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Algebraic interplay between
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We investigate combinatorial and algebraic aspects of the inter-
play between renormalization and monodromies for Feynman am-
plitudes. We clarify how extraction of subgraphs from a Feynman
graph interacts with putting edges onshell or with contracting them
to obtain reduced graphs. Graph by graph this leads to a study of
cointeracting bialgebras. One bialgebra comes from extraction of
subgraphs and hence is needed for renormalization. The other bial-
gebra is an incidence bialgebra for edges put either on- or offshell.
It is hence related to the monodromies of the multivalued function
to which a renormalized graph evaluates. Summing over infinite se-
ries of graphs, consequences for Green functions are derived using
combinatorial Dyson–Schwinger equations.
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1. Introduction

In perturbative quantum field theory Green functions are regarded as formal
sums of Feynman graphs each of them contributing to a chosen renormalized
Green function GR =

∑

ΓΦR(Γ) from which amplitudes A are derived. To
be more precise any Feynman graph Γ in such a sum over graphs is evaluated
by renormalized Feynman rules ΦR. The evaluation ΦR(Γ) leads, for each
graph, to a multi-valued function ΦR(Γ)({me}, {ql}) which depends on the
set of masses {me} assigned to internal edges of the Feynman graph and
also on the set of momenta {ql} assigned to external edges. The latter are
represented as half-edges l of the graph labeled by momentum vectors ql
describing a momentum of a particle incoming at any such half-edge. Each
graph Γ contributing to a given amplitude provides the same set L of labeled
half-edges representing the external particles.1

We assume the evalution gives the function ΦR(Γ) as a scalar under the
Lorentz group.2 Hence, after the evaluation we get a multi-valued function
of all Lorentz scalars qe · qf , e, f ∈ L which we can form from scalar products
of external momenta.3 We regard masses as fixed, given parameters in this
context. We let QL(R) be the real vector space spanned by the independent
scalar products qe · qf and QL(C) its complexification (see Section B.1). See
Figure 1 for an example.

Typically, we are interested in the behaviour of such a multi-valued func-
tion when we vary a chosen variable s which defines a vector in QL whilst
keeping the other variables fixed and real. The most typical form of the
variable s is described briefly below.

Each Feynman graph contributing to the same amplitude or Green func-
tion provides such a multi-valued function of s. The Green functions of the
theory can be expanded to be sums over such graphs. Each Green function
is multi-valued as a function of s and is a solution of a fixed-point equation,
a Dyson-Schwinger equation. To understand the monodromy of such func-
tions one studies the behaviour when internal edges are on the mass shell.
Following S-matrix theory [1], we partition the set L into two sets Lin, Lout

1A vertex which has no such half-edge can equivalently be regarded as a vertex
where such an external half-edge l is attached with zero external momentum ql = 0.

2Theories involving spin can be treated similarly but are left to future work.
3For a vector r = (r0, r1, r2, r3)

T ∈ M4(C) we have the Lorentz scalar r · r =
r2 = r20 − r21 − r22 − r23, r

2
j = rj r̄j , rj = ℜ(rj) + ıℑ(rj) ∈ C, r̄j = ℜ(rj)− ıℑ(rj), j ∈

{0, 1, 2, 3}.
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Figure 1: The one-loop triangle graph. The set L is provided by three
half-edges labeled by q, p1, p2. These denote three vectors in four-
dimensional complex Minkowski space M4(C), subject to the side-constraint
q + p1 + p2 = 0. Feynman rules assign to such a graph Γ a function
ΦR(Γ)(q

2, p21, p
2
2,m

2
a,m

2
b ,m

2
c). The space QL(R) is a R-vectorspace spanned

by z1 := q2, z2 := p21, z3 := p22 where we use that 2p1 · p2 = q2 − p21 − p22.
The mass squares m2

i are kept fixed with ℜ(m2
i ) ≥ 0, 0 < −ℑ(m2

i ) ≪ 1,
i ∈ {a, b, c}. One is particularly interested in the variation of ΦR(Γ) when
q, p1, p2 and hence the zi vary in or near the real locus provided by M4(R)
and QL(R).

and define

s =

(
∑

e∈Lin

q(e)

)2

=

(
∑

e∈Lout

q(e)

)2

,

using momentum conservation
∑

e∈Lin
q(e) = −

∑

e∈Lout
q(e). The choices of

s that we will be interested in will be of this form. More details on s can be
found in Appendix B.

In the spirit of the idea outlined above for any graph Γ contributing to a
chosen amplitude A, consider a set I of internal edges of G with the property
that the removal of the edges in I separates the graph in two parts Γin and
Γout such that the external particles coupled to one part form the set Lin
and the others Lout.

Γ− I = Γin ∪ Γout, LΓin = Lin, LΓout = Lout,
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and such that no Γ−H with H ⊊ I decomposes Γ with the same Lin and
Lout, that is I is minimal.

Such a set I we call a cut for the partition into Lin, Lout. The sum over
all cuts for a given partition contributes to the monodromy of that partition
as a function of

s =

(
∑

e∈Lin

qe

)2

.

This is not enough to understand the monodromy of ΦR(Γ)(s). We have
to refine the partition further. This came as a surprise in the early days
of quantum field theory. The monodromy of an amplitude regarded as a
function of s can not be understood by the two-partion into in and out
states as suggested by S-matrix theory.

Anomalous thresholds, first discovered in particle physics experiments,
appear. See for example Sec.(3) in the review by Amati and Fubini [2].
These anomalous thresholds are related to monodromies corresponding to
finer partitions of L [3]. Below we will study the generic situation refining
partitions until L is separated into |L| elements and consider the fixed point
equations for Green functions for any prescribed partition of L. These fixed
point equations are the cut analogues of Dyson-Schwinger equations. We
will describe their structure.

A partition of L into two parts has a normal physical threshold s0 ∈ R

as its physical observable corresponding to a discontinuity in the function
ΦR(Γ)(s) at s = s0, and finer partitions into k ⪈ 2 parts give rise to anoma-
lous thresholds si ∈ R, i ≥ 1 for this function ΦR(Γ)(s). Such a partition of
L into two or more parts generates a partition of a graph Γ into subgraphs
Γj for each part j. Each Γj must be renormalized to render ΦR(Γ)(s) well-
defined.

The quest to understand the interplay between renormalization and the
monodromies generated by ΦR(Γ) through such partitions motivates this
paper. We use that partitions of L are realized by removing edges while the
monodromies are stable when shrinking remaining edges [1, 4].

For renormalization we know that the sum of all graphs contributing to
a Green function has a distinguished structure: the coproduct ∆core closes
when acting on (combinatorial) Green functions [5].

Here we show that this coexists with the analytic structure of graphs.
In view of the above considerations, the analytic structure of the thresholds
as discussed in [4] can be studied through an algebraic avatar: the combina-
torics of the interplay of reduced or removed edges. These basic operations
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of contracting an edge or removing an edge assign to a graph Γ a lower
triangular matrix M , and similarly for any sum of graphs.

There is a corresponding incidence coalgebra based on reduction or re-
moval of edges [6] which is represented as

ρ [(M)ij ] =
∑

k

(M)ki ⊗ (M)jk.

The coaction of ∆core on Cutkosky graphs and the coproduct ρ form coint-
eracting bialgebras giving an algebraic formulation of the interplay between
renormalization and monodromy. The cut Dyson-Schwinger equations also
interact well with the coproduct. This is a second algebraic manifestation of
the underlying compatibility of renormalization and the monodromies.

Over all, we clarify the interplay between renormalization and mon-
odromy: we can renormalize by local counterterms in Green functions GR(q),
q ∈ QL(R), which are multi-valued as functions of physical observables.

Organization of the paper

Section 2 briefly introduces graphs and cuts of graphs as we wish to for-
mulate them. More details are given in Appendix A. Section 3 proceeds to
define the relevant Hopf algebras for cut and uncut graphs. This is how
renormalization is brought in algebraically. To understand the interplay of
renormalization and monodromy we need to understand the interplay of the
coproducts and the cuts. This is done in Section 4 with the structure of coac-
tions. Some information on Feynman rules which is helpful to understand
the significance of these coactions is collected in Appendix B. Notably, in
Subsection 4.2 we use that we have cointeracting bialgebras encapsulating
this interplay. The formal definitions of the two participatng bialgebras and
their cointeraction are treated in Appendix C. Mathematically, this is closely
related to the interplay between motivic and deRham classes and physically,
this is closely related to sector decomposition. Arriving at the cut Dyson–
Schwinger equations in Section 5 we develop the set up and prove how the
coproducts and coactions act on the Green functions. Mathematically, this
is closely related to the notion of assembly maps. Finally, in Section 6 we
conclude. References can be found after the appendices.
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2. Graphs and their spanning forests

2.1. Graphs

We want to study graphs with cuts in two different ways, as graphs with
certain edges marked as cut and potentially certain vertices partitioned into
pieces, and as pairs (Γ, F ) of a graph Γ and a spanning forest F . The first
formulation is best suited to cut versions of Dyson-Schwinger equations as
we will discuss in Section 5, while the second is best suited to understanding
the cointeraction of renormalization and cut structures as we will discuss in
Section 4. In short, we want to determine the equations for Green functions
which describe scattering.

To get there we need formal notions of all these different kinds of graphs.
In this section we will overview these ideas at an intuitive level. Appendix A
gives a formalization of these notions that is well suited to our purposes,
and includes details.

Graphs for us are based on half edges. That is, a graph is a set of half
edges and the information of how these half edges are paired to make internal
edges of the Feynman graph, and are collected together into corollas of at
least 3 half edges to make the vertices of the Feynman graph. Half edges that
are not paired into internal edges are external edges. Both the groupings into
vertices and the groupings into edges can be represented as partitions of the
set of half edges, and so we will write our graphs as Γ = (HΓ,VΓ, EΓ) where
HΓ is the set of half edges, VΓ is the partition of HΓ giving the vertices and
EΓ is the partition of HΓ giving the internal and external edges. For details
see Section A.1. Sometimes we may want to think of an element of VΓ simply
as a vertex and sometimes we will want to think it as a corolla, that is the
set of half edges which define the vertex. When it is useful to emphasize the
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corolla as opposed to the vertex, we will write cv for the corolla of the vertex
v.

It is worth emphasizing that our graphs have no vertices of degree less
than 3, but they may have multiple edges and self-loops. We define LΓ to
be the set of external edges and let eΓ, lΓ, and vΓ be the number of internal
edges, external edges, and vertices of Γ respectively.

For a connected graph Γ we write |Γ| = |H1(Γ)| = eΓ − vΓ + 1, the num-
ber of independent loops, or the dimension of the cycle space of Γ. For a
disjoint union of graphs Γ1, Γ2 we define |Γ1∪̇Γ2| = |Γ1|+ |Γ2|.

We write Γ− e for the graph Γ with the edge e cut, but unlike in usual
graph theory, when we cut an edge we do not remove the half edges forming
it, we simply disconnect those two half edges so they no longer form an
edge. An edge is a bridge if removing it increases the number of connected
components and a graph is bridgeless if it has no bridges.

We write Γ/e for the graph Γ with the edge e contracted. We think of
edge contraction intuitively as shrinking the edge to length 0. For a formal
definition in our set up see Section A.1.1.

We will use the same notation for cutting or contracting sets of edges:
Γ−X,Γ/X for X a set of edges. Furthermore if X is a subgraph we use the
same notation for cutting or contracting the edges of X.

Given a spanning tree T (see Section A.3.2 for the definition of spanning
tree) of a graph Γ and an edge e of Γ which is not in T , the graph T ∪ e
has a unique cycle known as the fundamental cycle given by e and T . We
will denote this fundamental cycle l(T, e). Fundamental cycles will be quite
important in Section 4.2.

2.2. Cuts

We are interested in cutting edges so as to disconnect graphs. From a physi-
cist’s viewpoint the cut edges can also be regarded as marked edges which
are put on-shell when we apply Feynman rules. For the Dyson-Schwinger
equations we will also be interested in splitting (partitioning) corollas. This
is a different kind of cut.

We will introduce the vector space HC generated by Cutkosky graphs,
which are graphs which have cuts generated by a removal of edges. The base
graph Γ is also allowed to vary.

In particular, we will study series on such graphs Γ ∈ HC which have cuts
all corresponding to a chosen partition of a given common set of external
edges L. Such series can be obtained as solutions to fixed point equations
formulated using pre-Cutkosky graphsHpC . Pre-Cutkosky graphs are graphs
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which may have cuts both by cutting edges and by also splitting internal
vertices v by partitions of the corollas cv, as will be described in more detail
below.

Fortunately, both the cut edges and split corollas can be represented
nicely in our formulation of graphs because they can be given by refine-
ments of the partitions E and V. That is given a graph Γ = (HΓ,VΓ, EΓ)
we represent cuts of both types by giving a second graph with the same
half edges H = (HΓ,VH , EH), where VH refines VΓ and EH refines EΓ. See
Section A.2 for details.

We define a pre-cut graph to be such a pair Γ = (Γ, H) and by abuse of
notation we call both the pre-cut graph and the underlying graph (before
any cutting) Γ. The reason for this is that we think of a pre-cut graph Γ
as being the ordinary graph Γ with the extra information of the cut. We
continue to use |Γ| on a pre-cut graph as before on the underlying uncut
graph. For Γ = (Γ, H), we write ∥Γ∥ for |H|.

A pre-cut graph is a cut graph if no vertices are split, so the only cuts
are to edges.

For quantum field theory, as is common in graph theory, we do not want
our edge cuts to include edges with both ends in the same component after
the cut. To this end we define a pre-Cutkosky graph to be a pre-cut graph
where each cut edge has the property that the two ends are in different
components of the graph after the cut and we define a Cutkosky graph to be
a cut graph that is pre-Cutkosky. See Section A.3 for futher details. HpC and
HC are respectively the Q vector spaces spanned by bridgeless pre-Cutkosky
graphs and bridgeless Cutkosky graphs. We will write Hcore for the Q vector
space spanned by bridgeless graphs in the original sense. All three of these
can be upgraded to free commutative Q algebras generated by the connected
graphs and where the commutative product is disjoint union.

As is explored further in Section A.3 we are also interested in spanning
forests of cut graphs and we say a spanning forest is compatible with the
cut if its components induce the same cut. Sometimes it is better to think
of a cut in terms of a compatible forest rather than as the cut itself, and so,
in some sections, instead of cut graphs we work with pairs (Γ, F ) of a graph
in the original sense and a spanning forest of the graph.

2.3. Sub- and co-graphs

For the Hopf algebras in the next section it will be important to have ap-
proprite notions of subgraphs and co-graphs in each of these contexts.
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In the case of graphs in the original sense, we require only that our
subgraphs are bridgeless and are full at each vertex in the sense that if a
vertex appears in the subgraph then its whole corolla must appear. The
co-graph is then simply the graph arising from contracting the edges of the
subgraph, while also removing two-valent vertices by un-subdividing any
pair of edges joined by a two-valent vertex, that is, replacing them by a
single edge.

In the case of pre-cut graphs, as well as needing to be bridgeless and full
at the vertices, we require that our subgraphs only have the cuts they inherit,
no additional edges are cut, and no vertices are cut more than before. The
co-graphs are then well defined with the understanding that if the subgraph
itself is cut then the vertex or edge it forms in the co-graph is cut in the
same way.

For a pair (Γ, F ) of a graph and a forest, given a subgraph γ ⊆ Γ then
we have a graph forest pair (γ, F ∩ γ). However, we will only count this as a
subgraph if F/(F ∩ γ) is a forest of Γ/γ. In this case we get the graph forest
pair (Γ/γ, F/(Γ ∩ γ)) as the co-graph and so we can form the coproduct that
we desire. For more details including examples see Section A.4.

Finally, dually to taking sub- and co-graphs we can insert one graph into
another. This reverses the above operations, see Section A.4.4 for details.

3. Hopf algebras

Hopf algebras play an important role in perturbative QFT because they
allow us to organize the recursive structure of the expansion in terms of
Feynman graphs. This has been particularly well-studied in the context of
renormalization theory and the associated forest formula of Zimmermann
[7–12]. Also, the Dyson–Schwinger equations were identified as fixed-point
equations in the corresponding Hochschild cohomology of the Hopf algebra
of renormalization for any renormalizable field theory [5, 13, 14].

Here, we generalize such a setup to Cutkosky graphs and graphs with
forests, starting from the core Hopf algebra [15, 16]. We can also obtain quo-
tient Hopf algebras by restricting the allowable vertices. The renormalization
Hopf algebras appear as special cases of such quotient Hopf algebras. This
supports a future study of towers of renormalizable theories [17, 18] which
provide interactions corresponding to vertices going far beyond interactions
studied in renormalizable field theories so far.

We concentrate on Hopf algebras dedicated to describing scattering.
Hence, we work in the arena of graphs which have cuts as studied by
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Cutkosky [19]. We need to study (pre-) Cutkosky graphs, their Hopf al-
gebra structure and corresponding series over such graphs, providing the
combinatorial backbone for the study of variations of Green functions. We
also extend our study to the study of pairs (Γ, F ) of graphs Γ and spanning
forests F . The associated graph complexes relate naturally to the study of
Cutkosky rules [3, 4, 20].

As we saw in the previous section, the Cutkosky situation and the graph-
and-forest situation are quite similar. Both should be viewed as defining
graphs with cuts, but the forest provides the additional information of a
spanning tree in each piece after cutting. If we gather together all the (Γ, F )
pairs where F gives the same cut in Γ, then this equivalence class of (Γ, F )
pairs contains the same information as the Cutkosky graph for this cut.

There are three Q-Hopf algebras, Hcore of core graphs, HpC of pre-
Cutkosky graphs, and HGF of graphs-forest pairs which we will consider.
Furthermore we will define Q-vector spaces HC of Cutkosky graphs and
HnC of non-Cutkosky graphs.

As variants it would be possible to also consider HV , HpC,V , HC,V and
HnC,V obtained by restricting to quotient algebras defined by restricting to
graphs with vertices of a given valence prescribed by a set V . We will not
elaborate on this, but will provide the framework for these quotient algebras.

The Hopf algebras induce various coactions which we will discuss below
in Section 4 in particular with regards to their interpretation in physics.

3.1. The core Hopf algebra Hcore

The core Hopf algebraHcore [15, 16] is based on theQ-vector space generated
by connected bridgeless Feynman graphs. It is graded by the loop number
|Γ|.

We define a commutative product

m : Hcore ⊗Hcore → Hcore, m(Γ1,Γ2) = Γ1∪̇Γ2,

by disjoint union. The unit I is provided by the empty set, |I| = 0, so that
we get a connected free commutative Q-algebra with bridgeless graphs as
generators. So that the algebra is connected we take a quotient by identifying
all graphs consisting of a single vertex with external edges with I.4

4We do not regard the dot · as a core graph of grade zero. In fact isolated
vertices (without external edges) are not even permissible in our definition of graph,
as our vertices are parts in a vertex partition and so they are nonempty subsets
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We define a coproduct by

(3.1) ∆core(Γ) = Γ⊗ I+ I⊗ Γ +
∑

γ

γ ⊗ Γ/γ,

where the sum is over all γ ∈ Hcore such that γ ⊊ Γ, where these are sub-
graphs in the sense of Section A.4 with Γ viewed as a trivial pre-cut graph
(Γ,Γ). In particular subgraphs are bridgeless and full at the vertices. In
other words there are connected bridgeless graphs γi such that γ = ∪̇iγi,
and Γ/γ denotes the co-graph in which all internal edges of all γi shrink to
zero length in Γ and 2-valent vertices are replaced by edges, see Section A.4
and Equations A.1 and A.2.

We have a counit Î : Hcore → Q which annihilates any non-empty graph
and Î(I) = 1 and we have the antipode S : Hcore → Hcore, S(I) = I

S(Γ) = −Γ−
∑

γ⊊Γ

S(γ)Γ/γ.

Furthermore our Hopf algebras are graded by the loop order,

Hcore = ⊕∞
j=0H

(j)
core, H

(0)
core

∼= QI andAugcore = ⊕∞
j=1H

(j)
core.

and h ∈ H
(j)
core ⇔ |h| = j. Such Hopf algebras are the dual of a universal

enveloping algebra of a Lie algebra which originates from a pre-Lie algebra.
See [4] for a discussion of such pre-Lie algebras.

Remark 3.1. Necklaces in the following sense are the primitives for the
core Hopf algebra.

In combinatorics a necklace of length n over an alphabet A is an equiv-
alence class of length n strings over A, where the equivalence is under ro-
tations. For example, over the alphabet {a, b} there are 16 words of length
4 but only 6 necklaces {aaaa, aaab, aabb, abab, abbb, bbbb}. The words abbaab
and baabba are reflections of each other but not rotations of each other; they
are different necklaces.5

For the case of uncut graphs and |Lg| = n, one loop graphs can be encoded
by necklaces as follows. Let g be a one loop graph on 1 ≤ k ≤ n vertices vj

of half edges. If we instead began with a more conventional definition of graph,
then for the core Hopf algebra we would need to take a larger quotient given by the
ideal generated by graphs containing any non-vanishing number of isolated vertices.
These structures can also be studied in the non-connected context [12].

5Equivalence classes of words under both rotation and reflection are often called
bracelets.
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with
∑k

j=1(val(vj)− 2) = n, and val(vj) ≥ 3, ∀vj. Such a graph g is a string
of k vertices and k edges in between, and |Lg| = n half edges distributed over
the vertices. If two such graphs g, h can be transformed into each other by a
cyclic permutation of the string of vertices we consider them as equivalent,
g ∼ h, and call this equivalence class a necklace ω Notate ω as a string of
integers n1, . . . , nk up to cyclic permutation where ni indicates a vertex with
ni external edges, that is, a vertex of degree ni + 2.

3.2. Quotient Hopf algebras

There are many quotient Hopf algebras originating from Hcore. The primary
use we will make of the quotient Hopf algebras is in order to bootstrap easy
proofs of the various cut Hopf algebras of future sections. Renormalization
Hopf algebras of Feynman graphs form another important class of examples.

The following lemma is handy. It concerns when functions constructed
with a projection after a coproduct can themselves be coproducts.

Lemma 3.2. Let H be a Hopf algebra with coproduct ∆. Let K ⊆ H be
a subspace of H and let P : H → K be a projection. If (P ⊗ P )∆P = (P ⊗
P )∆ then ∆K : (P ⊗ P )∆ : K → K ⊗K is coassociative.

We will be applying this in the case, as above, where we have a distin-
guished basis and the projection sends certain basis elements to 0. In that
case the condition in the lemma says that there is no way for a basis element
in H \K to have a term in its coproduct that is in K ⊗K.

Proof.

(∆K ⊗ id)∆K = (P ⊗ P ⊗ id)(∆⊗ id)(P ⊗ P )∆

= (P ⊗ P ⊗ P )(∆⊗ id)∆ by hypothesis

= (P ⊗ P ⊗ P )(id⊗∆)∆

= (id⊗∆k)∆K by the analogous argument.

□

Let us pursue the renormalization Hopf algebras of Feynman graphs in
more detail as an example of how to work with quotient Hopf algebras. The
coproduct structure for these Hopf algebras is inherited from the core Hopf
algebra by setting graphs with vertices of undesired valence to zero [16].

In general let N be a finite set of integers ni ≥ 1 and VN a corresponding
set of vertices vi, val(vi) = ni + 2. The choices N = {1}, N = {2}, N = {4}
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correspond to Hopf-algebras on 3−, 4−, 6−regular graphs renormalizable in
6−, 4−, 3− dimensional spacetime respectively.

Let now HN be the sub-vectorspace of Hcore regarded as a vectorspace
where we remove all graphs which have vertices v with (val(v)− 2) ̸∈ N .
Let PN be the projector Hcore → HN .

Define ∆N : HN → HN ⊗HN , ∆VN := (PN ⊗ PN )∆core.

Lemma 3.3. HN (I, Î,m,∆N , SN ) is a quotient Hopf algebra of Hcore.

Here we understand that unit I, counit Î and multiplication m are taken
from Hcore, and the antipode is similarly defined using ∆N by the iteration
SN := −mH ◦ (SN ⊗ Paug) ◦∆N where Paug (not to be confused with PN )
is the projector into the augmentation ideal

Aug(HN ) := ⊕∞
j=1H

(j)
N ,

of HN = ⊕∞
j=0H

(j)
N .

Proof. The previous lemma gives that ∆N is coassociative since for any
graph Γ and subgraph γ of Γ, each vertex of Γ appears in either γ or Γ/γ
with degree unchanged, so if Γ has a vertex not in N then so does either γ
or Γ/γ.

The remaining properties are immediate from the properties of the core
Hopf algebra. □

3.3. The Hopf algebra HpC

We will define the Hopf algebra HpC(I, Î,m,∆pC , SpC). As a vector space
it is the span of pre-Cutkosky graphs G. Given a pre-Cutkosky graph Γ we
will use the notation Γ̂ for the underlying uncut graph and Γ̃ for the graph
after the cuts. See Section A.2.3 for details.

HpC can be graded by either |Γ| := |Γ̂| or ∥Γ∥ := |Γ̃|, the first Betti
number of G̃. When viewing HpC as a Hopf algebra in its own right, as we
are doing in this section, the |Γ| grading is more useful. Later when we work
with the coaction the ∥Γ∥ grading is more useful.

The Hopf algebra structure is inherited from the core coproduct ∆core,
using that any subgraph γ when contracting its internal edges e ∈ Eγ
shrinks, γ → γ/Eγ , to a h0(γ)-partition of its external half-edges Lγ and
forms a cut corolla. Concretely the cut corollas are formed as follows. If
|Lγ | = 2, in Γ/γ the two half-edges h1(γ), h2(γ) associated to Lγ form an
edge ∈ CΓ/γ (assuming h0(γ) = 2, else the edge is uncut in Γ/γ). If |Lγ | > 2,
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γ shrinks to a corolla cv with a new vertex v ∈ VΓ/γ with a corresponding
h0(g)-partition of cv.

To go into this in more detail, a subgraph of Γ̂ which is bridgeless and
full at the vertices determines a pre-cut subgraph of Γ (see Lemma A.15),
let fΓ be the map from such subgraphs of Γ̂ to pre-cut subgraphs of Γ. All
the subgraphs appearing in the core coproduct are bridegless and full at the
vertices.

Taking ∆core(Γ̂) but replacing subgraphs γ of Γ̂ with fG(γ) and co-
graphs Γ̂/γ with Γ/fG(γ) gives us the coproduct we want.

The rest of the properties of a Hopf algebra are directly inherited from
Hcore. Figures 2 and 3 give some examples.

∆̃ = ⊗ + ⊗ + ⊗

+ ⊗ + ⊗ + ⊗

+ ⊗ ⊗. . .+ + . . .

Figure 2: The reduced coproduct for Γ ∈ HpC . Even the coproduct of a
graph Γ which has no partitioned vertices has co-graphs with such parti-
tioned vertices. Note that we omit –for space reasons– to give all of the
terms where co-graphs are generated with vertices of valence higher than
three. Just one is indicated. Similarly in the next Fig.(3).

Remark 3.4. If we wish to impose normality conditions on the vertex cuts,
that is we wish to view vertex cuts as successive refinements from a first cut
into two pieces that has internal edges on both sides (see Remark A.2 and
Section A.4.2), then at this point we need to take extra care as when we
shrink a subgraph we may create new vertex cuts and we need to enforce
that these are normal.
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First note that no other problems with normality can occur. Specifically,
if Γ/γ satisfies the normality condition on the chains giving the refinement,
then the subgraph and co-graph are both pre-cut graphs. Furthermore since
Γ is pre-Cutkosky, every cut edge has its two ends in different components
of Γ̃, so the same holds for γ immediately, and for Γ/γ it holds for all edges
that are edges of Γ, and also for the edge coming from γ since taking a
compatible spanning forest of Γ we see that the two ends of γ are in different
trees of this forest, and so the edge corresponding to them in Γ/γ also has
ends in two different components.

Now we will enforce the normality condition on the newly created co-
graph vertices. Let PpC be the projection which takes pairs (Γ, H) with at
least one non-normal vertex to 0. This projection is defined at the level of
the preferred basis elements. For each such (Γ, H) and subgraph (γ, h), each
vertex of Γ is either a vertex of γ or of Γ/γ with the same refinement.
Thus at least one of γ or Γ/γ also has a non-normal vertex. Therefore by
Lemma 3.2, taking ∆core(Γ̂) but replacing subgraphs γ of Γ̂ with PpC(fG(γ))
and co-graphs Γ̂/γ with PpC(Γ/fG(γ)) gives us a coassociative map.

∆̃ =
+ ⊗⊗ + ⊗

. . .+ ⊗ + . . .

Figure 3: The reduced coproduct for Γ ∈ H0
pC , ∆̃pC : H0

pC → H0
pC ⊗H0

pC

with mostly only the terms involving vertices of degree 3 included, as before.

Note that we also have the Q-vector space HC generated by Cutkosky
graphs. We do not give HC a Hopf algebra structure as a co-graph of a
Cutkosky graph by a Cutkosky subgraph may only be pre-Cutkosky. This
idea returns in Section 4.4.
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3.4. Pre-Cutkosky Necklaces

Similarly to how core primitives can be represented by necklaces (see Re-
mark 3.1), pre-Cutkosky necklaces ω are the generating primitives for the
Hopf algebra HpC .

Consider a pre-Cutkosky graph γ with |γ| = 1. Such a γ has has a unique
spanning forest F and defines a h0(F )-partition Pω of Lγ of size |Lγ |. Once
again we can encode the features that matter for γ using a necklace. The
only difference from the core case is that we need to have a bigger alphabet
to keep track of the cuts of edges and vertices and how the external legs are
partitioned across them.

There are multiple ways we could set this up with only inconsequential
differences. We will choose an alphabet with a letter for cut edges, a letter
for uncut edges, and nonnegative integers as letters, indicating the number
of external legs in each part of a vertex cut with the parts containing the
internal edges coming first and last. Note that this approach loses the order
of the half edges at the cut vertex, but this will not be an important loss for
us and it is consistent with the information we will need in order to index our
Green functions in Section 5. If it were important to keep the order of the
half edges at each vertex, then we could number the half edges incident to a
vertex starting from the internal edge corresponding to the previous letter in
the word, and then to represent the vertices in the word we’d need letters so
that we could represent each arbitrary set partitions of {1, 2, . . . ,m}. This
would be heavy but not a fundamental difficulty.

For example, using our convention, the graph on the right hand side of
the last line of Figure 2 is represented by the necklace 1u01u10u where u is
the letter for uncut edges.

Each such necklace ω is a sequence alternating between vγ cut- or un-cut
edges and of vγ cut- or un-cut vertices, 1 ≤ vγ ≤ |Lγ |, where the cut vertices
are given by a sequence of integers, one per part of the cut.

We can also view core necklaces (see Remark 3.1) as pre-Cutkosky neck-
laces simply by adding the letter for the uncut edge between each ni.

3.5. Extension to a core coproduct for pairs (Γ, F )

It is also possible to extend the Hopf algebra Hcore of graphs to a Hopf
algebra HGF of pairs (Γ, F ) given by a graph Γ and a spanning forest F of
Γ [4]. The resulting coproduct is not directly analogous to the coproduct we
defined on the pre-Cutkosky graphs, as the cut vertices were crucial for that
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definition. The coproduct on HGF is more closely related to the coaction of
the next section, while still being an honest coproduct.

Let FΓ be the set of all spanning forests of Γ. The empty graph I has an
empty spanning forest also denoted by I.

We define a Q-Hopf algebra HGF for such pairs (Γ, F ) by setting

∆GF (Γ, F ) = (Γ, F )⊗ (I, I) + (I, I)⊗ (Γ, F ) +

+
∑

γ⊊Γ
F−(F∩γ)∈FΓ/γ
F∼F−(F∩γ)

(γ, γ ∩ F )⊗ (Γ/γ, F − (F ∩ γ)),(3.2)

where F− is the set of all forests of Γ. Additionally, by F − (F ∩ γ) ∈ FΓ/γ

we mean to interpret the edges of F − (F ∩ γ) as a subgraph of Γ/γ and then
check if that subgraph is an element of FΓ/γ . This ensures that only terms
contribute such that Γ/γ has a valid spanning forest. Finally, by F ∼ F −
(F ∩ γ) we mean that the partition of external legs of (Γ, F ) and (Γ/γ, F −
(F ∩ γ)) are identical.

See Figure 4 for an example.

G1 G2 G3 G4 G5

S1 S2 S3
T1 T2 T3

B1
T

C1 C2
B2

Figure 4: The coproduct on (G,F ) for all five spanning trees of the Dunce’s
cap G. We call the five pairs Gi := (G,Fi), where the spanning trees
Fi are indicated by bold lines. We have for reduced coproducts ∆̃GF :
∆̃GF (G1) = S1 ⊗ T + C2 ⊗B1, ∆̃GF (G2) = T1 ⊗ T + C1 ⊗B1, ∆̃GF (G3) =
S2 ⊗ T + C2 ⊗B2, ∆̃GF (G4) = T2 ⊗ T + C1 ⊗B2 and ∆̃GF (G5) = S3 ⊗
T + T3 ⊗ T . Note that in this graph, T − (T ∩ g) ̸∈ FG5/g, where g is the
subgraph formed by the two edges not in T . Also, note that this calculation
agrees with Proposition 3.6: 3× 1 + 3× 1 + 2× 2 = 10 = 5× 2.
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We also define the commutative product to be

mGF ((Γ1, F1), (Γ2, F2)) = (Γ1∪̇Γ2, F1∪̇F2),

whilst IGF = (I, I) serves as the obvious unit which induces a counit through
ÎGF (IGF ) = 1.

Theorem 3.5. (Theorem 3.1 of [4]) This is a graded commutative bi-
algebra graded by |Γ| and therefore a Hopf algebra

HGF (IGF , ÎGF ,mGF ,∆GF , SGF ).

This is essentially inherited from the core Hopf algebra, see Theorem 3.1
of [4] for the proof.

3.6. Counting spanning trees

It is often useful to count the number of spanning trees of a graph to control,
for example, the number of Hodge matrices describing the analytic structure
of an evaluated Feynman graph. This was used in [6] to determine all the
Hodge matrices generated from variations of external momenta, in [4] to
determine the number of terms generated from integrating out energy inte-
grals, and is used below in Section 4.3 to determine the number of sectors
in a sector decomposition of physics amplitudes.

So we let spt(Γ) = |T (Γ)| be the number of spanning trees of Γ, spt :
Hcore → N, and define spt : Hcore → N, spt(Γ) := spt(Γ)|Γ|!.

Proposition 3.6.

1)

spt(Γ) =
∑

|Γ′|=1

spt(Γ′)spt(Γ/Γ′),

and

2) if |Γ| = 1 and Γ is bridgeless we have spt(Γ) = spt(Γ) = eΓ while for
|Γ| > 1

spt(Γ) = m|Γ|−1spt|Γ|∆̃|Γ|−1
core (Γ) = m|Γ|−1spt |Γ|∆̃|Γ|−1

core (Γ).

Proof. 1) Recall the notion of fundamental cycle from Section 2.
Let us count (T, e) pairs with T ∈ T (Γ) and e ∈ EΓ \ ET in two

different ways. Counting directly, there are spt(Γ)|Γ| such pairs. Now
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we will count (T, e) pairs based on the fundamental cycles. Each cycle
C can appear as a fundamental cycle for any edge e in C and any
spanning tree formed from a spanning tree of Γ/C along with the
edges of C \ e. So C is the fundamental cycle for |C|spt(Γ/C) (T, e)
pairs. So there are

∑

|Γ′|=1 spt(Γ
′)spt(Γ/Γ′) (T, e) pairs in all. Thus we

have

spt(Γ)|Γ| =
∑

|Γ′|=1

spt(Γ′)spt(Γ/Γ′).

Multiplying both sides by (|Γ| − 1)! gives the result.

2) The |Γ| = 1 case is immediate as a bridgeless graph with |Γ| = 1 is
simply a cycle. The first equality follows from iterating part i). To see
the same argument directly, note For any T ∈ T (Γ) the basis of funda-
mental cycles {l1, . . . , l|Γ|} can be ordered in |Γ|! ways corresponding

exactly to the |Γ|! flags generated by ∆̃|Γ|−1(Γ)

li1 ⊗ li2/Eli1 ⊗ · · · ⊗ li|Γ|
/(∪

|Γ|−1
j=1 Elj ).

Since the spt on the right of the first equality only acts on one loop
graphs it can be replaced by spt . □

See Figure 4 which provides an example of the notions introduced above.

Remark 3.7. We can combine the various Hopf algebras with spanning
forests. In particular we can extend the Hopf algebra HpC to HpC,GF for
pairs (G,F ) with Γ pre-Cutkosky and a compatible F . This does not con-
tain further information than (Γ̂, F ), but gives a different viewpoint since
a smaller set of forests is compatible with a pre-Cutkosky graph Γ than the
set of all spanning forests of Γ̂. This is because there can be different pre-
Cutkosky graphs Γ1 and Γ2 with Γ̂1 = Γ̂2. Running over all pre-Cutkosky
graphs does give all spanning forests of each uncut graph and so HpC,GF is
isomorphic to HGF , but by writing GpC,GF we are emphasizing collecting
forests by which cut they give.

All Hopf algebras HN also extend to Hopf algebras HN,GF for pairs of
graphs and spanning forests using Equation 4 and projecting to graphs in
HN on both sides of the coproduct.

4. Coactions

There are various coactions of physical relevance. In particular, the core Hopf
algebra Hcore (as well as each of its quotient Hopf algebras of interest to us)
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coacts on the Hopf algebra of cut graphs HpC , an algebraic manifestation of
basic assumptions as locality of counterterms and the existence of operator
product expansions on which QFT is based.

Furthermore, the Hopf algebra structure of graphs also implies that HpC

coacts on Cutkosky graphs inHC which gives an iterative structure to disper-
sion relations. HpC also coacts on graphs in HnC whose variations appear on
non-principal sheets. The latter two coactions will be investigated in greater
detail in future work.

In Appendix B we collect properties of Feynman rules which clarify how
the coactions discussed here connect to physics.

4.1. HpC → Hcore ⊗ HpC

This coaction ensures that we can renormalize uncut graphs as usual and
that cluster separation is respected in the scattering asymptotics (see Re-
mark 4.5). The coaction is based on ∆core lifted to graphs in HpC by taking
only core (that is uncut) subgraphs as allowable subgraphs in the coproduct.
We will now describe this coaction in more detail.

A small technical lemma will be helpful, as all the variants of this coac-
tion that we might use will have the same form.

Lemma 4.1. Let H be a Hopf algebra of graphs and B a vector subspace
of H and additionally suppose that the coproduct of H is of the form

∆(h) =
∑

j⊆h
j,h/j∈B

j ⊗ h/j

on basis elements. Let J be a vector space of graphs with B as a subspace.
Then ∆̄(J) → H ⊗ J given by

∆̄(j) =
∑

k⊆j
k∈B,j/k∈J

k ⊗ j/k

is a coaction provided that whenever k ⊆ ℓ ⊆ j with j ∈ J, j ∈ B, ℓ/k ∈ B
and j/ℓ ∈ J then ℓ ∈ B ⇔ j/k ∈ J .

Proof. The counital property is straightforward. To show coassociativity,
consider k ⊆ ℓ ⊆ j. In order to obtain k ⊗ ℓ/k ⊗ j/ℓ by (id⊗ ∆̄)∆̄ we must
have k ∈ B, j/k ∈ J , ℓ/k ∈ B, and j/ℓ ∈ J . In order to obtain k ⊗ ℓ/k ⊗ j/ℓ
by (∆⊗ id)∆̄ we must have ℓ ∈ B, j/ℓ ∈ J , k ∈ B, and ℓ/k ∈ B. So to obtain
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the same terms in both directions we must have that if j ∈ J, j ∈ B, ℓ/k ∈ B
and j/ℓ ∈ J then ℓ ∈ B ⇔ j/k ∈ J . □

Returning to the coaction of Hcore on HpC , Hcore, regarded as a sub-
vectorspace of HpC , is embedded in HpC by viewing Γ ∈ Hcore as (Γ,Γ) ∈
HpC , which we will do below without further comment. In fact

Γ ∈ HpC ∩Hcore ⇔ |Γ| = ||Γ||.

Of particular interest for this coaction are the graphs where |Γ| ⪈ ||Γ||.
Consider the vectorspace H>

pC generated by such graphs. Note that H>
pC ⊊

AugpC , where AugpC is the augmentation ideal of HpC .
The coproduct ∆core of Hcore has then a natural extension ∆̄core which

coacts on H>
pC :

∆̄core : H
>
pC → Hcore ⊗H>

pC ,

∆̄core(Γ) = I⊗ Γ +
∑

γ∈Hcore

γ ⊗ Γ/γ,

where the sum is over all γ ∈ Hcore such that Hcore ∋ γ ⊊ Γ ∈ H>
pC . Note

that (Î⊗ id)∆̄core = id as it must.
Note that Γ/γ ∈ H>

pC by construction. One has

(∆core ⊗ id)∆̄core = (id⊗ ∆̄core)∆̄core : HpC → Hcore ⊗Hcore ⊗HpC ,

since the condition of the lemma is satisfied because if ℓ/k and k are core
then ℓ is core, and contraction of a core subgraph in a pre-Cutkosky graph
always gives a pre-Cutkosky graph. Consequently, this is a coaction.

Remark 4.2. A similar coaction exists for Cutkosky graphs Γ ∈ H>
C ⊊

H>
pC :

∆̄core : H
>
C → Hcore ⊗H>

C .

This is a coaction since only contracting un-cut subgraphs cannot create cut
vertices and so the condition of the lemma holds. As above we can also view
this coaction on all of HC , ∆̄core : HC → Hcore ⊗HC .

Additionally, letting H
∥j∥
C be the subspace of HC spanned by graphs

with ∥G∥ = j, we have H>
C ⊊ HC and HC can be written as a direct sum

HC =
⊕∞

j=0H
||j||
C . A graph Γ ∈ H

||0||
C has Cutkosky cuts such that no loop

is left intact. This is the vectorspace of almost leading singularities. Note

that H
||0||
C = H>

C
||0||

whilst for j ⪈ 0 we have H>
C

||j||
⊊ HC

||j||, the difference

HC
||j|| \H>

C
||j||

= H
(j)
core, the space of j-loop core graphs.
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Here we call a Cutkosky graph leading if all its edges are cut so that
they are evaluated on-shell, and almost leading if the cut edges ensure that
no loop is left intact. This parallels the language of leading and almost or
weakly leading singularities.

Remark 4.3. There is an obvious result that renormalization is compatible
with these coactions. Specifically,

Φ̄(Γ) := mC(S
Φ
R ⊗ Φ)∆̄core(Γ),

exists for any Cutkosky graph Γ ∈ H>
C and for any map SΦ

R : Hcore → C

which is a counterterm SΦ
R := −R(SΦ

R ⋆ Φ ◦ P ). See Sections B.2 and B.3
for information on Feynman rules and counterterms.

From a physicist’s viewpoint this is straightforward. Indeed, Γ ∈ H>
C is

overall convergent so that a renormalization of its subgraphs with loops left
intact suffices [8].

Overall convergence follows from the fact that graphs Γ ∈ H
||0||
C provide

an integrand which is to be integrated over a compact domain only [4, 21].
For the definition of the renormalization scheme R we refer the reader to
[4, 22] and Appendix B. Note that renormalization as needed here uses the
core Hopf algebra to provide counterterms for graphs with vertices of any
valence which emerge from shrinking edges.6

Furthermore,

Remark 4.4. Let ˜̄∆core = ∆̄core − I⊗ id applied to H>
pC . Then

˜̄∆||Γ||
core(Γ)

provides a flag of ||Γ||+ 1 graphs, where the rightmost tensor factor is an

element of H
||0||
C .

Figure 5 shows how ∆̄core acts in an example.

Remark 4.5. We can let P0 : HpC → H
||0||
pC be the projector to pre-Cutkosky

graphs with no loop left intact, and ∆̄0 := (id⊗ P0)∆̄core. Then for Γ ∈ H>
pC ,

∆̄0(Γ) = x⊗ y, x ∈ Hcore, y ∈ H
||0||
pC . This defines an iterated integral iter-

ating ΦR(x) into Φ(y) to obtain ΦR(Γ), see Appendices B.2 and B.3 as well
as [4].

6Shrinking edges increases the overall degree of divergence and hence alters the
action of R accordingly. See Remark B.2.
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Furthermore the map

(4.1) ∆̃
(h0(Γ̃)−2)
pC (y),

decomposes y into clusters related by dispersion relations, a subject of future
work. SΦ

R(x) provides all counterterms to render ΦR(Γ) finite. In brief, sub-
divergences separated by cuts can be renormalized independently, and this is
captured algebraically by the relation between applying ∆̃pC and then ∆̄core

to each component and applying ∆̄core followed by ∆̃pC .
If the pre-Cutkosky graph Γ gives a 2-partition of its set of external edges

LΓ, h0(Γ̃) = 2, then the map of (4.1) is the identity and the dispersion is
with respect to the momentum flow attributed to a normal cut.

Remark 4.6. Accordingly we can generate all graphs in HpC by dressing

all uncut edges and all uncut vertices of H
||0||
pC by graphs from Hcore.

The dressing of graphs in H
||0||
pC by graphs from Hren ⊊ Hcore also corre-

sponds to the identification and separation of hard diagrams from the infrared

singularities of diagrams in H
||0||
pC , see for example Chapter 12 in [23]. This

continues to hold for full Green functions as Equation 5.5 below exhibits.

∆̄core = I ⊗ +
⊗

Γ Γ
γ Γ/γ

Figure 5: The coaction ∆̄core, ∆̄(Γ) = I⊗ Γ + γ ⊗ Γ/γ. Evaluating the rhs
by m ◦ (SΦ

R ⊗ Φ) one gets a finite result Φ(Γ)− Φ0(γ)Φ(Γ/γ) with −Φ0(γ)
the counterterm for the triangle subgraph γ ∈ Hcore. This uses that Γ ∈ HpC

is overall convergent thanks to the presence of a cut.

On the same graph as in Figure 5, ∆pC acts as in Figure 6.

We note that the sub-vectorspace of graphs H
||0||
pC ⊊ HpC such that no

loop is left intact, ||Γ|| = 0, forms a sub Hopf algebra H
||0||
pC of HpC .

∆pCH
||0||
pC ⊂ H

||0||
pC ⊗H

||0||
pC .

Also we have

∆̄core(Γ) = I⊗ Γ, ∀Γ ∈ H
||0||
pC .
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∆pC =I⊗ + ⊗ + +⊗ ⊗

I+ ⊗

Figure 6: The coproduct ∆pC(Γ) = I⊗ Γ + Γ⊗ I+ γ ⊗ Γ/γ. If we chose to
impose normality at each vertex cut, then we obtain only only one term
apart from Γ⊗ I or I⊗ Γ. This is because, out of the three terms obtained
by shrinking cycles, two generate cut corollas which do not cut internal
momentum flow so the cut at the corolla in the co-graph is not normal.
These terms are crossed out in the figure and do not appear if we impose
normality of the cuts at each vertex.

Corresponding to H
||0||
pC there is a similar sub vectorspace H

||0||
C ⊊ HC of

graphs such that no loop is left intact.

4.2. Cointeracting bialgebras

There is an interesting interplay between the Hopf algebra HGF and the
cubical chain complex associated to pairs (Γ, T ) [24]. In particular the chain
complex gives rise to an incidence bialgebra BI based on the set of edges ET
in the spanning tree T of a pair (Γ, T ). It was studied in [6] and established
that there is a coaction which assigns Galois conjugates to any pair (Γ, T ).
HGF and BI cointeract as bialgebras. This notion of cointeracting bialgebras
has been recently investigated by Foissy [25, 26] and others [27].

In fact for any pair (Γ, T ) the set EL := EΓ \ ET of edges e ̸∈ ET decom-
poses under ∆GF in the sense that each term in ∆GF ((Γ, T )) partitions ET
between the two sides and in fact the partition determines the graph-tree
pairs on the two sides, as described in more detail in Section C.2. To say
this in another way let us use the notation E(Γ,T ) := EL. Then if we write

∆GF ((Γ, T )) =
∑

i

(Γ, T )′i ⊗ (Γ, T )′′i ,

for any i we have E(Γ,T )′i
∩ E(Γ,T )′′i

= ∅ and E(Γ,T )′i
∪ E(Γ,T )′′i

= EL and the
E(Γ,T )′i

and E(Γ,T )′′i
determine (Γ, T )′i and (Γ, T )′′i .
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This allows us to work with a commutative and cocommutative bialgebra
(Ap,m,∆c) defined in terms of the unordered set EL with coproduct denoted
by ∆c and another map, ρ which is a slightly modified incidence coproduct
on intervals in ET . On graphs with tadpoles7 allowed (see Appendix C), ρ is
a coproduct and with the same product m we get a second bialgebra. These
two bialgebras are in cointeraction.

In Appendix C we set this up in two different ways, first using a direct
approach using the sets EL and ET followed by an approach via generators
xe,[a,b] provided by single edges e ∈ EL and intervals [a, b] ∈ ET .

In particular in Appendix C we show, as part of Theorem C.2,

(4.2) m1,3,24 ◦ (ρ⊗ ρ) ◦∆c = (∆c ⊗ id) ◦ ρ,

where m1,3,24 is the map which multiplies together the arguments in the
second and fourth slots. This identity holds quite generally: we are working
with cut edges via (Γ, F ) pairs and additionally the graph edges can be
marked as to whether or not they are allowed as tadpoles. The identity (4.2)
explains how renormalization and monodromies interfere. As is discussed in
more detail in Sections 4.2.2 and C.2, in the (Γ, F ) context, ∆c is closely
related to ∆GF , differing in that ∆c requires that the left hand side of the
tensor product is always uncut. The map ρ, as mentioned above, comes from
the incidence coproduct on intervals in the power set of ET . An interval is
interpreted as specifying edges to cut and edges to contract: [a, b] represents
cutting the set of edges a and contracting the set of edges ET \ b. The map
ρ also differs from the incidence coproduct in that we can mark edges for
which we forbid intervals which would yield these edges as tadpoles when
ET \ b is contracted. This means that ρ is a coproduct on graphs with edges
that are allowable as tadpoles and a coaction more generally. The forbidding
of certain tadpoles lines up with the fact that tadpoles vanish in kinematic
renormalization schemes.

Remark 4.7. In fact whenever renormalization is achieved by using the
forest sum to subtract at a chosen q0 ∈ QL tadpole integrals vanish (kine-
matic renormalization schemes) and ρ becomes a coaction on core graphs
and remains a coproduct on proper Cutkosky graphs in HC . The situation is
essentially the same in minimal subtraction schemes for massless particles.
With massive particles the situation is slightly more subtle and the full set-up
of Appendix C.3 is needed. See also the discussion in [6].

7i.e. self-loops
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To explore these notions the next step is to define (combinatorial) Galois
conjugates.

4.2.1. Galois conjugates as fundamental cycles and cuts. The no-
tion of Galois conjugates for Feynman graphs owes its existence to ideas
by Francis Brown [28, 29]. Below it inspires a combinatorial study of pairs
(Γ, T ) and (Γ, f) through removing or shrinking edges.

Let a pair (Γ, T ) of a graph and spanning tree be given. Consider two
mutually disjoint not necessarily non-empty subsets p, q ∈ ET , p ∩ q = ∅.
Set γ := Γ/p, f := T/p \ q. We call such a pair (γ, f) a Galois conjugate of
(Γ, T ).

So (Γ, T ) is a Galois conjugate of itself (p = q = ∅) as is any pair (Γ, F )
for p = ∅, q = ET \ EF .

The set of all Galois conjugates of a pair (Γ, T ) is denoted by

(4.3) GalΓ,T := {(Γ/p, T/p \ q) | p, q ∈ ET , p ∩ q = ∅}.

We consider Galois conjugates relative to their fixed (Γ, T ) and so we define
the set EL = {e ∈ EΓ/p|e ̸∈ ET/p} to be the same for all Galois conjugates.

For any e ∈ EL, l(T/p, e) is a fundamental cycle for γ and we define the
path te := l(T/p, e) ∩ T/p and also define

fe := te ∩ f, Ce := te \ fe = te ∩ q.

For Ce ̸= ∅ we call l(fe, e) := l(T/p, e) \ Ce a cut fundamental cycle.
A fundamental cycle l(T/p, e) for any Galois conjugate defines a graph

γe = (Hγe ,Vγe , Eγe) with

• Hγe = ∪̇v∈l(T/p,e)cv which also determines Vγe whilst

• Eγe is determined by letting the edges in l(T/p, e) define the parts of
cardinality two in Eγe .

This is the fundamental cycle with external edges since the full corollas at
each vertex are included.

Also, l(T/p, e) defines a pair (γe, te) ∈ HGF with te = γe ∩ T/p. Similarly
a cut fundamental cycle l(fe, e) defines a Cutkosky graph (γe, he) ∈ HC and
a pair (γe, fe) ∈ HGF where now

(γe, he) = ((Hγe ,Vγe , Eγe), (Hγe ,Vγe , Ehe)).
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Here, Hγe ,Vγe , Eγe are as before and Ehe is determined by letting the edges
in l(T/p, e) \ Ce determine the parts of cardinality two. This is the cut fun-
damental cycle with full corollas and hence with external edges.

1 2

3 4

5 6

7

8

1 2

3 4

5 6

7

8
.

Figure 7: On the left we see a pair (Γ, T ) with |Γ| = 4, edges in T are in bold
lines. The four fundamental cycles are l1 = l(T, e1), te1 = e2, l2 = l(T, e4),
te4 = e3, l3 = l(T, e5), te5 = e6, l4 = (T, e8), te8 = e2, e7, e3, e5. On the right,
l1 and l3 remain fundamental cycles while we now have cut fundamental
cycles l(T, e4) \ e3 (Ce4 = e3) and l(T, e8) \ {e7, e3} (Ce8 = {e7, e3}).

4.2.2. Comparison of ∆c and ∆GF . Equation (4.2) answers a question
which has not been satisfactorially answered yet in the physics literature:
how are the algebraic structures of renormalization and the analytic struc-
ture of physics amplitudes compatible?

Here, we consider the removal of edges from a spanning tree as synony-
mous with an investigation of the analytic structure of amplitudes in view
of the results in [4]. For the purposes of this section, we will view a spanning
forest F as being obtained by removing edges from a spanning tree T , and
so implicitly the information of T is carried along with (Γ, F ). For a pair
(Γ, T ) define the set of fundamental cycles to be

LT := {l(T, e) : e ∈ EL}

Note that Ce = ∅ for all l(T, e) in a pair (Γ, T ). For a pair (Γ, F ) define

LF := {l(T, e) : e ∈ EL, Ce = ∅},

to be the set of fundamental cycles corresponding to loops left intact, hence
for which te is contained in F .
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Consider the map

∆GT : H>
GF → HGT ⊗H>

GF , (Γ, F )(4.4)

7→ I⊗ (Γ, F ) +
∑

p⊆LF

(p, tp)⊗ (Γ/p, F/tp),

where

tp := ∪l(T,e)∈p⊆LF
te,

is the union of the spanning trees te in fundamental cycles of p. This map
is the variant of ∆GF which agrees with the coaction ∆c in the context of
pairs (Γ, F ), as will be proved in Lemma 4.8.

We emphasize that LF = ∅ is possible whilst |LT | can be large since
removing edges from T might leave few or no loops intact.

Here HGT ⊊ HGF is the sub-Hopf algebra coming from sets of pairs
(Γ, T ) with T a spanning tree of Γ. It forms a sub-Hopf algebra of HGF by
definition of ∆GF which acts on such pairs as HGT → HGT ⊗HGT . H

>
GF is

generated from pairs (Γ, F ) where F is not a spanning tree, eF < eT .
Note that there is a surjective map H>

GF → H>
C by

(Γ, F ) → ((HΓ,VΓ, EΓ), (HΓ,VΓ, EH)),

with EH determined by ∅ ≠ CG = ET \ EF .
For any (Γ, F ), we define (Γ0, F0) := (Γ/LF , F/tLF ). We have

∆GF ((Γ0, F0)) = I⊗ (Γ0, F0),

as it corresponds to a union of cut fundamental cycles.
Next, using the notation of Appendix C, we consider the map w : HGF →

A:

w((Γ, F )) = E
[ET \EF ,ET ]
L =

∏

l(T,e)∈LF

xe,[ET \EF ,ET ].

Lemma 4.8.

∆c ◦ w((Γ, F )) = (w ⊗ w) ◦∆GT ((Γ, F )).

Note that while the maps ∆c and ∆GT agree, the corresponding Hopf
algebras are not the same because the products are different – with ∆GT

we use the usual disjoint union product of graphs, while with ∆c we merge
subgraphs of the fixed parent graph.
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Proof. We can invert the map w : HGF → A for any given pair (Γ, F ) (which
hides the cocommutativity of ∆c(w((Γ, T )))). See Figure 8.

For the coproduct terms this gives

w(p)⊗ w((LF \ p)) = p⊗ (Γ/p, F/tp).

In particular for p = I we obtain

1F ⊗ w((Γ, F )) = I⊗ (Γ, F ),

and for p = LF ,

w((LF , tLF ))⊗ w((Γ0, F0)) = (LF , tLF )⊗ (Γ0, F0),

and we use w(I) = 1F . □

Note that under w the expanded flag ∆
|Γ|−1
p w((Γ, T )) maps to the flag

w⊗|Γ|∆
|Γ|−1
GF ((Γ, T )) using the parlance of [4].

1

2
3

4

3 4
1

2

⊗ ⊗→ +
l1 l2/(l1 ∩ l2) l2

l1/(l1 ∩ l2)

xe1,[∅,e3e2]xe4,[∅,e3]→ xe1,[∅,e3e2]⊗ + ⊗xe4,[∅,e3] xe4,[∅,e3]
xe1,[∅,e3e2]

2

1
3 4

2

1
3 4+I⊗

+I⊗ xe1,[∅,e3e2]xe4,[∅,e3]

Figure 8: We compare ∆GF (above) and ∆c (below). l1 is the cycle e2e3e1
corresponding to xe1,[∅,e3e2] and l2 is the cycle l4l3 corresponding to xe4,[∅,e3].
l1/(l1 ∩ l2) is the cycle e1e2 corresponding to xe1,[∅,e2] and l2/l1 is the cycle
e4, a tadpole corresponding to xe4,[∅,∅]. e2, e3 make up the spanning tree.

4.2.3. The Galois coaction. Switching from Hcore to HGT and from
HC as in Remark 4.2 to HGF we have the coaction (4.4) as a coaction
corresponding to the one above Section 4.1.

We can use it for a coaction for Galois conjugates of ΦR((Γ, T )) [6] which
we define as the set of renormalized evaluations (see (4.3) and [4] for the
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evaluations of graphs with Cutkosky cuts)

Gal
ΦR
Γ,T := {ΦR((Γ/p, T/p \ q)) | p, q ∈ ET , p ∩ q = ∅}.

In fact the set GalΦRΓ,T decomposes into two mutually disjoint sets:

Gal
ΦR
Γ,T = Gal

m

Γ,T ∪̇Gal
dr

Γ,T ,

Gal
m

Γ,T = {ΦR((Γ/p, T/p)) | p ∈ ET , (q = ∅)},

Gal
dr

Γ,T = {ΦR((Γ/p, T/p \ q)) | p, q ∈ ET , p ∩ q = ∅, q ̸= ∅}.

Following the notation of [30], each graph Γ/p in a pair (Γ/p, T/p) ∈
Gal

m

Γ,T defines an integrand corresponding to a class [ω̂Γ/p] (de Rham fram-
ing) and has an associated domain of integration which defines a class [σ̂Γ/p]
(Betti framing).

The two framings pair to a motivic Feynman integral:

ImΓ/p = [H, [ω̂Γ/p], [σ̂Γ/p]]
m,

as a pairing of Betti and de Rham classes yields periods

IΓ/p =

∫

σ̂Γ/p

ω̂RΓ/p =

∫

σΓ/p

ωRΓ/p = ΦR(Γ/p),

with H the associated Hodge structure (see [30] for notation)

H = HeΓ/p−1(P \ YΓ/p, B \ (B ∩ YΓ/p)),

and ωRΓ/p the (class of) the renormalized form for Γ/p.
Similarly the cointeraction on graphs above suggests that on the de

Rham side the pairing is:

IdrΓ/p\q = [H, [ω̂Γ/p\q], [σ̂Γ/p\q]]
dr,

with

IΓ/p\q =

∫

σ̂Γ/p\q

ω̂RΓ/p\q =

∫

σΓ/p\q

ωRΓ/p\q = ΦR(Γ/p \ q).

Here on the Betti and de Rham sides we have the classes σ̂Γ/p\q, ω̂Γ/p\q

being determined by localizing σ̂Γ/p and ω̂Γ/p to the corresponding threshold
divisor accordingly.
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Then there is a coaction suggested by the incidence coalgebra structure
above:

Gal
m

Γ,T → Gal
m

Γ,T ⊗ Gal
dr

Γ,T .

We will discuss this coaction in more detail below.

Remark 4.9. Here on the rhs for Gal
dr

Γ,T we compute modulo 2πı. This is
evident as any element in Idr ∈ Gal

dr

Γ,T corresponds to a threshold divisor
defined by setting edges e ∈ Eon = EΓ \ ET onshell. Idr is a physical observ-
able hence real for fixed chosen internal masses and external momenta. This
real observable is a function itself of those internal masses and external
momenta and hence can have an imaginary part when we vary those pa-
rameters. We are ignoring this imaginary part as it reflects variations from
putting a larger set of edges e ∈ EΓ \ EF̃ onshell, with EF̃ ⊊ EF and this
variation is the captured by a different element in Gal

dr

Γ,T . That this can be
done consistently for any chosen refinement of LΓ reflects the Steinmann
relations [6, 31].

Note that this coaction is a coproduct on Gal
dr

Γ,T reflecting the fact that ρ
is a coproduct for intervals which do not correspond to contracting massless
edges, see Appendix C.1.

We can describe this coaction through the cointeracting bialgebras de-
fined in Appendix C. First, let ΦR : Ap → Im assign to a monomial in q ∈ Ap

the corresponding renormalized motivic integral Imq ∈ Gal
m

G,T associated with
the corresponding Feynman integral ΦR(q) assigned to q.

Now consider

ρΦ : A → Gal
m

Γ,T ⊗ Gal
dr

Γ,T ,

which we define via

ρΦ := (mC ⊗Q id)(SΦ
R ⊗ Φ⊗ Φ̄) ◦ (w−1)⊗3 ◦ (∆c ⊗ id) ◦ ρ(4.5)

= (ΦR ⊗Q Φ̄) ◦ (w−1)⊗2 ◦ ρ.

Here on the right ρ is a coaction when it acts on J1 and is a coproduct in
general. In particular for pairs (Γ, T )

ρΦ ◦ w : GalmΓ,T → Gal
m

Γ,T ⊗ Gal
dr

Γ,T ,

coacts, while for pairs (Γ, F )

ρΦ ◦ w : GaldrΓ,T → Gal
dr

Γ,T ⊗ Gal
dr

Γ,T ,
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is a coproduct.
Finally we want to sum over T ∈ T (Γ) and consider

C : HC → Gal
m

Γ ⊗ Gal
dr

Γ , GalmΓ =
∑

T∈T (Γ)

Gal
m

Γ,T ,Gal
dr

Γ =
∑

T∈T (Γ)

Gal
dr

Γ,T ,

with

C(Γ) :=
∑

T∈T (Γ)

ρΦ ◦ w(Γ,T ).

Lemma 4.10.

C(Γ) =
∑

p∈P(LΓ)

∑

F∼p

ΦR(Γ/EF )⊗ Φ̄(Γ̃F ),

where we sum over all partitions p of LΓ and over all forests F compatible
with p, and where Γ̃F is the graph Γ with the cut corresponding to F done
(analogously to the associated graph of Section A.2.3). We use ΦR(γ) =∑

T∈T (γ)ΦR((γ, T )), ∀γ ∈ Hcore, a result of [4].

Proof. For Γ̃F ∈ H
(0)
C , the assertion is obvious as there are no loops left

intact and the spanning forest is then unique. If Γ̃F ∈ H
(j)
C , j ⪈ 0, note that

Γ̃F contains j loops so that the spanning forests are not unique. On the left
hand side ΦR(Γ/EF ) contains then j 1-vertex reducible petals p(ei) on j
edges ei which are part of these j loops li (one edge for each loop) but not
part of the j spanning trees ti = F ∩ li, 1 ≤ i ≤ j. Different choices of F ,
F ∼ p vary the tj and hence vary the edges forming the petals. As petals
are 1-vertex reducible the petals p(e) provide factors ΦR(p(e)) for any edge
e. The lemma follows if we have ΦR(p(e)) = ΦR(p(f)) for any distinct edges
e, f as then on the rhs we can factorize the sum over all F ∼ p,

∑

F∼p

Φ((Γ, F )) = Φ(Γ̃F ),

by [4]. This is true in kinematic renormalization schemes R for which
ΦR(p(e)) = 0, ∀e but also when we enforce ΦR(p(e)) = 1, ∀e as suggested
by normalizing each graph against its leading singularity [6]. If we use
ΦR(p(e)) = 1 on the lhs the petals correspond to loops left intact on the
rhs. Then Φ on the rhs has to be replaced by Φ̄, see Eq.(4.3), as indicated.
Massless petals are forbidden in C(Γ) by the action of ρ and do not contribute
on the right even for more general choices of renormalization schemes.
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For ΦR(Γ/EF ) we use use kinematic renormaliztion conditions which
define a renormalization point S0 such that the first ωΓ/EF + 1 Taylor co-
efficients of ΦR(Γ/EF ) = ΦR(Γ/EF )(S, S0) vanish when expanding in the
scale S, see Appendix B and [22]. □

Remark 4.11. Note that the above set-up is sufficiently flexible to allow the
treatment of minimal subtraction (MS) renormalization schemes which set
massless tadpoles to zero but not massive ones. Kinematic renormalization
schemes would set them to zero in all cases, so that ρ is a coaction on core
graphs. Note that they form the leftmost column in the matrix in Fig.(18)
below. Monodromies are then generated solely by variying variables z ∈ QL.
In MS schemes massive tadpoles lead to monodromies as functions of m2

e.

Remark 4.12. As we have Eon = EG \ EF and Eoff = EF there is an in-
volution ι, ι2 = id, ι(Γ \ Eon) = Γ/Eoff , ι(Γ/Eoff ) = Γ \ Eon. We interpret
it as implementing a combinatorial reflection duality between motivic and
de Rham Feynman periods following Brown [28].

Remark 4.13. Below we derive formulae for the coproduct ∆• on full
Green functions. In future work this will allow us to study (ΦR ⊗Q Φ) ◦ ρ
acting on such Green functions as ρ maps a Green function to Green func-
tions of all Galois conjugates.

4.2.4. Example.

Example 4.14. We consider the one-loop triangle graph t on edges
e1, e2, e3 with corrsponding vertices v12, v23, v31.

It gives rise to reduced graphs t1 := t/e1, t2 := t/e2, t3 := t/e3 and tad-
poles tij = tji := t/ei/ej , i ̸= j. The graph t has three spanning trees given
by any pair of its edges.

Let us start with the pair (t, T ) = (t, {e2, e3}), T = {e2, e3}, with fun-
damental cycle l({e2, e3}, e1), see Figure 9. Let v12 be the vertex between
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2

1

3

2

1

3

1

w(t,T ) = x(e1,[∅,e2e3]) w(t,T \e2) = x(e1,[e2,e2e3])
w(t,T \e3) = x(e1,[e3,e2e3]) w(t,T \{e2,e3}) = x(e1,[e2e3,e2e3])

w(t/e3,T/e3) = x(e1,[∅,e2])
w(t/e2,T/e2) = x(e1,[∅,e3])

w(t/e3,T/e3\e2) = x(e1,[e2,e2]) w(t/e2,T/e2\e3) = x(e1,[e3,e3])

1

w(t/e2/e3,T/e2/e3) = x(e1,[∅,∅])

Figure 9: The triangle graph t with for example a spanning tree T on edges
e2, e3 and the associated Galois conjugates and generators.

edges 1 and 2 and similarly for v13, v23. The Galois conjugates are

(t, T ) = (t, ({v12, v13, v23}, {e2, e3})) ∼ xe1,[∅,e2e3],

(t/e2, T/e2) = (t/e2, ({v13, v12 ∪ v13}, {e3})) ∼ xe1,[∅,e3],

(t/e3, T/e3) = (t/e3, ({v12, v13 ∪ v23}, {e2})) ∼ xe1,[∅,e2],

(t23, T/e2/e3) = (t23, ({v12 ∪ v23 ∪ v31}, ∅)) ∼ xe1,[∅,∅]

(t, T \ e2) = (t, ({v12, v13, v23}, {e3})) ∼ xe1,[e2,e2e3],

(t, T \ e3) = (t, ({v12, v13, v23}, {e2})) ∼ xe1,[e3,e2e3],

(t, T \ {e2, e3}) = (t, ({v12, v23, v31}, ∅)) ∼ xe1,[e2e3,e2e3],

(t/e2, T/e2 \ e3) = (t/e2, ({v12 ∪ v23, v31}, ∅)) ∼ xe1,[e3,e3],

(t/e3, T/e3 \ e2) = (t/e3, ({v13 ∪ v23, v12}, ∅)) ∼ xe1,[e2,e2],

where the spanning forests are indicates both in terms of T and as a pair of
a vertex set and an edge set. The action of ∆c is as follows
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∆cxe1,[∅,e2e3] = xe1,[∅,e2e3] ⊗ 1F + 1F ⊗ xe1,[∅,e2e3],

∆cxe1,[∅,e3] = xe1,[∅,e3] ⊗ 1F + 1F ⊗ xe1,[∅,e3],

∆cxe1,[∅,e2] = xe1,[∅,e2] ⊗ 1F + 1F ⊗ xe1,[∅,e2],

∆cxe1,[∅,∅] = xe1,[∅,∅] ⊗ 1F + 1F ⊗ xe1,[∅,∅],

∆cxe1,[e2,e2e3] = 1F ⊗ xe1,[e2,e2e3],

∆cxe1,[e3,e2e3] = 1F ⊗ xe1,[e3,e2e3],

∆cxe1,[e2e3,e2e3] = 1F ⊗ xe1,[e2e3,e2e3],

∆cxe1,[e3,e3] = 1F ⊗ xe1,[e3,e3],

∆cxe1,[e2,e2] = 1F ⊗ xe1,[e2,e2].

For the ρ coaction, assuming all edges are massless and hence all tadpoles
are forbidden, we find

ρ(xe1,[∅,e2e3]) = xe1,[∅,e2e3] ⊗ xe1,[e2e3,e2e3] + xe1,[∅,e3] ⊗ xe1,[e2,e2e3]

+ xe1,[∅,e2] ⊗ xe1,[e3,e2e3],

ρ(xe1,[∅,e3]) = xe1,[∅,e3] ⊗ xe1,[e3,e3],

ρ(xe1,[∅,e2]) = xe1,[∅,e2] ⊗ xe1,[e2,e2],

ρ(xe1,[∅,∅]) = xe1,[∅,∅] ⊗ xe1,[∅,∅],

ρ(xe1,[e2,e2e3]) = xe1,[e2,e2e3] ⊗ xe1,[e2e3,e2e3] + xe1,[e2,e2] ⊗ xe1,[e2,e2e3],

ρ(xe1,[e3,e2e3]) = xe1,[e3,e2e3] ⊗ xe1,[e2e3,e2e3] + xe1,[e3,e3] ⊗ xe1,[e3,e2e3],

ρ(xe1,[e2e3,e2e3]) = xe1,[e2e3,e2e3] ⊗ xe1,[e2e3,e2e3],

ρ(xe1,[e2,e2]) = xe1,[e2,e2] ⊗ xe1,[e2,e2],

ρ(xe1,[e3,e3]) = xe1,[e3,e3] ⊗ xe1,[e3,e3].

One immediately checks Theorem C.2.
Consider now C(t). We have

C(t) = ρΦ
(
xe1,[∅,e2e3] + xe2,[∅,e3e1] + xe3,[∅,e1e2]

)
.

We have for example

ρΦ(xe1,[∅,e2e3]) = ΦR ◦ w−1(xe1,[∅,e2e3])⊗ Φ ◦ w−1(xe1,[e2e3,e2e3])

+ ΦR ◦ w−1(xe1,[∅,e2])⊗ Φ ◦ w−1(xe1,[e2,e2e3])

+ ΦR ◦ w−1(xe1,[∅,e3])⊗ Φ ◦ w−1(xe1,[e3,e2e3])
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= ΦR((t, ({v12, v13, v23}, {e2, e3})))⊗ Φ((t, ({v12, v23, v31}, ∅))

+ ΦR((t/e3, ({v12, v13 ∪ v23}, {e2})))⊗ Φ((t, ({v12, v13, v23}, {e3})))

+ ΦR((t/e2, ({v13, v12 ∪ v23}, {e3})))⊗ Φ((t, ({v12, v13, v23}, {e2}))).

Indicating the trees by their edge sets for conciseness, We have

ΦR((t, {e2, e3})) + ΦR((t, {e3, e1})) + ΦR((t, {e1, e2})) = ΦR(t),

and

ΦR((t/e2, {e3})) + ΦR((t/e2, {e1})) = ΦR(t/e2),

ΦR((t/e3, {e1})) + ΦR((t/e3, {e2})) = ΦR(t/e3),

ΦR((t/e1, {e3})) + ΦR((t/e1, {e2})) = ΦR(t/e1).

Also

Φ((t, ({v12, v13, v23}, ∅))) = Φ(t \ {e1, e2, e3})

and Φ((t, ({v12, v13, v23}, {ei}))) = Φ(t \ {ej , ek})

for{i, j, k} = {1, 2, 3}.

We hence find

ρΦ
(
xe1,[∅,e2e3] + xe2,[∅,e3e1] + xe3,[∅,e1e2]

)
= ΦR(t)⊗ Φ(t \ {e1, e2, e3})

+ ΦR(t/e1)⊗ Φ(t \ {e2, e3})

+ ΦR(t/e2)⊗ Φ(t \ {e3, e1})

+ ΦR(t/e3)⊗ Φ(t \ {e1, e2}).

This confirms Lemma 4.10 and agrees, for example, with the study of the
triangle on pp.(15,16) in [6].

4.3. Sector Decomposition

One reason to consider Dyson–Schwinger equations for pairs (Γ, F ) lies in
an accompanying sector decomposition. Sector decompositions are used in
physics to allow for stable evaluations of Feynman graphs in regions where
the Feynman integrand suffers from infrared, ultraviolet, collinear or other
kinematical singularities [32, 33]. For a related use of Hopf algebras in in-
frared singular situations see [34].
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Sector decompositions have a rich mathematical structure in terms of
generalized perutahedra for quantum field theories on Euclidean space [35],
see also the discussion in [36]. We hope that our approach allows to generalize
such structures to the study of quantum field theories on Minkowski space
in particular with regard to resulting infrared divergences.

Consider a non-negative weight on each edge of Γ which we will think
of as an edge length. The approach to Feynman integration by sector de-
composition [32] involves breaking up the region of integration based on the
relative order of the lengths of the edges. As such, if there are n edges then
there are n! sectors, but we can usefully gather sectors together based on
certain features of the sector.

One very important feature of a sector, particularly for the paramet-
ric representation, is the minimum spanning tree. An order on the edges
determines a unique minimum spanning tree and this also determines the
minimum monomial in the denominator in parametric representation. For
purposes such as the Hepp bound [37], only this mimimum monomial mat-
ters.

Given a fixed spanning tree, many sectors will have that tree as a mini-
mum spanning tree. In particular, given a fixed spanning tree, we can take
any order on the edges of the spanning tree and any order on the edges not
in the spanning tree, and then we can shuffle the tree and non-tree edges
provided each edge not in the tree appears after all the other edges in its
fundamental cycle.

Those sectors where all the edges of the minimum spanning tree are
smaller than all edges not in the tree are special, as these sectors do not
require renormalization. Another way to look at this is that if we shrink
the edges to length 0 one at a time, following the order, then these are the
orders where the tree shrinks first, leaving a rose, and then the petals are
shrunk one by one. Let secJ(Γ) be the number of such sectors. Then

secJ(Γ) := spt(Γ)× (eΓ − |Γ|)!,

where (eΓ − |Γ|) = eT is the number of edges in any spanning tree T of Γ
and spt(Γ) is as in Section 3.6. These sectors are important in [4].

The difference n!− secJ(Γ) comes from sectors where a loop would
shrink before the full spanning tree has been retracted, that is the edges
of a cycle would appear before any spanning tree does in the edge order.
These are the sectors which need a blow-up before they can be integrated
out. These sectors are taken into consideration if we work with renormalized
Feynman rules. See the discussion in Appendix 3 of [6].
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For either type of sector, if we build a graph by iterated insertion, as
for example it would be generated by a Dyson-Schwinger equation, then
the order of insertion determines an order on the fundamental cycles of the
graph. This does not completely determine the sector, but again we can
gather together sectors with the same fundamental cycle order, as they arise
from the same insertion of sectors of the sub- and co-graphs.

There is an easy combinatorial fact at play in the enumeration of the
different types of sectors: the sectors covered by the cubical chain complex
plus sectors corresponding to vanishing loops add to the total set of sectors.

We can, hence, for renormalized amplitudes restrict the sector decom-
position of physicists [32] to the study of the bordification of OS untertaken
by Vogtmann and collaborators [38] in future work. In Section 5 we will sys-
tematically build Feynman graphs from iterating one-loop necklaces which
is then in accordance with the sector decomposition desired in physics.

An important part of sector decomposition as an integration technique
is rewriting the integrand into a form suitable for each sector. Again this
becomes a question of collecting together sectors with the appropriate com-
binatorial properties to suit each form of the integrand, as we will explore
in the examples below.

4.3.1. Sector decomposition and iteration of graphs. For any cho-
sen spanning tree T , we get an accompanying basis of cycles l(T, e). Consider
parametric Feynman rules defined in Section B.2. Choose e ∈ EL so that for
every fundamental cycle l(T, e), we can switch to variables

Ae, af = Af/Ae, f ∈ Ete .

A choice of an order for the variables Ae, e ∈ EL then ensures that all poles
generated from fundamental cycles (loops) are normal crossing which implies
a proper sector decomposition when we later build Feynman graphs from
Dyson–Schwinger equation in Section 5.

4.3.2. Two examples. Let us study two examples. We start with the
triangle graph t in Figure 10. Corresponding to the sector decomposition in
Figure 10 is an integrand which in parametric variables (see Appendix B.2)
reads (assuming we are, say, in a scalar field theory in D = 6 dimensions of
spacetime)

Int(t)(q, p) =
ln

q2rbArAb+q
2
bgAbAg+q

2
grAgAr−(Arm2

r+Abm
2
b+Agm

2
g)(Ar+Ab+Ag)

−µ2ArAb−µ2AbAg−µ2AgAr−(Arm2
r+Abm

2
b+Agm

2
g)(Ar+Ab+Ag)

(Ar +Ab +Ag)3
Ωt,
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Ag > Ab > Ar

Ag > Ar > Ab

Ar > Ag > Ab

Ar > Ab > Ag

Ab > Ar > Ag
Ab > Ag > Ar

Figure 10: The triangle graph t on three different masses indicated by
coloured edges. Edges in spanning trees T or forests are indicated by doubled
lines. The other edges have a single line and are also marked by black cut
across the edge. There is an associated cell for t which is a (et − 1)-simplex
(itself a triangle). In the middle of the 2-simplex we see the triangle with all
three edges onshell, corresponding to the pair (t, T \ ET ). The codimension
one surfaces are 1-simplices. In their middle we see bubble graphs obtained
by shrinking an edge and putting the remaining edges onshell correspond-
ing to pairs (t/ei, T/ei \ ej). In the corners we have tadpoles (t/T, ∅). The
2-simplex decomposes into six sectors corresponding to the et! orders of pos-
sible edge length. The six sectors are grouped in three 2-cubes combining
two triangles respectively which have boundaries which are four 1-simplices
and four 0-simplices (corners) corresponding to Galois conjugates as indi-
cated.

with µ2 > 0 a renormalization point and Ωt the 2-form

Ωt = AgdAb ∧ dAr −AbdAr ∧ dAg +ArdAg ∧ dAb,

and further where we have p ∈ P2(R+) and q ∈ QL(t), with QL(t) a three
dimensional real vectorspave generated by Lorentz invariants q2rb, q

2
bg, q

2
gr as

scalar products of external momenta at the vertices whilst mass squares
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m2
r ,m

2
b ,m

2
g are kept fixed with positive real part and small negative imagi-

nary part.
Int(t)(q, p) can be integrated against P2(R+) and gives a function

ΦR(t)(q) whose monodromy we are after.
By construction it can be also integrated against the intersection of

P2(R+) with the interior of any of the six sectors Ai > Aj > Ak indicated in
Fig.(10).8

In each of the six sectors we can implement the sector decomposition
in accordance with the fundamental cycles l(T, e) underlying the graph. For
the triangle graph we have three spanning trees and a single loop, which
makes three fundamental cycles to consider.

Each corresponds to one of the 2-cubes in Figure 10. For example the
fundamental cycle l({eb, er}, eg) corresponds to the two sectors Ag > Ab >
Ar and Ag > Ab > Ar.

In the integrand we can rescale ab = Ab/Ag, ar = Ar/Ag, set Ag = 1 and
integrate in the two accompanying sectors to find

ΦR(t)
grb :=

∫ ∞

0





∫ ar

0

ln
q2rbarab+q

2
bgab+q

2
grar−(arm2

r+abm
2
b+m

2
g)(ar+ab+1)

−µ2arab−µ2ab−µ2ar−(arm2
r+abm

2
b+m

2
g)(ar+ab+1)

(ar + ab + 1)3
dab



dar,

for Ag > Ar > Ab (ar > ab) and

ΦR(t)
gbr :=

∫ ∞

0





∫ ab

0

ln
q2rbarab+q

2
bgab+q

2
grar−(arm2

r+abm
2
b+m

2
g)(ar+ab+1)

−µ2arab−µ2ab−µ2ar−(arm2
r+abm

2
b+m

2
g)(ar+ab+1)

(ar + ab + 1)3
dar



dab,

for for Ag > Ab > Ar (ab > ar). For the spanning tree Trb ∈ T (t) on edges
er, eb we set

ΦR((t;Trb)) = ΦR(t)
grb +ΦR(t)

gbr,

and

ΦR(t) =
∑

T∈T (t)

ΦR((t, T )),

becomes a sum over three summands, one for each spanning tree, and each
summand is a sum over all (two) sectors provided by the possible (two)

8Along the 1-simplices defined by Ai = 0 the integrand has to be modified accord-
ing to the increased degree of divergence. As a result when gluing such simplices to
describe graph complexes we have to follow the approach outlined by Berghoff in
[39].
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orderings of edges in the spanning tree. This construction is generic as any
spanning tree T ∈ T (G) of a graph G gives rise to an eT -cube in its cubical
chain complex. Such a cube then has a decomposition in eT ! simplices.

Next consider the Dunce’s cap graph dc given in Fig.(11).

a

b

c

1

2

3

4

e1

e2

e3
e4

Figure 11: The Dunce’s cap graph dc. The spanning tree on edges e2, e4 is
indicated by bold lines.

Choose the spanning tree T = (e2, e4) so that the loops are g1 = l1 =
(e1, e4, e2) corresponding to the fundamental cycle l(T, e1) and g2 = l2 =
(e3, e4) corresponding to l(T, e3). This implies A3 > A4 and A1 > A2, A1 >
A4 as when we shrink edges, the edges in te shrink before the edge e.

Consider the choice that g1 is the co-loop and g2 the subloop.

dc = B
(g1/(l1∩l2),T/e4)
+ ((g2, e4)).

We have A1 > A3 as g2 is the subloop and g1/(l1 ∩ l2) = g1/e4 the co-loop.
Hence we rescale in thze first Symanzik polynomial of dc sψdc

((A1 +A2)(A3 +A4) +A3A4) → A2
1((1 + a2)(a3 + a4) + a3a4)

→ A2
1a3((1 + a2)(1 + b4) + a3b4).
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Following (B.1) the corresponding integrand rescales to

Int(dc)(q2, p21, p
2
2, µ

2; a2, a3, b4) =




ln (q2a2(1+b4)+p21a3b4+p22a2a3b4)

(µ2a2(1+b4)+µ2a3b4+µ2a2a3b4)

a3((1 + a2)(1 + b4) + a3b4)2

−
ln q2a2(1+b4)+µ2a3b4(1+a2)

µ2a2(1+b4)+µ2a3b4(1+a2)

a3(1 + a2)2(1 + b4)2



 da2da3db4,

after integrating A1 (the longest edge in the sectors under consideration)
by the exponential integral. We set all masses to zero to zero for a succinct
expression. This does not alter the argument.

Note that

Int(dc)(q2, p21, p
2
2, µ

2; a2, 0, b4) = 0,

as both terms on the right have a pole at a3 = 0 with identical residue

(ln q2

µ2 )da2db4

(1 + a2)2(1 + b4)2
.

The above integrand covers the three sectors A1 > A3 > A2 > A4, A1 >
A3 > A4 > A2 and A1 > A2 > A3 > A4 (the sector where renormalization,
or bordification, is genuinely needed).

A similar analysis for g1 providing the subloop and g2 the co-loop covers
the sectors A3 > A1 > A2 > A4, A3 > A1 > A4 > A2. This gives five sectors
for the choice T = e2, e4. The choices T = e1, e4, T = e2, e3, T = e1, e3 are
similar and this covers twenty sectors altogether.

The choice T = e1, e2 covers the remaining four sectors. See also [6]. A
finer analysis to be given in future work exhibits that the boundary between
sectors is generated by the coactions studied above in Section 4.2.

4.4. Two more coactions

For completeness and future use let us store two more coactions.

4.4.1. HC → HC ⊗ HpC . HC ⊊ HpC is a vector subspace of HpC .
Hence

∆pC : H>
C → H>

C ⊗HpC

coacts and similarly

∆pC : H0
C → H0

C ⊗H0
pC .

Figure 12 gives a typical example.
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→ ⊗ + ⊗

+ ⊗

Figure 12: ∆pC regarded as a coaction maps to graphs in HC on the left
and to graphs in HpC on the right.

This is obvious from the coassociativity of ∆pC . We can regard ∆pC

simultaneously as such a coaction and a coproduct on HpC .

Remark 4.15. Note that in the case that Γ ∈ H0
C has only propagator sub-

graphs, we have ∆pC(Γ) ∈ H0
C ⊗H0

C .

4.4.2. HnC → HpC ⊗ HnC . This coaction concerns variations on non-
principal sheets [21]. It relates to the jewels of Vogtmann and collabora-
tors [38]. It uses ∆pC to identify subgraphs H>

pC ∋ γ ⊊ Γ ∈ HnC , the vector
space of graphs where we allow arbitrary subsets of edges or vertices to be
cut disregarding the requirement that the graph is correspondingly cut into
disconnected parts.

We define

∆̄pC(Γ) = I⊗ Γ +
∑

γ⊊Γ,γ∈H>
pC

γ ⊗ Γ/γ.

Figure 13 gives an example. The graphs Γ ∈ HnC where the number of sep-
arations is unity play a very special role here:

nos(Γ) = 1 ⇔ ∆̄pC(Γ) = I⊗ Γ.

We do not provide further details as we will not use this coaction later on.
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→ ⊗ +I⊗

Figure 13: ∆̄pC : HnC → HpC ⊗HnC maps here a graph Γ in HnC \HpC to
a graph γ in HC ⊊ HpC on the left and a graph Γ/γ in HnC on the right.

Remark 4.16. The coactions above were based on ∆core. We can pursue
a similar analysis using any ∆V instead.

5. DSEs in core and quotient Hopf algebras

Combinatorial Green functions as formal series are defined as a sum of all
bridgeless graphs which have an identical external leg structure. Upon evalu-
ation by Feynman rules they give 1-particle irreducible (1PI) Green functions
as formal series in the couplings.

These combinatorial Green functions then satisfy certain functional
equations that are combinatorial version of the Dyson–Schwinger equations
(DSEs) of the theory. This theory has been well-developed for the usual
Green functions [5, 14] and has found use in other areas of mathmatics
[40, 41] and physics [42, 43]. Analogous results apply when we are working
with cuts. Developing this theory is the subject of the current section. Other
than the set-up itself, there are three main points of particular note, each
of which is detailed below. First, there is a connection with the assembly
maps of [44]. Second, the invariant charges and their interaction with the
coproduct are crucial. Third, the cut inverse propagator is special and in
particular we do not need to consider insertions on either side of the cut
propagator. This simplifies the combinatorics.

5.1. Dyson–Schwinger and cut Dyson–Schwinger setup

We define combinatorial Green functions for scattering. For a start we define
appropriate series of graphs.

The first thing we need is the order in the couplings gΓ of a graph Γ, so
define gn for each n ≥ 3, set g2 = 1 and define

gΓ :=

(
∏

v∈VΓ

gvalv

)

/glΓ .
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For a Cutkosky graph or a pair (Γ, F ), the order in the couplings is defined
in the same way, since the cuts of a Cutkosky graph only involve edges, as
does the cut defined by a spanning forest.

For a pre-Cutkosky graph Γ we have couplings gp for each integer parti-
tion p.9 The parts of the integer partition are the sizes of the parts of the set
partition of a cut vertex. If v is a cut vertex let p(v) be this integer partition.
Then define

gΓ :=

(
∏

v∈VΓ

gp(v)

)

/gp(Γ),

where p(Γ) is the partition whose parts are the sizes of the parts of the set
partition of the external edges of Γ induced by the cut of Γ.

Remark 5.1. Note that, as a physicist would expect, we do not have a
coupling for uncut edges, though for notational convenience it is handy to
set g2 = 1.

For cut edges we do need something like a coupling to keep track of the
number of cut edges in the combinatorics below. We use g1,1 for this purpose.
One could further refine the situation by using different variables in place of
g1,1, one for each different mass appearing among the onshell edges.

Remark 5.2. If we wish to also include the order in ℏ, this can be ob-
tained by scaling the gi by powers of ℏ, taking advantage of Euler’s formula.
Specifically, for a core graph with ki vertices of degree i+ 2, for i ≥ 1, and n

external edges, the correct power of ℏ is ℏ1−
−n+

∑
i iki

2 and so scaling each gi
by ℏi/2 along with an overall scaling independent of the graph we will obtain
the correct power of ℏ.

Note also that with ki and n as above, the product
(
∏

i∈N g
ki−δi+2,n

i+2

)

is

another expression for gΓ for a core graph Γ.
See Figure 14 for an example.
The negative powers in these products are useful as they make the co-

product behave nicely with the multigrading from the coupling constants.

9An integer partition is simply a finite multiset of positive integers. Since the
order does not matter, we can write it as a list where we take the convention to
write the integers, called the parts, in weakly decreasing order. For example, (2, 1, 1)
is an integer partition and furthermore, we say it is a partition of 4 since the integers
in the list sum to 4. If we have a set partition of a set of size n then the sizes of the
parts give an integer parititon of n.
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⊗ ⊗ ⊗

gΓ = g43

g23 g23
g43/g4

g4

g4g
4
3/g6

g6/g4

Figure 14: We start with a two-loop 4-point graph Γ which has order gΓ =
g4g

4
3/g4 = g43. Under ∆̃core it decomposes into sub- and co-graphs with orders

g23 ⊗ g23, g
4
3/g4 ⊗ g4 and g4g

4
3/g6 ⊗ g6/g4 on the two sides. Γ allows for three

cycles with four or six external legs and is based on three- or four-valent
vertices. Note the appearance of denominators in the orders of sub- or co-
graphs. If we let Ord : Hcore → R be the map Γ → gΓ, we have Ord(Γ) =
Ord(Γ′)⊗ Ord(Γ′′) for any summand in the reduced coproduct.

To build the combinatorial Green functions we are interested in the set of
all graphs (whether core, Cutkosky, etc) with a fixed external edge structure.
From a combinatorial perspective we treat the external edges as labelled (so
permuting them will give a different graph unless some automorphism of the
rest of the graph can undo the permutation.) This implies that in the core
case the external edge structure is an ordered list of half edges, but since
there is only one type of half edge in this theory, the only information carried
by the external structure is the number of external edges. Then define the
set of core graphs with n external edges to be Sncore, and the combinatorial
Green function

Gn
core = I±

∑

Γ∈Sncore

gΓ
|Aut(Γ)|

Γ

where the sign is + if n > 2 and − if n = 2 and where Aut(Γ) is the set of
automorphisms of Γ.
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In the pre-Cutkosky and Cutkosky cases, the cuts give a set partition
structure on the external edges. The half edges are all of the same type,
so if we forget the cyclic order of the external edges, then the remaining
information carried by the external structure is only the sizes of the parts
of the set partition, that is, the information is an integer partition. This
integer partition gives the number of external edges in each piece into which
the graph must be cut. Then define, for an integer partition p, the set of
Cutkosky graphs with external structure p to be SpC . Define SppC similarly
for pre-Cutkosky.

For pairs (Γ, F ), the external leg structure is as in the Cutkosky case, but
now we define the set SpGF to be the set of pairs (Γ, F ) which are compatible
with the partition p.

Let ̸∼ be the imaginary part of the inverse free propagator (which evalu-
ates to ıπδ(p2 −m2), see Sec.(5.4.1) below). For • ∈ {C, pC,GF} define the
combinatorial Green functions to be

G1,1
• = ̸∼ +

∑

Γ∈S1,1
•

gΓ
|Aut(Γ)|

Γ,

Gp
• =

∑

Γ∈Sp•

gΓ
|Aut(Γ)|

Γ

when p has at least two parts but p ̸= (1, 1), and

G
(n)
• = I±

∑

Γ∈S(n)
core

gΓ
|Aut(Γ)|

G

when p is the partition with the single part n. In the last case the sign is −
when n = 2 and + otherwise.

Note when the partition is (n) and we are in the Cutkosky or pre-
Cutkosky case then all the graphs involved in the sum are essentially core
graphs. Specifically, the graphs are all of the form (Γ,Γ) with Γ core. Identi-

fying Γ and (Γ,Γ) in these cases we have that G
(n)
• = Gn

core for • ∈ {C, pC}.

For G
(n)
GF almost the same thing is true, except that we sum over all (Γ, T )

pairs with T a spanning tree of Γ and Γ as in the sum of Gn
core.

Note also that the G1,1
• case is quite special. It gets a positive sign despite

being an inverse propagator, as if we have a cut propagator insertion we
only want to make one cut, not a sequence of cuts, along that propagator.10

10This avoids products of distributions Θ(p2 −M2) with M a sum of masses of
cut propagators. Products would show up for repeated cuts at similar self-energies
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For the uncut inverse propagator we take the convention to include the
negative sign so that interpreting the propagator as a geometric series gives
no additional signs. The G1,1

• case has additional special properties, most
notably that no other propagator insertions can sit beside it on the same
propagator. G1,1

• is discussed in detail in Subsection 5.4.1.
Our task below is to write Gp

• as a solution to a fixed-point equation in
Hochschild cohomology, similarly to what has been done in previous work
for combinatorial Dyson–Schwinger equations.

These formal series are solutions to fixed-point equations which are for-
mulated using maps (Hopf algebra endomorphisms) Bγ

+, for suitable prim-
itive graphs γ. In the following, • can be core or pC. Under the Feynman
rules one obtains integral equations which contain information beyond per-
turbation theory [5, 43, 45, 46].

Here we define Bγ
+ as a map

Bγ
+ : H• → ⟨Hγ⟩ ⊊ Aug•.

⟨Hγ⟩ is the Q-linear span of graphs which have γ as an ultimate co-graph,
that is, ∆̃• generates Y ⊗ γ for some Y ∈ H•. Specifically, define

(5.1) Bγ
+(X) :=

∑

Γ

bij(γ,X,Γ)

|X|V

1

maxf(Γ)

1

[γ|X]
Γ

in the notation of [11, 22], where the sum is over Γ such thatX ⊗ γ appears in
the coproduct of Γ and the coefficient is designed to account for overcounting.

Since all the primitives in our context are 1-loop graphs, the coefficient in
the definition of B+ can be slightly simplified, but this will not be important
for us.

Remark 5.3. For a map B, the Hochschild one-cocyle property is

(5.2) ∆• ◦B(·) = B(·)⊗ I+ (id⊗B)∆•.

The individual maps Bγ
+ are not Hochschild one-cocycles. As in most

interesting physical situations [11] we must take a sum of Bγ
+ and apply

the resulting operator to appropriate sums of graphs to obtain the one-cocyle
property. For all our purposes we will be in such situations.

and would lead to an ill-defined product of distributions with coinciding support.
The situation is more intricate when we have flavour indices at Green functions and
their product is matrix-valued. Such a generalization is straightforward but needs
more elaborate notation.
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It will be useful in the following to collect together a product of Green
functions for each primitive graph. Recalling section 3.4 we are representing
primitive graphs by necklaces, both in the cut and uncut cases.

To a pre-Cutkosky necklace ω associated to the primitive pre-Cutkosky
graph γ assign the product of Green functions over edges ei and vertices vi,

Πω :=

vγ∏

i=1

Gvi

Gei

,

where Gei = (G1,1
pC)

−1 for ei ∈ Cγ , Gei = G2
core for ei ̸∈ Cγ and Gvi = G

p(vi)
pC

for vi a cut vertex and Gvi = G
val(vi)
core for vi an uncut vertex.

Note that for a cut edge e we have Ge = (G1,1
pC)

−1, this is because in the
definition of Πω the edge factors Ge all appear in the denominator, but the
cut edge factors should be in the numerator since an edge can only be cut
once; it cannot have a sequence of cut insertions put into it, while an uncut
edge can have a sequence of (uncut) edge inesrtions.

The Πω are reminiscent of the combinatorial invariant charges. This will
be discussed further in Remark 5.15.

The Πω can also be defined for core necklaces simply by taking the above
definition in the case that no cuts appear.

Then, using the Πω, we have the following lemma.

Lemma 5.4.

∑

γ∼p

gγ
|Aut(γ)|

Bγ
+(Πω(γ)) =

∑

Γ∼p

gΓ
|Aut(Γ)|

Γ,

where the sum on the left hand side is over all primitive pre-Cutkosky graphs
graphs γ compatible with a chosen partition p of external edges and ω(γ) is
the necklace associated to γ, while the sum on the right hand side is over all
Cutkosky graphs Γ which are compatible with p.

Proof. The coefficient in the definition of B+ is designed to divide out by the
overcounting so that each graph appears exactly 1

|Aut(γ)| times. For details,

see [11, 16] from which know that Eq.(5.1) is in accordance with graph-
counting. See also [14].

The only additional thing to prove in our case is that the couplings work
out. On the right hand side, we have gG, that is a product of a coupling for
each vertex of Γ divided by the coupling corresponding to the vertex that
would be given by the external edges of Γ were the internal edges contracted.
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On the left hand side, in the argument to B+ contributes the product of the
couplings for all vertices of the inserted graphs along with the inverse of the
couplings for all vertices given by external edges for each insertion. That is,
the argument to B+ contributes the product of the couplings for all vertices
of the inserted graphs along with the inverse of the couplings for the vertices
of γ. Multplying by gγ gives the correct order matching gΓ. □

Remark 5.5. In Figure 2 in the last line on the rhs we see a graph γ
representing a necklace ω with

Πω =
G3
core

[

G1,2
pC

]2

[G2
core]

3
.

5.2. Assembly maps vs Hochschild 1-cocycles

The infinite series alluded to above and also in Sec.(5.1) can be obtained as
solutions to fixed point equations — combinatorial Dyson–Schwinger equa-
tions — using the maps Bx

+ such that x is either in Hcore or HpC .

Remark 5.6. In such combinatorial Dyson–Schwinger equations, series of
graphs with (possibly a common partition of) given external legs form a
blob. The blob represents a place to insert into, and doing the insertion in
all possivle ways gives the series where any graph compatible with the blob
is inserted term-by-term.

Such insertions assemble new graphs from elements in such blobs, using
an underlying x providing a gluing map Bx

+. This sums over bijections be-
tween external edges of graphs in such a blob and half-edges of corollas or
edges of x as in Equation 5.1.

For a single bijection this is similar to the assembly maps of [44], and
we exhibit the similarity in the following Fig.(15).
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Φ
Γ

x

Γ1 Γ2

→

Γ ∈ Bx
+(Γ1Γ2)

Figure 15: Assembling. The dashed lines indicate an assemply map Φ (in the
notation of [44], see in particular their Fig.(7)) which glues the graphs Γ1,Γ2

to obtain Γ. Similarly, Γ shows up (we write Γ ∈ Bx
+(Γ1Γ2)) in the graphs

formed by the map Bx
+, based on a Hochschild one-cocycle Bx

+ for the graph
x, when acting on the product (disjoint union) Γ1Γ2 by inserting the three-
point graph Γ1 into the three-point vertex in x, and the four-point graph Γ2

into the four-point vertex in x. Note that vcd(Γ) = 8 and so gΓ = gvcd(Γ) if
we set gn = gn−2.

The maps Bx
+ alluded to above appear as a sum over gluing patterns

ϕ. The gluing patterns are themselves captured by the graph x into which
we insert, along with the specific bijection of external edges of the inserted
graph with half edges of the insertion places in x. An important part of the
structure of the gluing pattern is the graph x.

In [44] gluing patterns were studied for graphs Γ ∈ Xn,s where the set
Xn,s is determined by

(5.3) Γ ∈ Xn,s ⇔ n = |Γ|, s = |LΓ|.

A gluing pattern allows one to assemble Γ ∈ Xn,s from xi ∈ Xni,si , 1 ≤
i ≤ k say, using a gluing pattern ϕ a a map which identifies endpoints of
external edges e ∈ Lxi so as to glue them to edges e ∈ EΓ.
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In the notation of [44] the virtual cohomological dimension vcd forXn,s is
2n− 3 + s. We write for Γ ∈ Xn,s simply vcd(Γ) = 2n+ s− 3 and it fulfills

vcd(Γ) = (k − 1) +

k∑

i=1

vcd(xi).

This same counting is captured in our set up by replacing the coupling
constants gn with powers of a single coupling g following the rule gn = gn−2.
With this substitution we have

gΓ = gvcd(Γ).

In [44] the gluing patterns operate on single bijections and are therefore
assoiative.

This misses the Lie-algebraic structures of graph composition which are
apparent when one studies sums over bijections and hence sums over gluing
patterns.

In particular the Hochschild one-cocycles Bx
+ act to povide a sum of

gluing patterns based on the pre-Lie algebraic operation of graph insertion
as a sum over bijectios underlying DSEs.

An analysis of such sums in terms of assemply operations awaits clarifi-
cation.

Remark 5.7. In [44] graphs Γ with |Γ| = n, lΓ = s were collected in such
a set Xn,s. We then have that for any Green function we can write

Gs
core = I±

∑

Γ∈Sscore

gΓ
|Aut(Γ)|

Γ = I±
∑

n≥1

∑

Γ∈Xn,s

gΓ
|Aut(Γ)|

Γ

︸ ︷︷ ︸
=:cn,s

.

The cn,s form sub-Hopf algebras. See Lem.(5.11) and Lem.(5.14) for a gen-
eralization to Cutkosky graphs. Consequences for the groups Γn,s studied in
[44] await clarification.

5.3. Core, no cuts

For the case of two external legs there are only two primitive core graphs,
as illustrated in Figure 16. Recalling that the neckaces we use indicate the
number of external edges at each vertex, or equivalently the degree minus 2,
the necklaces corresponding to these two primitives are ω1 = 2 and ω2 = 1, 1.
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Proposition 5.8. With this notation we have for the case of two external
legs

G2
core = I−

1

2
Bω1

+ (g4Πω1
)−

1

2
Bω2

+

(
g23Πω2

)

= I−
1

2
Bω1

+

(
g4G

4
core

G2
core

)

−
1

2
Bω2

+

(
g23(G

3
core)

2

(G2
core)

2

)

,

see Fig.(16), and ∀n ≥ 3,

Gn
core = I+

1

gn

n∑

k=1

∑

|ω|=n

1

|Aut(γω)|
Bγω

+








∏

v∈V (γω)

gval(v)



Πω





= I+
1

gn

n∑

k=1

∑

|ω|=n

1

|Aut(γω)|
Bγω

+





∏

v∈V (γω)
gval(v)G

val(v)
core

(G2
core)

k



 ,

where γω is the primitive graph associated to the necklace ω and the inner
sums are over all necklaces of size n, that is with the associated graph having
n external edges.

Figure 16: The two graphs Bω1

+ (I) and Bω2

+ (I).

Corollary 5.9. The solution to these fixed point equations is

G2
core = I−

∑

Γ∈(Hcore)2

gΓΓ

|Aut(Γ)|
,

and

Gn
core = I+

∑

Γ∈(Hcore)n

gΓΓ

|Aut(Γ)|
,

where (Hcore)n is those core graphs with n external edges.

Proof. Follows from Lemma 5.4 by projecting onto those graphs which have
n external edges. □
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5.3.1. Sub-Hopf algebras and invariant charges Qi. The combina-
torial version of the invariant charge is very important here, as it is elsewhere
in Dyson-Schwinger analysis. The most important consequence of the invari-
ant charge is that it lets us write down a formula for the coproduct applied
to Green functions, and in fact these formulas show that the failure of the
Green function to be grouplike is controlled by the invariant charge.

Formulas of this form have been around since the Hopf algebraic ap-
proach to Dyson-Schwinger equations began. This idea is already implicit in
the proof of Theorem 2 and discussion beforehand in [8]. Bringing the idea
into an explicit formula, in a similar form to what we will give here, though
in a more limited context, we have Lemma 4.6 of [47]. Around the same time
is Proposition 7 and Equation 10 of [48], which is based on Proposition 16
of [49].

Subsequent formulas along these lines can be found as Theorem 1 of [50],
for QED, as Equations 46 and 47 of [51], for QCD as Equation 3.75 of [52],
and generalized to super- and non-renormalizable theories as Proposition 4.2
of [53].

These formulas also have a nice physical interpretation: there is always
one power of the invariant charge appearing on the left of the tensor for
every power of the coupling that we’re taking on the right, so the invariant
charge comes with a power of the coupling, and hence it is behaving like a
renormalization factor Zα for the coupling α. Similarly the n-point Green
function appearing on the right of the tensor is acting like a correponding
renormalization factor Zn.

Let us now give the analogous formula for the core Hopf algebra. We
will give a pre-Cutkosky version in the next subsection.

Given a sequence k = (k1, k2, . . . , ki, . . .), with all but finitely many
terms 0, we’ll use a slightly adjusted version of multi-index notation writing
gk for

gk =

∞∏

i=1

gkii+2.

We’ll also use square bracket coefficient extraction notation. That is [gk]X
is defined to be the coefficient of gk in the series X.

We define the combinatorial invariant charges for the core Hopf algebra
as follows.

Definition 5.10.

Qi+2 :=
Gi+2
core

[G2
core]

i+2

2

.
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is the i+ 2th combinatorial invariant charge.

With all this notation we find for the coproduct of the series Gn
core,

Lemma 5.11.

∆core

[

gk
]

Gn
core =

ki∑

ji=0

[

gj
]
(

Gn
core

∞∏

i=1

Qki−ji
i+2

)

⊗
[

gk−j
]

Gn
core,

for any multi-index k, where the subtraction k− j is coordinatewise.

Proof. First lets check that the same terms appear on each side and then
check that the coefficients of each term match.

A term on the left is a term in the coproduct of a graph Γ with n
external edges and with ki vertices of degree i+ 2 for i+ 2 ̸= n and kn−2 + 1
vertices of degree n. Such a graph term comes from a way of building Γ by
an insertion. In such an insertion every vertex of Γ appears exactly once
in either the subgraph or the co-graph, and additionally the co-graph has
a vertex for each external structure among the inserted graphs, including
empty insertions. Since we set up our couplings to include a factor in the
denominator for the external structure, the product of the couplings for the
subgraph and co-graph give the product of the couplings for Γ.

Furthermore, if the co-graph has ki − ji vertices of degre i+ 2 for i+ 2 ̸=
n and kn−2 − jn−2 + 1 vertices of degree n then it has that many insertion
places of those degrees and so the subgraph must come from the series
Gn
core

∏∞
i=1Q

ki−ji
i+2 . This also gives the correct number of powers of (G2

core)
−1

for the edge insertions because each vertex contributes degree many half
edges to the graph and the same number of powers of (G2

core)
−1/2 via its Q,

except for one degree n vertex which does not contribute powers of G2
core.

Every half edge except for the n external half edges is paited with another
into an internal edge, and so the power of (G2

core)
−1 is exactly corresponding

the number of internal edges.
Thus the terms on the left all appear on the right, and by the same

counting, all terms on the right also appear on the left.
It remains to check that the coefficients agree on the two sides. It is a

standard fact of enumeration that labelled counting via exponential gener-
ating series and unlabelled counting weighted by automorphism factors are
equivalent (see Lemma 2.14 of [47] for one exposition in a similar language
to the present paper). Working, then, in the labelled case, let us not collect
terms with isomorphic graphs, then a each term appears with coefficient
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1/|Γ|!. On the right, the co-graph Γ/γ appears with coefficient 1/|Γ/γ|! and
each inserted subgraph γi also appears with coefficient 1/|γi|!, but there
are (|Γ/γ|!

∏

i |γi|!) /|Γ|! many relabellings, so the specific term we are look-
ing for appears with coefficient 1/|Γ|! as desired. This argument is simply
a rewording of the fact that the product of exponential generating series
corresponds to the labelled product of the counted objects. □

The result above nicely illustrates why the negative powers in gG are
useful, namely, they mean the couplings behave well with the coproduct on
the graphs.

5.4. Core, with cuts

For ω a necklace compatible with a j-cut of a set L of n ≥ j external edges,
we find similar systems.

The cut propagator is a special situation, as analytically we can derive
that we do not need to consider propagator insertions on either side of the
cut in a cut propagator. This derivation is the main goal of Subsection 5.4.1
and once we have it in hand, the combinatorics is simpler.

5.4.1. The (inverse) propagator. For the inverse propagator which has
two external edges the only non-trivial partition is (1, 1). We thus have

(5.4) G1,1
pC = ̸∼ −

∑

ω≁∼

Bω
+ (Πω) ,

where the following eight cut necklaces ω are compatible with ̸∼:

.

Figure 17: The eight necklaces ω for the inverse propagator.

Here, Πω is given as follows. In the upper row from left to right:

{G1,1
pCG

2,2
pC , (G

1,2
pC)

2(G2
core)

2, (G2,1
pC)

2(G2
core)

2, G1,2
pCG

1,1
pCG

3
coreG

2
core}.
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In the lower row from left to right:

{G2,1
pCG

1,1
pCG

3
coreG

2
core, G

3
coreG

1,2
pCG

1,1
pCG

2
core, G

3
coreG

2,1
pCG

1,1
pCG

2
core, (G

3
core)

2(G1,1
pC)

2}.

In fact, the inverse propagator needs some more detailed care. Let
σ̃(q2,m2) = ΦR(X

−) = 1− σ̄(q2,m2) be the self-energy, where we singled
out the constant 1 = ΦR(I), and G2

core is the corresponding combinatorial
Green function.

The propagator is

P (q2,m2) =
1

q2 −m2 − σ(q2,m2)
.

We work with renormalization conditions

σ(m2,m2) = 0,

and

f(q2,m2) := ∂q2σ(q
2,m2) → f(m2,m2) = 0.

We have σ̄(q2,m2) = σ(q2,m2)/(q2 −m2), with σ̄(m2,m2) = 0, and then

P =
1

(q2 −m2)(1− σ̄(q2,m2))
.

We have

ℑ(P ) = ℑ

(
1

q2 −m2 + iι

)

ℜ

(
1

1− σ̄

)

+ ℜ

(
1

q2 −m2 + iι

)

ℑ

(
1

1− σ̄

)

As ℑ
(

1
q2−m2+iι

)

= πδ(q2 −m2), we find

ℑ

(
1

q2 −m2 + iι

)

ℜ

(
1

1− σ̄

)

= πδ(q2 −m2)ℜ

(
1

1− σ̄(q2,m2)

)

= πδ(q2 −m2)ℜ

(
1

1− σ̄(m2,m2)

)

= πδ(q2 −m2).



✐

✐

“4-Kreimer” — 2023/7/3 — 17:37 — page 144 — #58
✐

✐

✐

✐

✐

✐

144 D. Kreimer and K. Yeats

As ℜ
(

1
q2−m2+iι

)

= CP
q2−m2 , we find

ℜ

(
1

q2 −m2 + iι

)

ℑ

(
1

1− σ̄

)

=
CP

q2 −m2
ℑ(σ(q2,m2)

CP

q2 −m2
ℜ

(
1

(1− σ̄(q2,m2))2

)

,

where we used that

ℑ(σ̄n) = ℑ(σ̄)ℜ(∂σ̄σ̄
n)

and ℑ(σ̄) = ℑ(σ) CP
q2−m2 .

Accordingly, the combinatorial Green function for a cut self-energy starts
as

G1,1
pC = ̸∼ tm − g2Bω

+



(G3
core)

2

(

G̃1,1
pC

(G2
core)

2
+ ̸∼ tm

)2


+ · · · ,

where G3
core is the combinatorial Green function for the 3-point vertex, ω =

c1c1 in the notation of Section 3.4, that is, ω is the cut one-loop bubble
(the last in the lower row in Figure 17), tm is an indeterminant, one for each
distinct mass m, where m is the mass of the cut edge, and G̃1,1

pC = −G1,1
pC+ ̸∼

tm. Furthermore, ΦR( ̸∼) = πδ(q2 −m2).
By putting tm in the combinatorial Green function for the cut self-energy,

we can then extract the graphs with cuts consisting of a1 edges of mass m1

cut, a2 edges of mass m2 cut and so on, by extracting the coefficient of
ta1
m1

ta2
m2

· · · from G1,1
pC . The tm can all be set to 1 to simplify the equation

in the case where we do not want access to this information. Note that the
same coefficient extraction will give the cuts with edges of those masses cut
in the vertex functions as well, even though the Dyson-Schwinger equations
for the vertex functions have no explicit appearance of any tm. The recursive
appearances of tm from occurences of G1,1

pC suffice because only in the self-
energy function is a direct edge-cut possible.

Furthermore, note that we can set

̸∼≢∼ (G2
core)

2,

due to the propagator renormalization conditions ΦR(G
2
core)(m

2,m2) = 1.
Accordingly, we can set for ω = c1c1,

(

(G3
core)

2

(

G̃1,1
pC

(G2
core)

2
+ ̸∼ tm

))

=
(

G2
coreQ

2
(

G̃1,1
pC+ ̸∼ tm

))

,
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with Q = G3
core/(G

2
core)

3

2 . Other ω use different Q given as the coefficient of

G2
core

(

G̃1,1
pC+ ̸∼ tm

)

in the argument of Bω
+.

We can thus write the coproduct on Green functions X
P (j)
pC by coefficient

extraction on such Green functions, on Q and on G̃1,1
pC , see Lem.(5.14).

5.4.2. |LG| ⪈ 2. We now treat |LG| > 2.
Using necklaces which are pre-cut graphs in the sense of Definition A.3

we find

Proposition 5.12. With this notation we have for the case of n = 2 exter-
nal legs Equation 5.4 with eight contributing necklaces for G1,1

pC and ∀n ≥ 3,
when p has only one part Proposition 5.8 applies, while for p with at least
two parts we have

Gp
pC =

1

gn

n∑

k=1

∑

|ω|=n,ω∼p

1

|Aut(xω)|
Bγω

+








∏

v∈V (γω)

gp(v)



Πω





=
1

gn

n∑

k=1

∑

|ω|=n,ω∼p

1

|Aut(γω)|
Bγω

+





∏

v∈V (γω)
gp(v)G

p(v)
pC (G1,1

pC)
(eγω−eγ̃ω )

(G2
core)

eγ̃ω



 ,

where γω is the primitive graph associated to the necklace ω, γ̃ω is this graph
with the cuts done (see Section A.2.3), p(v) is the partition of vertex v in
γω and the inner sums are over all necklaces of size n compatible with the
partition p of n external legs, that is with the associated graph γω having n
external edges and h0(γω) = |p|.

The solutions to theses fixed-point equations are sums over Cutkosky
graphs despite the fact that the necklaces ω in Bω

+ can be pre-Cutkosky.

5.4.3. Sub-Hopf algebras and invariant charges Qi. Analogously to
Lemma 5.11, we can use the invariant charges to understand how to take the
coproduct of the series Gp

pC . Here the notion of multi-index is generalized
so that k = (kp1 , kp2 , . . .) where the ki are indexed by partitions and all

but finitely many are 0, and then gk =
∏

q g
kq
q where the product runs over

partitions q. Note that the index shift was not built in to the partitioned
couplings.



✐

✐

“4-Kreimer” — 2023/7/3 — 17:37 — page 146 — #60
✐

✐

✐

✐

✐

✐

146 D. Kreimer and K. Yeats

Definition 5.13. Define the cut invariant charges for a partition q to be

Qq :=
Gq
pC

[G2
core]

|q|

2

.

if q ̸= (1, 1) and

Q1,1 := G1,1
pCG

2
core.

Lemma 5.14.

∆pC

[

gk
]

Gp
pC =

kq∑

jq=0

[

gj
]
(

Gp
pC

∏

q

Qkq−jq
q

)

⊗
[

gk−j
]

Gp
pC ,

for any partiton p and multi-index k, where the subtraction k− j is coordi-
natewise and the product is over partitions q.

Proof. The proof is analogous to the proof of Lemma 5.11 with the ad-
dion of the need to distinguish between cut and uncut propagators. The cut
propagators are counted by the powers of g1,1 and Q1,1 is designed to sub-
stitute a G1,1

pC for an inverse core propagator Green function each time a cut
propagator appears in the co-graph. This gives the correct insertions. □

Remark 5.15. Recall Πω from Section 5. Both Πω and the Qi are prod-
ucts of combinatorial Green functions and inverses of combinatorial Green
functions, and they are closely related. The Πω are associated to a necklace,
while the Qi are essentially associated to a corolla.

We can express Πω through invariant charges Qvi, vi ∈ Vxω and inverse
propagator functions G2

core, G
1,1
pC , simply by multiplying around the necklace.

Specifically, if a necklace ω contributes to Gp
pC with p a partition of, say, n

external legs (we include the core case p = (n)) then

Πω =

vg∏

i=1

Gp
pC

Qvi

Qp
(Q1,1)

|Cg|,

with Qvi = Gvi/(G
2
core)

eval(vi)/2, Qp = Gp
pC/(G

2
core)

n/2 and Q1,1 =

G1,1
pCG

2
core, which replaces each coupling gi apparent in gxω by the cor-

responding Green function.
The relation between necklace and corolla is also a special case of the

relationship between a graph and its planar dual, so in some sense the Π
and the Q are dual to each other.
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5.4.4. Example.

G1,2
pC = g2B+

(

(G1,1
pC)

2(G3
core)

3

G2
core

)

+ g2B + + +
+

(

G1,2
pCG

1,1
pC(G

3
core)

2

(G2
core)

2

)

+ g2B + +
+

(

(G1,2
pC)

2G3
core

(G2
core)

3

)

+ g2B+

(

G4
coreG

3
core(G

1,1
pC)

2
)

+ g2B +
+

(

G4
coreG

1,2
pCG

1,1
pC

G2
core

)

+ g2B +
+

(

G1,3
pCG

3
coreG

1,1
pC

G2
core

)

+ g2B +
+

(

G2,2
pCG

3
coreG

1,1
pC

G2
core

)

+ g2B +
+

(

G2,2
pCG

1,2
pC

(G2
core)

2

)

+ g2B+

(

G2,3
pC

G2
core

)

+ · · ·

It is worth emphasizing that, as one would see from expanding out the
example, while these equations live in the pre Cutkosky universe, the series
when expanded out only include Cutkosky graphs, since Green functions for
the cut vertices have no constant term, and so for any given graph, with all
blobs substituted, the only remaining cuts are edge cuts in accordance with
Lemma 5.4 and Equation 5.4, the latter equation having a constant term ̸∼.

5.5. The coaction on Green functions

The coaction ρ from Section 4.2 and the related Galois coation (see Sec-
tion 4.2.3) can be expressed at the level of Green functions. The nicest way
to see this is to put each Green function into a matrix. The matrix also nicely
illustrates how the Green function can be refined by number of vertices and
number of cut edges as well as by loops, and connects to other work of one
of us [3, 4, 6].

To begin with, we will describe how to build a lower triangular matrix
MΓ from the Galois conjugates of a core graph Γ. Suppose Γ has n external
edges. We will view Γ as having additional external edges of momentum 0
at all vertices which do not already have an external edge, so that we can
cut all non-self-loop edges of Γ without resulting in non-physical cuts. The
entries of MΓ are all pre-Cutkosky graphs, though we will, without further
comment, identify a core graph Γ′ with the pre-Cutkosky graph (Γ′,Γ′)
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The first column of MΓ is built from the set of all graphs which can
be obtained from MΓ by contracting edges of a spanning forest of Γ.11 The
column has one such graph in each entry. The ordering is given by the
number of vertices, and within graphs with the same number of vertices an
aribtrary order is chosen. So, the top left entry of MΓ is the graph with
one vertex, as many loops as Γ and as many external edges as Γ. The entry
below this has two vertices, as may some further entries below. Next come
three vertex graphs, and finally the bottom left entry of MΓ is Γ istelf.

The main diagonal of MΓ is built from the same graphs as the first
column, in the same order, except that all non-loop edges are cut. The
top left entry is common to the first column and the main diagonal, but
fortunately, it has no non-loop edges, so this is consistent.

For 1 < j < i, the (i, j)th entry of MΓ is the pre-Cutkosky graphs whose
underlying graph is the (i, 1) entry of MΓ and whose associated graph with
any compatible forest contracted is the (j, j) entry of MΓ, if such a graph
exists, and is 0 otherwise. Observe that if such a graph exists then it is
unique because the external edges are taken as distinguishable, so we know
which vertices of Γ have been combined in the (i, 1) and (j, j) entries and
either these combinations are incompatible, or they are compatible and we
know exactly which edges to cut to get the (i, j)th entry from the underlying
graph.

Note that MΓ is built of Galois conjugates of Γ.

The next step is that we want to upgrade MΓ to include all graphs of the

Green function G
(n)
core. We will call this new matrix M . M is an infinite lower

triangular matrix whose entries are pre-Cutkosky graphs with n external
edges with nonzero momenta.

The first column of M consists of all graphs appearing in G
(n)
core with

their symmetry factors as coefficients and ordered first by loop number,
then within a loop order, ordered by number of vertices. The main diagonal
of M consists of these same graphs in the same order with all edges cut.

Analytically the main diagonal is obtained from the first column by
replacing what would be obtained from the Feynman rules by its leading
singularity.

11We will consider two graphs obtained in this way to be the same if they are
isomorphic where we take the external edges to be labelled but the internal edges
to be unlabelled. Equivalently, since we have put extra external edges so that each
vertex has at least one external edge, we can consider two graphs obtained in this
way to be the same if they are isomorphic when we take the vertices, but not the
edges, to be labelled. In particular, there is only one such graph on one vertex.
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For 1 < j < i, if the (i, 1) and (j, j) entry appear together in some MΓ,
then the (i, j)th entry is the sum of the corresponding entries from all such
MG, each scaled by their symmetry factors, otherwise the (i, j)th entry is
0.12

See Figure 18.

Remark 5.16. Note that in Figure 18 recuperating all the matrix entries
from the diagonal entries amounts to full cut reconstructibility. This is fea-
sible upon moving to the left by iterating dispersion integrals and moving up
by contracting edges e, amounting to an operator product expansion for the
merger of the two vertices given by source s(e) and target t(e), see the dis-
cussion in [4]. It is an underlying motivation of this paper that the structure
of these matrices results from an underlying cubical chain complex [24]. It
systematizes the study of cut reconstructibility in a way which generalizes
studies which at first loop order were undertaken by Britto and collaborators
[54].

Next, the cointeracting bialgebra structure discussed in Section 4.2 acts
on the matrix M .

Consider Figure 18. In the leftmost column we list some two-loop graphs

of G
(4)
core. The uppermost entry has two loops but only one vertex. The next

four entries have two loop and two vertices; they count as different when
the external edges are partitoned differently. The final two entries are the
two core graphs with two loops and three vertices. The leftmost column also
determines the diagonal by putting every edges on-shell.

Using our results in Section 4.2 we finally have

Theorem 5.17. For j = 1 the map

ρM : Mij →
∞∑

k=1

ΦR(Mkj)⊗mC(S
Φ
R ⊗ id)∆̄(Mik)

12The reason that non-trivial sums are possible in general is that we do not have
a universal labelling of vertices, only of the original n external edgs, and so different
contractions of the (i, 1)th entry can potentially give the underlying graph of the
(j, j)th entry. This could be avoided by, as in MΓ adding labelled external edges of
momentum 0 to all vertices of all graphs, at the cost of requiring extra copies of
many graphs, one for each different way the graph can be obtained as a contraction
of a larger one. The number of extra copies gets quite large as with many vertices
we need many external edges and then we have the copies of the graphs with fewer
vertices obtained by contracting these larger ones.
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0

0

0 00

0 0

0

0

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

.

Figure 18: A 7× 7 example of a matrix M . Note that we can regard any
graph Γ in this matrix as representing a sum

∑

F∼Eon
(Γ, F ) over pairs (Γ, F )

with F compatible with the set Eon indicating the chosen refinement of
LΓ in accordance with Lem.(4.10). Note that we omitted symmetry factors
|Aut(γ)| for any graphs γ in this matrix for brevity and division by this
symmetry factor is understood for each graph consistent with the appearance
of such factors in combinatorial Green functions.

is a map ρM : Gal(G,T ) → Gal
m ⊗ Gal

dr which fulfills

ρM =
∑

T∈T

ρΦ ◦ w,

based on the coaction ρ of Appendix C.
For Mij, j ≥ 2, ρM = ρΦ ◦ w is a map Gal(G,T ) → Gal

dr ⊗ Gal
dr based on the

coproduct that is given by ρ when there is no tadpole restriction.
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Remark 5.18. Note that the columns Cj, (Cj)i = (M)i,j can be generated
by Proposition 5.12. In particular also the diagonal Di = (M)i,i can be gen-
erated by setting all core Green functions to I in all invariant charges. See
also Remark 4.6.

5.6. Pairs (Γ, F ) or HC

The matrix M and Proposition 5.17 both link together the Green func-
tions and their Dyson–Schwinger equations with the Galois conjugates. The
Dyson–Schwinger equations are defined in terms of pre-Cutkosky graphs
while the latter are defined in terms of pairs (Γ, F ). This naturally leads
into the question of Dyson-Schwinger eqations for pairs (Γ, F ).

However, when we consider cuts via pairs (Γ, F ), the situation with
respect to Dyson–Schwinger equations is quite different. The valid co-graphs
in this case must still be (Γ, F ) pairs, and so we cannot contract a subgraph
which would yield a cut vertex. We cannot even contract a cut propagator
subgraph, as in the co-graph this would join two branches of the forest that
were separate in the original graph, resulting either in a cycle or a forest
with fewer trees, in either case not a valid co-graph.

This means that there are many more primitive graphs but what is
inserted into them is simpler – only uncut graphs. The primitive graphs
in HGF are of two forms: core primitives, that is one loop uncut graphs,
and cut graphs where no loops are left intact by the cut, the graphs Γj in
Equation 5.5 below. These are exactly the primitives as cut subgraphs are
not allowed in the coproduct and a cut graph with an uncut loop has that
uncut loop as a subdivergence.

Dyson–Schwinger equations can still be formed and they generate the
same Green functions since the graphs which ultimately appear in the GpC

are all Cutkosky graphs. It amounts to the same thing to write Dyson–
Schwinger equations in the vector space HC . Whether in HC or HGF , since
there are no vertex cuts, the Dyson–Schwinger equations insert core graphs
into core primitives and into graphs with no loop left intact. The only dif-
ference between the formulation in HC compared to HGF is whether or not
graphs are split into sums over compatible forests.

In HC we can set up the Dyson–Schwinger equations as follows and
the HGF case is analogous. For any partition p of LΓ we can re-write the
corresponding Green function Gp

pC as generated from 1-cocycles Bγ
+, with

γ ∈ HC and ||γ|| = 0, |γ| ≥ 1, γ ∼ p. With P0 the projection HC → H
||0||
C ,

consider Gp,0
pC = P0(G

p
pC).
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We write

Gp,0
pC =

∑

j

cjΓj ,Γj ∈ H
||0||
C ,

where cj contains gΓj and symmetry factors. Then for each Γj define

Πpj :=

∏

v∈VΓj
G

val(v)
core

∏

e∈EΓ̃j

G2
core

.

We have

(5.5) Gp
pC =

∑

j

cjB
Γj
+ (Πpj ),

by construction. For any non-trivial partition p, Γj has no loop left intact.
This way of writing the Dyson–Schwinger equations emphasizes different

aspects than the Dyson–Schwinger equations from elsewhere in this paper.
The HC or HGF perspective generates the same Green functions as the HpC

approach, but builds them by inserting core Green functions into graphs
with no loop left intact. The HC or HGF perspective does not capture the
structure of the cuts in a rich way. The insertions are core graphs and all
the cut structure is in the primitives, so these Dyson–Schwinger equations
don’t really build the cuts, they only work around them.

The HC or HGF perspective does bring up the question of characterizing
the Cutkosky graphs with no loop left intact. Such a graph after cutting falls
into a collection of cycle-free graphs, that is, it is a forest. The external edges
of the graphs act like roots in this forest, but note that there may be multiple
roots in one tree of the forest. The case where one or more trees of the forest
has no external edges will not add to monodromy apparent from varying
external momenta but can contribute when we vary internal masses or are
interested in variations off the principal sheets.

This says that the non-core primitives inHGF are multiply rooted forests
along with gluing information giving a pairing of the leaves of the forest so
that no two leaves of the same tree are paired.

Turning this around we might consider fixing a forest and looking at dif-
ferent ways to glue it according to this rule. One interesting thing to consider
is when the gluing gives a graph which is primitive in some renormalization
Hopf algebra. The simplest case of this will be studied in [55].
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6. Conclusions

There are conclusions to be drawn with regards to combinatorial Dyson–
Schwinger equations, coactions and the cointeraction.

6.1. Combinatorial Dyson–Schwinger equations

Combinatorial Dyson–Schwinger equations are fixed-point equations which
originate from the Hopf algebra structure underlying core or pre-Cutkosky
Hopf algebras.

As their solutions they generate infinite series over core or Cutkosky
graphs [5]. Applying Feynman rules to such equations delivers systems of
integral equations which generalize the well-studied Dyson–Schwinger equa-
tions for Green functions in renormalizable quantum field theories.

One finds asymptotic series in coupling parameters as formal solutions to
these equations obtained from the recursive nature of perturbation theory
[12]. Sophisticated methods of resummation exists and are recently com-
plemented by methods of resurgence. One finds that the non-perturbative
contributions which is missing in these asymptotic series can be systemati-
cally generated from the asymptotic series themselves [46].

We hope that this approach can in the future also be used here where
the systems of combinatorial Dyson–Schwinger equations given in Proposi-
tion 5.8 and Proposition 5.12 are more involved. In particular when fixing
the number of cut edges for a Green functions (computing the amplitude
for a k-particle cut with fixed k) our approach allows using a Fubini type
decomposition into a cut graph augmented (dressed) by proper renormal-
ized Green functions corresponding to full propagators and vertices as in
Eq.(5.5).

Finally given that Cutkosky cuts are intimately related to an under-
standing of the infrared sector of the theory [23] we hope that our results
on cut Dyson-Schwinger equations open an avenue to make progress in this
direction as well as indicated in Rem.(4.6). In particular the recent treat-
ment of infrared singularities [56] in the context of loop tree duality [57–59]
indicates an interplay of infrared and short distance singularities akin to the
cointeraction studied in this work.

6.2. Coactions

There are two bialgebras and accompanying coactions whose use in physics
amplitudes we illuminated.
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i) The first ∆̄core in Section 4.1 considers the treatment of loop inte-
grals for loops build from offshell edges which appear in a cut Feynman
graph. This coaction is needed in the above Fubini type decomposition of
any Cutkosky graph G into a cut bare diagram y which has no loop left
intact and loop graphs x providing radiative corrections at internal vertices
and at internal edges of y as in Remark 4.5.

ii) The second concerns the decomposition of a Feynman graph or am-
plitude according to its Hodge structure. The incidence bialgebra with its
coproduct ρ on proper Cutkosky graphs and coaction ρ on core graphs de-
livers the Hodge decomposition captured by the coaction ρ when acting on
Green functions as in Section 5.5. This delivers a solid mathematical foun-
dation to an analytic understanding of amplitudes and in particular to the
notion of coaction as promoted in one-loop examples in [54]. Furthermore it
is the starting point for a study of amplitudes as realizations of cubical chain
complexes [3]. We pointed out relations to the notion of assembly maps in
Section 5.2. First consequences for Green functions were developed in [4].

6.3. Cointeracting bialgebras

We clarified in this paper how these two coactions i) and ii) above interact.
Fortunately recent progress by Löıc Foissy [26] and others [27] provided us
with the notion of cointeracting bialgebras. It turns out that the two coaction
provide exactly that: two cointeracting bialgebras. We quote (4.2):

m1,3,24 ◦ (ρ⊗ ρ) ◦∆c = (∆c ⊗ id) ◦ ρ,

which allows us to either first decompose a graph or amplitude according to
its Hodge structure and then take care of the loop integrals, or vice versa
first to renormalize the amplitude and then determine the Hodge structure
in sub- and co-loops, leading to the map (4.5)

ρΦ := (mC ⊗Q id)(SΦ
R ⊗ Φ⊗ Φ̄)(◦w−1)⊗3 ◦ (∆c ⊗ id) ◦ ρ

= (ΦR ⊗Q Φ̄) ◦ (w−1)⊗2 ◦ ρ,

involving both ρ and ∆̄core in Φ̄ = mC(S
Φ
R ⊗ Φ) ◦ ∆̄core, and therefore illu-

minating the Hodge structure of Cutkosky cuts and renormalization in one
cointeraction.
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Appendix A. Graph set up

Here we give a formal set up for graphs and related notions as a rigorous
underpinning for all that has been discussed above.

First, we have to define graphs, and variations of that notion adopted to
the need to study Cutkosky cuts. In particular for a given partition of the
external edges L into k parts we define a corresponding notion of graph with
cuts corresponding to the parititon generalizing the notion of a Feynman
graph. Physically, the cut edges are edges which are put on-shell.

For this we have to single out the internal edges which are put on-shell.
We notate such a graph as a pair of two graphs, the first given by forgetting
the distinction of those on-shell edges, the second by regarding those on-
shell edges as two unconnected half-edges which gives us an appropriate
combinatorial handle on the analytic structure of amplitudes.

Alternately, we can encode a graph with cuts using a graph and a span-
ning forest where the cut edges are those going between different trees of
the forest. The map from a pair (Γ, F ) of a graph Γ and a spanning forest F
to a pair of two graphs (Γ, H) indicating the same cut is surjective but not
injective: there can be several forests putting the same set of edges on-shell.

A.1. Graphs and Cut Graphs

We start by defining graphs in a way which is well suited to our needs.
See [12, 47] for similar quantum field theory inspired set-ups of graphs. The
standard definition of combinatorial map, see [60], is also closely related.

A.1.1. Graphs. Given a set S a partition (or set partition) P of S is a
decomposition of S into disjoint nonempty subsets whose union is S. The
subsets forming this decomposition are the parts of P. The parts of a par-
tition are unordered, but it is often convenient to write a partition with
k parts as ∪̇ki=1Si = S with the understanding that permuting the Si still
gives the same partition. A partition P with k parts is called a k-partition
and we write k = |P|. We will also need notation for restricting a partition
to a subset. For R ⊆ S, and P = ∪̇iSi a partition of S, write P |R for the
partition of R whose parts are the nonempty Si ∩R.

Definition A.1. A graph Γ is a tuple Γ = (HΓ,VΓ, EΓ) consisting of

• HΓ, the set of half-edges of Γ,

• VΓ, a partition of HΓ with parts of cardinality at least 3 giving the
vertices of Γ,
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• EΓ, a partition of HΓ with parts of cardinality at most 2 giving the
edges of Γ.

We do not require all parts of EΓ to be of cardinality 2. The parts of
cardinality 2 we call the edges (or internal edges) of Γ; we denote the set
of them by EΓ and set eΓ := |EΓ|. The parts of cardinality 1 we call the
external edges of Γ; we denote the set of them LΓ and set lΓ := |LΓ|. Also
we set vΓ := |VΓ|.

In this formulation a graph H = (HH ,VH , EH) is a subgraph of Γ =
(HΓ,VΓ, EΓ) ifHH ⊆ HΓ, VH = VΓ|HH and EH ⊆ EΓ. Many of our subgraphs
will have the additional property that every part of VH is a part of VΓ (so
corollas are either included or not in the subgraph), but this is not included
in the definition because, while it is the correct condition for subFeynman
diagrams, it is not a desired condition for spanning trees and forests which
we also view as subgraphs.

We say that a graph Γ is connected if there is no partition of HΓ into
two sets HΓ(1), HΓ(2) such that all parts of cardinality two of EΓ are either
in HΓ(1) or in HΓ(2).

The partition VΓ collects half-edges of Γ into vertices. This formulation
of graphs does not distinguish between a vertex and the corolla of half-
edges giving that vertex. However, it is sometime useful to have notation
to distinguish when one should think of vertices as vertices and when one
should think of them as corollas. Consequently, let VΓ, the set of vertices of
Γ, be a set in bijection with the parts of VΓ, |VΓ| = vΓ = |VΓ|. This bijection
can be extended to a map νΓ : HΓ → VΓ by taking each half edge to the
vertex corresponding to the part of VΓ containing that vertex. For v ∈ VΓ

define

cv := ν−1
Γ (v) ⊂ HΓ,

to be the corolla at v, that is the part of VΓ corresponding to v. A graph Γ as
above can be regarded as a set of corollas determined by VΓ glued together
according to EΓ.

13

13To make the connection with combinatorial maps, since all parts of EΓ are of
cardinality at most 2, EΓ uniquely determines an involution of HΓ which takes a half
edge to itself if it is alone in its part and to its part-mate otherwise. In combinatorial
maps this involution is usually called α for arête, French for edge. Combinatorial
maps differ from graphs in that there is a cyclic order for the half-edges around
each vertex, thus the partition VΓ is upgraded to a permutation of HΓ with one
cycle for each vertex. This permutation is usually called σ for sommet, French for
vertex.
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For an edge e ∈ EΓ, if |νΓ(e)| = 1, we say e is a self-loop at v, with
νΓ(e) = {v}.

We emphasize that we allow multiple edges between vertices and allow
self-loops as well.

We write |Γ| := |H1(Γ)| = eΓ − vΓ + 1 for the number of independent
loops, or the dimension of the cycle space of the connected graph Γ. Note
that for disjoint unions of graphs H1, H2, we have |H1∪̇H2| = |H1|+ |H2|.

A graph is bridgeless if (Γ− e) has the same number of connected com-
ponents as Γ for any e ∈ EΓ. A graph is 1PI or 2-edge-connected if it is
both bridgeless and connected, equivalently if (Γ− e) is connected for any
e ∈ EΓ. Here, for Γ = (HΓ,VΓ, EΓ), we define

(Γ− e) := (HΓ,VΓ, E
′
Γ)

where E ′
Γ is the partition which is the same as EΓ except that the part

corresponding to e is split into two parts of size 1.
The removal Γ−X of edges forming a subgraph X ⊂ Γ is defined sim-

ilarly by splitting the parts of EΓ corresponding to edges of X. Γ−X can
contain isolated corollas.

Note that this definition is different from graph theoretic edge deletion
as all the half-edges of the graph remain and the corollas are unchanged. We
neither lose vertices nor half-edges when removing an internal edge. We just
unglue the two corollas connected by that edge, or to put it another way,
the edge is split into two external edges by separating the two half edges
forming it.

The graph resulting from the contraction of edge e, denoted Γ/e for
e ∈ EΓ, is defined to be

(A.1) Γ/e = (HΓ − e,V ′
Γ, EΓ − e)

where V ′
Γ is the partition which is the same as VΓ except that in place of

the parts cv and cw for e = {v, w}, V ′ has a single part (cv ∪ cw)− e.14

Likewise we define Γ/X, for X ⊆ Γ a (not necessarily connected) graph, to
be the graph obtained from Γ by contracting all internal edges of X ⊆ Γ.

Intuitively we can think of Γ/X as the graph resulting by shrinking all
internal edges of X to zero length:

(A.2) Γ/X = Γ|length(e)=0,e∈EX .

14We often use − for the set difference, e.g. HΓ − e = HΓ \ e.
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This intuitive definition can be made into a precise definition if we add the
notion of edge lengths to our graphs, but doing so is not to the point at
present.

We let val(v) := |cv| the degree or valence of v and eval(v) := |Lv| the
number of external edges at v.

Our interest lies in cutting bridgeless graphs into disconnected pieces
allowing for arbitrary partitions of the set LΓ. This is achieved by cuts which
partition LΓ by either removing edges from Γ or by partitioning corollas cv.

a

b

c

1

2

3

4

.

Figure A1: A graph. The external edges labeled 1, 2, 3, 4 provide four
half-edges {l1, l2, l3, l4} = L. The vertices a, b, c are all four-valent with
eval(a) = 2, eval(b) = 1 = eval(c). Between vertices b, c there are two edges
ebc(1), ebc(2) corresponding to four half-edges ebbc(1), . . . , e

c
bc(2), and four

more half-edges are provided by edges eab, eac. |H| = 12, and E consists of
four parts of cardinality two giving the four internal edges and four of car-
dinality one, namely one for each li. VΓ partitions the twelve half-edges into
three corollas of cardinality four constituting the three four-valent vertices.

A.2. Cuts

Consider a bridgeless connected graph Γ. We have

1 = h0(Γ) = |Γ| − eΓ + vΓ.

If we want to cut Γ by removing edges, the Euler characteristic demands
that we remove at least two edges.

From a physicist’s viewpoint the cut edges can also be regarded as
marked edges which are put on-shell when we apply Feynman rules.
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A.2.1. Refinements. Given two partitions P and P ′ of a set S, we say P ′

is a refinement of P if every part of P ′ is a subset of a part of P. Intuitively,
P ′ can be made from P by splitting some parts. The set of all partitions of
S with the refinement relation gives a lattice called the partition lattice (see
for example Chapter 4 of [61]). The covering relation in this lattice is the
special case of refinement where exactly one part of P is split into two parts
to give P ′.

We call a refinement maximal if it is an |S| − 1-refinement of a set S,
that is S is refined down to singletons.

A.2.2. Cuts. Let us now consider cuts. In general we will use cuts which
decompose a graph Γ into a disjoint union

∪̇ki=1Γi,

of k graphs Γi which induce a k-partition of LΓ.
Such a cut can be obtained by either removing edges from the graph,

or by splitting vertices v and therefore partitioning their corollas cv. In the
way we have defined graphs, this means that a cut can be obtained from
refining EΓ or refining VΓ. We also consider the situation where both can be
refined.

Remark A.2. We could augment this set up by carrying a maximal chain
of refinements along with every split vertex. This would allow us to add
restrictions to the refinement chain. One restriction in particular that is
useful for quantum field theory would be to require the first cut of a vertex
to be normal, that is to include internal edges on both sides of the cut. This
corresponds to the fact that the physical motivation for considering cuts is to
describe monodromy of amplitudes. If the first split of a vertex is not normal
in this way then it will not lead to monodromy of any Feynman integral.

The reader can check that the maximal chain can be carried though all
the definitions and operations that we study in this paper.

A.2.3. Pre-cut graphs.

Definition A.3. A pre-cut graph Γ is a pair of graphs
((HΓ,VΓ, EΓ), (HΓ,VH , EH)) on the same half-edges HΓ such that VH
refines VΓ and EH refines EΓ.

By abuse of notation the pre-cut graph and the unrefined graph making
it up have the same name (Γ in the above). This is because for physics
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applications we want to regard the pre-cut graph as being the original Γ
with the cut edges and split corollas marked, so we view it as a decoration
of Γ, or as Γ with extra structure added.

In view of this, it will also be useful to have the notation CΓ ⊂ EΓ for
the edges which are cut, that is for those edges in EΓ which are not edges
in EH .

We will still need unambigious notation for the two graphs making up a
pre-cut graph Γ. Given a pre-cut graph Γ we will use the notation

Γ̂ = (HΓ,VΓ, EΓ), and

Γ̃ = (HΓ,VH , EH).

We will call Γ̃ the associated graph. When it is sufficiently clear we we will
write Γ = (Γ, H) as shorthand for the two graphs making up a pre-cut graph
and may simply use H for the associated graph.

Definition A.4. For a pre-cut graph Γ we set |Γ| := |Γ̂| and ||Γ|| := |Γ̃|.

Note that (Γ,Γ) is a pre-cut graph as the trivial refinement is a refine-
ment.

There is an h0(Γ̃)-partition LΓ(h0(Γ̃)) of LΓ. We have

LΓ(h0(Γ̃)) = Γ̃/EΓ̃,

which is a h0(Γ̃)-partition of the vertex Γ̂/EΓ̂.

1

2

3
1

2

3

1

2

3
1

2

3
a a a

b
b b

c c c

B
C D

Figure A2: Pre-cut graphs. They all correspond to a 2-partition of L =
{{l1}, {l2, l3}} ∼ Γ̃/EΓ̃ for Γ any of the three graphs. B on the left is also
a cut graph, for C in the middle we have a normal cut of vertex b, for D
on the right both vertices b, c have normal cuts. For B, the set CB has two
edges, for C one, and for D none.

A.2.4. Cut graphs.

Definition A.5. A pre-cut graph Γ = ((HΓ,VΓ, EΓ), (HΓ,VΓ, EH)), that is
one where no corollas are split, is a cut graph.
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We often want to restrict the notion of cut or pre-cut graph to the
notion of Cutkosky or pre-Cutkosky graph. For that we first need to discuss
spanning forests, which is the topic of Section A.3.

A.2.5. Connection to the cut space. It is worth a brief digression to
draw the comparison between this set up and a different but related object
which is standard in graph theory, the cut space. All the graph theory facts
outlined below are standard and can be found for instance in [62].

Cuts in this context are edge cuts, not allowing splits of corollas. Fur-
thermore, they are minimal in the sense that such a cut is defined by a
bipartition of the vertices of the graph, the cut itself being exactly those
edges with one end in each part.

More specifically, given a graph Γ, assign orientations arbitrarily. For
each nontrivial ordered bipartiton of the vertices, form the signed sum of
the edges of the corresponding cut, with positive sign if the edge is oriented
from the first part to the second part and negative sign otherwise. The span
of these vectors is the cut space. It is a subspace of the vector space spanned
by the edges of the graph.

Equivalently, the cut space is the row space of the signed incidence ma-
trix of Γ. From this characterization we see that a basis of the cut space
is given by cuts which detatch exactly one vertex, running over all but one
vertex of each connected component of the graph. For Γ connected, note
that given an edge e in a spanning tree T of Γ, T − e has exactly two com-
ponents and so defines a vertex bipartition of Γ and hence a cut. Thus, in
the connected case another natural basis is given by choosing a spanning
tree and taking the cuts defined by each edge of the spanning tree.

The cut space does not tell us directly about anomalous thresholds in
quantum field theory. For instance, consider the triangle graph with edges
a, b, c, oriented cyclically. Then a− b, b− c and c− a are all elements of
the cut space and in fact any two of them generate it. However there is no
way to obtain a± b± c for any choice of signs as a linear combination of
a− b and b− c, so the more general cut of the triangle which cuts all three
edges leaving three pieces does not appear directly in the cut space. We do
obtain a− 2b+ c in the cut space, so provided we are working over a field of
characteristic not equal to 2 we do see an element with the correct support
for the cut of all three edges of the triangle, but not the correct coefficients.

More generally, working over a field of characteristic 0, define the func-
tion from an element c of the cut space to the set of edges which is the
support of c (that is the edges which have a nonzero coefficient in c). This
map gives us the sets of edges which are cuts in the sense which we are
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predominantly working with in this paper. In particular this is a function
from the cut space of Γ to the space of cut graphs on the fixed base graph Γ.
However, this is not a linear map as taking supports is not a linear operation.
The interplay of these two different vector spaces and the non-linear func-
tion connecting them hints at the subtlety of the study of cuts in quantum
field theory.

A different way to obtain simple edge sets from linear combinations of
edges is to work over the field with two elements, F2 (in some sources the
term cut space refers to this vector space). This is not so useful for the
purposes of the present paper, but one important fact of note is that the cut
space over F2 is the orthogonal complement to the cycle space of the graph.
The cycle space is defined similarly as the span of vectors which are the sum
of edges forming cycles. Over more general fields the analogue of the cycle
space is called the flow space and remains the orthogonal complement of the
cut space over the same field. Additionally, if Γ is planar the cut space of
Γ is the flow space of its planar dual. The flow space has a very physicsy
feel; it is essentially what we integrate over when doing momentum space
integrals except that momenta are vectors rather than scalars.

An important conjecture due to Tutte is that every bridgeless graph has
an element in the flow space over F5 whose support is all edes of the graph.
Such a flow is called a nowhere zero 5-flow. Tutte made this conjecture in
1954 [63] and it is demed highly important by the graph theory community.
The evident difficulty of this conjecture again shows the subtlety of taking
supports.

A.3. Spanning Forests and pre-Cutkosky graphs

We now proceed to define the notion of Cutkosky and pre-Cutkosky graphs
and to discuss the spanning trees and spanning forests that correspond to
them.

A.3.1. Cutkosky and pre-Cutkosky graphs.

Definition A.6.

• A pre-Cutkosky graph Γ is a pre-cut graph for which every edge e ∈ CΓ

has the property that the two ends of e are in different components of
Γ̃.

• A Cutkosky graph Γ is a cut graph for which every edge e ∈ CΓ has
the property that the two ends of e are in different components of Γ̃.
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A.3.2. Spanning trees and forests.

Definition A.7. A spanning tree T = (HT ,VT , ET ) of a connected graph
Γ = (HΓ,VΓ, EΓ) is a connected subgraph T ⊆ Γ such that HT ⊆ HΓ, HT ∩
LΓ = ∅, VT = VΓ, which has no cycles, i.e. is simply connected, vT − eT = 1.

ET ⊆ EΓ is the set of edges of the spanning tree.
For all T ∈ T (Γ) and e ∈ EΓ \ ET there is a unique cycle in T ∪ e. This

is called the fundamental cycle l(T, e) associated to T and e. For any fixed
spanning tree T , the fundamental cycles associated to T and each of the
edges of EΓ \ ET give a basis for the cycle space of Γ.

Definition A.8. A spanning k-forest F is similarly a disjoint union ∪̇ki=1Ti
of k trees Ti ⊆ Γ, such that ∪iVTi = VΓ. Note |Γ| = |Γ/F | for any spanning
forest F of Γ.

EF is the set of edges of F . eF =
∑

i eTi . A spanning 1-forest is a span-
ning tree.

Equivalently, a spanning k-forest is the result of taking a spanning tree
and removing (k − 1) edges from it.

Definition A.9. A spanning tree T of a pre-cut graph Γ =
((HΓ,VΓ,HΓ), (HΓ,VH , EH)) is a spanning tree of each component of the
associated graph Γ̃.

A spanning k-forest F of a pre-cut graph Γ is the result of removing
k − 1 edges from a spanning tree of Γ.

Given a spanning k-forest F of a pre-cut graph Γ, there are a number of
different sets of edges which will be important. First the edges of the forest
themselves are important. Second are the edges of Γ which are not in F
but join distinct components of F . Thinking of F as a spanning tree T with
some edges removed then all the edges of T − F are in this second class, as
well, typically, as others. Third are the edges of G which are not in F but
have both ends in the same tree of F . The second and third sets of edges
above are those which will ultimately be put on-shell, while those in the first
set remain off-shell.

We will use the notation ĔF for the second of the above sets of edges:

ĔF := {e ∈ EΓ| e ̸∈ EF , |νG/F (e) ∩ VΓ/(F∩Γ)| = 2}

Definition A.10. A spanning k-forest F for a pre-cut graph Γ is a com-
patible spanning forest if ∅ = CΓ ∩ EF and CΓ = ĔF .
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That is, a spanning forest is compatible if the vertex partition induced
by the trees of the spanning forest agrees with the cut or pre-cut of Γ.
Compatibility ensures that the spanning forest is in accordance with the
chosen refinements VH , EH .

Lemma A.11.

• A pre-Cutkosky graph Γ is a pre-cut graph Γ for which a compatible
spanning forest F exists.

• A Cutkosky graph Γ is a cut graph for which a compatible spanning
forest F exists.

Proof. Assume Γ is Cutkosky or pre-Cutkosky. Choose a spanning tree of
each component of Γ̃, and call that forest F . Since all cut edges go between
two different components of Γ̃, all cut edges are in ĔF . Since F consists of
spanning trees of the components of Γ̃, no other edges are in ĔF , and hence
F is a compatible forest.

Assume Γ is cut or pre-cut and has a compatible forest F , then all cut
edges are in ĔF and hence join disjoint components of Γ̃ so Γ is Cutkosky
or pre-Cutkosky respectively. □

Note h0(Γ̃) = h0(F ) for a compatible F .

a

b

c

1

2

3

4

e3
e4

Figure A3: Neither Cutkosky nor pre-Cutkosky. The only possible spanning
forest is vertex a together with edge e3. But edge e4 ∈ CΓ connects with
both ends to the same component e3 of the spanning forest. On the other
hand, in previous Figure A2 we have from left to right a Cutkosky and two
pre-Cutkosky graphs.
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Remark A.12. Accompanying an ordering of edges in spanning trees is the
notion of a cubical chain complex [3, 24] which we use in Secs.(4.3,4.2,5.5)
when we study sector decompositions and Hodge structures underlying the
combinatorics of cut graphs.

Observe that Γ̃ is a union

Γ̃ =
⋃

i

Γi

of k mutually disjoint connected graphs Γi ⊆ Γ̃, 1 ≤ i ≤ k such that VΓi =
VTi and Γ̃i includes all internal edges of Γ̃ with both ends in VTi (that is, Γi
is the subgraph induced by VTi .) The pair (Γ, F ) defines hence a set of pairs
(Γi, Ti). The one-vertex graph ri := Γi/Ti defines a rose ri on |Γi| petals.

Let us finally collect the various edge sets in play in a definition.

Definition A.13. The set Eoff = Eoff (Γ) of edges of a pair of a pre-cut
graph Γ with compatible forest F is the set Eoff = EF . The set Eon = Eon(Γ)

is the complement of Eoff in the set of all internal edges of the graph Γ̂ =
(HΓ,VΓ, EΓ). Note that EΓ̂ = Eon ∪ Eoff .

Note that Eon contains the edges in ĔF as well as the edges e ∈ ri which
shrink to self-loops in the quotient Γ̃/EF .

A.4. Sub- and co-graphs

We already have a notion of subgraph. Now we need to extend to a notion
of subgraph for pre-cut graphs and all the other types of graphs we have
built on the pre-cut graphs. Since these will be subgraphs that we will use
for building coproducts we will take a more restricted notion of subgraph
than what we used for the basic graphs. Specifically, these subgraphs will
be full at the vertices in the sense that if a vertex appears in the subgraph
then its whole corolla must appear, and furthermore these subgraphs will be
bridgeless, but not necessarily connected. If γ ⊊ Γ is such a subgraph then
to the pair (γ,Γ), we can assign a co-graph Γ/γ as described below. Sub-
and co-graphs as defined here are the ones we need in Section 3 to build
Hopf algebra structures on the types of graphs introduced so far.

First consider ⟨H•⟩, • ∈ {core, pC, . . .} to be the Q-vectorspace gener-
ated by single bridgeless graphs of the indicated type. This gives rise to a free
commutative Q-algebra structure generated by such graphs by considering
disjoint union as a commutative product.
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To prepare for more structure we now turn to investigate sub- and co-
graphs.

A.4.1. Subgraphs. Consider a pre-cut graph

Γ = ((HΓ,VΓ, EΓ), (HΓ,VH , EH)).

We say that a pre-cut graph γ = ∪̇iγi, with each γi connected and bridgeless,
is a proper subgraph γ ⊊ Γ of Γ if and only if each γi is a proper subgraph
of Γ. The definition for connected subgraphs is as follows:

Definition A.14. A connected pre-cut graph

γ = ((Hγ ,Vγ , Eγ), (Hγ ,Vh, Eh))

is a subgraph of the pre-cut graph Γ, γ ⊆ Γ if and only if

1) Hγ ⊆ HΓ,

2) each part of Vγ is a part of VΓ and each part of Vh is a part of VH ,

3) Eγ is a refinement of EΓ|Hγ and Eh is a refinement of EH |Hγ ,

4) (recalling that every part of a E-set is either of size 1 or 2) for any part
of EH which is refined into two parts in Eh the corresponding part in
EΓ is also refined into two parts in Eγ ,

5) γ is bridgeless.

A subgraph γ ⊆ Γ is proper, γ ⊊ Γ, if either Hγ ⊊ HΓ or Eγ is a nontrivial
refinement of EΓ.

The third last restriction says that a subgraph of a pre-cut graph cannot
define extra of its edges to be cut; it can only inherit the cuts from the
original pre-cut graph.

To emphasize one of the comments before, note that under this definition
a subgraph must be bridgeless, unlike what one might expect from a pure
graph theoretical perspective. This is as it should be for our Hopf algebras.

Note that a graph Γ = ((HΓ,VΓ, EΓ), (HΓ,VΓ, EΓ)) without cuts has sub-
graphs γ = ((Hγ ,Vγ , Eγ), (Hγ ,Vγ , Eγ)) without cuts. Compared to our origi-
nal definition of subgraph of a graph (HΓ,VΓ, EΓ), the subgraph γ as defined
in this section is more restrictive as γ must be bridgeless and must be full
at the vertices.
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Furthermore a pre-cut graph which is pre-Cutkosky will have pre-
Cutkosky subgraphs, as compatible forests are preserved in the above defi-
nitions, likewise for cut graphs and Cutkosky graphs due to the fullness at
the vertices.

Lemma A.15. Let the pre-cut graph γ be a subgraph of the pre-cut graph
Γ. Then

• γ̂ is a subgraph of Γ̂ in the sense of Section A.1.1,

• γ̂ determines γ,

• if γ′ is any subgraph of Γ̂ that is bridgeless and every part of Vγ′ is a
part of VΓ then γ′ = γ̂ for a pre-cut subgraph γ of Γ.

Proof. The first point is immediate from the definitions since EΓ is a set in
bijection with the size 2 parts of EΓ, so saying Eγ ⊆ EΓ just means that Eγ
refines EΓ.

For the second point, γ̂ immediately determines Hγ , Vγ and Eγ . Each
part of Vh is a part of VH and Vh is a partition of Hγ , so Vh is simply those
parts of VH which are contained in Hγ . This is a refinement of Vγ , since
VH is a refinement of VΓ. The third last point of the definition of a pre-cut
subgraph tells us that Eh refines EH |Hγ only when Eγ refines EΓ|Hγ and so
Eh is also determined by γ̂.

For the final point we can follow the steps of the second point provided
γ′ is bridgelss and each part of Vγ′ is a part of VΓ. □

A.4.2. Co-graphs. For γ ⊊ Γ, we can form the co-graph Γ/γ. We first
consider the case of a connected subgraph γ with lγ ≥ 3.

Definition A.16. For lγ ≥ 3, the co-graph Γ/γ is the graph

((HΓ/γ ,VΓ/γ , EΓ/γ), (HΓ/γ ,VH/h, EH/h)),

where

1) HΓ/γ = (HΓ \Hγ)∪̇Lγ ,

2) VΓ/γ = (VΓ|HΓ\Hγ )∪̇Lγ and VH/h = (VH |HΓ\Hγ )∪̇γ/γ̃ where we regard
γ/γ̃ as a partition of Lγ into parts according to the connected compo-
nents of the associated graph γ̃.

3) EΓ/γ = EΓ|HΓ/γ
and EH/h = E|HΓ/h

.
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This is different for the case lγ = 2. In that case we define

Definition A.17. For lγ = 2, the co-graph Γ/γ is

((HΓ/γ ,VΓ/γ , EΓ/γ), (HΓ/γ ,VH/h, EH/h)),

where

1) HΓ/γ = (HΓ \Hγ),

2) VΓ/γ = VΓ|HΓ/γ
and VH/h = VH |HΓ/γ

,

3) let e1, e2 ∈ EG be the two unique edges such that Lg ∩ ei ̸=
∅, and let h1, h2 be the two half edgs in those edges which
are not in Lγ , then VΓ/γ = (VΓ|HΓ/γ\{h1,h2})∪̇{h1, h2} and VH/h =
(VH |HG/g\{h1,h2})∪̇{h1}, ∪̇{h2}.

Note that in the above, when we take a partition and then ∪̇ one or
two additional sets then we are adding those additional sets as parts to the
partition, and likewise the ∪̇ of two partitions of disjoint sets is the partition
whose parts are the parts of the two partitions.

Remark A.18. This is one point where including the chain of refinements
with a normality condition does need consideration as by this definition Γ/γ
may or may not be a pre-cut graph as the normality condition of vertex cuts
may or may not be satisfied. If we were to require a normality condition
then when we used this co-graph construction for a Hopf algebra, we would
restrict to only those subgraphs which do give the normality condition for
Γ/γ and hence for which γ and Γ/γ are both pre-cut.

For γ = ∪̇ki=1γi we set Γ/γ = Γ/γ1/γ2 · · · /γk dividing from left to right.
By the disjointness of the γi, changing the order of the γi does not affect
the co-graph.

Figure A4 gives an example for an uncut graph.

A.4.3. Decomposing graphs. With the notion of sub- and co-graph,
we note that each choice of a sub-graph γ ⊊ Γ gives rise to a pair (γ,Γ/γ).
Summing over all such pairs, sometimes with appropriate restrictions, gives
rise to a coproduct which we discuss in Section 3.
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Figure A4: An uncut graph with labeled half-edges. We introduce a map ∆
which decomposes the graph into its subgraphs γ and co-graphs Γ/γ and
notate this as γ ⊗ Γ/γ. In the first term on the rhs, note that we have lγ = 2
and half-edges 6, 11 are external to γ but do not appear as half-edges of
Γ/γ. Note that half-edges 5, 12 form an edge in Γ/γ. The next term gives a
subgraph γ withHγ = HΓ, but half-edges 7, 8 are external in γ while internal
in Γ and Γ/γ. In the last term, half-edges 7, 8 and 9, 10 switch roles.

We can also consider pairs (Γ, F ) of a graph and a spanning forest. To
such a pair, as a sub-construction we have to find pairs (γ, f) of sub-graphs
and sub-forests and corresponding pairs (Γ/γ, F/f) of co-graphs and co-
forests.

For a pair (Γ, F ) of a graph and a forest and lγ ≥ 3, to any subgraph γ of
Γ as defined above we have an accompanying subforest f := F ∩ γ (formed
precisely of those edges of F which are also edges of γ) and a corresponding
co-graph Γ/γ and co-forest F/f (this contraction is usual graph contraction).
Note that the co-forest, as defined here, is not necessarily a forest, however
we will only be interested in the situations where F/f is a forest. To this
end we say that (γ, f) is sub to (Γ, F ), if and only if γ is a subgraph of Γ
and F/f is a forest of Γ/γ. As an example where this is important, consider
Figure A5. In the figure, note that there is not a term for the subgraph
where the internal edges of γ consist of 2, 3, 5, 6, 7, 8, 11, 12, 14, 15. For this
value of γ and the marked spanning tree, the co-forest is the loop 9, 10 whish
is certainly not a forest. Additionally, what should be a spanning subtree of
γ is actually a spanning subforest, with one component of the forest being
an isolated vertex; this is not a problem in and of itself, but this change in
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number of components indicates that the co-forest will contain cycles and
so not be a forest.

For lγ = 2, we proceed as above with the understanding that if the half-
edges in Lγ , h1(γ), h2(γ), are both in the spanning forest F of Γ, then the
edge formed of their other halves in Γ/γ is in the spanning forest of Γ/γ, else
it is not. This is in accordance with the treatment of self-enery sub-graphs
in [22].

The next two figures are instructive.
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Figure A5: A graph and spanning tree with labeled half-edges. The spanning
tree is indicated by thickened edges, so the pair (Γ, T ) is given by graph Γ
with bold edges for T . Note that in the first co-graph on the right, the edge
(5, 12) is not part of the spanning tree, even if the half-edge 5 was part of
the spanning tree of Γ.

It is also instructive to study an example with forests.
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Figure A6: A graph and a spanning forest again indicated by bold edges.
We also indicate the separation of the graph induced by the Cutkosky cut.
While we start with a graph which is Cutkosky, the decomposition generates
graphs which are pre-Cutkosky.

A.4.4. Composing graphs. Dual to a decomposition of graphs, we can
compose large graphs from smaller ones. This is based on summing over all
bijections between the external legs Lγ of a graph γ to be inserted with the
half-edges at an insertion place of a graph Γ in which we insert. For lγ = 2,
all internal edges e ∈ EΓ are insertion places and we insert by identifying
the two half-edges of Lγ with the two half-edges of e, whilst for lγ ≥ 3, we
sum for each vertex v ∈ G over all bijections of Lγ with cv, and we take
the pairing between Lγ and cv given by the bijection as defining new edges.
Figure A7 gives an example. The resulting compositions give rise to a pre-Lie
structure as discussed in Section 3.

Note that the parts of the vertex partition VΓ provide the insertion
places for the insertion of vertex graphs and the parts of the edge partition
EΓ provide the insertion places for self-energy graphs.

When inserting (pre)-Cutkosky graphs, the partition of Lγ for lγ ≥ 3
given by the cut has to match the vertex partitions of the parts of VΓ in VH
and similarly for lγ = 2 and edge partitions.
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⋆ = +

+ + + +

Figure A7: Composing for the example of Cutkosky graphs.

The generalization to the composition of pairs (γ, f) with pairs (Γ, F ) is
straighforward as the spanning forests of the parts combine to the spanning
forest of the composed graph.

Also the graphs γ to be inserted do not have to be bridgeless as for the
insertion only the set Lγ is relevant; no information on the internal structure
of γ is needed.

Appendix B. Feynman rules

It is useful to collect some properties of Feynman rules which illuminate why
the coactions in Section 4 are useful.

B.1. The space of external parameters

Below we consider two variants of the renormalized Feynman rules ΦR :
H• → C, Γ → ΦR(Γ). Both have in common that the function ΦR(Γ) =
ΦR(Γ)(q) is a function of a vector q and of masses. We first describe this
dependence.

The Feynman integral ΦR(Γ)(q) is function of a vector q ∈ QL = QL(Γ),
where QL is a real vector space of dimension lΓ(lΓ − 1)/2 spanned by Lorentz
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invariants.15

q(ei) · q(ej) = (q(ei)
2 + q(ej)

2 − (q(ei)− q(ej))
2)/2, ∀ei, ej ∈ LG.

Here q(ei) ∈ MD is a D-dimensional vector (q0(ei), q1(ei), . . . qD−1(ei))
T,

qj(ei) ∈ C, j = 0, . . . , D − 1 and qj(ei)
2 := qj(ei)q̄j(ei) = |qj(ei)|

2.

q(ei) · q(ei) = q(ei)
2 = |q0(ei)|

2 − |q1(ei)|
2 − . . .− |qD−1(ei)|

2.

Note |qi(ej)| ≥ 0 while −∞ ≤ q(ei)
2 ≤ +∞.

A choice of a two-partition p2 : V1∪̇V2 = VG of vertices of Γ defines
a vector s = s(p2) := (

∑

j∈V1
qej )

2 ∈ QL. This decomposes QL = QL
⊥ × R0

where R0 is the one-dimensional real vectorspace spanned by s. We write
ΦR(Γ)(q) = ΦR(Γ)(s, q⊥) correspondingly.

In physics one often tends to complexify and replaces QL = QL(R)
through QL = QL(C) by allowing the scalar products q(ei) · q(ei) to take
complex values. For a mathematical analysis see Sec.(6) of [64]. We follow
this set-up but restrict to the complexification of a normal threshold variable
s defined by any 2-partition.

We set QL(C) ⊋ QL
C := QL

⊥ × C0 where C0 is the one-dimensional com-
plex vectorspace where we allow s ∈ C whilst we keep QL

⊥ = QL
⊥(R) real.

Note that QL
C = QL

C(p2) depends on the chosen 2-partition p2 and different
choices for p2 lead to different subspaces QL

C of the p2-independent Q
L(C).

For chosen p2 and fixed q⊥ and any Γ we consider ΦR(Γ)(s, q⊥) as a
function

ΦR(Γ)(·, q⊥) : X|Γ|,lΓ × C → C,

where all mass squares m2
e, e ∈ EΓ are kept fixed and X|Γ|,lΓ is defined in

Equation 5.3.
For a core graph Γ a cut through edges e ∈ CΓ compatible with p2 de-

termines a Cutkosky graph Γ \ CΓ such that ΦR(Γ)(s, q⊥) has a singularity
at s = s0 := (

∑

e∈Ce
me)

2 and for s > s0,

ℑ(ΦR(Γ)(s, q⊥)) = ΦR(Γ \ CΓ).

Refinements of p2 determine further singular points si ∈ R, i ⪈ 0 with
monodromy ΦR(Γ)(si, q⊥). In Section 10 of [4] the reader finds an example

15We assume lΓ ≤ D. Else, the vector space QL has a dimension dim(QL) ≤
lΓ(lΓ − 1)/2 as D dimensions can only accomodate D independent momenta. For
example for D = 4, dim(QL) = 4lΓ − 10 for lΓ ≥ 4. See Sec.(6) in [64] and Sec.(6-
2-4) in [65]. This does not alter our approach in any essential way.
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for the triangle graph with a normal threshold s0 = snormal > 0 in a variable
s determined by a 2-partition of its three vertices and a further anomalous
threshold at a point sanom = s1, 0 < s1 < s0 determined by refining the par-
tition to the leading 3-partition of the vertices.

Remark B.1. For any chosen p2 and real q⊥ the domain,

Dp2 = {q ∈ QL(C) ∩ ℑ(ΦR(Γ)(s, q⊥)) = 0} ⊆ Rs− ×QL
⊥(R), ∀p2,

where Rs− is the real open half-axis [−∞, s−[ and s− the lowest (anomalous)
threshold in all refinements of p2. It is commonly conjectured that the inter-
section over all 2-partitions p2 of VΓ, ∩psDp2, is non-empty and allows for
analytic continuations of ΦR(Γ)(q) to boundary values of analytic functions.

We now define ΦR(Γ)(q) in parametric and momentum space renormal-
ization. Here q ∈ QL. In the notation ΦR(Γ)(q) it is understood that the
renormalized Feynman rules ΦR are not only parametrized by q but also
by a renormalization point µ ∈ QL and we use ΦR(Γ)(q) as a shorthand for
ΦR(Γ)(q, µ). Furthermore for parametric renormalization we give results for
Γ a core graph and for momentum space renormalization we give results for
Γ a more general Cutkosky graph. An extended discussion is in [4].

B.2. Parametric Feynman rules

Parametric Feynman rules are based on the use of the two well-known
Symanzik polynomials sΦ, sψ, see for example [22].16

Renormalized amplitudes in D dimensions of spacetime in the paramet-
ric representation deliver for a graph Γ a renormalized integrand IntR(Γ)
which is a form

(B.1) IntR(Γ)(q, p) =
∑

F

(−1)|F |
ln
(

sφ(Γ/F )sψ(F )+sφ0(F )sψ(Γ/F )
sφ0(Γ/F )sψ(F )+sφ0(F )sψ(Γ/F )

)

sψ
D/2(Γ/F )sψD/2(F )

ΩΓ,

in the notation of [3, 22]. Here p ∈ PΓ = PeΓ−1(R+) varies as a function of
the edge lengths Ae ≥ 0 and q ∈ QL = QL(Γ) is a point in the vectorspace of
Lorentz invariants q(h) · q(g) spanned by vectors q(h), q(g), for all g, h ∈ LΓ

16We let sΦ be the second Symanzik polynomial with masses and sψ be the first
Symanzik polynomial.
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as above. Furthermore,

ΩΓ =
∑

j

(−1)jdA1 ∧ · · · ∧ dAj−1 ∧ dAj+1 ∧ . . . ∧ dAeΓ ,

where dAj is ommitted. For sϕ0 in the above the subscript 0 indicates a
renormalization point µ ∈ QL to be used in the evaluation of the second
Symanzik polynomial sϕ : QL × PΓ → C.

The renormalized Feynman integral is

ΦR(Γ)(q) =

∫

PΓ

IntR(Γ)(q, p).

Note that the above is true if the graph Γ and therefore all its co-graphs is
overall logarithmic divergent (ω(Γ) = 0) and so are its divergent subgraphs.

Other degrees of divergence ω(Γ) > 0 of Γ demand subtractions such that
the first ω(Γ) + 1 Taylor coefficients vanish when expanding ΦR(Γ)(q, p) in q
around the renormalization point q0 and modify the above formula slightly.
See [22]. Here ω(Γ) = (|Γ| ×D − 2eΓ)/2 in the conventions of [22].

Note that IntR(Γ)(q, p) is a log-rational function of p which is well-defined
in the interior of the simplex Ae ⪈ 0 by assumption (so we assume there are
no singularities when a subset of the Ae becomes large, a corresponding
singularity would be known as an infrared singularity in physicics parlance).

It is also well-defined along Ae ≥ 0 including the boundaries thanks to
the signed forest sum for the antipode Sren in a suitable renormalization
Hopf algebra Hren, a suitable quotient (see Section 3.2) of the core Hopf
algebra,

(B.2) Sren(Γ) = −
∑

F

(−1)|F |F × Γ/F,

apparent in Equation B.1. The latter sum reflects the presence of the an-
tipode SΦ

R in

ΦR = mC(S
Φ
R ⊗ Φ)∆ren and

SΦ
R = −R

(
mC(S

Φ
R ⊗ Φ ◦ Paug)∆ren

)
.

Paug is the projection into the augmentation ideal Aug(Hren).
This goes back to the interplay between Zimmermann’s forest formula

and factorization properties of the above sψ and sϕ polynomials

sψ(Γ) = sψ(Γ/F )sψ(F ) +RΓ
F , sϕ(Γ) = sϕ(Γ/F )sψ(F ) + R̃Γ

F ,
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with remainders RΓ
F , R̃

Γ
F which are of higher degree in the edge variables

Ae, e ∈ EF provided by F than is sψ(F ).
Hence poles along Ae = 0 are eliminated [22] in the signed forest sum

Eq.(B.2) above. Note that for sψ(Γ) to vanish we need that a subset Ae, e ∈
E tends to zero where the set E covers a loop.

B.3. Momentum space Feynman rules

For momentum space Feynman rules we follow [4, 22] and quote from [4]
where details can be found.

For a core graph Γ the renormalized integral ΦR(Γ)(q), q ∈ QL, is given
as

ΦR(Γ)(q) =

∫ ∞

−∞

|Γ|
∏

i=1

dki,0

|Γ|
∏

j=1

∫

dD−1k⃗(j)

(
1

∏

e∈EΓ
Qe

)R

︸ ︷︷ ︸

Int(Γ)(q,k)

=

ξΓ∑

i=1











|Γ|
∏

j=1

∫

dD−1k⃗(j)



×






|Γ|
∏

j=1

∑

T∈T (γ
(i)
j )

p̄f(T )






R

k0(j)=+
√

k⃗(j)2−m2
T́
+iη

×
1

+
√

k⃗2 −m2
T́
+ iη






.

The above renormalized product over quadrics
(
∏

e
1
Qe

)R
corresponds to

a signed forest sum over such products where in each element γ ∈ F of a
forest F the momenta external to the internal momenta of γ are evaluated
according to the kinematic renormalization conditions for graphs with lΓ
external legs. The unrenormalized product

(
∏

e
1
Qe

)

delivers the unrenor-

malized Feynman integrand in momentum space, see [4] for details.
This can be written as a sum over all spanning trees of Γ together with

a sum of all orderings of the space like integrations in accordance with the
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flag structure and we find ΦR(Γ)(q) =
∑

T∈T (Γ)ΦR(ΓT ),

ΦR(ΓT ) =
∑

σ∈S|Γ|

∫

0<sσ(|Γ|)<···<sσ(1)<∞

(
∏

e∈ET

1

Qe

)R

k(j)20=sj+m
2
j , j ̸∈ET

×(B.3)

×
1

+
√

k⃗2 −m2
T́
+ iη

∏

j ̸∈ET

ds(j).

Here Qe are the quadrics assigned to internal edges e and ξΓ is the number

of flags (summands) in ∆̃
|Γ|−1
core (Γ).

For a Cutkosky graph Γ, |Γ| ⪈ ||Γ|| so that ∆̄0(Γ) = γ ⊗ Γ/γ, we have

ΦR(Γ) := Φ̄(Γ),

as only the subloops left intact, provided by γ, have to be renormalized and
so

ΦR(Γ)(q) =

∫ |Γ/γ|
∏

j=1

dDkj

(

1
∏

e∈EF0
Qe

)

∩
f∈E

Γ/γ
on

(Qf=0)

×(B.4)

×
∑

t∈T (γ)

ΦR(γt)
︷ ︸︸ ︷

∫ |γ|
∏

j=1

dDkj

(
∏

e∈Et

1

Qe

)R

∩f∈(Eγ−Et)(Qf=0)
︸ ︷︷ ︸

ΦR(γ)

,

where the superscript R indicates to sum over all terms needed for renor-
malization as before, using that the renormalization Hopf algebra Hren is a
quotient of Hcore and coacts accordingly as we used in Sec.(4.1).

Remark B.2. Let us consider how to handle higher degrees of divergence
ω(Γ) > 0 when renormalizing products

P (Γ)(q) :=

(
∏

e∈ET

1

Qe

)

.

For a Feynman graph Γ with space of external kinematics QL = QL(Γ),
the complex vector space of invariants q(e) · q(f), e, f ∈ LΓ, fix a real
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point µ ∈ QL in generic position (away from monodromies). The prod-
uct P (Γ) = P (Γ)(q), q ∈ QL is a function of q ∈ QL. For ω(Γ) = 0, renor-
malization of the overall divergence proceeds by subtraction PR(Γ)(q, µ) =
P (Γ)(q)− P (Γ)(µ). The Taylor multi-variable expansion T (P (Γ))(q, µ) ex-
pansion of P (Γ)(q) near µ is

T (P (Γ))(q, µ) =
∑

|α|>0

(q − µ)α

α!
(∂αP (Γ))(µ),

where a multi-index notation adopted to the fact that QΓ is a higher dimen-
sional vector space is understood. Let T (P (Γ))(q, µ)[j] be the terms up to
order |α|j in this, so T (P (Γ))(q, µ)[0] = P (Γ)(µ) and we have

PR(Γ)(q, µ) = P (Γ)(q)− T (P (Γ))(q, µ)[ω(Γ)],

for general ω(Γ) ≥ 0. The iteration of this renormalization to treat divergent
subgraphs is compatible with the Hopf algebra structure of renormalization
and the corresponding forest formula [7, 66].

Appendix C. Cointeraction

In this appendix we define and prove the existence of cointeracting bialgebras
underlying monodromies and renormalization.

C.1. The incidence coalgebra IN of a set N

We start from a partially ordered set N with partial order ⊆. For x, y ∈ N ,
x ⊆ y, define the interval

[x, y] = {z ∈ N |x ⊆ z ⊆ y}.

N gives rise to an incidence coalgebra denoted by IN upon setting

ρ : IN → IN ⊗ IN , ρ([x, y]) =
∑

x⊆z⊆y

[x, z]⊗ [z, y],

for the coproduct ρ and

Î([x, y]) = δx,y,

for the counit Î : IN → Q, where δx,y = 1, x = y, δx,y = 0 otherwise. See [67]
for details.
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Note that ρ([x, x]) = [x, x]⊗ [x, x] is group-like.
Consider the Q vector space I0N generated by intervals [∅, x], x ∈ N . As

long as N ̸= ∅, we have I0N ⊊ IN as vector spaces. The coproduct ρ maps
I0N to I0N ⊗ IN .

In what follows we will work with a modified version of ρ where we
carry around some additional structure. Additionally, the modified ρ will
put some restrictions on z which are too close to x in the coproduct formula
(in a sense that will be defined precisely in Section C.3). This will make it
a coproduct only on a smaller space and a coaction more generally.

C.2. Cointeraction motivation

We begin with a graph and spanning tree (Γ, T ) which will remain fixed for
the following. As discussed in the section on Galois conjugates, Section 4.2.1,
we will be interested in the sitation where we have two disjoint sets p and
q of edges of T where we view p as edges to contract and q as edges to
put on shell, or more combinatorially, edges to remove from T , leaving a
spanning forest and hence inducing a cut of Γ. That is, we are interested in
(Γ/p, T/p\q).

For the cointeraction the graph structure itself will not be important.
All that we will need is that given an edge e ∈ EΓ\ET we have an associated
subset of ET , namely the fundamental cycle associated with e, but we will
only need that it is a subset. Let f : (EΓ\ET ) → P(ET ) be the function
giving this association, where P indicates the power set. In other words,
f(e) = te, but it will be useful in the following to have function notation for
this association. Furthermore, define EL = EΓ\ET .

For the purposes of the Hopf algebra structure on (Γ, T ), the subgraphs
that play a role are exactly those which are formed of a union of fundamental
cycles, and so to characterize such a subgraph we only need to give a subset
of EΓ\ET .

Furthermore, in the output of the coproduct, the co-graph is also de-
termined by a subset of EΓ\ET , provided we also know the subgraph (as
a subset). The reason for this is that the subset for the subgraph tells us
which fundamental cycles to contract and the subset for the co-graph tells us
which remaining fundamental cycles to keep. The same holds for the results
of iterated coproducts, simply contract everything appearing to the left and
let the subset determine which cycles to keep for the current graph.

In view of this, all we need are subsets B of EΓ\ET to play the role of
subgraphs and co-graphs. To keep track of the tree edges which are cut or
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contracted, we need an interval in P(ET ) which we interpret as [q, ET \ p].
For a subset B, the interval should be in P(f(B)).

Finally, for the second bialgebra structure, we may want to indicate
some edges of EL which are allowable as tadpoles17 while others are not.
Let EM ⊆ EL be the set of edges which may not appear as tadpoles. This
interpolates between the situation where all tadpoles are allowed, and the
situation where all tadpoles vanish, as they do in a kinematic renormalization
scheme or for massless tadpoles in dimensional regularization, and so allows
one framework to cover both cases. One could have a renormalization scheme
where some tadpoles vanish but others do not, based, say, on the masses of
the edges. This would also fit the framework.

C.3. Cointeracting bialgebras

Given two sets ET ⊆ EΓ and a function f : (EΓ\ET ) → P(ET ) we will build
a cointeracting bialgebra structure as follows.

The underlying vector space of the bialgebras is the span of the set of for-
mal symbols B[A1,A2] where B ⊆ EL and [A1, A2] is an interval in P(f(B)).
Let this set be A.

Write A|A′ for the set A restricted to the set A′, that is for A ∩A′. The
product is

m(B
[A1,A2]
1 , B

[A3,A4]
2 ) =







(B1 ∪B2)
[A1∪A3,A2∪A4]

if B1 ∩B2 = ∅, A1|A′ = A3|A′

and A2|A′ = A4|A′ ;

0 otherwise,

where A′ = f(B1) ∩ f(B2). The unit for this product is I = ∅[∅,∅].
The product looks a bit messy, but the idea is not so complicated. We

take the union of the fundamental cycles defining the subgraphs and the
corresponding union of the intervals, provided the intervals agree on any
edges which are shared between the fundamental cycles and provided no
fundamental cycle appears in its entierty in both subgraphs.

The coproduct is

∆c(B
[A1,A2]) =

∑

B1⊆B
f(B1)∩A1=∅

B
[A1∩f(B1),A2∩f(B2)]
1 ⊗ (B\B1)

[A1∩f(B\B1),A2∩f(B\B1)]

17i.e. self-loops
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The counit for this coproduct is Î∆c
(I) = 1 and Î∆c

(B[A1,A2]) = 0 for B ̸= ∅.
Let Ap be the subspace of A spanned by B[∅,A]. With these operations we

get a Hopf algebra (Ap,m,∆c), which we can see either by directly checking
the required properties. The coproduct ∆c gives a coaction of A on Ap,
∆c : A → Ap ⊗A, since A1 ∩ f(B1) = ∅ so the terms on the left hand side
of the coproduct are always in Ap.

In the graph case we see thatA is closely related toHGF andAp is closely
related to HGT . However, they are not the same Hopf algebras. The product
is different as the m defined here is not disjoint union, and furthermore ∆GF

does not agree with ∆c off of Ap as there is not typically a Γ⊗ I term in ∆c

off Ap.
Now we want to build a second bialgebra structure with the same prod-

uct. This second bialgebra is essentially the incidence bialgebra structure on
P(ET ) with three adjustments. First the set B is carried along, and second
the product is m, rather than the usual direct product of intervals. We can
see m as the result of first taking the direct product and then modding out
by the ideal which sets to 0 the products of intervals which are incompatible
according to the definition of m.

The third adjustment is to bring in EM , the edges which are not per-
mitted to become tadpoles. Note that an edge e ∈ EM would be a tad-
pole if all the edges in the fundamental cycle of e are contracted, that is if
f(e) ⊆ f(B)\A2 for the graph associated to B[A1,A2].

Let Am be the subspace of A spanned by the B[A1,A2] for which there
is no e ∈ Em ∩B such that f(e) ⊆ f(B)\A2. Am is the subspace where the
graphs do not have any forbidden tadpoles. Additionally define Ae to be
the subspace of A spanned by the B[A1,A2] for which there is no e ∈ Em ∩B
such that f(e) ⊆ f(B)\A1.Ae is the subspace where no contractions of forest
edges of the graphs can give forbidden tadpoles.

Note that m : Am ⊗Am → Am since for the product to be nonzero the
upper ends of the two intervals must agree on the intersection of the images
of f . Similarly m : Ae ⊗Ae → Ae by the analogous argument involving the
lower ends of the two intervals.

With this set up, define

ρ(B[A1,A2]) =
∑

A1⊆A⊆A2

∄e∈Em∩B,f(e)⊆f(B)\A

B[A1,A] ⊗B[A,A2]

Lemma C.1. (Ae,m, ρ) is a bialgebra and ρ : Am → Am ⊗Ae is a coac-
tion.
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Proof. This can be checked directly.
Alternately, for the first part notice that in Ae the Em condition plays no

role, so if we follow the standard incidence Hopf algebra construction with
the Bs as extra decorations, then to move from here to Ae we only need to
mod out by the terms which are set to 0 in the definition of m. These form
a Hopf ideal since if the interval disagrees on f(B1) or f(B2) then at least
one side of any term in the coproduct will also disagree, and if the Bs are
not disjoint then they remain not disjoint on both sides of each term of the
coproduct.

For the second part, we can reinterpret the problem by calculating ρ
with Em = and then setting any graphs with forbidden tadpoles to 0 at the
end. Then Lemma 3.2 gives the result. □

More than two bialgebras, we have cointeracting bialgebras in the sense
of [25, 26].

Theorem C.2. On A

• ρ(I) = I⊗ I.

• m1,3,24 ◦ (ρ⊗ ρ) ◦∆c = (∆c ⊗ id) ◦ ρ, with:

m1,3,24 : A⊗A⊗A⊗A → A⊗A⊗A,

m1,3,24(w1, w2, w3, w4) = w1 ⊗ w3 ⊗ (w2w4).

• ∀w1, w2 ∈ A, ρ(w1w2) = ρ(w1)ρ(w2),

• ∀w ∈ A, (Î∆c
⊗ id) ◦ ρ(w) = Î∆c(w)I.

In particular, With the coaction ρ, (Ap,m,∆c) and (Ae,m, ρ) are in coint-
eraction.

Proof. The first point is immediate from the definition. For the second point
we have

(∆c ⊗ id) ◦ ρ(B[A1,A2])

=
∑

A1⊆A⊆A2

∄e∈Em∩B,f(e)⊆f(B)\A

∆c(B
[A1,A])⊗B[A,A2]

=
∑

A1⊆A⊆A2

B1⊆B
f(B1)∩A1=∅

∄e∈Em∩B,f(e)⊆f(B)\A

B
[A1∩f(B1),A∩f(B1)]
1 ⊗ (B\B1)

[A1∩f(B\B1),A∩f(B\B1)] ⊗B[A,A2]
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and

m1,3,24 ◦ (ρ⊗ ρ) ◦∆c(B
[A1,A2])

=
∑

B1⊆B
f(B1)∩A1=∅

m1,3,24(ρ(B
[A1∩f(B1),A2∩f(B1)]
1 )⊗ ρ((B\B1)

[A1∩f(B\B1),A2∩f(B\B1)]))

=
∑

B1⊆B
f(B1)∩A1=∅

A1∩f(B1)⊆A3⊆A2∩f(B1)
A1∩f(B\B1)⊆A4⊆A2∩f(B\B1)

∄e∈Em∩B1,f(e)⊆f(B1)\A3

∄e∈Em∩(B\B1),f(e)⊆f(B\B1)\A4

m1,3,24(B
[A1∩f(B1),A3]
1 ⊗B

[A3,A2∩f(B1)]
1

⊗ (B\B1)
[A1∩f(B\B1),A4] ⊗ (B\B1)

[A4,A2∩f(B\B1)])

=
∑

A1⊆A⊆A2

B1⊆B
f(B1)∩A1=∅

∄e∈Em∩B,f(e)⊆f(B)\A

B
[A1∩f(B1),A∩f(B1)]
1 ⊗ (B\B1)

[A1∩f(B\B1),A∩f(B\B1)] ⊗B[A,A2]

where the last equality is because the last term only survives when A3 and
A4 agree on f(B1) and f(B\B1) in which case we can take A = A3 ∪A4

and obtain

m(B
[A3,A2∩f(B1)]
1 , (B\B1)

[A4,A2∩f(B\B1)])

= (B1 ∪ (B\B1))
[A3∪A4,A2] = B[A,A2]

since A2 ⊆ f(B).

For the third point consider w1 = B
[A1,A2]
1 and w2 = B

[A3,A4]
2 , by linearity

proving the result for these suffices. Now calculate.

ρ(w1)ρ(w2) =
∑

A1⊆A5⊆A2

A3⊆A6⊆A4

∄e∈Em∩B1,f(e)⊆f(B1)\A5

∄e∈Em∩B2,f(e)⊆f(B2)\A6

B
[A1,A5]
1 B

[A3,A6]
2 ⊗B

[A5,A2]
1 B

[A6,A4]
2

If the conditions are not satisfied so that the product w1w2 is nonzero then
at least one of the products in each term above is also 0, so the result is 0
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on both side. If the conditions are satisfied so that w1w2 is nonzero then

ρ(w1w2) = ρ(B1 ∪B2)
[A1∪A3,A2∪A4]

=
∑

A1∪A3⊆A⊆A2∪A4

∄e∈Em∩(B1∪B2),f(e)⊆f(B1∪B2)\A

(B1 ∪B2)
[A1∪A3,A] ⊗ (B1 ∪B2)

[A,A2∪A4]

while

ρ(w1)ρ(w2)

=
∑

A1∪A3⊆A⊆A2∪A4

∄e∈Em∩(B1∪B2),f(e)⊆f(B1∪B2)\A

(B1 ∪B2)
[A1∪A3,A] ⊗ (B1 ∪B2)

[A,A2∪A4]

where A = A5 ∪A6 when A5 ∩ f(B1) ∩ f(B2) = A6 ∩ f(B1) ∩ f(B2) and all
other terms vanish.

For the fourth point, consider w = B[A1,A2]. All terms in ρ(w) have B as
the set on both sides of the tensor, but Î∆c

is only nonzero if B = ∅, so the
left hand side is 0 if B ̸= ∅ and is I otherwise. The same is true of the right
hand side, immediately from the definitions. The fourth point then follows
by linearity of the maps.

The cointeraction is precisely the four bulleted properties when consid-
ered in the appropriate range. □

Finally note that if we imposed an order on the edges of Γ, then this
order could be carried through everything done above, hence the information
needed for the sector decompositions (see Section 4.3) can be added to this
set up if desired.

C.4. Cointeraction via generators

For any index set J consider the commutative Q-algebra FJ := Q[xi]i∈J of
polynomials f ∈ FJ in the variables xi, i ∈ J .

The constant polynomial FJ ∋ 1F = 1 is the unit with regard to the
product.

Split J = J1∪̇J2 and consider the subalgebra F1 := Q[xi]i∈J1
.

It is a cocommutative bialgebra by setting on a single generator xi,

∆1(xi) = xi ⊗ 1F + 1F ⊗ xi,

for all i ∈ J1 and we extend to products consistently.
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The augmentation ideal A is given by those functions p ∈ Q[xi]i∈J such
that p(0) = 0.

The counit is given by Î∆c
(p) = 0, p ∈ A and Î∆c

(1F ) = 1.
F1 coacts on FJ . We denote this coaction by ∆c and define it on FJ by

setting for a single generator

∆c(xi) = 1F ⊗ xi, i ∈ J2, ∆c(xi) = xi ⊗ 1F + 1F ⊗ xi, i ∈ J1,

and again extend to products consistently.
If we define a monomial for a set m ⊆ J by xm :=

∏

i∈m xi we have

(C.1) ∆c(xm) =
∑

∅⊆p⊆(m∩J1)

xp ⊗ xm\p.

Consider two sets M and N and the incidence coalgebra structure IN
as in Sec.(C.1). We also choose a map f which assigns to each e ∈ M and
interval u = [ui, uf ] ∈ IN , ui ⊆ uf a set f(e, u) ⊆ uf .

For fixed chosen interval u, define

Mu = {e ∈ M |f(e, u) ∩ ui = ∅}.

Now take as index set J = M × In, n ⊆ N so that In ⊆ IN and split
J = J1∪̇J2, J1 = Mu × In, J2 = J \ J1.

We define a second coproduct ρ : FJ → FJ ⊗ FJ on the algebra FJ = FM
n

by

ρ(xm,[vi,vf ]) =
∑

vi⊆c⊆vf
c ̸=vi if m∈Em

xm,[vi,c] ⊗ xm,[c,vf ], ∀xm,[vi,vf ] ∈ A1.

Breaking up by generators makes the tadpole condition on ρ nice to state
as we see from the relative simplicity of the previous formula.

Identifying B[A,B] with
∏

e∈B xe,[A,B], we have almost obtained A by
generators. The only difference is that the product in A is not the free
commutative product. Modding out by the monomials which are sent to 0
in the product of A we thus obtain, by construction, a description of A in
terms of generators.

The generators xe,[A,B] are particularly nice since they correspond to
the fundamental cycles and cut fundamental cycles, potentally with further
edges marked for contraction. Because of their close connection to the fun-
damental cycles, the xe,[A,B] are the language we will primarily use when
working with these cointeracting bialgebras in the main body of this paper.
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Feynman categories, Astérisque 387 (2017), x+161 pages.

[41] M. Borinsky, K. Vogtmann, The Euler characteristic of Out(Fn), Com-
mentarii Mathematici Helvetici, 95 (2020), 703–748.

[42] P.-H. Balduf, Perturbation theory of transformed quantum fields, Math.
Phys. Anal. Geom. 23 (2020), 33. P.-H. Balduf, Propagator-cancelling
scalar fields, arXiv:2102.04315 [math-ph].

[43] D. Kreimer, D. Uminsky, G. van Baalen, K. Yeats, The QCD beta-
function from global solutions to Dyson–Schwinger equations, Annals
Phys. 325 (2010) 300–324.

[44] J. Conant, A. Hatcher, M. Kassabov, K. Vogtmann, Assembling Ho-
mology classes in automorphism groups of free groups, Commentarii
Mathematici Helvetici 91 4 (2016) 751–806.

[45] M. Borinsky, Renormalized asymptotic enumeration of Feynman dia-
grams, Annals Phys. 385 (2017) 95–135.

[46] M. Borinsky, G. Dunne, Non-perturbative completion of Hopf-Algebraic
Dyson-Schwinger equations, Nucl. Phys. B 957 (2020) 115096. M.
Borinsky, G. Dunne, M. Meynig, Semiclassical trans-series from the
perturbative Hopf-Algebraic Dyson-Schwinger equations: ϕ3 QFT in 6
dimensions, arXiv:2104.00593 [hep-th].

[47] K. Yeats, Rearranging Dyson–Schwinger equations, Mem. AMS 211
(2011) 995.

[48] W. van Suijlekom, Renormalization of gauge fields using Hopf algebras,
in: B. Fauser, J. Tolksdorf, E. Zeidler (eds.) Quantum Field Theory.
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