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We construct models of the differential KO-theory and the twisted
differential KO-theory, by refining Karoubi’s KO-theory [Kar78]
in terms of gradations on Clifford modules. In order for this, we
set up the generalized Clifford superconnection formalism which
generalizes the Quillen’s superconnection formalism [Qui85]. One
of our models can be regarded as classifying “fermionic mass terms”
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1. Introduction

In this paper, we construct models of the differential KO-theory and the
twisted differential KO-theory, by refining Karoubi’s KO-theory [Kar78]
in terms of gradations on Clifford modules. In order for this, we set up
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the generalized Clifford superconnection formalism for module bundles over
bundles of simple central graded algebras, which generalizes the Quillen’s
superconnection formalism [Qui85] and is of independent interest. This work
is intended to lay a foundation for understanding the theory on massive
fermions in physics in terms of differential KO-theory. One of the models
we construct in this paper can be regarded as classifying “fermionic mass
terms” in physics.

A differential cohomology theory Ê, or a differential extension of a ger-
eralized cohomology theory E, is defined on manifolds and refines the origi-
nal theory E with a differential geometric data. Just as there can be various
models for a cohomology theory E, there can be various ways to realize dif-
ferential refiments Ê. The most classical example is the ordinary cohomology
theory HZ, and differential refinements include the smooth Deligne coho-
mology [Bry08] and Cheeger-Simon’s differential character groups [CS85].
The case of K-theory has also been studied intensively, partly because of
its physical applications. Nowadays a number of models of the differential
K-theory are known: We can appeal to the general recipe as provided by
Hopkins and Singer [HS05] originally. Ortiz [Ort09] introduced an analogous
model based on the space of Fredholm operators. There is also a geomet-
ric model based on vector bundles with connections, which is suggested in
[HS05] and is realized by Freed and Lott [FL10], for instance. The model
given by Bunke and Schick [BS09] makes use of “geometric cycles”, and
the one given by Benameur and Maghfoul [BM06] generalizes differential
characters to K-theory.

The differential KO-theory has less been studied, although its signifi-
cance is suggested in particular in physics (for example see [Fre00], [FH00]
[FMS07a] and [FMS07b]). Also the possibility of developing a model by a
real analogue of “geometric cycles” is pointed out in [BS12, Section 4.9], but
has not been carried out, partly because of the lack of the theory of super-
connections in the real settings. Recently, Grady and Sati gave a model of
the differential KO-theory [GS21] and its twisted version [GS19] in terms
of sheaves of spectra. Our paper is devoted to a construction of another
type of models of the differential KO-theory and K-theory, as well as their
twisted versions, by a differential refinement of Karoubi’s models [Kar78]
of KO and K-theories. The motivation of developing such models comes
from applications to physics, in particular its relation with “fermionic mass
terms” as we explain in Subsection 1.1.

In [Kar78], the KO-theory is realized in terms of gradations on Clifford
modules. For a finite CW-complex X and a pair of nonnegative integers
(p, q), an element in the Karoubi’s KO-theory group, which we denote by
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KOp,q
+ (X), is represented by a triple (S, h0, h1) of an ungraded module S

over the Clifford algebra Clp,q with an inner product1 and self-adjoint in-
vertible elements h0, h1 ∈ Map(X,End(S)) such that chi = −hic for all odd
elements c ∈ Cl1p,q. Such hi is called a gradation on S. We have a natural
isomorphism KOp,q

+ ≃ KOp−q on the category of finite CW-complexes. An
advantage of this model of KO-theory, particularly compared to the Atiyah-
Singer’s model [AS69] in terms of skew-adjoint Fredholm operators, is that
we only need to deal with finite-dimensional modules. The analytic issues do
not arise, and this is one reason why the model suits differential refinements.
Another advantage is that we can twist the model in a straightforward man-
ner to have the twistedKO-theory of Donovan and Karoubi [DK70]. Namely,
given a bundle of simple central graded R-algebras (for example Clifford alge-
bras) A → X, the twisted KO+-group KO

A
+(X) is constructed out of triples

(/S, h0, h1), where /S is now anA-module bundle and h0, h1 ∈ Γ(X; /S) are gra-
dations. In this way, we get a model of twisted KO-theory with twists classi-
fied by H0(X;Z8)×H1(X;Z2)×H2(X;Z2). Also, by just replacing coeffi-
cient from R to C, we get the models of theK-theory and its twistetd version,
where twists are classified by H0(X;Z2)×H1(X;Z2)× Tors(H3(X;Z)).

In order to construct the differential refinement of Karoubi’s KO-
theory and the twisted variant above, we develop a certain generalization
of Quillen’s superconnection formalism [Qui85]. This formalism, which we
call the generalized Clifford superconnection formalism and is developed in
Section 3, should be of independent interest. The Quillen’s formalism has
been important in the analytic developments of the Atiyah-Singer’s index
theory (for example see [BGV04]). The Quillen’s formalism is for Z2-graded
vector bundles, whereas our generalized Clifford superconnection formalism
is for module bundles /S over bundles A of simple central graded algebras
(over R or C). Specializing to the case where A is the trivial bundle with
fiber Clp,q, we get the superconnection formalism in Clifford-linear settings,
and the possibility of the interpretation of “mass terms” in terms of this
generalization is suggested in [CFLS19, Section 7].

Given a Clp,q-module S, a smooth map ξ ∈ C∞(X,End(S)) on a
manifold X which satisfies {c, ξ} = 0 for all c ∈ Clp,q defines a Clp,q-
superconnection

d+ ξ : Ω∗(X;S)→ Ω∗(X;S).

1In this paper modules are assumed to be ungraded unless otherwise stated. An
inner product on a Clifford module is always assumed to be compatible with the
∗-algebra structure on the Clifford algebras (see Subection 2.2).
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Then we can consider characteristic forms for this superconnection, such
as the Pontryagin character forms and the Chern-Simons forms. A smooth
gradation h ∈ C∞(X,End(S)) is an example of a map satisfying the anti-
commutation relation above, and in particular invertible. The characteristic
forms for gradations appearing in the definition of the differential extension
K̂O+ are constructed from the superconnection d+ th over the manifold
(0,∞)×X, where t ∈ (0,∞).

Our model of the differential KO-theory, which is denoted by K̂O+, is

defined in Section 4. Elements of K̂O
p,q

+ (X) are of the form [S, h0, h1, η],
where S is a Clp,q-module with an inner product, h0 and h1 are smooth
gradations on S and η ∈ Ω4Z+p−q−1(X)/Im(d). We have an equality

[S, h0, h1,CSself(hI)] = 0

if hI is a homotopy between h0 and h1, where CSself(hI) is the Chern-Simons
form for such a homotopy. There are structure homomorphisms R, I and a
consistutng the data of differential refinements. In particular the curvature
homomorphism R is defined by using the Pontryagin character form as

R : K̂O
p,q

+ (X) −→ Ω4Z+p−q
clo (X),

[S, h0, h1, η] 7→ Phself(h1)− Phself(h0)− dη.

A good point is that these characteristic forms are computable explicitely.

The twisted models, K̂O
A
+(X), are constructed similarly. In our model, the

isomorphism class of the twisted differential KO-theory group only depends
on the class of A in H0(X;Z8)×H1(X;Z2)×H2(X;Z2) as in the topolog-
ical case.

In Section 5 we develop a variant K̂O− of the differential model K̂O+.
This model is given in terms of skew-adjoint sections m ∈ C∞(X; End(/S))
which are invertible and mc = (−1)|c|cm for all homogeneous elements
c ∈ C∞(X;A), where |c| ∈ Z2 denotes the Z2-grading. We call suchm amass
term on S, suggesting that it models a fermionic mass term as we explain in
Subsubsection 1.1.1. On the topological level, replacing gradations to mass
terms in the definition of KOp,q

+ , we get a functor KOp,q
− . We have a natural

isomorphism KOp,q
− ≃ KOq−p−2, reflecting the isomorphism of Clifford al-

gebras Clp,q+1 ≃ Clq,p+1 which does not preserve the Z2-gradings. Refining
this topological theory KO− in a similar way, we get a differential exten-

sion K̂O−. In the untwisted case, the elements in K̂O
p,q

− (X) are of the form
[S,m0,m1, η] with mi smooth mass terms and η ∈ Ω4Z+q−p−3(X)/Im(d).
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In Section 6, we explain that the C-linear analogues of the above con-
structions give models K̂+ and K̂− of the differential K-theory.

1.1. The physical motivations

1.1.1. The interpretation of K̂O− and K̂− as the group of
“fermionic mass terms”. Here, we explain the physical motivations
mentioned above. Our models of differential extensions of the KO-theory
and the K-theory, especially K̂O− and K̂− in terms of skew-adjoint oper-
ators, can be regarded as classifying “fermionic mass terms”. It is known
that fermionic mass terms on the n-dimensional Minkovski spacetime are
classified topologically by KOn−3 ≃ KO1,n

− (see for example [Fre19, Sec-

tion 10.2]), and our differential model K̂O
1,n

− refines this classification on
the differential level.

First we explain the mathematical theory of fermionic mass terms, fol-
lowing [Fre19, Section 10.2] and [FH21, Section 9.2]2. Let n be the dimension
of the spacetime. We start from an ungraded Cl01,n−1-module S, without any
specified inner product. Let Spin1,n−1 ⊂ Cl01,n−1 be the Lorentz spin group.
Then there exists a Spin1,n−1-invariant symmetric nonnegative bilinear pair-
ing

Γ: S ⊗ S → R1,n−1,(1.1)

uniquely up to a contractible choice. Here the nonnegativity means that
Γ(s, s) is timelike for all s ∈ S. Such Γ induces a unique compatible Z2-
graded Cl1,n−1-module structure on S ⊕ S∗, where the grading operator is
given by γS⊕S∗ := idS ⊕ (−idS∗).

In [Fre19], mass forms mform on S are defined as nondegenerate skew-
symmetric Spin1,n−1-invariant bilinear forms

mform : S ⊗ S → R.(1.2)

Here we remark that suchmform is called “mass terms” in [Fre19]. We use the
above terminology and notation in order to distinguish it from our definition
of mass terms in terms of skew-adjoint operators. Then it is shown in [FH21,
Lemma 9.55] that the existence of suchmform is equivalent to the existence of

2Remark that the sign convention on the Clifford algebras used there is differerent
from ours (see (2.1)). In our convention, Clp,q has the negative generators α1, · · · , αp

and the positive generators β1, · · · , βq.
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a Z2-graded Cl2,n−1-module structure on S ⊕ S∗ which extends the Cl1,n−1-
module structure above.

We now explain how this formulation fits into our picture. Since the dif-
ferential KO-groups should remember the differential, not just topological,
information on mass terms, we do not want the ambiguity such as “con-
tractible choice” above. Our model K̂O− is given in terms of Clifford mod-
ules with inner products (which are compatible with the Clifford action, see
Footnote 1), and skew-adjoint invariant operators on them. Suppose we have
S and a pairing Γ as in (1.1). Since the action on S ⊕ S∗ by the negative
Clifford generator α1 ∈ Cl1,n−1 anticommutes with γS⊕S∗ , the restriction
defines a linear isomorphism

α1|S : S → S∗,

and defines a symmetric bilinear form (·, ·)S : S ⊗ S → R by

(s1, s2)S := ⟨α1|S(s1), s2⟩,(1.3)

where the right hand side is the duality pairing ⟨·, ·⟩ : S∗ ⊗ S → R. Using the
positivity of Γ, we see that the form (1.3), extended to S ⊕ S∗ in the canon-
ical way, defines an inner product on S ⊕ S∗ which is compatible with the
Z2-graded Cl1,n−1-module structure induced by Γ. Now, we state a lemma
essentially contained in the proof of [FH21, Lemma 9.55] in the form we
need, where we let Cl1,(n−1)+1 act on S ⊕ S∗ by the action of Cl1,n−1 and
γS⊕S∗ noting that a Z2-graded Cl1,n−1-module structure is equivalent to an
ungraded Cl1,(n−1)+1-module structure.

Lemma 1.4. Let S and Γ be as above, and use the induced Cl1,(n−1)+1-
module structure and inner product on S ⊕ S∗. Then we have a bijection
between the set of mass forms mform on S and the set

Skew∗
1,n(S ⊕ S∗)

:=

{
m ∈ End(S ⊕ S∗)

∣∣∣∣
invertible, m = −m∗,
cm = −mc for all c ∈ Cl11,(n−1)+1

}
.

The bijection is simply given as follows. Assume we are given an element
m ∈ Skew∗

1,n(S ⊕ S∗). Since m anticommutes with γS⊕S∗ , the restriction of
m to S is a linear isomorphism

m|S : S → S∗.
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We define the associated mass form mform : S × S → R by

mform(s1, s2) := ⟨m|S(s1), s2⟩,(1.5)

where ⟨·, ·⟩ is the duality pairing. Then we can check that this assignment
m 7→ mform gives the desired bijection. For details see the proof of [FH21,
Lemma 9.55].

Elements of our differential model K̂O
1,n

− (X) is represented by a quadru-
ple (S,m0,m1, η), where S is a Cl1,n-module with inner product, m0,m1 ∈
C∞(X, Skew∗

1,n(S)), and η ∈ Ω4Z+n(X)/Imd an additional data of a differ-
ential form. Suppose that we are given a quadruple

(S,Γ,mform,0,mform,1),

where S and Γ are as above and mform,i = {mform,i(x)}x∈X , i = 0, 1, are
smooth families of mass forms on S parametrized by X. Then, by Lemma
1.4, we get an element

[S ⊕ S∗,m0,m1, 0] ∈ K̂O
1,n

− (X).(1.6)

In this way, our groups K̂O
1,n

− (X) can be regarded as classifying pairs of
smooth families of (nondegenerate) fermionic mass terms on n-dimensional

Minkovski spacetime.3 Our model K̂O
1,n

is a differential extension of the
topological KO-theory KO1,n

− ≃ KOn−3. On the topological level, the el-

ement (1.6) corresponds to the element [S ⊕ S∗,m0,m1] ∈ KO1,n
− (X) ≃

KOn−3(X), which recovers the well-known topological classifications of mass
terms by the KO-theory.

1.1.2. Further perspectives–differential pushforwards and the An-
derson duality. Now we explain further perspectives. We expect that the
further development of our differential KO and K-theories, in particular the
theory of differential pushforwards, would lead to an understanding of the
long-range effective theories of massive fermions in terms of the differential
refinement of the Anderson dual to the Atiyah-Bott-Shapiro maps.

A belief in the community of physicists is that deformation classes of
invertible field theories should be classified by generalized cohomology theo-
ries. This idea is proposed in a lecture of Kitaev as reviewed in [GJF19], and
is further developed in [Fre14] and [FH21] from a mathematical viewpoint.

3Typically in the physics literature, we often have a fixed constant mass term
m∗. In such a case, we set m0 := m∗ and regard m1 as a single variable.
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Moreover, it has also been noticed that differential cohomology theories give
refined classifications of such theories.

In the case of the theory on massive fermions, assume we have data of
S, Γ as in the last subsubsection, and fix a mass term m∗ (footnote 3).
By the process of the Wick rotation, we produce the corresponding theory
on Euclidean Spin manifolds as follows. We consider the complexification
Cl1,n−1 ⊗R C = Cln, which has the Riemannian Clifford algebra Cl0,n as a
subalgebra. Then the Riemannian Spin group Spinn acts on the complex-
ification SC of S, and the Z2-graded Cl1,n−1-module structure on S ⊕ S∗

explained in Subsubsection 1.1.1 induces the Z2-graded Cl0,n-module struc-
ture on SC ⊕ S∗

C
. If we have a closed n-dimensional Spinn-manifold X with

a Spin-connection ∇ (regarded as a “Wick-rotated spacetime”), we form the
associated bundle /SC to S, and the Dirac operator is given by

/D = c ◦ ∇ : C∞(X; /SC ⊕ /S
∗
C)→ C∞(X; /SC ⊕ /S

∗
C),(1.7)

where c is the Clifford multiplication. Since /D anticommutes with γ/SC⊕/S
∗

C
, it

restricts to an operator from /SC to /S
∗
C. Given a mass term m = {m(x)}x∈X

parametrized by X, we get the massive Dirac operator,

/D +m : C∞(X; /SC)→ C∞(X; /S
∗
C),(1.8)

which gives a formally skew-symmetric operator. Then the associated La-
grangian density on X is

L(ψ,m) =
1

2

〈
( /D +m)ψ,ψ

〉
|dvolX |(1.9)

for ψ ∈ C∞(X; /SC). Physicists believe that the following expression makes
sense and call the partition function for the massive fermions,

Z(m) =

∫
Dψ exp

(
−
∫
X L(ψ,m)

)
∫
Dψ exp

(
−
∫
X L(ψ,m∗)

) ,(1.10)

which is formally equal to the quotient of the Pfaffians of the massive
Dirac operators,

Pf( /D +m)

Pf( /D +m∗)
.(1.11)

The nondegeneracy of the mass term m implies that this theory is gapped,
and the long-range limit is an invertible theory. The corresponding element
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[S ⊕ S∗,m∗,m, 0] ∈ K̂O
1,n

− (X) in (1.6) in our model is regarded as classify-
ing this invertible theory.

Moreover, we expect that the theory of differential pushforwards in our
model K̂O− should give a mathematical interpretation of the complex phase
of the partition function (1.10) (1.11) in the long-range limit. For the differ-
ential K-theory, in the vector-bundle model by Freed-Lott [FL10] and the
geometric-cycle model by Bunke-Schick [BS09], the differential pushforward
along the map pX : X → pt for (2k − 1)-dimensional closed Spinc manifolds
X with Spin connections ∇,

(pX ,∇)∗ : K̂0(X)→ K̂−(2k−1)(pt) ≃ R/Z,

is given by the reduced eta invariants of twisted Dirac operators. Indeed,
in a simplest case where m is constant, in the limit m→∞ the quantity
(1.11) is known to be given in terms of the eta invariants of the (mass-
less) Dirac operator [WY19]. Abstractly, we have a canonical way to define
pushforwards in multiplicative differential refinements of KO-theories for
Spin-oriented proper submersions with connection [Yam21, Appendix]. The
problem is how to describe the pushforward explicitly; for example such a
description is obtained in the model by Grady-Sati [GS21]. We expect that

the differential pushfowards in K̂O− for n-dimensional Spin manifolds X,

(pX ,∇)∗ : K̂O
1,n

− (X) ≃ K̂On−3
(X)→ K̂O

−3
(pt) ≃ R/Z,(1.12)

would be described, and the complex phase of (1.11) can be understood in

terms of the image of the element [S ⊕ S∗,m∗,m, 0] ∈ K̂O
1,n

− (X). For exam-
ple such a picture is compatible with the principle that, in invertible theories,
the variation of partition functions under smooth variation of the geometric
structures on manifolds is given by an integration of some locally-constructed
differential forms. Indeed, it is a general feature, called the Bordism formula
[Bun12, Problem 4.235] of pushforwards in differential cohomology theory,
that the image under the differential pushforwards varies by integrations of
appropriate characteristic forms.

Finally we comment on the relation with the Anderson duality. Freed and
Hopkins [FH21, Conjecture 8.37] conjectured that the deformation classes
of Wick-rotated, fully extended reflection positive n-dimensional invertible
theories on G-manifolds are classified by (IΩG)n+1(pt), where IΩG is a gen-
eralized cohomology theory called the Anderson dual to G-bordism theory.
Motivated by this conjecture, in [YY21] Yonekura and one of the authors of

the present paper gave a model ÎΩG
dR for a differential extension of IΩG with
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a physical interpretation. An element in (ÎΩG
dR)

n+1(X) is given by a pair
(ω, h), where h is a map which assigns an R/Z-value to an n-dimensional
differential G-manifold with a map to X and plays the role of partition
functions, and ω is an element in Ω∗

clo(X)⊗R H
∗(MTG;R) of total degree

(n+ 1) which describes the variations of h. Moreover, it is shown in [Yam21]
that, in terms of differential pushforwards, we can construct a transforma-
tion of differential cohomology theories which refines the Anderson dual of
multiplicative genera.

In the case of the theory on massive fermions, the conjecture by Freed-
Hopkins [FH21, Conjecture 9.70] states that, on the topological level, the
map which assigns the class of the data (S,Γ,m∗,m) the deformation class
of the corresponding invertible theory as above should coincide with the
composition

KOn−3(pt)
γKO−−→ IKOn+1(pt)

IABS−−−→ (IΩSpin)n+1(pt),(1.13)

where γKO : KO∗ ≃ IKO∗+4 is the Anderson duality of KO which shifts
the degree by 4, and IABS is the Anderson dual to the Atiyah-Bott-Shapiro
map ABS: MTSpin→ KO.

Actually, the general theory in [Yam21] applied to this case provides
the differential refinement of (1.13). The construction in [Yam21] gives the
transformation

ΦABS(−⊗ γKO) : K̂O
n−3

(X)→ ÎΩSpin
n+1

(X),(1.14)

which refines (1.13). For an element in K̂O
n−3

(X), the map (1.13) assigns
the element whose partition function is given in terms of the pushforwards of
the pullbacks of this element in K̂O to Spin manifolds with connections. This
is indeed the expectation that we explained above for differential pushfor-
wards (1.12) in K̂O−. In this way, the authors believe that the understanding

of the differential pushfowards in K̂O−, combined with the general results
in [YY21] and [Yam21], would give a verification and a differential refine-
ment of the statement in [FH21, Conjecture 9.70]. This deserves a promising
future work.
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2. Preliminaries

2.1. Notations

• The category of finite CW-complexes is denoted by CWf and that of
finite CW-pairs is denoted by CWPairf .

• By manifolds, we mean manifolds possibly with corners. The category
of manifolds which have the homotopy types of finite CW-complexes
is denoted by Mfdf . A pair of manifolds is a pair (X,Y ) consisting
of a manifold X and a submanifold Y ⊂ X which is a closed subset.
The category of pairs of manifolds which have the homotopy types of
a finite CW-pairs is denoted by MfdPairf .

• For a manifold X and a real vector space V , we denote by V the trivial
bundle V := X × V over X.

• For a manifold X, its submanifold Y and a local coefficient system V
realized as a real vector bundle on X, we denote

Ωn(X,Y ;V ) := {ω ∈ Ωn(X;V ) | ω|Y = 0}.

We denote Ω∗(X) := Ω∗(X;R) = Ω∗(X;R). Ω∗
clo denotes the space of

closed forms. The de Rham cohomology class of a closed form ω ∈
Ω∗
clo(X,Y ;V ) is denoted by Rham(ω) ∈ H∗(X,Y ;V ).

• For a homogeneous differential form ω ∈ Ω∗(X), we denote its degree
by |ω|.
• We let I := [0, 1].

• A Z2-graded algebra is typically denoted by A = A0 ⊕A1, where A0

denotes the even part and A1 denotes the odd part. The degree of a
homogeneous element a ∈ A is denoted by |a| ∈ Z2. The supercommu-
tator is denoted by {·, ·}.
• For Z2-graded algebras A and B, we denote their graded tensor prod-
uct by A⊗̂B.

2.2. Simple central graded ∗-algebras

In [DK70], the gradings and twists in KO-theory and K-theory are given
by simple central graded algebras and bundles of them. In this subsection
we briefly review necessary parts of [DK70], and work a little more to adjust
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the theory to respect the ∗-algebra structures. In this subsection let the
coefficient field K be either of R or C.

Simple central graded algebras over R or C are classified by their type
t ∈ Z8 in the case K = R and t ∈ Z2 in the case K = C, and size n ∈ Z>0 or
(k, l) ∈ Z>0 × Z>0. The classification results of the isomorphism classes of
those algebras are given in Table 1 and Table 2. Here, In denotes the identity
matrix of size n, and when u is an element in an algebra A such that u2 = ±1,
we write Z(u) := {a ∈ A | au = ua} and Z∗(u) := {a ∈ A | au = −ua}.

The Clifford algebra C(V,Q) for a real vector space with a nondegenerate
quadratic form (V,Q) is an important example, which is of type sign(Q). It
is the unital R-algebra generated over V with relation

v · v = −Q(v) · 1.(2.1)

In particular we denote Clp,q := C(Rp,q). It is generated by the anticommut-
ing generators {αi, βj}i,j , 1 ≤ i ≤ p, 1 ≤ j ≤ q with α2

i = −1 and β2j = 1.
The type is (p− q). The complexification is the complex Clifford algebra
Clp+q = Clp,q ⊗ C, which is an example of a simple central graded algebra
over C of type (p+ q).

For any such algebra A, there exists a distinguished element u ∈ A,
uniquely determined up to sign, which we call a volume elemnent. When
A is of odd-type, it is characterized by the property that u ∈ A1 ∩ Z(A) and
u2 = ±1 in the real case and u2 = 1 in the complex case, where Z(A) denotes
the center of A. When A is of even-type, it is characterized by the property
that A0 = Z(u), A1 = Z∗(u) and u2 = ±1 in the real case and u2 = 1 in
the complex case. In particular u ∈ A0 if A is of even type. We call such
u a volume element because it coincides with the Clifford volume element
±α1 · · ·αpβ1 · · ·βq in the case A = Clp,q. We set Ori(A) := Ru ⊂ A in both
the real and complex case.

We introduce the ∗-algebra structure on the algebras A in the Tables 1
and 2 by the composition of the complex or quarternion conjugation and the
transpose of matrices. In this paper, by a simple central graded ∗-algebra we
mean a simple central graded algebra equipped with a ∗-algebra structure
which is isomorphic to one of those standard ones. In the case A = Clp,q, we
have αi = −α∗

i for 1 ≤ i ≤ p and βj = β∗j for 1 ≤ j ≤ q.
We say that A is degenerate if A = A0 and nondegenerate otherwise. The

degenerate ones are [t;n, 0] = [t; 0, n] for t = 4, 8 in Table 1 and (2;n, 0) =
(2; 0, n) in Table 2.

For two simple central graded ∗-algebras A and B, their graded tensor
product A⊗̂B is equipped with a canonical structure of a simple central
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[type; size] A A0 A1 volume element u

[1;n] M(n,C) M(n,R) u ·M(n,R) ±iIn
[2;n] M(n,H) M(n,C) = Z(u) Z∗(u) ±iIn
[3;n] M(n,H)⊕M(n,H) M(n,H) u ·M(n,H) ±(In ⊕ (−In))
[4; k, l] M(k + l,H) Z(u) Z∗(u) ±(Ik ⊕ (−Il))
[5;n] M(2n,C) M(n,H) u ·M(n,H) ±iI2n
[6;n] M(2n,R) Z(u) Z∗(u) ±

(
0 In

−In 0

)

[7;n] M(n,R)⊕M(n,R) M(n,R) u ·M(n,R) ±(In ⊕ (−In))
[8; k, l] M(k + l,R) Z(u) Z∗(u) ±(Ik ⊕ (−Il))

Table 1: Simple central graded algebras over R

(type; size) A A0 A1 u

(1;n) M(n,C)⊕M(n,C) M(n,C) u ·M(n,C) ±(In ⊕ (−In))
(2; k, l) M(k + l,C) Z(u) Z∗(u) ±(Ik ⊕ (−Il))

Table 2: Simple central graded algebras over C

graded ∗-algebra. For A over R, we denote Σ0,1A := A⊗̂Cl0,1 and Σ1,0A :=
A⊗̂Cl1,0. These notations are due to the fact that they correspond to the
suspension isomorphisms in the KO-theory. For A over C, we define ΣA :=
A⊗̂Cl1. In the R-linear case, if ±u ∈ A are volume elements of A, ±u⊗̂β ∈
Σ0,1A are those for Σ0,1A, where β ∈ Cl0,1 denotes the (positive) Clifford
generator. In the C-linear case the volume elements are related by the rule

(volume elements of A)→ (volume elements of ΣA)(2.2)

±u 7→ ±(
√
−1)type(A)u⊗̂β.

For a simple central graded ∗-algebra A, Let Aut(A) denote the group
of automorphisms on A. We denote by AutZ2

(A), Aut∗(A) and Aut∗,Z2
(A)

the subgroups of Aut(A) consisting of automorphisms preserving the Z2-
grading, the ∗-algebra structure, and both the Z2-grading and the ∗-algebra
structure, respectively. In this paper, by a bundles of A’s we mean a bundle of
Z2-graded ∗-algebras with fiber A, which has the structure group Aut∗,Z2

(A).
In [DK70] ∗-algebra structures on the fiber are not considered. But we lose or
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gain nothing topologically by this restriction by Lemma 2.3 below. For such a
bundle A, we write Σ0,1A := A⊗̂Cl0,1, Σ1,0A := A⊗̂Cl1,0 and ΣA = A⊗̂Cl1.

The automorphisms groups above are easy to describe explicitly. We
explain the R-linear case. The C-linear case is similar. In the case ofM(n,R)
and M(n,H), all the automorphisms are inner, so the automorphism group
is PGL(n,R) = GL(n,R)/R∗ and GL(n,H)/R∗, respectively. In the case of
M(n,C), we also have the complex conjugation, and the inner automorphism
group GL(n,C)/R∗ is the index-two subgroup of the automorphism group. In
the case of the direct sum of two copies of matrix algebras, the automorphism
group is the obvious index-two subgroup of that of the matrix algebra of the
double size.

Using the descriptions above, we see that the ∗-preserving automorphism
groups Aut∗(A) are simply given by replacing GL with O and R∗ with Z2 in
the above. For example the ∗-preserving automorphism group of M(n,R) is
PO(n,R) = O(n,R)/Z2. In particular the inclusion Aut∗(A) →֒ Aut(A) is a
deformation retract.

The Z2-grading-preserving automorphism groups AutZ2
(A) are also eas-

ily described. The case of [8;n, n] is explicitly given in [DK70, p.9]. For
Aut∗,Z2

(A) = AutZ2
(A) ∩Aut∗(A), by a direct check we also have the fol-

lowing.

Lemma 2.3. Let K be either of R or C. For any simple central graded
∗-algebra A over K, The inclusion Aut∗,Z2

(A) →֒ AutZ2
(A) is a deformation

retract.

By the above description of Aut∗,Z2
(A)’s, we see that their unit compo-

nents consist of inner automorphisms. From this, their Lie algebras are also
easily understood.

Lemma 2.4. Let K be either of R or C. For any simple central graded
∗-algebra A over K, the Lie algebra of Aut∗,Z2

(A) is given by

Lie(Aut∗,Z2
(A)) = A0

skew := {a ∈ A0 | a = −a∗},

with its natural Lie bracket.

We now explain characteristic classes for bundles of simple central graded
∗-algebras. We first consider the R-linear case. Let X be a CW-complex.
Introduce an abelian group structure on H1(X;Z2)×H2(X;Z2) by (a, b) +
(a′, b′) := (a+ a′, b+ b′ + a ∪ a′) and denote the resulting group by HO(X).
Given a bundle of simple central graded ∗-algebras A on X, we have the
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characteristic class w(A) = (w1(A), w2(A)) ∈ HO(X) as defined in [DK70].
We have

w(A⊗̂B) = w(A) + w(B).(2.5)

We define

type(A) ∈ H0(X;Z8)

by assigning the types of the fibers. A bundle of simple central graded ∗-
algebras is called negligible if it has the form End(E0 ⊕ E1) for a graded
vector bundle E0 ⊕ E1 with a positive definite inner product on each Ei.
Bundles of simple central graded R-algebras over X, modulo negligible ones,
form the graded Brauer group GBrO(X) under the graded tensor products.
The characteristic class descends to this group. If X is a finite CW-complex,
by [DK70, Theorem 6] we have an isomorphism of abelian groups,

(type, w) : GBrO(X) ≃ H0(X;Z8)×HO(X).(2.6)

As we explain in Subsubsection 2.3.1, GBrO(X) classifies the twists in the
KO-theory in the formulation of Donovan-Karoubi, which we denote by
KO+.

In the C-linear case, we consider an abelian group structure on the
set H1(X;Z2)× Tors(H3(X;Z)) by (a, b) + (a′, b′) := (a+ a′, b+ b′ + β(a ∪
a′)), where β : H2(X;Z2)→ H3(X;Z) is the Bockstein homomorphism. We
denote the resulting group by HU(X). The characteristic class in this case is
an element u(A) ∈ HU(X). We have a rule corresponding to (2.5). Bundles
of simple central graded C-algebras over X, modulo negligible ones, form
the graded Brauer group GBrU(X) under the graded tensor products. If X
is a finite CW-complex, by [DK70, Theorem 11] we have

(type, u) : GBrU(X) ≃ H0(X;Z2)×HU(X).(2.7)

and this classifies the twists in the K-theory K+.
An important class of such bundles are those associated with vector

bundles with nondegenerate quadratic forms. Namely, if we have a real vector
bundle V over a CW-complex X equipped with a fiberwise nondegenerate
quadratic form Q, we denote by C(V,Q), or simply C(V ), the associated
Clifford algebra bundle. By [DK70, Lemma 7], its characteristic class satisfies
w(C(V )) = (w1(V ), w2(V )), where the w1(V ) and w2(V ) are the Stiefel-
Whitney classes of V . The bundle C(V ) is negligible if and only if V admits
a Spin(p, q)-structure.
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In this paper, modules are assumed to be ungraded, unless otherwise
stated. For a simple central graded ∗-algebra A over K, an A-module with
an inner product is a (ungraded) vector space S over K equipped with a posi-
tive definite inner product and a homomorphism A→ End(S) of ∗-algebras,
where the ∗-structure on End(S) is given by the adjoint with respect to the
inner product. Given a bundle of simple central graded ∗-algebras A over X,
an A-module bundle with an inner product is a real (ungraded) vector bundle
/S over X equipped with a fiberwise positive definite inner product and a
fiberwise continuous ∗-preserving action of A realized by a homomorphism
A → End(/S) of ∗-algebra bundles.

Definition 2.8 (A-endomorphisms). Let A be a simple central graded
∗-algebra. Let S be an A-module with an inner product. We define

End0A(S) := {ξ ∈ End(S) | ξc = cξ for all c ∈ A},
End1A(S) := {ξ ∈ End(S) | ξc = (−1)|c|cξ for all c ∈ A}.

If A is nondegenerate, we have End0A(S) ∩ End1A(S) = {0}. In this case, we
define a Z2-graded algebra EndA(S) by

EndA(S) := End0A(S)⊕ End1A(S).

The important point to be noticed is that, even though S is ungraded, the
algebra EndA(S) is Z2-graded.

If A is degenerate, we set

EndA(S) := End0A(S) = End1A(S).(2.9)

Definition 2.10. Let A be a simple central graded ∗-algebra. Let S be an
A-module with an inner product.

(a) We define

SelfA(S) := {ξ ∈ End1A(S) | ξ∗ = ξ}.

We also define the following subspaces

Self∗A(S) = {ξ ∈ SelfA(S)| ξ is invertible},
Self†A(S) = {ξ ∈ SelfA(S)| ξ2 = 1}.
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(b) We define

SkewA(S) = {ξ ∈ End1A(S) | ξ∗ = −ξ}.

We also define the following subspaces

Skew∗
A(S) = {ξ ∈ SkewA(S)| ξ is invertible},

Skew†
A(S) = {ξ ∈ SkewA(S)| ξ2 = −1}.

Definition 2.11 (A-endomorphism bundles). Let X be a CW complex
and A be a bundle of simple central graded ∗-algebras over X. For an A-
module bundle with inner product /S, we apply Definition 2.8 fiberwise and
define the bundles End0A(/S) and End1A(/S). If A is a bundle of nondegenerate
algebras, we define a bundle of Z2-graded algebras over X by

EndA(/S) := End0A(/S)⊕ End1A(/S).

In the degenerate case, we set

EndA(/S) := End0A(/S) = End1A(/S).

Again note that, even though /S is ungraded, the bundle EndA(/S) is Z2-
graded.

We define the bundles SelfA(/S), Self∗A(/S), Self†A(/S), SkewA(/S),
Skew∗

A(/S) and Skew†
A(/S) by applying Definition 2.10 fiberwise.

We have the following result, generalizing the periodicities of Clifford
modules: First remark that, for a Z2-graded real vector bundle E = E0 ⊕ E1

with positive definite inner product on each Ei, the associated negligible
bundle End(E) is equipped with a canonical choice of fiberwise volume ele-
ment, namely the grading operator γE := idE0 ⊕ (−idE1).

Lemma 2.12 ([DK70, Theorem 16]). Let X be a CW-complex. Let
E = E0 ⊕ E1 be a Z2-graded vector bundle over K on X with positive definite
inner product on each Ei. Let γE := idE0 ⊕ (−idE1) be its grading operator.
Let A be any bundle of simple central graded ∗-algebras over X.
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1) For any A-module bundle with inner product /S, we introduce an
End(E)⊗̂A-module structure on E ⊗ /S by

End(E)⊗̂A → End(E ⊗ /S)(2.13)

ξ⊗̂1 7→ ξ ⊗ id/S

1⊗̂b 7→ (γE)
|b| ⊗ b.

The assignment /S 7→ E ⊗ /S gives a bijection between the isomor-
phism classes of A-module bundles with inner products and those of
End(E)⊗̂A-module bundles with inner products.

2) When A is a bundle of nondegenerate algebras, we have an isomor-
phism of bundles of Z2-graded algebras,

ψE : EndA(/S) ≃ EndEnd(E)⊗̂A(E ⊗ /S),(2.14)

ξ 7→ (γE)
|ξ| ⊗ ξ.

This isomorphism restricts to ones on Self, Self∗, Self†, Skew, Skew∗

and Skew†.

3) When A is a bundle of degenerate algebras, we have isomorphisms of
vector bundles,

ψE : EndA(/S) = End1A(/S) ≃ End1
End(E)⊗̂A(E ⊗ /S),(2.15)

ξ 7→ γE ⊗ ξ.

This isomorphism restricts to ones on Self. Self∗, Self†, Skew, Skew∗

and Skew†.

Lemma 2.12 applied to X = pt recovers the (1, 1)-periodicity of modules
of Clifford algebras over R by setting E = R⊕ R, the (8, 0)-periodicity by
setting E = R8 ⊕ R8, and the 2-periodicity over C by E = C⊕ C.

2.3. Karoubi’s KO-theory

In this subsection we review the formulation of topological KO-theory given
by Karoubi [Kar78] and Donovan-Karoubi [DK70], in terms of gradations.
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First we fix our notations. The KO-groups of a point is presented as

KO∗(pt) = Z[η, v, u, u−1]/(2η, η3, ηv, v2 − 4u)(2.16)

as a Z-graded algebra, where η ∈ KO−1(pt), v ∈ KO−4(pt) and u ∈
KO−8(pt). This implies that

KO∗(pt)⊗ R = R[v, v−1].(2.17)

The K-groups of a point is presented as

K∗(pt) = Z[b, b−1](2.18)

as a Z-graded algebra, where b ∈ K−2(pt). We have

K∗(pt)⊗ R = R[b, b−1].(2.19)

We have the complexification map KO → K. We choose the sign of v so
that v maps to 2b2 under the complexification.

In the rest of this subsection, we work over R unless otherwise stated
(e.g., in Remark 2.37).

2.3.1. Karoubi’s KO-theory. First we recall the definition of untwisted
KO-groups.

Definition 2.20. Let (X,Y ) be a finite CW-pair and A be simple central
graded ∗-algebra.

• A triple (S, h0, h1) on (X,Y ) consists of an A-module S with an in-
ner product and two continuous maps h0, h1 ∈ Map(X, Self∗A(S)) with
h0|Y = h1|Y . Such hi’s are called gradations on S.

• Triples (S, h0, h1) and (S′, h′0, h
′
1) on (X,Y ) are isomorphic if there

exists an isometric isomorphism of A-modules f : S ≃ S′ such that
f ◦ hi = h′i ◦ f for i = 0, 1.

Definition 2.21 (KOA
+(X,Y ),[Kar78,Chapter III, Proposition 4.26]).

Let (X,Y ) and A be as above.

• On the set MA
+ (X,Y ) of isomorphism classes of triples (S, h0, h1) on

(X,Y ), we introduce an abelian monoid structure by the direct sum.

• We define ZA
+(X,Y ) to be the submonoid of Mp,q

+ (X,Y ) consisting
of isomorphism classes of triples (S, h0, h1) on (X,Y ) such that there
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exists a homotopy between h0 and h1 which is constant on Y , i.e.,
a map hI ∈ Map(I ×X, Self∗A(S)) with hI |{i}×X = hi for i = 0, 1 and
hI |{t}×Y = h0|Y for all t ∈ I.
• We define KOA

+(X,Y ) =MA
+ (X,Y )/ZA

+(X,Y ) to be the quotient
monoid.

Remark 2.22. Actually we are using a slightly different formulation from
[Kar78], but they are equivalent. In [Kar78], we do not consider inner prod-
ucts on modules S, and instead of SelfA∗ (S) above we use

GradA(S) := {ξ ∈ End1A(S) | ξ2 = 1}.(2.23)

Elements in GradA(S), or maps to it, are called gradations there. If S is
equipped with an inner product, we have inclusions Self†A(S) →֒ GradA(S)

and Self†A(S) →֒ Self∗A(S). Since both of them are homotopy equivalences,
our definition is equivalent to the formulation in [Kar78]. We choose this
formulation because we need self-adjointness for the differential refinement
below. By the same reason, we may as well use Self†A(S) instead of Self∗A(S)
in the above definition. Similar remarks also apply to the twisted case.

As is shown in [Kar78], the abelian monoid KOA
+(X,Y ) gives rise to an

abelian group, where the additive inverse given by −[S, h0, h1] = [S, h1, h0].
KOA

+’s are models for the KO-theory, as follows. See Subsubsection 2.3.2
for further details.

Fact 2.24 ([Kar78, Chapter III, Theorem 4.29]). We have a natural
isomorphism on the category of finite CW-pairs,

KOA
+ ≃ KOtype(A).(2.25)

By a slight generalization of the above constructions, we also get a model
for the twisted KO-theories. The cases of twists given by Clifford module
bundles of the form C(V,Q) are given in [Kar78, Chapter III, Section 4].
The case of twists given by bundles of simple central graded R-algebras in
general are given in [DK70]. We explain twists in KO-theory in detail in
Subsection 2.5 below.

Following [BS12, Section 7], in this paper we introduce the categories
of twists for KO+ and for its differential refinement. Here we introduce the
category Twist

2
KO+

of twists on KO+
4.

4The “2” indecates that we are dealing with CW-pairs.
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Definition 2.26 (Twist
2
KO+

). 1) For each finite CW-complex X we de-
fine TwistKO+,X to be the groupoid of bundles of simple central graded
∗-algebras A over X, where morphisms are ismorphisms between such
bundles.

2) For each morphism f : X → X ′ in CWf , we define a functor
f∗ : TwistKO+,X′ → TwistKO+,X by the pullback.

3) We define Twist
2
KO+

to be the category such that an object (X,Y,A)
consists of (X,Y ) ∈ CWPairf and A ∈ TwistKO+,X , and a morphism
from (X,Y,A) to (X ′, Y ′,A′) consists of a morphism f : (X,Y )→
(X ′, Y ′) in CWPairf and an isomorphism A ≃ f∗A′.

Definition 2.27. Let (X,Y,A) ∈ Twist
2
KO+

.

• A triple (/S, h0, h1) on (X,Y,A) consists of an A-module bundle /S with
an inner product and two continuous sections h0, h1 ∈ Γ(X; Self∗A(/S))
with h0|Y = h1|Y .
• Triples (/S, h0, h1) and (/S

′
, h′0, h

′
1) on (X,Y,A) are isomorphic if there

exists an isometric isomorphism of A-module bundles f : /S ≃ /S
′
such

that f ◦ hi = h′i ◦ f for i = 0, 1.

Definition 2.28 (KOA
+(X,Y )). Let (X,Y,A) ∈ Twist

2
KO+

.

• On the set MA
+ (X,Y ) of isomorphism classes of triples (/S, h0, h1) on

(X,Y,A), we introduce an abelian monoid structure by the direct sum.

• We define ZA
+ (X,Y ) to be the submonoid of MA

+ (X,Y ) consisting of
isomorphism classes of triples (/S, h0, h1) on (X,Y ) such that there
exists a homotopy between h0 and h1 which is constant on Y , i.e., a
continuous section hI ∈ Γ(I ×X; pr∗XSelf∗A(/S)) with hI |{i}×X = hi for
i = 0, 1 and hI |{t}×Y = h0|Y for all t ∈ I.
• We define KOA

+(X,Y ) =MA
+ (X,Y )/ZA

+ (X,Y ) to be the quotient
monoid.

By the functoriality of the above definition, we get the functor

KO+ : Twist
2
KO+

→ Ab,(2.29)

where Ab is the category of abelian groups.
Let us consider the case where A = A is the product bundle associated

to an algebra A. In this case, the group KO
A
+(X,Y ) differs from KOA

+(X,Y )
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on the nose, because the former also considers nontrivial A-module bundles.
However, by [Kar78, Chapter III, Proposition 4.26], any element in the for-
mer group can be represented by a triple in Definition 2.20, and we actually
have a natural isomorphism

KOA
+(X,Y ) ≃ KOA

+(X,Y ).(2.30)

The suspension isomoprhism in this model is given as follows.

Fact 2.31 ([DK70, Section 6]). For any object (X,Y,A) ∈ Twist
2
KO+

,
the suspension isomorphism

KOΣ0,1A
+ (X,Y ) ≃ KOA

+(X × I,X × ∂I ∪ Y × I),

is given by the assignment [/S, h0, h1] 7→ [/S, h̃0, h̃1]. Here the Σ0,1A-module
bundle /S is regarded as an A-module bundle in the latter triple, and h̃i :
X × I → Self∗A(S) is given by

h̃i(x, t) = β cosπθ + hi(x) sinπθ,(2.32)

where β denotes the action of the generator of Cl0,1.

Actually the twists of KO+ are classified by GBrO(X). To show this,
we first prove that twists given by negligible bundles are trivial, as follows.

Fact 2.33 ([DK70, Theorem 16]). Let (X,Y ) ∈ CWPairf . Let E =
E0 ⊕ E1 be a Z2-graded vector bundle over X with fiberwise positive def-
inite inner product. For any bundle of simple central graded ∗-algebras A,
we have a canonical isomorphism

KOA
+(X,Y ) ≃ KOEnd(E)⊗̂A

+ (X,Y ).(2.34)

Proof. By Lemma 2.12, we have a canonical bijective correspondence of A-
module bundles and End(E)⊗̂A-module bundles, and Self∗ on them. Using
the notation there, the isomorphism (2.34) is explicitely given by

[/S, h0, h1] 7→ [E ⊗ /S, ψE(h0), ψ
E(h1)].(2.35)

□

By Fact 2.33, we see the following.
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Corollary 2.36. For any object (X,Y,A) ∈ Twist
2
KO+

, the isomorphism

class of the group KOA
+(X,Y ) only depends on the class of A in GBrO(X).

We say more about the twists in Subsection 2.5.

Remark 2.37. In the C-linear settings, by only replacing the coefficients
from R to C, the same definition as Definition 2.21 constructs a functor KA

+ .
We have the natural isomorphism on the category of finite CW-pairs,

KA
+ ≃ Ktype(A).(2.38)

Also, by the same replacement of Definitions 2.26 and 2.28 we define the
category of twists Twist

2
K+

and the twisted K-theory as a functor

K+ : Twist
2
K+
→ Ab.

2.3.2. KO-spectrum in terms of Self∗. As explained in [Kar78, Chap-
ter III, 4.24–4.30], the formulation of KO-theory in Subsubsections 2.3.1
leads to a corresponding model of the KO-spectrum. In this subsubsection
we review this construction.

Let A be a simple central graded ∗-algebra. Given a Σ0,1A-module S with
an inner product, let β denote the action of the generator of Cl0,1 ⊂ Σ0,1A.
We regard S as an A-module by the inclusion A ⊂ Σ0,1A, and consider
the space Self∗A(S). Regarding β ∈ Self∗A(S) as the basepoint of the space
Self∗A(S), we consider the following pointed space

(Self∗A(S), {β}).

A sequence {Sn}n of Σ0,1A-modules are called cofinal system if we have a
fixed isomorphism Sn ⊕ S1 ≃ Sn+1 for each n and every Σ0,1A-module is a
direct factor of some Sn. For such a sequence we get the sequence of pointed
spaces,

· · · →֒ (Self∗A(Sn), {β}) →֒ (Self∗A(Sn+1), {β}) →֒ · · ·(2.39)

m 7→ m⊕ β|S1
.

The direct limit of (2.39) gives a classifying space of KOA
+, as follows.
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Fact 2.40 ([Kar78, Theorem 4.27]). Let {Sn}n be any cofinal system
of Σ0,1A-modules. Then we have a weak homotopy equivalence,

(KOtype(A), {∗}) ∼ lim−→
n

(Self∗A(Sn), {β}).(2.41)

Upon a choice of a volume element u in A, there is a preferred choice of
the weak homotopy equivalence (2.41) up to homotopy. In particular if A =
Clp,q, then it is of type (p− q), so that we have

(KOp−q, {∗}) ∼ lim−→
n

(Self∗p,q(Sn), {β}).

Moreover, for any finite CW-pair (X,Y ), we have a natural isomorphism

KOA
+(X,Y ) ≃ [(X,Y ), lim−→

n

(Self∗A(Sn), {β})].(2.42)

The dependence of the weak homotopy equivalence (2.41) on a volume
element is implicit in [Kar78], so we explain it below in the description of the
homeomorphism (2.52). Modifying the construction in Fact 2.31 (as carried
out in [Kar78, III. 6]), we can get the structure map for the above model of
the KO-spectrum, making it into an Ω-spectrum.

Here we explain the isomorphism (2.42). Given an A-module S, we can
embed S →֒ Sn as a direct summand for some n as an A-module. Then we get
the corresponding embedding Self∗A(S) →֒ Self∗A(Sn) (as an unbased space)
by using β on the orthogonal complement. The resulting homotopy class
[Self∗A(S), lim−→n

(Self∗A(Sn))] does not depend on the choice. Fixing such an
embedding, given a triple (S, h0, h1) which represents a class [S, h0, h1] ∈
KOA

+(X,Y ), we get the homotopy classes [hi] ∈ [X, lim−→n
(Self∗A(Sn))] for

i = 0, 1. The condition h0|Y = h1|Y implies that the difference class can be
regarded as an element

[h1]− [h0] ∈ [(X,Y ), lim−→
n

(Self∗A(Sn), {β})](2.43)

which is independent of the choice of the embedding. The isomorphism (2.42)
is given by this procedure.

Finally we explain the relation between the formulation in Subsubsec-
tion 2.3.1 with the formulation of KO0 in terms of real vector bundles.
The corresponding relations in the other degrees can be found in [Kar78,
Chapter III, Section 4.28–4.30].
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For the zeroth space of KO-spectrum, the following weak homotopy
equivalences are well-known

(KO0, {∗}) ∼ (Z×BO, {∗}) ∼ lim−→
N

(Gr(R2N ), {RN}).(2.44)

Here, in the last term in (2.44), Gr(R2N ) is Grassmannian consisting of
linear subspaces in R2N , and the basepoint RN ∈ GrN (R2N ) ⊂ Gr(R2N ) is
the point specified by the N -dimensional subspace RN = {0} ⊕ RN ⊂ RN ⊕
RN = R2N . The direct limit is taken by the inclusions

· · · →֒ (Gr(R2N ), {RN}) →֒ (Gr(R⊕ R2N ⊕ R), {RN ⊕ R}) →֒ · · ·(2.45)

V 7→ V ⊕ R.

This inclusion restricts to the one Grm(R2N ) →֒ Grm+1(R
2(N+1)) for each

m ≤ 2N , and preserves the basepoints. We have the following decomposition
into the connected components,

lim−→
N

Gr(R2N ) = ⊔m∈Z lim−→
N

Grm+N (R2N )(2.46)

so that the each components are weakly homotopy equivalent to BO. The
Z-component in (2.44) corresponds to the label m in (2.46). The description
(2.44) directly leads to the famous definition of KO0 as the Grothendieck
group of the isomorphism classes of real vector bundles. Namely, if X is
a finite CW-complex, given an element [f ] ∈ [X,KO0] = KO0(X), we can
represent it as a map f : X → Gr(R2N ) forN large enough. Denote by θ2N →
Gr(R2N ) the tautological real vector bundle over Gr(R2N ). Then the element
[f ] ∈ KO0(X) corresponds to the following formal difference class of the real
vector bundles over X,

[f∗θ2N ]− [RN ].(2.47)

Now, recalling Fact 2.40, let us consider a simple central graded ∗-algebra
A of type 0, i.e., [8; k, l] =M(k + l,R) in Table 1 for some (k, l). Then we
have

(KO0, {∗}) ∼ lim−→
n

(Self∗A(Sn), {β}) ∼ lim−→
n

(Self†A(Sn), {β}),(2.48)

where {Sn}n is a cofinal system of Σ0,1A-modules. The models (2.44)
and (2.48) are related as follows. Fix a volume element u for A.
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We have A = [8; k, l] ≃M(k + l,R) and Σ0,1A ≃ [7; k + l] =M(k + l,R)⊕
M(k + l,R) with the Z2-gradings as in Table 1. Thus there are exactly two
isomorphism classes of irreducible Σ0,1A-modules S+ and S− each of which
is (k + l)-dimensional and restricts to the same unique irreducible A-module.
The modules S± are characterized by the property that β ∈ Σ0,1A acts by
the multiplication by ±u ∈ A ⊂ Σ0,1A, respectively (here we use the choice
of the volume element). Any Σ0,1A-module S can be written as

S = (S+ ⊗ RN+)⊕ (S− ⊗ RN−),

where RN± are the trivial Σ0,1A-modules, for some nonnegative integers N+

and N−. Using Self†A(S+) = Self†A(S−) = {±u}, we easily see that

Self†A
(
(S+ ⊗ RN+)⊕ (S− ⊗ RN−)

)
(2.49)

=
{
u⊗ a | a ∈ End(RN+ ⊕ RN−), a2 = 1, a∗ = a

}

≃
{
P ∈ End(RN+ ⊕ RN−) | P 2 = 1, P ∗ = P

}

≃ Gr(RN+ ⊕ RN−).

Here the second and the third maps are diffeomorphisms. The second one
is given by a 7→ P = (1− a)/2, and the third one maps the orthogonal pro-
jection P to Im(P ), in other words the (+1)-eigenspace of P . Under the
diffeomorphism (2.49), the basepoint

β = ((u⊗ id
R

N+ )⊕ (−u⊗ id
R

N− )) ∈ Self†A
(
(S+ ⊗ RN+)⊕ (S− ⊗ RN−)

)

maps to

RN+ = {0} ⊕ RN+ ∈ GrN+
(RN+ ⊕ RN−) ⊂ Gr(RN+ ⊕ RN−).

As a cofinal sequence realizing (2.48), we may take (N+, N−) = (n, n),
i.e.,

Sn = (S+ ⊗ Rn)⊕ (S− ⊗ Rn).(2.50)

We use the isomorphism Sn ⊕ S1 ≃ Sn+1 given as follows. Define f : Rn ⊕
R ≃ Rn+1 by f(v ⊕ w) = (w, v) and g : Rn ⊕ R ≃ Rn+1 by g(v ⊕ w) =
(v, w). Then the required isomorphism is

(idS+
⊗ f)⊕ (idS−

⊗ g) : Sn ⊕ S1 ≃ Sn+1.(2.51)

Using this choice of {Sn}n, we see that under the isomorphism (2.49) the
sequence (2.39) coincides with the sequence (2.45). Thus we get the explicit
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homeomorphism between the two models for KO0 (depending on the choice
of u),

lim−→
N

(Gr(R2N ), {RN}) ≃ lim−→
n

(Self†A((S+ ⊗ Rn)⊕ (S− ⊗ Rn)), {β}).(2.52)

2.4. The Pontryagin character

For any spectrum E, there is a canonical map of spectra to the Eilenberg-
MacLane spectrum theory called the Chern-Dold homomorphism [Rud98,
Chapter II, 7.13]

chd: E → H(π−•(E)⊗Z R),

characterized by the property that the induced map on the homotopy groups,

chd: πk(E)→ πk(H(π−•(E)⊗Z R)) = πk(E)⊗Z R

is given by the map e 7→ e⊗ 1. In the cases E = K and E = KO, the Chern-
Dold homomorphisms are called the Chern character and the Pontryagin
character, respectively, and denoted by (recall our notations (2.17) and
(2.19))

Chtop : K → HR[b, b−1],(2.53)

Phtop : KO → HR[v, v−1].(2.54)

They are related by the complexification map KO → K. In this paper we
use the canonical idendifications

H∗(X;R[b, b−1]) ≃ H2Z+∗(X;R) := ⊕k∈ZH
2k+∗(X;R),(2.55)

which sends b ∈ H−2(pt;R[b, b−1]) to 1 ∈ H0(pt;R), and

H∗(X;R[v, v−1]) ≃ H4Z+∗(X;R) := ⊕k∈ZH
4k+∗(X;R),(2.56)

which sends v ∈ H−4(pt;R[v, v−1]) to −2 ∈ H0(pt;R). Then the identifica-
tions (2.55) and (2.56) send the complexification KO → K to the map that
is identity on H8Z(−;R) and the multiplication by (−1) on H8Z+4(−;R), be-
cause the complexification of v is 2b2 ∈ K−4(pt). We use this sign convention
so that the formula for R in (2.57) below becomes simple.

On manifolds, using the models of K0 and of KO0 by complex and
real vector bundles respectively, we can realize the degree-zero part of the
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homomorphisms (2.53) and (2.54) as the homomorphism to the de Rham
cohomologies by the Chern-Weil construction. Here we explain the case of
Phtop,

Phtop : KO
0(X)→ H0(X;R[v, v−1]) ≃ H4Z(X;R).

For a manifold X, we define a linear endomorphism on differential forms
R : Ω∗(X)→ Ω∗(X) by, on the homogeneous elements,

R(ω) :=
{
(2π)−|ω|/2ω if |ω| ≡ 0 (mod 2)

π1/2(2π)−(|ω|+1)/2ω if |ω| ≡ 1 (mod 2).
(2.57)

Assume X has a homotopy type of a finite CW-complex. Given an element
in KO0(X), we can represent it by a smooth real vector bundle E over X.
Take any fiberwise inner product on E and any connection ∇E preserving
it. Then the form

Ph(∇E) := R ◦ Tr
(
e(∇

E)2
)

lies in Ω4Z
clo(X), and is called the Pontryagin character form for ∇E . Its

cohomology class represents the image of [E] under Phtop,

Phtop([E]) = [Ph(∇E)].

The complex version (2.53) is given by using the following endomorphism
RC : Ω

∗(X;C)→ Ω∗(X;C),

RC(ω) :=

{
(−2π

√
−1)−|ω|/2ω if |ω| ≡ 0 (mod 2)

π1/2(−2π
√
−1)−(|ω|+1)/2ω if |ω| ≡ 1 (mod 2),

(2.58)

and applying the corresponding formula for hermitian vector bundles with
unitary connections.

2.5. Twists in KO-theory

We explain here the twisted groupsKOA
+ in the general framework of twisted

cohomology theory. In this subsection we work over R.
For the general theory of twisted cohomology theory, we refer to [MS06,

Section 22] and [ABG10]. In general, roughly speaking, given a general-
ized cohomology theory E and a topological space X, a twist is given by
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a bundle of spectra E → X with fiber E. Given such a twist, the twisted
E-cohomology group is defined as the abelian group consisting of homotopy
classes of sections,

EE(X) := π0(Γ(X; E)).(2.59)

In particular we recover untwisted group En(X) by setting E = ΣnE. The
appropriate choice of the class of “bundles of spectra” depends on the con-
text. We may consider the twists given by maps to BAut(E), where Aut(E)
is the topological monoid of self-weak equivalences of E. In the case that E is
a (E∞-) ring Ω-spectrum, a natural choice of a twist is a map to BGL1(E),
where GL1(E) is the unit components of E0 with respect to the ring struc-
ture of π0(E).

Now we explain the formulation of twisted KO-theory group KOA
+ in

Subsubsection 2.3.1 from this viewpoint. The reference is [DK70]. Also see
[AS06] for the case of K-theory, based on the model of the K-theory spec-
trum in terms of Fredholm operators.

Let A be one of the simple central graded ∗-algebras in Table 1. Recall
that we explained a model of the type(A)-th space of the KO-spectrum in
terms of Self∗A in Subsubsection 2.3.2. Using this model, we have an explicit
homomorphism

Aut∗,Z2
(A)→ Aut(KOtype(A)).(2.60)

For this, we choose the following cofinal system {Sn}n of Σ0,1A-modules.

Sn := (Σ0,1A)⊗ Rn.(2.61)

Here an element a ∈ Σ0,1A acts by (a·)⊗ idRn . Recall that A is a matrix
algebra or a direct sum of two compies of them. We introduce an inner
product on Σ0,1A by the entry-wise L2-inner product, i.e., ⟨a, b⟩ = Tr(a∗b).
It makes the action ∗-preserving. As an A-module, it is just a 2n-copies of A.

The automorphism group of A acts on End(Sn) by the adjoint. We can
check that it restricts to a homomorphism

Aut∗,Z2
(A)→ Aut(Self∗A(Sn)),(2.62)
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for each n, and passing to the direct limit we get a homomorphism by
Fact 2.40,

Aut∗,Z2
(A)→ Aut

(
lim−→
n

(Self∗A(Sn), {β})
)

= Aut
(
KOtype(A)

)
.(2.63)

This gives the desired homomorphism (2.60).
Given a connected finite CW-complex X with a bundle of simple central

graded ∗-algebras A = P ×Aut∗,Z2 (A) A associated to a principal Aut∗,Z2
(A)-

bundle P over X, take a classifying map X → BAut∗,Z2
(A) for P . Using

(2.63) we define the following bundle of based spaces over X,

(KOA, {β}) := P ×Aut∗,Z2 (A) lim−→
n

(Self∗A(Sn), {β}).(2.64)

Then the relative version of (2.59) applied here gives

KOA(X,Y ) = π0 (Γ (X,Y ;KOA, {β})) .(2.65)

In fact, we have an isomorphism

KOA
+(X,Y ) ≃ π0 (Γ (X,Y ;KOA, {β})) ,(2.66)

where the left hand side is defined in Definition 2.28. The map is given as
follows. Any element in KOA

+(X,Y ) is represented by a triple (/S, h0, h1)
with h20 = 1. For such a triple, we regard h0 as the basepoint of each fiber
of the fiber bundle Self∗A(/S) over X. We may also use h0 to regard /S as a
Σ0,1A-module bundle, with the generator of Cl0,1 acting by h0. Now notice
that any Σ0,1A-module bundle can be embedded as a direct summand into
(Σ0,1A)⊗ Rn for some n, and any such embeddings are homotopic to each
other upon taking the direct limit in n. Recalling our choice (2.61), we have
an embedding of bundles of based spaces,

(
Self∗A(/S), {h0}

)
→֒ (KOA, {β})(2.67)

uniquely up to homotopy. Fixing such an embedding we can regard h1 as
a section h1 ∈ Γ (X,Y ;KOA, {β}). The homotopy class of this h1 only de-
pends on the class [/S, h0, h1] ∈ KOA

+(X,Y ). The fact that this map is an
isomorphism follows by the following lemma, which is obvious by using the
choice (2.61).
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Lemma 2.68. Fixing a connected X ∈ CWf and A ∈ TwistKO+,X , we
have a weak equivalence of fiber bundles,

lim−→
(/S,h0)

(
Self∗A(/S), {h0}

)
≃ (KOA, {β}).(2.69)

Here the direct limit is taken over the direct system consisting of the pairs
(/S, h0) of A-module bundles with inner product and continuous sections h0 ∈
Γ(X; Self†A(/S)) and of their inclusions. The map from the left to the right is
induced by (2.67).

Recall that the isomorphism class of the group KOA
+(X,Y ) dependends

on the class ofA in GBrO(X) (Corollary 2.36). Indeed the map (2.60) factors
through BGL1(KO) up to homotopy, where the map to BGL1(KO) factors
as

BAut∗,Z2
(A)

w−→ BO⟨0, 1, 2⟩ ι−→ BGL1(KO).(2.70)

up to homotopy. Here BO⟨0, 1, 2⟩ is the second stage in the Postonikov
system of BO, which classifies GBrO(−).

2.6. The twisted Pontryagin character

In this subsection we explain the twisted Pontryagin character homomor-
phism.

Assume we are given two ring spectra E and F with multiplicative
homomorphism f : E → F . For a topological space X, given an element
τ ∈ [X,BGL1(E)] specifying a twist for E, by composing it with the map
f : BGL1(E)→ BGL1(F ) we have the corresponding twist f∗τ for F . It also
induces the maps between associated bundles, so in view of the definition
(2.59) we get a homomorphism

f : Eτ (X)→ F f∗τ (X).(2.71)

It satisfies the obvious functoriality. It is useful to view (2.71) in the following
way. Let π : Eτ → X be the bundle with fiber E associated with τ . Then
π∗f∗τ ∈ [Eτ , BGL1(F )] specifies a twist of F for the total space Eτ , and we
get an element

[f ] ∈ F π∗f∗τ (Eτ ).(2.72)
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We recover the homomorphism (2.71) from (2.72) by the pullback with re-
spect to a section in Eτ (X) = π0(Γ(X; Eτ )). Also note that, for each point
x ∈ X, under a choice of an isomorphism Eτ |x ≃ E, the element (2.72) re-
stricts on the fiber at x to the natural transformation f : E → F .

Now we turn to the twisted Pontryagin character homomorphism. Recall
that we are using the twists of KO-theory coming from the composition
(2.70). We denote by (KOn)ι the n-th space component of the KO-spectrum
bundle KOι over BO⟨0, 1, 2⟩. We denote by {β} ⊂ (KOn)ι the fiberwise
basepoint, in analogy with (2.65). Applying the above procedure to the
multiplicative homomorphism Phtop : KO → HR[v, v−1], we get the twisted
Pontryagin character homomorphism,

Phtop : KO
A
+(X,Y )→ H4Z+type(A)(X,Y ; Ori(A)),(2.73)

which is natural in (X,Y,A) ∈ Twist
2
KO+

. Also, by (2.70) and the above
argument, the natural transformation (2.73) is specified by the universal
element for each n,

[Phtop] ∈ H4Z+n((KOn)ι, {β};EZ2 ×Z2
R).(2.74)

Here EZ2/Z2 = BZ2 ≃ K(Z2, 1) and we denote its pullback to B⟨0, 1, 2⟩ by
the same symbol. Z2 acts on R by the multiplication of {±1} ≃ Z2. Each
transformation (2.73) is given by the pullback of the universal class (2.74)
to KOA. We observe the following.

Lemma 2.75. For each n, the element (2.74) is the unique element which
restricts to [Phtop] ∈ H4Z+n(KOn, {∗};R) on each fiber.

Proof. This is because the restriction to a fiber gives an isomorphism in
this case, since the higher integral cohomology groups of BO⟨0, 1, 2⟩ are
rationally trivial. We remark that the analogous argument appears in the
paper by Atiyah and Segal [AS06] in the case of the twisted K-theory. □

3. Generalized Clifford superconnections

In this section we set up the generalized Clifford superconnection formal-

ism. Actually, in order to define untwisted differential KO-groups K̂O
A

+, we
only need a particularly simple class of superconnections defined on trivial
bundles S of A-modules. Before developing the general formulation in Sub-
section 3.3, we first explain this simple case in Subsection 3.2. The readers
who are only interested in the untwisted case only need Subsection 3.1 and
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Subsection 3.2, and can go directly to Section 4. In this section we work
over R.

3.1. Traces

Definition 3.1 (Tru). Let A be a simple central graded ∗-algebra, and
u ∈ A be a volume element. For an A-module S, we define an R-linear map

Tru(ξ) : EndA(S)→ R

by the following.

• If A is of odd-type, set

Tru(ξ) := 21/2(dimRA)
−1/2TrS(u · ξ).

Note that since u ∈ A1 we have Tru(ξ) = 0 for ξ ∈ End1A(S).

• If A is of even-type and nondegenerate, set

Tru(ξ) :=

{
(dimRA)

−1/2TrS(u · ξ) if ξ ∈ End1A(S),

0 if ξ ∈ End0A(S).

• If A is degenerate, set

Tru(ξ) := (dimRA)
−1/2TrS(u · ξ)

for any ξ ∈ EndA(S).

When A is nondegenerate, Tru is a supertrace on the Z2-graded algebra
EndA(S), as follows. The proof is straightforward, by using u ∈ A|type(A)|.

Lemma 3.2. Let S be an A-module and ξ1, ξ2 ∈ EndA(S). If A is nonden-
erate, we have

Tru({ξ1, ξ2}) = 0.

If A is degenerate, we have

Tru([ξ1, ξ2]) = 0.

Moreover, Tru is compatible with tensoring negligible modules, as fol-
lows.
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Lemma 3.3. Let V = V 0 ⊕ V 1 be a Z2-graded real vector space, and γV
the Z2-grading operator on V . Let A and S be as before, and let u be a
volume element of A. Then γV ⊗̂u is a volume element of End(V )⊗̂A. For
any ξ ∈ EndA(S), we have

Tru(ξ) = TrγV ⊗̂u(ψ
V (ξ)).

For later use, we also regard Definition 3.1 as giving a linear map

TrA : EndA(S)→ Ori(A).(3.4)

3.2. The case for trivial bundles of A-modules

Let A be a simple central graded ∗-algebra. Throughout this subsection,
we assume that A is nondegenerate. Let S be an A-module with an inner
product. Let X be a manifold, and consider the trivial A-module bundle S
over X. Here, we explain the generalized Clifford superconnection formalism
in Subsection 3.3 applied to these settings.

3.2.1. Generalized Clifford superconnections associated to grada-
tions. Recall that we have introduced the Z2-graded algebra structure on
EndA(S) in Definition 2.8. We introduce a Z2-graded algebra structure on
Ω∗(X; EndA(S)) by the graded tensor product,

Ω∗(X; EndA(S)) = Ω∗(X)⊗̂C∞(X)C
∞(X; EndA(S)).

This means that the multiplication is given by the formula (3.33):

(ω⊗̂ξ) · (ω′⊗̂ξ′) := (−1)|ξ|·|ω′|(ω ∧ ω′)⊗ (ξ · ξ′).

The even and odd part of Ω∗(X; EndA(S)) with respect to this grading
are denoted by Ω∗(X; EndA(S))

0 and Ω∗(X; EndA(S))
1, respectively. We

let the algebra Ω∗(X; EndA(S)) act on Ω∗(X;S) := C∞(X;∧T ∗X ⊗ S) by
the formula (3.34), respecting the grading:

(ω⊗̂ξ) · (η ⊗ ψ) := (−1)|ξ|·|η|(ω ∧ η)⊗ (ξ · ψ).

Given h ∈ C∞(X, SelfA(S)), consider the following differential operator
on Ω∗(X;S),

∇∇ := d+ h : Ω∗(X;S)→ Ω∗(X;S).(3.5)
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This is an example of a self-adjoint superconnection (Definition 3.36 and
3.60) for the case (A,∇A) = (A, d) and /S = S. The square of the operator
(3.5) is given by the action of the following element in Ω∗(X; EndA(S))

0,

F (∇∇) = ∇∇2 = dh+ h2 ∈ Ω∗(X; EndA(S))
0.(3.6)

This is the twisting curvature for ∇∇ in Lemma 3.46.
As in the case of usual connections, we apply polynomials to

F (∇∇) and get characteristic forms. Recall that we defined a linear
map TrA : EndA(S)→ Ori(A) in (3.4). We extend it to a linear map
TrA : Ω∗(X; EndA(S))→ Ω∗(X; Ori(A)) by applying it to the coefficients
(Definition 3.49).

Definition 3.7 (Definition 3.64 applied to ∇∇ = d+ h). In the above
settings, Pontryagin character form of ∇∇ = d+ h is defined by

Phself(d+ h) := TrA(e
−F (∇∇)) = TrA(e

−dh−h2

) ∈ Ω
4Z+type(A)+1
clo (X; Ori(A)).

(3.8)

The closedness follows from Proposition 3.56 (1), and the fact that the form
appears in degrees type(A) + 1 (mod 4) follows from Proposition 3.63 be-
low.

The above Pontryagin character form Phself(d+ h) depends on h, but
it is always exact. Moreover, if we are given an element hI ∈ C∞(I ×
X, SelfA(S)), which is regarded as a homotopy hI = {ht}t∈I from h0 to h1,
we get an explicit form cobounding Ph(d+ h1)− Ph(d+ h0), as follows.

Definition 3.9 (Definition 3.64 applied to ∇∇/S = d+ h). In the above
settings, for an element hI ∈ C∞(I ×X, SkewA(S)), we define its Chern-
Simons form CSself(dI×X + hI) ∈ Ω4Z+type(A)(X; Ori(A)) by

CSself(dI×X + hI) :=

∫

I
Phself (dI×X + hI)

= −
∫

I
dt ∧ TrA

(
dhI
dt

e−dXhI−(hI)2
)
.(3.10)

Here we denote by dI×X and dX the de Rham differential on I ×X and X,
respectively. The last equality in (3.10) follows from

(dI×X + hI)
2 = (dX + hI)

2 + dt ∧ dhI
dt
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(also see (3.58)).

We have (3.69)

dCSself(dI×X + hI) = Phself(d+ h1)− Phself(d+ h0).(3.11)

In particular, for any h ∈ C∞(X, SelfA(S)), we have the homotopy hI = th
from 0 to h. Thus, applying (3.11) to the homotopy, we see that Phself(d+ h)
is always exact, as stated above.

3.2.2. The Pontryagin character forms for gradations. As we have
seen in the end of the last subsubsection, the Pontryagin character form
Phself(d+ h) itself has no interesting cohomological information. However,
the point is that we know a particular choice CSself(dI×X + th) of the
form cobounding it. Based on this observation, we introduce the Pon-
tryagin character form Phself(h) for invertible sections (gradations) h ∈
C∞(X, Self∗A(S)), which captures the nontrivial cohomological information.

Assume we are given an invertible section h ∈ C∞(X, Self∗A(S)).
Consider the manifold (0,∞)×X and the section th ∈ C∞((0,∞)×
X, Self∗A(S)), where t is the coordinate in (0,∞). Applying Definition 3.7
to this, we get

Phself
(
d(0,∞)×X + th

)
= −dt ∧ TrA

(
he−tdXh−t2h2

)
(3.12)

∈ Ω
4Z+type(A)+1
clo ((0,∞)×X; Ori(A)).

The section th ∈ C∞((0,∞)×X, Self∗A(S)) can be considered as a family of
sections {th ∈ C∞(X, Self∗A(S))}t∈(0,∞) parametrized by (0,∞). The inte-
gration of the form (3.12) in the (0,∞)-direction can be regarded as a limit
of the Chern-Simons form in Definition 3.9. As a consequence of the invert-
ibility of the section h, we can show that the integration indeed converges.

Lemma 3.13 (The special case of Lemma 3.77). In the above set-
tings, the following integration converges pointwise, and the resulting form
is closed.

−
∫

(0,∞)
Phself

(
d(0,∞)×X + th

)
=

∫

(0,∞)
dt ∧ TrA

(
he−tdXh−t2h2

)
(3.14)

∈ Ω
4Z+type(A)
clo (X; Ori(A)).

It turns out that the form (3.14) captures the nontrivial cohomological
information on h. Recall the homomorphism R given in (2.57).
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Definition 3.15 (Phself(h) : a special case of Definition 3.80 (1)).
For h ∈ C∞(X, Self∗A(S)), its Pontryagin character form

Phself(h) ∈ Ω
4Z+type(A)
clo (X; Ori(A))

is defined by

Phself(h) := −π−1/2R ◦
∫

(0,∞)
Phself(d(0,∞)×X + th)(3.16)

= π−1/2R ◦
∫

(0,∞)
dt ∧ TrA

(
he−tdXh−t2h2

)
.

The cohomology class of Phself(h) only depends on the homotopy class of
h in C∞(X, Self∗A(S)). Indeed, given an element hI ∈ C∞(I ×X, Self∗A(S))
regarded as a homotopy between h0 := hI |{0}×X and h1 := hI |{1}×X , we get
an explicit form cobounding Phself(h1)− Phself(h0), as follows.

Definition 3.17 (CSself(hI) : a special case for Definition 3.80 (2)).
For hI ∈ C∞(I ×X, Self∗A(S)), we define its Chern-Simons form by

CSself(hI) :=

∫

I
Phself (hI) ∈ Ω4Z+type(A)−1(X; Ori(A)).(3.18)

The fact that CSself(hI) satisfies

Phself(h1)− Phself(h0) = dCSself(hI)(3.19)

follows from the closedness of Phself(h).

3.2.3. Properties of the Pontryagin character forms. Now we ex-
plain the properties of the Pontryagin character form Phself(h) for invertible
sections h ∈ C∞(X, Self∗A(S)).

To begin with, it is important to notice that Phself(h) is the pullback of
the universal Pontryagin form on the space Self∗A(S). Indeed, fixing S, we
have the universal gradation, or the tautological gradation huniv on Self∗A(S),
given by the identity map,

huniv := id ∈ C∞(Self∗A(S), Self
∗
A(S)).(3.20)

We get its Pontryagin character form,

Phself(huniv) ∈ Ω
4Z+type(A)
clo (Self∗A(S); Ori(A)).(3.21)
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We easily see that Definition 3.15 is contravariant in X, and in particular
for any h ∈ C∞(X, Self∗A(S)) we have

Phself(h) = h∗Phself(huniv).(3.22)

Thus we call the form Phself(huniv) the universal Pontryagin form. The var-
ious statements on Phself(h) below are also functorial in X, so they can be
treated as statements on each h, as well as statements on the universal one.
Both viewpoints are useful.

First, Phself(h) is invariant under tensoring negligible modules. Recall
Lemma 2.12. Given a Z2-graded vector space V = V 0 ⊕ V 1 with a positive
definite inner product on each V i associating the negligible module End(V ),
for an A-module S we get the corresponding End(V )⊗̂A-module V ⊗ S, and
the isomorphism ψV : Self∗A(S) ≃ Self∗

End(V )⊗̂A
(V ⊗ S). The following result

follows from a straightforward algebraic computation by using Lemma 3.3.

Lemma 3.23 (Invariance of Phself(h) under tensoring negligible
modules). In the above settings, for h ∈ C∞(X; Self∗A(S)) we have

Phself(h) = Phself(ψ
V (h)),

where we use the isomorphism Ori(A) ≃ Ori(End(V )⊗̂A) by u 7→ γV ⊗̂u.

Next we look at the compatibility with the suspension isomorphism in
KO-theory. Recall that, by Fact 2.31, the suspension isomorphism of KO-
theory,

KOΣ0,1A
+ (X,Y ) ≃ KOA

+(X × I,X × ∂I ∪ Y × I),(3.24)

is realized by the map (S, h0, h1) 7→ (S, h̃0, h̃1). There, we defined the map

C∞(X, Self∗Σ0,1A(S))→ C∞(I ×X, Self∗A(S)),(3.25)

h 7→ h̃(θ, x) = β cosπθ + h(x) sinπθ.(3.26)

As remarked after Fact 2.40, it is essentially the structure map of the KO-
spectrum explained in Subsubsection 2.3.2. We have the following.

Proposition 3.27. For any element h ∈ C∞(X, Self†Σ0,1A(S)), we have

Phself(h) =

∫

I
Phself(h̃).

Here we use the isomorphism Ori(A) ≃ Ori(Σ0,1A) given by u 7→ u⊗̂β.
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The proof is done by a direct computation, which we give in Subsec-
tion 7.1.

Finally, we identify the cohomology class of Phself(h), justifying the name
“Pontryagin character form”. For this, it is convenient to work with the

universal one, Phself(huniv) ∈ Ω
4Z+type(A)
clo (Self∗A(S); Ori(A)), as explained at

the beginning of this subsubsection.
Recall that we have the model of the KO-spectrum realized as a di-

rect limit of Skew∗
A given in Subsubsection 2.3.2. Letting {Sn}n be any

cofinal system of Σ0,1A-modules, we have the weak homotopy equivalence
(Fact 2.40),

(KOtype(A), {∗}) ∼ lim−→
n

(Self∗A(Sn), {β}).

Also recall that this equivalence depends on the choice of a volume element
u ∈ A. Any Σ0,1A-module S admits an inclusion S →֒ Sn of Σ0,1A-modules
for n large enough, and its image is a direct summand. Any such inclusions
are homotopic in the direct limit. We denote by

ιS,u ∈
[
(Self∗A(S), {β}), (KOtype(A), {∗})

]
(3.28)

the homotopy class of the induced map. The topological Pontryagin charac-
ter homomorphism (2.54) can be regarded as an element

Phtop ∈ H4Z+type(A)
(
KOtype(A), {∗};R

)
.

The universal Pontryagin character form (3.21) indeed represents the topo-
logical Pontryagin character, as follows.

Theorem 3.29. Let A be a nondegenerate simple central graded ∗-
algebra and S be a Σ0,1A-module. Let u be a volume element of A,
and use it to trivialize Ori(A). Then we have the following equality in
H4Z+type(A) (Self∗A(S), {β};R),

Rham (Phself(huniv)) = ι∗S,uPhtop.(3.30)

The proof of Theorem 3.29 is given in Subsection 7.2. Using this universal
result, we see that Phself(h) realizes the topological Pontryagin character
homomorphism for KO+, as follows.

Corollary 3.31. Let A be a nondegenerate simple central graded ∗-algebra
and (X,Y ) be an object of MfdPairf . Representing classes of KOA

+(X,Y )
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by triples (S, h0, h1) with hi ∈ C∞(X; Self∗A(S)), we have the following real-
ization of the topological Pontryagin character homomorphism

Phtop : KO
A
+(X,Y )→ H4Z+type(A)(X,Y ; Ori(A)),

[S, h0, h1] 7→ Rham (Phself(h1)− Phself(h0)) .

Proof. This follows directly from Theorem 3.29 and the definition (2.43) of
the isomorphism (2.42). □

3.3. The generalized Clifford superconnection formalism

In this subsection, we develop the generalized Clifford superconnection for-
malism. The construction below can be regarded as a generalization of the
(real variant of the) usual superconnection formalism, which was developed
by Quillen [Qui85] and has been broadly used since then. We explain the
relation with the Quillen’s formalism in Subsubsection 3.3.1. Here we just
remark that the Quillen’s (even) superconnection formalism corresponds to
the case A = Cl0,1 and the Quillen’s odd superconnection formalism corre-
sponds to the case A = Cl1,1.

Let X be a manifold and A be a bundle of simple central graded ∗-
algebras over R on X. Throughout this subsection, we always assume that
the fibers of A are nondegenerate algebras5.

Given an A-module bundle /S over a manifold X, we introduce an A-
module bundle structure on ∧T ∗X ⊗ /S as follows. For each point x ∈ X, let
Ax act on ∧T ∗

xX ⊗ /Sx by the formula

c · (ω ⊗ ψ) := (−1)|c|·|ω|ω ⊗ (c · ψ).(3.32)

This makes ∧T ∗X ⊗ /S an A-module bundle over X. Let us introduce Z2-
graded algebra structures on Ω∗(X;A) and Ω∗(X; EndA(/S)) by the graded
tensor products,

Ω∗(X;A) = Ω∗(X)⊗̂C∞(X)C
∞(X;A).

Ω∗(X; EndA(/S)) = Ω∗(X)⊗̂C∞(X)C
∞(X; EndA(/S)).

5When we are interested in bundles of degenerate algebras and modules over
them, we tensor negligible modules to produce bundles of nondegenerate algebras,
it is enough to use the isomorphism in Lemma 2.12 (3), and then apply the su-
perconnection formalism to the latter. Actually, the Quillen’s odd superconnection
formalism can be regarded as such an example. See Subsubsection 3.3.1 for details.
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This means that the multiplication in these algebras are given by

(ω⊗̂ξ) · (ω′⊗̂ξ′) := (−1)|ξ|·|ω′|(ω ∧ ω′)⊗ (ξ · ξ′).(3.33)

The even and odd part of Ω∗(X; EndA(/S)) with respect to this grading are
denoted by Ω∗(X; EndA(/S))0 and Ω∗(X; EndA(/S))1, respectively. We also
use the corresponding notation Ω∗(X;A)i, i ∈ Z2.

Let the algebras Ω∗(X;A) and Ω∗(X; EndA(/S)) act on the space of dif-
ferential forms Ω∗(X; /S) = C∞(X;∧T ∗X ⊗ /S) by

(ω⊗̂ξ) · (η ⊗ ψ) := (−1)|ξ|·|η|(ω ∧ η)⊗ (ξ · ψ).(3.34)

We have

EndA(∧T ∗X ⊗ /S) = ∧T ∗X⊗̂EndA(/S).

as bundles of Z2-graded algebras.
In the computations below we abuse the notation to use the graded

commutators between elements of Ω∗(X;A) and Ω∗(X; EndA(/S)), namely,
we denote like

{Ξ, C} := ΞC − (−1)|Ξ||C|CΞ(3.35)

for homogeneous Ξ ∈ Ω∗(X; EndA(/S)) and C ∈ Ω∗(X;A), as an operator on
Ω∗(X; /S). Of course, the operator (3.35) is zero by definition.

In order to formulate the notion of superconnections on /S, we need to
fix a connection ∇A on A which preserves the graded ∗-algebra structures.
Recall that A is associated to a principal Aut∗,Z2

(A)-bundle P overX, where
A denotes the typical fiber of A. By a connection on A we mean a connection
∇A on A induced by an Aut∗,Z2

(A)-connection on P . By Lemma 2.4, we
know that the set of connections on A is a torsor over Ω1(X;A0

skew), where
A0

skew is the subbundle of A0 consisting of skew-adjoint elements. Explicitly,
given ∇A and C ∈ Ω1(X;A0

skew), the operator

∇A + {C,−}

is another connection on A, and any two connections are related in this way.

Definition 3.36 (A-superconnections). Let A be a bundle of nondegen-
erate simple central graded ∗-algebras over a manifold X, equipped with a
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connection∇A. Let /S be an A-module bundle overX. An A-superconnection
∇∇/S on /S compatible with ∇A is a linear map

∇∇/S : Ω∗(X; /S)→ Ω∗(X; /S)

such that, for any homogeneous element C ∈ Ω∗(X;A), we have

∇∇/S ◦ (C·)− (−1)|C|(C·) ◦ ∇∇/S = (∇AC)·,(3.37)

where Ω∗(X;A) acts on Ω∗(X; /S) by (3.34). In particular, if ∇∇/S is a usual
connection, i.e., increases the form-degree by one, we call it an A-connection.

In the following, given an A-superconnection ∇∇/S , for an element Ξ ∈
Ω∗(X; EndA(/S)) or Ω∗(X;A), we define the operator {∇∇/S ,Ξ} on Ω∗(X; /S)
by

{∇∇/S ,Ξ} := ∇∇/S ◦ Ξ− (−1)|Ξ|Ξ ◦ ∇∇/S(3.38)

if Ξ is homogeneous, and extend this definition linearly for general Ξ. Al-
though we are not regarding ∇∇/S as an element in any Z2-graded algebra,
this convention is useful.

As usual, we can easily show the following.

Lemma 3.39. In the settings of Definition 3.36, for a fixed ∇A, the set
of A-superconnections on /S compatible with ∇A is an affine space over
Ω∗(X; EndA(/S))1.

An A-superconnection can be decomposed into a finite sum as

∇∇/S = ∇+
∑

j

ωj⊗̂ξj ,(3.40)

where ∇ is an A-connection, each differential form ωj is homogeneous and
ωj⊗̂ξj ∈ Ω∗(X; EndA(/S))1. We are mainly interested in superconnections of
the form

∇∇/S = ∇+ ξ0,

for ξ0 ∈ C∞(X; End1A(/S)).

Lemma 3.41. Let us choose and fix (A,∇A) in Definition 3.36. For any
A-module bundle /S, there exists an A-connection ∇ compatible with ∇A.
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Proof. The lemma is shown by taking local trivializations. The key is the
fact that any A-module bundle is locally of the form S0 ⊗W0 or S0 ⊗W0 ⊕
S1 ⊗W1 depending on the type of fibers A, where {Si}i is the list of the
isomorphism classes of irreducible A-modules, and Wi are some trivial A-
modules. □

It is useful to have the following local description. Given X and A, we
can locally (say, on U) choose a trivialization A ≃ A. Then any ∇A can be
written as

∇A = d+ {C,−},

for some C ∈ Ω1(U ;A0
skew). Given any A-module bundle /S, by replacing U

smaller if necessary, we can trivialize it as /S = S for some A-module S. Then
the operator

d+ C(3.42)

on Ω∗(U ;S) ≃ Ω∗(U ; /S) defines an A-superconnection compatible with ∇A

on U . By Lemma 3.39, any other A-superconnection∇∇/S on /S can be written
as

∇∇/S = d+ C +B(3.43)

for some B ∈ Ω∗(U ; EndA(/S))1 on U .
Now we look at the effects of changes of the connection ∇A on A.

Lemma 3.44. Let X and A be as above. Let /S be an A-module bundle, and
assume we are given an A-superconnection ∇∇/S on /S compatible with ∇A.
Then, for any C ∈ Ω1(X;A0

skew), ∇∇/S + C is an A-superconnection compat-
ible with ∇A + {C,−}. In other words, Ω1(X;A0

skew) acts on the set of pairs

(∇A,∇∇/S) consisting of a connection ∇A on A and an A-superconnection
∇∇/S on /S compatible with ∇A. Here C ∈ Ω1(X;A0

skew) acts as

(∇A,∇∇/S) 7→ (∇A + {C,−},∇∇/S + C).(3.45)

In particular, for any two connections ∇A
0 and ∇A

1 on A, the correspon-
dence (3.45) induces a bijection between the space of A-superconnections on
/S compatible with ∇A

0 and that with ∇A
1 .

Proof. It is easily shown by the local description above. □
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Lemma 3.46. Let X, A, /S, ∇A and ∇∇/S be as above. We have

F (∇∇/S ;∇A) := (∇∇/S)2 − (∇A)2 ∈ Ω∗(X; EndA(/S))
0.

We call F (∇∇/S ;∇A) the twisting curvature of ∇∇/S.

Proof. It is enough to show that, for any C ∈ Ω∗(X;A), we have

F (∇∇/S ;∇A) ◦ (C·)− (C·) ◦ F (∇∇/S ;∇A) = 0

as an operator on Ω∗(X; /S). But this is checked directly using (3.37). □

Remark 3.47. In the case of trivial bundles in Subsection 3.2, we denoted
F (∇∇) := F (∇∇; d), where d means the trivial connection on A. But we omit
the reference to d when it is obvious. Similar remarks about the notations
also apply to the other objects introduced in Subsection 3.2.

In the local description (3.43), F (∇∇/S ;∇A) is given by

F (∇∇/S ;∇A) = (d+ C +B)2 − (d+ {C,−})2(3.48)

= {d+ C,B}+B2 = dB +B2.

Note that, in particular when ∇∇/S is an A-connection, F (∇∇/S ;∇A) is not the
curvature of the connection because we are subtracting (∇A)2. In fact, it
generalizes the twisting curvature in the sense of [BGV04, Proposition 3.43].

Definition 3.49 (TrA). We define a bundle map over X,

TrA : EndA(/S)→ Ori(A),(3.50)

by applying the linear map (3.4) fiberwise. Also extend this map left Ω∗(X)-
linearly and define

TrA : Ω∗(X; EndA(/S))→ Ω∗(X; Ori(A)).(3.51)

ω⊗̂ξ 7→ ω ⊗ TrA(ξ).

Note that the map (3.51) preserves the Z2-grading if type(A) is odd,
and reverses the Z2-grading if type(A) is even.
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By Lemma 3.2, the u-trace Tru is a supertrace on the Z2-graded algebra
EndA(S). Using the formula (3.51), we easily deduce that

TrA({Ξ1,Ξ2}) = 0(3.52)

for any Ξ1,Ξ2 ∈ Ω∗(X; EndA(/S)). We have the following lemma correspond-
ing to [Qui85, Proposition 2] and [BGV04, Lemma 1.42].

Lemma 3.53. Let X, A, /S, ∇A and ∇∇/S be as above.

1) For any element Ξ ∈ Ω∗(X; EndA(/S)), we have

{∇∇/S ,Ξ} ∈ Ω∗(X; EndA(/S)).

Moreover the homomorphism

{∇∇/S , ·} : Ω∗(X; EndA(/S))→ Ω∗(X; EndA(/S))(3.54)

is an odd graded derivation with respect to the Z2 grading given on
Ω∗(X; EndA(/S)).

2) For any element Ξ ∈ Ω∗(X; EndA(/S)), we have

dTrA(Ξ) = TrA({∇∇/S ,Ξ}).

Proof. First we prove (1). To show the first statement and the fact
that (3.54) is an odd homomorphism, it is enough to show that

{∇∇/S ,Ξ}C − (−1)|C|(|Ξ|+1)C{∇∇/S ,Ξ} = 0(3.55)

for any homogeneous Ξ ∈ Ω∗(X; EndA(/S)) and C ∈ Ω∗(X;A). Indeed, we
have

{∇∇/S ,Ξ}C − (−1)|C|(|Ξ|+1)C{∇∇/S ,Ξ}
= (−1)|C||Ξ|{∇∇/S , C}Ξ− (−1)|Ξ|Ξ{∇∇/S , C}
+∇∇/S{Ξ, C} − (−1)|Ξ|+|C|{Ξ, C}∇∇/S

= (−1)|C||Ξ|(∇AC)Ξ− (−1)|Ξ|Ξ(∇AC)

= (−1)|C||Ξ|{∇AC,A}
= 0.

The graded derivation property is obvious.
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Next we prove (2). We use the local description of A-superconnections
(3.43). Using the notations there, we have

{∇∇/S ,Ξ} = {d+ C +B,Ξ} = {d,Ξ}+ {B,Ξ},

since C ∈ Ω∗(U ;A). By (3.52), we have

TrA({∇∇/S ,Ξ}) = TrA({d,Ξ}) = dTrA(Ξ),

so we get the desired result. □

Using Lemma 3.53, by the similar argument as in [Qui85] and [BGV04],
we get the following transgression formula, corresponding to [BGV04, Propo-
sition 1.41].

Proposition 3.56. Let X, A and /S be as above, and f(z) ∈ R[[z]].

1) For any connection ∇A on A and A-superconnection ∇∇/S on /S com-
patible with ∇A, we have

TrA(f(F (∇∇/S ;∇A))) ∈ Ω∗
clo(X; Ori(A)).

2) Consider the manifold I ×X and the bundles pr∗XA and pr∗X /S on

it. Let ∇A,I be a connection on pr∗XA and ∇∇/S,I be an pr∗XA-
superconnection on pr∗X /S compatible with ∇A,I . For i = 0, 1, we set

∇A,I |{i}×X = ∇A
i and ∇∇/S,I |{i}×X = ∇∇/S

i . Then we have

d

∫

I
Trpr∗XA

(
f
(
F (∇∇/S,I ;∇A,I)

))

= TrA(f(F (∇∇/S
1 ;∇A

1 )))− TrA(f(F (∇∇/S
0 ;∇A

0 ))).

3) Let {∇A
t }t and {∇∇

/S
t }t be a smooth 1-parameter family of connections

on A and A-superconnections on /S compatible with it. We have

d

dt
TrA(f(F (∇∇/S

t ;∇A
t ))) = dTrA

((
d∇∇/S

t

dt
− d∇A

t

dt

)
f ′(F (∇∇/S

t ;∇A
t ))

)
.
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Proof. For (1), using the local description (3.43) we have

{∇∇/S , F (∇∇/S ;∇A)} = −{∇∇/S , (∇A)2} = −{d+ C +B, (d+ {C,−})2}
= −{B, (∇A)2} = 0,

where the last equality is because B ∈ Ω∗(X; EndA(/S)) and (∇A)2 ∈
Ω∗(X;A). The formula above and Lemma 3.53 lead to (1).

For (2), we can decompose Trpr∗XA
(
f
(
F (∇∇/S,I ;∇A,I)

))
as

Trpr∗XA
(
f
(
F (∇∇/S,I ;∇A,I)

))
= dt ∧ α(t) + β(t),

where t is the coordinate on I = [0, 1] and α(t), β(t) ∈ Ω∗(X; Ori(A)). We
have β(i) = TrA(f(F∇∇i

)) for i = 0, 1. By (1) we know that

0 = −dt ∧ dXα+ dt ∧ dβ
dt

+ dXβ,

so that

dXα =
dβ

dt
.(3.57)

We have

d

∫

I
Trpr∗XA

(
f
(
F (∇∇/S,I ;∇A,I)

))

= d

∫

I
dt ∧ α

=

∫

I
dt ∧ dXα

=

∫

I
dt ∧ dβ

dt

= β(1)− β(0)
= TrA(f(F (∇∇/S

1 ;∇A
1 )))− TrA(f(F (∇∇/S

0 ;∇A
0 ))),

so we get (2).
For (3), as a special case of (2) we consider the connection ∇A,I =

dt +∇A
t and A-superconnection ∇∇/S,I = dt +∇∇/S

t , where dt is the de Rham
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differential on [0, 1]. We have

(∇∇/S,I)2 = (∇∇/S
t )

2 + dt ∧ d∇∇
/S
t

dt
,

(∇A,I)2 = (∇V
t )

2 + dt ∧ d∇
A
t

dt
,

which imply

(3.58) TrA
(
f
(
F (∇∇/S,I ;∇A,I)

))
=

dt ∧ TrA

((
d∇∇/S

t

dt
− d∇A

t

dt

)
f ′(F (∇∇/S

t ;∇A
t ))

)
+TrA(f(F (∇∇/S

t ;∇A
t ))).

The computation is parallel to [BGV04, pp.48–49]. By (3.57) and (3.58), we
get (3). □

The form TrA
(
f(F (∇∇/S ;∇A))

)
is invariant under the action of

Ω1(X;A0
skew) in Lemma 3.44, as follows.

Lemma 3.59. In the above settings, let C ∈ Ω1(X;A0
skew). For any f(z) ∈

R[[z]] we have

TrA
(
f(F (∇∇/S ;∇A))

)
= TrA

(
f(F (∇∇/S + C;∇A + {C,−}))

)
.

Proof. It follows from the application of Proposition 3.56 (3) to the linear
path from (∇A,∇∇/S) to (∇A + {C,−},∇∇/S + C). □

Next we introduce the self and skew-adjointness condition on A-
superconnections.

Definition 3.60 (Self-adjointness and Skew-adjointness of general-
ized Clifford superconnections). In the above settings, assume that /S
is equipped with an inner product. Let ∇∇/S be an A-superconnection.

1) We say that ∇∇/S is self-adjoint if, in a decomposition (3.40), ∇/S pre-
serves the inner product, ξj is skew-adjoint if |ωj | ≡ 1, 2 (mod 4) and
self-adjoint if |ωj | ≡ 0, 3 (mod 4).

2) We say that ∇∇/S is skew-adjoint if, in a decomposition (3.40), ∇/S

preserves the inner product, ξj is skew-adjoint if |ωj | ≡ 0, 1 (mod 4)
and self-adjoint if |ωj | ≡ 2, 3 (mod 4).
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This definition does not depend on the choice of the decomposition.

Remark 3.61. Definition 3.60 is motivated by the self/skew-adjointness of
the associated Dirac operators, as follows. Let X be a manifold with a Rie-
mannian metric g. First we consider the Clifford algebra bundle C(T ∗X, g),
in which the Clifford multiplications of cotangent vectors are skew-adjoint
(see (2.1)). Let /S be a C(T ∗X, g)-module bundle with an inner product.
Assume we have a self-adjoint C(T ∗X, g)-superconnection ∇∇/S on /S com-
patible with the Levi-Civita connection. Then the associated Dirac operator
is given by the following composition6.

/D(∇∇/S) : C∞(X; /S)
∇∇/S

−−→ Ω∗(X; /S)
c−→ C∞(X; /S).(3.62)

Here the second map is the Clifford multiplication. Then it is easily checked
that the self-adjointness of ∇∇/S implies that /D(∇∇/S) is formally self-adjoint.

Next we consider the Clifford algebra bundle (T ∗X,−g), where now the
Clifford multiplications of cotangent vectors are self-adjoint. Let /S be a
C(T ∗X,−g)-module bundle with an inner product, and assume we have
a skew-adjoint C(T ∗X,−g)-superconnection ∇∇/S on /S compatible with the
Levi-Civita connection. Then the associated Dirac operator /D(∇∇/S) is de-
fined by the same formula as (3.62). In this case, the skew-adjointness of ∇∇/S

implies that /D(∇∇/S) is formally skew-adjoint. We also note that the massive
Dirac operator in (1.8) can be written in terms of this construction.

Proposition 3.63. Assume that an A-module bundle /S is equipped with
an inner product and an A-superconnection ∇∇/S compatible with ∇A. Let
f(z) ∈ R[[z]].

1) If ∇∇/S is self-adjoint, we have

TrA(f(F (∇∇/S ;∇A))) ∈ Ω
4Z+type(A)+1
clo (X; Ori(A)).

2) If ∇∇/S is skew-adjoint, we have

TrA(f(F (∇∇/S ;∇A))) ∈ Ω
4Z−type(A)−1
clo (X; Ori(A)).

6The complex analogue of (3.62) generalizes the twisted Dirac operators defined
in [Kah11]. In that paper, the author considers the case where we have a Z2-
graded hermitian vector bundle E equipped with a Quillen’s superconnection ∇∇E ,
and Spinc-Dirac operators twisted by ∇∇E . In our language, such ∇∇E induces a
C(T ∗X, g)-superconnection on /S ⊗ E, where /S is the Spinor bundle on a Spinc-
manifold, and (3.62) recovers the one in [Kah11].
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The proof is by a direct computation, which we give in Subsection 7.3.

Definition 3.64 (Phself/skew(∇∇/S ;∇A), CSself/skew(∇∇/S,I ;∇A)). Let X, A,
∇A and /S be as above.

1) For a self-adjoint A-superconnection ∇∇/S on /S compatible with ∇A,
we define its Pontryagin character form by

Phself(∇∇/S ;∇A) := TrA(e
−F (∇∇/S ;∇A)) ∈ Ω

4Z+type(A)+1
clo (X; Ori(A)).(3.65)

For a self-adjoint pr∗XA-superconnection ∇∇/S,I on the pr∗XA-module
bundle pr∗X /S over I ×X compatible with pr∗X∇A, we define its Chern-
Simons form by

(3.66) CSself(∇∇/S,I ;∇A) :=∫

I
Phself

(
∇∇/S,I ; pr∗X∇A

)
∈ Ω4Z+type(A)(X; Ori(A)).

2) In the same settings, if ∇∇/S is skew-adjoint, we define its Pontryagin
character form by

Phskew(∇∇/S ;∇A) := TrA(e
F (∇∇/S ;∇A)) ∈ Ω

4Z−type(A)−1
clo (X; Ori(A)).(3.67)

If ∇∇/S,I is skew-adjoint, we define its Chern-Simons form by

(3.68) CSskew(∇∇/S,I ;∇A) :=∫

I
Phskew

(
∇∇/S,I ; pr∗X∇A

)
∈ Ω4Z−type(A)−2(X; Ori(A)).

By Proposition 3.56, setting ∇∇/S
i := ∇∇/S,I |{i}×X we have

Phself/skew(∇∇/S
1 ;∇A)− Phself/skew(∇∇/S

0 ;∇A) = dCSself/skew(∇∇/S,I ;∇A).

(3.69)

By Lemma 3.59, we get the following.
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Lemma 3.70. For any C ∈ Ω1(X;A0
skew), we have

Phself/skew(∇∇/S ;∇A) = Phself/skew(∇∇/S + C;∇A + {C,−}).

Moreover, if we have an A-superconnection ∇∇/S,I as in Definition 3.64, we
have

CSself/skew(∇∇/S,I ;∇A) = CSself/skew(∇∇/S,I + pr∗XC;∇A + {C,−}).

3.3.1. The relation with the superconnection formalism by Quillen
[Qui85]. Here we explain how to recover the Quillen’s superconnection
formalism [Qui85] as a special case of the formalisms developed in this sub-
section.

First of all, Quillen works in the C-linear setting. Thus, precisely speak-
ing we recover the R-linear version of Quillen’s superconnection formalism
(by the obvious restriction of the coefficients R ⊂ C) as a special case of
the formalisms in this subsection. As we will explain in Subsection 6.1, the
formalism in this subsection can be modified to the C-linear setting in a
straightforward way. Based on the modified formalism, we can generalize
the following discussion in a straightforward manner to recover the formal-
ism in [Qui85].

Recall that in [Qui85] the superconnections are considered for Z2-graded
vector bundles (which we call the even superconnection formalism) and un-
graded vector bundles (which we call the odd superconnection formalism).

For the former, the relation with our formulation is very simple. The
even superconnection formalism is our superconnection formalism in the
case where A is the trivial bundle with fiber Cl0,1. Indeed, a Z2-grading
is equivalent to a Cl0,1-module structure, and the trace Tru for a volume
element u ∈ Cl0,1 recovers the usual supertrace.

Now we explain the latter. The odd superconnection formalism can be
regarded as our superconnection formalism in the case where A is the trivial
bundle with fiber Cl1,1, as follows. In [Qui85, Section 5], we start with an

ungraded vector bundle /S, form a vector bundle /S
′
:= Cl0,1 ⊗ /S, regard /S

′
as

a right Cl0,1-module, and consider the bundle Endσ(/S
′
) of endomorphisms

on /S
′
commuting with the right Cl0,1-action, where σ ∈ Cl0,1 denotes a

generator. We have

Endσ(/S
′
) = {id⊗ a+ (σ·)⊗ b | a, b ∈ End(/S)}.
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Then the odd supertrace is defined as

trσ : Ω
∗(X; Endσ(/S

′
))→ Ω∗(X)(3.71)

id⊗ a+ (σ·)⊗ b 7→ Tr/S(b).

Now we turn to our formalism. Recall that in the generalized Clifford
superconnection formalism of this subsection, we required that A is a bundle
of nondegenerete algebras. Thus, for an ungraded vector bundle /S regarded
as an R = Cl0,0-module bundle, we cannot apply the formalism directly.
In such a case, we tensor a negligible module to produce a nondegenerate
algebra, use the isomorphism in Lemma 2.12 (3), and apply the supercon-
nection formalism to the latter. Actually, the above process of producing
trσ on Endσ(/S

′
) can be regarded as performing this procedure. Indeed, con-

sider the Z2-graded vector space V = V 0 ⊕ V 1 = R⊕ R and the associated
negligible module End(V ) ≃ Cl1,1. The grading operator γV on V is a vol-
ume element for End(V ). Then, given an ungraded vector bundle /S, as in
Lemma 2.12 (3) we consider the End(V )-module bundle V ⊗ /S. The bundle
V ⊗ /S corresponds to the above /S

′
= Cl0,1 ⊗ /S, and the action by γV ⊗ id/S

corresponds to (σ·)⊗ id/S
7. We have

End0End(V )(V ⊗ /S) = {idV ⊗ a | a ∈ End(/S)},(3.72)

End1End(V )(V ⊗ /S) = {γV ⊗ b | b ∈ End(/S)},(3.73)

and the TrγV
in Definition 3.1 is given by

TrγV
: Ω∗(X; End1End(V )(V ⊗ /S))→ Ω∗(X)(3.74)

idV ⊗ a+ γV ⊗ b 7→ Tr/S(b).

Thus we see that we recover the odd supertrace trσ in (3.71), as desired.

3.4. The Pontryagin character forms for gradations

Let X, A, ∇A and /S with an inner product be as in the last subsection. Note
that we are assuming that the fibers of A are nondegenerate. Let ∇/S be a
self-adjoint A-connection (i.e., one which increases the form degree by one)

7Be careful that in this correspondence the Z2-grading on V does not correspond
to the Z2-grading on Cl0,1. In our generalized Clifford superconnection formalism, as
an End(V )-module we just regard V ⊗ /S as an ungraded module, so this difference
is irrelevant.
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on /S compatible with ∇A. In this setting, given a smooth invertible section
h ∈ C∞(X; Self∗A(/S)), we are going to define its Pontryagin character form
Phself(h;∇A,∇/S) (Definition 3.80), generalizing Definition 3.15.

Consider the manifold (0,∞)t ×X, and the bundles pr∗XA and pr∗X /S
on it. We consider the following pr∗XA-superconnection on pr∗X /S compatible
with pr∗X∇A,

pr∗X∇/S + th,(3.75)

where t denotes the corrdinate on (0,∞). Then (3.75) is self-adjoint in the
sense of Definition 3.60, so we have

Phself(pr
∗
X∇/S + th; pr∗X∇A) ∈ Ω

4Z+type(A)+1
clo ((0,∞)×X; pr∗XOri(A)).

(3.76)

Lemma 3.77. In the above settings, the following integration converges
pointwise,

∫

(0,∞)
Phself(pr

∗
X∇/S + th; pr∗X∇A) ∈ Ω4Z+type(A)(X; Ori(A)).(3.78)

We have

d

∫

(0,∞)
Phself(pr

∗
X∇/S + th; pr∗X∇A) = −Phself(∇/S ;∇A).(3.79)

Proof. Working locally, we may trivialize A and /S. By Lemma 3.70 and the
fact that under the action (3.45) the superconnection (3.75) transforms as
pr∗X∇/S + th 7→ pr∗X(∇/S + C) + th, we may assume ∇A = d. In this case we

have (pr∗X∇/S + th)2 ∈ Ω∗((0,∞)×X; EndA(/S)), and Phself(pr
∗
X∇/S + th) =

TrA(e−(pr∗X∇/S+th)2). Fix any Riemannian metric on X. It is enough to show
that, for each x ∈ X, there exists c > 0 and t0 ∈ (0,∞) such that

∥e−(pr∗X∇/S+th)2∥ < e−t2c

on [t0,∞)× {x}. We have

(pr∗X∇/S + th)2 = h+ (∇/S)2 + t{∇/S , h}+ t2h2.

Since h(x) is self-adjoint and invertible, there exists a constant a > 0 such
that h(x)2 > a · Id. From this we get the convergence of (3.78). (3.79) follows
from (3.69) and the convergence limt→∞ Phself(∇/S + th;∇A) = 0 shown sim-
ilarly. □
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By Lemma 3.77, we get

−π−1/2R ◦
∫

(0,∞)
Phself(pr

∗
X∇/S + th; pr∗X∇A) ∈ Ω4Z+type(A)(X; Ori(A)).

Here R is the endomorphism on differential forms defined in (2.57).

Definition 3.80 (Phself(h;∇A,∇/S), CSself(hI ;∇A,∇/S)). LetX, A, /S,∇A

and ∇/S be as above.

1) For any smooth invertible section h ∈ C∞(X; Self∗A(/S)), we define

(3.81) Phself(h;∇A,∇/S) := −π−1/2R ◦
∫

(0,∞)
Phself(pr

∗
X∇/S + th; pr∗X∇A)

∈ Ω4Z+type(A)(X; Ori(A)).

The convergence of the integration follows from Lemma 3.77. Note
that the form above is not a closed one (see (3.79)).

2) For any smooth invertible section hI ∈ C∞(I ×X; pr∗XSelf∗A(/S)), we
define

(3.82) CSself(hI ;∇A,∇/S) :=

∫

I
Phself

(
hI ; pr

∗
X∇A, pr∗X∇/S

)

∈ Ω4Z+type(A)−1(X; Ori(A)).

Lemma 3.83. We have

(3.84) dCSself

(
hI ;∇A,∇/S

)

= Phself

(
hI |{1}×X ;∇A,∇/S

)
− Phself

(
hI |{0}×X ;∇A,∇/S

)
.

Proof. Based on (3.79), the difference of the left and the right hand side of
(3.84) is computed as

∫

I
dPhself

(
hI ; pr

∗
X∇A, pr∗X∇/S

)
= (const) · R ◦

∫

I
Phself(pr

∗
X∇/S ; pr∗X∇A)

= (const) · R ◦
∫

I
pr∗XPhself(∇/S ;∇A) = 0.

□



✐

✐

“1-Yamashita” — 2023/10/10 — 15:38 — page 435 — #55
✐

✐

✐

✐

✐

✐

Differential KO-theory via gradations and mass terms 435

Note that, in Definition 3.80 (1), if we have a submanifold Y ⊂ X and
two smooth sections h0, h1 ∈ C∞(X; Self∗A(/S)) such that h0|Y = h1|Y , we
have

(3.85) Phself(h1;∇A,∇/S)− Phself(h0;∇A,∇/S)

∈ Ω
4Z+type(A)
clo (X,Y ; Ori(A)).

The closedness follows from (3.79). Similarly, in Definition 3.80 (2), if hI |I×Y

is constant in the I-direction, we have CSself(hI ;∇A,∇/S)|Y = 0, so that we
have

CSself(hI ;∇A,∇/S) ∈ Ω4Z+type(A)−1(X,Y ; Ori(A)).(3.86)

Moreover, we can also easily show that the above Chern-Simons form modulo
exact forms only depends on the homotopy class of the homotopy hI , that
is, if we have two choices of homotopies hI and h′I which are homotopic in
the obvious sense, then we have

CSself(hI ;∇A,∇/S)− CSself(h
′
I ;∇A,∇/S) ∈ Im(d).(3.87)

Now we investigate into properties of Phself(h;∇A,∇/S). Our goal is The-
orem 3.96, which says that Phself(h;∇A,∇/S) realizes the twisted topological
Pontryagin character homomorphism in Subsection 2.6. It generalizes Corol-
lary 3.31.

First, by Lemma 3.70 we get the following.

Lemma 3.88. For any C ∈ Ω1(X;A0
skew), we have

Phself(h;∇A,∇/S) = Phself(h;∇A + C,∇/S + C),

CSself(hI ;∇A,∇/S) = CSself(hI ;∇A + C,∇/S + C).

Next, we show that the cohomology class of (3.85) does not depend on
the connections, as follows.

Lemma 3.89. Let X, A and /S be as above. Assume we have a submanifold
Y ⊂ X and two smooth sections h0, h1 ∈ C∞(X; Self∗A(/S)) such that h0|Y =
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h1|Y . Then the cohomology class of the difference element (3.85),

(3.90) Rham
(
Phself(h1;∇A,∇/S)− Phself(h0;∇A,∇/S)

)

∈ H4Z+type(A)(X,Y ; Ori(A)),

does not depend on the compatible pair (∇A,∇/S).

Proof. Any two compatible pairs (∇V
0 ,∇

/S
0 ) and (∇V

1 ,∇
/S
1 ) are connected by a

homotopy. As always, we can transgress the difference of the forms (3.85) cor-
responding to those connections, by integrating the form (3.85) constructed
by using the homotopy in the I-direction. □

Recall that twists in KO+ by negligible bundles are trivial (Fact 2.33).
Here we show the corresponding statement for the Pontryagin character
forms. Let E = E0 ⊕ E1 be a smooth Z2-graded vector bundle over X
equipped with a fiberwise positive definite inner product on each Ei, as-
sociating the negligible bundle End(E). Recall Lemma 2.12. Given any
other A, for an A-module bundle /S with an inner product we get an
End(E)⊗̂A-module bundle E ⊗ /S, and we have a canonical isomorphism
ψE : Self∗A(/S) ≃ Self∗

End(E)⊗̂A(E ⊗ /S).

Lemma 3.91. In the above setting, let ∇A be a connection on A and
∇/S be an A-connection on /S compatible with ∇A. Let ∇E be any or-
thogonal connection on E, and we denote by ∇End(E) the induced connec-
tion on End(E). Then ∇E ⊗ 1 + 1⊗∇/S is an End(E)⊗̂A-connection on
End(E)⊗ /S compatible with ∇End(E) ⊗ 1 + 1⊗∇A. Furthermore, for any
h ∈ C∞(X; Self∗A(/S)), we have

(3.92) Phself(h;∇A,∇/S)

= Phself(ψ
E(h);∇End(E) ⊗ 1 + 1⊗∇A,∇E ⊗ 1 + 1⊗∇/S).

Here we are using Ori(A) ≃ Ori(End(E)⊗̂A) given by u 7→ γE⊗̂u.

Proof. Locally we can trivialize E and write ∇E = d+ CE for some
End(E)0-valued one-form CE . Then we have ∇End(E) = d+ {CE ,−}, so the
result follows from Lemma 3.88 and Lemma 3.3. □

Now we turn to the relation with the twisted topological Pontryagin
character homomorphism in Subsection 2.6. For this, we use the explanation
of the twisted KO-theory in Subsection 2.5 in terms of Self∗A(−)-bundles.
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Recall that in the untwisted case, Pontryagin character forms can be
regarded as the pullbacks of the universal Pontryagin form (3.21). Here in
the twisted case, we also have the corresponding universal form. Let X, A
and /S be as before, and consider the fiber bundle π : Self∗A(/S)→ X. We
consider the pullback of A and /S on Self∗A(/S). Then we have the universal
gradation, which is given by the tautological section,

hA,/S
univ ∈ C∞(Self∗A(/S); Self

∗
π∗A(π

∗/S)).

Given a pair (∇A,∇/S) as before, we pull them back by π, and get the
universal Pontryagin form,

Phself

(
hA,/S
univ;π

∗∇A, π∗∇/S
)
∈ Ω4Z+type(A)(Self∗A(/S); Ori(A)),(3.93)

where we abuse the notation to write the pullback of Ori(A) by the same
symbol. Note that it is not closed (3.79). It is universal in the following sense.
Any section h ∈ C∞(X; Self∗A(/S)) is in particular a smooth map from X to

Self∗A(/S), and the gradation h is the pullback of the universal gradation hA,/S
univ

by this map. By the obvious naturality of the Pontryagin character forms,
we see that

Phself(h;∇A,∇/S) = h∗Phself
(
hA,/S
univ;π

∗∇A, π∗∇/S
)
.

Recall that, as explained in Subsection 2.5, twisted KO-theory groups are
given in terms of sections of bundles of based spaces. As explained around
(2.66), it corresponds to considering pairs (/S, h0) of an A-module bundle
and a section h0 ∈ C∞(X; Self∗A(/S)). For such a pair, we get a closed form,

(3.94) Phself

(
hA,/S
univ;π

∗∇A, π∗∇/S
)
− Phself

(
π∗h0;π

∗∇A, π∗∇/S
)

∈ Ω
4Z+type(A)
clo (Self∗A(/S), {h0}; Ori(A)).

The cohomology class of the form (3.94) is independent of (∇A,∇/S) by
Lemma 3.89, which we denote by

Phself(A, /S, h0) ∈ H4Z+type(A)(Self∗A(/S), {h0}; Ori(A)).(3.95)
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Theorem 3.96. Let X be connected. The class (3.95) is the pullback of the
universal topological Pontryagin character class

[Phtop] ∈ H4Z+type(A)((KOtype(A))ι, {β};EZ2 ×Z2
R)

in (2.74) under the map given as the composition

(Self∗A(/S), {h0}) →֒ (KOA, {β})→ ((KOtype(A))ι, {β}),

where the first inclusion map is (2.67) and the second map comes from the
composition of the classifying map X → BAut∗,Z2

(A) of A and the map
(w1, w2) : BAut∗,Z2

(A)→ BO⟨0, 1, 2⟩.

Proof. We use the notations in Subsection 2.6. By the naturality of the
Pontryagin character forms, the class (3.95) gives an element

{Phself(V, /S, h0)}(S,h0) ∈ lim←−
(/S,h0)

H4Z+type(A)
(
Self∗A(/S), {h0}; Ori(A)

)
(3.97)

≃ H4Z+type(A)(KOA, {β}; Ori(A)).

Here the inverse limit runs over the pairs (/S, h0) of A-module bundles with
inner product and sections h0 ∈ C∞(X; Self†A(/S)) with respect to their in-
clusions. The isomorphism in (3.97) is given by Lemma 2.68. Moreover, by
the same naturality, we see that the class (3.97) is natural in (X,A). Since
BAut∗,Z2

(A) can be realized as a direct limit of closed manifolds, we get the
element

{Ph(V, /S, h0)}(X,V,S,h0) ∈ H4Z+type(A)(KOEAut∗,Z2 (A), {β}; Ori(A)).(3.98)

Here we abuse the notation to denote by KOEAut∗,Z2 (A) the bundle over
BAut∗,Z2

(A) defined by applying (2.64) to P = EAut∗,Z2
(A). In turn, by

Lemma 3.91 this element is the pullback under (w1, w2) : KOEAut∗,Z2 (A) →
(KOtype(A))ι of an element on (KOtype(A))ι denoted temporarily as

[Ph′] ∈ H4Z+type(A)((KOtype(A)))ι, {β};EZ2 ×Z2
R).(3.99)

Moreover, the element (3.99) restricts to the universal class for the un-
twisted topological Pontryagin character

[Phtop] ∈ H4Z+type(A)(KOtype(A), {∗}; Ori(A))
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on each fiber. To see this, it is enough to show the corresponding statement
for any of KOA. When X = pt, the element (3.95) coincides with the un-
twisted universal Pontryagin form in (3.21). Using Theorem 3.29 and taking
the inverse limit, we get the desired claim.

By Lemma 2.75, this property establishes

[Ph′] = [Phtop],

which leads to the theorem. □

Recall that, for a CW-pair (X,Y ), given A over X, we have (2.73)

Phtop : KO
A
+(X,Y )→ H4Z+type(A)(X,Y ; Ori(A)).

Theorem 3.96 and the definition of the isomorphism (2.66) imply the follow-
ing.

Corollary 3.100. In the setting of Definition 3.80, let (X,Y ) be an object
of MfdPairf . Suppose we have two sections h0, h1 ∈ C∞(X; Self∗A(/S)) such
that h0|Y = h1|Y . Then we have

Phtop([/S, h0, h1]) = Rham
(
Phself(h1;∇A,∇/S)− Phself(h0;∇A,∇/S)

)
.

(3.101)

Here we note that the right hand side is well-defined by (3.85).

4. The definition of differential KO-theory K̂O+

In this section we define our model of differential KO groups. We deal with
the untwisted case in Subsection 4.1, and the twisted case in Subsection 4.2.
In this section we work over R.

4.1. The untwisted groups K̂O
A

+

In this subsection we give a model K̂O
A

+ for the untwisted differential KO-
theory groups, by refining Definition 2.21. In this subsection we use the
notations in Subsection 3.2.

Definition 4.1. Let A be a nondegenerate simple central graded ∗-algebra.
Let (X,Y ) be an object in MfdPairf .
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• A K̂O+-cocycle (S, h0, h1, η) on (X,Y ) consists of an A-module S with
an inner product, two smooth maps h0, h1 ∈ C∞(X, Self∗A(S)) such
that h0|Y = h1|Y , and an element

η ∈ Ω4Z+type(A)−1(X,Y ; Ori(A))/Im(d).

• Two K̂O+-cocycles (S, h0, h1, η) and (S′, h′0, h
′
1, η

′) are isomorphic if
there exists an isometric isomorphism of A-modules f : S ≃ S′ such
that f ◦ hi = h′i ◦ f for i = 0, 1, and we have η = η′.

Definition 4.2 (K̂O
A

+(X,Y )). Let A and (X,Y ) be as in Definition 4.1

• We introduce an abelian monoid structure on the set M̂A
+ (X,Y ) of

isomorphism classes of K̂O+-cocycles (S, h0, h1, η) on (X,Y ) by

[S, h0, h1, η] + [S′, h′0, h
′
1, η

′] = [S ⊕ S′, h0 ⊕ h′0, h1 ⊕ h′1, η + η′].

• We define ẐA
+(X,Y ) to be the submonoid of M̂A

+ (X,Y ) consisting of
elements of the form

[S, h0, h1,CSself(hI)],

where hI is a smooth homotopy between h0 and h1 which is constant
on Y , i.e., a smooth map hI ∈ C∞(I ×X, Self∗A(S)) with hI |{i}×X = hi
for i = 0, 1 and hI |{t}×Y = h0|Y for all t ∈ I.

• We define K̂O
A

+(X,Y ) := M̂A
+ (X,Y )/ẐA

+(X,Y ).

Lemma 4.3. K̂O
A

+(X,Y ) is an abelian group.

Proof. The additive inverse of an element [S, h0, h1, η] ∈ K̂O
A

+(X,Y ) is given
as follows. Consider the A-module bundle S ⊕ S, and note that h0 ⊕ h1
and h1 ⊕ h0 are homotopic relative to Y in C∞(X; Self∗A(S ⊕ S)). Take any
smooth homotopy hI between them, which is constant on Y . Then we have

the following equality in K̂O
A

+(X,Y ).

[S ⊕ S, h0 ⊕ h1, h1 ⊕ h0,CSself (hI)] = 0.

This means that we have

(4.4) −[S, h0, h1, η] = [S, h1, h0,−η +CSself (hI)] . □
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The abelian group K̂O
A

+(X,Y ) has the obvious naturality in (X,Y ), so

we regard K̂O
A

+ as a contravariant functor,

K̂O
A

+ : MfdPairopf → Ab.(4.5)

The remainder of this subsection is devoted to showing that K̂O
A

+ satisfies
the axioms of differential extension as developed by Bunke and Schick [BS09,

BS12]. First of all, we define the structure homomorphisms for K̂O
A

+ as
follows.

Definition 4.6 (Structure homomorphisms for K̂O
A

+). We define the
following structure homomorphisms, which are natural in (X,Y ).

R : K̂O
A

+(X,Y )→ Ω
4Z+type(A)
clo (X,Y ; Ori(A))

[S, h0, h1, η] 7→ Phself(h1)− Phself(h0) + dη.

I : K̂O
A

+(X,Y )→ KOA
+(X,Y )

[S, h0, h1, η] 7→ [S, h0, h1].

a : Ω4Z+type(A)−1(X,Y ; Ori(A))/Im(d)→ K̂O
A

+(X,Y )

η 7→ [0, 0, 0, η].

The well-definedness of R follows from (3.19).

Now we check that the functor K̂O
A

+ satisfies the axioms for the differ-
ential KOtype(A).

Theorem 4.7. In the notations of Definition 4.6, we have the following.

1) We have R ◦ a = d.

2) The following diagram commutes.

K̂O
A

+(X,Y )
R //

I

��

Ω
4Z+type(A)
clo (X,Y ; Ori(A))

Rham
��

KOA
+(X,Y )

Phtop
// H4Z+type(A)(X,Y ; Ori(A)).
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3) The following sequence is exact.

KOΣ0,1A
+ (X,Y )

Phtop
// Ω4Z+type(A)−1(X,Y ; Ori(A))/Im(d)
a

rr

K̂O
A

+(X,Y )
I

// KOA
+(X,Y ) // 0.

(4.8)

Proof. (1) is obvious. (2) follows from Corollary 3.31. We prove (3). The
exactness of (4.8) at KOA

+(X,Y ), i.e., the surjectivity of I, is obvious. We
then check the exactness at Ω4Z+type(A)−1(X,Y ; Ori(A))/Im(d). We have the
following commutative diagram.

KOA
+(I ×X, ∂I ×X ∪ I × Y )

Phtop
//

susp≃
��

H4Z+type(A)(I ×X, ∂I ×X ∪ I × Y ; Ori(A))

susp≃
��

KOΣ0,1A
+ (X,Y )

Phtop
// H4Z+type(A)−1(X,Y ; Ori(A))

(4.9)

We would like to apply (2) to the top row of the above diagram, but a
technical point is that the subset ∂I ×X ∪ I × Y is not a manifold. So we
choose smooth neighborhood U of ∂I ×X ∪ I × Y in I ×X which has a
deformation retraction to ∂I ×X ∪ I × Y . Then by (2) and the surjectivity
of I, we have the following commutative diagram.

K̂O
A

+(I ×X,U)
R //

I
��
��

Ω
4Z+type(A)
clo (I ×X,U ; Ori(A))

Rham
��

KOA
+(I ×X,U)

Phtop
//

≃
��

H4Z+type(A)(I ×X,U ; Ori(A))

≃
��

KOA
+(I ×X, ∂I ×X ∪ I × Y )

Phtop
// H4Z+type(A)(I ×X, ∂I ×X ∪ I × Y ; Ori(A))

(4.10)

Thus, noting that the suspension in the de Rham cohomology is given by
the integration

∫
I on closed forms, the desired exactness is equivalent to the

exactness of the following sequence.

(4.11) K̂O
A

+(I ×X,U)
Rham◦

∫
I
◦R−−−−−−−→

Ω4Z+type(A)−1(X,Y ; Ori(A))/Im(d)
a−→ K̂O

A

+(X,Y ).
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Now we prove that the composition a ◦ Rham ◦
∫
I ◦R in (4.11) is zero. By the

commutativity of the upper square of (4.10), the image under Rham ◦
∫
I ◦R

of any element in K̂O
A

+(I ×X,U) only depends on its image in KOA
+(I ×

X,U) under I. Moreover, by the excision, we know that the group KOA
+(I ×

X,U) is generated by triples of the form

(S, h0, h1),(4.12)

where h0, h1 are smooth and h0|I×Y = h1|I×Y is constant in the I-direction,
i.e., there exists a smooth map hY ∈ C∞(Y, Self∗A(S)) such that hi|{t}×Y =
hY for all t ∈ [0, 1], i = 0, 1. It is enough to prove that the element

[S, h0, h1, 0] ∈ K̂O
A

+(I ×X,U)

maps to zero under the composition (4.11). We have

∫

I
◦R[S, h0, h1, 0] =

∫

I
Phself(h1)−

∫

I
Phself(h0).

So we have

a ◦ Rham
∫

I
◦R[S, h0, h1, 0] =

[
0, 0, 0,

∫

I
Phself(h1)−

∫

I
Phself(h0)

]
.

To see that this element is zero, notice that, for each i = 0, 1 the following

K̂O
A

+-cocycle is an element in ẐA
+(X,Y ),

[S, hi|{0}×X , hi|{1}×X ,CSself(hi)] ∈ ẐA
+(X,Y ),

where hi ∈ C∞(I ×X, Self∗A(S)) is regarded as a homotopy from hi|{0}×X ∈
C∞(X, Self∗A(S)) to hi|{1}×X ∈ C∞(X, Self∗A(S)). For each i = 0, 1 we have

CSself(hi) =

∫

I
Phself(hi).

Also notice that for i = 0, 1 we have

h0|{i}×X = h1|{i}×X ,
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since ∂I ×X ⊂ U . Thus we get

[
0, 0, 0,

∫

I
Phself(h1)−

∫

I
Phself(h0)

]

= [S, h1|{0}×X , h1|{1}×X ,CSself(h1)]− [S, h0|{0}×X , h0|{1}×X ,CSself(h0)]

= 0,

as desired. This proves that the composition in (4.11) is zero.
To complete the proof of exactness of (4.11), take any element η ∈

Ω4Z+type(A)−1(X,Y ; Ori(A))/Im(d) such that a(η) = [0, 0, 0, η] = 0 in the

group K̂O
A

+(X,Y ). This means that there exists an element x ∈ ẐA
+(X,Y )

such that x+ a(η) is also an element in ẐA
+(X,Y ). This implies that, under

the description x = [S, h0, h1,CSself(hI)] where hI is a homotopy between
h0 and h1, there exists another homotopy h′I between h0 and h1 such that

CSself(h
′
I) = CSself(hI) + η mod (Im(d)).(4.13)

Notice that we have

hI |∂I×X∪I×Y = h′I |∂I×X∪I×Y .

We may replace each of hI and h′I by a homotopic one so that they satisfy

hI |U = h′I |U .

By (3.87), the equality (4.13) is preserved by this replacement. Now we have
the element

[S, h′I , hI , 0] ∈ K̂O
A

+(I ×X,U).(4.14)

We have

R[S, h′I , hI , 0] = Phself(h
′
I)− Phself(hI).(4.15)

By (4.13), (4.15) and the definition of CSself , we see that the element (4.14)
maps to η under the left arrow in (4.11). This completes the proof of the
exactness of (4.8) at Ω4Z+type(A)−1(X,Y ; Ori(A))/Im(d).

Finally we prove the exactness of (4.8) at K̂O
A

+(X,Y ). The equality

I ◦ a = 0 is obvious. Take any element [S, h0, h1, η] ∈ K̂O
A

+(X,Y ) such that
I[S, h0, h1, η] = [S, h0, h1] = 0 in KOA

+(X,Y ). It is enough to consider the
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case (S, h0, h1) ∈ ZA
+(X,Y ). Then there exists a homotopy hI between h0

and h1 which is constant on Y . Moreover, we can choose hI so that it is
smooth. Then we have

[S, h0, h1, η] = [S, h0, h1,CSself(hI)] + a(η − CSself(hI)) = a(η − CSself(hI)).

This completes the proof of the exactness of (4.8) at K̂O
A

+(X,Y ) and finishes
the proof of the theorem. □

Thus, together with Fact 2.24 we get the following.

Theorem 4.16. The quadruple
(
K̂O

A

+, R, I, a
)
is a differential extension

of the KO-theory KOA
+ ≃ KOtype(A) on MfdPairf .

Let V := V 0 ⊕ V 1 be a Z2-graded real vector space with a positive defi-
nite inner product on each V i. We denote the Z2-grading operator on V by
γV . Since the algebra End(V ) is negligible, Theorem 4.16 in particular means

that K̂O
A

+ and K̂O
End(V )⊗̂A

+ are both differential extensions of KOtype(A).

Actually, we have a canonical isomorphism K̂O
A

+ ≃ K̂O
End(V )⊗̂A

+ as follows.

Proposition 4.17. In the above settings, we have a natural isomorphism

K̂O
A

+ ≃ K̂O
End(V )⊗̂A

+(4.18)

which is compatible with the corresponding isomorphisms of other functors
appearing in Definition 4.6 via the structure homomorphisms (under the
isomorphism Ori(A) ≃ Ori(End(V )⊗̂A) given by u 7→ γV ⊗̂u).

Proof. The natural isomorphism (4.18) on an object (X,Y ) in MfdPairf is
given by the following refinement of the untwisted version of the map (2.35),

[S, h0, h1, η] 7→ [E ⊗ S, ψE(h0), ψ
E(h1), η].(4.19)

The well-definedness and the compatibility with the structure maps follow
from Lemma 3.91. By the exactness of (4.8) and the five lemma, we see that
(4.19) defines an isomorphism, as desired. □

In particular we get
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Corollary 4.20. The isomorphism class of the differential extension

(
K̂O

A

+, R, I, a
)

of KOtype(A) only depends on the type of A.

4.2. The twisted groups K̂O
A

+

In this subsection we give a model K̂O
A
+ for the twisted differential KO-

theory groups, by refining Definition 2.28. First we introduce the category
Twist

2
K̂O+

of twists on K̂O+.

Definition 4.21 (Twist
2
K̂O+

). 1) For each object X ∈ Mfdf , we define

Twist
K̂O+,X

to be the groupoid of smooth bundles of nondegenerate
simple central graded ∗-algebras A over X, where morphisms are is-
morphisms between such bundles.

2) For each morphism f : X → X ′ in Mfdf , we define a functor
f∗ : Twist

K̂O+,X′ → Twist
K̂O+,X

by the pullback.

3) We define the category Twist
2
K̂O+

such that an object (X,Y,A) con-

sists of (X,Y ) ∈ MfdPairf and A ∈ Twist
K̂O+,X

and a morphism from

(X,Y,A) to (X ′, Y ′,A′) consists of a morphism f : (X,Y )→ (X ′, Y ′)
in MfdPairf and an isomorphism A ≃ f∗A′.

We have the forgetful functor

Twist
2
K̂O+

→ Twist
2
KO+

.

Definition 4.22. Let (X,Y,A) ∈ Twist
2
K̂O+

.

• A K̂O+-cocycle (/S,∇A,∇/S , h0, h1, η) on (X,Y,A) consists of an A-
module bundle /S with an inner product, a connection ∇A on A, a
self-adjoint A-connnection ∇/S on /S compatible with ∇A, two smooth
sections h0, h1 ∈ C∞(X; Self∗A(/S)) such that h0|Y = h1|Y , and an ele-
ment η ∈ Ω4Z+type(A)−1(X,Y ; Ori(A))/Im(d).

• Two K̂O+-cocycle (/S,∇A,∇/S , h0, h1, η) and (/S
′
, (∇A)′,∇/S

′

, h′0, h
′
1, η

′)
are isomorphic if we have ∇A = (∇A)′ and η = η′, and there exists an
isometric isomorphism of smooth A-module bundles f : /S ≃ /S

′
such

that f∗∇/S
′

= ∇/S and f ◦ hi = h′i ◦ f for i = 0, 1.
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Definition 4.23 (K̂O
A
+(X,Y )). Let (X,Y,A) ∈ Twist

2
K̂O+

.

• We introduce an abelian monoid structure on the set M̂A
+ (X,Y ) of

isomorphism classes of K̂O+-cocycles (/S,∇A,∇/S , h0, h1, η) by

[/S,∇A,∇/S , h0, h1, η] + [/S
′
, (∇A)′,∇/S

′

, h′0, h
′
1, η

′]

= [/S ⊕ /S
′
,∇A ⊕ (∇A)′,∇/S ⊕∇/S

′

, h0 ⊕ h′0, h1 ⊕ h′1, η + η′].

• We define ẐA
+ (X,Y ) to be the submonoid of M̂A

+ (X,Y ) consisting of
elements of the form

[/S,∇A,∇/S , h0, h1,CSself(hI ;∇A,∇/S)],

where hI is a smooth homotopy between h0 and h1 which is con-
stant on Y , i.e., a smooth section hI ∈ C∞(I ×X; pr∗XSelf∗A(/S)) with
hI |{i}×X = hi for i = 0, 1 and hI |{t}×Y = h0|Y for all t ∈ I (see (3.86)).

• We define K̂O
A
+(X,Y ) := M̂A

+ (X,Y )/ẐA
+ (X,Y ).

Lemma 4.24. K̂O
A
+(X,Y ) is an abelian group.

Proof. The proof is similar to the untwisted case (Lemma 4.3). The additive

inverse of an element [/S,∇A,∇/S , h0, h1, η] ∈ K̂O
A
+(X,Y ) is given by

(4.25) − [/S,∇A,∇/S , h0, h1, η]

=
[
/S,∇A,∇/S , h1, h0,−η +CSself

(
hI ;∇A ⊕∇A,∇/S ⊕∇/S

)]
.

Here hI is a homotopy between h0 ⊕ h1 and h1 ⊕ h0 on /S ⊕ /S. □

Thus we get the functor

K̂O+ : Twist
2
K̂O+

→ Ab.(4.26)

The structure homomorphisms in the twisted case are given as follows.

Definition 4.27 (Structure homomorphisms for K̂O
A
+). We define

the following structure homomorphisms, which are natural in (X,Y,A) ∈
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Twist
2
K̂O+

.

R : K̂O
A
+(X,Y )→ Ω

4Z+type(A)
clo (X,Y ; Ori(A))

[/S,∇A,∇/S , h0, h1, η] 7→ Phself(h1;∇A,∇/S)− Phself(h0;∇A,∇/S) + dη.

I : K̂O
A
+(X,Y )→ KOA

+(X,Y )

[/S,∇A,∇/S , h0, h1, η] 7→ [/S, h0, h1].

a : Ω4Z+type(A)−1(X,Y ; Ori(A))/Im(d)→ K̂O
A
+(X,Y )

η 7→ [0, 0, 0, 0, 0, η].

The well-definedness of R follows from (3.84) and (3.85). The well-
definedness of a and I is obvious.

Recall that, by (3.45), Ω1(X;A0
skew) acts on the set of pairs (∇A,∇/S).

Lemma 4.28. For any KOA
+-cycle (/S,∇A,∇/S , h0, h1, η) and any element

C ∈ Ω1(X;A0
skew), we have the following equality in K̂O

A
+(X,Y ).

[/S,∇A,∇/S , h0, h1, η] = [/S,∇A + C,∇/S + C, h0, h1, η].

In particular, if we choose and fix a connection ∇A on A, then any element

in K̂O
A
+ is represented by a K̂O+-cocycle of the form (/S,∇A,∇/S , h0, h1, η).

Proof. By (4.25), it is enough to prove that the following K̂O+-cocycle is in
ẐA
+ (X,Y ).

[/S,∇A + C,∇/S + C, h0, h1, η]

+
[
/S,∇A,∇/S , h1, h0,−η +CSself

(
hI ;∇A ⊕∇A,∇/S ⊕∇/S

)]

=
[
/S ⊕ /S, (∇A + C)⊕∇A, (∇/S + C)⊕∇/S , h0 ⊕ h1, h1 ⊕ h0,

CSself

(
hI ;∇A ⊕∇A,∇/S ⊕∇/S

)]
.

Here hI is any homotopy between h0 ⊕ h1 and h1 ⊕ h0 on /S ⊕ /S. Indeed,
this claim follows from

CSself

(
hI ;∇A ⊕∇A,∇/S ⊕∇/S

)

= CSself

(
hI ; (∇A + C)⊕∇A, (∇/S + C)⊕∇/S

)
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as a result of Lemma 3.88. □

Theorem 4.29. Let (X,Y,A) ∈ Twist
2
K̂O+

.

1) We have R ◦ a = d.

2) The following diagram commutes.

K̂O
A
+(X,Y )

R //

I

��

Ω
4Z+type(A)
clo (X,Y ; Ori(A))

Rham
��

KOA
+(X,Y )

Phtop
// H4Z+type(A)(X,Y ; Ori(A))

.

3) The following sequence is exact.

KOΣ0,1A
+ (X,Y )

Phtop
// Ω4Z+type(A)−1(X,Y ; Ori(A))/Im(d)

a

rr

K̂O
A
+(X,Y )

I
// KOA

+(X,Y ) // 0.

(4.30)

Proof. (1) is obvious. (2) follows from Theorem 3.96. The proof of (3) is
analogous to the untwisted case in Theorem 4.7 (3), so we leave the details
to the reader. □

We use the axiom of differential extensions of twisted generalized coho-
mology theories given in [BS12]. By Theorem 4.29, we get the following.

Theorem 4.31. The quadruple
(
K̂O+, R, I, a

)
is a differential extension

of the twisted KO-theory KO+ on Twist
2
K̂O+

.

Now we investigate into the dependence of K̂O
A
+ on the bundle A. Recall

that the twist of topological KO-theory is classified by (type(A), w(A)) ∈
GBrO(X) = Z8 ×HO(X) (Corollary 2.36). Actually the same classification
holds for our differential refinement. We start with the following Proposition
corresponding to Fact 2.33.

Proposition 4.32. Let (X,Y ) be an object of MfdPairf . Let E = E0 ⊕ E1

be a Z2-graded vector bundle over X with fiberwise positive definite inner
product on each Ei. For any smooth bundle of nondegenerate simple central
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graded ∗-algebras A, we have a canonical isomorphism

K̂O
A
+(X,Y ) ≃ K̂OEnd(E)⊗̂A

+ (X,Y )(4.33)

which is compatible with the corresponding isomorphisms of other functors
appearing in Definition 4.27 via the structure homomorphisms (under the
isomorphism Ori(A) ≃ Ori(End(E)⊗̂A) given by u 7→ γE⊗̂u).

Proof. Fix an orthogonal connection ∇E on E, and denote by ∇End(E) the
induced connection on End(E). The isomorphism (4.33) is given by the
following refinement of the map (2.35),

(4.34) [/S,∇A,∇/S , h0, h1, η]

7→ [E ⊗ /S,∇End(E) ⊗ 1 + 1⊗∇A,∇E ⊗ 1 + 1⊗∇/S , ψE(h0), ψ
E(h1), η].

The well-definedness and the compatibility with the structure maps follow
from Lemma 3.91. By the exactness of (4.30) and the five lemma, we see
that (4.34) defines an isomorphism. Actually, the right hand side of (4.34)
is independent of the choice of ∇E by Lemma 4.28. Thus we see that (4.28)
defines a canonical isomorphism (4.33) independent of any additional choice,
as desired. □

Thus we get the following differential version of Corollary 2.36.

Corollary 4.35. Given an object (X,Y,A) ∈ Twist
2
K̂O+

, the isomorphism

class of the twisted differential KO-theory group K̂O
A
+(X,Y ) only depends

on the class of A in GBrO(X).

5. The model in terms of skew-adjoint operators

In this section, we introduce another model of (twisted) differential KO-

theory, K̂O
A

− (K̂O
A
−), in terms of skew-adjoint operators. In this section we

work over R, unless otherwise stated (e.g., in Remarks 5.7 and 5.19).

5.1. Algebraic preparations

This subsection is devoted to algebraic preparations.

Definition 5.1 (Σ̃0,1A). Let A be a simple central graded ∗-algebra. We
define Σ̃0,1A to be Σ0,1A = A⊗̂Cl0,1 as a ∗-algebra, and introduce a Z2

grading on Σ̃0,1A by 1⊗ γ, where γ is the Z2-grading operator on Cl0,1.
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Thus we have

(Σ̃0,1A)0 = {a⊗̂1 | a ∈ A},
(Σ̃0,1A)1 = {a⊗̂β | a ∈ A}.

Example 5.2. In the case whereA = Clp,q for nonnegative integers p and q,

we have Σ0,1A = Clp,q+1 and Σ̃0,1A ≃ Clq,p+1. An isomorphism of ∗-algebras
Σ0,1A ≃ Σ̃0,1A does not preserve the Z2-grading:

Clp,q+1 ≃ Clq,p+1

β0 7→ β′0
αi 7→ β′0β

′
i (1 ≤ i ≤ p)

βj 7→ β′0α
′
j (1 ≤ j ≤ q)

where we denoted by α∗ (α′
∗) and β∗ (β′∗) the negative and positive Clifford

generators of Clp,q+1 (Clq,p+1), respectively.

Lemma 5.3. For any simple central graded ∗-algebra A, the Z2-graded ∗-
algebra Σ̃0,1A is a simple central graded ∗-algebra with

type(Σ̃0,1A) = −type(A)− 1.

If u ∈ A is a volume element of A, the element u⊗ βtype(A)+1 ∈ Σ̃0,1A is a
volume element of Σ̃0,1A.

Proof. The proof can be given by a case-by-case check of Table 1, and we
leave the details to the reader. One possible simplification is to use the Z2-
grading-preserving isomorphism Σ̃0,1Σ0,1A ≃ Σ1,0Σ̃0,1A to reduce the prob-
lem to the case type(A) = 0. □

The following lemma can also be proved easily.

Lemma 5.4. Let A be a simple central graded ∗-algebra and S be a Σ0,1A-
module with an inner product. We also regard S as a Σ̃0,1A-module. Then
we have a bijection

ψβ : EndΣ0,1A(S) ≃ EndΣ̃0,1A(S)(5.5)

f 7→ β|f |Σ0,1Af

which preserves the Z2 grading. Here |f |Σ0,1A ∈ Z2 in the right hand side of
(5.5) is the Z2-grading of f as an element in EndΣ0,1A(S). Moreover, the
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bijection restricts to the following bijections relating Self with Skew,

SelfΣ0,1A(S) ≃ SkewΣ̃0,1A(S), Self∗Σ0,1A(S) ≃ Skew∗
Σ̃0,1A

(S),

SkewΣ0,1A(S) ≃ SelfΣ̃0,1A(S), Skew∗
Σ0,1A(S) ≃ Self∗

Σ̃0,1A
(S).

Applying Lemma 5.4 fiberwise, we also get the bijection in the bundle
case,

ψβ : EndΣ0,1A(/S) ≃ EndΣ̃0,1A(/S).(5.6)

Remark 5.7. In the C-linear setting, we simply have the bijection

End1A(S) ≃ End1A(S), f 7→
√
−1f,(5.8)

which transforms Skew to Self. We use this bijection when we relate K+

with K− in Section 6.

5.2. The topological model KO−

In this subsection we define another model of the (twisted) KO-theory in
terms of skew-adjoint operators. The functor KOA

− is shown to be a model
of KO−type(A)−2.

We start with the untwisted groups. The definition of KO− is given by
simply replacing Self with Skew in Definitions 2.20 and 2.21 of untwisted
KO+, as follows.

Definition 5.9. Let (X,Y ) be a finite CW-pair and A be a simple central
graded ∗-algebra.

• A triple (S,m0,m1) on (X,Y ) consists of an A-module S with an inner
product and two continuous maps m0,m1 ∈ Map(X, Skew∗

A(S)) with
m0|Y = m1|Y . Such mi’s are called mass terms on S (c.f. Subsubsec-
tion 1.1.1).

• Triples (S,m0,m1) and (S′,m′
0,m

′
1) on (X,Y ) are isomorphic if there

exists an isometric isomorphism of A-modules f : S ≃ S′ such that
f ◦mi = m′

i ◦ f for i = 0, 1.

Definition 5.10 (KOA
−(X,Y )). Let (X,Y ) and A be as above.

• On the setMp,q
− (X,Y ) of isomorphism classes of triples (S,m0,m1) on

(X,Y ), we introduce an abelian monoid structure by the direct sum.
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• We define ZA
−(X,Y ) to be the submonoid of MA

− (X,Y ) consisting of
isomorphism classes of triples (S,m0,m1) on (X,Y ) such that there
exists a homotopy between m0 and m1 which is constant on Y , i.e.,
a map mI ∈ Map(I ×X, Skew∗

A(S)) with mI |{i}×X = mi for i = 0, 1
and mI |{t}×Y = m0|Y for all t ∈ I.
• We define KOA

−(X,Y ) =MA
− (X,Y )/ZA

−(X,Y ) to be the quotient
monoid.

Next we define twisted groups. The category of twists Twist
2
KO−

inKO−
is just the same as that for KO+ in Definition 2.26,

Twist
2
KO−

:= Twist
2
KO+

.(5.11)

The definition of KO− is given by modifiying Definition 2.28 for twisted
KO+ in the same way, so we go briefly.

Definition 5.12 (KOA
−(X,Y )). Let (X,Y,A) ∈ Twist

2
KO−

. By replacing

Self to Skew in Definition 2.28, we define the abelian group KOA
−(X,Y ).

Thus elements in KOA
−(X,Y ) is of the form [/S,m0,m1] with m0,m1 ∈

Γ(X, Skew∗
A(S)) such that m0|Y = m1|Y . We have [/S,m0,m1] = 0 if m0 and

m1 are homotopic relative to Y .
The result corresponding to Fact 2.33 also holds for KO−. For E =

E0 ⊕ E1 and any A as in the setting there, we have a canonical isomorphism
using Lemma 2.12,

KOA
−(X,Y ) ≃ KOEnd(E)⊗̂A

− (X,Y ).(5.13)

We can relate KO− with KO+ using the results in Subsection 5.1.

Proposition 5.14. Let (X,Y,A) ∈ Twist
2
KO−

. We have an isomorphism

KOΣ0,1A
− (X,Y ) ≃ KOΣ̃0,1A

+ (X,Y ),(5.15)

which is natural in (X,Y ) and A.

Proof. The map (5.15) is given by

[/S,m0,m1] 7→ [/S, ψβ(m0), ψβ(m1)],
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where ψβ : Skew
∗
Σ0,1A(/S) ≃ Self∗

Σ̃0,1A(
/S) is the isomorphism in (5.6). The

well-definedness and the fact that this map gives a natural isomorphism
are obvious. □

Since we have Σ0,1Σ1,0A = A⊗̂Cl1,1 and Cl1,1 is negligible, by Proposi-
tion 5.14 and (5.13), we have a natural isomorphism

KOA
−(X,Y ) ≃ KOΣ̃0,1Σ1,0A

+ (X,Y ).(5.16)

Thus we see that the two models KO+ and KO− are equivalent under ex-
plicit algebraic operations. In particular, in the case of untwisted groups, also
using Lemma 5.3 we have the following result corresponding to Fact 2.24.

Proposition 5.17. Let A be a simple central graded ∗-algebra. We have a
natural isomorphism on the category of finite CW-pairs,

KOA
− ≃ KO−type(A)−2.(5.18)

Remark 5.19. In the C-linear setting, just replacing the coefficients R by
C in Definitions 5.10 and 5.12 as we did in Remark 2.37, we define groups
KA

−(X,Y ) and KA
− (X,Y ). In this case, we have an isomorphism

KA
− ≃ KA

+(5.20)

by [/S,m0,m1] 7→ [/S,
√
−1m0,

√
−1m1] (see Remark 5.7). By (2.38) and

(5.20), we have a natural isomorphism on the category of finite CW-pairs,

KA
− ≃ Ktype(A).(5.21)

5.3. The Pontryagin character forms for mass terms

Recall that the definition of the differential model K̂O
A

+ used the Pontryagin
character forms Phself(h) for invertible elements h ∈ C∞(X, Self∗A(S)). In
this subsection, we define their skew-adjoint variants.

5.3.1. The case of trivial bundles. Here we explain the skew-adjoint
version of Subsubsection 3.2.2. LetX be a manifold and A be nondegenerate.
We define the Pontryagin character form Phskew(m) for an invertible element
(a mass term) m ∈ C∞(X, Skew∗

A(S)).
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For such m, consider the section tm ∈ C∞((0,∞)×X, Skew∗
A(S)),

where t is the coordinate in (0,∞). We have

(5.22) Phskew(d(0,∞)×X + tm; d) = dt ∧ TrA

(
metdXm+t2m2

)

∈ Ω
4Z−type(A)−1
clo (X; Ori(A)).

Here the first term is defined in (3.67), in which d is the trivial connection
on A. Since m2 is strictly negative, the convergence result analogous to
Lemma 3.13 holds and allows us to define the following.

Definition 5.23 (Phskew(m)). For m ∈ C∞(X, Skew∗
A(S)), its Pontryagin

character form

Phskew(m) ∈ Ω
4Z−type(A)−2
clo (X; Ori(A))

is defined by

Phskew(m) := −π−1/2R ◦
∫

(0,∞)
Phskew(d(0,∞)×X + tm)(5.24)

= −π−1/2R ◦
∫

(0,∞)
dt ∧ TrA

(
metdXm+t2m2

)
.

We also define

Definition 5.25 (CSskew(mI)). For mI ∈ C∞(I ×X, Skew∗
A(S)), we de-

fine its Chern-Simons form by

CSskew(mI) :=

∫

I
Phskew (mI) ∈ Ω4Z−type(A)−3(X; Ori(A)).(5.26)

5.3.2. The general case. Now we explain the skew-adjoint version of
Subsection 3.4. Let X, A, ∇A and /S with an inner product be as in that
subsection, where we always assume that the fibers of A are nondegenerate.
Let ∇/S be a skew-adjoint A-connection on /S compatible with ∇A. In this
setting, given a smooth invertible section m ∈ C∞(X; Skew∗

A(/S)), we are
going to define its Pontryagin character form Phskew(m;∇A,∇/S).

On the manifold (0,∞)×X, We consider the skew-adjoint pr∗XA-
superconnection pr∗X∇/S + tm on pr∗X /S compatible with pr∗X∇A. We have

Phskew(pr
∗
X∇/S + tm; pr∗X∇A) ∈ Ω

4Z−type(A)−1
clo ((0,∞)×X; pr∗XOri(A)).

Using the convergence result analogous to Lemma 3.77, we define the fol-
lowing.
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Definition 5.27 (Ph(m;∇A,∇/S), CS(mI ;∇A,∇/S)). Let X, A, ∇A and
/S be as above.

1) For any smooth invertible section m ∈ C∞(X; Skew∗
A(/S)), we define

(5.28) Phskew(m;∇A,∇/S)

:= −π−1/2R ◦
∫

(0,∞)
Phskew(pr

∗
X∇/S + tm; pr∗X∇A)

∈ Ω4Z−type(A)−2(X; Ori(A))

2) For any smooth invertible section mI ∈ C∞(I ×X; pr∗XSkew∗
A(/S)), we

define

(5.29) CSskew(mI ;∇A,∇/S) :=

∫

I
Phskew

(
mI ; pr

∗
X∇A, pr∗X∇/S

)

∈ Ω4Z−type(A)−3(X; Ori(A)).
5.3.3. The relation between Phskew and Phself . In Subsection 5.1,
we saw that we have an isomorphism ψβ : Skew

∗
Σ0,1A(/S) ≃ Self∗

Σ̃0,1A(
/S). In

this subsection, we show that the Pontryagin character forms Phskew and
Phself are also related under this isomorphism.

Let (A,∇A) be a bundle of simple central graded ∗-algebras equipped
with a connection. The induced connection on Σ0,1A and Σ̃0,1A are denoted
by Σ0,1∇A and Σ̃0,1∇A, respectively. Assume that a Σ0,1A-module bundle /S
is equipped with an inner product and let ∇∇/S be a Σ0,1A-superconnection
compatible with Σ0,1∇A. Then decompose ∇∇/S as in (3.40),

∇∇/S = ∇+
∑

j

ωj⊗̂ξj ,

where∇ is an A-connection, ωj ∈ Ωj(X) and ξj ∈ C∞(X; EndΣ0,1A(/S)) with
|ωj |+ |ξj | = 1 ∈ Z2. Then consider the following operator on Ω∗(X; /S)

ψβ(∇∇/S) := ∇+
∑

j

(−1)ν(j)ωj⊗̂ψβ(ξj),(5.30)

where

ν(j) :=

{
0 j ≡ 0, 1 (mod 4)

1 j ≡ 2, 3 (mod 4).
(5.31)

The expression (5.30) does not depend on the decomposition (3.40).
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Lemma 5.32. The operator ψβ(∇∇/S) in (5.30) is a Σ̃0,1A-superconnection
on /S compatible with Σ̃0,1∇A. Moreover, if ∇∇/S is a skew-adjoint supercon-
nection, then ψβ(∇∇/S) is a self-adjoint superconnection.

Proof. The first statement follows from the fact that ψβ preserves the Z2-
grading. The second statement follows from a degree-wise check by using the
definition of self/skew-adjointness of superconnections (Definition 3.60). □

Proposition 5.33. In the above setting, assume that ∇∇/S is skew-adjoint.
For any element f ∈ R[[z]], we have

TrΣ0,1A(f(F (∇∇/S ; Σ0,1∇A))) = TrΣ̃0,1A(f(−F (ψβ(∇∇/S); Σ̃0,1∇A)))(5.34)

∈ Ω
4Z−type(A)
clo (X; Ori(A)),

under the following identifications of orientation bundles,

Ori(A) ≃ Ori(Σ0,1A), u 7→ u⊗̂β,
Ori(A) ≃ Ori(Σ̃0,1A), u 7→ (−1)ν(type(A))u⊗̂βtype(A)+1,

where ν is given by (5.31).

Proof. The both sides of (5.34) are closed forms of degree −type(A) (mod 4)
by Proposition 3.63 and Lemma 5.3.

In this proof, we denote

F := F (∇∇/S ; Σ0,1∇A), F̃ := F (ψβ(∇∇/S); Σ̃0,1∇A).

Also, for elements Ξ ∈ Ω∗(X; End(/S)), we denote by Ξ =
∑

j∈Z4
Ξj the

decomposition with respect to the form-degree modulo 4, in which Ξj ∈
Ω4Z+j(U ; End(/S)).

It is enough to prove in the case that f(z) = zn for each n. We may
work locally, and use the local expression as in (3.43). As explained there,
we may write ∇A = d+ C for some C ∈ Ω1(U ;A0

skew), and ∇∇/S = d+ C +B
for some B ∈ Ω∗(U ; EndΣ0,1A(/S))1. Then we have

ψβ(∇∇/S) = d+ C + β ·B0 +B1 − β ·B2 −B3.

Here we denote β · (ω⊗̂ξ) := ω⊗̂(βξ) for ω⊗̂ξ ∈ Ω∗(U ; EndΣ0,1A(/S)). Let us
denote B̃ := β ·B0 +B1 − β ·B2 −B3. Then we have (3.48)

F = dB +B2, F̃ = dB̃ + B̃2.
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Using β ·Bj · = (−1)|j|+1Bj · β· as operators on Ω∗(U ; EndΣ0,1A(/S)), we can
easily check that

F̃0 = −F0, F̃1 = β · F1, F̃2 = F2, F̃3 = −β · F3.

It holds that β · Fj · = (−1)|j|Fj · β· since F ∈ Ω∗(U ; EndΣ0,1A(/S))0. Using
this formula, we can check that

((−F̃ )n)0 = (Fn)0, ((−F̃ )n)1 = −β · (Fn)1,

((−F̃ )n)2 = −(Fn)2, ((−F̃ )n)3 = β · (Fn)3,

by an induction on n. As we have checked at the beginning of the proof, the
both sides of (5.34) are forms of degree −type(A) (mod 4). Using this fact,
we see that

Tru⊗̂β(F
n) = Tru⊗̂β((F

n)−type(A))

= Tr(−1)ν(type(A))u⊗̂βtype(A)+1(((−F̃ )n)−type(A))

= Tr(−1)ν(type(A))u⊗̂βtype(A)+1((−F̃ )n),

as desired. □

By Proposition 5.33, we get the following.

Corollary 5.35. Let X and (A,∇A) be as above and /S be a Σ0,1A-module
bundle with inner product. Then for any skew-adjoint Σ0,1A-superconnection
∇∇/S compatible with Σ0,1∇A, we have

Phskew(∇∇/S ; Σ0,1∇A) = Phself(ψβ(∇∇/S); Σ̃0,1∇A).(5.36)

On the manifold I ×X, for any skew-adjoint pr∗X(Σ0,1A)-superconnection
∇∇/S,I compatible with pr∗X(Σ0,1∇A), we have

CSskew(∇∇/S,I ; Σ0,1∇A) = CSself(ψβ(∇∇/S,I); Σ̃0,1∇A).(5.37)

Here the orientation bundles are identified as in Proposition 5.33.

Using this corollary, we also get the correspondence of the Pontryagin
character forms for mass terms and gradations.
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Corollary 5.38. Let X and (A,∇A) be as above and /S be a Σ0,1A-module
bundle with inner product, equipped with a skew-adjoint Σ0,1A-connection
∇/S. Then for any element m ∈ C∞(X; Skew∗

Σ0,1A(/S)), we have

Phskew(m; Σ0,1∇A,∇/S) = Phself(ψβ(m); Σ̃0,1∇A,∇/S),(5.39)

in which the identity ψβ(∇/S) = ∇/S is used. For any element mI ∈ C∞(I ×
X; pr∗XSkew∗

Σ0,1A(/S)), we also have

CSskew(mI ; Σ
0,1∇A,∇/S) = CSself(ψβ(mI); Σ̃

0,1∇A,∇/S).(5.40)

Here the orientation bundles are identified as in Proposition 5.33.

5.4. The differential model

5.4.1. The untwisted groups K̂O
A

−
(X,Y ). Now we define the un-

twisted differential KO-theory K̂O−. As in the case for topological KO−,
the definition is given by just replacing Self to Skew and changing the form
degree from (4Z+ type(A)− 1) to (4Z− type(A)− 3) in Definitions 4.1

and 4.2 of K̂O+, as follows.

Definition 5.41. Let A be a nondegenerate simple central graded ∗-
algebra. Let (X,Y ) be an object in MfdPairf .

• A K̂O−-cocycle (S,m0,m1, η) on (X,Y ) consists of an A-module S
with an inner product, two smooth maps m0,m1 ∈ C∞(X, Skew∗

A(S))
such that m0|Y = m1|Y , and an element

η ∈ Ω4Z−type(A)−3(X,Y ; Ori(A))/Im(d).

• Two K̂O−-cocycles (S,m0,m1, η) and (S′,m′
0,m

′
1, η

′) are isomorphic
if there exists an isometric isomorphism of A-modules f : S ≃ S′ such
that f ◦mi = m′

i ◦ f for i = 0, 1, and we have η = η′.

Definition 5.42 (K̂O
A

−(X,Y )). Let A and (X,Y ) be as in Definition 5.41

• We introduce an abelian monoid structure on the set M̂A
− (X,Y ) of

isomorphism classes of K̂O−-cocycles (S,m0,m1, η) on (X,Y ) by

[S,m0,m1, η] + [S′,m′
0,m

′
1, η

′] = [S ⊕ S′,m0 ⊕m′
0,m1 ⊕m′

1, η + η′].
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• We define ẐA
−(X,Y ) to be the submonoid of M̂A

− (X,Y ) consisting of
elements of the form

[S,m0,m1,CSskew(mI)],

wheremI is a smooth homotopy betweenm0 andm1 which is constant
on Y , i.e., a smooth mapmI ∈ C∞(I ×X, Skew∗

A(S)) withmI |{i}×X =
mi for i = 0, 1 and mI |{t}×Y = m0|Y for all t ∈ I.

• We define K̂O
A

−(X,Y ) := M̂A
− (X,Y )/ẐA

−(X,Y ).

In a way similar to the proof of Lemma 4.3, we can show that K̂O
A

−(X,Y )

is an abelian group, and thus K̂O
A
defines a functor MfdPairopf → Ab.

Definition 5.43 (Structure homomorphisms for K̂O
A

−). We define
the following structure homomorphisms, which are natural in (X,Y ).

R : K̂O
A

−(X,Y )→ Ω
4Z−type(A)−2
clo (X,Y ; Ori(A))

[S,m0,m1, η] 7→ Phskew(m1)− Phskew(m0) + dη.

I : K̂O
A

−(X,Y )→ KOA
−(X,Y )

[S,m0,m1, η] 7→ [S,m0,m1].

a : Ω4Z−type(A)−3(X,Y ; Ori(A))/Im(d)→ K̂O
A

−(X,Y )

η 7→ [0, 0, 0, η].

We have the natural isomorphism corresponding to Proposition 4.17,

K̂O
A

− ≃ K̂O
End(V )⊗̂A

− ,(5.44)

by sending [S,m0,m1, η] to [E ⊗ S, ψE(m0), ψ
E(m1), η].

Moreover, we have the following refinement of the untwisted version of
Proposition 5.14.

Proposition 5.45. We have a natural isomorphism

K̂O
Σ0,1A

− ≃ K̂OΣ̃0,1A

+(5.46)

which is compatible with the corresponding isomorphisms of other functors
appearing in Definitions 5.43 and 4.6 via the structure homomorphisms.
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Here we use Proposition 5.14 and the identification Ori(Σ0,1A) ≃ Ori(Σ̃0,1A)
in Proposition 5.33.

Proof. The transformation (5.46) on an object (X,Y ) in MfdPairf is given
by

[S,m0,m1, η] 7→ [S, ψβ(m0), ψβ(m1), η],

where ψβ : Skew
∗
Σ0,1A(S) ≃ Self∗

Σ̃0,1A
(S) is the isomorphism in (5.6). The

well-definedness follows from Corollary 5.38. Since ψβ is an isomorphism,
we easily see that this map gives a natural isomorphism. □

Since we have Σ0,1Σ1,0A = A⊗̂Cl1,1 and Cl1,1 is negligible, by Proposi-
tion 5.14 and (5.13), we have a natural isomorphism

K̂O
A

− ≃ K̂O
Σ̃0,1Σ1,0A

+ ,(5.47)

which is compatible with the structure homomorphisms. Recall that by The-

orem 4.16 we know that (K̂O
Σ̃0,1Σ1,0A

+ , R, I, a) is a differential extension of

KOΣ̃0,1Σ1,0A
+ ≃ KO−type(A)−2. Thus we get the following.

Theorem 5.48. The quadruple
(
K̂O

A

−, R, I, a
)
is a differential extension

of the KO-theory KOA
− ≃ KO−type(A)−2 on MfdPairf .

The natural isomorphism (5.47), being an explicit algebraic manipu-

lation, allows us to translate results on K̂O+ into corresponding ones on
K̂O−.

5.4.2. The twisted groups K̂O
A

−
(X,Y ). Now we define the twisted

groups K̂O
A
−(X,Y ). Again the category Twist

2
K̂O−

of twists for K̂O− is just

the same as that for K̂O+,

Twist
2
K̂O−

:= Twist
2
K̂O+

.(5.49)

The definition of the twisted K̂O− is also a simple modification of Defini-
tion 4.23, so we go briefly.

Definition 5.50 (K̂O
A
−(X,Y )). Let (X,Y,A) ∈ Twist

2
K̂O−

. Replacing Self

by Skew and changing the form degree from (4Z+ type(A)− 1) to (4Z−
type(A)− 3) in Definition 4.23, we define the abelian group K̂O

A
−(X,Y ).
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An element of K̂O
A
−(X,Y ) is of the form [/S,∇A,∇/S ,m0,m1, η], where

mi ∈ C∞(X; Skew∗
A(/S)) are such that m0|Y = m1|Y , and

η ∈ Ω4Z−type(A)−3(X,Y ; Ori(A))/Im(d).

We have [/S,∇A,∇/S ,m0,m1,CSskew(mI ;∇A,∇/S)] = 0 for a homotopy mI

from m0 to m1 relative to Y . We clearly have the functor

K̂O− : Twist
2
K̂O−

→ Ab.

Definition 5.51 (Structure homomorphisms for K̂O
A
−). We define

the structure homomorphisms

R : K̂O
A
−(X,Y )→ Ω

4Z−type(A)−2
clo (X,Y ; Ori(A)),

I : K̂O
A
−(X,Y )→ KOA

−(X,Y ),

a : Ω4Z−type(A)−3(X,Y ; Ori(A))/Im(d)→ K̂O
A
−(X,Y )

applying the same modification as in Definition 5.50 to Definition 4.27.

As a counterprt of Proposition 4.32, we have an isomorphism

K̂O
A
−(X,Y ) ≃ K̂OEnd(E)⊗̂A

− (X,Y ),(5.52)

which are compatible with the structure homomorphisms. Moreover, as in
the untwisted case (Proposition 5.45), we get the refinement of Proposi-
tion 5.14 as follows.

Proposition 5.53. We have an isomorphism

K̂O
Σ0,1A
− (X,Y ) ≃ K̂OΣ̃0,1A

+ (X,Y )(5.54)

which is compatible with the corresponding isomorphisms of other functors
appearing in Definitions 5.51 and 4.27 via the structure homomorphisms.
Here we use Proposition 5.14 and the identification Ori(Σ0,1A) ≃ Ori(Σ̃0,1A)
in Proposition 5.33.

Proof. Take a connection ∇A on A. Recall that, by Lemma 4.28, any el-

ement in K̂O
Σ̃0,1A
+ (X,Y ) is represented by a K̂O+-cocycle of the form
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(/S, Σ̃0,1∇A,∇/S , h0, h1, η). The K̂O−-version of the lemma is shown by ex-

actly the same proof, so we can represent any element in K̂O
Σ0,1A
− (X,Y ) by

a K̂O−-cocycle of the form (/S,Σ0,1∇A,∇/S ,m0,m1, η).
Then, the homomorphism (5.54) is given by

[/S,Σ0,1∇A,∇/S ,m0,m1, η] 7→ [/S, Σ̃0,1∇A,∇/S , ψβ(m0), ψβ(m1), η],

where ψβ : Skew
∗
Σ0,1A(/S) ≃ Self∗

Σ̃0,1A(
/S) is the isomorphism in (5.6). The

well-definedness follows from Corollary 5.38, and the resulting map is in-
dependent on the choice of ∇A by Lemma 4.28 and its K̂O−-version. Since
ψβ is an isomorphism, we easily see that this map gives an isomorphism. □

The above results give a twisted generalization of (5.47)

K̂O
A
−(X,Y ) ≃ K̂OΣ̃0,1Σ1,0A

+ (X,Y ),(5.55)

which is compatible with the structure homomorphisms. Recall that by The-
orem 4.31 we know that (K̂O+, R, I, a) is a differential extension of the
twisted KO-theory KO+. Thus we get the following.

Theorem 5.56. The quadruple
(
K̂O−, R, I, a

)
is a differential extension

of the twisted KO-theory KO− on Twist
2
K̂O−

.

Again, the natural isomorphism (5.55) allows us to translate results on

twisted K̂O+ into corresponding ones on twisted K̂O−.

6. The complex case : K̂+ and K̂−

So far we have worked in the R-linear setting. In this section, we explain
that the C-linear version of the above story works by straightforward mod-
ifications, producing differential extensions of the Karoubi’s K-theory K+

(Remark 2.37).

6.1. The complex superconnections

In this subsection we explain the C-linear version of Section 3. In the C-
linear setting, we work with simple central graded ∗-algebras over C. The
traces Tru and TrA are defined exactly as in Subsection 3.1, by replacing
dimR with dimC.
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We explain the complex superconnection formalism by modifying Sub-
section 3.3. We start with a bundle of nondegenerate simple central graded
∗-algebras A over C and an A-module bundle /S with an inner prod-
uct on a manifold. Then we define A-superconnections ∇∇/S , the curvature
F (∇∇/S ;∇A), the self/skew-adjointness of superconnections exactly in the
same way as in that subsection. We easily see that the obvious C-linear
version of the results until Remark 3.61 hold. In the C-linear case, we have
(recall type(A) ∈ H0(X;Z2) in the complex settings)

TrA(f(F (∇∇/S ;∇A))) ∈ Ω
2Z+type(A)+1
clo (X; Ori(A)⊗R C).(6.1)

for aA-superconnection∇∇/S , and any f ∈ C[[z]]. For∇∇/S and∇∇/S,I self/skew-
adjoint, we define

Chself/skew(∇∇/S ;∇A) := TrA(e
∓F (∇∇/S ;∇A))

∈ Ω
2Z+type(A)+1
clo (X; Ori(A)⊗R C),

CSself/skew(∇∇/S,I ;∇A) :=
∫

I
Chself/skew

(
∇∇/S,I ; pr∗X∇A

)

∈ Ω2Z+type(A)(X; Ori(A)⊗R C).

Now we move on to the constructions corresponding to Subsections 3.4
and 5.3. Recall the endomorphism RC on C-valued differential forms de-
fined in (2.58). Given ∇A and a self-adjoint (=skew-adjoint) A-connection
∇/S , for an invertible section h ∈ C∞(X; Self∗A(/S)), we consider the manifold
(0,∞)t ×X with the self-adjoint superconnection pr∗X∇/S + th, and define
its Chern character form by

(6.2) Chself(h;∇A,∇/S) := −π−1/2RC ◦
∫

(0,∞)
Chself(pr

∗
X∇/S + th; pr∗X∇A)

∈ Ω2Z+type(A)(X; Ori(A)).

Note that Ori(A) is a real line bundle. Thus it can be nontrivial, but
can be checked directly, that the formula (6.2) defines an element in
Ω2Z+type(A)(X; Ori(A)).
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Similarly for m ∈ C∞(X; Skew∗
A(/S)), we define

(6.3) Chskew(m;∇A,∇/S)

:= −π−1/2(−
√
−1)degRC ◦

∫

(0,∞)
Chskew(pr

∗
X∇/S + tm; pr∗X∇A)

∈ Ω2Z+type(A)(X; Ori(A)).

Here (−
√
−1)deg is an operator on C-valued differential forms which multi-

plies d-forms by (−
√
−1)d. For a homotopy hI ∈ C∞(I ×X; pr∗XSelf∗A(/S)),

we define the Chern-Simons form by

(6.4) CSself(hI ;∇A,∇/S) :=

∫

I
Chself

(
hI ; pr

∗
X∇A, pr∗X∇/S

)

∈ Ω2Z+type(A)−1(X; Ori(A)).

Similarly for mI ∈ C∞(I ×X; pr∗XSkew∗
A(/S)), we define

(6.5) CSskew(mI ;∇A,∇/S) :=

∫

I
Chskew

(
mI ; pr

∗
X∇A, pr∗X∇/S

)

∈ Ω2Z+type(A)−1(X; Ori(A)).

As a special case of the above constructions applied to trivial bundles A and
S, we get the C-linear version of Subsection 3.2 and Subsubsection 5.3.1.
We use the corresponding notations such as Chself(h) for h ∈ Skew∗

A(S).
We can show that the analogous properties of Chern character forms

Chself(h) corresponding to those listed in Subsection 3.2.3. The invariance
under tensoring negligible modules (Lemma 3.23) can be shown in the same
way. The compatibility with the suspension (Proposition 3.27) is also basi-
cally the same, but we need to take care of the multiplications by (

√
−1)•

appearing in the definition (2.58) of RC. The statement becomes the follow-
ing.

Proposition 6.6. For any element h ∈ C∞(X, Self†ΣA(S)), we define h̃ ∈
C∞(I ×X, Self†A(S)) by the same formula as (3.25). We have

Chself(h) =

∫

I
Chself(h̃)
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under the identification of orientation bundles (cf. (2.2))

Ori(A) ≃ Ori(ΣA), u 7→
{
u⊗̂β, (type(A) = 0)√
−1u⊗̂β. (type(A) = 1)

To show that the Chern character forms represent the correct co-
homology classes, we need the result corresponding to Theorem 3.29
about the Chern character forms for the universal (tautological) gradation
huniv ∈ C∞(Self∗A(S), Self

∗
A(S)). The topological Chern character homomor-

phism (2.53) can be regarded as an element

Chtop ∈ H2Z+type(A)
(
Ktype(A), {∗};R

)
.

We claim that the equality

Rham (Chself(huniv)) = ι∗S,uChtop(6.7)

holds in H2Z+type(A) (Self∗A(S), {β};R). Indeed, the proof of Theorem 3.29
can be modified to the K-theory. In that proof, we used the fact that
the degree-zero part of the topological Pontryagin character is realized as
the Chern-Weil construction on the real Grassmannians, and used the dif-
feomorphism Self†A(Sn) ≃ Gr(R2n) in (2.49) to compare Phself(huniv) with
R ◦ Tr(e−∇2

Gr). The complex analogue of this argument works since the
topological Chern character is realized as the Chern-Weil construction on
the complex Grassmannians Gr(C2n), and we have a diffeomorphism among
models of theK-theory spectrum corresponding to that detailed in the study
of the KO-spectrum in Subsubsection 2.3.2. These results imply the follow-
ing one, corresponding to Corollary 3.31.

Corollary 6.8. Let A be a simple central graded ∗-algebra over C and
(X,Y ) be an object of MfdPairf . Represent classes of KA

+(X,Y ) by triples
(S, h0, h1) with hi ∈ C∞(X; Self∗A(S)) as in Remark 2.37. Then the topolog-
ical Chern character homomorphism

Chtop : K
A
+(X,Y )→ H2Z+type(A)(X,Y ; Ori(A))

is given by

[S, h0, h1] 7→ Rham (Chself(h1)− Chself(h0)) .

Using this result on untwisted Chern character forms, we also get the
corresponding statement about the twisted case. Recall that, for a CW-pair
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(X,Y ), we have the twisted Chern character homomorphism,

Chtop : K
A
+ (X,Y )→ H2Z+type(A)(X,Y ; Ori(A)).

We then have the following result corresponding to Corollary 3.100.

Corollary 6.9. let (X,Y ) be an object of MfdPairf , and A and /S over C

as above. Suppose we have two smooth sections h0, h1 ∈ C∞(X; Self∗A(/S))
such that h0|Y = h1|Y . Then we have

Chtop([/S, h0, h1]) = Rham
(
Chself(h1;∇A,∇/S)− Chself(h0;∇A,∇/S)

)
.

(6.10)

Now we turn to the discussion corresponding to Subsubsection 5.3.3, re-
lating Chself and Chskew. In the C-linear setting here, the argument is sim-
pler. Recall that we have a bijection Skew∗

A(S) ≃ Self∗A(S) by m 7→
√
−1m

(Remarks 5.7 and 5.19). Let us decompose a skew-adjointA-superconnection
∇∇/S compatible with ∇A as (3.43),

∇∇/S = ∇+
∑

j

ωj⊗̂ξj ,

where ωj ∈ Ωj(X) and ξj ∈ C∞(X; EndA(/S)) with |ωj |+ |ξj | = 1 ∈ Z2.
Then consider the following operator on Ω∗(X; /S)

ψ√
−1(∇∇

/S) := ∇+
∑

j

(−
√
−1)j−1ωj⊗̂ξj .(6.11)

We easily see that the expression (6.11) is independent of the decomposition
and defines a self-adjoint A-superconnection compatible with ∇A. We have
the following result corresponding to Proposition 5.33, whose proof is an
easy computation checking the case f(z) = zn and so omitted.

Proposition 6.12. For a skew-adjoint A-superconnection ∇∇/S compatible
with ∇A and for any f ∈ C[[z]], we have the equality

f(F (∇∇/S ;∇A)) = (−
√
−1)deg ◦ f(−F (ψ√

−1(∇∇
/S);∇A))(6.13)

in Ω2Z+type(A)+1(X; Ori(A)⊗R C). Here (−
√
−1)deg is the operator on dif-

ferential forms which multiplies d-forms by (−
√
−1)d.

Thus we conclude:
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Corollary 6.14. For any element m ∈ C∞(X; Skew∗
A(/S)), we have

Chskew(m;∇A,∇/S) = Chself(
√
−1m;∇A,∇/S).(6.15)

For any element mI ∈ C∞(I ×X; pr∗XSkew∗
A(/S)), we have

CSskew(mI ;∇A,∇/S) = CSself(
√
−1(mI);∇A,∇/S).(6.16)

6.2. The definitions of differential K-theories K̂+ and K̂−

Now it should be obvious to the reader that the definitions of the differential
extensions of K+ and K− are given by just replacing the coefficient from R

to C in the definitions of K̂O+ and K̂O−, and by using the C-linear version
of the characteristic forms defined in the last subsection.

Definition 6.17 (K̂A
+(X,Y ) and K̂A

−(X,Y )). Let A be a nondegener-
ate simple central graded ∗-algebra over C and let (X,Y ) be an object in
MfdPairf . Replacing the coefficient R by C and the form degree 4Z by 2Z

and using characteristic forms in Subsection 6.1, we define K̂A
+(X,Y ) and

K̂A
−(X,Y ), respectively.

Thus, elements of the group K̂A
+(X,Y ) are of the form [S, h0, h1, η],

where hi ∈ C∞(X, Self∗A(S)) are such that h0|Y = h1|Y and

η ∈ Ω2Z+type(A)−1(X,Y ; Ori(A))/Im(d).

We have [S, h0, h1,CSself(hI)] = 0 when hI is a homotopy relative to Y be-
tween h0 and h1. Similarly, elements of the group K̂A

−(X,Y ) are of the form
[S,m0,m1, η], where mi ∈ C∞(X, Skew∗

A(S)) are such that m0|Y = m1|Y
and

η ∈ Ω2Z+type(A)−1(X,Y ; Ori(A))/Im(d).

We have [S,m0,m1,CSskew(mI)] = 0 when mI is a homotopy relative to Y
between m0 and m1.

For twisted groups, we define the (same) categories Twist
2
K̂+

= Twist
2
K̂−

by the C-linear analogue of Definition 4.21. We define the following.

Definition 6.18 (K̂A
+ (X,Y ) and K̂A

− (X,Y )). Let (X,Y,A) ∈ Twist
2
K̂+

=

Twist
2
K̂−

. By the same replacement as in Definition 6.17 of Definitions 4.23

and 5.50, we define K̂A
+ (X,Y ) and K̂A

− (X,Y ), respectively.
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Definition 6.19 (Structure homomorphisms for K̂+ and K̂−). We
define the structure homomorphisms R, I, a for K̂A

+ , K̂
A
+ , K̂A

− and K̂A
− by

the same replacement as in Definition 6.17 of Definitions 4.6, 4.27, 5.43
and 5.51, respectively.

For example in the case K̂A
+ we define

R : K̂A
+(X,Y )→ Ω

2Z+type(A)
clo (X,Y ; Ori(A))

[S, h0, h1, η] 7→ Chself(h1)− Chself(h0) + dη.

I : K̂A
+(X,Y )→ KA

+(X,Y )

[S, h0, h1, η] 7→ [S, h0, h1].

a : Ω2Z+type(A)−1(X,Y ; Ori(A))/Im(d)→ K̂A
+(X,Y )

η 7→ [0, 0, 0, η].

We have natural isomorphisms for both untwisted and twisted cases
corresponding to Propositions 5.45 and 5.53

K̂− ≃ K̂+,(6.20)

which are compatible with the structure homomorphisms. The isomor-
phisms (6.20) are given by [S,m0,m1, η] 7→ [S,

√
−1m0,

√
−1m1, η] in the un-

twisted case and [/S,∇A,∇/S ,m0,m1, η] 7→ [/S,∇A,∇/S ,
√
−1m0,

√
−1m1, η]

in the twisted case. The well-definedness follows from Corollary 6.14.
Moreover, by the cohomological properties of the Chern character forms

Chself in Corollaries 6.8 and 6.9, we can check the axioms of differential
cohomology theories as in Theorems 4.7 and 4.29. Thus we conclude the
following.

Theorem 6.21. The quadruples
(
K̂A

+ , R, I, a
)
and

(
K̂A

− , R, I, a
)
are dif-

ferential extensions of the K-theories KA
+ ≃ KA

− ≃ KOtype(A) on MfdPairf .

The quadruples
(
K̂+, R, I, a

)
and

(
K̂−, R, I, a

)
are differential exten-

sions of the twisted K-theories K+ ≃ K− on Twist
2
K̂+

= Twist
2
K̂−

.
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7. The proofs

7.1. The proof of Proposition 3.27

Here we prove Proposition 3.27. Let S be a Σ0,1A-module. For h ∈
C∞(X, Self†Σ0,1A(S)), we have the corresponding h̃ ∈ C∞(I ×X, Self†A(S)).
Choose a volume element u of A to trivialize Ori(A).

By Definition 3.15, using h2 = 1 and h̃2 = 1 we have

Phself(h) = π−1/2R ◦
∫

(0,∞)
dte−t2Tru⊗̂β(h exp(−tdh)),

Phself(h̃) = π−1/2R ◦
∫

(0,∞)
dte−t2Tru(h̃ exp(−tdh̃)).

We compute (note that we are working in the algebra Ω∗(I ×X,EndA(S))
with the multiplication (3.33)),

exp(−tdh̃)
= exp(−t(dθ · (∂θh̃) + (sinπθ)dh))

=

∞∑

n=0

(−t)n
n!

(dθ · (∂θh̃) + (sinπθ)dh)n

= dθ · (∂θh̃)
( ∞∑

n=0

(−t)n+1

n!
· (sinn πθ)(dh)n

)
+ exp(−t(sinπθ)dh).

Here the last equality used the fact that dh commutes with dθ · (∂θh̃), which
can be checked easily by h ∈ C∞(X, Self†Σ0,1A(S)) and the formula for h̃. We
also note

h̃(∂θh̃) = π(β cosπθ + h sinπθ)(−β sinπθ + h cosπθ) = πβh.

Thus we have (note that h̃dθ = −dθh̃)

(7.1)

∫

I
Phself(h̃) =

π1/2
∞∑

n=0

(
1

n!

∫ ∞

0
(−t)n+1e−t2dt

∫

I
sinn(πθ) · R (dθTru(−βh(dh)n))

)
.
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Now assume type(A) is even. In this case Phself(h̃) is an even form and
Phself(h) is an odd form, so that (7.1) becomes

π1/2
∞∑

l=0

(
1

(2l + 1)!

∫ ∞

0
t2l+2e−t2dt(7.2)

×
∫

I
sin2l+1(πθ) · R

(
dθTru(−βh(dh)2l+1)

))
,

and Phself(h) is expanded as

(7.3) Phself(h) =

− π−1/2
∞∑

l=0

1

(2l + 1)!

∫ ∞

0
t2l+1e−t2dt · R

(
Tru⊗̂β(h(dh)

2l+1)
)
.

We now check that (7.2) and (7.3) coincide. We have:

Tru(−βh(dh)2l+1) = −Tru⊗̂β(h(dh)
2l+1),(7.4)

(7.5)

∫ ∞

0
t2l+2e−t2dt

∫

I
dθ sin2l+1(πθ)

=
(2l + 1)!!

√
π

2l+2
· (2l)!! · 2
(2l + 1)!!π

=
l!

2
√
π
,

∫ ∞

0
t2l+1e−t2dt =

l!

2
.(7.6)

Using the above formulas and (2.57), we see that (7.2) and (7.3) coincide.
This finishes the proof in the case where type(A) is even.

Now assume type(A) is odd. In this case Phself(h̃) is an odd form and
Phself(h) is an even form, so that (7.1) becomes

−π1/2
∞∑

l=0

(
1

(2l)!

∫ ∞

0
t2l+1e−t2dt

∫

I
sin2l(πθ)R

(
dθTru(−βh(dh)2l)

))
,

(7.7)
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and Phself(h) is expanded as

Phself(h) = π−1/2
∞∑

l=0

1

(2l)!

∫ ∞

0
t2le−t2dt · R

(
Tru⊗̂β(h(dh)

2l)
)
.(7.8)

We now check that (7.7) and (7.8) coincide. In this case we have

−Tru(−βh(dh)2l+1) = 2Tru⊗̂β(h(dh)
2l+1),(7.9)

∫ ∞

0
t2l+1e−t2dt

∫

I
sin2l(πθ)dθ =

l!

2
· (2l − 1)!!

(2l)!!
=

(2l − 1)!!

2l+1
,(7.10)

∫ ∞

0
t2le−t2dt =

(2l − 1)!!
√
π

2l+1
.(7.11)

Using above formulas and (2.57), we see that (7.7) and (7.8) coincide. This
finishes the proof in the case where type(A) is odd and completes the proof
of Proposition 3.27.

7.2. Proof of Theorem 3.29

Here we prove Theorem 3.29. The first step is to show the following.

Lemma 7.12. Theorem 3.29 holds if type(A) = 0.

Proof. Choose and fix a volume element u ∈ A to trivialize Ori(A). Recall
that, in Subsubsection 2.3.2, we explained the model of the KO-spectrum
realized as a direct limit of Skew†

A(−), and in the case that type(A) = 0 we
gave an explicit homeomorphism (2.52) with the model of KO0 realized by
using Grassmannians. Also, as explained in Subsection 2.4, the degree-zero
part of the topological Pontryagin character is realized as the Chern-Weil
construction on vector bundles. For each n, set Sn := (S+ ⊗ Rn)⊕ (S− ⊗
Rn) in the notation there. Recall the diffeomorphism (2.49)

Self†A(Sn) = Self†A((S+ ⊗ Rn)⊕ (S− ⊗ Rn)) ≃ Gr(R2n)

u⊗ a 7→ Im((1− a)/2) = Im(P ),
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where P := (1− a)/2. The canonical connection on the tautological real vec-
tor bundle θ2n over Gr(R2n) is given by

∇Gr = PdP,

where the inclusions Ω∗(Gr(R2n); θ2n) ⊂ Ω∗(Gr(R2n);R2n) are understood.
We know that the topological Pontryagin character is the direct limit with
respect to n of the Pontryagin character form R ◦ Tr(e∇2

Gr)− n for the con-
nection ∇Gr. Thus it is enough to show that (see (2.47))

R ◦ Tr(e∇2
Gr)− n− Phself(huniv) ∈ Im(d)(7.13)

on Self†A(Sn) for each n.
First we compute Tr(e∇

2
Gr). We have

∇2
Gr = PdP ∧ dP =

1

4
Pda ∧ da.

Using the relation ada+ da · a = 0 and P 2 = P , we have

Tr(e∇
2
Gr) =

∞∑

k=0

1

22k+1k!

(
Tr(−a(da)2k) + Tr((da)2k)

)
.(7.14)

Next we compute Phself(huniv). Applying Definition 3.15 to huniv = u⊗ a
and using h2univ = 1, we have

Phself(huniv) = R ◦ π−1/2

∫

(0,∞)
e−t2dt ∧ Tru

(
(u⊗ a) · e−tu⊗̂da

)
.

We have

e−tu⊗̂da =

∞∑

k=0

t2k

(2k)!
· 1⊗̂(da)2k −

∞∑

k=0

t2k+1

(2k + 1)!
· u⊗̂(da)2k+1,

so that, using Tru(u⊗B) = −Tr(B) and Tru(1⊗B) = 0 for any B ∈
End(R2n),

Tru

(
(u⊗ a)e−tu⊗̂da

)
=

∞∑

k=0

t2k

(2k)!
· Tr

(
−a(da)2k

)
.

Using the formula
∫ ∞

0
e−t2t2kdt =

√
π · (2k − 1)!!

2k+1
,
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we get

Phself(huniv) = R ◦
∞∑

k=0

1

22k+1k!
Tr
(
−a(da)2k

)
.(7.15)

Now we can compute the element (7.13). By (7.14) and (7.15), we have

R ◦ Tr(e∇2
Gr)− n− Phself(huniv) = R ◦

(
−n+

∞∑

k=0

1

22k+1k!
Tr((da)2k)

)

= R ◦ 1
2
Tr(e

1

4
da∧da − 1).

This is exact, so we have proved (7.13). This completes the proof of
Lemma 7.12. □

Proof of Theorem 3.29. By Proposition 3.27, we know that Ph(m) is com-
patible with the suspension. Thus we can reduce to the case type(A) = 0,
and the result follows from Lemma 7.12. □

7.3. The proof of Proposition 3.63

Here we prove Proposition 3.63. We only give the proof for (1), whose
straightforward modification leads to (2).

It is enough to consider the case that f(z) = zn for n ∈ Z≥0. Moreover,
working locally, we may assume that V = A for some A and /S = S for an A-
module S with an inner product. Furthermore, by Lemma 3.59 it is enough
to consider the case that ∇A = d, since the action (3.45) preserves the self-
adjointness. Fix a volume element u for A to trivialize Ori(A). Then we can
decompose the self-adjoint A-superconnection ∇∇/S as

∇∇/S = d+
∑

j∈J
ωj⊗̂ξj ,

for ωj ∈ Ω∗(X) and ξj ∈ EndA(S) with |ωj |+ |ξj | ≡ 1 (mod 2). We have

F (∇∇/S ; d) = (∇∇/S)2 =
∑

j

dωj⊗̂ξj +
∑

j,k

(ωj⊗̂ξj) · (ωk⊗̂ξk).

Thus (F (∇∇/S ; d))n = (∇∇/S)2n is the sum of the all possible terms of the form

(αj1⊗̂ξj1) · (αj2⊗̂ξj2) · · · · · (αjl⊗̂ξjl),(7.16)
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where jt ∈ J and αjt is either of dωjt or ωjt for each t, and if the number of
t such that αjt = dωjt is m, we have l +m = 2n.

We show that, for each term (7.16) as above, the sum

(7.17) Tru
(
(αj1⊗̂ξj1) · (αj2⊗̂ξj2) · · · · · (αjl⊗̂ξjl)

)

+Tru
(
(αjl⊗̂ξjl) · (αjl−1

⊗̂ξjl−1
) · · · · · (αj1⊗̂ξj1)

)

can be nonzero only if we have
∑

t |αjt | ≡ type(A) + 1 (mod 4). This implies
the desired result.

Fix a term (7.16). We define I ⊂ {1, · · · , l} so that αjt = dωjt for t ∈ I
and αjt = ωjt for t /∈ I. We have |I| = m. We also define σ : Z→ Z2 by

σ(x) :=

{
1 if x ≡ 1, 2 (mod 4),

0 if x ≡ 0, 3 (mod 4).

Then the self-adjointness of ∇∇ (Definition 3.60) implies that

ξ∗j = (−1)σ(|ωj |)ξj(7.18)

for all j ∈ J . Also, a straightforward computation shows that

u∗ = (−1)σ(type(A))u.(7.19)

Now we compute (7.16). We define A,B,C,D ∈ Z2 by the following.

(αj1⊗̂ξj1) · (αj2⊗̂ξj2) · · · · · (αjl⊗̂ξjl)(7.20)

= (−1)Aαj1 ∧ αj2 ∧ · · · ∧ αjl⊗̂ξj1ξj2 · · · ξjl ,
(αjl⊗̂ξjl) · (αjl−1

⊗̂ξjl−1
) · · · · · (αj1⊗̂ξj1)

= (−1)Bαjl ∧ αjl−1
∧ · · · ∧ αj1⊗̂ξjlξjl−1

· · · ξj1 ,
αj1 ∧ αj2 ∧ · · · ∧ αjl = (−1)Cαjl ∧ αjl−1

∧ · · · ∧ αj1 ,

(uξj1ξj2 · · · ξjl)∗ = (−1)Dξjlξjl−1
· · · ξj1u.

Then we have

Tr (uξj1ξj2 · · · ξjl) = Tr ((uξj1ξj2 · · · ξjl)∗)
= (−1)DTr

(
ξjlξjl−1

· · · ξj1u
)

= (−1)DTr
(
uξjlξjl−1

· · · ξj1
)
,
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so that

Tru (ξj1ξj2 · · · ξjl) = (−1)DTru
(
ξjlξjl−1

· · · ξj1
)
.

Using this, we get

Tru
(
(αj1⊗̂ξj1) · (αj2⊗̂ξj2) · · · · · (αjl⊗̂ξjl)

)
(7.21)

= (−1)ATru (ξj1ξj2 · · · ξjl)αj1 ∧ αj2 ∧ · · · ∧ αjl

= (−1)A+C+DTru
(
ξjlξjl−1

· · · ξj1
)
αjl ∧ αjl−1

∧ · · · ∧ αj1

= (−1)A+B+C+DTru
(
(αjl⊗̂ξjl) · (αjl−1

⊗̂ξjl−1
) · · · · · (αj1⊗̂ξj1)

)
.

Now we compute A+B + C +D. We have

A =
∑

s<t

|αjs | · |ξjt |,(7.22)

B =
∑

t<s

|αjs | · |ξjt |,

C =
∑

s<t

|αjs | · |αjt |,

D =
∑

t

σ(|ωjt |) + σ(type(A)),

where the last equality used (7.18) and (7.19). Recall that |ξjt | ≡ |αjt |
(mod 2) if t ∈ I and |ξjt | ≡ |αjt | − 1 (mod 2) if t /∈ I. We get

A+B =
∑

t ̸=s

|αjs | · |ξjt |(7.23)

=
∑

t ̸=s

|αjs | · |αjt | − (l −m)
∑

s∈I
|αjs | − (l −m− 1)

∑

s∈J\I
|αjs |

=
∑

s∈J\I
|αjs |,

where the last equality follows from the fact that the first term in the second
line is even, and that l −m is even since l +m = 2n. Using σ(x− 1) =
σ(x) + x and the fact that |ωjt | = |αjt | − 1 if t ∈ I and |ωjt | = |αjt | if t /∈ I,
we have

D =
∑

t∈J
σ(|αjt |) +

∑

t∈I
|αjt |+ σ(type(A)).(7.24)
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Moreover, using σ(x) + σ(y) + xy = σ(x+ y), we get

C +D = σ

(∑

t∈J
|αjt |

)
+
∑

t∈I
|αjt |+ σ(type(A)).(7.25)

By (7.23) and (7.25), we conclude

A+B + C +D = σ

(∑

t∈J
|αjt |

)
+
∑

t∈J
|αjt |+ σ(type(A)).(7.26)

Recall that we already know that the map (3.51) preserves the Z2-
grading if type(A) is odd, and reverses the Z2-grading if type(A) is even. In
particular, by Lemma 3.46, we know that (7.17) can be nonzero only when

∑

t∈J
|αjt | ≡ type(A) + 1 (mod 2).(7.27)

In this case (7.26) becomes

A+B + C +D = σ

(∑

t∈J
|αjt |

)
+ type(A) + 1 + σ(type(A))

= σ

(∑

t∈J
|αjt |

)
+ σ(type(A) + 1)

where the last equality used σ(x+ 1) = σ(x) + x+ 1. Using (7.21), the sum
(7.17) can be nonzero only when both (7.27) and

σ

(∑

t

|αjt |
)

= σ(type(A) + 1)

are satisfied. But σ(x) = σ(y) and x ≡ y (mod 2) imply x ≡ y (mod 4), so
these conditions imply

∑

t

|αjt | ≡ type(A) + 1 (mod 4).

Thus we get the desired result.
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