ones22. Moreover the experimental results
in [73], where one measures left- and right-moving powers may be one way
to experimentally measure (cL, cR).

In our model we have two levels (k, σ), and the quantization of k is
required for the theory to be well defined, but σ is not, and changing it
corresponds to changing the electron density. This allows us to move away
from rational filling fractions and consider the transitions between Plateau
regions in FQHE, which is a nice feature of our model, and can be potentially

21For predictions of transverse response functions based on other models see in
particular [72].

22We would like to thank T. Dumitrescu for discussions on this.
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used to study universality properties in quantum Hall transitions. In fact
the results of studies of SL(2,C) Chern-Simons knot invariants and their
jumping phenomenon of the free energy as a function of b2 (which is related
to inverse of the filling fraction) seems to be interpretable [25] as the relation
between resistivity and the B-field in the FQHE (see in particular (fig. 4) of
[77], where the vertical axis can be related to the B-field and the horizontal
to the resistivity).

One can also study situations where the whole construction is lifted up
one dimension. In fact, in a sense this is forced on us if we wish to also
change the value of k continuosly. This could arise only in a context where
the FQH system is a boundary of a 3d material where the boundary the-
ory cannot decouple from the 3 dimensional bulk theory at non-integral
k, similar to what one encounters in the context of topological insulators
or 2d Dirac/Weyl metals. Then we could ask what is the effective theory
in the 3+1dimensional bulk theory which couples to SL(2,C) theory (or
more generally complex ADE Chern-Simons theory) which fixes the issue
related to non-integrality of k on the 2+1 dimensional boundary? This has
been answered by Witten: The effective theory in this context would involve
N = 4 topologically twisted ADE gauge symmetry in 3 + 1 dimensions (in
this case A1), which can altenratively be viewed as ADE complexified gauge
theories in 3 + 1 dimensions, whose boundary theory is known to give the
corresponding 2+1 Chern-Simons theory [26, 27]. This would allow us to
move away from k being an integer. Note that even though the underly-
ing theory is supersymmetric, the topologically twisted version treats this
as a BRST symmetry and the only manifestation of supersymmetry is in
its topological properties. Moreover the choices of interesting 2+1 material
which can be placed as an interface in this system translates to the choices of
consistent boundary conditions for supersymmetric Yang-Mills theory, and
this has been analyzed in [28], leading to a rich structure. A key role there
is played by the Montonen-Olive SL(2,Z) symmetry [78] of N = 4 super-
symmetric Yang-Mills theory for non-abelian gauge theories which leads to
duality symmetries on the boundary.23 It is interesting that our model of
FQHE naturally suggests the potential experimental realization of topologi-
cally twisted non-abelian Yang-Mills theories as effective descriptions in the
bulk of topological insulators! We are currently studying potential applica-
tions of this to condensed matter systems [29], which seems to also lead to

23The abelian version of this at half-integral points of the Montonen-Olive torus
is presumably related to dualities studied in the condensed matter literature.
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beautiful block structures24 on the 2 + 1 boundary, analogous to the 1 + 1
edge modes for the usual FQH systems.

It is natural to study k > 1 systems as well and see whether they give
interesting examples of filling fractions observed in experiments. For exam-
ple filling fractions ν = n

(2nk′±1) , known as the Jain series, are anticipated in

the composite fermions theory [5]. It is natural to conjecture that the higher
Jain series correspond in our setup to the two SL(2,R) levels being given
by (−2n, 2nk′ ± 1), which would correspond to the level k = 2n(k′ − 1)± 1
for the diagonal SL(2, R). In addition we can have more general values of k
which would presumably give new series. This would be worth investigating.
For k > 1 the superconducting boundary conditions are expected to lead to
paraLiouville theories [79] (see [80] for a discussion of para-Liouville theo-
ries). Similarly the supersymmetric case for k ≥ 1 would be interesting to
study.

4.3. Multi-layer case

Let us briefly discuss the connection with Toda case. Most of our discussion
before was in the context of A1 theory which gives the single layer theory.25

We will restrict our attention to the non-supersymmetric case, though given
what we found for the A1 case it is expected that the supersymmetric case
of Toda theories are also interesting.26 Our conjecture maps the multi-layer
FQHE to ADE Toda system, when we put the sample in interface with a
superconductor:

∫

Σ
d2z

[ 1

8π
∂ϕ⃗ · ∂ϕ⃗+ iQρ⃗ · ϕ⃗R+

rADE
∑

j=1

exp(b e⃗j · ϕ⃗)
]

where ϕ⃗ is an r-dimensional vector parameterizing the Cartan of ADE, ej are
the simple roots, Q = b+ 1

b , ρ⃗ is half the sum of positive roots of ADE and
the central charge of the Liouville theory is given by c = r + 12ρ⃗ · ρ⃗(b+ 1

b )
2.

24In the simplest cases this is related to sections of suitable bundles on Hitchin
moduli space [103] on the boundary surface.

25As an interesting example of theoretical study of a bi-layer system see [82].
26From the expressions below it is natural to guess that the filling fraction matrix

is given by 2m

m+2
C−1 for the supersymmetric case.
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The correponding holomorphic blocks will involve terms of the form

∏

i,j,a,b

(zαi − zβj )
−b2Cαβ

where α, β label the layers, and is as many as the rank of ADE. Moreover
Cαβ is the Cartan matrix.27 These theories possessWADE symmetry algebra
(see [81] for the AN−1 case). For simplicity let us focus on the AN−1 case
and specialize to the minmal model case (which has been found to lead
to interesting structure in the AGT setup in [83–85]): This corresponds to
WN (p, p+ 1) models which map to b2 = −2p±1

2p , with central charge

c = (N − 1)
[

1− N(N + 1)

2p(2p± 1)

]

with p ≥ N . This has the chiral wave function

∏

i,j,a,b

(zαi − zβj )
2p±1

2p
Cαβ

which leads to the filling fraction matrix ν given by

ν =
2p

2p± 1
C−1

with 2p ≥ N , where N − 1 is the number of layers and C−1 is the inverse
of the Cartan matrix for AN−1. The single layer case corresponds to C = 2
which gives the filling fractions of the principal series ν = 2p

2p±1 . This formula
for ν is valid for all ADE Toda cases where C is the corresponding Cartan
matrix. It would be interesting to connect this to experimental observations
for multi-layer FQHE. Of course, just as in the case of the single layer, the
sharp edge boundary condition will give a different theory, which differs from
chiral Toda theories, but which will still have the same cL − cR.

4.4. Punctures

Connections with string theory suggest that there is more one can do. In
particular in the context of Gaiotto theories, we are led to put regular and
irregular punctures on the Riemann surface. In the language of FQHE these

27To make the wave function have no poles, we may have to choose a different
basis for fields.
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should be creating some ‘regular and irregular defects’ in the sample! It
would be interesting to try and realize these. In the single-layer case the
regular defects are equivalent to excizing a point w from the surface and
considering the chiral wave function

∏

i
1

(zi−w)m . The irregular ones are most
naturally placed at the boundary of the space and involve a boundary term
exp

[ ∮

W (z)∂ϕ
]

[54] where W = zn. It would be interesting to find realiza-
tions of these ideas in the FQHE context. Moreover, the k > 1 versions of
these would be expected to also exist as in the A1 case.

4.5. 5d systems and anisotropic FQHE

There is a 5d version of these supersymmetric theories which get connected
to q-deformed versions of Toda theories. In these cases from the results in
[104] one expects that the zeroes of the Laughlin wave function get split. In
particular in this case the holomorphic part of the wave function for filling
fraction ν = 1/m instead of (z1 − z2)

m is given by

m
∏

i=1

[

qi/2exp(x1)− q−i/2exp(x2)
]

where z1,2 = exp(x1,2) and q is an additional deformation parameter. It is
conceivable that this is relevant for the anisotropic versions of FQHE. More-
over from the fact that zi are replaced by their logs, it is suggestive that
these are related to cylindrical geometries for the FQHE. These should have
intersting physical realizations!
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