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TT deformations in general dimensions

Marika Taylor

It has recently been proposed that Zamoldchikov’s T'T deformation
of two-dimensional CFTs describes the holographic theory dual to
AdS3 at finite radius. In this note we use the Gauss-Codazzi form
of the Einstein equations to derive a relationship in general di-
mensions between the trace of the quasi-local stress tensor and a
specific quadratic combination of this stress tensor, on constant ra-
dius slices of AdS. We use this relation to propose a generalization
of Zamoldchikov’s TT deformation to conformal field theories in
general dimensions. This operator is quadratic in the stress tensor
and retains many but not all of the features of TT. To describe
gravity with gauge or scalar fields, the deforming operator needs
to be modified to include appropriate terms involving the corre-
sponding R currents and scalar operators and we can again use
the Gauss-Codazzi form of the Einstein equations to deduce the
forms of the deforming operators. We conclude by discussing the
relation of the quadratic stress tensor deformation to the stress en-
ergy tensor trace constraint in holographic theories dual to vacuum
Einstein gravity.

1. Introduction

A decade ago, Zamolochikov [I] explored deformations of two-dimensional
conformal field theories by an operator that is quadratic in the stress energy
tensor, called the T'T operator. This operator is defined as a bilocal operator,

(1.1) TT(x,y) = T (@)T;(y) — T (x)T! (y)

7

where Tj; is the stress energy tensor. In a two-dimensional CFT this operator
was shown by Zamoldchikov to have a remarkable OPE structure as z — y:

(1.2) TT(z,y) =T (y) + > Aa(z — y)VyOal().

Here O, denote local operators and the function A,(x — y) can be divergent
as x — y; this relation implies that we can identify T7T as a local operator
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T (y), modulo derivatives of other local operators. The TT operator can be
used to deform the conformal field theory, generating a family of theories
characterized by the coupling of this operator. While the deforming operator
is irrelevant, its particular properties imply that the resulting theory is more
predictive than a generic non-renormalizable quantum field theory.

It has recently been proposed that the TT deformation is relevant to
understanding the holographic theory dual to AdS3 with a finite radial cutoff
[2]. The basic idea is that the holographic theory at finite radius is a member
of the family of deformed theories discussed by Zamolodchikov. These ideas
were explored further in a number of other works, see [3HIT].

There have been a number of previous attempts to set up a holographic
correspondence at finite radius, using various approaches. In the early days of
AdS/CFT, the role of the holographic renormalization group was explored,
with [12] relating radial flow to renormalization group. In what follows we
will use the sharp dictionary between radial Hamiltonian evolution and holo-
graphic operators developed in [13]. In [I4] 15], it was proposed that the
holographic dual at finite radius should be interpreted as a deformed CFT.

Another approach to understanding holography at finite radius follows
from the fluid gravity correspondence. In [16], the fluids dual to finite cutoff
surfaces in asymptotically AdS black brane geometries were analysed, and
it was argued that these fluids should be related to fluids in appropriately
deformed conformal field theories. Note that one can set up a Dirichlet
problem at finite radius not just in asymptotically AdS geometries, but also
in Ricci flat spacetimes [I7H20]. In [19,20], the corresponding Ward identities
for the fluid stress tensor were used to infer information about the putative
holographic quantum field theory dual to such spacetimes.

The properties of the T'T operator are very specific to two dimensions.
Potential analogues of the TT operator in higher dimensions have been dis-
cussed from the field theory perspective in [21, 22]. In particularly, Cardy
proposed in [2I] that a deformation involving the square root of the de-
terminant of the stress tensor may be an appropriate generalisation. This
possibility was further explored in [22], although [22] also mentions that a
quadratic generalization to dimensions higher than two may be more natural
holographically.

In this short note we use holography to propose a generalisation of the
TT deformation to dimensions higher than two. Following the approach of
[6], we derive an expression for the Ward identity involving the trace of the
stress tensor, at finite radius. This analysis implies that in a d-dimensional
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theory we should consider the operator

1

(1.3) T =T4T;; — @-1

This clearly reduces to the T'T operator in two dimensions. In general di-
mensions the operator does not share all the special properties uncovered by
Zamolodchikov in two dimensions, but we argue that these properties are
not required if one is only considering states that are stationary and spatially
homogeneous. We demonstrate that the energy relation for constant radius
hypersurfaces in black branes indeed precisely matches the energy relation
obtained by deforming a conformal field theory with this operator.

As highlighted in [4, 6, 9], the TT operator is not sufficient to describe
AdSg3 gravity with matter: for example, additional deformations are required
if one includes bulk scalars and gauge fields. By deriving the Ward identity
for the trace of the stress of the stress tensor in the presence of gauge fields,
we propose the required deformation involving R currents in the dual field
theory. We also consider briefly the case of scalar fields.

The quadratic combination of the stress tensor in has appeared
in earlier literature: the vacuum Einstein equations (with zero cosmological
constant) force the induced Brown York tensor on a hypersurface to satisfy
the constraint 7 = 0 [19, 20]. In section |8 we explain the relationship be-
tween the current work and this constraint; it is the Gauss-Codazzi relations
(in particular, the Hamiltonian constraint) on a constant radius surface that
picks out the combination in both cases.

The plan of this paper is as follows. In section [2] we consider AdS gravity
in general dimensions and show that the trace identity for the stress energy
tensor at finite radius implies a deformation by an operator of the form .
In section [3|we consider AdS branes and derive an expression for the effective
energy as a function of the cutoff radius. We consider the dual interpretation
of the operator in section [d] In sections [5| and [6] we consider generalisations
to include gauge and scalar fields in the bulk. We discuss the relation of the
TT deformation to the defining holographic relation for holographic theories
dual to vacuum Einstein gravity in section |7/} We conclude in section

2. AdS gravity

The bulk (Euclidean) action for pure AdS gravity is

(2.1) Iy = —ﬁ /dd+1x\/§(R+ d(d—1)),
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where we set the AdS radius to one. The boundary terms for this action
include the standard Gibbons-Hawking-York term and the counterterms de-
rived in [23]:

(2.2) IaM_—— dxvVh (K —(d—1)4---)
8rG
where K is the trace of the extrinsic curvature and the ellipses denote terms
involving the intrinsic curvature of the metric h.
We now introduce a coordinate system such that the metric takes the
form

(2.3) ds? = dr? + (v, r)dz'dx’

in terms of which the extrinsic curvature takes the simple form

1
(24) Kij = 587«%]».
As exploited in the Hamiltonian renormalization approach of [I3], one can
use the standard Gauss-Codazzi relations to rewrite the action as

1 3
2. I=——— [ qit! K? - KVEK;; 1
(2.5) o [ dava (R + S+ d(d—1)

87TG/dda:\f d—1)+---)

where R denotes the Ricci scalar of constant radius hypersurfaces and the
ellipses again denote terms involving the intrinsic curvature of the boundary
metric.

One can use the Gauss-Codazzi equations to express the Einstein equa-
tions in the coordinate system . For us, the most relevant equation is
the (r7) equation which implies

(26) K? — KUI; = R +d(d— 1),
We now define the quasi-local stress energy tensor as
(2.7) oI = ;/ddl'\/ETij(shij
which gives

(2.8) T = (Kij — K+ (d— 1)y + )

IrG
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The first two terms are the Brown-York quasi-local stress tensor. The third
term follows from the leading order counterterm i.e. it contains information
about the renormalization required to compute quantities in the conformal
field theory. While one could add any term proportional to the metric to the
Brown-York tensor without spoiling the conservation of the stress tensor,
the specific coefficient arising here follows from holographic renormalization
[23, 24].

Now let us restrict to slices for which the intrinsic curvature vanishes i.e.
the terms in ellipses are zero. Then

(d—1)

(2.9) T = e (d - K)

We can also show that

(d-1)

2.1 T, = — L
(2.10) T 64m2G2

(K? —2(d— 1)K +d(d —2))

where we use the Gauss-Codazzi relation to eliminate K% K;j. Then

@) a6 (- ) = -1

Again we highlight the role of the counterterm (and the corresponding term
linear in the metric in the stress tensor) in determining this expression.

This calculation suggests that in general dimensions the deformation
that one should consider in general dimensions is

. 1 :
(2.12) T = (TZ-]-T” - 1(T;)2>
which manifestly reduces to the TT deformation in d = 2. We can then write
the trace relation as
(2.13) T! = -\T

where A = 47G.
3. Energy spectrum
In this section we consider asymptotically AdS black branes in general di-

mensions and show how their energy (as defined by the quasi-local stress
tensor) changes with the radius. In the following section we will show how



42 TT deformations in general dimensions

such a relation follows from interpreting the cutoff geometries in terms of
theories deformed by the operator 7.

Let us consider a general static metric of the form

dp?
3.1 ds* = p* f(p)?dr® + + prdatdax,.
(31 ) p*f(p)?
A metric of the form (3.1]) has the following Ricci tensor:
(3.2) Ry = (—df* = (d+1)pf,f — 0,(0*f9,[))

Rij = (—=df* = (d+1)pf0,f — 0,(p* [, f))
Ry = (_df2 - 2Pfapf) 04

where we have introduced an orthonormal frame

(3.3) el = pf(p)dr; el = p](fé)p); e = pdz®.

The extrinsic curvature is

1

Kapy = f(p)pdab-
The quasi-local stress energy tensor implies that
1 D
3.5 T,=——|D-= 7
(35) e (0-210)

where D is the number of spatial dimensions. The quasi-local energy is then

86) &= o [@n” (0-2r0) = B2 (1 Lgp)).

where Vp is the regulated (dimensionless) volume of the spatial directions.
For AdS-Schwarzschild (with flat horizon) in (d 4 1) dimensions

(3.7) f(p)?=p* -

prl

and thus
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We can then express the dimensional ratio

DVppPt! po\?

as

DVpp? AM ) 2
(3.10) =% (1 ( i > )

in terms of the (dimensionless) mass parameter 4w M = p/G and d = D + 1.
In the limit of p — oo this expression gives the finite renormalized quantity

DV,
(3.11) € — TDM.

The relation (3.6|) clearly holds for any static metric with flat spatial sections.
In particular, we can apply the relation to well-known geometries such as
charged AdS black branes for which

p Q?
(3.12) o) =p"— 5=+ p2(D=1)

with Q the electric charge, and thus

DVppP+! M Q2 :

In the limit as p — oo this again tends to
1
(3.14) €= ZDVDM,

i.e. the charge parameter drops out of the energy. We will return to charged
black branes below.

4. CFT deformation

Now let us turn to the interpretation in terms of CFT deformations. In this
section we consider the behaviour of the operator

(4.1) T= (TUT” - (di 1)(1’?)2>
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in general dimensions. The key point is to analyse whether there is indeed
an appropriately defined composite operator i.e. that one can define

(42)  T(2) = Lim,s, (T%)Tmy) - T <y>)

There is a fundamental difference between the behaviour of this operator in
two dimensions and the behaviour for d > 2.

To illustrate this, we first consider the expectation value of the right
hand side in the conformal vacuum. In a d-dimensional CFT, the two point
function of the stress tensor at separated points is given by

1 /1 1
(4.3) (T3 (2)Tu(0)) = —3 <2 (i Ljt + Lilji) — d5z‘j5kl>
where
2,15
(4.4) %:%—?%

and implicitly we work in Euclidean signature. It is then straightforward to
show that

(@5) @@y = 52
and
(46) T 0) = 0.

Thus for a CFT in the conformal vacuum the combination

(4.7) (T% (2)Tj () - (dil)m(@TJj(y» - m

is only position independent in d = 2.

Note that, using standard regularisation techniques, one can renormalize
so that is well defined in the distributional sense as  — 0. For example,
using differential regularisation, for d odd one can write

1 d 1
dyq
(4.8) —2a ~ D <xd—2> ’
while for d even

1 44 log(z°?)
(4.9) ﬁNDZ’ ( ,
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where p is an arbitrary (renormalization scale) parameter.

The arguments of Zamolodchikov [I] in d = 2 do not rely on conformal
symmetry - but on local translational and rotational symmetry, which in
particular imply that the stress energy tensor is symmetric and conserved.
In two dimensions, these properties suffice to show that the operator product
expansion for the quadratic TT combination of the stress tensor is of the
form

(4.10) T9(2)T;(2) = T (2)T) (') = Y Aalz = #)Ou(?)

where the coefficients A, are coordinate independent unless the operator
O, is itself the coordinate derivative of another local operator. This form
for the OPE thus implies that we can identify the TT operator as a local
operator 7, modulo derivatives of local operators, as stated in .

It is instructive to understand how Zamolodchikov’s arguments change
in dimensions different from two. The OPE still takes the form in all
dimensions. However, in dimensions greater than two, the conservation of
the stress tensor places fewer restrictions on the right hand side of ;
the coefficients can be divergent even when O, is not the derivative of a
local operator. This is already apparent from the expression .

These issues do not mean that one cannot define a composite local oper-
ator 7 in dimensions higher than two; the definition however depends on the
renormalization procedure (and hence on the full short distance behaviour
of the theory). This is significant, as we cannot assume that the UV theory
is conformal: we instead want to consider a family of theories characterized
by irrelevant deformations of a CFT. As we discuss below, for matching the
energy spectrum with the holographic description, we can however avoid
discussing details of the regularisation procedure, as the states under con-
sideration are static and translationally invariant.

4.1. Energy spectrum

In (3.10), we found an energy spectrum within gravity which can be ex-
pressed in the form

(4.11) e:g(l—(l—na)%),

(0}

where C'is a constant, « is a dimensionless coupling and n is a dimensionless
parameter characterising the energy (eigen)state. The constant C' is the
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overall normalization constant for the energy in the undeformed theory i.e.
1
(4.12) €(0) = §Cn.

Following the analysis of [6], one can observe that this quantity satisfies a
non-linear differential equation

(4.13) On€ = —€ (e + 2ad€> ,
a

for any value of n.

In two dimensions, this equation can be interpreted directly in terms
of the defining Ward identity for the family of deformed theories. Let us
consider the Euclidean theory on a cylinder of circumference R. A stationary
state |n) has energy E, (R, \), where the parameter A denotes the coupling
of the operator 7, and momentum along the circle direction P,, = 2wl, /R,
where [, is an integer. To match with the gravity analysis above, we will
restrict to zero momentum states.

Then, using the fact that 7 is well-defined as a local operator in two
dimensions, Zamolodchikov [I] showed that in the state |n) the expectation
value of T is

2 0F,
4.14 - _*Eni-
(4.14) (I TIn) = —=F =
This follows from
(4.15) T =2(TraTre — TrTia)

where we use coordinates (7, z), and from the definition of the energy mo-
mentum tensor i.e.

E, oLE,
(4.16) (n|Trr|n) = 7 (n|Typz|n) = — 3R
with
7
4.1 T =—P,
(117) (nlTren) =

when the momentum is non-zero. (Note that the minus sign in the first ex-
pression and the factor of 4 in the final expression follow from the Euclidean
signature.)
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When we calculate an expression such as
(4.18) n|Trr Tyz|n)
we can always use a spectral decomposition

(4.19) Z<”|TTT () (| Ty 1) e B = Bm)7 i Pa =P}

m

The proof that the operator T is independent of position (in d = 2) implies
that terms with m # n must cancel and thus the expectation value factorises

(4.20) (BIT ) = 2| Traln)? — 2(nl Ty 1) | T )
leading to the result above (4.14)) when the momentum vanishes.

The defining relation for the family of QFTs is

as 2
(4.21) I /d 2 T(2),
where we define S(0) as the CFT, which in turn implies that [T, 25]
OE, OE,
4.22 2B, 2" — .
(4.22) xR

This is not yet comparable to (4.13]), as the latter is expressed in terms of a
dimensionless coupling. Letting

A

(4.23) a= 1

and using dimensional analysis to write the energy as

(4.24) By = ~en(a),

where €, is dimensionless, we obtain
(4.25) Onn = 2€, (€5 + 2004€r) ,
which indeed agrees with (4.13)).

Now let us consider the generalization to a theory in d dimensions com-
pactified on a symmetric torus of volume V = RP. Repeating the two-
dimensional arguments, let a stationary state |n) have energy FE,(R,\),
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where the parameter A\ denotes the coupling of the operator 7, and the
momenta along the circle directions are P} = 2wl% /R, where [¢ are integers.
To match with the gravity analysis above, we will restrict to zero momentum
states, although the generalization to include momentum would be straight-
forward.

We can then calculate the expectation value of the operator T as

(ol (97, - (T2 ) )

= " (0IT |m) (m|Ty; e B En)Tei P =P
m
1 . ‘ o
= 5 S Al T ) (| T e B i Er)e,
m

where {|m)} denotes a non-degenerate complete set of energy and momen-
tum states. Since |n) itself is such an eigenstate, the superposition above
immediately collapses onto the n = m terms i.e.

(420) Gl (77T = (T2 ) 1) = (0l o) 0T ) = 5T o

Let us now consider the assumptions that go into this expression. The oper-
ator product expansion in d # 2 implies that the two point function
evaluated in a generic state is manifestly dependent on the points z and 2’;
thus the expectation value of the operator 7 would in general depend on
how one regularises the operators as they approach each other.

On the other hand, since the original theory is a CFT and the defor-
mation does not change its long distance behaviour, factorization at infinite
separations remains applicable for any value of the coupling A:

(4.27) Ly00({Oa(z + y)O0s(2")) = (0a){Op)

where here y can denote separation in time or space.

The computation above assumes that the regularisation procedure does
not affect the expectation value of 7 in an energy/momentum eigenstate
i.e. it can effectively be computed by factorization. In particular, denoting
the conformal vacuum of the CFT as |0), then we showed in that the
two point function of 71" needs to be regularised as the operators approach
each other. The regularisation is such that

(4.28) (OT10) = (O[T |0)}{0I 5[0} — %<0|T;'|0>2 =0,
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where (0|7;;]0) for the conformal vacuum (on the Euclidean plane).

Now let us evaluate (4.26) for finite energy states. The assumption that
the state |n) is both static and spatially isotropic implies that

(4.29) (n|Tra|n) =0 (n|Tap|n) =0 a#b
and
E
(4.30) <n’TT’T|n> - _7n
while for the stress tensor in the spatial directions
P,
(4.31) (n|Tapln) = Sar7
where P, is the pressure. It is then straightforward to show that
1\ E2 2E,P,

Note that the terms involving P? cancel between the T%T;; and (T})? com-
binations i.e. the relative factor between these terms guarantees this cancel-
lation. It is due to this cancellation that the differential equation we obtain
below is first order rather than second order. The pressure is related to the
gradient of the energy as

OF,

ov -

Now, following the same logic as in two dimensions, the defining relation for
the family of quantum field theories characterised by the coupling A is

8En_<1 1)Eg OE,

(4.33) Py=-V

(4.34)

O\ D V_2E"av

The dimensionless coupling o = A/ Vt5 and by standard dimensional anal-
ysis

(4.35) En = an(a)
where € is dimensionless. Thus in D spatial dimensions we find

(4.36) On€n = (1 + 11)) (ei + 2aen8aen) ,
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which agrees with (4.13)) i.e. the energy spectrum found in gravity is indeed
consistent with that of the family of deformed theories.

5. Charged black branes
The generalization to include charge on the black holes is straightforward.

We couple gravity to a gauge field via

1

1
(51) IM = —]M;/dd+1$\/§ (R — ZFMVF/J,V + d(d — 1)>

We can always introduce a coordinate system (locally) in which the metric
takes the same form as before i.e.

(5.2) ds* = dr® + (=, r)dz'da? .

Using the Gauss-Codazzi relations we can then write the Einstein equations
as

g 1. .. 1 g
(53) K? = KYEKj; = R+d(d = 1) + S AA" = 2 F 7V

i L4
L
2(1—d)

| 1 ol si i

where the dots indicate radial derivatives. Here we have chosen a radial
gauge for the gauge field, A, =0, and F;; = 0;A; — 0;A;. The gauge field
equations are then

(5.4) A+ KA 4V Fii=0 V,A"=0

Now let us restrict to the case where the curvature of constant radius slices
is zero and the gauge field depends only on the radius.
The quasi-local stress energy tensor is again

1
(5.5) Li=5 ¢ (K5 — Kvij + (d — 1)vig)
and thus
,_(d-1)
' T — - K
(56) = - K
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We can also show that

1

A =Te

((d (K2 —2d - VK +d(d—2)) — ;&zv)

where we use the Gauss-Codazzi relation to eliminate K% K;;. We thus ob-
tain the following result for the combination considered previously:

A . 1 1 . ..
(5.8) T} = —4nG (T% - D(T;V) - A
Now let us consider how this can be interpreted in terms of a field theory
deformation.

By construction, as we take the limit to the conformal boundary, the
term of appropriate dilatation weight in T;; becomes the expectation value
of the dual stress energy tensor. The (renormalized) expectation value of the
dual current J? is similarly related to a specific term in the expansion of the
canonical momentum of the gauge field into dilatation eigenfunctions. More
specifically,

L

where 7t = A’ and 7ré a) is the coefficient of the e~ term in 7’. Note that in
general the relationship between (7%) and terms in the asymptotic expan-
sion of A’ is more complicated. Here the assumed symmetry, i.e. the bulk
metric and field strength depend only on the radius, ensures the simple re-
lation between (7%) and the coefficient of the e~%" term in the asymptotic
expansion.

Let us consider first the case in which there is no source term for the
current in the dual field theory. The symmetry then guarantees that the
asymptotic expansion of the gauge field is

(5.10) A= Alye g
and thus
(5.11) Al = _de—drAéd) 4o = 167Ge (T 1 -

We can similarly expand

(5'12) A; = Ai(D_l)e_(D_l)r +--= ’)’(o)ijAj
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where 7(g);; is the background metric for the dual field theory (i.e. it is
independent of 7). Thus

(5.13) A =—(D - 1)7(0)1-]-14@)6_(17‘1)7" g
(D—-1)
d

Note that it is not the case that A; = ’yij/lj as A; = Or(7i; A7) and 9, (vij) #
0. We can rewrite the trace identity in this case as

= 167TG 7(0)2] <jj>6_(D_1)r.

. . 1 . 2(D—1) _ . .
G14) 17 = -3 (77T - (i + K2 e a0m g (i 4 ).
where we use the relation A = 47w G. This relation suggests that the gauge
field contribution is related to a deformation of the field theory involving
the square of the symmetry current.

Now let us return to the general case. In the absence of the gauge field,
we interpret «;; as the background metric for the field theory and T;; as the
operator. While Tj; is essentially the canonical momentum dual to ;;, we
include the counterterm proportional to ;; in the definition of T;; so that
the appropriate dilatation eigenfunction in Tj; gives the dual CFT stress
tensor. Mirroring the same construction for the gauge field, we will define

. Al
5.15 T —
(5.15) J 167G
Now
(5.16) A, = 2Kz‘jz4j + 'Yiin
which we can rewrite using

1

(5.17) K;; = 8nG <le — DT,?%j) + Yij
giving
(5.18) ATA; = 16)? <AJ\72(TU - BT,fwj) + jj> +8X\A; !
and thus
(5.19)

. . g 1. . o 1
T+ AiJ" = =X (T”Tz’j = 5 () + 27" T+ 240 TH(T; ~ Dﬂ’f%y‘)) :
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Note that the left hand side of this expression is the standard relation for a
CFT, deformed by a source A; for a current J°.

5.1. Field theory interpretation

We now turn to the field theory interpretation. Consider the Ward iden-
tity (5.19) on a flat background, with zero direct source A; for the current
ie.

(5.20) TP = -\ (T"J‘Tij — %(Tf)Q + 2j’$> :

To reproduce this Ward identity we are led to consider the following defor-
mation of a conformal field theory

3 1 A
d D i\ 2 d )
(5.21) A/dm(Tjﬂj—D(T~)>+R2/d 2 J;

where here J; is a conserved current in the field theory. The coupling of the
second term follows on dimensional grounds: the canonical dimension of the
current is D and here we denote the volume of the D spatial directions as
V = RP ie. R is the spatial scale. We will discuss below the relationship
between J; and the current J; defined on the gravity side.

Following the earlier discussion, let us now consider eigenstates |n) of
the energy momentum tensor that are also charge eigenstates i.e.

-qn
(5.22) (n|Jrn) = i

where ¢, is dimensionless and V' is as above the spatial volume. (The factor
of 7 originates from the Euclidean signature.) Then

(5.23) (n]J J7|n) = Z (En=Em)7 o{(PI=PL)2" (| T |m) (m|J T |n)

q%

vz’

where we implicitly use the orthonormality of eigenstates of energy and
charge.
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The dimensionless energy €, («, ¢, ) then satisfies the differential equation

1
(5.24) Onn = (1 + D) (ei + 2aen8aen) — qu
with the final term originating from the differentation of the coupling of the
current deformation with respect to A. We can reinstate a generic normal-
ization for the energy at a = 0 as before, giving

(5.25) Oabn = == (&2 + 208,00é) —

5.2. Charged static black branes

We consider charged static black brane solutions of the type (3.1)). Using
the expressions for the curvature (3.2)), it is straightforward to show that
the charged black brane solutions for which

(5.26) fo = (1-27+ %)

4 =
pd pQD

satisfy Einstein’s equations with a (Lorentzian) gauge field such that

2
(5.27) (0,44)* =2D(D — 1);31)
and hence
(5.28) Ay ==+ v2DQ

VD _1p0-1

which from (5.9)) implies that the (renormalized) expectation value of the
CFT current is

dv2D

(5.29) (Jh) = im

Q

according to the usual AdS/CFT dictionary.
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The general energy relation (3.13)) can be expressed as

(5.30) (0) = < (1- f(a)
and
(5.31) On — ——c (€ + 200¢) = —2%2 (1 12+ adu(f?).

2C

For the charged black brane, we can write
(5.32) fla)=(1—aM + Q%?%)*.

Here as before M is dimensionless, the gravity normalization is

DV,
(5.33) c=22
2
and we define
(5.34) Q= %,

for reasons that we will explain below. Note that the energy expanded per-
turbatively in « is

C C
(5.35) €= §M+a§(M2 —4Q%) + -
where the second term is positive for real f(a).
Inserting ([5.32]) into ([5.31) we can see that the energy relation satisfies
1 C
(5.36) Op€ — Yok (€ + 2a0q€) = —§Q2,
which is of the same form as the field theory result (5.25).

6. Scalar deformations

In this section we briefly consider scalar deformations. We begin by coupling
gravity to a single scalar field i.e. the bulk action is

(6.1) Iy = —ﬁ /ddﬂx\/ﬁ (R - %(8@)2 - V(@))
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where V(®) is the potential for the scalar field. For asymptotically AdS
spacetimes, the potential has a fixed point such that V' = d(d — 1), as above.
We can always introduce a coordinate system (locally) in which the metric
takes the same form as before i.e.

(6.2) ds? = dr® + (@, r)dx'da’.

Using the Gauss-Codazzi relations we can then write the Einstein equations
as

L 1. 1 ..
(6.3) K- KVK;; =R+ V(®) + 5(1)2 — 577 0:20;®
) 1.
ViKj = ViK = S00;®

i i i Ll 1 i

where the dots indicate radial derivatives. The scalar field equation is
(6.4) S+ Kb +0,®+V'(®) =0,

where the prime denotes the derivative with respect to ® and [J; denotes
the Laplacian along the radial slices.

Let us now restrict to configurations in which the scalar field depends
only on the radial coordinate, and the curvature of each constant radius slice
is zero. In such a situation, the only relevant counterterm for the action is

(6.5) It AR (D)

- 8rG

where the superpotential W (®) is defined via

(6.6) V(®) = - 1)W(<D)2 —2W(®)2

In the case of V = d(d — 1), we obtain W = (d — 1) and reproduce the result
of the first section.
The quasi-local stress energy tensor follows from the action and is given

by

(6.7) Ti; = (Kij — Kvij + W),

G
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where we have used the fact that radial slices have no intrinsic curvature
and the scalar field depends only on the radius. The trace is then

(6.8) —

= om @V —(d— 1K),

Then we can show that the quadratic combination gives
6.9) (1797 — L) = — L (ow (i — Lw)+ w2 — 162
' Y DY 6412 G2 D 2

w ; 1 1.
:_7Tl - 2 !/ 2_7®2
AnGD " * 64m2G? < W) 2 )

Up this point we have not assumed that the metric has Poincaré symmetry
along the radial slices, i.e. it is a flat domain wall. If we do assume this, then
the equations of motion can be expressed in first order form implying that

(6.10) =21’
and

, w
(6.11) A= B

where the metric is expressed as
(6.12) ds? = dr? 4 e dz'd;.

For such flat domain walls, the defining relation is then

) 477G D . 1 .
T i (T2
(6.13) T; WD) (T Tj D(TZ) )

Here implicitly we interpret the Dirichlet data on each slice as v;; and ®,
and the operators are associated with radial derivatives of these quantities.
This suggests that the deformation to be considered in this case is the TT
deformation, appropriately dressed by scalar couplings.

7. Relation to fluid dual to vacuum Einstein gravity

In this section we will consider the relation between gravity at finite radius
and a putative dual theory, for spacetimes that are not asymptotically AdS.
The goal is to connect the discussions of T'T deformations in this work with
previous analyses of the dual field theory.
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In a number of works including [I7H20], a dual fluid description of vac-
uum Einstein gravity was explored, building on earlier work on fluid/gravity
relations [26-28]. In this context, one fixes a flat metric ~;; on a timelike hy-
persurface ¥, (outside the Rindler/event horizon) and identifies the Brown-
York tensor

1
(7.1) Tij = g (Kvij — Kij)
as the putative stress tensor of the dual theory. Conservation of the Brown-
York tensor translates into integrability conditions for the Einstein equa-
tions.
The Hamiltonian constraint on Y. can be expressed as

(7.2) K K9 - K*=0

and this constraint can immediately be rewritten in terms of the Brown-York
tensor as [19] 20]

g 1
7.3 TITyj — ———T* =0.
( ) v ( d— 1)
In [19] 20], this relation was interpreted as the equation of state for the dual
theory.
Clearly the definition of the stress tensor via (7.1) is not unique: one
could equally well define the stress tensor as

(7.4 TG = o (K — Ky + On)

where C' is any constant. In the asymptotically AdS setup, we fix the con-
stant C' by requiring that the stress tensor approaches the renormalised
stress tensor at the conformal boundary. In flat spacetime, there is no a
priori reason to fix a particular value of C' as we do not have a holographic
correspondence at infinite radius. For an equilibrium solution, we can write
the stress tensor as

(7.5) Tij = (p + p)uiuj + pvij

where p is the pressure, p is the energy density and w; is the fluid velocity.
The effect of the constant in ([7.4]) is thus

(7.6) p—=p+C p—p—C.



TT deformations in general dimensions 59

In the case of flat space in Rindler coordinates, the stress tensor on a hy-
persurface X, indeed takes the perfect fluid form, with [19] 20]

(7.7) p=4nTy +C p=—-C

where Ty is the Unruh temperature. This motivates choosing —4nTy < C <
0, so that the energy density and the pressure are both non-negative.

The Hamiltonian constraint is clearly independent of the choice
of the stress tensor . However, the translation of the Hamiltonian con-
straint into a constraint on the stress tensor does depend on C: for C # 0,
we find

dC
167G

(7.8) ¢ _ _47r(alc—Y G <Tcijg _ (dl 3 (TC)2> n

Thus for non-zero C' the relation (as one would expect) takes a form analo-
gous to that for anti-de Sitter spacetimes.

8. Conclusions and outlook

In this paper we have used the Gauss-Codazzi relations within AdS gravity
to write a trace relation for the stress tensor at finite radius. This relation
suggests that the corresponding deformation of the dual d-dimensional CF'T
is as given by . As discussed in previous works [4] [6 9], the deformation
is modified by the presence of additional fields in the bulk; we can again
use the Gauss-Codazzi relation to deduce systematically the form of the
deforming operator.

We used static black brane solutions to derive a relation for the energy
at finite radius in terms of the mass parameter of the black brane and the
effective coupling. The same relation was reproduced from the perspective of
states of a CFT deformed by the operator . It would be straightforward
to extend these results to boosted, spinning branes.

The energy relation is not sensitive to the precise definition of the oper-
ator i.e. how one takes the limit to define the composite operator.
To explore this deformation further, it would clearly be interesting to cal-
culate quantities that are sensitive to this definition, such as correlation
functions and entanglement entropy. Correlation functions in the deformed
two-dimensional dual theory were explored in [6]. Note however that, since
in three bulk dimensions gravity has no propagating degrees of freedom,
correlation functions of the stress energy tensor already follow directly from
the Ward identities in the presence of sources. In the 2d CFT this is well
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known: one uses conservation of the stress tensor (the diffeomorphism Ward
identity) together with the trace Ward identity

(8.1) T =

)

R,

DO

where c is the central charge. Relations between stress energy tensor two
point functions (in flat space) are obtained by differentiating these identities
with respect to the metric and then setting the background metric to be flat.
The standard CFT two point functions are then obtained by integrating the
relations arising from the diffeomorphism Ward identity, substituting the
relations obtained from the trace identity. In the deformed 2d theory, the
corresponding trace relation is instead

(8.2) T = -\ (TUTy; — (T})2) + %R

Throughout this paper the last term was set to zero: in the bulk we as-
sumed that hypersurfaces of constant radius are flat and in the field theory
we correspondingly took the background metric to be flat. Using the Gauss-
Codazzi relation we can infer that this would is the generalized relation
for non-flat hypersurfaces. Since the stress tensor is still conserved, differ-
entiation of this relation with respect to the metric again gives relations for
correlation functions, which are equivalent to those derived in [6].

For d > 2 one can obtain an analogue of using the Gauss-Codazzi
relation , together with the curvature counterterm contributions to the
holographic stress tensor [23]. However, as gravity in d > 3 has propagating
degrees of freedom, one needs to solve the perturbation equations around
AdS to obtain correlation functions; one cannot deduce them from manipu-
lations of the Ward identities. From the field theory perspective, one would
need to define the (regularisation of the) composite operator 7 to obtain
the correlation functions at finite A using conformal perturbation theory.
The regularisation of the composite operator would also be needed to un-
derstand entanglement entropy in the deformed theory; see discussions of
entanglement entropy for a 2d theory closely related to the 77 deformed
theory in [I1].
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