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Holographic space-time, Newton’s law,

and the dynamics of horizons

Tom Banks and Willy Fischler

We revisit the construction of models of quantum gravity in d di-
mensional Minkowski space in terms of random tensor models, and
correct some mistakes in our previous treatment of the subject. We
find a large class of models in which the large impact parameter
scattering scales with energy and impact parameter like Newton’s
law. The scattering amplitudes in these models describe scattering
of jets of particles, and also include amplitudes for the production
of highly meta-stable states with all the parametric properties of
black holes. These models have emergent energy, momentum and
angular conservation laws, despite being based on time dependent
Hamiltonians. The scattering amplitudes in which no intermediate
black holes are produced have a time-ordered Feynman diagram
space-time structure: local interaction vertices connected by prop-
agation of free particles (really Sterman-Weinberg jets of particles).
However, there are also amplitudes where jets collide to form large
meta-stable objects, with all the scaling properties of black holes:
energy, entropy and temperature, as well as the characteristic time
scale for the decay of perturbations. We generalize the conjecture
of Sekino and Susskind, to claim that all of these models are fast
scramblers. The rationale for this claim is that the interactions are
invariant under fuzzy subgroups of the group of volume preserv-
ing diffeomorphisms, so that they are highly non-local on the holo-
graphic screen. We review how this formalism resolves the Firewall
Paradox.

1. Introduction

This paper is a replacement for hep-th:/1606.01267, which has been with-
drawn. We will study a class of discrete time dependent Hamiltonian sys-
tems, which couple together more degrees of freedom as time goes on. That
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is, the Hamiltonian has the form

(1) H(t) = H(−t) = Hin(t) +Hout(t),

where Hin(t) is a function of canonical fermion variables1 labeled by an n-th
rank anti-symmetric tensor ψa1...an . The indices run from 1 to t, which labels
the discrete time. Hout(t) depends on the components of a similar fermionic
tensor, in which the indices run from 1 to T , but some of them have at least
one component whose index is > t. The fermions in Hin anticommute with
those in Hout. We will eventually be interested in the T goes to infinity limit.
Note that Hout(t = ±T ) vanishes.

To construct a Hamiltonian, we introduce the matrix

(2) M j
i = ψA

i ψ
† j
A ,

where A runs over n− 1 of the anti-symmetric indices, and we have raised
those indices for notational simplicity. The Hamiltonian is of the form

(3) Hin(t) = P0 +
1

t
Tr P (M/tn−1),

where the coefficients of the polynomial P are t independent in the large t
limit. P0 is complicated because its form depends on the constrained sub-
spaces of the Hilbert space, which we are about to describe.

The amplitudes that we will estimate are defined by starting at −T in
a constrained subspace of the Hilbert space defined by

(4) ψ
A(b)
i |Scatt⟩ = 0,

where 1 ≤ b ≤ k and the multi indices A(b) are restricted to run over only
nb values. i runs from 1 to T . For example, when k = 1 and n = 3 we are
constraining

(5) ψab
i = −ψba

i

with a, b running between 1 and n1. From the construction of the matrix
M j

i , one can see that this constraint makes it block diagonal

(6) M =

(

Mn1
0

0 MT−n1
.

)

1It is probably easy to generalize our considerations to models in which the
fermion carries an additional label, and satisfies a more general super-algebra.
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Similarly, if the constraints involve b non-overlapping index ranges, of sizes
n1 . . . nb, then the matrix will have b+ 1 blocks, of sizes n1 . . . nb, T −

∑

ni,
when acting on the constrained subspace. The single trace construction of
the Hamiltonian implies that the fermions with all indices in one of the
(non-overlapping) ranges of nb indices, become independent, non-interacting
systems at −T . This is the reason that we have called these Scattering states.
We will argue that the final state at T satisfies a similar set of constraints.
The objects of interest in this model will be amplitudes to go from some
past scattering state to some future scattering state. We insist that the
number of constraints be much smaller than the total number of fermions,
so

∑

b n
n−1
b ≪ Tn−1.

We should note that a small number of the constraints play the role of
severing the connection between the k independent systems, while of order
∑

b n
n−1
b T constraints sever the small blocks of the matrix from the large

block of size T −
∑

nb. We will abuse language and call all the fermions
making up one of the small blocks of the matrix, block variables, or simply
blocks. We would now like to argue that the final state is constrained, and
that the number of constraints scales at large T like

∑

b n
n−1
b T . That is, in

the limit T → ∞,
∑

b n
n−1
b is an asymptotic conservation law. It commutes

with the Scattering operator. The argument has two parts.
First of all, we claim that the Hamiltonian Tr P (M/Nn−1) has a non-

trivial largeN limit with energies that are of orderNn and energy differences
of order 1. To see this, note that the leading order diagram (Fig. 1)

Figure 1: Leading order diagram.

for the free energy of this Hamiltonian scales like KN where K ∼ Nn−1.
For large N we can ignore the anti-symmetry requirement to leading order.
Higher order planar terms for n = 2 will all scale the same because this is
just the ’t Hooft limit of a matrix model. For n > 2 the model is simpler.
Draw the fermion propagator as a double line with two colors (Fig. 2), the
red line carrying n− 1 indices. Then it is clear that the dominant scaling for
n > 2 is like that of a vector model, namely amplitudes are dominated by
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Figure 2: Higher order diagrams.

cactus diagrams. However, in double colored line notation it is more conve-
nient to draw the graphs as a single blue line surrounding a collection of red
loops. These can be deformed into combinations of vertices with different
numbers of fermions in a variety of ways. If we write an interaction that is
a function of the fermion bilinear divided by K then all leading terms scale
in the same way. We will not study higher orders, which are complicated by
the antisymmetry requirement. Note however that the organization of this
perturbation theory will differ from that of vector models. Rather, they re-
semble rectangular matrix models with the small side scaling as a fractional
power of the large side. For n = 2 of course, the leading behavior is given
by summing all planar diagrams,equivalently diagrams with any number of
red and blue loops, pinched in all possible ways consistent with the inter-
actions in the polynomial P . Note that this counting is valid for the free
energy at any temperature, which will be, in leading order, proportional to
a fixed function of the temperature. Thus the model contains many states
with order 1 energy differences in the large N limit.

There is a useful geometric interpretation of the rules of this class of
large N tensor models. Think of each variable ψ as a open subset of an n -
cube or sphere. The matrices M glue two such hypercubes together along a
common boundary, as in Figures 3 and 4 .
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Figure 3: The matrix M obtained by gluing hypercubes together along a
common boundary for n = 2.

Figure 4: The matrix M obtained by gluing hypercubes together along a
common boundary for n = 2, the front face has been made transparent to
exhibit the gluing procedure.

We can think of a typical interaction in the Hamiltonian by opening up
the trace, and thinking of this as picking a north and south pole on the n
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sphere. The first ψ on the left is a patch near the north pole. Think of this
patch as a fibration of Sn−1 over an interval in polar angle. This is glued to
another ribbon of Sn−1s and another, for the length of the polynomial. The
trace then eliminates the special choice of polar axis and the interaction is in
fact invariant under the fuzzy version of the group of ”area” (we use area as
a shorthand for n-volume) preserving diffeomorphisms2 on Sn. A geometric
picture of a monomial interaction is shown in Figure 5. In particular, if we

Figure 5: A monomial interaction. To simplify the picture, we did not at-
tempt to illustrate the invariance under area preserving mappings, which
could turn these regular slices into amoeba.

break the indices up into a group (i)whose number is ≪ N , and the rest A,
whose number is o(N) then the variables ψ11...in−1A represent the glue that
connects a small n cube to the rest of the volume.

The reason that this picture is useful is that it illustrates the fact that
our interaction is invariant under a fuzzy approximation to the group of
area preserving mappings on the sphere[2]. The ψ variables are equal in
number to the space of spinor sections on the sphere with a cutoff on angular
momentum, which is equivalent to a cutoff of the Dirac operator. Their

2Of course the word diffeomorphism is misleading. Continuity and smoothness
of functions have to do with the behavior of the large angular momentum Fourier
coefficients and cannot be assessed in finite dimensional approximations.
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commutation relations are invariant under SO(n+ 1), but also under a much
larger group of unitary transformations on the indices. Their bilinears can
thus be thought of as fuzzy differential forms on the sphere, and the trace
of products of bilinears is the integral of products of forms whose degree
adds up to n. This invariance property is the intuitive reason that all of
these models are ”fast scramblers”[3], since their interactions do not respect
any notion of distance on the sphere. More simply, one can see that every
fermion is coupled to every other one by any trace interaction with four or
more fermions.

The conservation of what we will call Energy is a consequence of two
aspects of our model. First there is the fact that the interactions that remove
or add constraints to the initial subspace all go to zero with time like 1/t.
The polynomials have a fixed finite order, so our interactions are 2k−local
in the language of quantum information, with k the highest power of M j

i

that appears in P . Thus it takes a time of order at least t ln t to remove t
constraints. Moreover, during much of the interval [−t, t] Hin acts only on
small subsets of the fermions. We have not yet specified Hout but we can
insist that it act in a similar manner. In the next section, we will argue
that this follows from a natural consistency condition in the space-time
interpretation of this quantum system.

The fact that E =
∑

b n
n−1
b is conserved says that at any time, the sys-

tem has of order ET constraints on the states in its Hilbert space. Not
all of these constraints will refer to variables acted on by Hin(t) when t is
small. This tells us that there must be constraints on the Hout(t) Hilbert
space. We can now write the operator P0. Let 1−Π be the projection on a
particular constrained subspace of the Hilbert space, a particular subspace
of scattering states with the same set of initial constraints. Then, in that
subspace,

P0(t) = (1−Π)[
∑

bin

(nn−1
bin +

1

nbin
Tr P (t,Mbin×bin))

+
∑

bout

(nn−1
bout +

1

nbout

Tr P (t,Mbout×bout)) +
1

t
Tr P (t,Mt×t)](1−Π)

Our remarks about energy conservation imply that if not all of the energy
comes from blocks in Hin(t) then Hout(t) has to contain terms of the form

δHout(t) = (1−Π)[
∑

bout

(nn−1
bout +

1

nbout

Tr P (t,Mbout×bout)(7)

+
1

T
Tr P (T,MT×T )](1−Π).
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The phrase has to in the previous sentence is a bit of an exaggeration at this
point, and will follow from our space-time consistency condition. However,
even from an abstract quantum mechanics point of view it is natural because
when t gets larger the bout blocks will be incorporated into Hin.

1.1. The leading large t interaction between small blocks

Now recall that the Hamiltonian of our model is the ”’t Hooft” Hamiltonian
multiplied by 1/t. This means that all of the ’t Hooft couplings in the model
are small for large t, so the model becomes weakly coupled. Our goal is to
write down the leading interaction between a pair of blocks of sizes n1,2
coming from the Hamiltonian Hin(t∗) when 1 ≪ t∗ ≪ T . We will assume
that for s < t∗ the constraints defining the blocks, and the block variables
themselves, are not included in the Hamiltonian Hin(s). We’ll also ignore the
possiblity that there are other blocks in the system. Thus, the interactions
between these two blocks can be computed by a sequence of computations
of the type we do here, for s ≥ t∗. In the spacetime interpretation of the
model, t∗ will be the impact parameter in the scattering amplitude.

To begin the computation we write the time evolution operator for a
single discrete time step as

(8) e−iH(t∗) =

∮

e−iz dz

2πi(z −H(t∗))
,

where the contour encircles the spectrum of H(t∗) . Define H0 = (1−
Π)H(t∗)(1−Π) + ΠH(t)Π and H(t∗) = H0 + V . Π is the projector on the
orthogonal complement of the particular constrained subspace in which ex-
actly these two blocks begin at time −t∗ with no interaction. Every term
in V is of order 1/t∗ or smaller and V = 0 in the constrained subspace, as
well as its orthogonal complement. Using the two by two block form of the
operators, we can write the exact equation

(1−Π)(z −H(t))−1(1−Π)(9)

= [1− (z −H0)
−1VΠ(z −H0)

−1ΠV ]−1(z −H0)
−1.

The operator VΠ(z −H0)
−1ΠV acts only in the constrained subspace. By

construction, Π(z −H0)
−1Π contains no interaction between the two blocks

under study.
The interaction between the blocks is mediated by perturbations that lift

and restore the constraints. Since the time interval is small in each computa-
tion in the above sequence, and the interaction is small, we can compute the
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amplitude by simply computing the effective Hamiltonian in the constrained
subspace, due to the fact that part of the Hamiltonian, V , proportional to
1/t∗ does not commute with the constraints. The above computation of the
matrix elements of the resolvent shows that the effective Hamiltonian in the
constrained subspace is

(10) Heff = (1−Π)[H0 + VΠ(z −H0)
−1ΠV ](1−Π).

The effective Hamiltonian is defined by

(11) (1−Π)(z −H)−1(1−Π) = (1−Π)(z −Heff )
−1(1−Π),

where Heff acts only in the constrained subspace. Heff is z dependent,
reflecting the fact that the full Hamiltonian is not block diagonal.

H0 has terms of order 1 and terms of order 1/t∗, while the second term
in Heff is nominally of order t−2

∗ . However, this ignores small energy de-
nominators, of order 1/t∗. There are indeed such energy denominators since
we can obtain a state in the orthogonal complement of the constrained sub-
space, by exciting one constrained variable of the form ψA

i with A being in
one of the ranges corresponding to the small block variables and i belonging
to the large block.

To leading order the integral over the resolvent that gives the time evo-
lution operator in the constrained subspace is a sum over the poles at the
eigenvalues of (1−Π)H0(1−Π). Near these poles, the second order effective
Hamiltonian contains a factor t∗ from eigenvalues of ΠH0Π that are near
those of (1−Π)H0(1−Π). This factor cancels one of the factors of 1/t∗
in V .

Now let’s examine the dependence of the effective Hamiltonian on the
variables in the small blocks. V itself is a sum of terms depending only
separately on each of the blocks3 in the matrix. This is simply a property of
traces of powers of a matrix written in block form. Thus in the second order
effective Hamiltonian the terms coupling the two blocks come from terms in
each V that depend on different blocks. At higher orders we can get more
complicated combinations, but as we’ll see, multibody interactions between

blocks are suppressed by higher powers of t
−(n−1)
∗ than the leading two body

term.

3We ask readers to beware of confusing blocks of the matrix, from the block
diagonal form of operators in Hilbert space.
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From the equation for Heff we can make a remark about the sign of
the operator. If the eigenvalues of H0 in the orthocomplement of the con-
strained subspace are larger than those in the subspace itself (really one
needs only weighted sums of eigenvalues to satisfy this inequality), then the
interaction operator is negative definite. We do not know at the present time
whether this follows for a general Hamiltonian in our class, or represents a
complicated inequality on the couplings.

We will need one more result to understand the scaling of the interaction
with the block sizes and t∗. This is simply the large t scaling of the projection
operator (1− P ). In path integral formalism, we can think of this as setting
boundary conditions on the Grassman integration variables at the two ends
of a time interval. The states are functions on the fixed time Grassmann
algebra and the constraint is

(12)
∏

1,A

δ(ψA
i (τ))δ(ψ

A
i (0))δ(ψ̄

A
i (τ))δ(ψ

A
i (τ)).

We can implement the delta functions by integrating over auxiliary Grass-
mann variables ηAi (τ, 0) and η̄

A
i (τ, 0) and do the Gaussian integral with any

quadratic term that couples only fermions with the same indices. The re-
sult is given by a Feynman diagram like that of Fig. 6 The dotted red line

Figure 6: Implementing constraints.

counts the number of A indices, while the solid blue line counts the number
of i indices. In our problem, the A indices are anti-symmetric tensors with
indices that run from 1 to n1 and 1 to n2, while the i index runs from 1 to
something of order t. Thus the leading large ni and large t∗ scaling of the
projectors on the constrained subspace with two blocks obeying the bound
nn−1
1 + nn−1

2 ≪ tn−1
∗ is

(13) nn−1
1 nn−1

2 t2∗.
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Thus, when comparing an amplitude with these two projection operators to
a completely unconstrained calculation, we get a relative factor of

(14) nn−1
1 nn−1

2 t
−2(n−1)
∗

The interaction now scales like

(15) nn−1
1 nn−1

2 × t× t
−2(n−1)
∗ × t−2

∗ × tn∗ .

The last factor is the general large t∗ scaling of a free energy (a typical en-
ergy) in our large t∗ tensor models with ’t Hooft couplings of order 1. The
penultimate factor reflects the fact that we have scaled the interaction by
a factor of 1/t∗ relative to that large t∗ tensor model. The next factor t∗ is
the inverse of the small energy denominator, and finally we have suppres-
sion relative to a typical large t∗ diagram coming from the two projection
operators. The result is

(16) nn−1
1 nn−1

2 × t
−(n−1)
∗ .

The scaling of a general diagram contributing to the interaction energy can
be read off a simplified Feynman diagram like that of Fig. 7 In this diagram

Figure 7: A prototype cactus diagram.
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we do not show the explicit vertices, but simply the pattern of index loops.
Each of these diagrams can correspond to many different Feynman diagrams,
depending on how we indent the blue line to form vertices. The first diagram
can only produce cacti, while if we allow any number of interior blue circles
we can get arbitrary planar diagrams. The dotted red circles each represent
a small block and give a suppression factor (nb

t∗
)n−1. We see that at large t∗

multiblock interactions are suppressed. They would correspond to replacing
more solid red circles by dotted ones.

To summarize, we’ve introduced a large number of tensor models which
have a naturally defined scattering theory, because they have constrained
states that decouple small subsets of degrees of freedom in the limit t→
±∞. This is a consequence of a time dependent Hamiltonian, which couples
together more degrees of freedom, organized as rank n tensors with indices
that run from 1 to t, as the interval [−t, t] gets larger. Energy differences in
the fixed time Hamiltonian scale like 1/t, apart from the term P0, which is a
sum over the small blocks. The Hamiltonian itself is obviously not conserved,
but we showed that there is an asymptotic conservation law: if C is the
number of constrained q-bits, the limits T → ±∞ of C/|T | are equal to
each other.

The variables we use have a natural interpretation as an angular momen-
tum4 cutoff of the spinor bundle on the n sphere[2] . Using this language
we can see that the fixed time Hamiltonians are invariant under the fuzzifi-
cation of the group of volume preserving maps on the sphere, and are fast
scramblers.

2. Space-time interpretation of the models

In the previous section we studied, using purely quantum mechanical lan-
guage, a class of finite quantum models, which have a scattering theory
despite having no manifest spatial dimensions. At T ≫

∑

Ei → ±∞, we
exhibited a breakup of the Hilbert space into constrained subspaces, in each
of which the asymptotic dynamics consists of a collection of non-interacting
subsystems. The largest of these, the horizon subsystem, becomes topological
in the limit. All eigenvalues of this subsystem go to zero. The system has an
asymptotically conserved quantum number,

∑

Ei, which we called energy,
and the horizon carries zero energy. More importantly, in the asymptotic
limit, the time dependent Hamiltonian of the decoupled horizon variables
goes to zero.

4Equivalently a Dirac eigenvalue cutoff.
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In the limit, the variables of the theory approach generalized sections of
the spinor bundle on the n - sphere. They are also functions of the discrete
positive variables Ei. If we take the limit with fixed ratios of the Ei then it
is plausible that by tuning parameters in the Hamiltonian, the amplitudes
become functions only of ratios of the Ei and have finite limits. It is plausible
that one can tune the amplitudes to be conformally invariant on the sphere,
or equivalently, Lorentz invariant on the light cone. The variables are not
however quantum fields on the light cone in the Wightman sense. They are
not differentiable, since the zero momentum part had dynamics that was in-
variant under fuzzy volume preserving transformations on the sphere, before
taking the limit. We have speculated that they become Lorentz spinor oper-
ator half-measures on the sphere. Bilinears in the spinors become measures,
which transform as differential forms on the sphere.

Thus, despite the absence of space-time coordinates in the formulation
of the theory, there is a natural interpretation of these models as a theory
in space-time. The nested tensor factors depending on time intervals in the
quantum theory are identified with the Hilbert spaces of causal diamonds
along a particular timelike geodesic in Minkowski spacetime. The growing
n spheres in the quantum model are identified with the n = d− 2 dimen-
sional holographic screens of causal diamonds along timelike geodesics in
Minkowski space5

Here is a list of the properties of generic models from section 1, and their
space time interpretation.

5It is clear from this sentence that space-time geometry is not a fluctuating
quantum variable in this interpretation. Many people have asked us about the
fact that the geometry we assume does not seem to respond to the matter that
is in it. The answer to this question lies in Jacobson’s hydrodynamic view of the
origin of Einstein’s equations and the space-time metric. In a complex system,
some parts of any particular process can be treated hydrodynamically, while we
may need a more detailed description of more microscopic parts of the system.
In the example of black hole production, followed by Hawking radiation or the
fall of a small system of ”elementary particles” onto the black hole, we treat the
whole system microscopically, as a scattering event in Minkowski space, up to the
advent of black hole formation. We then switch to a hydrodynamic description of
the complex dynamics of the black hole while retaining the microscopic description
of ”particles” emitted from or absorbed by it. In this paper, where we are not doing
detailed calculations, we retain the microscopic description of the whole system,
and treat the events as occurring in Minkowski space. The physics is the same: the
collision of ”particles” to form a high entropy meta-stable state with which other
particles can interact and from which they can be emitted/absorbed.



✐

✐

“3-Banks” — 2023/6/17 — 0:25 — page 78 — #14
✐

✐

✐

✐

✐

✐

78 T. Banks and W. Fischler

• The models have a built in notion of causality. Variables associated
with a d− 2 sphere are isolated from the rest and have a number
that grows like td−2. Invoking the Covariant Entropy Principle[1] we
identify the spatial radius of that sphere as proportional to t in Planck
units. The fixed t Hilbert space is identified with that of a causal
diamond of a proper time interval [−t, t] along a geodesic in Minkowski
space.

• The model has an asymptotic R× SO(d− 1) symmetry, with the
SO(d− 1) being picked out of the fuzzy group of volume preserving
maps by a combination of the nesting of spheres and the constraints
of the model. In the limit T → ∞ there is a scattering operator and
we have argued that it is plausible that this operator acts only on the
variables that make up the small blocks ”liberated” from the majority
of DOF by the asymptotic constraints. In the limit T ≫

∑

Ei → ∞
with fixed ratios Ei/Ej , the variables converge to operator valued half
measures on the momentum null cone, which transform as a collec-
tion of spinor fields under Lorentz transformations. The scattering
operator conserves the SO(d− 1) subgroup of SO(1, d− 1) but con-
servation of the rest of the group requires fine tuning of parameters in
the Hamiltonian. The rotation invariant asymptotic quantum number
is interpreted as the energy. It is proportional to the limit of NC/T
where NC is the number of constrained q-bits.

• Meta-stable bound states are formed when the inequality
∑

Ei < td−2

is saturated in a causal diamond of proper time interval [−t, t]. Here
∑

Ei is the amount of asymptotically conserved energy that enters
the diamond. The time of formation of the bound states is of order
2tln t . The definition of energy in terms of constraints implies that
the probability of finding this high entropy meta-stable state to have
of order Et constraints after it has come into equilibrium is e−Et,
which is thermal with temperature ∝ t−1. This is interpreted as emis-
sion of ”Hawking radiation” from the meta-stable equilibrium state.
Conversely, suppose we have, in the past half of a causal diamond of
proper time interval [−(t+∆t), (t+∆t)], a state of the larger dia-
mond that is a approximately a tensor product6 of the Hilbert spaces
of degrees of freedom in two blocks of the matrix, of size M ∼ t and
m≪ t, with constraints liberating these blocks from each other and

6The tensor product prescription is just approximate because the two subsystems
have interacted in diamonds prior to −t−∆t.
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from the ∼ (t+ δt)2 −M(t+ δt)t degrees of freedom left in that dia-
mond. This state will evolve in a time of order tlnt to one in which the
degrees of freedom linking theM and m blocks are excited and the full

state is in equilibrium with entropy (M +m)
d−2

d−3 . This explains both
the unexpected (from a quantum field theory point of view) increase
in entropy in the process and the fact that the small system remains
relatively unaware of the larger one for times of order t. This argu-
ment, which uses only the fast scrambling nature of the interaction
and the factor of 1/t in the Hamiltonian that equilibrates the system,
resolves the firewall paradox[4] of the quantum field theory approach
to black hole physics. It is equally applicable to newly formed and old
black holes. The black hole interior, in this account, is erased in a time
of order tln t but recreated anew each time a small system falls on
the black hole. Another feature of black hole geometry that is repro-
duced by this model is the shrinking of the holoscreen volume of causal
diamonds inside the horizon. That is, the holoscreen volume of a dia-
mond that starts at time τ after horizon crossing, is a monotonically
decreasing function of τ . In our models this is reproduced by the fact
that the dynamics of in-falling matter is the dynamics within a small
block. Once the small and large blocks begin to come into equilibrium,
via the excitation of off diagonal degrees of freedom, the size of the
Hilbert space available to describe the interaction of small localized
excitations decreases.

• The nesting of causal diamonds, which is incorporated via the time
dependence of the HST Hamiltonian, combines with the definition of
jet states in terms of asymptotic constraints, to give an understanding
of why jets of particles are bulk localized objects. We can follow the
constraints from the largest causal diamonds to smaller ones and then
back out to T → ∞, and this defines the trajectories of incoming and
outgoing particles in an emergent bulk space-time. The mathematical
definitions are all done in the quantum model. A certain asymptotically
non-interacting block of energy Ei is defined by a constraint on vari-
ables in the system at −T . Using the freedom of the volume preserving
group we can define the degrees of freedom inside the small block to
be localized in a spherical cap surrounding some particular point on
the sphere, and the constrained variables to be those in an annulus
surrounding it. The area of that annulus is ET . We can do the same
for all the other small, asymptotically non-interacting, blocks, localiz-
ing them at different points. The constraint

∑

Ei ≪ T d−3 guarantees
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that the area between these spherical caps is much larger than that in
the caps themselves. In going to smaller diamonds, there will be ampli-
tudes where

∑′Ei remains much smaller than td−3, where the primed
sum might run only over some of the initial blocks. We say that the
blocks in the primed sum ”enter into the past boundary of the small
causal diamond” and we line up their angular positions with the ones
defined on the largest diamond. Invariance under the special rotation
group picked out by this nesting follows from the volume preserving
invariance of all Hamiltonians. Thus, the models themselves define a
notion of trajectories of weakly interacting objects, localized in angle,
through the bulk of space-time, even though there is no ”bulk” in the
definition of the theory.

• As noted in the previous section, when the primed sum above is not
equal to the original sum, we conclude from the asymptotic conserva-
tion of

∑

Ei, that the rest of the energy appears at time t as a set of
non-interacting subsystems of the ”out” Hilbert space. The space-time
interpretation of the models now has an important role to play in de-
termining the structure of Hout. The space-time interpretation of the
model of the previous section is that it is the proper time dynamics
along a particular time-like geodesic in Minkowski space. The space-
time interpretation implies that there should be an identical Hamil-
tonian for every time-like geodesic. Each of these is an independent
quantum system. The different initial conditions are constrained by
an infinite set of constraints on mutual quantum information. If we
choose two intervals [−t1, t1], [−t2, t2] along two different trajectories,
the space-time picture implies that the causal diamonds of these inter-
vals have some overlap. There is a causal diamond with maximal vol-
ume holographic screen, usually unique, in the overlap region. Quan-
tum mechanically this corresponds to tensor factors of equal dimension
in the Hilbert spaces of the two systems. Each system will prescribe a
density matrix for that overlap, and the entanglement spectra of those
density matrices should be equal. This can be generalized to any set
of geodesics.

This infinite set of pairwise constraints can be used in three dif-
ferent ways. First of all, when all ti are equal and the energy in the
causal diamond is less than the total incoming energy, the remain-
der should be found in some collection of causal diamonds, possibly
overlapping. Second, if some process occurs in causal diamond 1 and
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diamond 2 has no overlap with 1, then the Hout of diamond 2 must de-
scribe the identical process. Finally, we can generalize the constraints
to intervals that are centered around different space-like hyperplanes
in Minkowski space, which can give rise to amplitudes like that shown
in Fig.8 A jet emitted from some past causal diamond can propagate
to be part of the initial constraints on a different causal diamond in
the future. Thus, the model has amplitudes satisfying the clustering
properties we usually derive from (time ordered) Feynman diagrams
in quantum field theory. We begin to see how field theory emerges as
an approximate description of those amplitudes which do not lead to
black hole production.

The introduction of multiple versions of the dynamics corresponding
to different time-like geodesics also leads to a derivation of space- trans-
lation and Lorentz boosts as asymptotic symmetries of the dynamics.
Unfortunately, while we can argue that space translation invariance
will be satisfied for the large class of models defined in the previous
section, the imposition of boost invariance imposes constraints that
we have not been able to solve. We also have evidence that boost in-
variance will not be satisfied for a generic choice of the polynomials in
the previous section.

Consider the causal diamonds of proper time t along two geodesics
related by a Poincare transformation. Let’s choose the origin of proper
time along the interval [−t, t] to be the same. As t→ ∞ the overlap
between the two causal diamonds is parametrically smaller than the ar-
eas of the individual diamonds. For a generic state, Page’s theorem[5]
then tells us that the state on the overlap is maximally uncertain.
However, we are not dealing with generic states. Asymptotic energy
conservation tells us that the asymptotic numbers of constraints are
the same and that the number of constraints is much smaller than the
total number of fermions. We are then free to define the asymptotically
non-interacting degrees of freedom in one system to be sitting at the
Poincare transformed points on the sphere at infinity. In order to do
this and get a invariant result, we must of course take the Ei to infin-
ity at fixed ratio, with T d−3 ≫

∑

Ei. The definition of the Poincare
transform of Ei assumes that the jets are all massless. The treatment
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of massive particles will be more complicated7 . Thus, the quantum in-
formation in the constrained subspaces, apart from information about
the asymptotically decoupled and topological zero momentum modes
is in subspaces of the same dimension and is totally contained in the
overlap diamond, because the action of both Hamiltonians on states
of non-zero energy is, in the limit indicated above, the same up to a
Lorentz boost of the energy. Thus, asymptotically, there should be a
unitary transformation relating the two scattering operators, for every
Poincare transformation.

The phrase should be is not the same as the word is. For time trans-
lations, rotations and space translations, there is such an asymptotic
unitary in all of the models we have defined. This is much less clear
for Lorentz boosts, and we will present evidence below that it is not
true for the generic Hamiltonian.

• When translated into space-time language, the calculation of the large
time scattering of two jets that we did in the previous section, shows
that there is a Newtonian interaction between two jets, starting from
the impact parameter of their trajectories, assuming they are straight
lines determined by the asymptotic initial conditions, and following
them out to infinity in both time directions. It is clear from the space-
time point of view that this calculation is valid only in the eikonal
approximation, but this is expected because it was motivated by the
large time limit, when the trajectories are far from each other.

There is another interaction between the two jets, coming from the
”exchange diagrams” of Fig. 8 For massless gravitons with parallel mo-
menta, the eikonal phases of this diagram and the Newton interaction
are supposed to sum up to give a vanishing phase in the S matrix. It
is clear that for generic choice of the Hamiltonian H(t), they will not.
Boost invariance is thus a constraint on the choice of the polynomial
in the Hamiltonians of section 1. It is far from clear to us how strong
a constraint it is. For the case of asymptotically Anti-de Sitter spaces,

7From the evidence provided by string theory, we expect that all stable massive
particles will either be BPS, or created in the collision of massive BPS particles and
anti-particles, and have quantum numbers determined by a finite K-theory group.
The masses of the BPS particles are usually determined from the anti-commutators
of the left and right supercharges. We conjecture that the proper way to find the
”K-theory” states is simply to explore the BPS particle anti-particle scattering
matrix. That is, we would find a violation of unitarity if we assumed there were no
such states, and their masses will be determined by imposing unitarity.
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Figure 8: Exchange diagram involving two jets.

we know that it is sufficient to tune a few parameters in order to re-
store the conformal group in the asymptotic limit8. It is unlikely that
the same will be true here. Indeed, those cases where we can plausi-
bly recover a quantum gravity scattering operator by taking a limit
of a family of conformal field theories, are very rare in the space of
all CFTs. We therefore expect that the constraints of Lorentz invari-
ance are very strong, much stronger than the requirement that a finite
system have a limit described by conformal field theory. Yet another
indication of this comes from perturbative string theory, where the
naive setup of the perturbation expansion seems to indicate that there
are many more string models of quantum gravity than actually ex-
ist. It’s only because these models are perturbations of exactly soluble
models that we can sort out which models really make sense. Indeed
it’s obvious, though perhaps not widely appreciated, that most per-
turbative string models that have unitary, Lorentz invariant, analytic
S matrices to all orders in perturbation theory, but only minimal four
dimension SUSY, do not define true models of quantum gravity.

One disappointing feature of our calculation of the Newton inter-
action is that it does not seem to come out attractive for arbitrary

8We are implicitly assuming a tensor network regularization of the boundary
CFT.
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Hamiltonian in the class we have studied. We’ve shown that it comes
from the effective Hamiltonian

(17) Heff (z) = (1−Π)[H0 + VΠ(z −H0)
−1ΠV ](1−Π).

The interaction comes only from the second term and can be written

(18)
∑

i

(1−Π)V |i⟩(z − Ei)
−1⟨i|V (1−Π).

The sum is over states in the ortho-complement of the constrained
subspace. The large t limit is dominated by z values that are within
1/t of the eigenvalues of H0 in the ortho-complement. In principle,
the values of z are determined by finding the the eigenvalues of the z
dependent Hamiltonian Heff (z) and then solving the equations, zi =
Ei(zi) . These values will give poles of matrix elements of the exact
resolvent between states in the constrained subspace. Since the entire
system is finite dimensional, the Ei(z) are values of a multi-sheeted
analytic function of z at copies of the real axis on different sheets.
That function also has isolated poles at eigenvalues of H0 on the ortho-
complement of the constrained subspace.

The condition that the expectation value of the interaction term in
Heff is negative in typical states in the constrained subspace, seems
like a complicated constraint on the parameters in our underlying
Hamiltonian. We had hoped that it would follow from quite general
principles, but we do not see our way to such a claim at the moment.

• A quite satisfactory result of the calculation of Newton’s interaction
that we have presented is the way in which the notion of energy as a
count of the number of constraints appears. We originally motivated
this by referencing black hole entropy formulae, and derived the lim-
iting number of constraints NC/T as an asymptotic conservation law
in all of the models of Section 1. Here we see the projection on the
constrained subspace supplying the factors of energy in Newton’s law.

To summarize, we’ve presented a class of explicit, finite quantum me-
chanical models, all of which have an emergent ”space-time interpretation”
that manifestly satisfies unitarity, causality, and invariance of the scattering
matrix under the subgroup of the Poincare group that preserves a family
of time-like trajectories at relative rest. All of these models exhibit a large
distance Newtonian contribution to the scattering matrix of two ”localized
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objects”, where the term in quotes is defined in terms of constrained sub-
spaces of the Hilbert space. The scattering matrix defined by these models
has resonances corresponding to long lived metastable states, characterized
by an energy, entropy and spatial size that satisfy the parametric relations
expected for black holes. The models are also fast scramblers, in agreement
with the properties of black hole quasi-normal modes and have a natural
time scale for equilibration that is the Schwarzschild radius. That same time
scale is crucial to the correct scaling of Newton’s Law, which can be viewed
as arising from excitation of virtual degrees of freedom on the boundary of
a causal diamond exactly containing two localized excitations.
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