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We present three Lagrangian algebras in the modular 2-category
associated to the 3+1D Z2 topological order and discuss their
physical interpretations, connecting algebras with gapped bound-
ary conditions, and interestingly, maps (braided autoequivalences)
exchanging algebras with bulk domain walls. A Lagrangian alge-
bra, together with its modules and local modules, encapsulates
detailed physical data of strings condensing at a gapped boundary.
In particular, the condensed strings can terminate at boundaries in
non-trivial ways. This phenomenon has no lower dimensional ana-
logue and corresponds to novel mathematical structures associated
to higher algebras. We provide a layered construction and also ex-
plicit lattice realizations of these boundaries and illustrate the cor-
respondence between physics and mathematics of these boundary
conditions. This is a first detailed study of the mathematics of La-
grangian algebras in modular 2-categories and their corresponding
physics, that brings together rich phenomena of string condensa-
tions, gapped boundaries and domain walls in 3+1D topological
orders.
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1. Introduction

The idea of anyon condensations [BSS02, BSH09, BS09] plays an important
role in the study of 2+1D (spacetime dimension) or 2d (space dimension)
topological orders, especially in the study of gapped boundaries and defects
[BSS02, BSH09, BS09, KK12, Lev13, BJQ13b, BJQ13a]. It provided pre-
cise descriptions of bulk-boundary duality, and led to novel applications
of defects in constructing quantum gates based on (projective) braiding
properties between defects [BJQ13b, BJQ13a, JQ14, CCW16], opening up
new possible realizations of robust quantum computing. The mathemati-
cal theory of anyon condensations is based on condensable algebras and
their representations in modular 1-categories [Kon14]. How to generalize it
to higher dimensions, particularly 3d, is a fundamental theoretical ques-
tion that would promise myriad possibilities of applications. Earlier discus-
sions of string condensations or membrane condensations [KW14, LKW18]
lacked mathematical precision and were limited mostly to physical intuitions.
While there were explicit 3d lattice model realizations of the Dijkgraaf-
Witten theories [DW90, HZW05, WWH15, BD21] and their gapped bound-
aries [WWH15, WLHW18, KTZ20a, BD21, Del22], boundary and bulk ex-
citations constructions, and other physical interpretations of these gapped
boundaries in terms of string condensations and condensable algebras are yet
to be understood. Only very recently, the modular 2-categories associated to
3+1D Dijkgraaf-Witten theories were explicitly computed [KTZ20b]. This
progress makes an explicit study of the precise relation between Lagrangian
algebras, string condensations and gapped boundaries in 3+1D possible.

Every 3d topological order has infinitely many gapped boundaries (or
Lagrangian algebras) because we can always stack a gapped boundary with
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a 2d topological order and introduce some coupling (or condensation) be-
tween two layers to get a new one. In this work, we focus on three gapped
boundaries of the 3d Z2 topological order. More precisely, we explicitly con-
struct three Lagrangian algebras Ae, A1, A2 in the modular 2-category TC

associated to the 3d Z2 topological order and show that these algebras, to-
gether with their modules and local modules, embody the physics of three
string condensations which produce three gapped boundaries of the 3d Z2

topological order, respectively1. By [KLWZZ20b, KLWZZ20a, KZ22], the 3d
Z2 topological order with the gapped boundaries associated to Ae, A1, A2 are
holographically dual to the trivial symmetry-breaking order, the trivial SPT
order and the non-trivial SPT order with Z2 onsite symmetry in 2+1D,
respectively. We discuss more general gapped boundaries and Lagrangian
algebras in Remark 4.1 and C.13.

2. A physicist’s sketch of the modular 2-category associated

to the 3d toric code model

The 3+1D toric code model realizes physically the Z2 topological order. Its
macroscopic observables forms a modular 2-category TC (see [KTZ20a] for
details), which consists of three levels of data.

1) At ground level – we have a set of objects a, b, . . .. TC has 4 different
simple objects {1, 1c,m,mc}. Physically, they are four different kinds
of string-like excitations (or 1-codimensional defects) – 1 is the trivial
string, 1c the electric charges condensed along a string (i.e., a 1c-
string),m the magnetic string (or anm-string), andmc a ‘dyonic string’
(or an mc-string). Direct sum of simple objects (e.g. a⊕ b) are called
composite strings.

2) At level one – we have a set homTC(a, b) of 1-morphisms (denoted by
arrows f, g : a → b) between any two objects a and b. Physically, they
are 0d domain walls (i.e., defects of codimension 2) connecting an a-
string with a b-string. In particular, 1-morphisms in homTC(1, 1) are
usual particles. We illustrate all simple 1-morphisms in the following

1The relation between two of the algebras and associated boundaries were
sketched in [KTZ20a].
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diagram:

(2.1) 1

{11,e}

�� {x}
++
1c

{11c ,z}

��

{y}

jj m

{1m,e}

��
{x}

++
mc

{1mc ,z}

��

{y}

kk

where 1a is the trivial particle on the a-string, the z-particle on the 1c-
string can be obtained by winding an m-string around 1c [KTZ20a].
There is no domain wall connecting 1, 1c with m,mc. Namely, TC

splits into two connecting component. These 1-morphisms can be
fused (composed) along strings. The rules of composition in the first
connecting component are e ◦ e = 11, z ◦ z = 11c

, x ◦ y = 11c
⊕ z and

y ◦ x = 11 ⊕ e.

3) At level two – we have a vector space homTC(f, g) of 2-morphisms
between any two 1-morphisms f and g. We denote a 2-morphism by
a 2-arrow β : f ⇒ g. Physically, 2-morphisms are codimensional-3 de-
fects (also called instantons). We have homTC(f, g) = C · δf,g if both f
and g are simple.

String-like excitations can be fused as follows:

1c ⊗ 1c = 1c ⊕ 1c, m⊗m = 1,

mc ⊗mc = 1c ⊕ 1c, 1c ⊗m = mc.(2.2)

Fusions are associative up to some linear maps characterized by the 15j-
symbols, which are trivial for TC.

Two parallel strings can be fused into one. This fusion provides a
monoidal structure on TC. Two 1-morphisms (i.e., defects on strings) can
be fused “vertically” – when two defects on a string are slid close together,
and “horizontally” when two parallel strings are fused (defects on them also
merge to become defects on the fused string). Two 2-morphisms (i.e., in-
stantons) can be fused in 3 directions.

Particles or strings can braid around strings. The braiding structure in
TC was summarized in [KTZ20b, Example 3.8]. Its most important ingredi-
ent is the Aharanov-Bohm phase ‘-1’ whenever e winds around m.

Mathematically, the braided fusion 2-category TC is given by the Drin-
feld center Z1(2Rep(Z2)) or Z1(2VecZ2

). These categorical data can be vi-
sualized explicitly in the 3d toric code model [KTZ20a], where excitations
are effected by string and membrane operators. In Appendix D, we review
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the 3d toric code model as a Z2 lattice gauge theory with spin-1/2 degrees
of freedom populating edges of a triangulation of space.

3. Lagrangian algebras in TC and their lattice realizations

We are now ready to discuss the topological boundaries of the 3d toric code
model based on the condensation of Lagrangian algebras in TC. In 2d, a
Lagrangian algebra in the modular 1-category associated to a 2d topological
order controls an anyon condensation that produces a gapped boundary
[Kon14]. In 3d, a Lagrangian algebra in a modular 2-category controls or
defines a string condensation that produces a gapped boundary.

To define an algebra in a modular 2-category C, we need a composite
object A ∈ C, the direct summands of which play the roles of condensed
strings. To define the algebraic structure on A, one needs a 1-morphism
µ : A⊗A→ A describing the multiplication of the algebra and a unit 1-
morphism u : 1 → A. In 3d, the multiplication of A is associative up to a
2-morphism α called the 2-associator. Similarly, the multiplication is unital
up to 2-morphisms λ, ρ called the left and right 2-unitors, which are often
omitted in the description of an algebra. For a commutative algebra, there
is also a 2-commutator β. Altogether, the collection of data is given by
(A, u, µ, α, β). Again, they satisfy a set of compatibility conditions analogous
to those satisfied in anyon condensation in 2d (see Definition B.1 & B.2 in
Appendix B for their defining axioms). Boundary excitations are described
by A-modules. An A-module is also a composite object in C equipped with
an A-action (see Definition C.1 in Appendix C for the definition). These A-
modules form a 2-category denoted by CA. If composing the A-action with a
double braiding leaves the A-action invariant, then the A-module is deemed
“local” (see Definition C.7 in Appendix C for the definition). All local A-
modules also form a 2-category Cloc

A , which describes the topological defects
in the condensed phase. A Lagrangian algebra is a commutative algebra A
whose only local module is A itself (and its direct sums thereof) – signalling
that the condensed phase is indeed a vacuum state with no other deconfined
excitations.

Although there are infinitely many gapped boundaries of the 3d toric
code model, in this work we only focus on three simplest gapped bound-
ary conditions [WLHW18]. Following [KTZ20a], we call them the rough
boundary, smooth boundary and twisted smooth boundary in this work. By
[KLWZZ20b, KLWZZ20a, KZ22], the gapped boundaries of the 3d toric code
model are holographically dual to anomaly-free 2d gapped quantum liquids
with Z2-symmetry, including Z2 SPT/SET orders and symmetry-breaking
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orders. The smooth boundary and twisted smooth boundary are correspond-
ing to the trivial and nontrivial 2d Z2 SPT order, respectively, and the rough
boundary is corresponding to the Z2 symmetry-breaking order. In this sec-
tion, we demonstrate that above three boundaries are incarnations of the
three string condensations, or equivalently, three Lagrangian algebras in
TC, which are defined below with the full set of data (A, u, µ, α, β). We give
their (local) modules but leave the detailed calculation of the modules in
Appendix C.

3.1. The algebra Ae and the rough boundary

The algebra Ae = 1c or 1c-string is itself a Lagrangian algebra in TC. Its
multiplication, trivially associative, is defined by

1c ⊗ 1c = 1c ⊕ 1c
11c⊕0
−−−−→ 1c.

The unit 1-morphism is defined by x : 1 → 1c. The 2-associator, 2-unitors
and 2-commutator are identity 2-morphisms. There are two simple Ae-
modules: 1c and mc. The former corresponds to the trivial string excitation
on the boundary and the latter corresponds to the fact that the magnetic
strings and its bound state with the electric strings have non-trivial braid-
ing with the condensate, and together form a non-trivial stringy excitation
on the boundary. Since e particles could disappear into the boundary, the
non-trivial morphisms existing on m and mc become trivial at the boundary,
confirming the mathematical result that homTCAe

(mc,mc) = Vec.
This rough boundary is the direct analogue of the well-known rough

boundary in the 2d toric code model [KK12].

3.2. The algebra A1 and the smooth boundary

The second Lagrangian algebra is A1 = (1 ⊕m)1, where we use the sub-
script 1 because there are two distinct algebra structures on 1 ⊕m. The
multiplication 1-morphism of µ1 : A1 ⊗A1 → A1 is defined component-wise
as follows:

1 ⊗ 1

1

11

1 ⊗m

m

1m

m⊗ 1

m

1m

m⊗m

1

11
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The unit morphism u1 of A1 is 1
1⊕0
−−→ 1 ⊕m. The 2-associator and 2-unitors

are identity 2-morphisms. The 2-commutator is trivial on all components ex-
cept βm,m = ±1, which define two commutative algebra structures that are
isomorphic to each other. More explicitly, the commutative algebra isomor-
phism (see Definition B.3 in Appendix B for the definition) is defined by the
1-isomorphism

(3.1) 1 ⊕m
11⊕e
−−−→ 1 ⊕m

and η, ξ are identity 2-morphisms. Note that an m-string in the bulk can end
at the boundary, and the end point can carry either a bosonic m charge or
a fermionic f charge. The commutative algebra homomorphism defined in
(3.1) means that moving an e-particle along an m-string to its end point at
the boundary can change the bosonic m charge to the fermionic f = e⊗m
charge and vise versa. This algebra A1 defines the condensation of magnetic
strings analogue to the smooth boundary in 2d.

There is again only one non-trivial simple A1-module Xe = 1c ⊕mc =
(1 ⊕m)⊗ 1c, which corresponds to moving a 1c-string to the boundary.
Electric particle e in the bulk can move to the boundary and become
ẽ = (1 ⊕m)⊗ e. They play the role of defects between the condensate A1

and A1. The defects {x, y} are mapped to {x̃, ỹ} that are defects between A1

and Xe. The z excitations living on 1c become excitations z̃ on Xe. The lat-
tice realization are illustrated in Appendix E. The edges along the boundary
surface can fluctuate freely and this is the analogue of the “smooth” bound-
ary in 2d toric code model. One can see that m-strings can end on the
boundary without energy cost, and a string parallel to the boundary can be
annihilated entirely there.

3.3. The algebra A2 and the twisted smooth boundary

The algebra A2 = (1 ⊕m)2 has the same multiplication 1-morphism and
unit 1-morphism as those of A1. The 2-associator α has only one non-trivial
component:

(3.2)

m m m

αm,m,m=−1
+3

mmm

.

The 2-commutator β is trivial on all components except βm,m = ±i. These
two choices of βm,m define two commutative algebra structures that are
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isomorphic. Again, the commutative algebra isomorphism is defined by (3.1)
and η, ξ are identity 2-morphisms.

The algebra A2 does not have an analogue in 2+1D. It provides a new
way to condense the magnetic strings. Now we give a physical interpretation
of the non-trivial 2-associator αm,m,m = −1 and βm,m = ±i. Note that an m-
string in the bulk can end at the twist smooth boundary. The end point is
again non-trivial and now carries either a semion s or anti-semion s̄ charge
with self-statistics i and −i, respectively. This is precisely the physical mean-
ings of βm,m = ±i. Moving an e-particle to the boundary can change the end
point from the semion to the anti-semion and vise versa. This is again the
physical realization of the commutative algebra homomorphism defined in
(3.1), analogous to the case of the algebra A1. It further suggests that the e
particle becomes a bound state of the ss̄ bound state at the boundary.

Consider three m-strings ending at the twisted smooth boundary with
three endings attached to three semions. The end points have trivial mutual
statistics. The semions at the boundary are known to have fusion satisfy-
ing the associativity up to a non-trivial 3-cocycles in H3(Z2, U(1)). This
3-cocycle is inherited by the m-string that ends with a boundary semion,
physically realizing the 2-associator αm,m,m = −1 of A2.

The above physical interpretation can be visualised explicitly in lattice
realizations. It was known that in the 3d toric code model, apart from the
rough and smooth boundaries, there is also a twisted smooth boundary in
which the vertex term Av in the boundary Hamiltonian is modified by a 3-
cocycle α ∈ H3(Z2, U(1)) [WLHW18]. We make use of membrane operators
constructed in the bulk and string operators constructed at the boundary
and demonstrate the above physical picture in Appendix E.

3.4. An invertible domain wall exchanging A1 and A2

There is a braided autoequivalence ϕ of TC fixing the connecting com-
ponent consisting of {1, 1c} and exchanging the algebras A1 and A2. It
is involutive (i.e., ϕ2 ≃ IdTC) and is defined by the identity functor to-
gether with a braided monoidal structure such that ϕ(a)⊗ ϕ(b) → ϕ(a⊗ b)
is the identity 1-morphism and the 2-isomorphism ϕa,b,c between two
composed 1-morphisms from (ϕ(a)⊗ ϕ(b))⊗ ϕ(c) to ϕ(a⊗ (b⊗ c)) is non-
trivial only for the component ϕm,m,m = −1. Physically, ϕ should corre-
spond to a nontrivial gapped invertible 2d domain wall Mφ in the 3d
toric code model2. Fusing Mφ with the smooth boundary gives the twisted

2The lattice model realization of Mφ is not yet available.
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smooth boundary (see [KLWZZ20b] for more discussions). According to
[KLWZZ20b, JFR23, KZ21], this ϕ precisely corresponds to the non-trivial
2+1D Z2 SPT order, or equivalently, the non-trivial minimal modular ex-
tension of Rep(Z2).

4. Boundary conditions from layered construction

These boundary conditions can also be understood in more intuitive terms
via the layered construction of topological orders from lower dimensional
ones [JQ14]. As illustrated in Figure 1, the 3d Z2 topological order can be
constructed from stacking 2d Z2 topological orders. Consecutive layers are
glued together by condensing anyons – in this case the tensor product state of
e1 × e2, where the subscript indicates the layer the electric charge belongs
to. The pattern is repeated in an indefinite number of vertically stacked
2d Z2 topological orders. The e particles and the m-strings are unconfined
anyons under the condensation of paired electric charges in the stack. To
describe different boundary conditions, it comes down to special treatment
at the last layer as illustrated in Figure 2.

...

...

i + 4

i + 3

i + 2

i + 1

i ei

ei+1 ei+1

ei+2 ei+2

ei+3 ei+3

ei+4

(a) condensed anyons

...

...

e

m

m

m

m

m

(b) unconfined anyons

Figure 1: Layered construction of the 3d Z2 topological order: (a) Each
blue line represents a layer of the Z2 topological order and the numbers on
the left label these layers. Each red circle represents a tensor product state
between the electric charges of consecutive layers. The condensation of these
tensor product states will introduce coupling between consecutive layers. (b)
Besides the trivial string, the unconfined anyons are the e-particle and the
m-string.

• The rough boundary: It is obtained where the last layer labeled b of
the stack is still a 2d Z2 topological order. In addition to condensing
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the interlayer eb × e2, we condense also eb separately. In this case,
the m-string is confined at the boundary. An e-particle moved to the
boundary would become part of the condensate and disappear.

• The smooth boundary: The setup is similar to the rough bound-
ary, except that eb remains uncondensed. Collecting the unconfined
excitations at the boundary, one can see that m strings can end on
the boundary, even though isolated m at the boundary is confined.
Electric charges remain independent particles at the boundary, fur-
nishing the non-trivial 1c ⊕mc excitations at the boundary, and also
the automorphism in A1.

• The twisted smooth boundary: This is achieved with the last layer
replaced by a doubled semion order. To glue this layer with the next
layer of a Z2 topological order we condense the tensor product excita-
tion ss̄× e. One can check that an m-string can end on the boundary
layer with its end point attached to a semion or an anti-semion, thus
remaining unconfined. Since ss̄× e is condensed, a single ss̄-particle
can hop into the bulk and become an e-particle (see Figure 2). The
boundary free ss̄ particle realizes the automorphism structure of A2.

...

5

4

3

2

b eb

e2 e2

e3 e3

e4 e4

e5

eb

(a) The rough boundary

...

5

4

3

2

b eb

e2 e2

e3 e3

e4 e4

e5

(b) The smooth boundary

...

5

4

3

2

b (ss̄)b

e2 e2

e3 e3

e4 e4

e5

(c) The twisted smooth
boundary

Figure 2: Boundary conditions from layered construction: The layer labeled
by b is the boundary layer. (a) Besides the tensor product states of electric
charges, eb itself is also condensed to make sure that the electric charges
can be absorbed into the boundary. (b) Only the tensor product states of
electric charges are condensed. Then one can readily see that the m-string
can end on the boundary. (c) Here the boundary layer is a double semion
order instead of a Z2 order. The related condensed tensor product state is
ss̄× e. An m-string can still end on this boundary as long as its end point
on the boundary layer is either s or s̄.
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More general boundary conditions can be obtained by stacking an
anomaly-free 2d topological order on the last layer and introducing some
coupling (or condensation). We do not give any explicit construction of such
generic gapped boundaries (see a few works [JTX22, Luo22] appeared after
this work). However, we provide more examples of the fusion 2-categories
and Lagrangian algebras associated to the gapped boundaries of the 3d Z2

topological order in the following remark.

Remark 4.1. By [KLWZZ20b, KLWZZ20a, KZ22], a 3d finite gauge theory
(with a gauge group G) with a gapped boundary is holographically dual to a
2d SPT/SET order or spontaneous symmetry-breaking (SSB) order with a
global symmetry G. As a consequence, 2d Z2 SPT/SET/SSB orders provide
more examples of the gapped boundaries of the 3d Z2 topological order.

A 2d SPT/SET order with a finite group G symmetry can be mathemat-
ically described by a braided fusion category C with the Müger center given
by Rep(G) and a minimal modular extension of C [LKW16]. The data of a
minimal modular extension is equivalent to that of a braided equivalence
Z1(ΣC) ≃ Z1(2Rep(G)) [KLWZZ20b, JFR23], where ΣC := RModC(2Vec)
is the delooping of C [DR18]. According to [KLWZZ20b, JFR23] and the
fact that H4(Z2, U(1)) is trivial, every braided fusion category C with the
Müger center given by Rep(Z2) admits a minimal modular extesion, and
thus ΣC can be realized as the 2-category of topological defects on a gapped
boundary of the 3d Z2 topological order by the boundary-bulk relation
[KWZ15, KWZ17]. In particular, when C = Rep(Z2), there are two mini-
mal modular extensions given by Z1(Rep(Z2)) ≃ Z1(VecZ2

) and Z1(Vec
ω
Z2
),

where ω represents the nontrivial cohomology class in H3(Z2, U(1)) ≃ Z2.
These two minimal modular extensions describe the trivial and nontrivial
2d Z2 SPT order respectively, and the corresponding 2d gapped boundaries
of the 3d toric code model are the smooth and twisted smooth boundaries
respectively.

Given a gapped boundary condition X, one can physically determine the
associated Lagrangian algebra by cutting a cylinder-shaped hole in the bulk
and imposing the boundary condition X on the hole. This hole viewed from
far away is precisely the (usually composite) string or the underlying object
of the associated Lagrangian algebra. By viewing TC ≃ Z1(2Rep(Z2)) as the
2-category of braided modules over Rep(Z2) [DN21], the Lagrangian alge-
bras in TC are given by nondegenerate braided fusion categories M equipped
with braided functors Rep(Z2) → M [JFR23]. Then the Lagrangian al-
gebras associated to the rough boundary, smooth boundary and twisted
smooth boundary are given by the forgetful functor Rep(Z2)

w
−→ Vec, the
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trivial minimal modular extension Rep(Z2) →֒ Z1(Rep(Z2)) and the non-
trivial minimal modular extension Rep(Z2) →֒ Z1(Vec

ω
Z2
), respectively. The

gapped boundaries associated to a minimal modular extension (C →֒ M)
of the braided fusion category C with the Müger center given by Rep(Z2)
can be understood as the Lagrangian algebra associated to the composed
braided functor (Rep(Z2) →֒ C →֒ M). If the braided functor factors as

(Rep(Z2) ≃ Rep(Z2)⊠Vec
w⊠1M−−−−→ Vec⊠M ≃ M), where 1M denotes the

unique braided functor from Vec to M, the associated gapped boundary
of the 2d toric code model is obtained by stacking the 2d topological order
associated to the modular 1-category M on the rough boundary.

5. Conclusions

In this paper, we present three Lagrangian algebras in TC, which is the mod-
ular 2-category associated to the 3d Z2 topological order. Similar to the 2d
case, these Lagrangian algebras characterize distinct topological boundaries
of the bulk topological order. We provide the physical meanings of these
algebras, illustrating how the mathematical structure of these generalized
Lagrangian algebras corresponds to properties of string condensations char-
acterizing the gapped boundaries. Particularly, there are new structures in
these higher algebras unknown to lower dimensions, namely the non-trivial
associator and commutators. They signify non-trivial topological charges
that can be attached to end points of strings belonging to the condensate
that can terminate at the boundary. When there is more than one way of
terminating these condensed strings at a given topological boundary, one
finds correspondingly multiple algebra characterizing the same boundary
that are related to each other by a commutative algebra homomorphism.
Such a homomorphism between commutative algebras is physically realized
as bulk charges that can be pushed to the boundary and be attached to the
end points of strings, changing their braiding and fusion properties there.
We also show how the module categories correspond to bulk excitations that
are confined at the boundary. These mathematical structures can either be
visualised in a layered construction of the 3d Z2 topological order, or an
explicit lattice realization. As in 2d, the notion of a Lagrangian algebra in
3d supplies the correct mathematical structure that describes the condensa-
tion of strings characterizing each gapped boundary. We believe the string
condensation picture we presented here applies to all 3d topological orders.
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Appendix A. Modular 2-category TC

It was shown in [KTZ20a] that all topological defects of codimension 2 and
higher form a braided fusion 2-category TC = Z(2VecZ2

), which was explic-
itly computed in [KTZ20b]. We briefly summarize the braided 2-category
structures of TC below.

• There are four simple objects in TC: 1, 1c,m,mc. All other objects are
direct sums of simple objects.

• For each pair of objects a and b, there is a 1-category homTC(a, b).
The objects in the homTC(a, b) are 1-morphisms in TC, denoted by
f, g : a → b. The 1-morphisms in homTC(a, b) are called 2-morphisms in
TC, denoted by ϕ, ψ : f ⇒ g. We illustrate these categories homTC(a, b)
for simple objects a, b in the following graph,

1

Rep(Z2)

�� Vec
++
1c

VecZ2

��

Vec

jj m

Rep(Z2)

�� Vec
++
mc

VecZ2

��

Vec

kk

where Rep(Z2) is the 1-category of finite dimensional representations
of the group Z2, Vec is the 1-category of finite dimensional vector
spaces and VecZ2

is the 1-category of finite dimensional Z2-graded
vector spaces. The simple 1-morphisms in TC are illustrated in (2.1).

Note that TC is disconnected, in the sense that the only 1-
morphisms between 1, 1c and m,mc are zero morphisms. In other
words, TC splits into a direct sum:

(A.1) TC = 2Rep(Z2)0 ⊞ 2Rep(Z2)1.
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where two connecting components are entirely same and denoted by
2Rep(Z2), and two subscripts 0 and 1 endow TC with a Z2-grading.

• Composition of 1-morphisms: The rules of composition 2Rep(Z2)0
are e ◦ e = 11, z ◦ z = 11c

, x ◦ y = 11c
⊕ z and y ◦ x = 11 ⊕ e. Those

in 2Rep(Z2)1 are similar.

The monoidal structure of TC is strict and is defined by the fusion rules
in (2.2). The braiding structure can be found in [KTZ20b, Example 3.8].
Moreover, it was shown in [KTZ20b] that the braidings of TC are non-
degenerate. The precise definition of a modular 2-category is not yet known.
However, a reasonable definition of a modular 2-category should include TC
as an example. Therefore, we use the term ‘modular 2-category’ freely.

Appendix B. Commutative algebras in a braided

monoidal 2-category

The definition of an algebra in a semistrict monoidal 2-category (i.e., a
pseudo-monoid in a Gray monoid) can be found in [DS97], and that of an
algebra in a weak monoidal 2-category can be found in [Dé21]. For simplicity,
we hide some necessary coherence data (e.g. 1-associators) in the following
definitions.

Definition B.1. Let M be a braided monoidal 2-category with the ten-
sor product ⊗ and the tensor unit 1. An algebra in M is a sextuple
(A, u, µ, α, λ, ρ), where A ∈ ob(M), u : 1 → A and µ : A⊗A→ A are 1-
morphisms, and α, λ, ρ are invertible 2-morphisms (called the 2-associator,
the left 2-unitor and the right 2-unitor, respectively) as depicted in the fol-
lowing diagrams

A⊗A⊗A
µ⊗1

//

1⊗µ
��

A⊗A
µ
��

A⊗A
�� α
µ

// A

1 ⊗A
u⊗1 //

1 //

�� λ

A⊗A
µ
��

A⊗ 1
1⊗uoo

1ooA

��
ρ

or equivalently, by the following graphs:

AA A
α +3

AAA A
λ +3

A A
ρ

ks
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such that the following diagrams are commutative.

(B.1)

α +3

α
��

α
��

α +3 αks

(B.2)

α +3

ρ �% λy�

We often abbreviate an algebra to (A, u,m) or A.

Definition B.2. A commutative algebra (also called a braided pseudo-
mononid in [DS97]) in M is an algebra A equipped with a 2-isomorphism
(called the 2-commutator) β

(B.3)
A A

β
+3

A A

,

such that the following two diagrams are commutative,

(B.4) β ��

β
+3αks

α

�%

+3 α +3
β

ks



✐

✐

“5-Hung” — 2023/10/10 — 15:45 — page 598 — #16
✐

✐

✐

✐

✐

✐

598 Zhao, Lou, Zhang, Hung, Kong, and Tian

(B.5) β ��

β
+3αks

α

�%

+3 α +3
β

ks

Definition B.3. Let A and B be two commutative algebras in M.
An algebra homomorphism A→ B is a triple (f, η, ξ), where f : A→ B
is a 1-morphism, η : f ◦ uA ⇒ uB and ξ : µB ◦ (f ⊗ f) ⇒ f ◦ µA are 2-
isomorphisms as illustrated below,

A

B

f

B

η
,

A A

B

A A

B

ξ

such that the following diagrams are commutative:

(B.6)

ξ
+3

η
�� λA

��
λB +3

ξ
+3

η
��

ρA

��
ρB +3

(B.7)

ξ
+3

αB ��

ξ
+3

αA��

ξ
+3

ξ
+3
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(B.8)

ξ
+3

β �� β
��

+3
ξ

+3

Appendix C. Module categories of the Lagrangian algebras

The notions in this subsection are standard (see for example [DN21, JFR23,
Dé21]).

Definition C.1. Let A be an algebra in a monoidal 2-category. A right
A-module is a quadruple (M,µM , αM , rM ), where M is a an object, the 1-
morphism µM : M ⊗A→M defines the right A-action onM and is depicted
as follows,

and the 2-associator αM and the right 2-unitor rM are invertible 2-
morphisms depicted as follows,

αM rM

such that the following diagrams are commutative.

αM

αM αM

αM αA

αM

rM λA
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Here αA is the associator of A, and λA is the left unitor of A. For convenience
we simply write M for the quadruple. The definition of a left A-module is
similar.

Definition C.2. Let M,N be right A-modules. An A-module 1-map from
M to N is a pair (f, ϕ) where f : M → N is a 1-morphism and ϕ is an
invertible 2-morphism depicted as:

φ

such that the following diagrams are commutative:

φ

αM

φ

αM

φ

φ

rM rM

Definition C.3. Let (f, ϕ) and (g, ϕ′) be two A-module 1-maps from M
to N . An A-module 2-map from (f, ϕ) to (g, ϕ′) is a 2-morphism θ : f ⇒ g
such that the following diagram is commutative:

f f

g g

φ

θ θ

φ′
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Definition C.4. The 2-category of right A-modules is defined as follows:
the objects are right A-modules, 1-morphisms are A-module 1-maps, 2-
morphisms are A-module 2-maps. This 2-category is denoted by MA.

Definition C.5. An A-A-bimodule M is a left A-module and a right A-
module, equipped with a 2-isomorphism

δ : µLM ◦ (1⊗ µRM ) ⇒ µRM ◦ (µLM ⊗ 1)

such that (µRM , δ) defines a left A-module 1-map and (µLM , δ
−1) defines a

right A-module 1-map. Graphically δ can be depicted as follows:

δ

Definition C.6. Let M,N be A-A-bimodules. An A-A-bimodule 1-map is
a triple (f, ϕl, ϕr) such that (f, ϕl)/(f, ϕr) is a left/right A-module 1-map,
and the following diagram is commutative:

φr

δ

φl

δ

φl φr

If A is a commutative algebra in M, then a right A-module M is also
equipped with 2 different structures of left A-modules, defined in the follow-
ing two diagrams respectively:

and we denote the them by M+ and M− respectively. The 2-associator of
M+ can be written as the composition of the following 2-morphisms:

βA αM
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The 2-associator of M− can be written down in a similar way. We denote
these two associators by α+

M and α−
M respectively. Both left A-module struc-

tures are compatible with the right A-module structure in the sense that they
can be upgraded to two A-bimodule structures. This compatibility for M+

is defined by the composition of the following 2-isomorphisms.

αM βA α−1
M

The bimodule constraint forM− is can be written down similarly. We denote
the two bimodule constraints by θ+M and θ−M respectively.

Definition C.7. Let A be a commutative algebra in a braided monoidal 2-
category M. A local A-module is a pair (M,γ), whereM (actually a quadru-
ple) is a right module over A, and γ is an invertible 2-morphism depicted as
follows,

γ

such that the following diagrams are commutative:

α+
M

γ

α−

M

γ γ

θ+
M

γ γ

θ−

M

Remark C.8. The notion of a local A-module can be equivalently defined
as follows.
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If M be a right A-module, then (1M , 1µM
) is automatically a right A-

module 1-map. A local module over A is a pair (M,γ) where γ is a 2-
morphism depicted as

γ

such that the triple (1M , γ, 1µM
) defines a bimodule equivalence

(1M , γ, 1µM
) : M+ →M−.

If we write down the compatibility relations in detail, we obtain Defini-
tion C.7.

Definition C.9. Let (M,γ) and (M ′, γ′) be local A-modules. A local A-
module 1-map is a right A-module 1-map (f, ϕ) : M →M ′ such that the
following diagram is commutative.

γ

φ

γ

φ

Definition C.10. Let A be a commutative algebra in a braided monoidal
2-category M. The 2-category of local A-modules is defined as follows: the
objects are local A-modules, 1-morphisms are local A-module maps and
2-morphisms are A-module 2-maps. This category is denoted by M

loc
A

Now we compute the 2-categories of the right modules of the three
Lagrangian algebras Ae, A1 and A2. The following theorem was proved in
[Dé21, Lemma 3.2.13].

Theorem C.11. Let M be a monoidal 2-category and A ∈ M be an algebra.
Recall that MA is the category of right A-modules. Then there is a free gen-
eration functor FA = −⊗A : M → MA and a forgetful functor U : MA → M.
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The pair (FA, U) forms a 2-adjunction

FA : M ⇆ MA : U

More explicitly, given X ∈ M and M ∈ MA, there is an equivalence of cate-
gories:

homMA
(X ⊗A,M) = homM(X,M).

Recall that the 2-category TC = 2Rep(Z2)⊞ 2Rep(Z2) can be illustrated
in the following graph:

1

Rep(Z2)

�� Vec
++
1c

VecZ2

��

Vec

jj m

Rep(Z2)

�� Vec
++
mc

VecZ2

��

Vec

kk

(1) The 2-category TCAe
= TC1c

:
• There are two simple objects (up to equivalence) in TCAe

, that is
1c itself and mc = m⊗ 1c. The action of 1c on them is obvious.

• homTC1c
(1c, 1c) = homTC(1, 1c) = Vec.

• homTC1c
(1c,mc) = homTC(1,mc) = 0.

• homTC1c
(mc, 1c) = homTC(m, 1c) = 0.

• homTC1c
(mc,mc) = homTC(m,mc) = Vec.

• We conclude that TCAe
≃ 2VecZ2

.

(2) The 2-category TCA1
:

• There are two simple objects (up to equivalence) in TCA1
, that is

1 ⊕m itself and 1c ⊕mc = 1c ⊗ (1 ⊕m).
• homTCA1

(A1, A1) = homTC(1, 1 ⊕m) = Rep(Z2).
• homTCA1

(A1, 1c ⊗A1) = homTC(1, 1c ⊕mc) = Vec.
• homTCA1

(1c ⊗A1, A1) = homTC(1c, 1 ⊕m) = Vec.
• homTCA1

(1c ⊗A1, 1c ⊗A1) = homTC(1c, 1c ⊕mc) = Rep(Z2).
• We conclude that TCA1

≃ 2Rep(Z2).

(3) The 2-category TCA2
:

• There are two simple objects (up to equivalence) in TCA2
, that is

1 ⊕m itself and 1c ⊕mc = (1 ⊕m)⊗ 1c.
• These two simple modules are still free. Similar to the case of A1,
we conclude that TCA2

≃ 2Rep(Z2).

It remains to show that the 2-categories of local modules of these three
algebras are trivial. We have the following theorem, the proof of which is
tautological.
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Theorem C.12. Let A be a commutative algebra in a braided monoidal 2-
category M and X ∈ M be an object. If the double braiding cA,X ◦ cX,A is not
isomorphic to the identity 1-morphism, then the free right A-module X ⊗A
is not a local A-module.

Since the double braiding of 1c and m is not isomorphic to the identity
1-morphism, the free module Ae ⊗m is not a local Ae-module. For the same
reason, the free module 1c ⊗A1 is not a local A1-module, and the 1c ⊗A2

is not a local A2-module. We obtain the following results.

• TC
loc
Ae

≃ 2Vec. This is because TC
loc
Ae

is generated by a single object
Ae = 1c and the hom-category of the generator is Vec.

• TC
loc
A1

≃ 2Vec. TCloc
A1

is generated by a single element A1 = 1 ⊕m. The
non-trivial 1-morphism (e, em) : 1 ⊕m → 1 ⊕m is not a morphism of
local A1-modules.

• TC
loc
A2

≃ 2Vec. TCloc
A2

is generated by a single element A2 = 1 ⊕m. The
non-trivial 1-morphism (e, em) : 1 ⊕m → 1 ⊕m is not a morphism of
local A2-modules.

Remark C.13. The Lagrangian algebras in 2Vec are non-degenerate
braided fusion 1-categories [DN21, JFR23]. Physically, the boundary of
the trivial 3+1D topological order induced by the condensation of a non-
degenerate braided fusion 1-category B ∈ 2Vec is precisely the anomaly-free
2+1D topological order associated to B.

Given a Lagrangian algebra A ∈ TC, we obtain a new Lagrangian algebra
A⊠B ∈ TC⊠ 2Vec ≃ TC for a non-degenerate braided fusion 1-category
B. Physically, the boundary corresponding to A⊠B is the stacking of the
boundary corresponding to A and the anomaly-free 2+1D topological order
corresponding to B.

Appendix D. The 3d toric code – Lattice model

The 3+1D Dijkgraaf-Witten model is defined on a triangulation Γ of an
orientable 3-manifold with vertices assigned by ordered labels and it is in-
dependent of this assignment as long as the relative order is kept during the
calculation. Each edge < a, b > with adjacent vertices a and b is assigned by
a group element of Z2, which can also be viewed as putting a space of spin-
1/2, He = C2, on each edge. The spin pointing up and down corresponds to
Z2 elements 1 and m respectively. Hence the total Hilbert space consists of
all possible configurations of group elements on the edges, i.e., Htot = ⊗eHe.
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For simplicity we first take the 3d square lattice and then trangulate
each cube as Figure D1.

Figure D1: Trangulation of the cube

In the bulk, for every vertex i and plaquette [i, j, k] we define a vertex
operator Ag

i and a plaquette operator B[i,j,k] acting on every adjacent edges
respectively. They are defined as

(D.1)

A
g
i

l

h k
j

i

=
ω(<h,i′>,<i′,i>,<i,j>,<j,l>)ω(<i′,i>,<i,j>,<i,k>,<k,l>)

ω(<h,i′>,<i′,i>,<i,j>,<j,k>)ω(<h,i′>,<i′,i>,<i,k>,<k,l>)

×δ<i′,i>,g

l

h k
j

i′

B[i,j,k]

i

j k

= δ1,<i,j>·<j,k>·<k,i>

i

j k

where h < i < j < k < l and < i′, j >=< i′, i > · < i, j >. When the 4-
cocycle ω is trivial, one can readily see that A1

i is trivial and Am
i is exactly

the vertex operator Ai =
∏

<i,j> σ
<i,j>
x of 3+1D toric code meanwhile B[i,j,k]

is also related with the plaquette operator B′
[i,j,k] = σ<i,j>

z σ<i,k>
z σ<j,k>

z by

B[i,j,k] = (B′
[i,j,k] + 1)/2. The Hamiltonian of the 3+1D Dijkgraaf-Witten
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model is given by

(D.2) HDW = −
1

|G|

∑

i

∑

g∈G

Ag
i −

∑

[i,j,k]

B[i,j,k]

when G = Z2 with trivial 4-cocycle, it reduces to

(D.3) HDW = −
1

2
(
∑

i

(1 +Ai) +
∑

[i,j,k]

(1 +B′
[i,j,k]))

which is exactly the familiar 3+1D toric code. The set of operators
{Ai, B

′
[i,j,k]} is much convenient to visualize on the lattice, for example

in Figure D2

(D.4)

A14 = σ<14,2>
x σ<14,3>

x σ<14,5>
x σ<14,6>

x σ<14,10>
x σ<14,11>

x

× σ<14,13>
x σ<14,15>

x σ<14,17>
x σ<14,18>

x σ<14,22>
x σ<14,23>

x

× σ<14,23>
x σ<14,25>

x σ<14,26>
x

B′
[2,10,14] = σ<2,10>

z σ<2,14>
z σ<10,14>

z

All the vertex operators Ai and plaquette operators B′
[i,j,k] commute with

2 3

5 6

10 11

13 14 15

17 18

22 23

25 26

Figure D2: Local operators, A14 and B′
[2,10,14], in the bulk of 3+1D toric

code

each other and have eigenvalues ±1. Hence the total Hilbert can be decom-
posed into the common eigenspaces of these operators. Then the subspace
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of ground state corresponds to the common eigenspace which all the Ai and
B′

[i,j,k] have +1 eigenvalue.
The topological excitations in this model have already been worked out in
[KTZ20a]. The well known e-particle and m-string are shown in Figure D3.
Similar to the 2+1D toric code the state with an e-particle at vertex v is
the state which all the Ai and B

′
[i,j,k] have eigenvalue +1 except Av which

has eigenvalue -1. A pair of e-particles can be created on the end points
of a string operator

∏
<i,j>∈P σ

<i,j>
z , where P is a continuous path on the

edges. However the m-string is somewhat not similar to the m-particle in
the 2+1D case which is defined by B′

[i,j,k] = −1 at plaquette [i, j, k]. Due to

the constraint
∏

[i,j,k]∈tB
′
[i,j,k] = 1, where t is any tetrahedron, there must be

an even number of plaquettes where B′
[i,j,k] = −1 in a tetrahedron. Hence it

forms a string which can not be broken in the bulk. The m-string can be cre-
ated on the boundary of an membrane operator,

∏
<i,j>∈M σ<i,j>

x , where M
is a membrane and < i, j > are the edges which the membrane cut through.
The e-particle and m-string are both self-dual. Namely

(D.5) m⊗m = 1 e ◦ e = 11

where 1 and 11 are the trivial string and the trivial 0d excitation on the
trivial string respectively.

e

m

Figure D3: The e-particle (red dot) and m-string (blue plaquettes) in 3+1D
toric code

Besides these elementary excitations, there are condensation descen-
dants, 1c and mc strings. The local space on the edges along 1c is C or
equivalently the spins on these edges are all fixed to be pointing up. The
1c-string along a path P is created by adding to the Hamiltonian the Ai/2
and projection operators, (σz + 1)/2, on the vertices and edges respectively
along P . The e-particle condenses on the 1c-string. One can check that if an
e-particle moves onto the 1c-string, it will disappear. Hence it can be viewed
as a condensation of 11 ⊕ e on the trivial string 1, a condensation descen-
dant of 1. mc-string is the fusion of m and 1c strings. It can also be viewed
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as the condensation descendant, 11 ⊕ e, of the m-string. Unlike the m-string,
the 1c-string can have end points, which are the 0d defects between 1c and
1. The 0d defect from 1 to 1c is denoted as x : 1 → 1c and the one from 1c

to 1 is denoted as y : 1c → 1. There is also one non-trivial 0d defect on the
1c-string, z, which is a m-string winding around the 1c-string as depicted as
in Figure D4.

1c

x

y

z

Figure D4: The condensation descendant 1c-string which is denoted in black
dashed line. The 0d excitations between 1c and 1 strings: x, y are denoted
as circles and the 0d excitation between 1c and 1c strings: z is an m-string
winding around the 1c-string

The fusion rules are given by [KTZ20a]

(D.6)
1c ⊗ 1c = 1c ⊕ 1c 1c ⊗m = mc z ◦ z = 11c

x ◦ y = 11 ⊕ e y ◦ x = 11c
⊕ z

where 11c
is the trivial 0d defect on 1c. The other fusion rules can be deduced

from these.

Appendix E. Lattice realization of the twisted

smooth boundary

In this section, we would like to give the complete details of the lattice
realization of the three boundary conditions.
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E.1. The (twisted) smooth boundary condition

The boundary Hamiltonian was given in [HWW13] and in addition to re-
viewing that, we will bring together results of string operators of the Levin-
Wen model constructed before [LW05] to obtain a membrane operator in
the 3d model that could end at the boundary.

Now we can move on to the twisted smooth boundary which is depicted
in Figure E1, where we have hidden all the bulk edges. The labels of bound-
ary vertices are chosen to get bigger when we move from right to left and top
to bottom on the lattice, e.g. in Figure E1 l1 < l2 < ... < l5 < l6 < ...l11 <
... < l25.

l1 l2 l3 l4 l5

l6 l7 l8 l9 l10

l11 l12 l13 l14 l15

l16 l17 l18 l19 l20

l21 l22 l23 l24 l25

Figure E1: The twisted smooth boundary (hiding the bulk edges) and the
local operators, Ãl13 and B̃[l7,l8,l12], on the boundary

Similarly, for every vertex and plaquette on the boundary we define an
operator. The plaquette operators B̃[i,j,k] are the same as what is in the

bulk, B′
[i,j,k], while the vertex operators Ãi is similar to Am

i twisted with a
3-cocycle, as depicted in Figure E1.

(E.1)

Ãl13 = σ<l8,l13>
x σ<l9,l13>

x σ<l12,l13>
x σ<l13,l14>

x σ<l13,l17>
x

× σ<l13,l18>
x

∏

B

σ<l13,lB>
x

× α(< l8, l12 >,< l12, l13 > ·g, g)

× α(< l12, l13 > ·g, g,< l13, l17 >)

× α(g,< l13, l17 >,< l17, l18 >)

× α(< l8, l9 >,< l9, l13 > ·g, g)

× α(< l9, l13 > ·g, g,< l13, l14 >)

× α(g,< l13, l14 >,< l14, l18 >)

B̃[l7,l8,l12] = σ<l7,l8>
z σ<l7,l12>

z σ<l8,l12>
z
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where < l13, lB > labels the adjacent bulk edges and α is the non-trivial
3-cocycle of Z2 = {1, g}. The only non-trivial component of the twisted 3-
cocycle is given by α(g, g, g) = −1 . Notice that α−1 = α, hence we do not
distinguish them in the above formula. Due to the labeling we choose all the
Ai to have the same form. Then the boundary Hamiltonian is defined as

(E.2) Hbdy = −
1

2
(
∑

i

(1 + Ãi) +
∑

[i,j,k]

(1 + B̃[i,j,k]))

All the Ãi and B̃[i,j,k] commute with each other and have eigenvalue ±1.
they also commute with all the Ai and B

′
[i,j,k] in the bulk. Hence the ground

state subspace is the common eigenspace of all the {Ai, B
′
[i,j,k], Ãi, B̃[i,j,k]}

with +1 eigenvalue.

In the case of the ordinary smooth boundary, it corresponds to a trivial
3-cocycle α, where it takes value unity when non-vanishing.

When α corresponds to the non-trivial component of H3(Z2, U(1)), the
boundary Hamiltonian this is exactly the 2+1D Z2 twisted quantum dou-
ble model, which is in fact the well-known double semion model[LW05,
HWW13].

L− edge

R− plaquette

loop P̃

l

m

n

o

Figure E2: The string operator W (P̃ ). The path P̃ is the red line. The
edges and plaquettes P̃ pass through are in the path P̃ . The edges of these
plaquettes on the left (right) side of P̃ are L(R)− edges. The plaquette in
the path with L(R)− edge are L(R)− plaquette.
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Let’s take a detour to look into this 2+1D model. In the double semion
model there are only four simple string operators defined on a loop which
commute with the Hamiltonian[LW05]. They correspond to four simple ob-
jects of the double semion model, {1, s, s̄, ss̄}, respectively.

As indicated in Figure E2, the loop P̃ is directed and defined on the
plaquettes of which P̃ will pass through two adjacent edges, e.g. < l, n >
and < m,n > of [l,m, n]. We denote these edges crossing the loop P̃ as the
edges in the loop P̃ , e.g. < l, n >,< m, n >,< m, o >∈ P̃ . Then depending
on whether the other adjacent edge is on the left or right of P̃ , we denote
the corresponding plaquette as L− plaquette and R− plaquette respectively
and this edge is denoted as the L− edge and R− edge respectively. E.g.
[l,m, n] is a R− plaquette and [m,n, o] is a L− plaquette with < n, o > a
L− edge. Then Four simple string operator is defined as

(E.3)

W1 = 1

Wss̄ =
∏

L−edge

σ<p,q>
z

Ws =
∏

<j,k>∈P̃

σ<j,k>
x

∏

L−edge

(i)(1−σ<p,q>
z )/2

×
∏

R−plaquette

(−1)s[l,m,n]

Ws̄ =
∏

<j,k>∈P̃

σ<j,k>
x

∏

L−edge

(−i)(1−σ<p,q>
z )/2

×
∏

R−plaquette

(−1)s[l,m,n]

where s[l,m,n] = (1− σ<m,n>
z )(1 + σ<l,n>

z )/4. < m,n >, < l, n > are two

edges in P̃ adjacent to a R− plaquette [l,m, n] and < m,n > is the edge
that P̃ passes before < l, n >. Note that Wss̄ is the same loop operator
as that of e-particle in the bulk. When the string operator is defined on a
string S instead of a loop it will create two excitations on two ends of S.
These open string operators will be denoted as W̃ .

Now we can come back to the boundary. Note that these four string
operators commute with Hbdy. W1 and Wss̄ also commute with the bulk
Hamiltonian HDW while Ws and Ws̄ are not. Obviously they commute with
the vertex operators in the bulk, Ai. However when the plaquette operators
in the bulk, B′

[i,j,k], has one edge on the boundary and in the loop P̃ , the
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∏
<j,k>∈P̃ σ

<j,k>
x part in Ws and Ws̄ anti-commute with them. Namely the

action of Ws and Ws̄ on the boundary will create a m-string in the bulk
just beside the boundary as partly shown in Figure E3.

m

Ws/Ws̄

Figure E3: Action of the Ws or Ws̄ loop operator with the path denoted as
the red line partly. They create a m-string in the bulk denoted as the blue
dashed line and blue plaquettes.

In other words when a m-string is pulled towards the boundary, it can
be moved onto the boundary and vanishes by acting Ws, Ws̄ or even
their linear combinations with a suitable loop P̃ , which indicates that the
m-string is condensed on the twisted smooth boundary. Now we can denote
the trivial string on the boundary as 1 ⊕m.
What happened to the e-particle? Note that if we have a string operator of

W̃ss̄

e

σz

σz

σz σz

Figure E4: The e-particle on the boundary and its moving path is denoted
as the red dashed line. The string operator W̃ss̄ is defined on the red string.

e-particle which has an end point p on the boundary, it will commute with
all the Ai, B

′
[i,j,k], Ãi and B̃[i,j,k] except Ãp at vertex p. It anti-commutes

with Ãp indicating that the e-particle survives on the boundary. Further on
the boundary we can move it by W̃ss̄ as shown in Figure E4.
Compared to the ordinary smooth boundary on which the m-string can only
be moved onto the boundary and annihilated by only one kind of loop oper-
ator, i.e.,

∏
σx, here it can be done by two kinds of loop operator. Note that

we can use the open string operators W̃s, W̃s̄ and their linear combinations
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Ws Ws̄W̃ss̄

Figure E5: The overlap of Ws and Ws̄ is W̃ss̄

to pull half of the m-string onto the boundary and annihilate them, while
leaving two excitations on two ends of the m-string on the boundary. From
the point of view of the double semion model, these excitations correspond
to the semions s and s̄ respectively therefore two types of end points can
change into each other by fusing with the e-particle on the boundary. Fur-
ther if we only have a pair of end points then they must be of the same type.

1c
x̃ ỹ

z̃

Figure E6: 1c-sting on the boundary is also denoted as the black dashed
line. The 0d excitations between 1c and 1 strings on the boundary: x̃ and ỹ
are denoted as circles. The 0d excitations between 1c-strings: z̃ is a half of
m-string winding around the 1c-string on the boundary.

Then what happens to the condensation descendants? When the 1c-
string is moved onto the boundary it survives as the Figure E6 shows. The
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creation of 1c on the boundary is similar to the case in the bulk. Simply
add Ãi/2 and (σz + 1)/2 for the vertices and edges respectively in the path
of 1c to the boundary Hamiltonian. Due to the condensation of the m-
string, mc and 1c strings are now indinguishable. They are identified. We
denote them as 1c ⊕mc. Still it can have end points. The one from 1 ⊕m

to 1c ⊕mc is denoted as x̃ : 1 ⊕m → 1c ⊕mc and the adjoint is denoted as
ỹ : 1c ⊕mc → 1 ⊕m. They are the corresponding 0d excitations of x and y
pulled onto the boundary. Further there is still one non-trivial 0d excitation,
z̃, on 1c ⊕mc corresponding to z pulled onto the boundary. However now
on the boundary z̃ is half of the m-string winding around the 1c ⊕mc as
depicted in Figure E6. The end points of the m-string can either be s, s̄ or
their linear combination. As the e-particle condenses on the 1c-string, the
m-strings winding around the 1c-string with different types of end points
are identified.
The fusion of ỹ and x̃ is depicted as Figure E7.

1c 1c
ỹ x̃

1c 1c
ỹ x̃

1c 1c
ỹ x̃= ⊕

1c 1c

= ⊕

Figure E7: The fusion of ỹ and x̃ is 11⊕m ⊕ e

which gives

(E.4) ỹ ◦1⊕m x̃ = 11c⊕mc
⊕ z̃

where 11c⊕mc
is the trivial 0d excitation on 1c ⊕mc. While for the fusion of x̃

and ỹ, it can be viewed as a 0d 1c ⊕mc. Namely only add to the Hamiltonian
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Ãi at vertex i. Hence it will be a superposition of states with Ãi = ±1, which
means

(E.5) x̃ ◦1⊕m ỹ = 11⊕m ⊕ e

And for the fusion of z̃ and itself. As depicted in Figure E8, there are four
end points.

(a) (b)

1c
z̃ z̃ 1c

s1 s2

s3 s4

(c)

1c

W̃s1

W̃s3

Mm

=
∏
σx

(d)

1c

s1 ⊗ s2

s3 ⊗ s4

⇒

Figure E8: The fusion of z̃ and z̃ is 11c⊕mc
. (a) and (b): two z̃ on the 1c-

string with s1 − s4 types of end points on the boundary. (c): move the left
z̃ towards the right one by string operators W̃s1 and W̃s3 on the boundary
together with the membrane operator Mm in the bulk. (d): The remnant of
the fusion is s1 ⊗ s2 and s3 ⊗ s4 which can be either the vacuum or e-particle
on the boundary.

No matter what types four end points are, we can pull them together with
proper open string operators on the boundary and membrane operator in
the bulk, e.g. W̃s1 , W̃s3 and Mm in Figure E8. Then what left are s1 ⊗ s2
and s3 ⊗ s4 on the boundary which are either the e-particle or vacuum. If
there are e-particles left we can further pull them onto the 1c-string and
condense on it. Therefore this fusion is given by

(E.6) z̃ ◦1⊕m z̃ = 11c⊕mc

The last fusion rule we need to consider is between 1c ⊕mc and itself, which
is depicted in Figure E9, where the m-string in the bulk just beside the
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thicken 1c ⊕mc can be move onto the boundary and disappears. Hence

(E.7) (1c ⊕mc)⊗1⊕m (1c ⊕mc) = (1c ⊕mc)⊕ (1c ⊕mc)

1c1c

1c1c 1c1c= ⊕

1c 1c= ⊕

Figure E9: The fusion of 1c and 1c on the boundary is 1c ⊕ 1c

pb
e1 e2

Figure E10: Rough boundary of the 3+1D toric code model: There is no
degrees of freedom on the black dashed edges. Hence the Bp operators near
the boundary is the product of two σz operators, e.g. Bpb

= σe1z σ
e2
z .

E.2. The rough boundary

The rough boundary corresponding to the electric charge condensation is
realized on the lattice by projecting the boundary links to the trivial element.
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This is represented as dashed lines in Figure E.1. The boundary Hamiltonian
contains Bp terms that act on “incomplete” plaquettes where some links
are the dashed links. The analysis of excitations is the same as the rough
boundary of the 2+1D toric code model and we will not further belabour
about it here.
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[Dé21] Thibault D. Décoppet. Finite semisimple module 2-categories.
arXiv preprint, 2021. arXiv:2107.11037.

[HWW13] Yuting Hu, Yidun Wan, and Yong-Shi Wu. Twisted quantum
double model of topological phases in two dimensions. Physical
Review B, 87(12), 2013.

[HZW05] Alioscia Hamma, Paolo Zanardi, and Xiao-Gang Wen. String
and membrane condensation on three-dimensional lattices.
Physical Review B, 72(3), 2005.

[JFR23] Theo Johnson-Freyd and David Reutter. Minimal nondegen-
erate extensions. Journal of the American Mathematical So-
ciety, 2023.

[JQ14] Chao-Ming Jian and Xiao-Liang Qi. Layer construction of
3D topological states and string braiding statistics. Physical
Review X, 4(4):041043, 2014.

[JTX22] Wenjie Ji, Nathanan Tantivasadakarn, and Cenke Xu. Bound-
ary states of three dimensional topological order and the
deconfined quantum critical point. arXiv preprint, 2022.
arXiv:2212.09754.

[KK12] Alexei Kitaev and Liang Kong. Models for gapped boundaries
and domain walls. Communications in Mathematical Physics,
313(2):351–373, 2012. arXiv:1104.5047.

[KLWZZ20a] Liang Kong, Tian Lan, Xiao-Gang Wen, Zhi-Hao Zhang, and
Hao Zheng. Algebraic higher symmetry and categorical sym-
metry: A holographic and entanglement view of symmetry.
Physical Review Research, 2(4), 2020.

https://arxiv.org/abs/1104.5047


✐

✐

“5-Hung” — 2023/10/10 — 15:45 — page 620 — #38
✐

✐

✐

✐

✐

✐

620 Zhao, Lou, Zhang, Hung, Kong, and Tian

[KLWZZ20b] Liang Kong, Tian Lan, Xiao-Gang Wen, Zhi-Hao Zhang, and
Hao Zheng. Classification of topological phases with finite in-
ternal symmetries in all dimensions. Journal of High Energy
Physics, 2020(9), 2020.

[Kon14] Liang Kong. Anyon condensation and tensor categories. Nu-
clear Physics B, 886:436–482, 2014. Erratum and addendum:
“Anyon condensation and tensor categories” [Nucl. Phys. B
886 (2014) 436–482]. Nuclear Physics B, 973:115607, 2021.
See a corrected version in, arXiv:1307.8244.

[KTZ20a] Liang Kong, Yin Tian, and Zhi-Hao Zhang. Defects in the 3-
dimensional toric code model form a braided fusion 2-category.
Journal of High Energy Physics, 2020(12), 2020.

[KTZ20b] Liang Kong, Yin Tian, and Shan Zhou. The center of monoidal
2-categories in 3+1d Dijkgraaf-Witten theory. Advances in
Mathematics, 360:106928, 2020.

[KW14] Liang Kong and Xiao-Gang Wen. Braided fusion categories,
gravitational anomalies, and the mathematical framework for
topological orders in any dimensions. arXiv preprint, 2014.
arXiv:1405.5858.

[KWZ15] Liang Kong, Xiao-Gang Wen, and Hao Zheng. Boundary-
bulk relation for topological orders as the functor mapping
higher categories to their centers. arXiv preprint, 2015.
arXiv:1502.01690.

[KWZ17] Liang Kong, Xiao-Gang Wen, and Hao Zheng. Boundary-bulk
relation in topological orders. Nuclear Physics B, 922:62–76,
2017.

[KZ21] Liang Kong and Hao Zheng. Categories of quantum liquids II.
arXiv preprint, 2021. arXiv:2107.03858.

[KZ22] Liang Kong and Hao Zheng. Categories of quantum liquids I.
Journal of High Energy Physics, 2022(8), 2022.

[Lev13] Michael Levin. Protected edge modes without symmetry. Phys-
ical Review X, 3(2), 2013.



✐

✐

“5-Hung” — 2023/10/10 — 15:45 — page 621 — #39
✐

✐

✐

✐

✐

✐

String condensations in 3+1D and Lagrangian algebras 621

[LKW16] Tian Lan, Liang Kong, and Xiao-Gang Wen. Modular exten-
sions of unitary braided fusion categories and 2+1D topologi-
cal/SPT orders with symmetries. Communications in Mathe-
matical Physics, 351(2):709–739, 2016.

[LKW18] Tian Lan, Liang Kong, and Xiao-Gang Wen. Classification
of 3+1D bosonic topological orders: The case when pointlike
excitations are all bosons. Physical Review X, 8(2), 2018.

[Luo22] Zhu-Xi Luo. Gapped boundaries of (3+1)d topological orders.
arXiv preprint, 2022. arXiv:2212.09779.

[LW05] Michael A. Levin and Xiao-Gang Wen. String-net condensa-
tion: A physical mechanism for topological phases. Physical
Review B, 71(4), 2005.

[WLHW18] Hongyu Wang, Yingcheng Li, Yuting Hu, and Yidun Wan.
Gapped boundary theory of the twisted gauge theory model of
three-dimensional topological orders. Journal of High Energy
Physics, 2018(10), 2018.

[WWH15] Yidun Wan, Juven C. Wang, and Huan He. Twisted gauge the-
ory model of topological phases in three dimensions. Physical
Review B, 92(4), 2015.



✐

✐

“5-Hung” — 2023/10/10 — 15:45 — page 622 — #40
✐

✐

✐

✐

✐

✐

622 Zhao, Lou, Zhang, Hung, Kong, and Tian

Academy of Mathematics and Systems Science, Chinese Academy of

Sciences, Beijing 100190, China

and University of Chinese Academy of Sciences, Beijing 100049, China

E-mail address: zhaojiaheng171@mails.ucas.ac.cn

State Key Laboratory of Surface Physics, Fudan University, Shanghai

200433, China

and Department of Physics and Center for Field Theory and Particle

Physics, Fudan University, Shanghai 200433, China

E-mail address: 17110190002@fudan.edu.cn

Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy

of Sciences, School of Mathematical Sciences, University of Science

and Technology of China, Hefei, 230026, China

and Shenzhen Institute for Quantum Science and Engineering, South-

ern University of Science and Technology, Shenzhen, 518055, China

E-mail address: zzh31416@mail.ustc.edu.cn

State Key Laboratory of Surface Physics, Fudan University, Shanghai

200433, China

Department of Physics and Center for Field Theory and Particle

Physics, Fudan University, Shanghai 200433, China

and Yau Mathematical Sciences Center (YMSC), Tsinghua University,

Beijing, 100084, China

E-mail address: lyhung@fudan.edu.cn

Shenzhen Institute for Quantum Science and Engineering, Southern

University of Science and Technology, Shenzhen, 518055, China

International Quantum Academy, Shenzhen 518048, China

and Guangdong Provincial Key Laboratory of Quantum Science and

Engineering, Southern University of Science and Technology, Shen-

zhen, 518055, China

E-mail address: kongl@sustech.edu.cn

Laboratory of Mathematics and Complex Systems, School of Mathe-

matical Sciences, Beijing Normal University, Beijing 100875, China

E-mail address: yintian@bnu.edu.cn


	Introduction
	A physicist's sketch of the modular 2-category associated to the 3d toric code model
	Lagrangian algebras in TC and their lattice realizations
	Boundary conditions from layered construction
	Conclusions
	Appendix Modular 2-category TC
	Appendix Commutative algebras in a braided   monoidal 2-category
	Appendix Module categories of the Lagrangian algebras
	Appendix The 3d toric code – Lattice model
	Appendix Lattice realization of the twisted smooth   boundary
	References

