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We describe a simple gauge-fixing that leads to a construction of a
quantum Hilbert space for quantum gravity in an asymptotically
Anti de Sitter spacetime, valid to all orders of perturbation the-
ory. The construction is motivated by a relationship of the phase
space of gravity in asymptotically Anti de Sitter spacetime to a
cotangent bundle. We describe what is known about this relation-
ship and some extensions that might plausibly be true. A key fact
is that, under certain conditions, the Einstein Hamiltonian con-
straint equation can be viewed as a way to gauge fix the group of
conformal rescalings of the metric of a Cauchy hypersurface. An
analog of the procedure that we follow for Anti de Sitter gravity
leads to standard results for a Klein-Gordon particle.
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1. Introduction

In this article, we will re-examine the canonical formalism for quantum grav-
ity [1], focusing on the case of an asymptotically Anti de Sitter (AAdS)
spacetime X. One advantage of the AAdS case is that, because of holo-
graphic duality, it is possible to explain in a straightforward way what prob-
lem the canonical formalism is supposed to solve, thereby circumventing
questions like what observables to consider and what is a good notion of
“time.” In holographic duality, there is a straightforward notion of bound-
ary time, and there is no difficulty in defining local boundary observables.
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It is natural in holographic duality to study the matrix elements of a
product of local boundary operators Oα between given initial and final
states. A typical example is ⟨Ψ|O′(t′, x⃗′)O(t, x⃗)|χ⟩, with boundary insertions
of local operators O′, O at points labeled by time t and spatial coordinates
x⃗, and with states χ, Ψ that are defined by initial and final conditions. For
simplicity, in this article we restrict to t′ > t, to avoid having to discuss
“timefolds.” In the canonical formalism of the boundary theory, one con-
structs for any Cauchy hypersurface S∞ in the boundary of X a Hilbert
space H of quantum states with the property that if some set I labels a
basis |i⟩ of H, then an amplitude can be factored by inserting a sum over
these states (fig. 1(a)):

(1) ⟨Ψ|O′(t′, x⃗′)O(t, x⃗)|χ⟩ =
∑

i∈I
⟨Ψ|O′(t′, x⃗′)|i⟩⟨i|O(t, x⃗)|χ⟩.

This factorization is most naturally described in path integrals if O is to the
past of S∞ and O′ is to the future. Such factorization can be iterated; for
example, given two boundary Cauchy hypersurfaces S∞ and S′

∞ with S′
∞

to the future of S∞, and insertions on the boundary arranged in time in a
suitable way, one has (fig. 1(b))

(2) ⟨Ψ|O′′(t′′, x⃗′′)O′(t′, x⃗′)O(t, x⃗)|χ⟩
=

∑

j′∈I′, i∈I
⟨Ψ|O′′(t′′, x⃗′′)|j′⟩⟨j′|O′(t′, x⃗′)|i⟩⟨i|O(t, x⃗)|χ⟩

where the states |i⟩ are defined on S∞ and the states |j′⟩ are defined on S′
∞.

In writing the formula this way, we allow for the use of different bases I on
S∞ and I ′ on S′

∞. The initial and final states χ and Ψ in these formulas are
themselves Hilbert space states defined in the far past and the far future.

The main result of the present article is a conceptually simple way to
reproduce such factorization laws from a bulk point of view, to all orders of
perturbation theory. The main idea is to exploit a relationship between Weyl
invariance of a (D − 1)-geometry and the Hamiltonian constraint equation
of General Relativity.

Conformal approaches to quantization of gravity have a very long his-
tory [2], and the conformal approach to the constraint equations, which
gives particularly simple results in the case of an AAdS spacetime, has been
much developed [3–8]. As we will see, the conformal approach is particularly
powerful when it can be combined with existence and uniqueness results
for maximal volume hypersurfaces, as was done for three-dimensional pure
gravity in [9–12].
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a) b)

Figure 1: (a) The boundary X∞ of Anti de Sitter space, drawn as a cylin-
der, with boundary insertions O and O′ to the past and future of a Cauchy
hypersurface S∞ ⊂ X∞. In this setup, one can compute a matrix element
⟨Ψ|O′(t′, x⃗′)O(t, x⃗)|χ⟩ as a sum over physical states defined on the hypersur-
face S∞. In the canonical formalism for gravity, one aims to find a similar
formula in terms of a sum over states on a bulk Cauchy hypersurface S with
boundary S∞. (b) The “cutting” procedure of (a) can be iterated, with suc-
cessive cuts on successive hypersurfaces.

In section 2, we explain a bare minimum of this classical picture to mo-
tivate the approach that we will take to the canonical formalism of gravity.
Then we go on to describe, by a simple gauge-fixing, a construction of a
Hilbert space that is valid to all orders of perturbation theory. In section 3,
we explain the underlying classical picture more thoroughly.

In early investigations of the canonical formalism for gravity [1], it was
observed that the Hamiltonian constraint of General Relativity is a family of
second order differential operators, somewhat analogous to a Klein-Gordon
operator. This suggested that the inner product for gravity might be defined

by analogy with a Klein-Gordon bilinear pairing (f, g) =
∫
S dΣµf

↔
∂µg, which

does not depend on the choice of the hypersurface S on which it is evaluated.
The analogy has always seemed problematical, because the Klein-Gordon
pairing is not positive-definite, and also because the Hamiltonian constraint
is a whole infinite family of second order operators, not just one. We will
see that the procedure we follow for gravity, though it leads to a positive
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inner product, is closely analogous to a procedure which for a Klein-Gordon
particle leads to the Klein-Gordon pairing.

Our analysis is restricted to perturbation theory for technical reasons,
and it may be that this is inherent in assuming that H can be constructed
as a space of functions of fields – the metric tensor and possibly other fields
– on a spacetime manifold. However, the result we get for the Klein-Gordon
particle is exact, even though the derivation appears to be valid only in
perturbation theory. In addition, the classical picture that motivates the
present work is valid far beyond what is needed for perturbation theory.
These facts suggest that in some admittedly unclear sense, the description
of canonical quantization given in the present article might extend beyond
perturbation theory. This possibility has motivated the writing of section 3
of the present article. Much of that section is an explanation of the conformal
approach to the classical constraint equations, largely following the useful
review article [7].

An early version of this work, but without the gauge-fixing construc-
tion of section 2.4, was presented in a lecture at the Princeton Center for
Theoretical Science [13].

As already noted, the main idea in this article is to exploit a relation-
ship between the Hamiltonian constraint equation of gravity and the group
of Weyl rescalings of a Cauchy hypersurface. Another and arguably much
deeper relationship between the Hamiltonian constraint and Weyl invari-
ance has been developed in recent years. The TT deformation is a defor-
mation of a two-dimensional quantum field theory that is irrelevant in the
renormalization group sense and for which no ultraviolet completion is un-
derstood but that nonetheless leads to unexpected exact results [14–16].
The Wheeler-DeWitt equation (or the Hamiltonian constraint equation) of
three-dimensional gravity without matter fields can be interpreted in terms
of the TT deformation of two-dimensional conformal field theory [17]. This
striking insight has been refined and generalized to higher dimensions, where
the TT deformation becomes a T 2 deformation [18–22]. More recently and
remarkably, it has been extended to include matter fields [23]. In the present
article, the T 2 deformation plays no role in the input, but in a sense we run
into the T 2 deformation in the output, since the formula that we get for
the Hilbert space inner product of a theory with gravity involves a sort of
T 2-deformed ghost determinant.

The approach in the present article is limited to perturbation theory be-
cause we will use a gauge-fixing condition that is only valid perturbatively.
The approach via the T 2 deformation is, at the present time, limited to
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Figure 2: The bulk domain of dependence Ω of a Cauchy hypersurface S∞ in
the boundary of an AAdS spacetime X. In this picture, for simplicity, X is
two-dimensional so its boundary X∞ is one-dimensional and S∞ consists of
two points. Ω is the domain of dependence of any bulk Cauchy hypersurface
S with boundary S∞, or equivalently the set of bulk points that are not
timelike separated from S∞.

perturbation theory because a nonperturbative completion of the T 2 defor-
mation is not known. As already noted, a limitation to perturbation theory
may well be unavoidable in any description based on fields in spacetime.

2. Path integrals and physical states

2.1. The phase space as a cotangent bundle

We will defer a detailed discussion of the classical phase space of asymptoti-
cally Anti de Sitter (AAdS) gravity to section 3. Here we will explain a bare
minimum to motivate an approach to the problem of describing a quantum
Hilbert space.

The classical phase space of AAdS gravity is well understood in the case
of pure gravity in three dimensions. Let X be an AAdS three-manifold,
globally hyperbolic in the AAdS sense, that satisfies Einstein’s equations
with negative cosmological constant. Its conformal boundary X∞ consists of
one or more copies of R× S1 (where the R and S1 directions are respectively
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timelike and spacelike). Let S∞ be any Cauchy hypersurface in X∞. There
are many possible choices of Cauchy hypersurface S with boundary S∞, all
homotopic to each other.1 The bulk domain of dependence of S∞, which
we will call Ω, can be defined as the domain of dependence of any S. An
alternative definition of Ω which makes it obvious that Ω does not depend
on the choice of S is that Ω consists of points in X that are not timelike
separated from S∞ (fig. 2). Thus Ω is a pseudo-Riemannian manifold with
boundary. Ω is the part of the spacetime that can be constructed, given
initial data on S, just using Einstein’s equations, without using the AAdS
boundary conditions along X∞.

By the phase space Φ of AAdS gravity in this situation, we mean the
space of possible geometries of the bulk domain of dependence Ω, for a
given choice of S∞. It is known (in the three-dimensional case) that Φ is
actually a cotangent bundle,2 Φ = T ∗(Conf/Diff), where Conf parametrizes
conformal structures on S (metrics modulo Weyl transformations h → e2φh
with φ|S∞

= 0) and Diff is the group of diffeomorphisms of S that are trivial
along S∞. Thus Conf/Diff is the space of metrics on S up to diffeomorphism
and Weyl transformation. That Φ = T ∗(Conf/Diff) is proved as follows [9–
12].

In one direction, one makes use of the renormalized volume of a hy-
persurface. In an AAdS spacetime, a Cauchy hypersurface S has infinite
volume, but it is possible to define a renormalized volume VR(S). In three
dimensions, one shows that, for any given S∞ ⊂ X∞ and any choice of the
bulk spacetime X, there exists a unique bulk Cauchy hypersurface S ⊂ X
with boundary S∞ that maximizes VR(S). (See section 3.1 for a qualitative
discussion of this existence and uniqueness.) S has a Riemannian metric h
and a second fundamental form K; extremality of VR(S) implies that K is
traceless, K = 0 where K = hijKij . Now, “forget” the metric h and remem-
ber only the associated conformal structure, which we will call h0 (thus,
knowing h0 means knowing h up to a Weyl transformation h → e2φh). Then
h0, up to diffeomorphism, defines a point in Conf/Diff. On the other hand,

1In the definition of S, we include the conformal boundary points in S∞. This
makes S compact and generally enables simpler statements. Similarly, S∞ is in-
cluded in the definition of the bulk domain of dependence Ω.

2This is also true in the case of a closed universe with Λ < 0, though in this
article, we mainly consider AAdS spacetimes. In both cases, the same phase space
Φ has another description as a product of two copies of Teichmüller space [24].
This description, which is suggested by the relation of three-dimensional gravity to
Chern-Simons theory [25, 26], does not generalize above three dimensions or in the
presence of matter fields, so it is less relevant for a general understanding of gravity.
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in General Relativity, K is canonically conjugate to h. To be precise, the
momentum conjugate to hij is

(3) Πij =
1

16πG

√
h
(
Kij − hijKr

r

)
.

The traceless part of this equation shows that the traceless part of K is
conjugate to the conformal structure h0 (the trace K = Kr

r is conjugate to
the volume density

√
deth, which we abbreviate as

√
h). So the pair K,h0,

with K being traceless, defines a point in T ∗Conf. To take diffeomorphisms
into account, we have to divide by the group Diff, but we also have to set
to zero the Hamiltonian function on T ∗Diff that generates the action of
Diff. Dividing by Diff removes from the phase space some modes of h and
setting the Hamiltonian function to zero removes the conjugate modes of
K. For K traceless, the Hamiltonian function that generates Diff is DiK

ij .
Setting the Hamiltonian function to zero is the momentum constraint of
General Relativity. These matters are explained in sections 2.2 and 3.3. The
combined operation of setting the Hamiltonian function to zero and dividing
by Diff replaces T ∗Conf with T ∗(Conf/Diff). So if K and h0 come from a
solution of Einstein’s equations, they define a point in T ∗(Conf/Diff). The
map that associates the pair K,h0 to a given solution of the Einstein field
equations therefore gives a map from the phase space Φ to T ∗(Conf/Diff).

To get a map in the opposite direction, one shows that given a point
in T ∗(Conf/Diff), that is, a pair K,h0 with DiK

ij = 0, one can in a unique
fashion make a Weyl transformation to a pair that satisfies the Einstein
constraint equations and thereby gives initial conditions for a solution of
the full Einstein equations, defining a point in Φ. The proof is explained in
detail in section 3. The two maps are inverses, so the gravitational phase
space can be identified as Φ = T ∗(Conf/Diff).

Are such ideas relevant to a general understanding of gravity? For this,
something similar should be true in higher dimensions, and also in the pres-
ence of matter fields. The full story of what is known to be true and what
is likely to be true under reasonable assumptions is somewhat involved, and
is deferred to section 3. For now, we just remark that in the context of
perturbation theory, in General Relativity on AdSD or on AdSD ×W for
some compact manifold W , possibly with matter fields, an analysis similar
to what was just sketched is always applicable. At least for purposes of per-
turbation theory, the phase space of such a theory can always be represented
by a cotangent bundle T ∗Q, where now Q parametrizes the conformal struc-
ture of S together with the matter fields on S, modulo diffeomorphisms that
are trivial at infinity (along with gauge transformations that are trivial at
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infinity if some of the matter fields are gauge fields). That is true because
both steps in the construction – existence of a unique S of maximal volume,
and existence of a unique Weyl transformation that ensures that the con-
straint equation is satisfied – are valid if one is sufficiently close to AdSD or
AdSD ×W . As we will discuss in section 3, to extend these results beyond
perturbation theory, one requires a strong energy condition and a condition
on singularities somewhat analogous to cosmic censorship. But such assump-
tions are not necessary in perturbation theory around AdSD or AdSD ×W .
Likewise, as we will also see in section 3, beyond perturbation theory one
can make much stronger statements for AdSD than for AdSD ×W , but the
difference is not relevant in perturbation theory.

2.2. The constraint equations

The Einstein constraint equations are equations for a metric hij on an initial
value surface S and a symmetric tensor field Kij on S. These equations are
the condition under which h and K are initial data for a spacetime X that
satisfies Einstein’s equations, with h (whose scalar curvature will be denoted
R(h)) and K understood as the induced metric and second fundamental
form of S ⊂ X. For General Relativity with cosmological constant Λ and no
matter fields, the equations read

(4) Pj(x⃗) = H(x⃗) = 0,

with

Pj(x⃗) = DiK
ij −DjKi

i

H(x⃗) = R(h)−KijKij +Ki
iK

j
j − 2Λ.(5)

The equation Pj(x⃗) = 0 is called the momentum constraint and the equation
H(x⃗) = 0 is called the Hamiltonian constraint. Importantly, these are gauge
constraints, which must be satisfied independently at each point x⃗ ∈ S.
Quantum mechanically, K is conjugate to h as in eqn. (3), so Pj(x⃗) and
H(x⃗), for each x⃗ ∈ S, become differential operators acting on the space Met

of metrics on S. P i(x⃗) is linear in K so it becomes a first order differential
operator which is simply the generator of diffeomorphisms of S; to be pre-
cise, if vi is a vector field on S then the generator of the symmetry3 δxi = vi

3The symbol δ will denote a symmetry generator or the variation of a field, while
δ will represent a Kronecker delta or the Dirac delta function.
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is
∫
S dD−1x⃗

√
hvi(x⃗)Pi(x⃗). H(x⃗) is quadratic in K, so it becomes a second

order differential operator.
In the most basic version of the canonical approach to quantum gravity,

the quantum wavefunction is a function Ψ(h) of the metric of S (and possibly
other variables). The traditional interpretation of the constraint is that the
operators obtained by quantizing the constraints should annihilate Ψ(h):

(6) P i(x⃗)Ψ(h) = H(x)Ψ(h) = 0.

Since P i(x⃗) is the generator of diffeomorphisms, the constraint P i(x⃗)Ψ = 0
merely says that Ψ(h) should be invariant under diffeomorphisms of S (or
more precisely, under those diffeomorphisms that are connected to the iden-
tity; it is generally assumed that this condition should be extended to all
diffeomorphisms). With this constraint imposed, Ψ(h) becomes a function
on the space Met/Diff of metrics modulo diffeomorphisms. The Hamiltonian
constraint H(x⃗)Ψ(h) = 0 is more vexing and more difficult to interpret. Be-
cause H(x⃗) is a second order differential operator for each x⃗, the constraint
H(x⃗)Ψ(h) = 0 is an infinite system of second order differential equations
that should be satisfied by the quantum wavefunction. This infinite sys-
tem of equations (or sometimes the combined system P i(x⃗)Ψ = H(x⃗)Ψ = 0)
is known as the Wheeler-DeWitt equation. In the traditional approach to
the canonical theory of gravity, a quantum wavefunction is a function on
Met/Diff that satisfies the Hamiltonian constraint equation, or equivalently
a function on Met that satisfies the combined system P i(x⃗)Ψ = H(x⃗)Ψ = 0.

A basic difficulty of canonical quantum gravity is that it is very difficult
to solve the Wheeler-DeWitt equation, or to gain any qualitative under-
standing of the solutions. However, the fact that the phase space of General
Relativity is a cotangent bundle Φ = T ∗(Conf/Diff) suggests a simple an-
swer. In general, a cotangent bundle T ∗Y can be quantized by saying that a
physical state is a square integrable function4 on the base space Y . So one
is led to hope that the state space of General Relativity can be interpreted
as a space of functions on Conf/Diff, with no constraints.

The original suggestion along these lines was actually made by York
half a century ago [2], for somewhat similar reasons to what was just ex-
plained, and motivated by even earlier results that pointed in this direction.

4More canonically, since Y may not have a natural measure, the wavefunction
should be a half-density on Y rather than a function on Y . To avoid an inessential
distraction, we will not always make this distinction.
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For example,5 Kuchar had shown [27] that in asymptotically flat spacetime,
to lowest nontrivial order, a solution Ψ(h) of the Wheeler-DeWitt equation
depends only on the transverse traceless part of h. To be precise, here we
perturb around the case that S is a flat hypersurface RD−1 in D-dimensional
Minkowski space RD−1,1. The metric of S is thus taken to be hij = δij + h′ij ,

where δij is the Euclidean metric on RD−1 and h′ij is the perturbation.
Kuchar showed that to first order in h′, the Wheeler-DeWitt equations as-
sert that the quantum wavefunction Ψ(h) is completely determined by an
arbitrary function of the transverse traceless part of h′. In lowest order, the
space of transverse traceless metric perturbations is the same as the space of
deformations of the conformal structure up to diffeomorphism, so Kuchar’s
result can be restated by saying that to first non-trivial order, solutions of
the Wheeler-DeWitt equation on Met/Diff are in natural correspondence
with functions on Conf/Diff. These arguments were recently reworked in the
AAdS case, with a similar result [28].

The relation of the Wheeler-DeWitt equation to the TT deformation and
its generalizations [17–23] actually gives a way to generalize such statements
to all orders in perturbation theory. In explaining this, we will just consider
the original example [17] of three-dimensional pure gravity with Λ < 0 and
the original TT deformation [14–16]. The Wheeler-DeWitt equation of three-
dimensional pure gravity reads

(7)
(
KijKij −Ki

iK
j
j −R(h) + 2Λ

)
Ψ(h) = 0.

Setting Λ = −1/ℓ2 and using eqn. (3) to express K in terms of Πij(x) =
−i δ

δhij(x)
, the equation becomes

(8)

(
(16πG)2

deth

(
ΠijΠij − (Πk

k)
2
)
−R(h)− 2

ℓ2

)
Ψ(h) = 0.

Now conjugate the constraint operator by exp
(

1
8πGℓ

∫
S d2x

√
h
)
or equiva-

lently define

(9) Ψ = exp

(
1

8πGℓ

∫

S
d2x

√
h

)
Ψ̂.

5The background to York’s proposal also included parts of the story that will be
described in section 3.
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The effect of this change of variables is to shift Πij → Πij − i
16πGℓ

√
hhij .

The equation satisfied by the new wavefunction Ψ̂ is6

(10)

(
i√

deth
Πk

k +
8πGℓ

deth

(
ΠijΠij − (Πk

k)
2
)
− ℓ

32πG
R(h)

)
Ψ̂ = 0.

The term 8ΠGℓ
deth

(
ΠijΠij − (Πk

k)
2
)
is irrelevant in the renormalization group

sense; by power counting, it is negligible at long distances. The leading long
distance approximation to the equation is therefore simply

(11)

(
i√

deth
Πk

k −
ℓ

32πG
R(h)

)
Ψ̂(h) = 0.

This equation is familiar in two-dimensional conformal field theory (CFT).
The operator iΠk

k is the generator of Weyl transformations of the metric,
and so eqn. (11) describes violation of conformal invariance by the usual c-
number anomaly proportional to R(h). In fact, eqn. (11) is the usual anoma-
lous Ward identity of a two-dimensional CFT with central charge

(12) c =
3ℓ

2G
,

which is the Brown-Henneaux formula for the central charge of the boundary
stress tensor in three-dimensional gravity [29]. Eqn. (10) differs from the
usual CFTWard identity by the Π2 terms. Since Πij = −i δ

δhij
inserts a factor

of the stress tensor T ij in an amplitude of the boundary CFT, eqn. (10)
actually describes the combined violation of conformal invariance by the
CFT anomaly along with a TT deformation. This was the main observation
in [17]. If we factor the metric h as h = e2φh0, with some fixed choice of
h0,

7 then we get Πi
i = − i

2
δ
δφ and eqn. (11) becomes the usual CFT Ward

identity that determines the dependence of Ψ̂ on φ. In eqn. (10), the Π2

terms are of relative order e−2φ compared to the other terms. So for large
φ, eqn. (10) reduces to the usual CFT Ward identity (11). Any solution
Ψ̂0 of that CFT Ward identity can be promoted as follows to a solution Ψ̂

6Here one throws away some terms formally proportional to δ(0) that come from
δ2

δh(x)2

√
deth(y) ∼ δ(x, y)2 = δ(x, y)δ(0). One can think of this step as a normal-

ordering recipe. The δ(0) terms are subleading in G/ℓ.
7We will learn in section 3 that each Weyl orbit of metrics has a unique repre-

sentative that satisfies the Hamiltonian constraint equation, so one could make this
factorization by choosing h0 to be that representative. A much more elementary
way is to pick a smooth measure µ on S and require

√
deth0 = µ.
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of the TT -deformed equation (10). Let us denote the operators on the left
hand sides of eqns. (10) and (11) as D and D0, respectively. We expand
Ψ̂ = Ψ̂0 + Ψ̂1 + Ψ̂2 + · · · , and stipulate that for large φ, each Ψ̂k is of order
e−2kφ relative to Ψ̂0 and that

D0Ψ̂k = −D
(
Ψ̂0 + Ψ̂1 + · · ·+ Ψ̂k−1

)
+O(e−2(k+1)φΨ0).(13)

Order by order in e−2φ, Ψ̂k is uniquely determined and eqn. (10) is satisfied.
The expansion in powers of e−2φ is equivalently an expansion in powers of G.
Thus, order by order in perturbation theory in G, Ψ̂ is uniquely determined
in terms of Ψ̂0. Every Ψ̂ arises in this way from some Ψ̂0 (which can be
found from the large φ behavior of Ψ̂). Since the usual CFT Ward identity
determines the dependence of Ψ̂0 on φ, this means that order by order in
perturbation theory, solutions Ψ̂ of the Wheeler-DeWitt equation are in
natural correspondence with wavefunctions that depend on h0 only, or in
other words, functions on Conf/Diff. One can view this as a generalization
of the result of [27, 28] to all orders, in AAdS spacetime.

Knowing this correspondence does not immediate tell us the correct
form of the Hilbert space inner product on the space of solutions of the
Wheeler-DeWitt equation. One can formally define a natural inner product
for functions8 on Conf/Diff by (Ψ′,Ψ) =

∫
Conf/Diff

Ψ
′
Ψ. A more general inner

product would be

(14) ⟨Ψ′,Ψ⟩ = (Ψ′|Ξ|Ψ),

for some positive self-adjoint operator Ξ. In section 2.4, we will show how a
simple gauge-fixing leads to a description of the perturbative Hilbert space
H of quantum gravity, roughly along these lines (but in a BRST formulation
with ghost fields included), with a relatively simple and relatively explicit
formula for Ξ as a ghost determinant. The derivation will also lead directly
to formulas such as eqns. (1) and (2), with transition amplitudes expressed in
terms of sums over contributions of intermediate states in H. Such formulas
are after all the goal of having a Hilbert space of physical states. However,
first we will say more in section 2.3 about old and new approaches to the
Wheeler-DeWitt equation and how the procedure in section 2.4 relates to
them.

8Rather than functions on Conf/Diff, it is more natural to use half-densities,
and really one needs a more precise language that takes account of the conformal
anomaly. We will not go in that direction, because such issues will not arise in the
approach to constructing a Hilbert space that we actually follow in section 2.4.
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a) b) c)

Figure 3: (a) Here X∞ is a Lorentz signature boundary manifold with a
future boundary S∞. In the boundary theory, initial conditions in the far
past, and possible boundary insertions, determine a quantum state Ψ∞ on
S∞. The bulk is an AAdS manifold X with future boundary S. The metric
h of S is fixed and the path integral on X defines a function Ψ(h) which one
hopes has the same physical content as Ψ∞. One can argue formally that
Ψ(h) satisfies the Wheeler-DeWitt equation. (b) A similar picture to (a) in
Euclidean signature. The main difference is that X∞ has operator insertions
but no past boundary. (c) The picture of (a) is continued into the future
and some final state is specified. In the boundary one gets nice formulas for
the transition amplitude between specified initial and final states involving
a sum over states on S∞, but in bulk, there is a problem if the states are
supposed to be solutions Ψ(h) of the Wheeler-DeWitt equation. If one picks
a particular bulk Cauchy hypersurface S on which to cut, the Wheeler-
DeWitt equation is not satisfied, but integrating over all S gives a massive
overcounting.

2.3. The Wheeler-DeWitt equation and the BRST operator

The traditional interpretation of the Wheeler-DeWitt equation, going back
to its origins, was as described in section 2.2: a quantum state was taken
to be a function Ψ(h) of a (D − 1)-geometry h, satisfying P i(x⃗)Ψ(h) =
H(x⃗)Ψ(h) = 0.

At least at a formal level, there is a specific problem in which a wave-
function of this type actually arises.



✐

✐

“6-Witten” — 2023/6/27 — 17:22 — page 324 — #14
✐

✐

✐

✐

✐

✐

324 Edward Witten

We consider some sort of initial conditions that, physically, should suffice
to create a specific quantum state. For example, in the AAdS context, in
Lorentz signature, we can do the following. From a boundary point of view
(fig. 3(a)), we specify a Lorentz signature manifold X∞ of dimension D − 1
that starts at time t = −∞ in the past and has a spacelike future boundary
S∞. The boundary theory on X∞, with initial condition at t = −∞ cor-
responding to some chosen state, and specified operator insertions to the
past of S∞, will produce a quantum state Ψ∞ on S∞. One can also make a
similar construction in Euclidean signature (fig. 3(b)).

To recover the state Ψ∞ from the gravitational path integral, one con-
siders a bulk spacetime X with conformal boundary X∞ at spatial infinity,
and terminating in the future on a spacelike hypersurface S whose boundary
is S∞. We write g for the metric of X and h = g|S for the induced metric
on S. Now we do a bulk path integral, with initial conditions and boundary
insertions as before, and with Dirichlet boundary conditions keeping fixed
the metric h of S. The output of the path integral is a function Ψ(h). This
function is supposed to define the state on S created by the gravitational
path integral under the given conditions.

The main virtue of this construction is that one can argue formally that
Ψ(h) satisfies the Wheeler-DeWitt equation. As the construction is mani-
festly invariant under diffeomorphisms of S, it is evident that P i(x⃗)Ψ(h) = 0,
and one can argue formally that H(x⃗)Ψ(h) = 0 (see for example [30–33]).
One can conjecture that Ψ(h) is a bulk dual of the boundary state Ψ∞.

This construction has two drawbacks. The first is that the problem that
was solved is not really the problem that one wanted to solve. The reason
for wanting to construct a Hilbert space of quantum states is that one wants
to be able to factorize transition amplitudes in terms of sums over interme-
diate states, as in eqns. (1) and (2). After all, this is what quantum states
are good for in ordinary quantum mechanics. Although one can argue at a
formal level that the wavefunction Ψ(h) created by the gravitational path
integral satisfies the Wheeler-DeWitt equation, there is no argument even
formally that such wavefunctions participate in the desired “sum over states”
formulas. The reason is that when we compute a path integral that we want
to evaluate by summing over intermediate states, there is no natural way in
the context of Dirichlet boundary conditions to find the bulk hypersurface
S whose metric h we should be summing over (fig. 3(c)). General covariance
would force us to integrate over all choices of S, which involves a massive
overcounting.
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The second drawback is that the gravitational path integral that is sup-
posed to compute Ψ(h) is actually not well-defined even in perturbation the-
ory (and even after regularizing ultraviolet divergences), because the Dirich-
let boundary condition that was assumed is not elliptic [34–36]. This lack of
ellipticity means that, with Dirichlet boundary conditions, the operator L
that arises by linearizing the gauge-fixed Einstein equations about a classical
solution does not have a well-defined determinant or propagator.9

One might be inclined to dismiss the second problem as a technicality.
However, if one actually tries to actually compute Ψ(h) in perturbation the-
ory in a specific situation, one will soon need the determinant and propagator
of the operator L, and one will run into difficulties. There is actually another
reason to believe that the non-ellipticity of the Dirichlet boundary condition
on L should not be dismissed lightly. This non-ellipticity can be straightfor-
wardly proved, with a little linear algebra, starting from the definition of an
elliptic boundary condition [34, 36]. However, there is a more abstract proof
that is quite instructive [35]. In this proof, the only real input is the form
of the Hamiltonian constraint equation for gravity and specifically the fact
that it involves second derivatives of h along the boundary (which appear in
the scalar curvature R(h)) but only first derivatives in the normal direction
to the boundary (which are present in the definition of H(x⃗) in eqn. (5)
because K is linear in the normal derivative of h). The Hamiltonian con-
straint equation is the cause of the difficulty in understanding the canonical
formalism for gravity, so in trying to understand that canonical formalism,
we probably should not ignore a mathematical problem associated to the
form of the constraint equation.

The problem involving the lack of ellipticity has a simple fix. Instead of
Dirichlet boundary conditions for gravity in which one fixes the boundary
metric,10 one can consider a mixed Dirichlet-Neumann boundary condition
in which one specifies not the boundary metric h, but rather the conformal
structure h0 of the boundary (in other words, the boundary metric up to a
Weyl transformation) and the trace K = Ki

i of the second fundamental form
Kij . This mixed Dirichlet-Neumann boundary condition is elliptic [35, 36],
so in the situation of fig. 3(a), it should be possible in perturbation theory,

9An exception is that if, classically, the universe is everywhere expanding or ev-
erywhere contracting along the boundary (and more generally if the canonical mo-
mentum is everywhere a positive- or negative-definite matrix along the boundary),
the determinant and propagator may be well-defined even though the boundary
condition is not elliptic. This is explained in [36], following [37].

10Neumann boundary condtions, in which one fixes the second fundamental form
K of the boundary rather than the boundary metric h, are again not elliptic [35].
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after regularizing ultraviolet divergences, to use this boundary condition to
compute a wavefunction Ψ(h0,K).

One drawback of this is that the Wheeler-DeWitt equation in a dual
version with K treated as a coordinate and

√
h as a conjugate momentum

appears to be, at best, no simpler than the original. Another and possibly
more serious problem is that, again, this construction seems to solve the
wrong problem. It formally gives a way to solve the problem described in
fig. 3(a), but the problem of fig. 3(c) remains. There is no argument even
formally that a gravitational path integral can be evaluated by “cutting” on
an intermediate hypersurface S and summing over states on S of the form
Ψ(h0,K) that satisfy the constraint equations.

There is, however, also a standard fix for this difficulty. So far we have
described what might be called the “traditional” Wheeler-DeWitt formal-
ism. There is also a “revised” Wheeler-DeWitt formalism in which one con-
structs states that are better candidates for appearing in a factorization
formula [38–44] (see [23] and Appendix B of [45] for recent discussions). In
the revised Wheeler-DeWitt formalism, sometimes called refined algebraic
quantization or group averaging, one still considers a wavefunction Ψ(h), and
one still imposes the momentum constraint equation P iΨ(h) = 0. However,
the constraint HΨ = 0 is replaced by an equivalence relation

(15) Ψ(h) ∼= Ψ(h) +
∑

i

H(x⃗i)χi(h)

for an arbitrary set of points x⃗i ∈ S and arbitrary functions χi(h). (The dis-
crete sum over points x⃗i ∈ S can also be replaced by a continuous integral.)
In other words, the sense in which H(x⃗) vanishes is not that it annihilates a
physical state, but that its action is trivial, since any state H(x⃗)χ is consid-
ered trivial. In this approach, any state Ψ(h) that satisfies the momentum
constraint is considered physical; two such states are considered equivalent
if their difference is of the form

∑
iH(x⃗i)χi(h).

In this revised Wheeler-DeWitt approach, the inner product of two states
is defined formally as

(16) ⟨Ψ′|Ψ⟩ =
∫

Met/Diff

Dh Ψ
′
(h)

∏

x⃗∈S
δ(H(x⃗))Ψ(h).

Here Dh represents formally an integral over the space Met/Diff of metrics
on S up to diffeomorphism. The product of delta functions

∏
x⃗∈S δ(H(x⃗))

formally annihilates any state of the form H(x⃗)χ, ensuring invariance of the
inner product under the equivalence relation.
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Figure 4: An AAdS spacetime X with four asymptotic regions in which
asymptotic states might be specified. Such an X cannot have a metric ev-
erywhere of Lorentz signature; it may have Euclidean signature or possi-
bly a complex metric. Overlapping “cuts” of such an X can be made, as
sketched here, on homotopically inequivalent surfaces such as γ1 and γ2. No
one canonical formalism is well adapted to all of the possible cuts.

With this revised interpretation of the constraint operators, it is possible
to give a formal argument that leads to the desired formulas involving cutting
and summing over intermediate states, as in eqn. (1). For this, one goes to
a canonical ADM formulation of the path integral in the region in which
cutting is supposed to happen. In that formulation, the action contains a
term

∫
S dD−1x⃗ N(x⃗)H(x⃗), where N is called the lapse and does not appear

elsewhere in the action. The path integral therefore contains a factor

(17)

∫
DN exp

(
i

∫

S
dD−1x⃗ N(x⃗)H(x⃗)

)
.

Assuming that N(x⃗) is supposed to be integrated from −∞ to +∞, the
integral over N gives formally the desired

∏
x⃗ δ(H(x⃗)).

A possible criticism of this approach – the status of this issue is not clear
to the author – is that in replacing the covariant version of the Einstein path
integral with a canonical version in which N is allowed to have either sign,
we may have changed the path integral in a way that was adapted to the
specific cutting formula we were trying to get. In the covariant path integral
(or classically), it looks natural for N to be positive. We really want to
know how to evaluate the original covariant form of the path integral by
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a cutting formula. This issue is particularly sharp in a Euclidean signature
context in which the boundary theory may satisfy many different formulas
that result from cutting on topologically inequivalent hypersurfaces (fig. 4).
No one canonical version of the bulk path integral can reproduce all of those
different cutting formulas, so if one is going to use canonical versions of the
path integral to deduce cutting formulas, it is essential to know that these
canonical versions are all equivalent to the underlying covariant version of
the path integral.

The traditional and revised Wheeler-DeWitt theories can be viewed as
two special cases of what one can do with BRST quantization. In BRST
quantization, one introduces ghost fields, of ghost number 1, that transform
like the generators of the gauge symmetries, but with opposite statistics. In
the case of gravity, the ghost fields are an anticommuting vector field cµ(x⃗, t).
One also introduces additional multiplets consisting of antighost fields and
auxiliary fields; this part of the construction is nonuniversal and depends
on what gauge condition one wishes to impose. The BRST operator, in the
context of gravity, is [46]

(18) Q =

∫

S
dD−1x⃗

√
h
(
c0(x⃗)H(x⃗) + ci(x⃗)Pi(x⃗) + · · ·

)
,

where the omitted terms do not affect the following remarks. This operator
obeys Q2 = 0, so one can define its cohomology. As usual, the cohomology
of Q is defined to consist of states Ψ that satisfy QΨ = 0, modulo the equiv-
alence Ψ ∼= Ψ+Qχ for any χ. In BRST quantization, the cohomology at
one particular (theory-dependent) value of the ghost number is defined as
the Hilbert space of physical states. In the case of gravity, if we assume
that we are interested in states that are not annihilated by any modes of
c0 and ci (and that therefore are annihilated by all modes of the conjugate
antighosts), the condition QΨ = 0 gives H(x⃗)Ψ = Pi(x⃗)Ψ = 0, the tradi-
tional Wheeler-DeWitt constraints. On the other hand, we could assume
that we are interested in states that are annihilated by all modes of c0 but
not by any modes of ci. Then the condition QΨ = 0 gives the momentum
constraint Pi(x⃗)Ψ = 0, but not the Hamiltonian constraint H(x⃗)Ψ = 0. In-
stead, the equivalence Ψ ∼= Ψ+Qχ leads to the equivalence relation (16) of
the revised Wheeler-DeWitt approach.

Thus the traditional and revised Wheeler-DeWitt theories are special
cases of what one can do in the BRST framework. Neither of these corre-
sponds closely to the way that BRST quantization is usually carried out in
ordinary gauge theory or in perturbative string theory. Usually, the starting
point is a relatively standard Fock space of ghost and antighost fields, with
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a basis of states that are annihilated by roughly half of the ghost modes and
half of the antighost modes. In other words, in setting up the BRST machin-
ery and using it to define the physical Hilbert space, ghosts and antighosts
are usually treated rather similarly to other fields.

In the next section, we will describe a simple gauge-fixing that can be
used to construct a Hilbert space for gravity. The construction is valid to all
orders of perturbation theory, but not beyond, at least not in the present
formulation. A factorization formula is manifest. The states that appear in
the factorization formula are functions on Conf/Diff, the answer that is sug-
gested by the relation of the gravitational phase space to T ∗(Conf/Diff).
The boundary condition that is used in defining these states is the elliptic
Dirichlet-Neumann boundary condition. The BRST approach to quantiza-
tion is used, but not in the way that leads to either the traditional or the
revised Wheeler-DeWitt theory. A fairly explicit formula for the inner prod-
uct will emerge.

2.4. A simple gauge-fixing to construct a perturbative

Hilbert space

The part of the BRST formalism for gravity that is universal involves the
metric tensor gµν and the ghost field cµ. They transform as

(19) δgµν = Dµcν +Dνcµ, δcµ = cα∂αc
µ,

where δ represents the infinitesimal deformation generated by the BRST

charge Q. These formulas satisfy δ
2
= 0, which corresponds to Q2 = 0; since

δ
2
= 0, any expression of the general form δΛ is BRST-invariant, for any Λ.
The rest of the BRST formalism depends on what gauge-fixing condition

one wishes to impose. In general the desired gauge condition may be defined
by a family of equations

(20) PΥ(g) = 0,

where we do not specify the nature of the labels Υ carried by these equations.
(More generally, the PΥ could depend on matter fields as well as on the
metric.) To impose such a gauge condition, we add a family of antighost
fields cΥ and auxiliary fields ϕΥ with

(21) δcΥ = ϕΥ, δϕΥ = 0,
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consistent with δ
2
= 0. A simple way to implement a gauge-fixing that will

impose the condition PΥ(g) = 0 is to add to the action a gauge-fixing term

Igf = δ

(
∑

Υ

cΥPΥ

)
=
∑

Υ

(
ϕΥPΥ − cΥδPΥ

)

=
∑

Υ

(
ϕΥPΥ − cΥ

∫

X
dDx

δPΥ

δgµν(x)
(Dµcν(x) +Dνcµ(x))

)
.(22)

Thus, if we add to the action no other terms11 that involve ϕΥ, then ϕΥ will
behave as a Lagrange multiplier, imposing a gauge condition PΥ = 0.

This procedure can be used to impose quantum mechanically any gauge
condition that would be correct classically. A gauge condition is correct clas-
sically if on the diffeomorphism orbit of gµν , there is a unique representative
with PΥ = 0. In practice, one usually has to content oneself with a gauge
condition that is correct classically in the context of perturbation theory –
in other words, a gauge condition that is correct on gauge orbits that are
sufficiently close to some starting point. For topological reasons, it is usually
not possible to find a gauge condition that is uniformly valid on all gauge
orbits.

In the case of gravity, assuming that one is constructing perturbation
theory in an expansion around a classical solution g0 of Einstein’s equations,
one can write the full metric as g = g0 + g1, and impose a gauge condition
on the perturbation g1. A simple and convenient gauge condition (which
goes by names such as harmonic, de Donder, or Bianchi gauge) is to require
Tµ(x) = 0 with

(23) Tµ(x) = Dµg
µν
1 − 1

2
Dνgµ1µ,

where covariant derivatives are taken with respect to the background metric
g0, and indices are also raised and lowered with that metric. Thus with this
choice, the label Υ of the general discussion corresponds to a point x ∈ X
and an index µ.

Here we will modify the gauge-fixing procedure so that it will help us in
solving the problem identified in fig. 3(c). Given a Cauchy hypersurface S∞

11In practice, it is often convenient to add to the action another term
− 1

2

∑
Υ δ(cΥϕΥ) = − 1

2

∑
Υ ϕ2

Υ + . . . (where the omitted terms involve fermions).
Then one can perform a Gaussian integral over ϕΥ, leaving a contribution 1

2

∑
Υ P 2

Υ

to the action for the metric. This can be more convenient than a delta function con-
straint PΥ = 0.
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in the boundary X∞ of an AAdS spacetime X, from a boundary point of
view, a transition amplitude between initial and final states can be factored
as a sum over contributions of quantum states on S∞. We want to obtain a
similar description from a bulk point of view.

If X is actually AdSD for some D, then it is shown in [11] that any
boundary Cauchy hypersurface S∞ is the conformal boundary of a unique
bulk Cauchy hypersurface S of maximal renormalized volume VR(S). A sim-
ilar result has been obtained much more recently [47] in a spacetime that is
asymptotic to AdSD, provided the bulk domain of dependence is compact.
The role of this assumption is explained in section 3.1.2; for D = 3, the as-
sumption is not necessary [9–12]. For a spacetime asymptotic to AdSD ×W
for some W , as discussed in section 3.1.2, we expect the maximal volume
hypersurface S to exist whenever the bulk domain of dependence is compact,
but rigorous results along these lines are not available at present.12 However,
to construct perturbation theory, one does not need such strong results. In
perturbation theory, we expand around some sort of classical limit. Typically
this classical limit involves a spacetime X and a boundary Cauchy hyper-
surface S∞ such that the bulk Cauchy hypersurface S of maximal volume
does exist and is unique. For example, if X = AdSD ×W for some W , then
with a standard choice of S∞, the unique maximal volume hypersurface is
S = AdSD−1 ×W , and we can take this as the starting point of perturbation
theory. In any such case, the elliptic nature of the equation for a Cauchy hy-
persurface to have maximal volume ensures that after any sufficiently small
perturbation of X and/or S∞, a volume-maximizing S that is asymptotic
to S∞ still exists and is unique. Under such conditions, this existence and
uniqueness can be assumed to all orders of perturbation theory.

In perturbation theory, we integrate over different possible metrics on X,
and until a metric is given, of course we do not know which hypersurface S
of boundary S∞ is the Cauchy hypersurface of maximal VR(S). However, we
can proceed as follows. Pick an arbitrary hypersurface S0 ⊂ X with bound-
ary S∞ that topologically is a potential Cauchy hypersurface. Without loss
of generality, we can pick a “time” coordinate t on X such that S0 is defined
by t = 0. (Unless a special choice was made of S∞, this coordinate t does
not restrict to anything standard on X∞.) Now suppose given an AAdS
metric g on X, sufficiently close to the standard one. For this AAdS met-
ric, there will be some bulk Cauchy hypersurface S that maximizes VR(S).
Since S0 is a potential Cauchy hypersurface and S is another, there is some
diffeomorphism of X that maps S isomorphically onto S0.

12The condition on the bulk domain of dependence is necessary; see section 3.6.
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This suggests the following strategy for gauge-fixing of quantum gravity
on X. As a first step in the gauge-fixing, we fix a small part of the diffeomor-
phism symmetry by requiring S = S0. Then we perform gauge-fixing to the
past and future of S0 in any standard fashion, for instance via the harmonic
gauge condition. How one does that will not be important in what follows.
All that is important is that one of the gauge conditions is S = S0.

The condition for a hypersurface S0 with second fundamental form Kij

to extremize the renormalized volume is K = 0, where K = Ki
i is the trace

of K. (This standard fact will be verified shortly.) So the gauge condition
that we want is that the surface S0, which is defined by t = 0, has K = 0.

To impose the gauge condition that K = 0 on the hypersurface S0, we
introduce a BRST multiplet consisting of a pair of scalar fields b, ϕ that are
defined only on that hypersurface, and satisfy the usual BRST transforma-
tion laws of antighost multiplets:

(24) δb = ϕ, δϕ = 0.

Here b is a fermion with ghost number −1 and ϕ is a boson with ghost
number zero. We then introduce the partial gauge-fixing action

(25) δ

∫

S
ddx

√
hbK =

∫

S
ddx

√
h
(
ϕ̂K− bδK

)
,

with ϕ̂ = ϕ+ (δ
√
h)b/

√
h. The field ϕ̂ behaves as a Lagrange multiplier set-

ting K = 0 on S.
In eqn. (25), δK is the BRST variation of K on the hypersurface t = 0.

This BRST variation comes from the variation of the metric g which enters
the definition of K: δgµν = Dµcν +Dνcµ. The ghost field cµ has components
ci associated to vector fields that generate diffeomorphisms of the t = 0
hypersurface S0, and a component c0 that generates shifts of t. Since the
condition K = 0 is invariant under diffeomorphisms of S0, δK is actually
independent of ci if K = 0 and is −Ξc0 for some linear operator −Ξ. So

(26) −
∫

S
ddx

√
h bδK =

∫

S
ddx

√
h bΞc0.

A convenient way to identify Ξ is as follows. We can pick local coordi-
nates t and x⃗ = x1, · · · , xd near S0 such that S0 is defined by the condition
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t = 0, and the metric near S0 has the form13

(27) ds2 = −dt2 +

d∑

i,j=1

gij(x⃗, t)dx
idxj .

We expand g around ϵ = 0 and write just h, ḣ, ḧ for the coefficients:

(28) g(x⃗, ϵ) = h(x⃗) + ϵḣ(x⃗) +
1

2
ϵ2ḧ(x⃗) +O(ϵ3).

It is convenient to define the volume density v(x, ϵ) =
√

det g(x⃗, ϵ). The
second fundamental form of S0 is

(29) Kij =
1

2
ḣij

and its trace is

(30) K =
1

2
hij ḣij =

v̇

v

∣∣∣∣
ϵ=0

.

Now consider a general nearby Cauchy hypersurface S defined by t =
ϵ(x⃗). To first order in ϵ, its volume is just

(31) V (S) =

∫

S0

ddx
√

det g(x⃗, ϵ) = V (S0) +

∫

S0

ddx
√
h ϵK+O(ϵ2).

So the condition for S0 to have extremal volume is K = 0. We have written
eqn. (31) naively in terms of the ordinary volumes, ignoring the fact that
in the AAdS context, these volumes are divergent. One actually wants to
express formulas such as eqn. (31) in terms of the renormalized volume. To
define the renormalized volume VR(S), one restricts the integral over S0 in
the definition of the volume to a large compact region, and then one sub-
tracts some locally defined counterterms near the boundary and removes the
cutoff. If ϵ(x⃗) vanishes sufficiently rapidly at infinity, the counterterms are
the same for S and S0 and we can rewrite eqn. (31) in terms of renormalized

13One uses the orthogonal geodesics to the hypersurface S0 to put the metric
locally in this form. See for example section 4.3 of [53].
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volumes:

(32) VR(S) = VR(S0) +

∫

S0

ddx
√
hϵK+O(ϵ2).

The shows that a necessary condition for S0 to have maximal, or even
extremal, renormalized volume is that it satisfies K = 0. However, to identify
the operator Ξ, we need to compute K not for the hypersurface S0, but for
a nearby hypersurface S with t = ϵ(x⃗). Since we have learned that K is the
derivative of the renormalized volume with respect to ϵ, one way to compute
the O(ϵ) contribution to K is to compute the renormalized volume including
terms of order ϵ2. Differentiating the resulting formula with respect to ϵ will
then give K including terms of first order.

A straightforward calculation gives the volume of S including terms of
order ϵ2:

(33) VR(S) = VR(S0)

+

∫

S0

ddx
√
h

(
ϵ
v̇

v
+

ϵ2

2

(
v̇

v

)2

+
ϵ2

2
∂t

(
v̇

v

)
− 1

2
gij0 ∂iϵ∂jϵ

)
+O(ϵ3).

To put this in a convenient form, we use Raychaudhuri’s equation for the tt
component of the Ricci tensor,14 which says that at t = 0,

(34) Rtt = −∂t

(
v̇

v

)
−KijK

ij .

Using also Einstein’s equation Rtt = 8πGT̂tt, where Tµν is the matter stress

tensor (including a contribution from the cosmological constant) and T̂µν =
Tµν − 1

D−2gµνT
α
α , we see that if S0 is an extremal surface, with v̇|t=0 = 0,

then the renormalized volume of S to quadratic order in ϵ is

VR(S) = VR(S0)(35)

−
∫

S0

ddx
√
h

(
1

2
hij∂iϵ(x⃗)∂jϵ(x⃗) +

1

2
ϵ(x⃗)2

(
8πGT̂tt +KijK

ij
))

+O(ϵ3).

14This is the original timelike version of Raychaudhuri’s equation [48], not the
null version [49] that governs causal structures.
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Let ∆ = hijDiDj be the Laplacian of the hypersurface S0, acting on scalar
fields. Varying VR(S) with respect to ϵ, we get

(36) δVR(S) = −
∫

S0

ddx
√
hδϵ

(
−∆+ 8πGT̂tt +KijK

ij
)
ϵ.

Comparing to eqn. (32), we can read off the term in K that is linear in ϵ:

(37) K = −
(
−∆+ 8πGT̂tt +KijKij

)
ϵ.

For our application, we simply take ϵ to be the time component c0 of the
ghost field. The infinitesimal diffeomorphism generated by this field maps
the hypersurface t = 0 to the hypersurface t = c0. So the BRST variation
δK of K is obtained by substituting ϵ = c0 in eqn. (35). Thus

(38) δK = −Ξc0, Ξ = −∆+ 8πGT̂tt +KijKij ,

and the action (25) associated to the partial gauge-fixing that makes S0 the
maximal volume hypersurface is

(39)

∫

S0

ddx
√
h
(
ϕ̂K+ bΞc0

)
.

In putting the gauge-fixing action in this form, we made use of Einstein’s
equations for Rtt. Quantum mechanically, this means that a field redefinition
is involved in putting the gauge-fixing action in this form.

The partial gauge-fixing condition that we have used is only satisfactory
if the operator Ξ has no zero-mode. Otherwise, there is a mode of b that
decouples from the action, the path integral will vanish, and the assumed
gauge-fixing is not correct. In fact, in the context of perturbation theory,
there is no difficulty. The operator −∆ (acting on functions that vanish at
infinity) is strictly positive, and the K2 term is nonnegative.15 If we assume
a strong energy condition, then the T̂tt term is also positive, and this fact
will be important in section 3. But even if we do not assume a strong energy
condition, because of an explicit factor of G, the T̂tt term is perturbatively
small and does not affect the positivity of Ξ in perturbation theory.

Now let us discuss the path integral
∫
db exp(

∫
S0

bΞc0) for the antighost
field b. To do this integral, first recall that if b and c are odd variables and A

15For a general choice of S∞, the maximal volume Cauchy hypersurface has
K ̸= 0, so it is not necessarily true that the K2 term is perturbatively small.
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is a complex number, then
∫
db exp(bAc) = Ac = Aδ(c), since c = δ(c) for

an odd variable. Applying this principle on a mode-by-mode basis, we get

(40)

∫
Db exp

(∫

S0

ddx
√
h bΞc0

)
= det(Ξ)δ(c0|S0

).

The delta function of c0|S0
has a simple meaning. Since we have fixed S0 to

be the Cauchy hypersurface with maximal VR, the remaining gauge trans-
formations that still have to be fixed are those that leave S0 fixed (not
necessarily pointwise, but as a set). The restriction on the ghost field cµ so
that it generates a diffeomorphism that leaves S0 fixed is precisely c0|S0

= 0.
To define the path integral in perturbation theory, one still needs a

gauge-fixing condition for the remaining diffeomorphism group GS0
. There

is an unbroken subgroup Gpast of diffeomorphisms that are nontrivial only
to the past of S0 (and in particular leave S0 fixed pointwise); there is an
analogous subgroup Gfut consisting of diffeomorphisms that are nontrivial
only to the future of S0. GS0

is an extension of Gpast × Gfut by the group
diff S0 of diffeomorphisms of S0:

(41) 1 → diff S0 → GS0
→ Gpast × Gfut → 1.

One may use any fairly standard gauge condition to fix GS0
. One detail is that

since we already have fixed the diffeomorphisms that do not leave S0 fixed,
we do not need to fix those gauge symmetries again, and therefore we need
a slightly smaller set of antighost fields and gauge conditions than usual. A
convenient choice is to restrict the antighosts cµ by c0|S0

= 0. Then c0 and c0

are restricted in the same way, which makes possible a more natural-looking
gauge-fixed action. The details will not be important, however.

In quantum field theory in general, there is a standard strategy to fac-
torize a transition amplitude on a spacetime X by “cutting” on a Cauchy
hypersurface S ⊂ X, as in fig. 1. The goal of the cutting is to express a path
integral on X in terms of states in a Hilbert space H that consists of func-
tions of the fields ϕS on S. Schematically, let ΦS be the space of all possible
values of the fields ϕS . And for a given choice of ϕS , let Φpast be the set of
all fields to the past of S and Φfut the set of all fields to the future of S.
The integral over Φpast, keeping fixed the fields ϕS in S, determines a “ket”
vector |Ψpast(ϕS)⟩ ∈ H. Similarly, the integral over Φfut, keeping fixed ϕS ,
determines a corresponding “bra” vector ⟨Ψfut(ϕS)|. Finally, one integrates
over ΦS to compute the inner product ⟨Ψfut|Ψpast⟩. This inner product gives
the full path integral ZX over X, since by the time one integrates over ϕS ,
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one has integrated over all fields to the past or future of S or on S:

(42) ZX = ⟨Ψfut|Ψpast⟩ =
∫

ΦS

DϕS Ψfut(ϕS)Ψpast(ϕS).

Let us discuss how to implement this strategy in the present context,
with the above-described gauge-fixing which ensures that S0 = S is the max-
imal volume hypersurface. First of all, in the gauge-fixing, we have ensured
that K = 0 on S, so we cannot also fix the variable that is conjugate to
K. This variable is the volume density

√
h. However, we are free to specify

the conformal class of the metric on S. Let us write h0 for this conformal
class; specifying h0 is the same as specifying h up to a Weyl transformation
h → e2φh. Thus h0 defines a point in Conf, the space of conformal structures.
So a function of h0 is a function on Conf, and we formally denote the space
of such functions as HConf . If matter fields are present, we can also specify
the values of the matter fields on S, and we write Hmatt for the Hilbert space
of functions of the matter fields. Finally, we also have to consider the ghosts.
The fields c0 and c0 vanish along S, because of the conditions c0|S = c0|S
that were described earlier. However, we do have fields ci and ci on S. The
functions of those fields make up a ghost Hilbert space Hgh. The combined
Hilbert space is then H0 = HConf ⊗Hmatt ⊗Hgh. (In a general situation, the
definition of the ghosts and matter fields might depend on h0, and then a
more precise statement is that H0 is the combined Hilbert space of functions
of h0, the matter fields, and the ghosts.)

In computing Ψpast, we perform a path integral to the past of S with a
boundary condition along S that specifies the conformal structure h0 of S,
and also specifies that S has K = 0. This is the mixed Dirichlet-Neumann
boundary condition that was mentioned in section 2.3 (now specialized to
K = 0). It is elliptic, so the path integral that computes Ψpast will be well-
defined in perturbation theory. The same is true for the path integral that
computes Ψfut.

The inner product on H0 is not the obvious one that would come from
an integral over the fields h0, c

i, cj and possible matter fields. Rather, an
extra factor det Ξ comes from the integral over b in eqn. (40). Thus the
inner product is formally

(43) ⟨Ψ1|Ψ2⟩ =
∫

Dh0DciDcj Ψ1(det Ξ)Ψ2.

In the absence of the ghosts, this formula would define a positive-definite
inner product on HConf ⊗Hmatt, since the operator Ξ is strictly positive and
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its determinant is therefore also positive. However, the inner product on Hgh

is not positive-definite.
At this point, we have to remember the BRST symmetry. The whole

gauge-fixing construction is BRST-invariant and leads to the existence of a
BRST charge Q that acts on H0. The physical Hilbert space Hphys is defined
as the cohomology of Q acting on H0. In the context of perturbation theory,
passing to the BRST cohomology eliminates ci and cj and also eliminates
“pure gauge” modes of h0. Here pure gauge modes are the modes that are
induced by diffeomorphisms of S. The positivity of the underlying inner
product on HConf ⊗Hmatt leads to positivity of the inner product on Hphys.
In the context of perturbation theory, to verify this one really only needs to
know that positivity holds in the limit G → 0 in which all fields, including
the ghosts, are treated as free fields. Perturbative corrections will then not
spoil this positivity.

In the BRST formalism, the momentum constraint equation is satisfied
because the generator of the momentum constraint is a BRST commutator,
P i(x) = {Q,Λi(x)} for some operator Λi(x), This implies that P i(x) acts
trivially on the BRST cohomology Hphys, since if QΨ = 0 then P i(x)Ψ =
Q(Λi(x)Ψ) vanishes as an element of Hphys. We do not have to consider
the Hamiltonian constraint, because we have eliminated it by considering
a canonically determined Cauchy hypersurface S0 = S, the one that has
maximal renormalized volume.

In terms of the decomposition (41) of the residual gauge symmetry, the
gauge-fixing of Gpast is a step in computing Ψpast, the gauge-fixing of Gfut

is a step in computing Ψfut, and the gauge-fixing of diff S0 is involved in
constructing the BRST operator Q whose cohomology ultimately defines
Hphys. In the context of perturbation theory, instead of relying on the BRST
machinery, one could deal with the diff S0 symmetry by imposing gauge
conditions that explicitly remove the longitudinal modes of the metric h of
S. This would be analogous to axial gauge in gauge theory, and is one way
to make manifest the positivity of the inner product on Hphys.

In short, and modulo some subtleties that are discussed later, we have ar-
rived at a more precise version of the picture that was suggested heuristically
in section 2.2 based on facts about the classical phase space: in constructing
a Hilbert space for AAdS gravity, at least in the context of perturbation the-
ory, one can forget the troublesome Hamiltonian constraint if one considers
the quantum wavefunction to depend only on the conformal class h0 of the
metric, and not on the volume form. We also now know that to proceed in
this way, one must include a non-classical factor det Ξ in the definition of
the inner product.
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In AAdS gravity, this analysis enables us, at least in perturbation theory,
to get a formula like that of eqn. (1) or fig. 1(a) in which a transition
amplitude is factored in terms of a sum over intermediate states on a Cauchy
hypersurface. The intermediate states are simply labeled by fields on the
maximal volume Cauchy hypersurface S.

In a similar fashion, one can get a formula like that of eqn. (2) or fig. 1(b)
in which an amplitude is written as a sum over states on a Cauchy hyper-
surface S∞ in X∞, and also on another Cauchy hypersurface S′

∞ to the
future of S∞. The bulk Hilbert spaces are defined on the maximal volume
Cauchy hypersurfaces S and S′ with respective boundaries in S∞ and S′

∞.
To extend the previous analysis to this case, we just need to know that if
on the boundary S′

∞ is everywhere to the future of S∞, then likewise in
bulk S′ is everywhere to the future of S. A simple argument for this is given
in Appendix A of [50].16 Given this, perturbative gauge-fixing such that
two predetermined bulk hypersurfaces S0 and S′

0 (with S′
0 to the future of

S) both satisfy K = 0 (ensuring S0 = S, S′
0 = S′) will lead to the desired

factorization formula.
Another generalization is as follows.17 Instead of gauge-fixing to require

that K = 0 along S0, we could pick an arbitrary real number λ and gauge
fix to require K+ λ = 0 along S0. This is also a valid gauge condition, in the
context of perturbation theory. The analysis goes through much as before.
Instead of being orthogonal to the boundary, as is the case if λ = 0, S0 will
now meet the boundary at a λ-dependent angle. Since this introduces an
asymmetry between future and past, it is most natural to now view Ψpast

and Ψfut as vectors in dual, λ-dependent spaces Hλ and H−λ. These spaces
are not Hilbert spaces in a natural way, but there is a natural sesquilinear
pairing ⟨ , ⟩ : Hλ ×H−λ → C, and the path integral can be expressed in
terms of this pairing, ZX = ⟨Ψfut|Ψpast⟩. From a classical point of view,
as λ varies from −∞ to ∞, S sweeps through the whole bulk domain of
dependence Ω of S∞, from its past boundary to its future boundary. It is
not clear what is a useful quantum counterpart of this statement.

16Another proof can be deduced from positivity properties of the operator Ξ.
Although there is no solution of Ξϵ = 0 that vanishes at infinity, if one specifies a
real-valued function f on S∞, then there is a unique solution of Ξϵ = 0 on S with
ϵ → f at infinity. Moreover, if f is positive, representing a first order displacement
of S∞ into the future, then ϵ is also positive, representing a first order displacement
of S into the future. As S∞ moves into the future, at a rate determined by f , S
moves into the future, at a rate determined by ϵ.

17 This generalization, for suitable λ, might enable one to circumvent the ob-
struction described in section 3.6.
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Now we will describe some subtleties concerning the definition of det Ξ.
To begin with, we discuss the dependence on K and h0. First consider the
limit G → 0. We assume that the perturbation expansion is based on an
expansion around some classical solution that is determined by asymptotic
conditions. In this solution, K is a c-number. Moreover, the classical solu-
tion determines an actual metric on S, not just a conformal class of metrics,
so in the starting point of perturbation theory, there is a distinguished rep-
resentative of the conformal class of metrics and we will write h0 for this
representative. Having a distinguished representative is important because
the operator ∆ is not conformally invariant. In the classical limit, with K
and h0 being given by the classical solution, the operator Ξ = −∆+KijKij

is a standard sort of second order differential operator, and its determinant
det Ξ is a fairly conventional functional determinant.

This determinant arose in our derivation as the partition function of a
theory with a pair of fermi fields b and c = c0 on S with action

(44) Ibc = −1

2

∫

S
ddx

√
h b(−∆+KijKij + 8πGT̂tt)c.

We think of Ibc as the action of an auxiliary quantum field theory. Of course,
in this limit, det Ξ is a highly nontrivial function of g and K. But as soon
as we turn on G-dependent corrections, det Ξ becomes something more in-
teresting. To explain this as simply as possible, consider a model without
matter fields, and suppose that S∞ is such that the maximal volume hyper-
surface S, classically, has Kij = 0. Then at G = 0, Ξ reduces to −∆. But
as soon as we turn on perturbative corrections in G, the picture changes.
According to eqn. (3), Kij is canonically conjugate to the metric tensor hij ,
Kij = 16πG 1√

h
Πij if K = 0. Πij acts as a derivative with respect to hij , and

in the auxiliary quantum field theory with action Ibc, this will give an in-
sertion of the stress tensor Tij . Therefore, in first order, KijK

ij becomes an
insertion of G2TijT

ij . Thus the auxiliary quantum field theory undergoes a
T 2 deformation, similar to the deformation considered in [17–22]. In a more
general case, if K is nonzero in the classical limit, we would interpret Kij as
the sum of −16πiG δ

δhij plus a classical contribution. Inclusion of the matter
fields in Ξ gives a further deformation, as in [23], and there are also further
corrections, as described shortly.

As usual, it is possible in principle to express the partition function in
the deformed theory, to any finite order in perturbation theory, in terms of
ordinary correlation functions in the undeformed theory. In the present case,
this would be done by expanding the determinant in terms of the propagator
of the operator −∆ and insertions of the stress tensor. However, because the
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perturbation is irrelevant in the renormalization group sense, as one goes to
higher and higher orders, one will encounter integrals that potentially have a
very high degree of divergence and which require careful treatment. Beyond
perturbation theory, a definition of the deformed theory is unknown. This
assertion is one aspect of the fact that the construction that we have given
of a Hilbert space for AAdS gravity is, in its present form, only valid in
perturbation theory.

An important point here is that since we are specifying h0 along S, the
conjugate variable K is not continuous along S except in the classical limit,
and will fluctuate independently in the past and future of S. The formula
Kij = 16πG 1√

h
Πij holds both to the past and the future of S; to the past of

S, we interpret Πij as a differential operator that acts on the ket |Ψ2⟩ in the
inner product ⟨Ψ1|Ψ2⟩ that we are trying to calculate, while to the future of
S, we interpret Πij as a differential operator that acts on the bra ⟨Ψ1|. This
raises the question of how to interpret Kij when it appears in the operator
Ξ and seemingly must be evaluated precisely on S. The same question will
arise in section 2.5 in the context of a Klein-Gordon particle, and there,
since exact formulas are available, we can confirm that the obvious guess is
correct: Kij along S should be interpreted as the average of the values to
the past and future of S. Presumably something similar is true for gravity,
though it would be harder to give a really convincing argument in the case
of gravity.

Yet another question concerns the dependence of det Ξ on the conformal
factor that appears in the metric h = e2φh0. Since det Ξ is not conformally
invariant, this dependence is nontrivial. As explained earlier, in the classical
limit, we take for h0 the actual metric determined by an underlying classical
solution. Then the combined data consisting of h0 and the classical values of
K and the matter fields satisfy the Einstein equations and in particular sat-
isfy the Hamiltonian constraint equation. Quantum mechanically, everything
fluctuates, including the conformal factor φ of the metric. The fluctuation
in φ is discontinuous across S, since we are fixing the conjugate variable K

to vanish along S. However, if it is correct to assume that the fluctuations
satisfy the Hamiltonian constraint equation, then (on both sides of S) that
equation determines the fluctuations in φ in terms of the fluctuations in the
conformal class of h0 and K. Differently put, the Hamiltonian constraint,
if valid, determines a unique representative on each Weyl orbit. Explaining
this point is one of the main goals of section 3. Roughly speaking, we ex-
pect that on each side of S, the Hamiltonian constraint equation remains
valid and determines φ in terms of h0 and K. Since we understand h0 and
K as operators that act on the bra and ket wavefunctions, this makes it
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possible to interpret φ as such an operator (giving a further correction to
the T 2 deformation that was described earlier). Why does the Hamiltonian
constraint remain valid when the fields fluctuate? If it is possible to put the
path integral in canonical form near S, then the manipulation described in
eqn. (17) shows that the Hamiltonian constraint equation can be imposed
near S. But even if we do not assume that this manipulation is valid, the
vanishing of the Hamiltonian constraint operator H(x⃗) is the classical equa-
tion of motion for the metric component gtt that is “normal” to S. So a
multiple of H(x⃗) appearing in the functional integral – for instance in det Ξ
– can be eliminated by redefining gtt, and hence the Hamiltonian constraint
can be used to eliminate φ in favor of h0 and K, and thus to replace φ with
a differential operator acting on the wavefunction.

The approach to constructing a canonical formalism that we have de-
scribed is conceptually simple, as it is based on a simple gauge-fixing, but it
has led to a variety of thorny technical questions, mostly concerning the un-
derstanding of the operator det Ξ. The best that we can say is that hopefully
maintaining the BRST invariance of the construction determines unique an-
swers to all these questions.

2.5. Analogy with a Klein-Gordon particle

Long ago, it was noted that the Hamiltonian constraint operator of gravity is
formally a second order differential operator, somewhat like a Klein-Gordon
operator [1]. This motivated the suggestion that the inner product on solu-
tions of the Wheeler-DeWitt equation might be analogous to a Klein-Gordon
pairing.

For wavefunctions Φ1,Φ2 that satisfy the Klein-Gordon equation
(−gµνDµDν +m2)Φ = 0 in a Lorentz signature spacetime M , the Klein-
Gordon pairing is defined by

(45) (Φ1,Φ2) =
i

2

∫

U
dΣµΦ1

↔
∂µΦ2,

where U is any Cauchy hypersurface in M and Φ1

↔
∂µΦ2 = Φ1∂µΦ2 −

∂µΦ1Φ2.
One obvious problem with the analogy between gravity and Klein-

Gordon theory is that the Klein-Gordon pairing is indefinite, while the
Hilbert space inner product for gravity is supposed to be positive-definite.
Another obvious point is that the Hamiltonian constraint equation, which
says that H(x⃗) = 0 for each point x⃗ in a Cauchy hypersurface S, is more
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similar to an infinite family of Klein-Gordon operators than to a single Klein-
Gordon operator. For the Klein-Gordon particle, the Klein-Gordon pairing
is defined on a codimension 1 hypersurface U , so an analog of the Klein-
Gordon pairing for gravity should be defined on a submanifold of infinite
codimension, with one constraint for each point in S.

That is essentially what we have done in defining the inner product (43).
In gravity, it is often assumed that the wavefunction should be a function
Ψ(h) of the metric h of an initial value surface S. Thus such a wavefunction
is a function on Met, the space of metrics on S. As explained in section 2.3, a
drawback of such an approach is that the path integral that would formally
compute a wavefunction Ψ(h) (from given initial conditions and sources) is
actually ill-defined, even in perturbation theory, since the requisite boundary
condition is not elliptic. One may instead consider a wavefunction Ψ(h0,K)
that depends on a conformal structure h0 on S along with a scalar function
K on S (interpreted classically as the trace of the second fundamental form
of S in a spacetime X). The path integrals that compute wavefunctions
Ψ(h0,K) are well-defined in perturbation theory.

The wavefunctions Ψ1, Ψ2 in the inner product that was defined in
eqn. (43) could be naturally defined as functions of K and h0, but in the
definition of the inner product, they are not integrated over K and h0, but
only over h0, at K = 0. This is analogous to the restriction from M to U in
the Klein-Gordon pairing (45): in the gravity case, as expected, one places
a condition at each point in S, namely K = 0.

Another detail is that the symmetry under diffeomorphisms of S is taken
into account in eqn. (43) not by asking for Ψ1 and Ψ2 to be invariant under
the group Diff of diffeomorphisms of S, but via the ghosts and the BRST
formalism. The difference is mainly important technically. A Hilbert space
of square-integrable functions or half-densities on an infinite-dimensional
space such as Met is a vague notion unless one can describe exactly what
class of functions one is interested in. In the BRST framework, the appro-
priate description is straightforward, at least in perturbation theory. The
BRST framework is not necessarily the only way to make perturbation the-
ory explicit – for example, one could try to fix the pure gauge modes in
Met by a sort of axial gauge – but certainly the BRST machinery provides
a simple framework for perturbation theory.

The last and crucial point about eqn. (43) that requires some eluci-
dation is the factor det Ξ. In fact, we will now explain that this factor

is quite analogous to the factor
↔
∂µ in the Klein-Gordon pairing. In do-

ing so, for brevity, we will take M to be Minkowski space with metric
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ds2 = ηµνdX
µdXν = −dT 2 + dX⃗2, and we will take S to be the hypersur-

face T = T∗, for some T∗. Generalizations are straightforward.
The action for a Klein-Gordon particle in this spacetime can be described

by a generally covariant theory on a one-dimensional worldline λ. The metric
of the worldline is taken to be g(t)dt2, g(t) ≥ 0, and we define e(t) as the
positive square root of g(t). The Klein-Gordon particle can then be described
by the action

(46) I =
1

2

∫

λ
dt

(
−e−1ηµν

dXµ

dt

dXν

dt
− em2

)
,

which is invariant under reparametrizations of λ. The Hamiltonian con-
straint is the Euler-Lagrange equation for the field e; in other words, it is
H = 0 with H = − δI

δe = 1
2

(
1
e2 ηµν

dXµ

dt
dXν

dt +m2
)
. Since the momentum con-

jugate to Xµ is Πµ = 1
eηµν

dXν

dt , and upon quantization, Πµ = −i ∂
∂Xµ , we

have

(47) H =
1

2

(
ηµνΠµΠν +m2

)
=

1

2

(
−ηµν

∂

∂Xµ

∂

∂Xν
+m2

)
.

We now want to define states by conditions to the past and future of S,
and define an inner product between them by some sort of integral on S. In
the spirit of eqn. (1) or fig. 1(a), it would be natural to define initial and
final states by conditions at T = −∞ and T = +∞. However, a much shorter
derivation is possible if one is willing to define the states by means of sources
at finite points to the past and future of S. So we introduce points X0 and
X1 respectively to the past and future of S, at which states will be created
and annihilated. We can assume that X0 has coordinates Xµ

0 = (T0, X⃗0),

T0 < T∗, and similarly X1 has coordinates Xµ
1 = (T1, X⃗1), T1 > T∗.

Now we want to perform a path integral for the case that λ is an interval,
with boundary conditions such that one end of the interval maps to X0 and
the other to X1. After evaluating this path integral, we will explore how it
can be factored in terms of states passing through the hypersurface S.

Because of reparametrization invariance, there is no loss of generality
in assuming that λ is the unit interval 0 ≤ t ≤ 1 with the endpoint t = 0
mapped to X = X0 and the endpoint t = 1 mapped to X = X1. The tech-
nique to do the path integral is well-known. First of all, the length of
the interval τ =

∫ 1
0 dt e(t) can be any positive number. One can fix the

reparametrization invariance of the interval by setting e = τ . The ghosts
that are involved in this gauge-fixing decouple. For fixed τ , the path inte-
gral over Xµ is just an ordinary quantum mechanical path integral on an
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interval of length τ , with the Hamiltonian H. So the value of the path in-
tegral is ⟨X1|e−iHτ |X0⟩. To evaluate the path integral, one has to integrate
this matrix element over the remaining variable τ that is not determined by
the gauge-fixing. This integral is only conditionally convergent. To define it
precisely, one can include a convergence factor exp(−ϵτ) where ϵ is taken to
0 at the end of the calculation. The output of the path integral is then

(48) G(X1;X0) =

∫ ∞

0
dτ⟨X1|e−iHτ−ϵτ |X0⟩ =

〈
X1

∣∣∣∣
−i

H − iϵ

∣∣∣∣X0

〉
.

This obeys

(49) HG(X1;X0) = −iδD(X1 −X0),

where one can consider H to act either on X1 or on X0.
Assuming that m is large enough that m(T1 − T∗), m(T∗ − T0) >> 1,

G(X1, X0) can also be computed in a perturbative expansion in which the
starting point is a solution of the classical equations of motion of this theory
with the boundary conditions that X = X0 at one endpoint and X = X1

at the other. There is a unique solution,18 namely a straight line trajectory
from X0 to X1. Such a trajectory, of course, intersects the hypersurface
U defined by T = T∗ in precisely one point. Expanding around this orbit,
we learn that to all orders in an expansion in 1/m, we can assume that a
trajectory intersects U in a unique point.

This means that, from the standpoint of perturbation theory in 1/m, we
can partially gauge fix the theory by requiring that some specified point on
the interval λ is mapped to U . This step is analogous to the main step in
section 2.4, where we made a partial gauge-fixing to specify that a pre-chosen
hypersurface S0 is the Cauchy hypersurface with K = 0.

To implement this idea in the present context, we can take λ to be
the interval −1 ≤ t ≤ 1, with boundary conditionsX(−1) = X0,X(1) = X1,
and a partial gauge-fixing condition T (0) = T∗. To impose this condition,
we use the BRST formalism. The BRST transformation of the field Xµ(t)

is δXµ(t) = cdX
µ(t)
dt , where c is the ghost field associated to an infinitesimal

reparametrization of the worldlineK. To implement the partial gauge-fixing,
we introduce a BRST multiplet consisting of an antighost variable b and a

18The proper time elapsed in this solution is real if X1 and X0 are timelike
separated, and imaginary if they are spacelike separated. For an interesting analysis
of the implications of this in the context of what in section 2.3 was called the revised
Wheeler-DeWitt formalism, see [41].
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bosonic variable ϕ with BRST transformations

(50) δb = ϕ, δϕ = 0.

(b and ϕ are defined only at t = 0, so they are variables, not fields.) The
gauge-fixing action is

(51) δ (b(T (0)− T∗)) = ϕ(T (0)− T∗)− bc
dT (0)

dt
.

The integral over these variables is19

∫
db dϕ

2πi
exp

(
iϕ(T (0)− T ∗)− ibc(0)

dT (0)

dt

)
(52)

= −δ(T (0)− T∗)
dT (0)

dt
δ(c(0)).

The delta function δ(c(0)) means that c(t) effectively splits up as two
different fields, one of which is supported for t < 0 and is associated to
reparametrizations of the interval −1 ≤ t ≤ 0, and one of which is supported
for t > 0 and is associated to reparametrizations of the interval 0 ≤ t ≤ 1.

For a fixed value of X⃗(0), the path integral for t ≤ 0 gives
G(T∗, X⃗(0);X0) and the path integral over t ≥ 0 gives G(X1;T∗, X⃗(0)). In-
tegrating (52) over X⃗(0), we get the full path integral, which is supposed
to equal G(X1;X0), since we have merely analyzed the same path integral
that led to eqn. (48) with a different parametrization and gauge-fixing. So
we expect

(53) G(X1;X0) = −
∫

dD−1X⃗(0)G(X1;T∗, X⃗(0))
dT (0)

dt
G(T∗, X⃗(0);X0).

Here dT (0)
dt can act as −i∂T∗

on G(T∗, X⃗(0);X0), or as +i∂T∗
on

G(X1;T∗, X⃗(0)). The reason for the relative minus sign is that the normal
vector ∂t at t = 0 is outward directed for the interval −1 ≤ t ≤ 0 and inward
directed for the interval 0 ≤ t ≤ 1. The derivation that we are giving here is
not precise enough to directly show whether dT (0)

dt should be taken to act to
the right or the left, but the symmetry of the construction under exchange

19To properly justify the numerical factor 1/2πi that we assume here in the
measure would require a more precise derivation, possibly with a discretization of
the path integral.
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of the future and past shows that we presumably should take a symmetric
combination of the two choices. Thus we interpret the formula to be

(54) G(X1;X0) = − i

2

∫

U
dD−1X⃗(0)G(X1;T∗, X⃗(0))

↔
∂

∂T∗
G(T∗, X⃗(0);X0).

In this formula, we see the Klein-Gordon inner product on the hypersurface
U . The formula says that a transition amplitude between states created to
the past and future of the hypersurface can be evaluated in terms of a sum
over states on S, using the Klein-Gordon inner product.

To verify that this formula is in fact correct, let Θ(T∗ − T (0)) be the
function that is 1 for T∗ − T (0) > 0 and otherwise 0. By using ∂T (0)Θ(T∗ −
T (0)) = −δ(T∗ − T (0)), we can replace the integral over U in eqn. (54) with
an integral over all of M :

− i

2

∫

U
dD−1X⃗(0)G(X1;T∗, X⃗(0))

↔
∂

∂T∗
G(X⃗(0), T∗;X0)(55)

=
i

2

∫

M
dD−1X⃗(0) dT (0)

(
∂

∂T (0)
Θ(T∗ − T (0))

)

×G(X1;T (0), X⃗(0))

↔
∂

∂T (0)
G(X⃗(0), T (0);X0).

Now we integrate by parts with respect to T (0) and observe that for any
functions A,B

(56) ∂T0
(A

↔
∂T0

B) = 2 (A(HB)− (HA)B) +

D−1∑

i=1

∂Xi
(A

↔
∂Xi

B).

When we use this in eqn. (55), the terms ∂Xi
(· · · ) can be dropped because

we are integrating over X⃗ and nothing else depends on X⃗. So the formula
(55) becomes

(57) G(X1;X0) = i

∫

M
dDX(0)Θ(T∗ − T (0))

×
(
G(X1;X(0))HG(X(0);X0)− (HG(X1;X(0)))G(X(0);X0)

)
,

where H acts on X(0). Finally, from (49), we have HG(X(0);X0) =
−iδD(X(0)−X0) and HG(X1;X(0)) = −iδD(X1 −X(0)). Of these two
delta functions, only the first is in the support of the function Θ(T∗ − T (0)),
and upon doing the integral, we confirm that eqn. (57) is valid.
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One surprise here is that although the derivation of eqn. (54) suggested
that this formula is valid only in perturbation theory in 1/m, the formula
actually turned out to be exact. It is not clear to what extent there is a
general lesson here.

The derivation shows that the factor
↔
∂

∂Xµ that makes the Klein-Gordon
inner product indefinite can be interpreted as coming from a ghost determi-
nant. For gravity, the analogous ghost determinant is det Ξ, and is positive
in perturbation theory.

3. The classical phase space

In section 2.1, we explained just enough about the relation of the classical
phase space Φ of AAdS gravity to a cotangent bundle T ∗(Conf/Diff) to
motivate the quantum treatment in section 2.4. Here we will give a more
complete explanation and also a more general one, including matter fields.

In this discussion, Conf is the space of conformal structures on a Cauchy
hypersurface S in a spacetime X, and Diff is the group of diffeomorphisms
of S. If X is asymptotically Anti de Sitter, which is our main focus, the con-
formal structure on S is required to be asymptotic to a specified conformal
structure on the boundary S∞, and diffeomorphisms of S are required to be
trivial at infinity. However, some of the considerations can be adapted to a
closed universe – that is, to the case that S is compact.

To establish an equivalence of Φ to T ∗(Conf/Diff), or a generalization
of this to include matter fields, one finds maps in both directions that are
inverses of each other. The map from Φ to T ∗(Conf/Diff) is made by finding
a maximal volume hypersurface with specified asymptotic behavior, and the
map in the opposite direction is made by solving the Lichnerowicz equation
to find a Weyl factor by means of which the Hamiltonian constraint equation
is satisfied. The two maps are inverses of each other, under appropriate con-
ditions, and this establishes the isomorphism between Φ and T ∗(Conf/Diff).
We begin by discussing the maximal hypersurfaces and then we consider the
Lichnerowicz equation.

3.1. Maximal hypersurfaces

3.1.1. Extremal hypersurfaces and maximal ones. The first impor-
tant fact is that in pure gravity with negative cosmological constant, and
also in the presence of matter fields that satisfy the strong energy condition,
a hypersurface of extremal volume is automatically a local maximum of the
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volume. To be more precise, we consider a Cauchy hypersurface S ⊂ X that
is asymptotic at infinity to some given Cauchy hypersurface S∞ ⊂ X∞, and
we assume that S has extremal renormalized volume among all Cauchy hy-
persurfaces that are asymptotic to S∞. The claim is that, in a large class of
theories, the renormalized volume VR(S) is actually a local maximum among
this class of hypersurfaces.

As in section 2.4, we can pick local coordinates t, x⃗ near S so that S is
defined by t = 0 and the metric near S takes the form

(58) ds2 = −dt2 +

d∑

i,j=1

gij(x⃗, t)dx
idxj .

Consider a nearby hypersurface S′ defined by t = ϵ(x⃗) for some function ϵ.
We require that ϵ(x⃗) vanishes at infinity so that S and S′ are asymptotic to
the same boundary hypersurface S∞.

If S is an extremum of the renormalized volume, then the renormalized
volume of S′ coincides with that of S in order ϵ, and the ϵ2 term was identified
in eqn. (35):

VR(S
′) = VR(S)(59)

−
∫

S
ddx

√
h

(
1

2
hij∂iϵ(x⃗)∂jϵ(x⃗) +

1

2
ϵ(x⃗)2

(
8πGT̂tt +KijK

ij
))

+O(ϵ3),

where T̂µν = Tµν − 1
D−1gµνT

α
α , with Tµν the matter stress tensor (including

a contribution from the cosmological constant). We see that if T̂tt ≥ 0, then
the ϵ2 term in VR(S

′) is negative (the condition that ϵ → 0 at infinity ensures
that the −(∇ϵ)2 on the right hand side of eqn. (59) is strictly negative for
any ϵ ̸= 0). This shows that in this AAdS context, assuming that T̂tt ≥ 0,
an extremum of the renormalized volume is always a local maximum.

The condition that T̂tt ≥ 0 at each point and in each local Lorentz frame
is called the strong energy condition. Partly because of its role in the ar-
gument just sketched, the strong energy condition is important in relating
the phase space of AAdS gravity to a cotangent bundle.20 In what theories
does it hold? It holds for pure gravity with negative cosmological constant,
and it holds in any dimension for gravity coupled to p-form fields, p ≥ 1,
and to scalar fields with a non-positive potential. For example, the strong

20We will see that the same condition is also important in analyzing the Lich-
nerowicz equation.
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energy condition holds in all of the usual 10 and 11 dimensional supergrav-
ity theories with the exception of the massive Type IIA supergravity theory,
which was constructed in [51]. These facts are explained in section 3.5. The
outstanding example of a theory that does not satisfy the strong energy con-
dition is gravity with a positive cosmological constant, and more generally,
any theory that contains scalar fields in which the scalar potential is not
negative semi-definite.

In a model that satisfies the strong energy condition, the fact that any
extremum of the renormalized volume is a local maximum suggests that the
extremum of the renormalized volume is unique: viewing the renormalized
volume as a function on the space of Cauchy hypersurfaces with specified
asymptotics, between two local maxima one would expect to find a saddle
point, contradicting the fact that every extremum is a local maximum. A
proof of this uniqueness was given in Appendix A of [50] by use of the Ray-
chaudhuri equation.21 For completeness, we will summarize the argument
(the details are not needed for the rest of this article). Let S be an extremal
Cauchy surface whose uniqueness we wish to prove, and let S′ be some other
Cauchy surface with the same asymptotic behavior. Given a point p ∈ S, let
γp be the geodesic through p that is normal to S. By global hyperbolicity,
γp intersects S′ at a unique point p′; let γ[p,p′] be the segment of γp from p to
p′. Then γ[p,p′] may or may not be the causal path from p to p′ that has the
greatest possible elapsed proper time. Let S0 be the subset of S consisting
of points p such that γ[p,p′] is proper time maximizing. Define φ0 : S0 → S′

by φ0(p) = p′ if p′ = γp ∩ S′. A standard argument (see for example [52, 53])
using global hyperbolicity and compactness of spaces of causal paths shows
that every point p′ ∈ S′ can be reached from S by a causal path that maxi-
mizes the elapsed proper time; moreover, this path is a geodesic orthogonal
to S at some point p ∈ S. So the map φ : S0 → S′ is surjective. Moreover, if
T̂tt is everywhere strictly positive, Raychaudhuri’s equation implies that φ
is everywhere volume-reducing. Hence the volume of S′ is strictly less than
the volume of S0, and this in turn is no greater than the volume of S. So S
has greater volume than any other Cauchy hypersurface. So any extremal
Cauchy hypersurface is a strict maximum of the renormalized volume, and
is therefore unique.

21For X = AdS3, another proof of uniqueness is given in [11]. This proof is valid
even if the conformal boundary S∞ of S is highly nonsmooth (which complicates
the definition and analysis of VR). That case is important for some applications (for
example, see [12]), but for our purposes in the present article, we can assume that
S∞ is smooth.
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3.1.2. Existence of a local maximum. The next step is to discuss the
existence of a local maximum of VR, in the AAdS setting, for hypersur-
faces with specified asymptotic behavior. Here what is known is actually in-
complete. A detailed discussion leads almost inevitably to questions about
cosmic censorship and the singularities of classical solutions of Einstein’s
equations.

For the case X = AdSD, for any dimension D, and any choice of S∞, a
proof of existence of an extremal Cauchy hypersurface S ⊂ X with boundary
S∞ was given in [11].22 More recently [47], existence of such a hypersurface
was shown in any AAdS spacetime under the hypothesis that the bulk do-
main of dependence of S∞ is compact. One goal of the following qualitative
remarks is to explain the role of that assumption; the other goal is to ex-
plain that under the same assumption, one should expect a similar result
for AdSD compactifications, that is, for spacetimes that are asymptotic to
AdSD ×W for some compact W .

Let us say that a Cauchy hypersurface23 in a spacetime X that is asymp-
totic to AdSD or AdSD ×W is “allowed” if it is asymptotic to some chosen
boundary Cauchy hypersurface S∞ ⊂ X∞. Any allowed Cauchy hypersur-
face is contained in the bulk domain of dependence24 of S∞, which we will
call Ω. We assume that Ω is compact; this assumption will be discussed
critically later. Now let S1, S2, · · · be a sequence of allowed Cauchy hy-
persurfaces. The Si cannot go to infinity in spacetime, since they are all
contained in the compact set Ω. The condition that they all are everywhere
spacelike or null means that they also cannot go to infinity in momentum

22In addition, using this result, existence and uniqueness of an extremal Cauchy
hypersurface was shown in [12] for a spacetime that is locally (not just asymptot-
ically) AdS3, in other words, for any classical solution of pure Einstein gravity in
D = 3 with Λ < 0. This result holds for arbitrary topology of the initial value sur-
face; in particular, the boundary may have any number of connected components.

23We are about to make an argument that involves limits. A sequence of spacelike
hypersurfaces can develop null portions in a limit. So technically, in the following
argument, it is best to define a Cauchy hypersurface to be a complete achronal, but
not necessarily spacelike, hypersurface on which initial data can be formulated; it
may have null portions. The null portions have zero volume so a volume-maximizing
hypersurface will not have null portions.

24The bulk domain of dependence of S∞ is the domain of dependence of any
allowed bulk hypersurface S; alternatively, it is the set of points in X that are not
timelike separated from S∞. Technically, in the following argument, it is convenient
to include the points of S∞ in S and in the bulk domain of dependence Ω; this
ensures that S is compact, and makes it possible for Ω to be compact (as we wll
see, this happens if X is geodesically complete).
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space. More specifically, if a hypersurface S is described locally by specify-
ing a function t = f(x⃗) where x⃗ and t are local space and time coordinates,
then the condition for S to be spacelike or null is |∇f | ≤ 1, which is a sort
of momentum space bound. Because the Si are bounded in both position
space and momentum space, the sequence Si has a (pointwise) convergent
subsequence.25 The renormalized volume is bounded above26 as a function
on the space of allowed Cauchy hypersurfaces, since a sequence S1, S2, · · ·
with VR(Si) tending to +∞ could not have a convergent subsequence. Let
Vmax be the least upper bound on VR(S) among allowed Cauchy hypersur-
faces S, and consider a sequence S1, S2, . . . of allowed hypersurfaces with
limi→∞ VR(Si) = Vmax. The limit S of a convergent subsequence of the se-
quence S1, S2, · · · will have VR(S) = Vmax and will be a maximal volume
hypersurface.

A key assumption in this argument was that the bulk domain of depen-
dence Ω is compact. This is true if X = AdSD, but in a general spacetime
that is asymptotic to AdSD, Ω may fail to be compact, because singularities
may form in the evolution of X from initial data on S. For example, if a
Schwarzschild black hole forms to the past or future of S, the domain of de-
pendence of S may not be compact. However, the presence of a Schwarzschild
singularity does not spoil the existence of a volume-maximizing hypersur-
face, for the following reason. A Schwarzschild singularity is a special case of

25For a fuller explanation of this type of argument about sequences of hypersur-
faces, see the proof of Theorem 10 in [54]. An important detail is that the renor-
malized volume is only upper semicontinuous on the space of Cauchy hypersurfaces
that are asymptotic to S∞, meaning that in a limit, it can jump upward but can-
not jump downward. However, since we are trying to maximize the renormalized
volume, upward jumps are not a problem. (To see why upward jumps in volume
are possible, consider a sequence of spacelike hypersurfaces that look locally like
t = 1

2ϵ cos(x/ϵ), where x is a space coordinate and ϵ << 1. This family of hypersur-
faces has a limit for ϵ → 0, namely the hypersurface t = 0, and the volume jumps
upward at ϵ = 0.)

26Although VR is bounded above on the space of allowed Cauchy hypersurfaces,
it is actually not bounded below. If S is asymptotic to S∞ but is not orthogonal to
X∞, then VR(S) = −∞. That is because the unsubtracted volume V (S) is always
+∞, so an infinite subtraction has been made to define VR(S). A hypersurface that
is not orthogonal to the boundary has a less divergent volume than an orthogonal
one, so its renormalized volume is −∞. An allowed hypersurface that is orthogonal
to the boundary has a finite renormalized volume, but the renormalized volume
of such hypersurfaces can be arbitrarily negative, since a sequence S1, S2, · · · of
allowed hypersurfaces that are orthogonal to X∞ might have a limit that is not
orthogonal to X∞; in that case limi→∞ VR(Si) = −∞.
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a more general type of singularity known as a Kasner singularity. A Kasner
singularity is a solution of Einstein’s equations of the form27

(60) ds2 = −dt2 +

d∑

j=1

t2pj (dxj)2,

d∑

i=1

pi =

d∑

i=1

p2i = 1.

The volume form of a hypersurface t = t0 vanishes as t0 approaches the sin-
gularity at t = 0, so a volume-maximizing hypersurface is repelled from a
Kasner singularity. (Essentially this point is discussed in [54] in the proof of
Theorem 11.) Therefore, noncompactness of Ω due to formation of a Kas-
ner singularity poses no problem for the existence of a volume-maximizing
hypersurface. A Schwarzschild singularity is the special case of a Kasner
singularity with one of the pi equal to −(d− 2)/d and the others equal to
2/d, so it causes no difficulty. Formation of a Kerr black hole causes no diffi-
culty because the singularity of a Kerr black hole is timelike and would not
be contained in the domain of dependence Ω. Belinski-Khalatnikov-Lifshitz
(BKL) singularities are similar to Kasner singularities but, roughly, with
repeated jumps in the exponents as t → 0+, so one would expect them to
cause no difficulty.

It is conjectured that generic spacelike singularities in General Relativity
are of BKL type [55]. Under this assumption, we can hope that a maximal
volume hypersurface S with specified asymptotic behavior always exists in
any asymptotically AdSD spacetime, for any D. In a theory in which the
strong energy condition holds, S would be unique.

We should caution the reader, however, that compactifications to AdSD
are different. In a spacetime X asymptotic not to AdSD but to AdSD ×
W for some compact manifold W , we will in section 3.6 explain a simple
argument showing in some cases that a maximal volume hypersurface cannot
exist. This will actually motivate a conjecture that non-BKL singularities
form generically in such compactifications.

We will now show that assuming the null energy condition,28 if X is
free of singularity, or more precisely if it is geodesically complete, then Ω
is compact. (This argument is not needed in the rest of the article.) First
we show that if X is geodesically complete, then the future boundary of Ω,

27This is a solution of Einstein’s equations with zero cosmological constant; how-
ever, the cosmological constant is not important near the singularity.

28The null energy condition states that at each point q ∈ X and for each null
vector n, the stress tensor T satisfies nαnβTαβ(x) ≥ 0. This condition holds rather
generally in physically sensible relativistic field theories (in theories with scalar
fields, it holds in Einstein frame).
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which we will denote as ∂+Ω, is compact; similarly the past boundary ∂−Ω is
compact. The reasoning involved is similar to that in the proof of Penrose’s
singularity theorem; see for example [52] or [53]. Any point p ∈ ∂+Ω can
be reached from S∞ by an orthogonal null geodesic without a focal point.
The future-going inward orthogonal null geodesics that originate on S∞ are
initially converging, and assuming the null energy condition (which holds in
reasonable classical field theories), Raychaudhuri’s equation implies that if
X is geodesically complete, they all reach focal points, beyond which they
are not contained in ∂+Ω. The segment of any such geodesic that is contained
in ∂+Ω (including its initial point on S∞) is therefore compact, and as S∞
is also compact, it follows that ∂+Ω is compact. Similarly ∂−Ω is compact.
Given this, to show that Ω is compact, we can for example use the fact that
a globally hyperbolic manifold X with Cauchy hypersurface S can be put
in the form S × R where the set p× R is timelike for any p ∈ S, and R is
parametrized by a variable u that, for each p ∈ S, runs over the full range
−∞ < u < ∞. Compactness of ∂+Ω and ∂−Ω implies that the function u
is bounded on ∂+Ω and on ∂−Ω. For p ∈ S, let u+(p) be the least upper
bound of u on (p× R) ∩ Ω, and similarly let u−(p) be the greatest lower
bound of u on (p× R) ∩ Ω. Then Ω consists of points p× u ∈ S × R with
u−(p) ≤ u ≤ u+(p), and so is compact.

3.2. The phase space and the constraint equations

The existence and uniqueness of a maximal volume hypersurface S, discussed
in section 3.1, is one ingredient in relating the phase space of AAdS gravity to
a cotangent bundle T ∗(Conf/Diff). The other ingredient, as developed in [9–
12] for the case D = 3, involves analyzing the Einstein constraint equations
and in particular showing that the Hamiltonian constraint equation can be
viewed as a condition that fixes the Weyl factor in the metric of a Cauchy
hypersurface S. Here, we will explain this argument for the case of pure
gravity with negative cosmological constant. Matter fields will be included
in section 3.4.

Suppose that S is a Cauchy hypersurface in a spacetime X of dimension
D = d+ 1 that satisfies Einstein’s equations with negative cosmological con-
stant Λ. The metric h and second fundamental form K of S automatically
satisfy the Einstein constraint equations:

DiK
ij −DjKi

i = 0

R(h) = KijKij −Ki
iK

j
j + 2Λ,(61)
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where R(h) is the scalar curvature of the metric h. These equations were
introduced previously in section 2.2; the first is called the momentum con-
straint and the second is the Hamiltonian constraint. Any pair h,K satis-
fying these constraint equations on a manifold S provides initial data that
determines a spacetime X that satisfies Einstein’s equations and has S as a
Cauchy hypersurface.

Given suitable assumptions about singularities as discussed in section
3.1.2, we expect that if X is an AAdS solution of Einstein’s equations, there
is a unique volume-maximizing Cauchy hypersurface S ⊂ X asymptotic to
any given boundary Cauchy hypersurface S∞. The metric h and second
fundamental form K of S satisfy the Einstein constraint equations (with
Ki

i = 0, since S is volume-maximizing), and the spacetime X can be recov-
ered from S by solving Einstein’s equations with initial data h,K. Since S is
unique, two spacetimes obtained this way are equivalent if and only if they
are equivalent via a diffeomorphism of S. So in short, under the given as-
sumption about singularities, the phase space Φ of solutions of the Einstein
equations in the domain of dependence of a boundary Cauchy hypersurface
S∞ is the same as the space of solutions of the constraint equations (61) with
Ki

i = 0 and S asymptotic to S∞, up to diffeomorphism of S. Our goal here is
to show that this space is T ∗(Conf/Diff), implying that Φ = T ∗(Conf/Diff),
under our assumptions.

As a first step, observe that once we set Ki
i = 0, which reduces the mo-

mentum constraint to DiK
ij = 0, the momentum constraint becomes Weyl-

invariant. To be precise, if we introduce a Weyl-rescaled metric

(62) h̃ = ϕℓh,

with a positive function ϕ, and similarly rescale the second fundamental
form, setting

(63) K̃ij = ϕ−ℓ(1+d/2)Kij ,

then the momentum constraint simply becomes

(64) D̃iK̃
ij = 0,

where D̃i is the covariant derivative computed with the new metric h̃.
Though this assertion is easily verified, it may seem mysterious at first sight,
since the Weyl rescaling in question is certainly not a symmetry of General
Relativity. In section 3.3, we will give a more conceptual explanation of this
Weyl invariance, but here we explain why it is useful.
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The point is that if we are given a pair h,K that satisfies the momen-
tum constraint equation (and the AAdS boundary condition at infinity),
then there is a unique Weyl transform of this pair that satisfies the Hamil-
tonian constraint equation. Thus for the purposes of describing the phase
space, we can simply replace the Einstein constraint equation with the oper-
ation of dividing by the group Weyl of Weyl transformations. Therefore, the
only constraint equation that we have to discuss explicitly is the momen-
tum constraint; the Hamiltonian constraint can be replaced by the group
of Weyl transformations. This is a substantial simplification, because the
momentum constraint is linear in K, and is much easier to understand than
the Hamiltonian constraint equation.

Thus, the key fact is that given a pair h̃, K̃ that satisfies the momentum
constraint equation, there is a unique positive function ϕ such that the Weyl
rescaled metric and second fundamental form h = ϕ−ℓh̃, Kij = ϕℓ(1+d/2)K̃ij

satisfy the Hamiltonian constraint equation. In sketching the proof, we will
follow the very useful explanation in section 3 of [7]. For convenience, we
use the notation of that paper. See also, for example, [3–6, 8].

Setting ℓ = −4/(d− 2), the scalar curvatures R(h) and R(h̃) are related
by

(65) R(h)ϕ
4

d−2 = R(h̃)− 4(d− 1)

(d− 2)ϕ
∆

h̃
ϕ,

where ∆
h̃
= h̃ijD̃iD̃j is the Laplacian for the metric h̃. An important pre-

liminary point is that in an AAdS spacetime, this equation can be used to
show that, by a Weyl transformation that is trivial at infinity, we can set
R(h̃) = 2Λ everywhere (not just at infinity) [57]. Actually, in the following
argument, it suffices for R(h̃) to be negative-definite, and knowing that this
suffices is important background for understanding what happens when mat-
ter fields are included. So we will retain R(h̃) in the formulas and assume
only that it is negative, and approaches 2Λ at infinity. Since we want also
R(h) → 2Λ at infinity, we can assume that the function ϕ approaches 1 at
infinity.

We perhaps should stress at this point that the ability to make a Weyl
rescaling to set R(h̃) < 0 is special to an AAdS spacetime. There are po-
tential obstructions to this in a closed universe, and the statement also
has no equally simple analog for gravity with zero or positive cosmological
constant. That is one of the reasons that the conformal approach to the
constraint equations, which we are describing here, is particularly powerful
in an AAdS spacetime. Another reason is that the arguments of section 3.1.2



✐

✐

“6-Witten” — 2023/6/27 — 17:22 — page 357 — #47
✐

✐

✐

✐

✐

✐

A note on the canonical formalism for gravity 357

concerning maximal hypersurfaces in AAdS spacetimes do not have equally
satisfactory analogs in other cases.

Let us define |K̃|2
h̃
= K̃ijK̃i′j′ h̃ii′ h̃jj′ . (Similar notation will be used later

for other tensors.) Making use of eqn. (65), we find that the Hamiltonian
constraint equation in (61) becomes

∆
h̃
ϕ− (d− 2)

4(d− 1)
R(h̃)ϕ+

(d− 2)

4(d− 1)
|K̃|2

h̃
ϕ(2−3d)/(d−2)(66)

+
Λ(d− 2)

2(d− 1)
ϕ(d+2)/(d−2) = 0.

In this form, the Hamiltonian constraint is called the Lichnerowicz equation.
It can be written

(67) ∆
h̃
ϕ− F (ϕ, x) = 0,

with

F (ϕ, x) =
(d− 2)

4(d− 1)
R(h̃)ϕ− (d− 2)

4(d− 1)
|K̃|2

h̃
ϕ(2−3d)/(d−2)(68)

− Λ(d− 2)

2(d− 1)
ϕ(d+2)/(d−2).

Here x denotes a point in S, and the explicit x-dependence of F (ϕ, x) comes
from the x-dependence of R(h̃) and |K̃|2

h̃
.

To complete the description of the phase space, we want to show that,
with R(h̃) and Λ both negative, there is a unique positive function ϕ that
satisfies the Lichnerowicz equation and approaches 1 at infinity. The main
tool is the following. A positive function ϕ− is called a subsolution if the left
hand side of eqn. (67) is nonnegative,

(69) ∆
h̃
ϕ− F (ϕ−, x) ≥ 0,

and a positive function ϕ+ is called a supersolution if the right hand side is
nonpositive,

(70) ∆
h̃
ϕ+ − F (ϕ+, x) ≤ 0.

If there is a subsolution ϕ− and a supersolution ϕ+ with ϕ− ≤ ϕ+, then we
will prove that there exists a solution ϕ of the Lichnerowicz equation with

(71) ϕ− ≤ ϕ ≤ ϕ+.
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For small ϕ, the dominant term in F (ϕ, x) is the |K̃|2
h̃
term wherever

K̃ ̸= 0, and the R(h̃) term wherever K̃ = 0. Both of these contributions to
F (ϕ, x) are negative, since we have assumed R(h̃) < 0. So an example of a
subsolution is any sufficiently small constant C. For large ϕ, the dominant
term in F (ϕ, x) is the term proportional to −Λ. We have assumed Λ < 0, so
this term is positive. Hence an example of a supersolution is any sufficiently
large constant D. On a compact manifold S, these choices of subsolution
and supersolution are satisfactory. However, in the AAdS context, we want
a solution of the Lichnerowicz equation such that ϕ → 1 at infinity. Eqn. (71)
will guarantee this if ϕ− and ϕ+ both approach 1 at infinity. So we want a
subsolution and a supersolution with that property. These can be found as
follows. Write the AAdS metric in the familiar form

(72) ds2 =
1

ρ2


dρ2 +

d∑

a,b=1

gab(x, ρ)dx
adxb


 ,

where the conformal boundary S∞ is at ρ = 0. For a suitably small constant
ϵ, take ϕ− to equal 1 at ρ = 0 and C for ρ ≥ ϵ, with a smooth monotonic
interpolation in between, and similarly take ϕ+ to interpolate from 1 at
ρ = 0 to D for ρ ≥ ϵ. With a suitable choice of the interpolations, this gives
a subsolution and a supersolution with ϕ− ≤ ϕ+ everywhere and ϕ−, ϕ+ → 1
at ρ = 0. See section 5 of [58] for a more detailed explanation of this point.

The proof of existence of a solution of the Lichnerowicz equation, given
ϕ− and ϕ+, is simpler on a compact manifold, so we begin with that case. For
a sufficiently large constant c, the function Fc(ϕ, x) = F (ϕ, x)− cϕ is (for any
x) monotone decreasing for ϕ in the interval29 [C,D]. The operator ∆

h̃
− c

is negative-definite, so for any function f , the equation (∆
h̃
− c)ϕ = f has a

unique solution for ϕ. So we can inductively define a sequence of functions
ϕ0, ϕ1, · · · with ϕ0 = ϕ+ and for n ≥ 1,

(73) (∆
h̃
− c)ϕn = Fc(ϕn−1, x).

Suppose that for all n ≥ 0,

ϕ− ≤ ϕn ≤ ϕ+

ϕn+1 ≤ ϕn.(74)

29This statement is also true in the AAdS case, because natural AAdS boundary
conditions ensure that all coefficients in F (ϕ, x) are bounded at infinity; indeed,
R(h̃) is asymptotically constant, and |K̃|2

h̃
→ 0 at infinity.
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In this case ϕn is monotonically decreasing with n and bounded below by ϕ−,
and so must have a limit for n → ∞. The limiting function ϕ = limn→∞ ϕn

is clearly bounded by ϕ− ≤ ϕ ≤ ϕ+, and satisfies the Lichnerowicz equation,
since eqn. (73) converges for large n to (∆

h̃
− c)ϕ = Fc(ϕ, x).

The inequalities (74) are proved by induction in n. For example, suppose
that ϕn ≤ ϕ+ for some n. Then

(∆
h̃
− c)(ϕn+1 − ϕ+) = Fc(ϕn, x)−∆

h̃
ϕ+ + cϕ+(75)

≥ Fc(ϕn, x)− F (ϕ+, x) + cϕ+

= Fc(ϕn, x)− Fc(ϕ+, x)

≥ 0.

The second step holds because ϕ+ is a supersolution, and the last step
follows from monotonicity of Fc. The maximum principle then implies that
ϕn+1 − ϕ+ is nonpositive, because if ϕn+1 − ϕ+ is positive at the point where
it achieves its maximum value, then (∆

h̃
− c)(ϕn+1 − ϕ+) is negative at that

point, contradicting eqn. (75). A similar inductive argument proves that
ϕ− ≤ ϕn for all n. Finally, to prove inductively that ϕn+1 ≤ ϕn for all n, one
observes that

(76) (∆
h̃
− c)(ϕn+1 − ϕn) = Fc(ϕn, x)− Fc(ϕn−1, x).

By the induction hypothesis ϕn ≤ ϕn−1 along with the monotonicity of Fc,
the right hand side of eqn. (76) is nonnegative. The same argument as before
using the maximum principle then implies that ϕn+1 − ϕn is nonpositive.

This completes the existence proof of the solution of the Lichnerowicz
equation on a compact manifold S, assuming R(h̃),Λ < 0. In the AAdS
case, one proceeds as follows. Restrict from S to the compact manifold with
boundary Sϵ defined by ρ ≥ ϵ. The same argument as before, using Neu-
mann boundary conditions for the operator ∆

h̃
− c, produces a solution ϕϵ

of the Lichnerowicz equation on Sϵ satisfing ϕ− ≤ ϕϵ ≤ ϕ+ and also satisfy-
ing Neumann boundary conditions on ∂Sϵ. In the limit ϵ → 0, ϕϵ converges
to the desired function ϕ that satisfies the Lichnerowicz equation throughout
S and approaches 1 at infinity.

To show uniqueness of the solution, first observe that since we know
that the solution exists, we can make a Weyl transformation from the ini-
tially assumed metric h̃ to some other metric h that satisfies the Einstein
constraint equation. Saying that h obeys the Einstein constraint equation
is equivalent to saying that, with background metric h, the Lichnerowicz
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equation is satisfied with ϕ = 1:

(77) F (1, x) = 0.

Now let us ask whether some other function ϕ satisfies the Lichnerowicz
equation:

(78) ∆hϕ− F (ϕ, x) = 0.

If so, then

0 = ∆hϕ− F (ϕ, x) + ϕF (1, x)(79)

= ∆hϕ+
(d− 2)

4(d− 1)
|K̃|2

h̃
(ϕ(2−3d)/(d−2) − ϕ)

+
Λ(d− 2)

2(d− 1)
(ϕ(d+2)/(d−2) − ϕ).

This equation implies that ϕ ≤ 1 everywhere, since if the maximum of ϕ is at
a point p at which ϕ > 1, then each term on the right hand side is negative
at that p, which is not possible. Likewise the equation implies that ϕ ≥ 1
everywhere, since if the minimum of ϕ is at a point p at which ϕ < 1, then
each term on the right hand side is positive at p, again not possible. So we
must have ϕ = 1 and the solution is unique.

This completes our discussion of the Lichnerowicz equation for pure
gravity.

3.3. Symplectic point of view

A more conceptual understanding of the Einstein momentum constraint and
its Weyl invariance requires a few steps.30 The canonical momentum in Gen-
eral Relativity is

(80) Πij =
1

8πG

√
deth

(
Kij − Khij

)
.

30The following remarks are equally valid in a closed universe or open universe
and require no assumption about the cosmological constant. In the AAdS case, of
course, one must place appropriate conditions on the behavior of the metric and
canonical momentum at infinity, and on the allowed behavior at infinity of a Weyl
transformation or diffeomorphism.
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The canonical commutation relations between the metric h and the canonical
momentum Π can be summarized by the symplectic form

(81) ω =

∫

S
δΠijδhij ,

where δ is the exterior derivative acting on the infinite-dimensional space
W of pairs Π, h (in finite dimensions, we denote the exterior derivative as d
rather than δ). We have

(82) ω = δλ

with

(83) λ =

∫

S
Πijδhij .

In classical mechanics, analogous formulas λ =
∑

a padq
a, ω = dλ hold for

any classical phase space that is a cotangent bundle T ∗Q, where Q is
parametrized by the qa and the pa parametrize the fiber directions in the
cotangent bundle. So in the case of gravity, the full phase space W, prior
to imposing any constraint, is T ∗Met, where Met is the space of metrics h
on S.

Two interesting groups act on this phase space, and we will want to
construct reduced phase spaces by imposing these groups as constraints.
First we observe that the symplectic form ω and the 1-form λ have an
obvious Weyl symmetry:

(84) δhij = 2φhij , δΠij = −2φΠij .

Let Weyl be the group of Weyl transformations, and Conf = Met/Weyl the
space of conformal structures on S. The Hamiltonian function that generates
the Weyl transformation (84) by Poisson brackets is31

(85) µφ,g = −2

∫

S
φhijΠ

ij .

By setting µφ,g = 0 and dividing by Weyl, one can construct a “reduced
phase space,” called the symplectic quotient of W by Weyl. Setting µφ,g = 0

31The label “g” in µϕ,g is for gravity; later we will consider matter contributions
to the Hamiltonian functions.
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means taking hijΠ
ij = 0, so that Π becomes traceless and the definition (80)

of Π reduces to

(86) Πij =
1

8πG

√
dethKij ,

with Kij now constrained by K = 0. After imposing this condition, we divide
by Weyl transformations, acting as in eqn. (84). In terms of h and K, the
Weyl transformations are

(87) δhij = 2φhij , δKij = −2(1 + d/2)φKij .

Thus the reduced phase space, denoted T ∗Met//Weyl, is the space of pairs
h,K, with K traceless, subject to this action of Weyl. What is described in
eqn. (87), though written at the Lie algebra level, is the same Weyl trans-
formation law for h and K that was introduced previously in eqns. (62),
(63). In particular, this derivation gives a better understanding of the pos-
sibly mysterious-looking exponent in eqn. (63). Since the action of Weyl on
T ∗Met comes from an action on the base space Met, the reduced phase space
is again a cotangent bundle T ∗Met//Weyl = T ∗(Met/Weyl) = T ∗Conf.

Another natural group that acts on these spaces is the diffeomorphism
group Diff of S. The Lie algebra of Diff consists of vector fields on S. The
transformation of h generated by a vector field U on S is δhij = DiUj +
DjUi. The Hamiltonian function that generates this transformation is

(88) µU,g =

∫

S
Πij(DiUj +DjUi).

To construct the symplectic quotient T ∗Met/Diff, we set µU,g = 0 and divide
by Diff. Integrating by parts in eqn. (88), we see that the condition that
µU,g = 0 for all U is satisfied if and only if

(89) 0 = DiΠ
ij =

1

8πG

√
h
(
DiK

ij −DjK
)
.

This is the momentum constraint of General Relativity.
Diffeomorphisms and Weyl transformations together generate a group

that is a semidirect product Weyl⋊ Diff. In particular, Diff is a group of
outer automorphisms of Weyl. This group structure implies that a Weyl
transformation shifts µU,g by a multiple of µϕ,g; in other words, µU,g is
Weyl-invariant, once we impose µϕ,g = 0. This gives the promised conceptual
explanation of the fact that the momentum constraint is Weyl-invariant
when restricted to K = 0.
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To construct the symplectic quotient T ∗Met//Weyl⋊ Diff, we have to set
µφ = µU = 0 and divide by Weyl⋊ Diff. In other words T ∗Met//Weyl⋊ Diff

parametrizes pairs K,h, where K is traceless and obeys the momentum con-
straint equation, up to equivalence under diffeomorphisms and Weyl trans-
formations. Since the action of Weyl⋊ Diff on T ∗Met comes from an action
on Met, the symplectic quotient T ∗Met//Weyl⋊ Diff is a cotangent bundle
T ∗P, where P = Met/(Weyl⋊ Diff) = Conf/Diff.

What we learned in section 3.2 is that it is equivalent to impose the Ein-
stein Hamiltonian constraint equation on a pair K,h, where K is traceless,
or to divide by Weyl transformations. So assuming the existence of maxi-
mal volume hypersurfaces (so that K can be assumed traceless), the phase
space of General Relativity in an AAdS spacetime is the cotangent bundle
T ∗P = T ∗(Conf/Diff).

3.4. Generalization to include matter fields

It is pleasantly straightforward to generalize what was explained about the
Einstein constraint equations in section 3.2 to encompass any of the usual
models of gravity coupled to matter fields that satisfy the strong energy
condition. The important examples include scalar fields (possibly forming
a nonlinear sigma-model) with a nonpositive potential energy and p-form
gauge fields for p ≥ 1 (possibly generalized to Yang-Mills fields if p = 1).
Incorporation of such fields in the Lichnerowicz equation has been discussed
in [6, 7, 58, 59], among other references.

As a first example, we will consider scalar fields. To simplify the nota-
tion, we consider a single scalar field σ; the generalization to several scalar
fields does not change anything essential. Assuming that σ is canonically
normalized, its stress tensor is

(90) Tij = ∂iσ∂jσ − 1

2
gij∂kσ∂

kσ − 1

2
gijV (σ).

Here g is the metric on X; its restriction to S will be denoted as h. The
cosmological constant is included in V (σ) as an additive constant. The strong
energy condition is satisfied if and only V (σ) ≤ 0 for all σ.

In studying gravity coupled to a scalar field in AAdS spacetime, we
assume that σ has a constant value near infinity. Moreover, we assume that
this constant value is an extremum of V (σ), with a negative value of V ,
corresponding to an AdS vacuum.

The phase space of the scalar field σ can be parametrized by the restric-
tion of σ to an initial value surface S together with a canonical momentum
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π. The symplectic form for this data is

(91) ωσ =

∫

S
δπδσ = δλσ,

with

(92) λσ =

∫

S
πδσ.

To incorporate these variables in the analysis of the Lichnerowicz equation,
the first step is to decide how Weyl transformations act on π, σ. The only
general procedure that makes sense is to take σ to be Weyl-invariant, since
in a general model of scalar fields, σ is really the pullback to spacetime of a
function on the target space of a nonlinear sigma-model; in that generality
a non-trivial Weyl transformation law for σ would not be meaningful. Once
we decide that σ is Weyl-invariant, invariance of λσ and ωσ means that π
must be Weyl-invariant as well.

In a coordinate system that takes the standard form (27) near S, the
standard formula for π is

(93) π =
√
hσ̇,

where σ̇ = ∂σ/∂t. Since we take Weyl transformations to act on h by δhij =
2φhij , eqn. (93), together with the Weyl-invariance of π, implies that σ̇ must
transform as δσ̇ = −dσ̇, In sum,

(94) δσ = 0, δσ̇ = −dσ̇.

The Einstein momentum constraint equation with the field σ included
and with K assumed to be traceless is

(95) DiK
ij = 8πGT 0j = −8πGσ̇∂kσh

kj .

This equation is Weyl-invariant, with Weyl transformations taken to act by
eqns. (84) and (93). This Weyl invariance may come as a slight surprise, but
it has the same explanation as in section 3.3 in terms of a symplectic quo-
tient. To see this, let Σ be the infinite-dimensional space that parametrizes
the values of the field σ on S. Then the phase space of σ is T ∗Σ, where the
fiber directions are parametrized by π. So σ, h, and their canonical momenta
jointly parametrize T ∗(Met× Σ). Let us consider the symplectic quotient of
this phase space by the group Weyl⋊ Diff. First we need to compute the
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contributions of σ to the Hamiltonian functions µφ and µU . The contribu-
tion to µφ vanishes because σ and π are Weyl-invariant. So setting µφ = 0
will mean setting K = 0, just as in the absence of σ. On the other hand, σ
does contribute to µU . The contribution is32

(96) µU,σ = −ιVU
λσ = −

∫

S
πUk∂kσ = −

∫

S

√
hσ̇Uk∂kσ.

So the condition for vanishing of the total Hamiltonian function µU = µU,g +
µU,σ is

(97) −DiK
ij = 8πGσ̇∂kσh

jk,

which is the Einstein momentum constraint for this coupled system. The
same group theoretic considerations as before imply that the momentum
constraint is Weyl-invariant, once we set K = 0.

To construct the symplectic quotient T ∗(Met× Σ)//Weyl⋊ Diff, we set
K = 0, impose the Einstein momentum constraint, and divide byWeyl⋊ Diff.
Since the action of Weyl⋊ Diff on T ∗(Met× Σ) is induced in the usual
way from an action on Met× Σ, the result is a cotangent bundle T ∗PΣ,
where PΣ = (Met× Σ)/(Weyl⋊ Diff) parametrizes pairs (h, σ) up to diffeo-
morphism and Weyl transformation.

To construct the phase space of this system, we would follow all of the
same steps except that instead of dividing by Weyl, we would impose the
Einstein Hamiltonian constraint equation

(98) R = KijK
ij + 16πGT00.

However, essentially the same arguments as summarized in section 3.2 shows
that it is equivalent to impose the Hamiltonian constraint or to divide by the
group of Weyl transformations, since each orbit of Weyl contains a unique
point at which the Hamiltonian constraint equation is satisfied.

32Here ιV is the operation of contracting the first index of a differential form with
a vector field V .
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To show this, we consider the orbit of Weyl that contains a set of fields
h̃, K̃, σ̃, ˙̃σ. This can be Weyl-transformed to

h = ϕ4/(d−2)h̃

Kij = ϕ−2(d+2)/(d−2)K̃ij

σ = σ̃

σ̇ = ϕ−2d/(d−2) ˙̃σ,(99)

where ϕ is an arbitrary positive function. The energy density is

T00 =
1

2
σ̇2 +

1

2
∂iσ∂jσh

ij + V (σ)(100)

=
1

2
ϕ−4d/(d−2) ˙̃σ

2
+

1

2
ϕ−4/(d−2)∂iσ̃∂j σ̃h̃

ij + V (σ̃).

Repeating the derivation that led to eqn. (66), we get the new form of the
Lichnerowicz equation. This is actually an equation of the same general form
as before, but with new coefficients:

∆
h̃
ϕ− (d− 2)

4(d− 1)
αϕ+

(d− 2)

4(d− 1)
βϕ(2−3d)/(d−2)(101)

+
(d− 2)

4(d− 1)
γϕ(d+2)/(d−2) = 0,

with

α = R(h̃)− 8πG∂iσ̃∂j σ̃h̃
ij

β = |K̃|2
h̃
+ 16πG˜̇σ2

γ = 16πGV (σ̃).(102)

In section 3.2, to prove the existence of a solution of the Lichnerowicz
equation, we needed33 α < 0, γ < 0. The proof of uniqueness of the solution
required β > 0, γ < 0. Incorporating the scalar field σ does not affect the
conditions α < 0 and β > 0, and it does not affect the condition γ < 0 in

33The definition of a subsolution and a supersolution actually requires these state-
ments to hold uniformly, so that for example, instead of just saying that α < 0, we
need to have a positive constant ϵ such that α < −ϵ everywhere. On a noncom-
pact manifold, in general such a uniform inequality might be a stronger condition
than α < 0, but with AAdS boundary conditions (and σ assumed to be constant
at infinity) the two statements are equivalent.
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a model that satisfies the strict strong energy condition V (σ) < 0 for all
σ. Thus, in such a model, the Lichnerowicz equation has a unique positive
solution that approaches 1 at infinity. This assertion is actually Theorem
3.3 in [58].

Under these conditions, solving the Hamiltonian constraint equation has
the same effect as dividing by the group of Weyl transformations, and there-
fore the part of the phase space that parametrizes spacetimes that can be
described by a solution of the Lichnerowicz equation with K = 0 is a cotan-
gent bundle T ∗PΣ. We argued in section 3.1.2 that given reasonable (but
optimistic) assumptions about singularities in General Relativity, every so-
lution has a maximal Cauchy hypersurface and hence can be described by
a K = 0 solution of the Lichernowicz equation. Thus under this assumption,
the phase space is T ∗PΣ.

The slightly more general case of a model that satisfies V (σ) ≤ 0 every-
where but not necessarily V (σ) < 0 is analyzed in [58], Theorem 7.1.

3.5. p-form gauge fields

In this section, we will generalize from a scalar field to a p-form gauge field34

A with gauge transformation A → A+ dλ, for a (p− 1)-form λ, and with
(p+ 1)-form field strength F = dA. Here 0 ≤ p ≤ D − 2. As usual, if S is a
Cauchy hypersurface, we can pick local coordinates such that S is defined
by t = 0 and near S the metric takes the form

(103) ds2 = −dt2 + hij(x⃗, t)dx
idxj .

Along S, we decompose F = B + dt ∧ E, where the “magnetic” field B is a
(p+ 1)-form along S, and the “electric” field E is a p-form along S.

We have two goals in studying a p-form gauge field: (1) to show that the
standard theories of a p-form gauge field satisfy the strong energy condition;
(2) to incorporate such a field in the analysis of the Einstein constraint
equations.

With the usual normalization, the stress tensor of a minimally coupled
p-form gauge field is

(104) Tµν =
1

p!
Fµα1···αp

Fν
α1···αp − 1

2(p+ 1)!
gµνFα0α1···αp

Fα0α1···αp .

34For p = 0, a p-form gauge field is the same as a scalar field, already discussed in
section 3.4. For p = 1, a p-form gauge field is an abelian gauge field. Abelian gauge
theories can be generalized to nonabelian gauge theories, but this generalization
does not affect our considerations here.
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From this, we can compute

(105) T00 =
1

2p!
Ei1···ipE

i1···ip +
1

2(p+ 1)!
Bi0i1···ipB

i0i1···ip .

Likewise

Tα
α =

1

p!

(
1− D

2(p+ 1)

)
Fα0···αp

Fα0···αp(106)

=
1

p!

(
1− D

2(p+ 1)

)(
−(p+ 1)Ei1···ipE

i1···ip +Bi0i1···ipB
i0i1···ip) .

Remembering the definition T̃µν = Tµν − 1
D−2gµνT

α
α , we find

(107) T̂00 =
1

(D − 2)p!

(
(D − p− 2)Ei1···ipE

i1···ip + pBi0i1···ipB
i0i1···ip) .

This is manifestly non-negative in the whole range 0 ≤ p ≤ D − 2, showing
that these theories satisfy the strong energy condition.

Several commonly studied nonminimal couplings of a p-form gauge field
do not affect this analysis. Chern-Simons couplings do not contribute to the
stress tensor, so they do not affect the strong energy condition. A p-form
gauge field can couple to a scalar field ϕ in such a way that the action is,
for example,

∫
eϕF ∧ ⋆F rather than the minimal

∫
F ∧ ⋆F . This merely

multiplies the stress tensor by eϕ, without effect on the above analysis. One
can also have Higgsing of a p-form gauge field by a (p− 1)-form gauge field
(as a result of which the p-form gauge field becomes massive). This again
does not disturb the analysis.

Bearing in mind these comments, we see that eleven-dimensional super-
gravity, and also the Type I, Type IIA, and Type IIB supergravities in ten
dimensions, all satisfy the strong energy condition. However, massive Type
IIA supergravity [51] does not satisfy the strong energy condition, since it
has a scalar field with a positive potential.35

Now we will discuss the incorporation of these fields in the Einstein
constraint equations. First, we have to decide how Weyl transformations
should act in this theory.

The gauge invariance A → A+ dλ would not intertwine with a nontrivial
Weyl transformation law for A in any reasonable way, so A must be Weyl-
invariant. Hence B = dA is Weyl-invariant. Another way to reach the same

35Nonetheless, massive Type IIA supergravity does satisfy the Maldacena-Nuñez
no go theorem [60] for de Sitter compactifications.
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conclusion is to observe that the Bianchi identity satisfied by B, and the
quantized Dirac fluxes that it can carry, would not be consistent with any
nontrivial Weyl transformation law for B. So B must be Weyl-invariant.

Since A is Weyl-invariant, its canonical momentum Π must also be Weyl-
invariant. With the usual normalization, Πi1i2···ip =

√
hEi1i2···ip . So Ei1i2···ip

must transform as 1/
√
h, and equivalently Ei1i2···ip must transform as hp−d/2.

This tells us the p-form analog of eqn. (99):

h = ϕ4/(d−2)h̃

Kij = ϕ−2(d+2)/(d−2)K̃ij

Bi0···ip = B̃i0···ip

Ei1···ip = ϕ(4p−2d)/(d−2)Ẽi1···ip .(108)

Because A and Π are Weyl-invariant, the p-form gauge field, just like
the scalar field studied in section 3.4, does not contribute to the Hamil-
tonian generator µφ of Weyl transformations. So we remain with µφ = K,
and imposing Weyl-invariance as a constraint means setting K = 0 and then
dividing by Weyl transformations, exactly as before. Once we set K = 0,
the momentum constraint equation, which now has a contribution propor-
tional to the momentum density T 0i of the p-form gauge field, again becomes
Weyl-invariant. The group theoretic explanation for this fact is exactly as
before.

It remains to examine the contribution of the p-form gauge field to the
Lichnerowicz equation. From eqns. (105) and (108), we find for this field

(109) T00 =
ϕ−4(d−p)/(d−2)

2p!
|Ẽ|2

h̃
+

ϕ−4(p+1)/(d−2)

2(p+ 1)!
|B̃|2

h̃
.

As a check, note that this is consistent with the usual duality under
p ↔ d− p− 1 with exchange of E and B. Following the familiar steps, the
Lichnerowicz equation comes out to be

∆
h̃
ϕ− (d− 2)

4(d− 1)
R(h̃)ϕ+

(d− 2)

4(d− 1)
|K̃|2

h̃
ϕ

(2−3d)

(d−2) +
Λ(d− 2)

2(d− 1)
ϕ

(d+2)

(d−2)(110)

+
4πG(d− 2)

(d− 1)

(
1

2p!
ϕ

(−3d+4p+2)

(d−2) |Ẽ|2
h̃
+

1

2(p+ 1)!
ϕ

(d−4p−2)

(d−2) |B̃|2
h̃

)
= 0.

The method of subsolutions and supersolutions applies exactly as before to
show the existence of a solution of this equation with ϕ → 1 at infinity. All
that we need to know is that the |Ẽ|2

h̃
and |B̃|2

h̃
terms that have been added
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are positive, so they do not change the sign of the left hand side of the
equation if ϕ is small and constant, and they are subdominant for large ϕ,
so they also do not change the sign if ϕ is large and constant.

The functions of ϕ that multiply |Ẽ|2
h̃
and |B̃|2

h̃
in eqn. (110) are of the

form ϕα where α ≤ 1 for all p in the range 0 ≤ p ≤ d− 1. This bound on
the exponent ensures that the additional terms in the equation do not affect
the proof of uniqueness of the solution of the Lichnerowicz equation, which
proceeds as in the discussion of eqn. (79).

3.6. AdS compactifications

The analysis of the Lichnerowicz equation works so nicely for a spacetime
that is asymptotic to AdSD for some D that it perhaps comes as a surprise
that compactification to AdSD is different. In other words, if we consider a
spacetime that is asymptotic to AdSD ×W for some compact manifold W
of positive dimension, we do not get such a simple picture.

As a typical example, we will consider solutions of ten-dimensional Type
IIB supergravity that are asymptotic at infinity to AdS5 × S5. Type IIB
supergravity has a four-form gauge field A whose five-form field strength F =
dA is self-dual. In the standard AdS5 × S5 solution of Type IIB supergravity,
F is everywhere nonzero. Type IIB supergravity has bosonic fields other than
the metric and A, but including them would not qualitatively change the
picture, so for brevity we omit them.

We can find the Lichnerowicz equation appropriate to a Type IIB space-
timeX that is asymptotic to AdS5 × S5 by setting d = 9, p = 4 in eqn. (110).
Self-duality of the five-form F means that the |Ẽ|2

h̃
and |B̃|2

h̃
terms in the

equation are equal, and we actually should keep only one of them. We also
have to set Λ = 0, since Type IIB supergravity in ten dimensions has van-
ishing cosmological constant. So the Lichnerowicz equation becomes

∆
h̃
ϕ− (d− 2)

4(d− 1)
R(h̃)ϕ+

(d− 2)

4(d− 1)
|K̃|2

h̃
ϕ−27/7(111)

+
4πG(d− 2)

2(d− 1)(p+ 1)!
ϕ−9/7|B̃|2

h̃
= 0.

To proceed, we need to take into account one more key fact. In studying
the Lichnerowicz equation on a manifold asymptotic to AdSD, we always
required R(h̃) to be negative at infinity. However, in a spacetime X that is
asymptotic to AdS5 × S5, we instead want R(h̃) to be positive near infinity.
One way to see this is to observe that the usual AdS5 × S5 spacetime actually
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has zero scalar curvature, since the negative scalar curvature of AdS5 is equal
and opposite to the positive scalar curvature of S5. However, if we restrict to
a Cauchy hypersurface S such as AdS4 × S5, then as the scalar curvature of
AdS4 is less negative than that of AdS5, we see that S actually has positive
scalar curvature.

More directly, we can look at the Hamiltonian constraint equation, which
for an extremal hypersurface S reads

(112) R(h) = KijKij + 16πGT̂tt.

Since Type IIB supergravity satisfies the strong energy condition, as ob-
served in section 3.5, we will have T̂tt ≥ 0 everywhere in a solution of this
theory, and therefore any extremal hypersurface will always have R(h) ≥ 0
everywhere. Note that this argument is not in any way special to AdS5 × S5;
it applies to any AAdS compactification of eleven-dimensional supergravity
or of Type IIA, Type IIB, or Type I supergravity in ten dimensions, since
these models all satisfy the strong energy condition, as found in section 3.5.
Because of this, what we are explaining here applies to a very wide range of
Anti de Sitter compactifications, though we consider AdS5 × S5 for illustra-
tion.

For the standard extremal Cauchy hypersurface S = AdS4 × S5 in the
standard AdS5 × S5 spacetime, B is everywhere nonzero and the scalar cur-
vature R(h) is everywhere positive. Therefore, for any pair h̃, B̃ sufficiently
close to this standard example, B̃ is everywhere nonzero and R(h̃) is ev-
erywhere positive. Under this restriction, the analysis of the Lichnerowicz
equation actually proceeds rather as before, with minor differences. The left
hand side of the equation is positive for ϕ a small positive constant and neg-
ative for large constant ϕ, though the negativity for large ϕ now comes from
the fact that R(h̃) is assumed positive rather than from having Λ < 0. Given
this property of the equation, the method of subsolutions and supersolutions
applies to prove the existence of a solution ϕ of the equation with ϕ → 1 at
infinity. In addition, the various powers of ϕ appearing in the equation are
such that the solution of the Lichnerowicz equation is unique, by the same
argument as in eqn. (79).

What happens in the case of a solution that is not close to the standard
example? Of the two assumptions that we made in getting to this point,
the assumption that B is everywhere nonzero is relatively harmless, since
B has 9!/4!5! = 126 components, and generically is everywhere nonzero in
nine dimensions. However, the assumption that R(h̃) is everywhere positive
is highly problematic. When we studied spacetimes asymptotic to AdSD, we
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used the fact that it is always possible, by a Weyl transformation, to find a
starting point with R(h̃) < 0. But in studying compactifications to Anti de
Sitter space, we would want to make a Weyl transformation to set R(h̃) > 0.
This is not always possible.

In fact, there are strong topological obstructions to the existence on a
manifold M of a metric of positive scalar curvature. The simplest obstruc-
tion is as follows. Type IIB supergravity has fermions, so we can assume
that S is a spin manifold. Therefore it has a Dirac operator D = i /D. A
spin manifold of dimension 8k + 1 has a topological invariant known as the
“mod 2 index” [61], the number of zero modes of the Dirac operator mod
2. A nine-dimensional spin manifold M with a nonzero mod 2 index cannot
admit a metric of positive scalar curvature. In fact, the square of the Dirac
operator, namely D

2 = −DµD
µ +R/4, is strictly positive if R > 0, so D

has no zero-modes on a manifold of positive scalar curvature [62]. There-
fore, on a manifold M on which the ordinary index of the Dirac operator
(if M has dimension 4k) or the mod 2 index (if M has dimension 8k + 1
or 8k + 2) is nonzero, there is no metric of positive scalar curvature. To be
more precise, such results are usually stated and proved on a compact man-
ifold M , and we are interested in a noncompact nine-manifold S. However,
we want a complete metric on S such that the scalar curvature approaches
a positive constant at infinity (namely the scalar curvature of AdS4 × S5).
This, together with the formula D

2 = −DµD
µ +R/4, implies that the Dirac

operator on S has a discrete spectrum near 0. Given this, positivity of R im-
plies that the index and the mod 2 index must vanish, just as on a compact
manifold.

The formula D
2 = −DµD

µ +R/4 also shows that D2 is strictly positive
if R ≥ 0 everywhere and R is not identically 0. In our application, we are
interested in metrics for which R is strictly positive near infinity and in
particular not identically zero. A nonzero mod 2 index implies that there is
no such metric with R ≥ 0 everywhere.

A simple example of a nine-manifold with a nonzero mod 2 index is pro-
vided by a certain exotic nine-sphere. In general, roughly speaking, half of
all nine-dimensional spin manifolds have a nonzero mod 2 index. Actually,
the mod 2 index is only the simplest example of an obstruction to positive
scalar curvature. A more systematic study [63] shows that, roughly speak-
ing, most manifolds with a large fundamental group do not admit a met-
ric of positive scalar curvature. On the other hand, for a simply-connected
nine-dimensional spin manifold, the mod 2 index is the only obstruction
to having a metric of positive scalar curvature [64]. Again, such results are
most often stated for compact manifolds but apply equally to, for example,
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nine-manifolds that are asymptotic to AdS4 × S5 with the stipulation that
the scalar curvature should approach a positive constant at infinity.

Now consider a spacetime X that is asymptotic to AdS5 × S5 and has
a Cauchy hypersurface S that, topologically, does not admit a metric of
positive scalar curvature. The Hamiltonian constraint equation (112) implies
immediately that if it is possible to choose S to have K = 0, then the scalar
curvature of S is nonnegative. Thus, if X is such that a Cauchy hypersurface
S ⊂ X has a nonzero mod 2 index, then it is not possible to choose such an
S to satisfy K = 0.

On the other hand, if S is any nine-manifold asymptotic to AdS4 ×
S5, there is no problem to find initial data on S that satisfy the Einstein
constraint equations if we relax the assumption K = 0. When K ̸= 0, there is
an additional term −K2 on the right hand side of the Hamiltonian constraint
equation, and there is no reason to expect that R ≥ 0 everywhere.

Therefore, there are perfectly good spacetimes X asymptotic to AdS5 ×
S5 and completely generic but not possessing any extremal Cauchy hypersur-
face. What are we to make of this? Based on the discussion in section 3.1.2,
though the arguments are not truly bullet-proof, we suspect that in such a
spacetime, some sort of unfamiliar, non-BKL singularity forms generically.

We will speculate in a moment on how this might be interpreted, but
first let us note that in the context of an asymptotically flat spacetime,
the obstruction we are discussing to the existence of an extremal slice was
discovered long ago [65]. The original context for this work was that it had
been conjectured that in an asymptotically flat spacetime X, for any value
of the time measured at infinity, there would be an extremal Cauchy slice
S in the interior of X; it was shown by considering topological obstructions
to positive scalar curvature that this is not the case. On the other hand, it
was found that by allowing K ̸= 0, one can find initial data leading to an
asymptotically flat spacetime X with any assumed topology of S [66, 67].

We have simply pointed out precisely the same topological obstruction
in the context of compactifications to Anti de Sitter space. However, the
implications are somewhat different. In an asymptotically flat spacetime X,
the domain of dependence of a Cauchy hypersurface S is all of X, and is
never compact. However, in, for example, a spacetime X that is asymptotic
to AdS5 × S5, the domain of dependence Ω of a Cauchy hypersurface S is
compact in the absence of singularities. This was explained in section 3.1.2.
So the potential connection between the topological obstruction to R ≥ 0
and singularities is special to AdS compactifications.

What are we to say about these hypothetical non-BKL singularities? We
can only make some speculative remarks. As an example, consider the mod 2
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index as an obstruction to positive scalar curvature. It is an invariant in spin
bordism, which means that from the point of view of classical physics, if one
assumes that the relevant spacetime histories are smooth manifolds (pos-
sibly not admitting a metric everywhere of Lorentz signature, as discussed
for example in [68]), the mod 2 index is a conserved quantity. There is no
corresponding Z2 gauge field, so this is a candidate as a global conserved
Z2 charge. On the other hand, one does not expect global conservation laws
in quantum gravity (for the most precise known argument for this asser-
tion, see [69]), and in particular we do not expect cobordism invariants to
be truly conserved [70]. So we expect that there is some sort of process in
Type IIB superstring theory in which the mod 2 index changes. Perhaps the
non-BKL singularity that is suggested by the arguments we have sketched is
a signal of such topology change. One can imagine a singularity that arises
when a topological defect of some sort that supports the mod 2 index col-
lapses to a point and disappears. There is certainly no known singularity in
General Relativity associated to such a time-dependent process, so if this
type of topology change is associated to a singular classical history, this is
a classical history with a singularity of an unknown and exotic type.

More generally, a nine-dimensional spin manifold S has many possible
topologies, but one expects that most topological distinctions between differ-
ent initial value surfaces are not well-defined in the full Type IIB superstring
theory – even though only a few special cases of topology-changing processes
are well-understood. It is possible that the non-BKL singularities that the
analysis here suggests play a role in filling in the gaps and providing missing
topology-changing processes.

We conclude with the following remarks. In asymptotically AdSD space-
times, in models that satisfy the strong energy condition, we learned from
the study of the Lichnerowicz equation that – with an optimistic but not
obviously wrong assumption about the nature of singularities – the gravi-
tational phase space is a cotangent bundle, with potential implications for
quantization. On the other hand, in the context of a spacetime X asymp-
totic to AdSD ×W , for some compact W , this is not the case: if a Cauchy
hypersurface S ⊂ X is such that positive scalar curvature is topologically
obstructed, then there is a perfectly good phase space of classical solutions
of Type IIB supergravity with this S, but there is no reason for it to be a
cotangent bundle.

In fact, even if S is such that there is no obstruction to positive scalar
curvature, we cannot prove that the phase space is a cotangent bundle, no
matter what assumption we make about possible singularities. The reason
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is that even if S does admit metrics with R ≥ 0 and appropriate asymp-
totic behavior, this does not mean that every metric on S with appropriate
asymptotic behavior is Weyl-equivalent to one with R ≥ 0 everywhere. For
example, if S is topologically AdS4 × S5, we only know a priori that any
metric sufficiently close to the standard one has R ≥ 0. (In fact, it is possible
to prove that there are metrics on S that are not conformal to any metric
with R ≥ 0.)

So in spacetimes asynptotic to AdSD ×W , as opposed to AdSD, the
phase space is not going to be a cotangent bundle for each topological choice
of initial value surface, even with optimistic assumptions. However, we know
little about the generic singularities in these spacetimes. At the cost of going
rather far out on a limb, we can speculate that perhaps different classical
phase spaces associated to spacetimes with different topologies, after taking
singularities and topology-changing processes and massive stringy modes
into account, do fit together to make a cotangent bundle.

The singularities associated to topology change might conceivably be
mild enough that a hypersurface S can be sensibly continued from one side
of the singularity to the other. In that case, it might be that ultimately
the maximal volume hypersurface does always exist, but in general on a
spacetime with a different topology than what we started with.
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