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3-manifolds and Vafa-Witten theory
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We initiate explicit computations of Vafa-Witten invariants of 3-
manifolds, analogous to Floer groups in the context of Donaldson
theory. In particular, we explicitly compute the Vafa-Witten in-
variants of 3-manifolds in a family of concrete examples relevant
to various surgery operations (the Gluck twist, knot surgeries, log-
transforms). We also describe the structural properties that are
expected to hold for general 3-manifolds, including the modular
group action, relation to Floer homology, infinite-dimensionality
for an arbitrary 3-manifold, and the absence of instantons.
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1. Introduction

The main goal of this paper is to compute and study invariants of 3-manifolds
in Vafa-Witten theory [VW94], which is a particular generalization of the
Donaldson gauge theory [Don83]. The latter involves the study of moduli
spaces of solutions to the anti-self-duality equations

(1.1) F+
A = 0

for the gauge connection A over a 4-manifold M4. When the 4-manifold is
of the form (illustrated in Figure 1)

(1.2) M4 = R×M3

one can construct an infinite-dimensional version of the Morse theory on
the space of gauge connections on M3, called the instanton Floer homology
[Flo88].

M3

Figure 1. The setup of a Floer
theory. In physics, it repre-
sents the space of states of a
4-dimensional topological gauge
theory on M3.

In particular, the Floer homology is
a homology of a chain complex generated
by R-invariant (“stationary”) solutions to
the PDEs (1.1), with the differential that
comes from non-trivial R-dependent “in-
stanton” solutions on R×M3. For intro-
duction to Floer theory we recommend an
excellent book [Don02]. From the physics
perspective, instanton Floer homology of a
3-manifold M3 is the space of states in a
Hamiltonian quantization of the topologi-
cal Yang-Mills theory on R×M3 [Wit88].

Since then, many variants of Floer ho-
mology have been studied, most notably the monopole Floer homology
[KM07] based on Seiberg-Witten monopole equations:

F+
A = Ψ ⊗ Ψ −

1

2
(ΨΨ)Id,(1.3)

D/Ψ = 0

where, in addition to the U(1) gauge connection A, the configuration space
(the “space of fields”) includes a section Ψ ∈ Γ(M4,W

+) of a complex spinor
bundle W+. The monopole Floer homology HM(M3, s) depends on a choice
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of additional data, namely the spinc structure s ∈ Spinc(M3), and is equiva-
lent to the Heegaard Floer homology HF (M3, s) [OS04a] and to the embed-
ded contact homology [Hut10, Tau09]. In fact, technical details in each of
these theories lead to four different variants, which correspondingly match.

Figure 2. The space T + is iso-
morphic to the Hilbert space of
a quantum harmonic oscillator.

The variant that will be most relevant
to us in what follows is the so-called “to”
version of the monopole Floer homology,
~HM(M3, s), and the corresponding “plus”
version of the Heegaard Floer homology,
denoted HF+(M3, s). The equivalence be-
tween these Floer theories will be useful to
us because the monopole Floer homology
will be conceptually closer to its analogue
in Vafa-Witten theory, whereas concrete
calculations are usually simpler in the Hee-
gaard Floer homology. In particular, before

we turn to PDEs in Vafa-Witten theory, let us briefly mention a few con-
crete results in the Heegaard Floer homology which, on the one hand, will
serve as a prototype in our study of Vafa-Witten invariants of 3-manifolds
and, on the other hand, illustrate the general structure of Floer homology
in Yang-Mills theory (1.1) and in Seiberg-Witten theory (1.3).

Theorem 1 (based on [OS04b, Theorem 9.3]). Let L(p, 1) denote a
Lens space and Σg be a closed oriented surface of genus g. Then,

HF+(L(p, 1), s) = T +
0 , ∀s(1.4a)

HF+(S2 × S1, s) = T +
−1/2 ⊕ T +

1/2, s = s0(1.4b)

HF+(Σg × S1, sh) =

d⊕

i=0

ΛiH1(Σg;Z) ⊗ T +
0 /(U

i−d−1), h ̸= 0(1.4c)

where d = g − 1 − |h| and sh is the spinc structure with c1(sh) = 2h[S1].

This list of basic but important calculations in the Heegaard Floer ho-
mology illustrates well a key ingredient that plays a central in this theory,
namely the space

(1.5) T + = C[U,U−1]/U · C[U ] ∼= H∗
U(1)(pt) = H∗(CP∞) ∼= C[u]

From the physics perspective [GPV17], this space can be understood as the
Fock space of a single boson, T + ∼= Sym∗(ϕ), illustrated in Figure 2. When
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the minimal degree (of the “ground state”) is equal to n we write T +
n . It is

often convenient to work with the corresponding Poincaré polynomial, tn

1−t2 ,
where we introduced a new variable t and took into consideration that in
standard conventions U−1 carries homological degree 2. The same variable
t, with the same meaning, will be used in the context of Vafa-Witten theory,
to which we turn next.

Our main goal is to set up a concrete framework that allows to com-
pute analogous invariants of 3-manifolds in Vafa-Witten theory, where the
relevant PDEs generalize (1.1) and (1.3):

(1.6)
F+
A −

1

2
[B ×B] + [C,B] = 0

d∗AB − dAC = 0
where

A ∈ AP

B ∈ Ω2,+(M4; adP )

C ∈ Ω0(M4; adP )

As explained in the main text, these equations have a number of parallels
and relations to (1.1) and (1.3). This will be the basis for various structural
properties of the Floer homology groups in Vafa-Witten theory which, fol-
lowing [GPV17], we denote by HVW(M3), cf. (3.2). In particular, reflecting
the fact that the configuration space in (1.6) is much larger than in (1.1) and
(1.3), we will see that HVW(M3) is also much larger, in particular, compared
to HF+(M3). Also, many challenges that one encounters in constructing 3-
manifold invariants based on (1.1) and (1.3) will show up in the Vafa-Witten
theory as well.

Our main result is a concrete framework that allows computation of
HVW(M3) for many simple 3-manifolds. In particular, we produce a suitable
analogue of Theorem 1 in Vafa-Witten theory which, due to a large size of
HVW(M3), we state here only at the level of the Poincaré series, relegating
the full description of HVW(M3) to the main text.

Proposition 2. For G = SU(2):

gr-dimHVW(S3) =
1

1 − t2
(1.7a)

gr-dimHVW(S2 × S1) =
2t3/2

(
tx4 + 1

)

(1 − t2) (1 − t2x4)
(1.7b)

gr-dimHVW(Σg × S1) =

9∑

λ=0

S2−2g
0λ(1.7c)

where t has the same meaning as in (1.4) and the explicit values of S0λ are
summarized in (2.19).
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We present two approaches to these results, as part of a more general
framework for computing HVW(M3). First, in section 2 we carefully an-
alyze gradings on HVW(M3) for general 3-manifolds as well as for circle
bundles over Σg. In the latter case, the relevant moduli spaces turn out to
be closely related to the moduli spaces of complex GC connections on Σg,
whose non-compactness can be compensated by additional symmetries, as
in the equivariant Verlinde formula [GP17]. Then, in section 3 we reproduce
the same results by a direct computation of Q-cohomology (a.k.a. the BRST
cohomology) in the Vafa-Witten theory.

Apart from analyzing the main statement of Proposition 2 via several
methods, in this paper we also present evidence for a number of conjectures
— Conjectures 9, 12, and 13 — all of which are concrete falsifiable state-
ments. Part of our motivation is that future efforts to either prove or disprove
these conjectures can lead to better understanding of the Vafa-Witten theory
on 3-manifolds.

Another motivation for this work is to develop surgery formulae in Vafa-
Witten theory, analogous to those in Yang-Mills theory [Flo90, BD95] and
in Seiberg-Witten theory [MMS97, FS98, KMOS07]. Initial steps in this
direction were made in [FG20] where simple instances of cutting and gluing
along 3-manifolds were considered in the context of Vafa-Witten theory. One
of our goals here is to generalize these recent developments and to bring
them closer to the above-mentioned surgery formulae by studying Vafa-
Witten invariants of 3-manifolds. In the long run, this could be a strategy
for computing Vafa-Witten invariants on general 4-manifolds, beyond the
well studied class of Kähler surfaces.

Finally, aiming to make this paper accessible to both communities, we
tried to not overload it with mathematics or physics jargon. Hopefully, we
managed to strike the right balance.

Acknowledgements
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2. Predictions from MTC[M3] and the equivariant
Verlinde formula

We start by summarizing the symmetries of Vafa-Witten theory and demon-
strating how these symmetries can help to deal with non-compact moduli
spaces.

2.1. Symmetries and gradings

The holonomy group of a general 4-manifold M4 is

(2.1) SO(4)E ∼= SU(2)ℓ × SU(2)r

where we use the subscript “E” to distinguish it from other symmetries,
which will enter the stage shortly. When M4 is of the form (1.2), the holon-
omy is reduced to

(2.2) SU(2)E = diag[SU(2)ℓ × SU(2)r]

And, when M3 = Σg × S1, it is further reduced to SO(2)E ∼= U(1)E ⊂
SU(2)E .

In addition, 4d N = 4 super-Yang-Mills theory has “internal” R-
symmetry SO(6)R. In the process of a topological twist, required to define
the theory on a general 4-manifold [VW94], this symmetry is broken to a
subgroup SU(2)R ⊂ SO(6)R. All fields and states in the topological theory
form representations under this group. Its Cartan subgroup, which we de-
note by U(1)t ⊂ SU(2)R, is familiar from the Donaldson-Floer theory and
also plays an important role in this paper. In particular, it provides a grad-
ing to the Floer homology groups, which are Z-graded in the Vafa-Witten
theory.1 We use the variable t to write the corresponding generating series
of their graded dimensions:

Definition 3.

(2.3) gr-dimHVW(M3) :=
∑

n

tn dimHn
VW(M3)

1In the Donaldson-Floer theory, it is reduced to a Z/8Z grading, which is a
manifestation of an anomaly in the physical super-Yang-Mills theory. There is no
such anomaly in the Vafa-Witten theory.
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When 4-manifold M4 is not generic, i.e. has reduced holonomy, a smaller
subgroup of the original R-symmetry SO(6)R is used in the topological
twist and, as a result, a larger part of this symmetry may remain unbro-
ken. Specifically, on a 3-manifold Vafa-Witten theory has SU(2)R × SU(2)R
symmetry, and on a 2-manifold this internal symmetry is enhanced further
to Spin(4)R × U(1)R.

All these cases are summarized in Table 1 where, following the notations
of [DM97, BT97], we also list the number of unbroken supercharges, NT .
These numbers are easy to see by noting that the supercharges in Vafa-
Witten theory transform as (2,2,2) ⊕ (1,3,2) ⊕ (1,1,2) under SU(2)ℓ ×
SU(2)r × SU(2)R [VW94]. Then, using the second column in Table 1 and
counting the number of singlets under the holonomy group gives NT in each
case.

M4 holonomy R-symmetry NT

generic SU(2)ℓ × SU(2)r SU(2)R 2

R×M3 diag[SU(2)ℓ × SU(2)r] SU(2)R × SU(2)R 4

R× S1 × Σg SO(2)E Spin(4)R × U(1)R 8

Table 1. Symmetries of the Vafa-Witten theory on different manifolds.

The symmetry SU(2)ℓ × SU(2)r × SU(2)R of the Vafa-Witten theory is
also useful for keeping track of various fields that appear in PDEs and lead
to moduli spaces of solutions. Apart from the gauge connection, all ordinary
bosonic (as opposed to Grassmann odd) variables originate from scalar fields
of the 4d N = 4 super-Yang-Mills theory. After the topological twist they
transform as

(2.4) (2,2,1)︸ ︷︷ ︸
A

⊕ (1,3,1)︸ ︷︷ ︸
B

⊕ (1,1,3)︸ ︷︷ ︸
C,ϕ,ϕ

under SU(2)ℓ × SU(2)r × SU(2)R. In particular, we see that, apart from
the fields A, B, and C that already appeared in the PDEs (1.6), the full
theory also contains fields ϕ and ϕ that sometimes vanish and, therefore,
can be ignored on closed 4-manifolds with a special metric, but will play
an important role below, in the computation of the Floer homology groups.
Using (2.2) we also see that, upon reduction to three dimensions, the Vafa-
Witten theory contains a gauge connection and fields that transform as
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(1,1) ⊕ (3,1) ⊕ (1,3) under SU(2)E × SU(2)R, reproducing one of the re-
sults in [BT97]. In other words, the theory contains two 1-forms, which
naturally combine into a complexified gauge connection, so that the space
of solutions on a 3-manifold contains the space of complex flat connections,
Mflat(M3, GC). This also holds true for another twist of 4d N = 4 super-
Yang-Mills [Mar95], which under reduction to three dimensions gives the
same theory.

If we continue this process further, and reduce the Vafa-Witten theory to
a two-dimensional theory on Σ, from the above it follows that the resulting
theory contains two 1-form fields and four complex 0-form Higgs fields, all
in the adjoint representation of the gauge group G. These fields comprise a
Ẽ-valued G-Higgs bundles on Σ,

(2.5) Ẽ = L1 ⊕ L2 ⊕ L3 ⊕ L4 , Li = KRi/2 (Ri ∈ Z)

with Ri = (2, 0, 0, 0). As in the classical work of Hitchin [Hit87], one of the
Higgs fields here (say, the one associated with L4) comes from dimensional
reduction of 4d gauge connection to two dimensions. Therefore, the Vafa-
Witten theory on M3 = S1 × Σ can be viewed as a four-dimensional lift of
the Ẽ-valued G-Higgs bundles on Σ, without the last term in (2.5):

(2.6) E = L1 ⊕ L2 ⊕ L3 , Li = KRi/2 (Ri ∈ Z)

where Ri = (2, 0, 0). Put differently, on M3 = S1 × Σ the fields (2.4) in four-
dimensional Vafa-Witten theory consist of a gauge connection and three
copies of the Higgs field. Below, we shall refer to this collection of fields as
the E-valued G-Higgs bundles on Σ and will be interested in the compu-
tation of its K-theoretic (three-dimensional) and elliptic (four-dimensional)
equivariant character.2

Remark 4. By definition, the generating series of graded dimensions (2.3)
is the Vafa-Witten invariant on M4 = S1 ×M3 with a holonomy for U(1)t
symmetry along the S1. In other words, the variable t is the holonomy
of a background U(1)t connection on the S1. (Hopefully, this also clari-
fies our choice of notations.) Note, in a d-dimensional TQFT that satis-
fies Atiyah’s axioms, the relation Z(S1 ×Md−1) = dimH(Md−1) is simply

2Note, all fields in the Vafa-Witten theory are valued in the adjoint representation
of the gauge group G, cf. (1.6). And, the terminology is such that “E-valued G-Higgs
bundles on Σ” in the present context describe a version of the Hitchin equations on
Σ, with Higgs fields valued in L1 ⊗ adP ⊕ L2 ⊗ adP ⊕ L3 ⊗ adP .
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one of the axioms. Although the Vafa-Witten theory is not a TQFT in
this sense — in part, because HVW(M3) is infinite-dimensional for any M3

— a version of the relation Z(S1 ×M3) = dimH(M3) still holds if instead
of the ordinary dimension we use the graded dimension (2.3). And, it is
also useful to compare this modification of the Vafa-Witten invariant of
S1 ×M3, with the holonomy t, to the ordinary Vafa-Witten invariant of
M4 = S1 ×M3. Since this 4-manifold is Kähler for many M3, we can use
the calculation of Vafa-Witten invariants on Kähler surfces [VW94, DPS97]
(see also [TT20, GK20, GSY20, MM21] for recent work and mathematical
proofs):

(2.7) ZVW(M4) =

∑

x:basic

classes

SWM4
(x)

[
(−1)

χ+σ

4 δv,[x′]

(
G(q2)

4

)χ+σ

8
(
θ0
η2

)−2χ−3σ (θ1
θ0

)−x′·x′

+ 21−b1(−1)[x
′]·v

(
G(q1/2)

4

)χ+σ

8
(
θ0 + θ1

2η2

)−2χ−3σ (θ0 − θ1
θ0 + θ1

)−x′·x′

+ 21−b1i−v2

(−1)[x
′]·v

(
G(−q1/2)

4

)χ+σ

8
(
θ0 − iθ1

2η2

)−2χ−3σ (θ0 + iθ1
θ0 − iθ1

)−x′·x′
]

which allows to express the result in terms of the Seiberg-Witten invariants
SWM4

and basic topological invariants, such as the Euler characteristic χ and
the signature σ. Because χ = 0 = σ for M4 = S1 ×M3, we quickly conclude
that the ordinary Vafa-Witten invariant (without holonomy along the S1)
is simply a number, independent of q or other variables. The calculation of
(1.7) is the analogue of (2.7) in the presence of holonomies along the S1.
In particular, much like (2.7), it has no q-dependence and enjoys a relation
to the Seiberg-Witten theory (more precisely, HF+(M3), cf. (1.4)) as we
explain below.

Remark 5. On Kähler manifolds, the derivatiion of (2.7) deals with one
of the main challenges in the Vafa-Witten theory: the non-compactness of
moduli spaces of solutions to PDEs. This issue has many important ram-
ifications and consequences, e.g. it prevents the theory to be a TQFT in
the traditional sense. In this section, this issue is addressed with the help
of symmetries and the corresponding equivariant parameters, reducing the
calculations to compact fixed point sets. Therefore, comparing the results
of such calculations, e.g. (1.7), to the partition functions on M4 = S1 ×M3
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without holonomies along the S1, such as (2.7), can not be achieved sim-
ply by “tunring off” the holonomies, i.e. taking the limit x→ 1 and t→ 1.
In addition, one needs to regularize in some way the contribution of zero-
modes (non-compact directions) that make (1.7) singular in this limit. The
difficulty is that, in a non-abelian theory on a general manifold, there is no
canonical way to do this because all fields interact with one another. In the
case of (1.7), one could simply multiply this expression by a suitable factor
before taking the limit; we will determine the precise factor in Lemma 6
and then present a thorough discussion of the corresponding zero-modes in
section 3.

2.2. Cohomology of E-valued Higgs bundles

The ring of functions on Mflat(M3, GC) and, more generally, cohomology of
E-valued Higgs bundles naturally appear in a slightly different but related
problem. Here, we briefly outline the connection, in particular because it
suggests that we should expect particular structural properties of HVW(M3),
such as the action of the modular group SL(2,Z) and the mapping class
group of M3:

(2.8) MCG(M3) × SL(2,Z) ýHVW(M3)

as well as relations to the familiar variants of the Floer homology.
Starting in six dimensions and reducing on T 2 ×M3, with a partial topo-

logical twist along M3, we obtain the space of states in quantum mechanics
that can be viewed in several equivalent ways [GPV17]. Reducing on T 2 first
(and also taking the limit vol(T 2) → 0) we obtain the Vafa-Witten theory
on R×M3 that leads to HVW(M3). On the other hand, first reducing on M3

gives a 3d theory T [M3]. Its space of supersymmetric states on T 2 can be
also viewed as the space of states in 2d A-model TA[M3], whose target space
is essentially Mflat(M3, GC). In this way we obtain a chain of approximate
relations

(2.9) HVW(M3) ≃ HT [M3](T
2) ≃ HTA[M3](S

1) ∼= QH∗(Mflat(M3, GC))

where e.g. in the last relation we only wrote the most interesting part of
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the moduli space3 and essentially identified T [M3] with TA[M3]. These two
theories are related by a circle compactification, and if the circle has finite
size the quantum cohomology in (2.9) should be replaced by the quantum
(equivariant) K-theory QK(Mflat(M3, GC)). A similar approximation enters
the first relation in (2.9) because HVW(M3) and HT [M3](T

2) differ by the
Kaluza-Klein modes on T 2. This somewhat delicate point is often overlooked
when 6d theory on a finite-size torus is treated as 4d N = 4 super-Yang-
Mills. Luckily, the role of these KK modes, which we plan to address more
fully elsewhere, is not very important for the aspects of our interest here,4

in particular, it does not affect the symmetry (2.8).
It was further proposed in [GPV17] that (2.9) can be categorified into

a higher algebraic structure, dubbed MTC[M3], that also controls the BPS
line operators and twisted indices in 3d theory T [M3]. In other words, (2.9)
should arise as the Grothendieck ring of the category MTC[M3], which in
general may not be unitary or semi-simple:

(2.10) K0(MTC[M3]
ss) ∼= QK(Mflat(M3, GC))

When GC flat connections on M3 are isolated, they are expected to corre-
spond to simple objects in MTC[M3]. Moreover, its Grothendieck group is
expected to enjoy the action of the modular group SL(2,Z) = MCG(T 2),
which comes from the symmetry of T 2 and in the Vafa-Witten theory can
be thought of the S-duality. Similarly, the other part of the symmetry in
(2.8), namely MCG(M3) comes from the M3 part of the background and
can be thought of as the duality of the 3d theory T [M3].

Although connections between different theories outlined here will not be
used in the rest of the paper, they certainly help to understand the big pic-
ture and to see the origin of various structural properties of HVW(M3). This
includes the relation to the generalized cohomology of the moduli spaces and

3This point will be properly addressed in the rest of the paper, where all fields
and all moduli will be taken into account. In particular, when M3 = S1 × Σ, in-
corporating the extra moduli gives precisely the moduli space of E-valued Higgs
bundles, and quantum cohomology in (2.9) is replaced by the classical cohomology.

4For example, in the computation of the equivariant character of the moduli
space of E-valued Higgs bundles, taking the limit vol(S1) → 0, i.e. replacing T 2 by
S1 in the computation of (2.18)–(2.19) has the effect of reducing the set {λ}, so
that instead of 10 possible values it contains only 5. However, since the remaining
λ’s have the same values of S0λ as the eliminated ones, this changes the calculation
of (2.12) only by an overall factor of 2. This is a general property of any theory with
matter fields in the adjoint representation of the gauge group G = SU(2), which is
certainly the case for the Vafa-Witten theory we are interested in.
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the action of the modular group in (2.8). Curiously, it also suggests a rela-
tion to the Heegaard Floer homology of M3. Namely, for G = U(1) the space

(2.9) can be identified with ĤF (M3) ⊗ C, which Kronheimer and Mrowka
[KM10] conjectured to be isomorphic to the framed instanton homology,
I#(M3) := I(M3#T

3):

(2.11) I#(M3) ∼= ĤF (M3;C)

On the other hand, because the space (2.9) with G = U(1) is basically “the
Cartan part” of HVW(M3) for G = SU(2), it suggests that the latter should
contain the (framed) instanton Floer homology. Notice, while this argument
used relations between various theories, the conclusion can be phrased en-
tirely in the context of Vafa-Witten theory. As we shall see later, via direct
analysis of the Q-cohomology and spectral sequences in the Vafa-Witten
theory, this conclusion is on the right track (see e.g. (3.5) and discussion
that follows).

2.3. Derivation of (1.7b) and (1.7c)

Figure 3. Basic 2d cobor-
dism that defines a prod-
uct.

As explained above, for M3 = S1 × Σ the
graded dimension (2.3) is equal to the equivari-
ant Verlinde formula for E-valued G-Higgs bun-
dles on Σ, with E as in (2.6). In general, for

K
R/2
Σ -valued Higgs fields with any R, it has the

form of the ordinary Verlinde formula or A-
model partition function on Σ [GP17] (see also
[AGP16, HL16] for further mathematical devel-
opments). In other words, it is described by a
2d semisimple TQFT with a finite-dimensional space of states on S1 (de-
spite the fact that the space of states in Vafa-Witten theory is infinite-
dimensional). Let {λ} be a basis of states that diagonalizes multiplication
of the corresponding Frobenius algebra, called the equivariant Verlinde al-
gebra, associated to a pair-of-pants and illustrated in Figure 3. We denote
the corresponding eigenvalues of the structure constants by (S0λ)−1; their
values will be determined shortly. Then,

(2.12) gr-dimHVW(M3) =
∑

λ

S2−2g
0λ
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The sum runs over the set of admissible solutions to the Bethe ansatz equa-
tion for T-valued variable z, i.e. the set of solutions from which those fixed
by the Weyl group of G are removed.

Just like in Donaldson theory one always starts with the gauge group
G = SU(2), in this paper we mainly focus on Vafa-Witten theory with G =
SU(2). Then, T = U(1) and we need to solve one Bethe equation for a single
variable z:

(2.13) 1 = exp

(
∂W̃

∂ log z

)

The values of (S0λ)−2 = e2πiΩ ∂2W̃
(∂ log z)2

∣∣
zλ

consist of two factors, each evalu-

ated on the solutions to (2.13). One factor is simply the second derivative of

the same function W̃(z), called the twisted superpotential, that determines
the Bethe equation itself. Both the Bethe equation and the other factor
e2πiΩ, sometimes called the effective dilaton, are multiplicative in charged
matter fields, in fact, in weight spaces of g = Lie(G), whereas W̃(z) is addi-

tive. Specifically, a K
R/2
Σ -valued Higgs field contributes to the Bethe ansatz

equation a factor

(2.14) L = K
R/2
Σ : exp

(
∂W̃

∂ log z

)
=

(t− z2)2

(tz2 − 1)2

where, as before, z is the equivariant parameter for the gauge symmetry,
while t is the analogous equivariant parameter for a U(1) (or C∗) symmetry
acting on the adjoint Higgs field by phase rotation (and dilation). In partic-

ular, it follows that the additive contribution of a K
R/2
Σ -valued Higgs field to

∂2W̃
(∂ log z)2 is 4

z2t−1−1 − 4
z2t−1 . Similarly, a K

R/2
Σ -valued Higgs field contributes

to e2πiΩ a factor

(2.15) e2πiΩHiggs =

(
t3/2z2

(t− 1)(t− z2)(tz2 − 1)

)R−1

Note that Higgs fields with R = 0 and R = 2 produce opposite contributions;
this feature will play a role below and can be seen directly in the calculations
of one-loop determinants [GP17] that lead to the expressions quoted here.
While the SU(2) gauge field (or, rather, superfield) does not contribute
directly to the Bethe ansatz equation (2.13), it contributes to S2

0λ a factor

(2.16) e−2πiΩgauge =
1

z2
− 2 + z2
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Now we are ready to put these ingredients together and compute (2.12)
for E-valued Higgs bundles on Σ, with E in the form (2.6). In particular,
corresponding to the three terms in (2.6), there are three factors (2.14) in
the Bethe ansatz equation,

(2.17) 1 = exp

(
∂W̃

∂ log z

)
=

(
t− z2

)2 (
x− z2

)2 (
y − z2

)2

(tz2 − 1)2 (xz2 − 1)2 (yz2 − 1)2

where, in addition to z, we introduced three equivariant parameters (x, y, t)
associated with each of the terms in (2.6). Equivalently, these are the
equivariant parameters for the symmetry U(1)x × U(1)y × U(1)t of E-valued
Higgs bundles on Σ; using Table 1 and the discussion around it, this symme-
try can be identified with the maximal torus of the group Spin(4)R × U(1)R
in the last row. From that discussion we also know that only U(1)t subgroup
of U(1)x × U(1)y × U(1)t admits a lift to the Vafa-Witten on a general 4-
manifold. In other words we can use U(1)x × U(1)y × U(1)t and the corre-
sponding equivariant parameters for the equivariant Verlinde formula in the
case of M3 = S1 × Σ, but need to set x = 1 and y = 1 when we work with
more general 3-manifolds and 4-manifolds.

There are 10 admissible solutions to (2.17), i.e. 10 values zλ not fixed by
the Weyl group of G = SU(2). Aside from a simple pair of solutions z = ±i
that can be seen with a naked eye, the expressions for zλ as functions of
(x, y, t) are not very illuminating. In fact, to simplify things further, we
often find it convenient to set x = y. (Recall, that on general manifolds one
needs to set x = y = 1.) Indeed, we should expect a simplication in this limit
because the values of Ri corresponding to (x, y, t) are (R1, R2, R3) = (2, 0, 0),
and the contributions to e2πiΩ with R = 0 and R = 2 cancel each other, as
was noted above.

Combining all contributions described above, a straightforward but
slightly tedious calculation gives

S2
00 = S2

01 =
t3/2(x− 1)(x+ 1)3y3/2

(t2 − 1)x3/2 (y2 − 1) (t(3xy + x+ y − 1) + x(y − 1) − y − 3)

(2.18) S2
02 = S2

03 = S2
04 = S2

05 =

t3/2(x− 1)3y3/2(tx− 1)(xy − 1)

4(t− 1)x3/2(y − 1)(ty − 1)(txy − 1)(t(3xy + x+ y − 1) + x(y − 1) − y − 3)



✐

✐

“3-Sheshmani” — 2023/10/10 — 15:41 — page 537 — #15
✐

✐

✐

✐

✐

✐

3-manifolds and Vafa-Witten theory 537

S2
06 = S2

07 = S2
08 = S2

09 =
t3/2

(
x2 − 1

)
y3/2(tx− 1)(xy − 1)

4 (t2 − 1)x3/2 (y2 − 1) (ty − 1)(txy + 1)

for generic (x, y, t). Specializing to x = y we obtain much simpler and easier
to read expressions:

(2.19)

S2
00 = S2

01 = t3/2(x+1)
(t2−1)(t(3x−1)+x−3)

S2
02 = S2

03 = S2
04 = S2

05 = t3/2(x−1)3

4(t−1)(tx2−1)(t(3x−1)+x−3)

S2
06 = S2

07 = S2
08 = S2

09 = t3/2(x2−1)
4(t2−1)(tx2+1)

Evaluating (2.12) for g = 0 with (2.18) gives

(2.20) gr-dimHVW(S2 × S1) =

2t3/2(x−1)y3/2(x(t(xy(t(x2+x+1)y−(t+1)x−xy)+y+1)−x+y−1)−1)
(t2−1)x3/2(y2−1)(ty−1)(t2x2y2−1)

= 2t3/2
(

(x− 1)y3/2(x2 − xy + x+ 1)

x3/2(y − 1)(y + 1)
+O(t)

)

which turns into a more compact expression (1.7b) when we specialize to
x = y. Similarly, for general g > 0 eqs. (2.12) and (2.19) lead to the claim
in (1.7c). The derivation of (1.7a) is much simpler and will be presented
shortly in section 3.

It is curious to note that (2.20) naively has a pole of order 4 at
x = y = t = 1 (associated with 4 non-compact complex directions in the
moduli space), whereas its simplified version (1.7b) has only an order-2
pole. This happens because of a partial cancellation between the numerator
and the denominator in (2.20) and teaches us a useful lesson. Namely, if
we were to multiply (2.20) by a factor (t− 1)(y − 1)(ty − 1)(txy − 1) that
naively cancels the pole at generic (x, y, t), we would get zero after a further
specialization to x = y = t = 1. Continuing along these lines, by a direct
calculation it is not difficult to prove a general result:

Lemma 6. At x = 1 = t, the asymptotic behavior of gr-dimHVW

(
S1 × Σg

)

specialized to y = x, i.e. that of (1.7b) and (1.7c), is given by

(2.21) gr-dimHVW

(
S1 × Σg

)
∼





4
(

8 1−t
1−x

)3g−3
, if g > 1

10, if g = 1
1

(1−t)(1−tx2) , if g = 0
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Other limits and specializations of (2.12) can be analyzed in a similar
fashion.

Remark 7. By construction, the graded dimension (2.12) of the Floer
homology in Vafa-Witten theory reduces to the equivariant Verlinde formula
for ordinary Higgs bundles with either R = 0 or R = 2 in suitable limits:

(2.22a) R = 0 : x→ 0, y → 0, t = fixed

(2.22b) R = 2 : x = fixed, y → 0, t→ 0

For example, in the case of genus g = 2, the latter gives
(2.23)
16x4 + 49x3 + 81x2 + 75x+ 35

(1 − x2)3
= 35 + 75x+ 186x2 + 274x3 + 469x4 + . . .

up to an overall factor
(

x
yt

)3/2
which has to do with the normalization of

Vafa-Witten invariants. The expansion (2.23) agrees with eq.(1.5) in [GP17]
at level k = 4 = 0 + 2 + 2. Note, although the Higgs fields with R = 0 effec-
tively disappear in the limit (2.22b), they each leave a trace by shifting the
value of k by +2. For gauge groups of higher rank, the shift is by the dual
Coxeter number, cf. [GP17, sec. 5.1.1].

More generally, for other values of g similar expressions can be obtained
by specializing (2.18) to y = 0 and t = 0:

(2.24)

S2
00 = S2

01 = (x−1)(x+1)3

x+3

S2
02 = S2

03 = S2
04 = S2

05 = (x−1)3

4(x+3)

S2
06 = S2

07 = S2
08 = S2

09 = 1
4(x2 − 1)

where we again omitted the overall factor
(

x
yt

)3/2
related to a choice of nor-

malization. Since the values of S2
0λ are pairwise equal, there are effectively 5

values of λ, in agreement with the fact that the equivariant Verlinde formula
has k + 1 Bethe vacua for general k.

Similarly, the limit (2.22a) can be obtained by specializing (2.19) to
x = 0.

Remark 8. So far we tacitly ignored one important detail, which does
not appear for G = SU(2) but would enter the discussion for more general
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gauge groups. In general, the Vafa-Witten theory on M4 requires a choice
of a decoration (’t Hooft flux) valued in H2(M4; Γ) ∼= Hom

(
H2(M4;Z),Γ

)
,

where

(2.25) Γ = π1(G)

On a 4-manifold of the form M4 = S1 ×M3 this requires a choice of a dec-
oration valued in H2(M3; Γ), which can be thought of as simply the restric-
tion of the decoration from M4, as well as the choice of grading valued in
H2(M3; Γ̂), where

(2.26) Γ̂ = Hom (Γ, U(1))

is the Pontryagin dual group. Therefore, we conclude that, in general,
HVW(M3) is decorated by H2(M3; Γ) and graded by H2(M3; Γ̂):

HVW(M3) structure

graded by H2(M3; Γ̂)

decorated by H2(M3; Γ)

We close this section by drawing a general lesson from preliminary con-
siderations presented here. In a simple infinite family of 3-manifolds con-
sidered here, we found that the graded dimension of HVW(M3) is always
a power series, rather than a finite polynomial. In fact, already from the
preliminary analysis in this section one can see several good reasons why
HVW(M3) is expected to be infinite-dimensional for a general 3-manifold, a
conclusion that will be further supported by considerations in section 3.

Conjecture 9. HVW(M3) is infinite-dimensional for any closed 3-manifold
M3.

In light of this Conjecture, the role of the equivariant parameters (x, y, t)
— that were central to the considerations of the present section — is to
provide a way to regularize the infinity in dimHVW(M3). This also illustrate
well the challenge of computing HVW(M3) on more general 3-manifolds: in
the absence of suitable symmetries and equivariant parameters, one has to
work with the entire HVW(M3), which is infinite-dimensional.
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3. Q-cohomology

In this section, we pursue the same goal — to explicitly compute HVW(M3)
for a class of 3-manifolds — via a direct analysis of Q-cohomology in Vafa-
Witten theory. The results agree with the preliminary considerations in sec-
tion 2.

Recall, that the off-shell realization [VW94] of Vafa-Witten theory in-
volves the following set of fields5

bosons:

ϕ+2, ϕ
−2
, C0 : scalars (0-forms)

A0
1, H̃

0
1 : 1-forms

(B+
2 )0, (D+

2 )0 : self-dual 2-forms

fermions

ζ+1, η−1 : scalars (0-forms)

ψ+1
1 , χ̃−1

1 : 1-forms

(ψ̃+
2 )+1, (χ+

2 )−1 : self-dual 2-form

and their Q-transformations:

(3.1)

QA = ψ1

Qϕ = 0

Qϕ = η

Qη = i[ϕ, ϕ]

Qψ1 = dAϕ

Qχ+
2 = D+

2 + s+2
QD+

2 = i[χ+
2 , ϕ] −Qs+2

QB+
2 = ψ̃+

2

Qψ̃+
2 = i[B+

2 , ϕ]

Qχ̃1 = H̃1 + s1

QH̃1 = i[χ̃1, ϕ] −Qs1

QC = ζ

Qζ = i[C, ϕ]

where

s+2 = F+
αβ + [B+

γα, B
+γ
β ] + 2i[B+

αβ , C]

s1 = Dαα̇C + iDβα̇B
+β

α

The on-shell formulation is obtained simply by setting D+
αβ = 0 = H̃αα̇.

Lemma 10. Up to gauge transformations, Q2 = 0.

Proof. This is easily demonstrated by a direct calculation. □

5Here, the subscript indicates the degree of the differential form on a 4-manifold,
while the superscript is the U(1)t grading, also known as the “ghost number.”
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This basic fact about topological gauge theory is the reason one can
define the Q-cohomology groups

(3.2) HVW(M3) :=
ker Q

im Q

which are the main objects of study in the present paper.

Figure 4. The space of lo-
cal operators is isomor-
phic to the space of states
on a sphere.

Just like the fields of Vafa-Witten theory are
differential forms of various degrees graded by
weights of the U(1)t symmetry, so are the Q-
cohomology classes. The cohomology classes rep-
resented by differential forms of degree 0 are
called local operators, i.e. operators supported at
points on a 4-manifold. Since in four dimensions
a link of a point is a 3-sphere, the space of local
operators is naturally isomorphic to HVW(S3),
cf. Figure 4. This relation, often called the state-
operator correspondence, has obvious generaliza-
tions that will be discussed below.

For example, when we talk about M3 = S2 × S1 we are effectively count-
ing local operators in three-dimensional theory obtained by dimensional re-
duction of the 4d theory on a circle. Such 3d local operators come either
from local operators in four dimensions or from 4d line operators, i.e. Q-
cohomology classes supported on lines (a.k.a. 1-observables). We will return
to the local operators of such 3d theory shortly, after discussing the original
4d theory first, thus providing a proof of (1.7a).

Proposition 11. In the notations (1.5) introduced in the Introduction,
the space of local observables in Vafa-Witten theory with gauge group G =
SU(2), i.e. the space of states on M3 = S3, is

(3.3) HVW(S3) = T +
0

∼= C[u]

generated by u = Trϕ2.

Moreover, (3.3) transforms trivially under the modular SL(2,Z) action
discussed in section 2.

Proof. To construct a local operator, we can only use 0-forms. We can not
use their exterior derivatives or forms of higher degrees because that would
require the metric and the resulting operators would be Q-exact. This limits
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our arsenal to the 0-forms ϕ, ϕ, C, ζ, and η. In addition, all observables (not
only local) must be gauge-invariant. Since all fields in Vafa-Witten theory
transform in the adjoint representation of the gauge group, this means we
need to consider traces of polynomials in ϕ, ϕ, C, ζ, and η. Inspecting the
Q-action (3.1) on these fields leads to u = Trϕ2 as the only independent
gauge-invariant local observable, as also found e.g. in [Loz99]. Polynomials
in u also represent Q-cohomology classes, of course. This leads to (3.3). □

In higher rank, HVW(S3) is spanned by invariant polynomials of ϕ. In the
opposite direction, it is also instructive to consider a version of the Proposi-
tion 11 in Vafa-Witten theory with gauge group G = U(1). The arguments
are similar, but the Q-action on fields is much simpler than (3.1). Namely,
in abelian theory commutators vanish and dA becomes the ordinary exterior
derivative:

(3.4)

QA = ψ1

Qϕ = 0

Qϕ = η

Qη = 0

Qψ1 = dϕ

Qχ+
2 = D+

2 + s+2
QD+

2 = 0

QB+
2 = ψ̃+

2

Qψ̃+
2 = 0

Qχ̃1 = H̃1 + s1

QH̃1 = 0

QC = ζ

Qζ = 0

We quickly learn that in Vafa-Witten theory with G = U(1) one also has
HVW(S3) = T +

0 , just as (3.3) in the theory with G = SU(2). Moreover, both
of these agree with the Floer homology of S3 and with the Heegaard Floer
homology of S3, cf. (1.4a). This is not a coincidence and is a good illus-
tration of a deeper set of relations between HVW(M3) and the instanton
Floer homology of the same 3-manifold that will be discussed further below.
These parallels with the instanton Floer homology will help us to better
understand HVW(M3) for M3 = Σg × S1.

3.1. Comparison to Floer homology

The first column in (3.1) is precisely the Q-cohomology in Donaldson-Witten
theory, with the same action of Q. This suggests that we should consider
HVW(M3) and HF (M3) in parallel, anticipating a general relation of the
form

(3.5) HF (M3) ⊆ HVW(M3)
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where the reduction of grading mod 8 is understood on the right-hand side.
Clarifying the role of such relation, and understanding under what conditions
it should be expected, is one of the motivations in the discussion below. It
will help us to understand better the structure of HVW(M3) for general M3

and for M3 = Σg × S1 in particular.
Recall, that the Floer homology HF (Σg × S1) is isomorphic to the quan-

tum cohomology of BunGC
, the space of holomorphic bundles on Σg (see e.g.

[Mn99]):

(3.6) HF ∗(Σg × S1) ∼= QH∗(BunGC
)

which, in turn, is isomorphic to the space of flat G-connections, BunGC
∼=

Mflat(Σg, G), according to the celebrated theorem of Narashimhan and
Seshadri. More precisely, here by BunGC

we mean the space of bundles
with fixed determinant, such that it is simply-connected for any g and
BunGC

= pt when g = 1. The Poincaré polynomial of BunGC
(Σg) is given

by the Harder-Narasimhan formula:

(3.7) P (BunSL(2)(Σg)) =
(1 + t3)2g − t2g(1 + t)2g

(1 − t2)(1 − t4)

If we wish to work with all bundles (rather than bundles with fixed determi-
nant), which in gauge theory language corresponds to replacing G = SU(N)
by G = U(N), then

(3.8) H∗(BunGL(N)(Σg)) ∼= H∗(T 2g) ⊗H∗(BunSL(N)(Σg))

Returning to the quantum cohomology (3.6) and the corresponding Floer
homology, it has the following generators:

α ∈ HF 2(Σg × S1)

ψi ∈ HF 3(Σg × S1) 1 ≤ i ≤ 2g(3.9)

β ∈ HF 4(Σg × S1)

The action of Diff(Σg) on HF ∗(Σg × S1) factors through Sp(2g,Z) on ψi,
so that the invariant part

(3.10) HF ∗(Σg × S1)Sp(2g,Z) = C[α, β, γ]/Jg
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is generated by α, β, and the Sp(2g,Z)-invariant combination

(3.11) γ = −2

g∑

i=1

ψiψi+g

Moreover,

(3.12) HF ∗(Σg × S1) =

g⊕

k=0

Λk
0HF

3 ⊗ C[α, β, γ]/Jg−k

where Λk
0HF

3 = ker(γg−k+1 : ΛkHF 3 → Λ2g−k+2HF 3) is the primitive part
of ΛkHF 3 and the explicit description of Jg can be found e.g. in [Mn99].

Note, p-form observables in Donaldson-Witten theory correspond to co-
homology classes of homological degree 4 − p. This can be understood as a
consequence of the standard descent procedure,

0 = i{Q,W0}, dW0 = i{Q,W1}

dW1 = i{Q,W2}, dW2 = i{Q,W3}(3.13)

dW3 = i{Q,W4}, dW4 = 0

applied to the local observable W0 = u = Trϕ2 that we already met earlier in
(3.3) and that also is a generator of HF (S3) ∼= HVW(S3), cf. (3.5). Indeed,
in the conventions such that the homological grading in (3.9) is twice the
U(1)t degree, β = −4u has U(1)t degree 2 and the topological supercharge
Q carries U(1)t degree +1

2 . In this conventions, Wp constructed as in (3.13)
is a p-form on M4 of U(1)t degree

(3.14) degt(Wp) = degt(W0) −
p

2

Therefore, integrating Wp over a p-cycle γ in M4 we obtain a topological
observable with U(1)t grading degt(W0) −

p
2 ,

(3.15) O(γ) :=

∫

γ
Wdim(γ)

Since in the conventions used here the homological grading and U(1)t grad-
ing differ by a factor of 2, the homological degree of the observable O(γ) is
2 degt(W0) − p.

The relation (3.6) has an analogue in the Vafa-Witten theory and can be
understood in the general framework a la Atiyah-Floer. Indeed, the push-
forward, or the “fiber integration,” of the 4d TQFT functor along Σg gives
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a 2d TQFT, namely the A-model with target space given by the space of
solutions to gauge theory PDEs on Σg. When this process, called topo-
logical reduction [BJSV95], is applied to the Donaldson-Witten theory it
gives precisely A-model with target space BunGC

. This is in excellent agree-
ment with the Atiyah-Floer conjecture which, among other things, asserts
that upon such fiber integration (or, topological reduction) a 3-manifold M b

3

with boundary Σg = ∂(M b
3) defines a boundary condition (“brane”) B(M b

3)
in the A-model with target space BunGC

(Σg). In this way, the instanton
Floer homology of the Heegaard decomposition

(3.16) M3 = M+
3 ∪Σg

M−
3

can be understood as the Lagrangian Fukaya-Floer homology of B(M+
3 )

and B(M−
3 ) in the ambient moduli space BunGC

∼= Mflat(Σg, G). In this
relation, gauge instantons that provide a differential in the Floer complex
become disk instantantons in the A-model on BunGC

(Σg). Similarly, in the
Vafa-Witten theory the space of solutions to the PDE on Σg, i.e. target
space of the topological sigma-model, MVW(Σg, G), is the space of E-valued
G-Higgs bundles on Σ that we already encountered in section 2. There are
some notable differences, however.

Thus, one important novelty of the Vafa-Witten theory is that it has
much larger configuation space (space of fields), larger (super)symmetry
and, correspondingly, larger structure in the push-forward to the topological
sigma-model along Σg. In particular, the resulting sigma-model has no disk
instantons (cf. e.g. [Leu02, Lemma 15]) since in the context of Vafa-Witten
theory B(M+

3 ) and B(M−
3 ) are holomorphic Lagrangians submanifolds of

MVW(Σg, G). This strongly suggests that the original 4d gauge theory also
has no instantons that contribute to HVW(M3).

This conclusion is also supported by the fact that on R×M3 or on
S1 ×M3 Vafa-Witten theory is equivalent to another, amphicheiral twist
of N = 4 super-Yang-Mills [GM01] which is known to have no instantons
[LL97]. Based on all of these, we expect:

Conjecture 12. In Vafa-Witten theory on 3-manifolds, there are no (disk)
instantons that contribute to HVW(M3).

In what follows we assume the validity of this conjecture which dras-
tically simplifies the computation of the homology groups HVW(M3). It
basically means that the chain complex underlying this homology theory
is obtained by restricting the original configuration space to the space of
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fields on M3, with the differential induced by the action of Q in (3.1), jus-
tifying (3.2).

As it often happens in topological sigma-models, the action of Q can be
interpreted geometrically as the suitable differential acting on the differential
forms on the target manifold. In the context of Vafa-Witten theory, where
the target space MVW(Σg, G) is the space of E-valued G-Higgs bundles on Σ,
this also clarifies and further justifies the claim in Conjecture 9. Namely, from
the cohomological perspective discussed here, the infinite-dimensionality of
HVW(M3) is attributed to the non-compactness of MVW(Σg, G). Just like
the space of holomorphic functions on C is infinite-dimensional, the non-
compactness of MVW(Σg, G) leads to dimHVW(M3) = ∞ for any M3. This
analogy is, in fact, realized in the Vafa-Witten theory with gauge group
G = U(1) that we already briefly discussed around eq.(3.4) in this section.

The computation of HVW(M3) for M3 = Σg × S1 is similar to the com-
putation of (3.3), except many other fields besides ϕ have zero-modes on
M3 and contribute to HVW(M3). Equivalently, as explained around Fig-
ure 4, p-form observables in the original theory integrated over p-cycles in
M3 give rise to non-trivial Q-cohomology classes, cf. (3.15). The counting
of zero-modes is especially simple in the case of abelian theory, on which
more general consideration can be modelled. For example, when G = U(1),
1-form observables include ψ1, which can be integrated over 1-cycles and give
2g + 1 Grassmann (odd) zero-modes on M3 = Σg × S1. More precisely, the
zero-modes of A parametrize Mflat(Σg, U(1)) = Jac(Σg) ∼= T 2g, the fields ϕ,
ϕ, C, η, and ζ have one zero-mode each, while each of the remaining fields has
2g + 1 zero-modes, modulo constraints (field equations). Altogether, these
modes parametrize6

MVW(Σg, U(1)) = T ∗Jac(Σg) × ΠC× ΠC(3.17)

× (C× ΠC
g) × (C× ΠC

g)

where ΠCn represents Grassmann (odd) space and contributes to Q-
cohomology a tensor product of n copies of the fermionic Fock space,
F = Λ∗[ξ] ∼= H∗(CP1). In comparison, each copy of C in the moduli space
(3.17) contributes to the Q-cohomology a factor of T +, the Fock space of a
single boson described in (1.5) and illustrated in Figure 2.

6Notice that bosonic (even) and Grassmann (odd) dimensions of this superspace
are equal; this is a consequence of the fact that Vafa-Witten theory is balanced
[DM97]. The bosonic (even) part of this superspace is C

2 ×Mflat(M3, U(1)C), and
the same expression holds for general 3-manifold M3.
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The result (3.17) agrees with the analysis in section 2, where it can
be understood as the moduli space of E-valued G-Higgs bundles on Σ, with
G = U(1). Indeed, a Higgs field on Σ with R-charge R (cf. (2.6)) contributes

H0(K
R/2
Σ ) bosonic zero-modes and H0(K

1−R/2
Σ ) fermionic zero-modes, all

valued in Lie(G). In the case of Vafa-Witten theory we have three Higgs
fields with R = 2, 0, and 0, respectively, which leads precisely to (3.17).
Furthermore, in the notations of section 2, the symmetry U(1)x acts on the
fiber of T ∗Jac(Σ) and one of the ΠC factors in (3.17), whereas symmetries
U(1)y and U(1)t each act on the corresponding copy of (C× ΠCg) in (3.17).
For a non-abelian G, the analysis is similar, though MVW(Σg, G) is no longer
a product a la (3.17); T ∗Jac(Σ) is replaced by Hom (π1(Σ), GC) and each
copy of C (resp. ΠC) is replaced by gC (resp. ΠgC), subject to the constraints
and gauge transformations that act simultaneously on all of the factors.

Note, unlike (3.3), the cohomology of (3.17) and its non-abelian general-
ization HVW(Σg × S1) transform non-trivially under the modular SL(2,Z)
action discussed in section 2. In particular, the S element of SL(2,Z) acts
on Jac(Σg) as the Fourier-Mukai transform.

As already noted earlier, the spectrum of fields and the (super)symmetry
algebra in the Vafa-Witten theory is much larger compared to what one finds
in the Donaldson-Witten theory, cf. (3.5). As a result, there is more structure
in Q-cohomology of Vafa-Witten theory, to which we turn next.

3.2. Differentials and spectral sequences

There are two ways in which spectral sequences typically arise in a cohomo-
logical TQFT: one can change the differential Q while keeping the theory
intact, or one can deform the theory. (See [GNS+16] for an extensive dis-
cussion and realizations in various dimensions.) In the first case, we obtain
a different cohomological invariant in the same theory, whereas in the latter
case we obtain a relation between cohomological invariants of two different
theories.

In the present context of Vafa-Witten theory, a natural class of defor-
mations consists of relevant deformations that, in a physical theory, initiate
RG flows to new conformal fixed points. If we want the resulting SCFT to
allow a topological twist on general 4-manifolds, we need to preserve at least
N = 2 supersymmetry of the physical theory and the RG-flow. (This condi-
tion is necessary, but may not be sufficient; there can be further constraints.)
In such a scenario, one can expect the following:
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Conjecture 13. A 4d N = 2 theory that can be reached from 4d N = 4
super-Yang-Mills via an RG-flow leads to a spectral sequence that starts with
HVW(M3) and converges to Floer-like homology in that N = 2 theory.

One interesting feature of spectral sequences induced by RG-flows is that
a local relevant operator O that triggers the flow may transform non-trivially
under the subgroup of SO(6)R that becomes the R-symmetry of the 4d N =
2 SCFT. If so, under the topological twist it may no longer remain a scalar (a
0-form) on M4, thus requiring a choice of additional structure. For example,
a mass deformation to N = 2∗ theory, already considered in [VW94, LL98],
makes all the fields in the right column of (3.1) massive7 and does not require
any additional choices or structures on M3 or M4. It initiates an RG-flow
to 4d N = 2 super-Yang-Mills, whose topologically twisted version is the
Donaldson-Witten theory, providing another perspective on the connection
between these two topological theories, cf. (3.5).

Now, let us consider the other mechanism that leads to spectral se-
quences, in which the theory remains unchanged, but the definition of Q
changes. This is only possible if a theory admits more than one BRST op-
erator (scalar supercharge) that squares to zero. Luckily, the Vafa-Witten
theory is a good example; in addition to the original differential Q it has the
second differential, Q′, that acts as follows

(3.18)

Q′A = χ̃1

Q′ϕ = ζ

Q′ϕ = 0

Q′η = i[C, ϕ]

Q′ψ1 = −H̃1 − s1 + dAC

Q′χ+
2 = i[B+

2 , ϕ]

QD+
2 = i[χ+

2 , ϕ] −Qs+2

Q′B+
2 = χ+

2

Qψ̃+
2 =

Q′χ̃1 = −dAϕ

QH̃1 = i[χ̃1, ϕ] −Qs1

Q′C = −η

Q′ζ = i[ϕ, ϕ]

Since Vafa-Witten theory on a general 4-manifold has SU(2)R symmetry,
under which Q and Q′ transform as a two-dimensional representation, 2, it
is convenient to write the action of Q and Q′ in a way that makes this
symmetry manifest. Therefore, we introduce Qa = (Q,Q′), where a = 1, 2.
Similarly, we can combine all odd (Grassmann) fields of the Vafa-Witten
theory into three SU(2)R doublets: ζ and η into a doublet of 0-forms ηa, ψ1

and χ̃1 into a doublet of 1-forms ψa
1 , ψ̃+

2 and χ+
2 into a doublet of self-dual

2-forms χa
2.

7At the level of Q-cohomology, it modifies the right-hand side in (3.1).



✐

✐

“3-Sheshmani” — 2023/10/10 — 15:41 — page 549 — #27
✐

✐

✐

✐

✐

✐

3-manifolds and Vafa-Witten theory 549

The bosonic (or, even) fields of the Vafa-Witten theory likewise combine
into a triplet of 0-forms ϕab = (ϕ,C, ϕ), and the rest are SU(2)R singlets: A,
D+

2 , B+
2 , and H̃1. Then, the action of the BRST differentials (3.1) and (3.18)

can be written in a more compact form:

(3.19)

QaA = ψa
1

Qaϕbc = 1
2ϵ

abηc +
1

2
ϵacηb

Qaψb
1 = dAϕ

ab + ϵabH̃1

Qaχb
2 = [B+

2 , ϕ
ab] + ϵabG+

2

QaB+
2 = χa

2

Qaηb = −ϵcd[ϕac, ϕbd]

QaH̃1 = −1
2dAη

a − ϵcd[ϕac, ψd
1 ]

QaG+
2 = −1

2 [B+
2 , η

a] − ϵbc[ϕ
ab, χc

2]

where ϵab is the invariant tensor of SU(2)R, and we use the conventions
ϵ12 = 1, ϵacϵcb = −δab , φa = φbϵba, φa = ϵabφb.

In addition to the differentials Qa = (Q,Q′), the Vafa-Witten theory also
has a doublet of vector supercharges (described in detail in Appendix A).
On a 4-manifold of the form (1.2) they produce another doublet of BRST
differentials, Q

a
, that are scalars with respect to the holonomy group of

M3. Altogether, the total number of scalar supercharges is NT = 4, as noted
earlier e.g. in Table 1. In order to write their action on fields in Vafa-Witten
theory, it is convenient to describe the latter as forms on M3.

Since Ω0(R×M3) ∼= Ω0(M3), all 0-forms (scalars) remain 0-forms on
M3. In other words, ϕab and ηa are not affected by the reduction to M3.
In the case of 1-forms, we have Ω1(R×M3) ∼= Ω1(M3) ⊕ Ω0(M3), and so
A, H̃1, ψ

a
1 produce additional 0-forms on M3 that, following [GM01], we

denote ρ, Y , and ηa, respectively. Finally, using Ω2,+(R×M3) ∼= Ω1(M3),
we can replace the self-dual forms B+

2 , G+
2 , χa

2 by 1-forms on M3: V1, B1,

and ψ
a
1, respectively. It is also convenient to denote H̃1 + [V1, ρ] = B1. Then,

the action of all four BRST operators can be written as
(3.20)

QaA = ψa
1

Qaϕbc = 1
2ϵ

abηc + 1
2ϵ

acηb

Qaηb = −ϵcd[ϕac, ϕbd]

Qaψb
1 = dAϕ

ab − ϵab[V1, ρ] + ϵabB1

QaB1 = −1
2dAη

a + 1
2 [V, ηa]

− ϵcd[ϕac, ψd
1 ] − [ρ, ψ

a
1]

QaV1 = ψ
a
1

Qaρ = 1
2η

a

Q
a
A = ψ

a
1

Q
a
ϕbc = 1

2ϵ
abηc + 1

2ϵ
acηb

Q
a
ηb = −ϵcd[ϕac, ϕbd]

Q
a
ψ
b
1 = dAϕ

ab − ϵab[V1, ρ] − ϵabB1

Q
a
B1 = 1

2dAη
a + 1

2 [V, ηa]

+ ϵcd[ϕac, ψ
d
1] − [ρ, ψa

1 ]

Q
a
V1 = −ψa

1

Q
a
ρ = −1

2η
a
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Qaηb = 2[ρ, ϕab] + ϵabY

Qaψ
b
1 = [V1, ϕ

ab] + ϵabdAρ+ ϵabB1

QaB1 = −1
2dAη

a − 1
2 [V1, η

a]

− ϵcd[ϕac, ψ
d
1] + [ρ, ψa

1 ]

QaY = −[ρ, ηa] − ϵcd[ϕac, ηd]

Q
a
ηb = −2[ρ, ϕab] − ϵabY

Q
a
ψb
1 = −[V1, ϕ

ab] − ϵabdAρ+ ϵabB1

Q
a
B1 = −1

2dAη
a + 1

2 [V1, η
a]

− ϵcd[ϕac, ψd
1 ] − [ρ, ψ

a
1]

Q
a
Y = −[ρ, ηa] + ϵcd[ϕac, ηd]

Modulo gauge transformations, these operators obey

(3.21) {Qa, Qb} = 0 , {Qa, Q
b
} = −ϵabH , {Q

a
, Q

b
} = 0

where the “Hamiltonian” H generates translations along R in M4 = R×M3,
cf. (1.2).

Note, this algebra has the same structure as the familiar 2d N = (2, 2)
supersymmetry algebra [HKK+03]; namely, it is the 1d version of this super-
algebra obtained by reduction to supersymmetric quantum mechanics. Along
the same lines, the subalgebra generated by Qa should be compared to the 2d
N = (0, 2) supersymmetry algebra. Only this subalgebra is relevant to defin-
ing homological invariants of 3-manifolds that extend to a four-dimensional
TQFT-like structure. However, from a purely three-dimensional perspective,
one might consider a more general combination of BRST differentials

(3.22) d = saQ
a + rbQ

b

Then, a simple calculation gives

(3.23) d2 = −ϵabsarbH = (s2r1 − s1r2)H

and the vanishing of the right-hand side defines a quadric in the CP3,
parametrized by (sa, ra) modulo the overall scale, cf. [GNS+16]. It is
S2 × S2, which therefore is the space of possible choices of the BRST dif-
ferential in the Vafa-Witten theory on a general 3-manifold. It would be
interesting to analyze further how the computation of Q-cohomology varies
over S2 × S2, if at all.

4. Applications and future directions

We conclude with a brief discussion of various potential applications of
HVW(M3) and directions for future work.
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More general 3-manifolds

a1

a2

a5 a6

a3

a4

a7

a8

a9

Figure 5. An example of a
plumbing graph.

One clear goal that also motivated this work
is the computation of HVW(M3) for more gen-
eral 3-manifolds. The infinite family considered
in this paper is part of a more general family of
Seifert 3-manifolds which, in turn, belongs to a
larger family of plumbed 3-manifolds. The latter
can be conveniently described by a combinatorial
data, as illustrated in Figure 5, and therefore it
would be nice to formulate HVW(M3) directly in
terms of such combinatorial data.

Mapping tori

In general, there could be various ways of defining HVW(M3), but all such
versions should enjoy the action of the mapping class group MCG(M3), cf.
(2.8). Studying this action more systematically and computing the invariants
of the mapping tori of M3,

(4.1) M4 =
M3 × I

(x, 0) ∼ (φ(x), 1)

as Tr HVW(M3)φ could help to identify the particular definition of HVW(M3)
that matches the existing techniques of computing 4-manifold invariants
ZVW(M4). This could have important implications for understanding the
functoriality in the Vafa-Witten theory, and developing the corresponding
TQFT-like structure.

Trisections

Another construction of 4-manifolds that has close ties with the examples of
this paper is based on decomposing M4 into three basic pieces along a genus-
g central surface Σg. Such trisections, analogous to Heegaard decompositions
in dimension 3, allow to construct an arbitrary smooth 4-manifold and the
initial steps of the corresponding computation of ZVW(M4) based on this
technique were discussed in [FG20].
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Variants

It is standard in gauge theory that, depending on how certain analyti-
cal details are treated, one can obtain different versions of the homolog-
ical invariant. For example, the standard definition of the Q-cohomology
in Donaldson-Witten and in Vafa-Witten theories leads to HF (M3) and
HVW(M3), such that both are isomorphic to T + for M3 = S3, in particular
illustrating (3.5). This should not be confused with a finite-dimensional ver-
sion of the instanton Floer homology, I∗(M3), such that e.g. for the Poincaré
sphere P = Σ(2, 3, 5):

(4.2) In(P ) =

{
Z, if n = 0, 4

0, otherwise

Here, n is the mod 8 grading, and the two generators in degree n = 0 and 4
correspond to the two irreducible representations π1(P ) → SU(2). (See e.g.
[FS90] for more details.) Another variant is the framed instanton homology,
I#(M3) := I(M3#T

3), that was already mentioned in (2.11).
Similarly, in the context of the Vafa-Witten theory the computation

of Q-cohomology naturally leads to HVW(M3), which is expected to be
infinite-dimensional for any 3-manifold, cf. Conjecture 9. In particular, as
Proposition 11 illustrates, we expect an isolated reducible representation
π1(M3) → SL(2,C) to contribute to HVW(M3) a tower of states T +, as in
(1.4a). Moreover, the discussion in section 3 makes it clear that isolated irre-
ducible representations π1(M3) → SL(2,C) (modulo conjugation) also con-
tribute to HVW(M3), though their contribution may be finite-dimensional,
as it also happens in the monopole Floer homology or HF+(M3).

For example, M3 = Σ(2, 3, 7) has a total of four SL(2,C) flat connec-
tions, one of which is trivial, while the other three correspond to irreducible
representations π1(M3) → SL(2,C), modulo conjugation. Therefore, we ex-
pect four contributions to HVW(Σ(2, 3, 7)): one copy of T + as in the case
of M3 = S3, and three finite-dimensional contributions due to irreducible
SL(2,C) flat connections. The instanton homology I∗(Σ(2, 3, 7)) has a sim-
ilar structure, except that it does not have a contribution of a trivial flat
connection — something we already saw in (4.2) — and instead of three
contributions from irreducible flat connections it has only two:

(4.3) In(Σ(2, 3, 7)) =

{
Z, if n = 2, 6

0, otherwise



✐

✐

“3-Sheshmani” — 2023/10/10 — 15:41 — page 553 — #31
✐

✐

✐

✐

✐

✐

3-manifolds and Vafa-Witten theory 553

The reason for this is that two out of three irreducible SL(2,C) flat connec-
tions can be conjugated to SU(2), i.e. they correspond to irreducible repre-
sentations π1(M3) → SU(2), whereas the last one is not. On the other hand,
much like HVW(M3), a sheaf-theoretic model for SL(2,C) Floer homology
[AM20] receives contributions from all three irreducible flat connections on
M3 = Σ(2, 3, 7),

(4.4) HP ∗(Σ(2, 3, 7)) = Z(0) ⊕ Z(0) ⊕ Z(0)

and a similar consideration for other Brieskorn spheres suggests that, at
least in this family, we may expect an isomorphism

(4.5) H∗
VW(Σ(p, q, r))

?
∼= T + ⊕HP ∗(Σ(p, q, r))

As a natural direction for future work, it would be interesting to either prove
or disprove this relation (and, in the former case, generalize to more general
3-manifolds, such as plumbings mentioned earlier, cf. Figure 5).

Towards surgery formulae in Vafa-Witten theory

There are two types of surgery formulae that we can consider: surgeries in
three dimensions relevant to the computation of HVW(M3), and surgeries
in four dimensions that produce ZVW(M4) via cutting-and-gluing along 3-
manifolds.

The infinite family of 3-manifolds considered in this paper has some
direct connections to notable surgery operations in four dimensions. Thus,
M3 = S2 × S1 is relevant to the Gluck twist, whereas M3 = T 3 is relevant to
knot surgery and the log-transform. All these surgery operations consist of
cutting a 4-manifold along the corresponding M3 and then re-gluing pieces
back in a new way, or gluing in new four-dimensional pieces with the same
boundary M3. This again requires understanding how a given element of
the mapping class group, φ ∈ MCG(M3), acts on HVW(M3), cf. (2.8). For
example, our preliminary analysis indicates that the Gluck involution that
generates Z2 ⊂ MCG(S2 × S1), associated with π1(SO(3)) = Z2, acts triv-
ially on HVW(S2 × S1). This implies that ZVW(M4, G) can not detect the
Gluck twist when π1(G) = 1. (The last condition appears in view of Re-
mark 8.) We plan to return to this in future work and also analyze other
important elements of MCG(M3) acting on HVW(M3).

In the case of gluing along M3 = T 3, applying (2.7) to a family of elliptic
fibrations M4 = E(n) with χ = 12n, σ = −8n, and n− 1 basic SW classes,



✐

✐

“3-Sheshmani” — 2023/10/10 — 15:41 — page 554 — #32
✐

✐

✐

✐

✐

✐

554 S. Gukov, A. Sheshmani, and S.-T. Yau

we quickly learn that (2.7) can not be consistent with a simple multiplica-
tive gluing formula a la [MMS97, Tau01]. Indeed, representing E(n) as an
iterated fiber sum, we have

(4.6) E(n) =
(
E(n− 2) \NF

)
∪T 3

(
E(2) \NF

)

where NF
∼= T 2 ×D2 is a neighborhood of a generic fiber. Then, assuming

e.g. n = even, a simple multiplicative gluing formula along M3 = T 3 would
imply

(4.7) ZVW(E(n)) =

(
ZVW(E(4))

ZVW(E(2))

)n−2

2

ZVW(E(2))

which is not the case:

Proposition 14. For M4 = E(n) with n = even, (2.7) gives

(4.8) ZVW(E(n)) =





(−1)
n

2
+1
(
n−2
n

2
−1

)
1
2

(
G(q2)

4

)n

2

, if n > 2

1
8G(q2) + 1

4G(q1/2) + 1
4G(−q1/2), if n = 2

where

G(q) =
1

η24
=

(2π)12

∆(τ)
=

1

q

(
1 + 24q + 324q2 + 3200q3 + 25650q4 + . . .

)

Proof. The elliptic surface E(n) has the following basic topological invariants

(4.9) b1 = 0 , 2χ+ 3σ = 0 ,
χ+ σ

4
= n

Moreover, F · F = 0 and the basic classes are (n− 2j)F , with j = 1, . . . , n−
1 and the corresponding Seiberg-Witten invariants:

(4.10) SWE(n)(sj) = (−1)j+1

(
n− 2

j − 1

)

In order to obtain the G = SU(2) invariant of M4 = E(n), we need to sub-
stitute all these into (2.7), evaluate it at v = 0 and also multiply by a factor
of 1

2 (associated with the center of SU(2)). For n = even, a straightforward
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calculation gives

(4.11) ZVW(E(n)) = (−1)
n

2
+1

(
n− 2
n
2 − 1

)
1

2

(
G(q2)

4

)n

2

+

+

n−1∑

j=1

(−1)j+1

(
n− 2

j − 1

)[(G(q1/2)

4

)n

2

+

(
G(−q1/2)

4

)n

2 ]

By the binomial formula, the second line in this expression is non-zero only
for n = 2 and, therefore, we otain (4.8). □

This result is not surprising because gluing along M3 is expected [FG20]
to be governed by MTC[M3], which is very non-trivial for M3 = T 3. Indeed,
modulo delicate questions related to KK modes (which will be discussed
elsewhere), the calculations in section 2 can be interpreted as the computa-
tion of (2.10) for M3 = T 3. Indeed, since M4 = T 2 × Σg can be obtained by
gluing basic pieces8 along 3-tori and the corresponding calculation of Vafa-
Witten invariants for G = SU(2) is expressed as a sum (2.12) where λ takes
10 possible values, cf. (2.19), we expect the gluing formula for (4.6) to be
also a sum over the same set of λ. In comparison, the naive multiplicative
gluing formula a la (4.7) would mean that the sum over λ consists of a single
term.

Surgery operations that involve cutting and gluing M3 itself, i.e. surgery
formulae for HVW(M3), are also interesting. For example, continuing the
parallel with the Donaldson-Witten theory, one might expect the standard
surgery exact triangles
(4.12)

. . . −−−→ HVW(S3) −−−→ HVW(S3
0(K)) −−−→ HVW(S3

+1(K)) −−−→ . . .

or, more generally,
(4.13)

. . . −−−→ HVW(Y0(K))
i

−−−→ HVW(Y+1(K))
j

−−−→ HVW(Y )
k

−−−→ HVW(Y0(K)) −−−→ . . .

where K is a knot in a homology 3-sphere Y . Although such surgery exact
triangles are ubiquitous in gauge theory — apart from the original Floer
homology, they also exist in many variants of the monopole Floer homology
and its close cousin, the Heegaard Floer homology — it is not clear whether
they hold in Vafa-Witten theory. One important difference that already
entered our analysis in a number of places has to do with degree shifts.

8These basic pieces are products of T 2 with pairs-of-pants, illustrated in Figure 3.
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Indeed, all maps in (4.13) and, similarly, in the oppositely-oriented exact
sequence associated with the inverse surgery operation,
(4.14)
. . . −−−→ HVW(Y−1(K)) −−−→ HVW(Y0(K)) −−−→ HVW(Y ) −−−→ HVW(Y−1(K)) −−−→ . . .

are induced by oriented cobordisms. For exampe, the map j in (4.13) is
induced by a cobordism W with b1(W ) = b+2 (W ) = 0 and b−2 (W ) = 1, cf.
[BD95]. Given such topological data of a cobordism, the degree shift of the
corresponding map can be computed by evaluating the virtual dimension
(“ghost number” anomaly) of a given theory on W . However, the balanced
property of the Vafa-Witten theory that appeared a number of times earlier
makes this quantity vanish for any W , so that all maps in (4.13) and (4.14)
have degree zero.

Another, perhaps even more important feature of the Vafa-Witten theory
in regard to the existence of surgery exact triangles directly follows from the
computations in this paper. Namely, earlier we saw that HVW(S2 × S1) is
much larger than HVW(S3): while the latter is isomorphic to T +, the former
has GK-dimension 4 (i.e. looks like (T +)⊗4). The reason M3 = S3 and S2 ×
S1 are relevant to the question about surgery exact triangles is that they
tell us about all terms in (4.12) when K = unknot: in this csae S3

+1(K) ∼= S3

and S3
0(K) ∼= S2 × S1. It is not clear how such a sequence could be exact,

suggesting that the standard form of the surgery exact triangles may not hold
in the Vafa-Witten theory. One possible scenario is that a spectral sequence
as in section 3 can reduce the size of HVW(S2 × S1) to roughly twice the
size of HVW(S3), thus providing a more natural definition of HVW(M3) in
view of (4.12).

This example, with K = unknot, also illustrates well the origin of the
problem: the reason HVW(S2 × S1) is much larger than HVW(S3) has to do
with non-compactness of the moduli spaces, as we saw earlier in section 2
and, therefore, suggests that addressing the non-compactness of the moduli
spaces may help with the surgery exact triangles. It would be interesting to
shed more light on this question.

Appendix A. Supersymmetry algebra

In addition to scalar (0-form) supercharges (3.19), the topological Vafa-
Witten theory also has vector (1-form) supercharges [GM01]:
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Q
a
µAν = δµνη

a + χa
µν

Q
a
µB

+
ρσ = −δµ[ρψ

a
σ] − ϵµνρσψ

νa

Q
a
µϕ

bc = −1
2ϵ

abψc
µ − 1

2ϵ
acψb

µ

Q
a
µη

b = Dµϕ
ab + ϵabHµ

Q
a
µψ

b
ν = −ϵabFµν + δµνϵcd[ϕac, ϕbd] + ϵabG+

µν − [B+
µν , ϕ

ab]

Q
a
µHν = Dµψ

a
ν −

1
2Dνψ

a
µ + ϵcd[ϕac, χd

µν − δµνη
d] + [B+

µν , η
a]

Q
a
µχ

b
ρσ = δµ[ρDσ]ϕ

ab + ϵµνρσD
νϕab − ϵabδµ[ρHσ] − ϵabϵµνρσH

ν − ϵabDµB
+
ρσ

Q
a
µG

+
ρσ = Dµχ

a
ρσ − δµ[ρDσ]η

a − ϵµνρσD
νηa − ϵcd[ϕac, δµ[ρ, ψ

d
σ]

+ ϵµνρσψ
νd] + 1

2 [ψa
µ, B

+
ρσ]

The algebra of these supercharges, up to gauge transformations, is

{Qa, Qb} = 0

{Qa, Q
b
µ} = −ϵab∂µ(A.1)

{Q
a
µ, Q

b
ν} = 0

For µ = 0, it should be compared with the supersymmetry algebra in quan-
tum mechanics. With two supercharges, the supersymmetry algebra in quan-
tum mechanics looks like {Q,Q†} = 2H. With the enhanced supersymmetry,
it has the form

(A.2) {Qi, Q
†
j} = 2δijH , {Qi, Qj} = 0

In the main text we also encountered a closely related 2d N = (2, 2)
supersymmetry algebra:

(A.3) {Q+, Q+} = 1
2(H + P ) = HL , {Q−, Q−} = 1

2(H − P ) = HR

and the topological A-model, that involves linear combinations of the above
supercharges, QA = Q+ +Q− and QA = Q+ +Q−, such that {QA, QA} =
H and Q2

A = 0.
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