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Twistor sigma models for quaternionic

geometry and graviton scattering

Tim Adamo, Lionel Mason, and Atul Sharma

We reformulate the twistor construction for hyper- and quaternion-
Kähler manifolds, introducing new sigma models that compute
scalar potentials for the geometry. These sigma models have the
twistor space of the quaternionic manifold as their target and en-
code finite non-linear perturbations of the flat structures. In the
hyperkähler case our twistor sigma models compute both Plebanski
fundamental forms (including the Kähler potential), while in the
quaternion-Kähler setting the twistor sigma model computes the
Kähler potential for the hyperkähler structure on non-projective
twistor space.

In four-dimensions, one of the models provides the generating
functional of tree-level MHV graviton scattering amplitudes; per-
turbations of the hyperkähler structure corresponding to positive
helicity gravitons. The sigma model’s perturbation theory gives
rise to a sum of tree diagrams observed previously in the litera-
ture, and their summation via a matrix tree theorem gives a first-
principles derivation of Hodges’ formula for MHV graviton am-
plitudes directly from general relativity. We generalise the twistor
sigma model to higher-degree (defined in the first case with a cos-
mological constant), giving a new generating principle for the full
tree-level graviton S-matrix.
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1. Introduction

Twistor theory provides a unified perspective on integrability [1], with its ap-
plications to hyperkähler and quaternion-Kähler geometry arising from Pen-
rose’s non-linear graviton construction [2, 3] and its various extensions [4–
6]. These constructions give a correspondence between deformed complex
structures on twistor spaces and hyperkähler or quaternion-Kähler metrics,
which are encoded in certain scalars that satisfy non-linear PDEs. In the
hyperkähler setting, these are the Plebanski scalars/forms, subject to the
‘heavenly equations’ [7]. One of these is the well-known Monge-Ampère equa-
tion for a Kähler potential with respect to a choice of complex structure on
the hyperkähler manifold.

These geometries and their description in terms of such scalars have
played an increasingly important role since their original discovery in the
1970s. There are too many applications to give a systematic list, but on the
physics side the scalars provide generating functions that count the num-
ber of BPS states in N = 2 supersymmetric theories in three- and four-
dimensions, where the vacuum moduli spaces are hyper- and quaternion-
Kähler manifolds [8–11]. The scalars play an analogous role in algebraic ge-
ometry as generating functions for Gromov-Witten and Donaldson-Thomas
invariants [12–14]. In this sense, the scalars provide analogues for quater-
nionic geometries of the tau-functions for two-dimensional integrable sys-
tems (cf., [15–18]) that give generating functions for the original Gromov-
Witten invariants and intersection theory of the moduli space of Riemann
surfaces (cf., [19, 20]). More generally, these scalars arise naturally for mod-
uli spaces of Higgs bundles, which are hyperkähler with a natural choice of
complex structure (and hence Kähler potential) [21].
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While we hope that the twistor sigma models of Sections 3 and 4 might
be of relevance to some of the broader applications mentioned above, the fo-
cus in the rest of the paper is on scattering amplitudes. The twistor approach
to scattering amplitudes of four-dimensional gravity has up to now made no
use of such scalar potentials; it does exploit the integrability of the self-dual
sector of the theory to provide a derivation of tree-level scattering in terms
of perturbations around self-duality [22–25]. The first non-trivial amplitude
in this expansion is the maximal-helicity-violating (MHV) amplitude, which
has two anti-self-dual and arbitrarily many self-dual external gravitons (i.e.,
linearised gravitational modes). In [24] a generating functional for the tree-
level MHV amplitudes was proposed by expanding an exact calculation for
two anti-self-dual gravitons on a non-linear self-dual background using in-
tegrability. While a correct formula for the amplitude was obtained with
these methods, neither the generating functional nor its twistor description
is manifestly gauge (diffeomorphism) invariant, and the resulting amplitude
formulae are not in (what we now know to be) their simplest form.

In particular, the optimal formula for tree-level MHV graviton scattering
(in the sense of being manifestly permutation invariant without a permu-
tation sum) is that given by Hodges [26], where the kinematic information
is compactly packaged in a determinant. Hodges’ formula can be related to
earlier expressions [27, 28] constructed from an explicit sum over certain
tree diagrams via a matrix tree theorem [29]. The determinant structure
of the Hodges formula led to the discovery of the Cachazo-Skinner formula
for the full tree-level S-matrix of gravity (i.e., with arbitrary numbers of
anti-self-dual and self-dual external gravitons) [30], which can in turn be
obtained from a twistor string theory for Einstein (super-)gravity [31]. The
validity of the Hodges and Cachazo-Skinner formulae can be proved using
on-shell recursion relations [32] or worldsheet factorization [33], but a di-
rect construction from general relativity is lacking – although the Hodges
formula can be constructed somewhat indirectly as a limit via the twistor
description of conformal gravity [25, 34]. Nevertheless, the tree diagrams
underlying the determinant structures of these formulae suggest a tree-level
expansion of some action formulation at least of some appropriate sector of
Einstein gravity.

The twistor sigma models that we develop for general hyper- and
quaternion-Kähler manifolds, restricted to four-dimensions, allows us to pro-
vide a direct explanation of these tree-diagram formulae and hence deter-
minants. Firstly, we find a new form of the generating functional for grav-
itational MHV amplitudes which is linear in the Kähler potential (or first
Plebanski scalar), and as a consequence, does not require the problematic
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gauge choice built into [24]. Second, we show that the classical perturba-
tive expansion of this Kähler potential gives a sum over tree diagrams that
arise from the perturbation theory for our twistor sigma model. This gives
(via a matrix tree theorem) Hodges formula1, providing a first-principles
derivation of the MHV formula from general relativity.

In general, our twistor sigma models describe the embeddings of holo-
morphic rational maps from a Riemann sphere into twistor space, but unlike
twistor string theories [31, 35, 36], they do not use dual twistor variables so
the target space is purely twistorial. They also differ from twistor strings by
being defined only as semi-classical sigma models, rather than fully quantum,
anomaly-free string theories. They are simplest to express in the quaternion-
Kähler case (i.e., with cosmological constant).

For a 4k-dimensional quaternion-Kähler manifold (M, g), we express the
twistor space PT as a subset of2 P2k+1 with homogenous coordinates ZA ∈
C2k+2 but with almost complex structure determined by h ∈ Ω0,1(PT ,O(2)),
a (0, 1)-form of homogeneity degree +2, together with a non-degenerate holo-
morphic symplectic form IAB on the non-projective space. Denoting the
background Dolbeault operator on P2k+1 by ∂̄, the deformed almost com-
plex structure defined by h is integrable when ∂̄h+ 1

2{h, h} = 0, where { , }
denotes the Poisson bracket corresponding to IAB.

Points in the quaternion-Kähler geometry of M correspond to holomor-
phic curves in the twistor space, represented by rational maps ZA : P1 → PT

constrained to pass through two points, ZA and Z̃A in twistor space. The
condition that the curve be holomorphic arises as the equations of motion
of the action

(1)

∫

P1

dσ

4πi

[
⟨Z(σ), ∂̄Z(σ)⟩+ 2Λh(Z(σ))

]
+ ⟨Z, Z(0)⟩+ ⟨Z̃, Z(∞)⟩ ,

where σ is an affine coordinate on P1, ⟨Z1, Z2⟩ := IBAZ
A
1 Z

B
2 and Λ is pro-

portional to the scalar curvature of M. The terms in the action proportional
to Z and Z̃ provide sources for the model, ensuring that there is a unique
non-trivial solution to the equation of motion of the form

(2) ZA(σ) =
ZA

σ
+ Z̃A +MA(σ) ,

1In contrast, the twistor string of [31] produces the Hodges determinant formula
directly from a fully quantum fermion correlation function, but lacks a direct con-
nection to general relativity.

2We work in the complex category for projective spaces, so that Pn denotes CPn.
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for MA smooth and vanishing3 at σ = ∞.
One of our main results is that when this action is evaluated on the solu-

tions to its equations of motion (with source terms included and Z̃ identified
with the complex conjugate of Z) it computes the Kähler potential associ-
ated to the Swann hyperkähler structure on twistor space [37]. A hermitian
form of the quaternion-Kähler metric onM can be recovered from this scalar
potential by restricting Z to lie on a holomorphic hypersurface in PT , from
which one obtains a scalar potential first constructed by Przanowski in the
four-dimensional case [38].

In the Λ → 0 limit, M is a hyperkähler manifold, and σ can be identi-
fied with an affine coordinates on the P1-base of the twistor fibration. The
P1 components of ZA(σ) must be rational to satisfy the equations of mo-
tion implied by the O(Λ0) terms in the action (1); the remaining O(Λ) part
of the action determines the 2k remaining components of the holomorphic
map. Evaluated on these solutions, the O(Λ) action defines a Kähler poten-
tial – also known as the first Plebanski form or scalar [7] – for M in the
corresponding complex structure. It is this scalar potential that underpins
our derivation of the Hodges formula in four-dimensions. The second Ple-
banski form or scalar potential for the hyperkähler geometry [7] is obtained
by choosing source terms with a double pole structure for the twistor sigma
model.

The paper is organized as follows. Section 2 begins with a review of
hyperkähler manifolds, their description in terms of Plebanski scalars sat-
isfying ‘heavenly’ equations, and the associated twistor theory. In section 3
we construct two twistor sigma models for holomorphic curves in the twistor
space of a hyperkähler manifold, showing that they compute the Plebanski
scalars (and thus determine the hyperkähler geometry) when evaluated on-
shell. We also provide explicit non-linear integral formulae for the scalars as
solutions of the heavenly equations in terms of the twistor data.

Section 4 generalises the twistor sigma model to the quaternion-Kähler
setting; this extension of the hyperkähler case uses the Swann bundle con-
struction that realizes the twistor space as a hyperkähler manifold. After
a brief review of quaternion-Kähler geometry and the associated twistor
theory, we define a twistor sigma model, essentially (1), and prove that it
computes a Kähler potential for the Swann hyperkähler structure on the
non-projective twistor space. With a choice of holomorphic hypersurface in

3The homogeneous coordinates, ZA(σ) will take values in the spin bundle on P
1

i.e., to be of weight −1 in homogeneous coordinates.
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twistor space, we show that this defines a hermitian form of the underlying
quaternion-Kähler metric, generalizing the Przanowski form [38].

In section 5, we specialize to four-dimensions, where hyperkähler man-
ifolds correspond to self-dual vacuum space-times. We first show that the
MHV amplitude has generating function given by the integral of a Kähler
potential (first Plebanski form). This allows us to use the twistor sigma
model to derive a new expression for the generating functional of gravita-
tional MHV amplitudes, and to use its tree expansion to obtain a derivation
(via a matrix-tree theorem) of Hodges’ formula for tree-level MHV scattering
directly from general relativity. Section 6 extends the twistor sigma model
for the Kähler potential to higher-degree curves, and we give a new formula
for the generating functional of tree-level graviton scattering amplitudes in
any helicity configuration. While we do not have a first-principles derivation
for this generating functional beyond the MHV sector, we show that its per-
turbative expansion correctly reproduces the Cachazo-Skinner formula (as
well as certain integral kernel formulae when Λ ̸= 0 [39]). Finally, section 7
concludes with a brief discussion of interesting future directions in integra-
bility and scattering amplitudes including the relationship of these formulae
those from twistor and ambitwistor strings. Appendix A reviews the gener-
ating functional for MHV amplitudes on space-time, and appendix B gives
alternative formulations of the twistor sigma models in positive degree.

2. Hyperkähler manifolds and twistor theory

In this section, we review hyperkähler manifolds and their description by
Plebanski scalars. We then describe the twistor spaces associated to hy-
perkähler manifolds via the non-linear graviton construction.

2.1. Hyperkähler manifolds and their Plebanski forms

A Riemannian manifold of dimension 4k with metric (M4k, g) is hyperkähler
when the holonomy of the metric connection lies in Sp(k). In general, we
will work in a complexification of this structure so that g is a holomorphic
metric with holonomy in Sp(k,C). This holonomy reduction can be expressed
as an isomorphism TM = S⊗ S̃ where S has rank two with a flat SL(2,C)
connection and S̃ has rank 2k with an Sp(k,C) connection which combine to
give the metric connection of g. One can introduce indices for these bundles,
α = 1, 2 for S and α̇ = 1, . . . , 2k for S̃, and corresponding frames eαα̇ on
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T ∗M so that the metric on M takes the form

(3) ds2 = εαβ εα̇β̇ e
αα̇ ⊙ eββ̇ , εαβ = ε[αβ] , εα̇β̇ = ε[α̇β̇] ,

for which εαβ and εα̇β̇ are covariantly constant. In particular, εαβ is the
SL(2,C)-invariant Levi-Civita tensor and εα̇β̇ is the symplectic form as-

sociated to Sp(k,C). We denote their inverses by εαβ , εα̇β̇ with the sign

conventions εαβεβγ = −δαγ and εα̇β̇εβ̇γ̇ = −δα̇γ̇ . These are used to raise and

lower indices: λα = εαβλβ , µ
α̇ = εα̇β̇µβ̇ , etc. Similarly, the symplectic inner

products over S and S̃ will be denoted by ⟨λκ⟩ ≡ λακα, [µρ] = µα̇ρα̇, etc.
The frame of S is chosen to be constant so that the 2-forms

(4) Σαβ = eαα̇ ∧ eβα̇ ,

are covariantly constant and hence closed. Therefore one can find coordinates
(zα̇, z̃

˙̃α) so that4

(5)

Σ11 = dzα̇ ∧ dzβ̇ εβ̇α̇ ,

Σ22 = dz̃
˙̃α ∧ dz̃

˙̃
β ε ˙̃

β ˙̃α
,

Σ12 = Ω
α̇
˙̃
β
dzα̇ ∧ dz̃

˙̃
β ,

where the form of Σ11 and Σ22 is made possibly by Darboux’s theorem and
their rank; on a Euclidean signature real slice, they can be chosen to be
complex conjugates. The closure of Σ12 implies that

(6) Ω
α̇
˙̃
β
=

∂2Ω

∂zα̇∂z̃
˙̃
β
,

by the usual argument for the existence of a local Kähler potential.
This Ω(zα̇, z̃

˙̃α) is often referred to as the first form, or first Plebanski
scalar, for the hyperkähler metric. In terms of Ω, the hyperkähler condition

4Here, α̇ and ˙̃α are indices of the same frame over S̃ and their distinction is purely
for notational clarity.
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reduces to

(7) εα̇β̇ Ωα̇ ˙̃γ Ωβ̇
˙̃
δ
= ε ˙̃γ ˙̃

δ
.

This equation is known as Plebanski’s first heavenly equation [7], and follows
by chosing the co-frame

(8) eαα̇ =
(
dzα̇, Ωα̇

˙̃
β
dz̃

˙̃
β
)
,

along with (5) and the definition of Σ22 = εβ̇α̇e
2α̇ ∧ e2β̇ .

A second form for the hyperkähler geometry follows by keeping the def-
inition of zα̇, but now using Darboux’s theorem to find coordinates wα̇ so
that Σ12 = dzα̇ ∧ dwα̇. With these coordinates one deduces that

(9) eαα̇ =
(
dzα̇, dwα̇ −Θα̇

β̇ dz
β̇
)
, Θα̇β̇ = Θ(α̇β̇) ,

so the closure of Σ22 now implies the existence of a second form, or second
Plebanski scalar, Θ(zα̇, wα̇) such that

(10) Θα̇β̇ =
∂2Θ

∂wα̇∂wβ̇
.

The hyperkähler condition is now encoded in Plebanski’s second heavenly
equation [7]:

(11)
∂2Θ

∂z[α̇∂wβ̇]
+

1

2
Θγ̇

[α̇Θβ̇]γ̇ = 0 ,

and one can verify that there is sufficient coordinate freedom to choose Θ
to reduce the equation to this form. The first and second forms are related
by noting that wα̇ = ∂zα̇Ω and Θα̇β̇ = ∂zα̇∂zβ̇Ω.

Let Vαα̇ be the dual frame of vector fields to eαα̇. The two heavenly
equations arise as the integrability of the Lax system

Lα̇ := λα Vαα̇(12)

= λ1Ωα̇

˙̃
β ∂

∂z̃
˙̃
β
+ λ2

∂

∂zα̇
(13)

= −λ1
∂

∂wα̇
+ λ2

(
∂

∂zα̇
+Θα̇

β̇ ∂

∂wβ̇

)
(14)

In Euclidean signature, the Lα̇ provide the (0, 1)-vectors of a complex struc-
ture that varies as λα, thought of as homogeneous coordinates, range over
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the Riemann sphere P1. This provides a natural segue into the twistor cor-
respondence for hyperkähler manifolds.

2.2. The twistor correspondence

For flat hyperkähler space (i.e., C4k with its natural hyperkähler structure),
we have eαα̇ = dxαα̇, where the flat coordinates are given following the above
by

(15) xαα̇ := (zα̇, z̃α̇) .

Let ZA = (µα̇, λα), A = 1, . . . , 2k + 2 be homogeneous coordinates on P2k+1,
and define the ‘flat’ twistor space to be PT = P2k+1 − P2k−1, where the P2k−1

corresponding to {λα = 0} is removed to give the fibration

(16) λα : PT → P
1 .

Each point x ∈ C4k corresponds to a section of this fibration given by

(17) µα̇ = xαα̇ λα .

In addition, there is a degenerate Poisson structure { , } defined by the bivec-
tor

(18) I := IAB ∂

∂ZA
∧ ∂

∂ZB
= εα̇β̇

∂

∂µα̇
∧ ∂

∂µβ̇
,

taking values in O(−2).
The key result is that there is such a twistor space for every hyperkähler

manifold:

Theorem 1 (Penrose et al. [2, 40]). There is a one-to-one correspon-
dence between:

• suitably convex regions of hyperkähler 4k-manifolds (M, g), and

• (2k + 1)-dimensional complex manifolds PT that are complex defor-
mations of a neighbourhood of a line in PT which preserve the fibra-
tion λα : PT → P1 and degenerate Poisson structure I with values in
O(−2) (pulled back from P1) that annihilates λα.

As in the flat twistor correspondence, each x ∈ M corresponds to a
Riemann sphere X ⊂ PT given as a section of the fibration λ. Each such X
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has normal bundle O(1)⊗ C2k and, by a theorem of Kodaira [41, 42], allows
M to be reconstructed as the 4k-dimensional moduli space of such sections.
The curved twistor space PT encodes the conformal structure of (M, g): two
twistor curves X,Y ⊂ PT intersect if and only if the corresponding points
x, y ∈ M lie on a null geodesic of the conformal class [gab]. The conformal
scale can be reconstructed from λ and I.

Following the k = 1 construction of [43] for self-dual gravity, one can use
an explicit presentation of the complex structure on PT as a deformation
of the complex structure on PT. From Theorem 1, we can always introduce
λα as homogeneous coordinates on the base of the fibration of PT over
P1. Complex, but not necessarily holomorphic, coordinates µα̇ can also be
chosen which are Poisson up the fibres so that

(19) I := εα̇β̇
∂

∂µα̇
∧ ∂

∂µβ̇
,

is the weighted holomorphic Poisson structure.
The almost complex structure of the curved twistor space PT is then

represented with (0, 1)-vectors spanned by the operator ∇̄ = ∂̄ + V , where
∂̄ is the flat complex structure on PT ⊂ P2k+1 in homogeneous coordinates
(µα̇, λα) and V ∈ Ω0,1(PT, TPT) for TPT the holomorphic tangent bundle of
PT. Integrability of this almost complex deformation can be expressed as
∇̄2 = 0. For λα and I to be holomorphic in the complex structure ∇̄ =
∂̄ + V , V must be a bundle-valued Hamiltonian vector field with respect to
the Poisson structure I:

(20) V = V α̇ ∂

∂µα̇
= εα̇β̇

∂h

∂µα̇
∂

∂µβ̇
, h ∈ Ω0,1(PT,O(2)) ,

for some bundle-valued Hamiltonian function h. Denoting the Poisson bracket
induced by I as in (19) by {·, ·}, the Dolbeault operator on PT is thus
∇̄ = ∂̄ + {h, ·}. With these additional structures, the integrability require-
ment ∇̄2 = 0 becomes

(21) ∂̄h+
1

2
{h, h} = 0 ,

with h encoding the data of the hyperkähler manifold.
It is easy to see that such a h generates the generic linear perturbation

to the flat hyperkähler structure as these are generated by H1(PT,O(2))
and h can be taken to be a representative for such a class in the linearized
limit. A natural gauge fixing that extends to the fully non-linear regime is
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to take the (0, 1)-form part of h to be a multiple of λ̄α dλ̄α; in this gauge
the second term of (21) vanishes5. One can also introduce complex conju-
gations on PT appropriate to real Euclidean signature [4, 6, 40, 47–49] or
split-signature [50, 51], although we will not concern ourselves with reality
conditions here.

Now, characterize the holomorphic Riemann spheres X ⊂ PT as sec-
tions of the fibration π : PT → P1 by

(22) (µα̇ = F α̇(x, λ), λα) : P
1 → PT ,

where F α̇(x, λ) is homogeneous of weight 1 in λ but not, at this stage,
holomorphic. Using (20), X is holomorphic with respect to ∇̄ if ∇̄(µα̇ −
F α̇(x, λ))|X = 0, which gives

(23) ∂̄|XF α̇(x, λ) =
∂h

∂µα̇

∣∣∣∣
X

.

The hyperkähler space M is the moduli space of such curves.

Reconstruction of the hyperkähler metric on M. Under our as-
sumptions, Kodaira theory [41, 42] guarantees the existence of solutions F α̇

of (23). To reconstruct the hyperkähler metric on M from PT , observe that
the 2-form

(24) Σ = dxF
α̇ ∧ dxFα̇

is holomorphic up the fibres of π, where dx denotes the exterior derivative
along M. This is confirmed by a brief calculation using (23):

∂̄|X
(
dxF

α̇ ∧ dxFα̇

)
= −2 dx

(
∂h

∂µα̇

∣∣∣∣
X

)
∧ dxFα̇

= 2
∂2h

∂µα̇∂µβ̇

∣∣∣∣
X

∧ dxFβ̇ ∧ dxFα̇ = 0 .

Thus, dxF
α̇ ∧ dxFα̇ is a holomorphic 2-form of homogeneity 2 in λα; by an

extension of Liouville’s theorem to functions valued in O(2), there exists a

5This can be done for a generic perturbation at least locally by constructing h
from the characteristic data for a hyperkähler metric perturbation on a light-cone
(cf., [44–46]).
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triplet of 2-forms Σαβ = Σ(αβ) on M such that

(25) dxF
α̇ ∧ dxFα̇ = λα λβ Σ

αβ(x) .

It follows by construction that the 2-forms Σαβ obey dΣαβ = 0 and that Σ,
and hence Σ11 and Σ22 have rank 2k.

This implies the existence of a frame eαα̇ on M for which the Σαβ are
[52]:

(26) Σαβ = eαα̇ ∧ eβα̇ .

With this frame, the hyperkähler metric on M is recovered with ds2 =
εαβεα̇β̇ e

αα̇ ⊙ eββ̇ ; the holonomy reduction follows as a consequence of dΣαβ =
0. Cartan’s structure equations then give the reduction of the structure group
of the connection to Sp(k,C).

Plebanski potentials and Lax formulation. Direct contact with the
Plebanski scalars Ω, Θ can now be made via the twistor correspondence.
Following [53, 54] from the k = 1 case, this can be done via expansions of
F α̇ as follows. Choose a SL(2,C) basis (κ1α, κ2α) satisfying ε

αβκ1ακ2β = 1
– in the Euclidean real case this can be taken to be a standard SU(2) basis
– and write

(27) λα = λ1 κ1α + λ2 κ2α .

For the second form, expand around λ2 = 0 to write

(28) F α̇(x, λ) = λ1 z
α̇ + λ2w

α̇ +
λ22
λ1

Θα̇ +O(λ32) .

With this, expanding the 2-form Σ around λ2 = 0 gives Σ11 = dzα̇ ∧ dzα̇,
Σ12 = dzα̇ ∧ dwα̇ and

(29) Σ22 = dwα̇ ∧ dwα̇ + 2dzα̇ ∧ dΘα̇ .

By requiring the vanishing of the O(λ−1
1 ) and O(λ−2

1 ) parts of Σ, one obtains
Θα̇ = ∂wα̇Θ and (11).
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The equations for Ω are obtained similarly by expanding around both
λ1 = 0 and λ2 = 0:

(30)
F α̇(x, λ) = λ1 z

α̇ + λ2Ω
α̇ +O(λ22) ,

F
˙̃α(x, λ) = λ2 z̃

˙̃α − λ1Ω
˙̃α +O(λ21) ,

and using the global nature of Σ. Firstly, one finds

(31) Σ12 = dzα̇ ∧ dΩα̇ = −dz
˙̃α ∧ dΩ ˙̃α ,

with the first equality from expanding around λ2 = 0 and the second from
expanding around λ1 = 0. This gives Ωα̇ = ∂zα̇Ω and Ω ˙̃α = ∂

z̃
˙̃
βΩ. The first

heavenly equation (7) then arises by equating Σ22 obtained by expanding
around λ2 = 0 to its value at λ1 = 0.

Now, from (25) and (26) it follows that eαα̇ can be identified from F α̇

up to Sp(k,C) rotations on the dotted index:

(32) dxF
α̇(x, λ) = H α̇

β̇(x, λ) e
αβ̇(x)λα .

This defines H α̇
β̇(x, λ) ∈ Sp(k,C) of homogeneity 0 in λα; it provides a

holomorphic frame of the bundle NX ⊗O(−1) ∼= O ⊗ C2k of dotted spinors
over X. On flat space, one can choose H α̇

β̇ = δα̇
β̇
, as F α̇ = xαα̇λα in this

case.
The Lax description for the hyperkähler equations can be seen by con-

tracting the dual frame of vector fields Vαα̇ into (32) to obtain

(33) λαH
α̇
β̇ = Vαβ̇ ⌟ dxF

α̇ = Vαβ̇F
α̇ .

The Lax operators Lα̇ = λαVαα̇ are compatible because F α̇ solve

(34) Lα̇ F
β̇ = λα Vαα̇F

β̇ = 0 .

The Levi-Civita sp(k,C) connection 1-form Γ̃α̇β̇ = eγγ̇Γ̃γγ̇α̇β̇ can be obtained
from

(35) λγVγγ̇ H
δ̇
α̇ = −λγ Γ̃γγ̇α̇

β̇ H δ̇
β̇ , deαα̇ = Γ̃α̇

β̇ ∧ eαβ̇ .

In this way, all of the data of the hyperkähler geometry of (M, g) is encoded
through its twistor space.
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3. Sigma models for hyperkähler twistor spaces

In this section, we introduce sigma models governing maps from a Riemann
sphere to the curved twistor space PT of a hyperkähler manifold. The vari-
ational equations of these twistor sigma models yield (23), which determines
the holomorphic curves in twistor space whose moduli define the hyperkähler
manifold. We define two such twistor sigma models, adapted to two different
boundary conditions on the twistor curves: the on-shell action of the first
model computes the Kähler potential Ω (the first Plebanski scalar), while
the on-shell action of the second model computes Θ (the second Plebanski
scalar) and so directly determines the hyperkähler manifold (M, g).

In the twistor construction, the usual description of the holomorphic
curves is in terms of maps from the Riemann sphere to twistor space of
degree one as in (22), consequently F α̇(x, λ) is of homogeneity degree one.
However, one can equivalently consider the problem in terms of holomor-
phic curves in twistor space with prescribed boundary conditions; for each
of the two Plebanski scalars the relevant boundary conditions reduce the
normal bundle of the holomorphic curves to O(−1)⊕O(−1). This strategy
is common in the study of (pseudo-)holomorphic curves in algebraic geom-
etry: for instance, the generating functions of Gromov-Witten theory count
such curves (cf., [55]).

While this approach is less usual in twistor theory, it incorporates the
choices we are making, leading to a more universal description of the twistor
sigma models, with manifest Möbius invariance on the holomorphic curves.
It is straightforward to translate back into the more standard degree-one
language, as we make clear in appendix B.

3.1. Sigma model of the first kind (for Ω)

Observe that (30) provide boundary conditions that generically yield a

unique solution F α̇ to (23) given (zα̇, z̃
˙̃α). These boundary conditions are

precisely that

(36) F α̇(x, κ1) = zα̇ , F α̇(x, κ2) = z̃α̇ ,

in terms of the SL(2,C) basis (27). The solution F α̇(x, λ) can be expressed
as a rational map of degree −1 by introducing M α̇(x, λ) ∈ Ω0(X,O(−1)⊗
C2k), so that

(37) F α̇(x, λ) =
zα̇

λ2
+
z̃α̇

λ1
+M α̇(x, λ) ,
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which can be obtained by rescaling (30) by 1/λ1λ2. HereM
α̇(x, λ) is uniquely

determined as a smooth function of weight−1 in λα by ‘boundary conditions’
(zα̇, z̃

˙̃α) (i.e., when λ1 or λ2 vanishes) and (23), which gives the equation

(38) ∂̄|XM α̇(x, λ) =
∂h

∂µα̇

∣∣∣∣
X

,

where h|X = h(F (x, λ), λ). The uniqueness ofM α̇ (at least for small data h)
follows from the invertibility of ∂̄|X on O(−1)-valued functions over X ∼= P1.
Moreover, the boundary conditions imply thatM α̇ is analytic around λ1 = 0
and λ2 = 0.

Note that there is a slight abuse of notation here, as now (λ1, λ2) is only
related to the λα on PT (which provides the holomorphic fibration over P1)
by a projective rescaling. In particular,

(39) λα =
κ1α
λ2

+
κ2α
λ1

,

so that that all components of the twistor coordinates scale with the same
homogeneity. We continue to treat λα as homogeneous coordinates on the
holomorphic curves X in PT , with the understanding that by λα elsewhere
we mean the (λ1, λ2) appearing in (39).

We now take M α̇ to be the dynamical field of a sigma model6 with
action:

(40) SΩ[M ] =
1

ℏ

∫

X

Dλ
([
M ∂̄|XM

]
+ 2h|X

)
,

which yields (38) as its variational equations of motion. Here, Dλ := ⟨λ dλ⟩ =
λαdλα gives a trivialization of the canonical bundle of X ∼= P1, and ℏ is a
formal bookkeeping parameter (analogous to α′ in string theory) whose role
will become apparent in later sections. Note that in SΩ, h|X = h(F α̇, λα) is
expressed in terms of M α̇ by (37).

6Here, we use the term ‘sigma model’ in a slightly more general context than
usual, meaning any theory whose fields are maps from one projective variety to
another, without the requirements of a Riemannian metric on either side of this
map.
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One advantage of working with the rational maps of homogeneity −1 is
that the appropriate boundary conditions can be implemented by extend-
ing (40) to a sigma model for F α̇ with source terms:
(41)

SΩ[F ] =
1

ℏ

∫

X

Dλ

([
F ∂̄|XF

]
+ 2h|X + 4πi [z F ] δ̄(λ2) + 4πi [z̃ F ] δ̄(λ1)

)
,

where δ̄(z) = (2πi)−1∂̄(z−1) for any z ∈ C∗. These source terms lead pre-
cisely to the structure of (37) upon solving for the homogeneous part of the
F α̇ equation of motion, leaving (40).

The key result for this twistor sigma model is its relation to the first
fundamental form of the hyperkähler manifold:

Proposition 3.1. The (complexified) Kähler potential Ω of M is given up
to a constant by

(42) Ω(z, z̃) = ε ˙̃αα̇ z
α̇ z̃

˙̃α − ℏ

4πi
SΩ[M ]|on-shell ,

where SΩ[M ]|on-shell denotes the action SΩ[M ] evaluated on the solution to
its equations of motion.

Proof. Note that rescaling (30) by 1/λ1λ2 and comparing with (37) gives
the relations

(43)
∂Ω

∂zα̇
= z̃α̇ +Mα̇(x, κ1) ,

∂Ω

∂z̃ ˙̃α
= −z ˙̃α −M ˙̃α(x, κ2) .

These can be used to compute ∂SΩ/∂z
α̇ for a M α̇ satisfying the equation of

motion (38):

ℏ
∂SΩ
∂zα̇

=

∫

X

([
∂M

∂zα̇
∂̄|XM

]
+

[
M ∂̄|X

∂M

∂zα̇

]
+ 2

∂F β̇

∂zα̇
∂h

∂µβ̇

∣∣∣∣
X

)
Dλ

=

∫

X

([
∂M

∂zα̇
∂̄|XM

]
−
[
∂̄|X

∂M

∂zα̇
M

]
− 2

(
δβ̇α̇
λ2

+
∂M β̇

∂zα̇

)
∂̄|XMβ̇

)
Dλ

= −
∫

X

∂̄|X
[
∂M

∂zα̇
M

]
Dλ− 2

∫

X

Dλ

λ2
∂̄|XMα̇

= −4πiMα̇(x, κ1)

= 4πi

(
z̃α̇ − ∂Ω

∂zα̇

)
.(44)
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In going from the first to the second line, we used (37) along with the
equation of motion (38) in the last term. In the penultimate line, we in-
tegrated by parts and used ∂̄|Xλ−1

2 = 2πi δ̄(λ2) along with Dλ = ⟨λ dλ⟩ =
λ2 dλ1 − λ1 dλ2.

This gives the ∂/∂zα̇-derivative of (42), and the ∂/∂z̃
˙̃α-derivative can

be obtained similarly. □

An alternative formula for Ω can be obtained as follows: on-shell, one can
eliminate M α̇ by expressing (38) as an integral equation using the Green’s
function of the ∂̄-operator acting on sections of O(−1) over P1:

(45) M α̇(x, λ) =
1

2πi

∫

X′

Dλ′

⟨λλ′⟩
∂h

∂µα̇

∣∣∣∣
X′

,

where X ′ denotes the substitution µα̇ = F α̇(x, λ′), etc. Inserting this in (40)
yields

Ω(z, z̃) = ε ˙̃ααz
α̇z̃

˙̃α − 1

2πi

∫

X

Dλ h
∣∣
X

− 1

2

1

(2πi)2

∫

X×X′

DλDλ′

⟨λλ′⟩

[
∂h

∂µ

∣∣∣∣
X

∂h

∂µ

∣∣∣∣
X′

]
,(46)

which is a non-linear Penrose integral formula for the (complexified) Kähler

potential of M in complex coordinates (zα̇, z̃
˙̃α).

3.2. Sigma model of the second kind (for Θ)

The twistor sigma model can also be adapted to the boundary conditions
appropriate to the second Plebanski scalar Θ, giving an expression for Θ
in terms of the corresponding on-shell action. While we will not use this
model in subsequent sections to study scattering amplitudes, it may have
application elsewhere in the study of hyperkähler manifolds.

To solve (23) for the holomorphic curves in PT , we now impose bound-
ary conditions consistent with (28):

(47) F α̇(x, κ1) = zα̇ ,
∂F α̇

∂λ2
(x, κ1) = wα̇ .

The curve associated with these boundary conditions is given by the homo-
geneity −1 functions

(48) F α̇(x, λ) =
λ1
λ22
zα̇ +

wα̇

λ2
+ M̃ α̇(x, λ) ,
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where M̃ α̇ is weight −1 in λα and also depends on the coordinates (zα̇, wα̇)
on M. This M̃ α̇ satisfies the same equation of motion as M α̇:

(49) ∂̄|XM̃ α̇(x, λ) =
∂h

∂µα̇

∣∣∣∣
X

.

Here h depends on M̃ α̇ via (48), and M̃ α̇ is simply required to be a smooth
solution to this equation of the given weight that is analytic around λ2 = 0.
Again, we abuse notation by treating λα = (λ1, λ2) as homogeneous coordi-
nates on the twistor curves although

(50) λα =
λ1
λ22
κ1α +

κ2α
λ2

,

for the curves with the homogeneity −1 parametrization.
The twistor sigma model of the second kind has the same action

(51) SΘ[M̃ ] =
1

ℏ

∫

X

Dλ
([
M̃ ∂̄|XM̃

]
+ 2h|X

)
,

which reproduces (49) as its classical equation of motion. Once again, this
can be extended to a twistor sigma model for the full F α̇ with sources:

SΘ[F ] =
1

ℏ

∫

X

Dλ

([
F ∂̄|XF

]
+ 2h|X

− 4πiλ1 [z F ] δ̄
′(λ2) + 4πi [wF ] δ̄(λ2)

)
,(52)

where δ̄′(z) = −(2πi)−1∂̄(z−2) for any z ∈ C∗.
The key result for this model is:

Proposition 3.2. The on-shell action SΘ computes the Plebanski scalar
Θ,

(53) Θ = − ℏ

4πi
SΘ[M̃ ]

∣∣
on−shell

.

This determines the hyperkähler metric by (9) and solves the second heavenly
equation (11).
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Proof. Rescaling (28) by 1/λ22 and comparing with (48) yields

(54) Θα̇(z, w) = M̃ α̇(x, κ1) .

The proof of (53) now follows the same lines as (42) for the Kähler potential.
On a solution of the equation of motion (49), one finds

ℏ
∂SΘ
∂wα̇

=

∫

X

([
∂M̃

∂wα̇
∂̄|XM̃

]
+

[
M̃ ∂̄|X

∂M̃

∂wα̇

]
+ 2

∂F β̇

∂wα̇

∂h

∂µβ̇

∣∣∣∣
X

)
Dλ

=

∫

X

([
∂M̃

∂wα̇
∂̄|XM̃

]
−
[
∂̄|X

∂M̃

∂wα̇
M̃

]

−2

(
δβ̇α̇
λ2

+
∂M̃ β̇

∂wα̇

)
∂̄|XM̃β̇

)
Dλ

= −
∫

X

∂̄|X
[
∂M̃

∂wα̇
M̃

]
Dλ− 2

∫

X

Dλ

λ2
∂̄|XM̃α̇

= −4πi M̃α̇(x, κ1) ,(55)

which matches the value (54) of Θα̇ up to the prefactor of −4πi. □

An alternative formula for Θ is found by eliminating M̃ α̇ using the in-
tegral equation following from (49):

(56) M̃ α̇(x, λ) =
1

2πi

∫

X′

Dλ′

⟨λλ′⟩
∂h

∂µα̇

∣∣∣∣
X′

.

This gives a non-linear Penrose integral formula

Θ(z, w) = − 1

2πi

∫

X

Dλ h
∣∣
X

− 1

2

1

(2πi)2

∫

X×X′

DλDλ′

⟨λλ′⟩

[
∂h

∂µ

∣∣∣∣
X

∂h

∂µ

∣∣∣∣
X′

]
,(57)

for the second Plebanski scalar, mirroring (46).

4. Sigma models for quaternion-Kähler twistor spaces

In this section, we show that the twistor sigma model is perhaps most nat-
urally expressed in the context of non-zero scalar curvature: quaternion-
Kähler manifolds in 4k-dimensions for k > 1, and self-dual Einstein mani-
folds with non-zero cosmological constant in four-dimensions. In this context
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the Poisson structure on nonprojective twistor space is non-degenerate, and
so the model has a more uniform description. Here, there is no longer a
natural Kähler potential to compute on the quaternion-Kähler manifold.
However, the nonprojective twistor space is itself hyperkähler [37] and given
the canonical choice of complex structure is determined by a Kähler poten-
tial. This is the scalar that is computed by the twistor sigma model. There do
exist hermitian formulations of the metric that reduce to a differential equa-
tion for a scalar (due to Przanowski in 4-dimensions [38]). Following [11],
we see that the twistor space Kähler potential yields the Przanowski scalar
on restriction to a complex hypersurface.

4.1. The geometry of quaternion-Kähler and self-dual
Einstein manifolds

The geometry of a quaternion-Kähler manifold can be described as follows.
In this section, we will work with Euclidean signature reality conditions,
although later we will allow the metric to be complexified. A quaternion-
Kähler manifold (M4k, g) is a 4k-dimensional real manifold with positive
definite metric with holonomy group contained in Sp(k)·Sp(1)/Z2 for k > 1.
When k = 1, this condition is always satisfied, so further conditions are im-
posed in this case: the metric is self-dual and Einstein with a non-vanishing
cosmological constant (scalar curvature). Hyperkähler manifolds sit inside
this class as the case when the Sp(1) part of the holonomy is trivial so the
holonomy is in Sp(k); for k = 1 this is when scalar curvature vanishes.

Following [56], we introduce an index notation for quaternion-Kähler
manifolds parallel to the 4-dimensional case whereby an orthonormal coframe
is represented as eαα̇, α = 1, 2 and α̇ = 1, . . . , 2k so that the metric is

(58) ds2 = εαβ εα̇β̇ e
αα̇ ⊙ eββ̇ , εαβ = ε[αβ] , εα̇β̇ = ε[α̇β̇] ,

and the εs are in standard form and can be used to raise and lower indices.
Here the α indices carry the Sp(1) holonomy and the α̇ indices carries the
Sp(k) holonomy, so that the structure equations read

(59) deαα̇ = Γα
β ∧ eβα̇ + Γ̃α̇

β̇ ∧ eαβ̇ ,

for connection 1-forms (Γβ
α, Γ̃

β̇
α̇) taking values in sp(1) and sp(k), respectively.

We will assume that the underlying topology is such that the construction of
the C2-bundle S of un-dotted objects in the fundamental representation of
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the Sp(1) is unobstructed.7 When k = 1, we refer to these as anti-self-dual
(ASD) spinors.

As in the hyperkähler case, one can introduce the 2-forms

(60) Σαβ = Σ(αβ) := eαα̇ ∧ eβα̇ .

However, in the quaternion-Kähler setting the bundle S is not flat so these
2-forms will not, in general, be closed8. They are nevertheless covariantly
closed: they satisfy the structure equation

(61) 0 = DΣαβ := dΣαβ − 2Γ(α
γ ∧ Σβ)γ .

It follows from the holonomy condition and D2Σαβ = 0 (or the SD Einstein
condition for k = 1) that the curvature of Γβ

α takes the form

(62) Rαβ := dΓαβ + Γα
γ ∧ Γγβ = iΛΣαβ ,

for a constant Λ. When k = 1, 24Λ is the scalar curvature.

4.2. The quaternion-Kähler twistor space

While the symmetric space model for the twistor space of a quaternion-
Kähler manifold remains PT ⊂ P2k+1, the key difference with the hyperkähler
case is that instead of a P1-fibration, twistor space is now endowed with a
non-degenerate weighted contact structure. This can be represented in terms
of the usual homogeneous coordinates ZA = (µα̇, λα) via an ‘infinity twistor’
IAB which is now of rank 2k + 2 rather than of rank 2k as in the hyperkähler
case (18). Explicitly, define the bundle-valued Poisson bivector

[
∂

∂Z
,
∂

∂Z

]
:= IAB ∂

∂ZA
∧ ∂

∂ZB

= εα̇β̇
∂

∂µα̇
∧ ∂

∂µβ̇
+ Λ εαβ

∂

∂λα
∧ ∂

∂λβ
,(63)

of rank 2k + 2, with its inverse defining the contact structure

(64) τ := ⟨Z, dZ⟩ := IBA Z
AdZB = ⟨λ dλ⟩+ Λ [µ dµ] ,

7When such a topological obstruction exists, following Swann [37], one can work
on a Z2 quotient of S. This makes little difference in what follows.

8The 2-forms Σαβ are also not uniquely defined and on a generic quaternion-
Kähler manifold will not be globally defined.
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where Λ is defined by (62) (in 4-dimensions, the cosmological constant).
As for εαβ , note that IABIBC = −Λ δAC in our convention. These structures
clearly degenerate to those appropriate for the hyperkähler case in that limit.

In the curved case, we follow the Euclidean signature approach [4, 56]
to define the twistor space as follows:

Definition 4.1. Let non-projective twistor space T be the total space of
the complex rank-2 bundle S → M, and projective twistor space PT be its
projectivisation PS.

This nonprojective twistor space T is essentially a double cover of the
Swann bundle [37].

The differential geometry of T can be expressed in terms of an indexed
coordinate σα up the fibre of S. There is a SU(2) = Sp(1)-invariant quater-
nionic complex conjugation σα → σ̂α = (σ2,−σ1) satisfying ⟨σ σ̂⟩ = ||σ||2
and ˆ̂σα = −σα [4, 47]. We also have the covariant exterior derivative9

(65) Dσα := dσα + Γα
β σβ .

This allows us to introduce the 1-form and Euler vector fields

(66) τ = ⟨σDσ⟩ := σαDσα = σα dσα − σα σβ Γαβ , Υ = σα
∂

∂σα
.

Since τ annihilates the Euler vector field, it descends to PT to define a
contact structure. Working on T , the 2-form

(67) dτ = ⟨DσDσ⟩ − i Λσα σβ Σ
αβ .

is complex and has rank 2k + 2, and defines an almost complex structure
on T that is integrable as a consequence of the closure of dτ (following
from (62) or its being exact).

The key result is the converse statement of this construction: that the
quaternion-Kähler manifold (M, g) can be reconstructed from PT as a com-
plex manifold in the complex structure determined by τ .

Theorem 2 (Ward [5], Salamon [6]). There is a one-to-one correspon-
dence between:

9The distinction between the covariant derivative D and the weight +2 holomor-
phic 1-form on P

1 (e.g., Dσ = ⟨σ dσ⟩) should always be clear from the context.
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• suitably convex regions of 4k-manifolds (M, g) with holonomy Sp(k)·
Sp(1) for k > 0 or, for k = 1, self-dual Weyl curvature, vanishing
trace-free Ricci curvature and cosmological constant Λ ̸= 0, and

• 2k + 1-dimensional complex manifolds (PT , τ) that are complex defor-
mations of a neighbourhood of a line in PT which preserve the contact
structure τ = ⟨Z, dZ⟩ = IBA Z

A dZB. PT is further required to admit
an anti-holomorphic conjugationˆ: PT → PT without fixed points that
restricts to the antipodal map on the line and pulls back τ to τ̄ .

Here the condition that PT be equipped with the anti-holomorphic
conjugation ensures that the resulting quaternion-Kähler manifold has a
positive-definite metric. Relaxing this condition enables the construction to
be applied to complexified quaternion-Kähler manifolds in the obvious fash-
ion.

4.3. From the twistor complex structure to its Kähler potential

The non-projective twistor space T is itself a hyperkähler space [37]. With
respect to the complex structure on T induced by (67), a Kähler (1, 1)-form
can be identified:

(68) ω = ⟨DσDσ̂⟩ − i Λσα σ̂β Σ
αβ .

Together (dτ, ω) endow T with a hyperkähler structure [37] whose first
Plebanski scalar (Kähler potential) is given by ⟨σ σ̂⟩ in the complex structure
determined by dτ :

(69) Ω := ⟨σ σ̂⟩ , ω = ∂∂̄⟨σ σ̂⟩ .

This can be verified directly using (Dσα, σαe
αα̇) as a basis of the (1, 0)-forms

of the complex structure together with the structure equations (62).
The twistor correspondence reflects the complete integrability of the

equations for a quaternion-Kähler manifold since the deformed complex
structure on PT can be expressed freely for local solutions (as in the orig-
inal non-linear graviton construction [2, 5]). As in the hyperkähler case,
reconstructing (M, g) requires solving for the holomorphic rational curves
of degree one that will form the fibres of PS → M. Rather than construct
the quaternion-Kähler structure on M directly, we first construct the Kähler
potential Ω. Although given trivially on S by ⟨σ σ̂⟩, in order to construct Ω
in holomorphic coordinates one must construct the holomorphic curves in
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PT . The metric on M is then determined by a Przanowski-like scalar [38]
from Ω.

Complex structure & holomorphic curves. The presentation of the
complex structure of (PT , τ) as a finite deformation of a region in (PT, τ)
follows as in (20), but now using the non-degenerate infinity twistor (63):

(70) ∇̄ = ∂̄ + V , V = {h, ·} = IAB ∂h

∂ZA

∂

∂ZB
, h ∈ Ω0,1(PT,O(2)) .

With this almost complex structure, one can check that

(71) τ := ⟨σDσ⟩ = ⟨Z, dZ⟩+ 2Λh , h = hA dẐA ,

is a (1, 0)-form, where ⟨Z, dZ⟩ = IBAZ
A dZB. Integrability of the almost

complex structure follows from

(72) ∂̄h+
1

2
{h, h} = 0 ,

where ∂̄ is the flat background complex structure. The almost complex struc-
ture is generated from this by demanding that dτ be a (2, 0)-form. This leads
to the basis of (1, 0)-forms

(73) DZA = dZA + IAB ∂h

∂ZB
,

obtained by requiring that

(74) dτ = ⟨dZ, dZ⟩+ 2Λdh = ⟨DZ,DZ⟩ ∈ Ω2,0(PT ,O(2)) ,

which follows from (72).
The equation for holomorphic curves X ⊂ PT given by Z : P1 → PT

becomes

(75) ∂̄|XZA = IBA ∂h

∂ZB

∣∣∣∣
X

,

which reduces to (23) as Λ → 0.

From rational curves to Kähler potential. In order to construct the
Kähler potential, we will first construct the holomorphic curve passing
through two fixed points, say Z and Z̃ in PT (later, we identify Z̃ = Ẑ
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for Euclidean signature); this has expansions in twistor coordinates near Z
and Z̃ respectively of the form

ZA(Z, Z̃, σ) = iΩ(Z, Z̃)−
1

2 FA(Z, Z̃, σ) ,

FA(Z, Z̃, σ) = σ1ZA + σ2Ω
A +

σ22
σ1
NA +O(σ32)

= σ2 Z̃A − σ1 Ω̃
A +

σ21
σ2
ÑA +O(σ31) ,

(76)

where at this stage Ω, ΩA, NA, Ω̃A and ÑA are some functions of Z, Z̃
determined by h. Note that the FA have homogeneity degree +1 in the
homogeneous coordinates σα on the rational curve.

These σα can be identified with the fibre coordinates introduced earlier
on the bundle S: the GL(2,C) freedom in the choice of σα is fixed by re-
quiring that −i

√
ΩZA(σ) = ZA for σα = (1, 0) and −i

√
ΩZA(σ) = Z̃A for

σα = (0, 1). The factor of
√
Ω is needed to accommodate the normalization

implicit in (71). This is seen by computing τ = ⟨Z,DZ⟩ from the two ex-
pansions (76) and requiring it to equal ⟨σ dσ⟩ = σ2 dσ1 − σ1 dσ2 at fixed
(Z, Z̃):

τ |(Z,Ẑ)=const. = ⟨σ dσ⟩
= Ω−1

(
⟨Z,Ω⟩ ⟨σ dσ⟩+ 2 ⟨Z, N⟩σ2 dσ2 +O(σ22)

)

= Ω−1
(
⟨Z̃, Ω̃⟩ ⟨σ dσ⟩+ 2 ⟨Z̃, Ñ⟩σ1 dσ1 +O(σ21)

)
(77)

By Liouville’s theorem, the values of the coefficients at σ1 = 0 are equal to
those at σ2 = 0; this gives

(78) Ω = ⟨Z,Ω⟩ = ⟨Z̃, Ω̃⟩ , 0 = ⟨Z, N⟩ = ⟨Z̃, Ñ⟩ ,

to further constrain the various functions appearing in (76).
At this point, the identification of the Kähler potential ⟨σ σ̂⟩ = Ω

from (69) becomes clear. For ZA(σ) = ZA we must have σα = (−i
√
Ω, 0),

while for ZA(σ) = Z̃A we have σα = (0,−i
√
Ω). The latter is the conjugate

of the former when Z̃ = Ẑ, as required.

Using Liouville’s theorem, further equations underpinning the hyper-
kähler structure on twistor space can be derived by identifying the coeffi-
cients of σ1σ2, σ

2
1, σ

2
2 in τ at σ1 = 0 with those at σ2 = 0. As a result one
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obtains respectively

0 = ⟨Z, dΩ⟩+ ⟨Ω, dZ⟩+ ⟨Z̃, dΩ̃⟩+ ⟨Ω̃, dZ̃⟩
⟨Z, dZ⟩ = ⟨Ω̃, dΩ̃⟩+ ⟨Z̃, dÑ⟩+ ⟨Ñ , dZ̃⟩
⟨Z̃, dZ̃⟩ = ⟨Ω, dΩ⟩+ ⟨Z, dN⟩+ ⟨N, dZ⟩ .

(79)

Using the exterior derivative of (78), the first of these yields

(80) dΩ = ⟨dZ,Ω⟩+ ⟨dZ̃, Ω̃⟩ ⇒ ΩA =
IAB

Λ

∂Ω

∂ZB
, Ω̃A =

IAB

Λ

∂Ω

∂Z̃B
.

Substituting these in the second and third equations in (79), taking exterior
derivatives, and comparing the (2, 0) and (0, 2) parts gives

(81) IAB ∂2Ω

∂ZA∂Z̃C

∂2Ω

∂ZB∂Z̃D
= ICD = IAB ∂2Ω

∂Z̃A∂ZC

∂2Ω

∂Z̃B∂ZD
.

This is in fact the first heavenly equation (7) for the Kähler potential of
twistor space itself.10

4.4. The sigma model and Kähler potential

Following our previous strategy, the rational curve corresponding to x ∈ M
passing through the points Z, Z̃ can be parametrized by rational maps of
homogeneity −1 as

(83) ZA(x, σ) = iΩ− 1

2 FA(x, σ) =
i√
Ω

(
ZA

σ2
+

Z̃A

σ1
+MA(x, σ)

)
,

where MA is a homogeneous function of weight −1 in σα which is uniquely
determined by the boundary conditions of (76). In particular, it obeys the

10From (66) one can further identify the ASD spin connection in our frame on
PT as

Γ11 =
⟨Z̃, dZ̃⟩

Ω
, Γ22 =

⟨Z, dZ⟩
Ω

,

Γ12 = −⟨Z, dΩ⟩+ ⟨Ω, dZ⟩
2Ω

=
⟨Z̃, dΩ̃⟩+ ⟨Ω̃, dZ̃⟩

2Ω
.

(82)
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equation of motion

(84) ∂̄|XMA = IBA ∂h

∂ZB
(F ) ,

where the right-hand-side is evaluated at FA instead of i Ω− 1

2FA. Substi-
tuting (83) in (75) and noting that ∂h/∂ZB has homogeneity +1 in Z (and
hence −1 in σ), this is easily verified to be the expected equation satisfied
by holomorphic curves.

Now, the twistor sigma model which produces (84) as its equation of
motion is

(85) SΛ[M ] =
1

ℏ

∫

X

Dσ

(
1

Λ
⟨M, ∂̄|XM⟩+ 2h|X

)
,

where Dσ := ⟨σ dσ⟩ is the weight +2 holomorphic differential on the curve
X ∼= P1 and, crucially, h|X = h(F (x, σ)) as in (84). Working with the −1-
curve description means that this model is equivalent to a sigma model for
the full FA with delta function sources:

SΛ[F ] =
1

ℏ

∫

X

Dσ

[
1

Λ

(
⟨F, ∂̄F ⟩+ 4πi ⟨Z, F ⟩ δ̄(σ2) + 4πi ⟨Z̃, F ⟩ δ̄(σ1)

)

+ 2h(F )

]
,(86)

analogous to the hyperkähler twistor sigma models. The key result for this
twistor sigma model is:

Proposition 4.1. The on-shell action SΛ computes the Kähler potential Ω
on T ,

(87) Ω(Z, Z̃) = ⟨Z, Z̃⟩ − Λ ℏ

4πi
SΛ[M ]

∣∣
on−shell

.

Proof. Comparing (76) with (83) and applying (80) tells us

(88)
∂Ω

∂ZA
= IBA

(
Z̃B +MB(x, κ1)

)
,

∂Ω

∂Z̃A
= −IBA

(
ZB +MB(x, κ2)

)
.
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The rest of the proof proceeds along the lines of Proposition 3.1. Using the
equation of motion (84), the on-shell action of the sigma model gives

ℏ
∂SΛ
∂ZA

=

∫

X

(
1

Λ

〈
∂M

∂ZA
, ∂̄|XM

〉
+

1

Λ

〈
M, ∂̄|X

∂M

∂ZA

〉

+ 2
∂FB

∂ZA

∂h

∂ZB
(F )

)
Dσ

=

∫

X

(
1

Λ

〈
∂M

∂ZA
, ∂̄|XM

〉
− 1

Λ

〈
∂̄|X

∂M

∂ZA
, M

〉

− 2 ICB

Λ

(
δBA
σ2

+
∂MB

∂ZA

)
∂̄|XMC

)
Dσ

= −
∫

X

∂̄|X
〈
∂M

∂ZA
, M

〉
Dσ − 2 ICA

Λ

∫

X

Dσ

σ2
∂̄|XMC

= −4πi

Λ
ICAM

C(x, κ1) .(89)

It is straightforward to check that the correct derivative with respect to Z̃A

is also obtained in this fashion. □

4.5. The Przanowski scalar and quaternion-Kähler metric

We can give a local representation of the metric on an open set U ⊂ M
by choosing a holomorphic hypersurface Σ ⊂ PT that forms a section of
the fibration over PT |U → U . With respect to the complex structure on
U , the metric is Hermitian and determined in terms of a scalar function K
originally introduced by Przanowski [38] (cf., the treatments in [8, 11, 57]).
This is obtained from the Kahler potential on twistor space derived above
as follows.

The projective twistor space PT also has a Kähler structure in the
complex structure for which τ ∧ dτ r are holomorphic forms [6, 58]. This is
related to the Kähler structure on T in the same way as the Fubini-Study
Kähler metric on Pn is related to the flat one on Cn. Thus it has Kähler
potential log⟨σ σ̂⟩ and this can be checked via (62), (66) and (67) to yield
the Kähler form

(90) ωPT =
τ ∧ τ̄
⟨σ σ̂⟩2 − i Λσα σ̂β Σ

αβ

⟨σ σ̂⟩ .

This restricts to give a Kähler metric on our holomorphic hypersurface
Σ ⊂ PT , but is not quite the quaternion-Kähler metric on M. Our metric
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restricted to U is Hermitian in the complex structure on Σ with Hermitian
2-form

(91)
σα σ̂β Σ

αβ

⟨σ σ̂⟩ =
i

Λ

(
ωPT |Σ − τ ∧ τ̄

⟨σ σ̂⟩2
)
,

and when expressed in holomorphic coordinates on Σ, this determines the
metric on M.

More explicitly, we can choose Σ to be the hypersurface λ2 = 0 and holo-
morphic coordinates zα̇ = µα̇/λ1|Σ from amongst the original coordinates
ZA, assuming that h = 0 near Σ so that they are holomorphic. Then (71)
gives τ explicitly as τ |Σ = λ21 [z dz].

The Przanowski scalar K is defined in terms of Ω = ⟨σ σ̂⟩ restricted to
this hypersurface by

(92) K(z, z̃) = − 1

Λ
log

(
Ω|Σ

Λ |λ1|2
)
.

working with the reality condition z̃α̇ = ẑα̇. Now (91) yields

σα σ̂β Σ
αβ

⟨σ σ̂⟩ = i

(
∂∂̃K +

1

Λ
e2ΛK [z dz] ∧ [z̃ dz̃]

)
.(93)

where ∂ = dzα̇ ∂zα̇ , ∂̃ = dz̃α̇ ∂z̃α̇ . From this, one reads off the hermitian met-
ric on M

(94) ds2 =
∂2K

∂zα̇∂z̃β̇
dzα̇ dz̃β̇ +

1

Λ
e2ΛK [z dz] [z̃ dz̃] ,

which is Przanowski’s form for quaternion-Kähler metrics [38].

5. MHV scattering

At this point, we restrict our attention to four-dimensions where the hy-
perkähler condition is equivalent to a manifold being Ricci-flat and self-dual,
and gravitational perturbations are classified by whether their linearized
Weyl curvatures are self-dual (SD) or anti-self-dual (ASD); these are the
positive and negative helicity gravitons. The semi-classical (tree-level) grav-
itational scattering amplitudes are therefore classified by the number of neg-
ative (versus positive) helicity external gravitons; integrability of the purely
SD sector means that amplitudes with all positive or all but one positive
external gravitons vanish.
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The first non-vanishing configuration as one moves away from self-duality
is the maximal helicity violating (MHV) amplitude: two negative helic-
ity and arbitrarily many positive helicity external gravitons. Explicit, all-
multiplicity formulae for tree-level gravitational MHV amplitudes in flat
space have been known for decades [27, 28, 59], with the optimal formula (in
terms of compactness and explicit permutation symmetry) due to Hodges [26].
While the veracity of these formulae is easily established through unitarity
techniques (e.g., Berends-Giele or BCFW recursion), a direct first-principles
derivation of Hodges’ formula from classical general relativity has proven
elusive.11

In this section, we show how the twistor sigma model of the first kind
together with a new generating functional leads to such a first-principles
derivation. In the first subsection we review linear gravity momentum eigen-
states in twistor space. Next we give a brief review the the MHV generating
function (107) of [24] (with details in appendix A), before expressing the
generating functional directly in terms of the first Plebanski scalar in (110)
and hence in terms of our sigma model (111). We then obtain the amplitude
as a tree expansion via the standard field theory tree expansion of the sigma
model, making contact with the formulae of [27, 28]. A matrix-tree theorem
then gives an equivalence with Hodges’ determinant formula, following [29].

5.1. Twistor theory of linearized gravity

The twistor construction for general 4k-dimensional hyperkähler manifolds
restricts to k = 1 in the obvious way, with some special features. One such
feature is the isomorphism sp(1,C) ∼= sl(2,C), which means that the rank-
2 spinor bundle S̃ now carries another SL(2,C) connection. For instance,
spinors in complexified four-dimensional Minkowski space-time M = C4 are
defined via the isomorphism so(4,C) ≃ sl(2)⊕ sl(2). The spinor components
xαα̇ of a point x ∈ M are given by

(95) xαα̇ =
1√
2

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
,

which can be realised explicitly via the Pauli matrices.
On a general complexified four-dimensional space-time M with metric

g, one has TM ∼= S⊗ S̃, where the two SL(2,C) spinor bundles are referred
to as the ASD (S) and SD (S̃) spinor bundles. Spinors in the curved setting

11A derivation of Hodges’ formula from the unitary truncation of tree-level con-
formal gravity was given in [25].
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are defined with respect to a tetrad (frame of the cotangent bundle) {eαα̇}
along with the dual basis of vector fields denoted by {Vαα̇}. The connection
1-forms Γαα̇ββ̇ ≡ (Γa)αα̇ββ̇ dx

a in this frame can be decomposed via their
antisymmetry properties into SD and ASD parts:

(96) Γαα̇ββ̇ = εαβ Γ̃α̇β̇ + εα̇β̇ Γαβ ,

with Γαβ and Γ̃α̇β̇ symmetric in their spinor indices and defining connections
on the ASD and SD spinor bundles, respectively. The Weyl tensor Cabcd has
a similar spinor decomposition,

(97) Cαα̇ββ̇γγ̇δδ̇ = εαβ εγδ Ψ̃α̇β̇γ̇δ̇ + εα̇β̇ εγ̇δ̇ Ψαβγδ .

The complexified 4-manifold (M, g) is called self-dual (SD) if the ASD part
of its Weyl tensor vanishes: Ψαβγδ = 0. It is straightforward to show that
self-duality combined with Ricci-flatness are equivalent to the hyperkähler
condition in the special case of k = 1.

Thus, the twistor construction of Theorem 1 applies to all 4-dimensional
SD spaces (M, g). For example, the twistor space of complexified Minkowski
space M is PT = P3 \ P1; it has homogeneous coordinates ZA = (µα̇, λα),
having excised the projective line P1 : {λα = 0}. The twistor correspondence
relates points x ∈ M and linear, holomorphic projective twistor lines X ∼=
P1 ⊂ PT by mapping xαα̇ 7→ X : {µα̇ = xαα̇λα}. Each line X has normal
bundle NX

∼= O(1)⊕O(1) → X in PT. Using this data, one can conversely
reconstruct M and its metric up to conformal rescalings as the moduli space
of such twistor lines.

As in the general hyperkähler construction, the conformal scale of the
metric is fixed by the additional information encoded by the degenerate
Poisson structure I, or equivalently through the infinity twistor IAB = I [AB],
which gives the Poisson bracket by {·, ·} = IAB∂A ∧ ∂B.

Gravitational perturbations. To compute graviton amplitudes in flat
space, we will be concerned with the case when the SD 4-manifold M is a
small SD perturbation to M. Metric perturbations hαα̇ββ̇(x) on M have two
on-shell degrees of freedom, corresponding to positive and negative helicity
(i.e., SD and ASD) modes. The SD modes can also be thought of in terms
of the deformed twistor space PT of M as described above, while the ASD
modes are thought of as linear fields propagating on an SD background.

A negative helicity graviton on M can be characterised by ∂αα̇ψαβγδ = 0,
where ψαβγδ is the perturbation’s linearised ASD Weyl spinor. The Penrose
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transform on PT associates negative helicity gravitons with Dolbeault coho-
mology classes:

(98) H0,1

∂̄
(PT,O(−6)) ∼=

{
hab on M | ∂αα̇ψαβγδ = 0

}
.

Given some h̃ ∈ H0,1

∂̄
(PT,O(−6)), the field on M is recovered from the inte-

gral formula

(99) ψαβγδ(x) =

∫

X

Dλ ∧ λα λβ λγ λδ h̃|X .

where Dλ = ⟨λ dλ⟩ gives a trivialization of the canonical bundle of X ∼= P1.
Since λα∂αα̇h̃|X = 0 due to the incidence relations (µα̇ = xαα̇λα), it follows
that this solves the linear field equation ∂αα̇ψαβγδ(x) = 0.

The Weyl curvature perturbation of a positive helicity graviton on M is
self-dual: ψαβγδ = 0. The Penrose transform then provides the isomorphism,

(100) H0,1

∂̄
(PT,O(2)) ∼= {hab on M |ψαβγδ = 0} ,

The SD perturbation to the curvature is determined by the Penrose integral
formula,

(101) ψ̃α̇β̇γ̇δ̇(x) =

∫

X

Dλ ∧ ∂4h

∂µα̇∂µβ̇∂µγ̇∂µδ̇

∣∣∣∣
X

,

which is easily seen to obey the linearised equation of motion ∂αα̇ψ̃α̇β̇γ̇δ̇ via
the incidence relations.

Momentum eigenstates. We consider graviton perturbations that have
on-shell momentum kαα̇ = κακ̃α̇ (i.e., k2 = 0) in M. For a positive helicity
graviton, the twistor representative h ∈ H0,1

∂̄
(PT,O(2)) of the momentum

eigenstate is given by

(102) h =

∫

C∗

ds

s3
δ̄2(κ− s λ) ei s [µ κ̃] .

In this expression, the holomorphic delta function is defined as

δ̄2(κ− s λ) :=
1

(2πi)2

∧

α=0,1

∂̄

(
1

κα − s λα

)
.
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For a negative helicity graviton, the representative h̃ ∈ H0,1

∂̄
(PT,O(−6)) is

taken to be

(103) h̃ =

∫

C∗

ds s5 δ̄2(κ− s λ) ei s [µ κ̃] .

The integral formulae (99), (101) are easily evaluated on these representa-
tives, with all integrals done trivially against the holomorphic delta func-
tions.

5.2. MHV generating functional

On a general 4-manifold M, Plebanski’s chiral formulation of general rela-
tivity in four-dimensions is expressed in terms of three ASD 2-forms con-
structed from the tetrad, Σαβ = eαα̇ ∧ eβα̇, and an ASD spin connection Γαβ

which is a priori independent of the tetrad [52, 60–62]. The condition that
Σαβ arise from a tetrad is equivalent to the algebraic constraint:

(104) Σ(αβ ∧ Σγδ) = 0 .

On the support of this constraint, one can work directly with the Σαβ and
Γαβ ; the classical action functional is:

(105) S[Σ, Γ] =
1

κ2

∫

M
Σαβ ∧ (dΓαβ + Γα

γ ∧ Γβγ)−
1

2
Ψαβγδ Σ

αβ ∧ Σγδ ,

where κ =
√
16πG is the gravitational coupling constant. The field equations

of this action are

(106) DΣαβ = 0 , dΓαβ + Γα
γ ∧ Γβγ = Ψαβγδ Σ

γδ ,

where D is the covariant derivative with respect to the ASD spin connec-
tion (i.e., DΣαβ = dΣαβ + 2Γ(α

γ ∧ Σβ)γ), and Ψαβγδ is a Lagrange multiplier
that is identified with the ASD Weyl curvature spinor of the metric associ-
ated with the tetrad. The equation of motion associated with this Lagrange
multiplier is simply (104). It is straightforward to show that (106) together
with the constraint (104) are equivalent to the vacuum Einstein equations,
and thus the Plebanski action (105) is perturbatively equivalent to the usual
Einstein-Hilbert action of general relativity.

Denote by S the (infinite dimensional) space of (Σ, Γ) that solve the
field equations (106) subject to the constraint (104). A SD solution obeys
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Ψαβγδ = 0, which implies that Γαβ is pure gauge and can be set to zero,
and thus dΣαβ = 0. Let (Σ, 0) ∈ S be such a SD solution; denote this SD
4-manifold by M. The MHV helicity configuration for scattering on flat
space, M, involves two negative helicity gravitons and an arbitrary number
of positive helicity gravitons. This configuration can be realized as a two-
point function of the negative helicity gravitons on a SD background M
viewed as a superposition of the positive helicity gravitons [24]. This two-
point function then serves as the generating functional for all MHV tree-
amplitudes by perturbatively expanding M in positive helicity gravitons on
flat space.

This generating functional was determined on space-time in [24] to be

(107) G(1, 2) = 1

κ2

∫

M
Σαβ ∧ γ1αγ ∧ γ2 γβ ,

where now γ1αβ and γ2αβ are regarded as linearized ASD fields propagating
on the background determined by Σαβ . In appendix A we provide a self-
contained derivation of (107) for completeness, although a näıve argument
can be given directly from the Plebanski action. Without the second term
in (105), the action describes the purely SD sector with Ψαβγδ a linear ASD
field on the background, so (107) provides the leading correction about the
SD sector.

From generating functional to twistor sigma model. Let the two
negative helicity gravitons be represented by momentum eigenstates; the
corresponding perturbations of the ASD spin connection are:

(108) γ1αβ = κ1α κ1β [b̃1 dz] e
i [z 1] , γ2αβ = κ2α κ2β [b̃2 dz̃] e

i [z̃ 2] ,

where (zα̇, z̃
˙̃α) are the complex coordinates on M, [z 1] := zα̇ κ̃1 α̇, [z̃ 2] :=

z̃
˙̃α κ̃2 ˙̃α, and b̃1 α̇, b̃2 ˙̃α are arbitrary reference spinors normalized with respect

to the momenta so that [b̃1 1] = −2 = [b̃2 2]. These reference spinors amount
to a choice of gauge for the perturbations. For instance, it is easy to see that

dγ1αβ = iκ1ακ1βκ1 γκ1 δ e
i [z 1]Σγδ

= ψ1αβγδ Σ
γδ ,(109)

which is independent of b̃1 α̇, and an identical statement is true for dγ2αβ .
With these choices, the MHV generating functional (107) can be expressed
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as:

1

κ2

∫

M
Σαβ ∧ γγ1 α ∧ γ2 γβ =

1

4κ2

∫

M
d2z d2z̃ Ωα̇ ˙̃α b̃

α̇
1 b̃

˙̃α
2 e

i[z 1]+i[z̃ 2],

=
i

2κ2

∫

M
d2z d2z̃ Ωα̇ b̃

α̇
1 e

i[z 1]+i[z̃ 2],

= −⟨1 2⟩4
κ2

∫

M
d2z d2z̃ Ωei[z 1]+i[z̃ 2],(110)

upon integration by parts in z̃, then in z. In the final line, the appropriate
power of ⟨1 2⟩ = κα1 κ2α has been reinstated to give the correct little group
scaling weight.

It is now straightforward to lift the entire MHV generating functional
to twistor space, using Proposition 3.1. Applying (42), the result is

(111) G(1, 2) = ℏ ⟨1 2⟩4
4πiκ2

∫

M
d2z d2z̃ ei [z 1]+i [z̃ 2] SΩ ,

where SΩ is the twistor sigma model of the first kind given by (40).

5.3. Feynman tree diagrams and the matrix-tree theorem

To extract the n-point tree-level MHV amplitude on M from the generating
functional (111), one must express the SD background M as a superposition
of positive helicity gravitons. In terms of the twistor data, this means taking
h to be a sum of cohomology classes on PT of the form (102). Our task
is then to extract part of the generating functional which is multi-linear
in these positive helicity gravitons. This problem is easily translated into
extracting a connected, tree-level correlation function from the field theory
on P1 defined by the twistor sigma model:

Proposition 5.1. Let h =
∑n

i=1 ϵihi. When M α̇ is a solution to its equa-
tion of motion, there is an equivalence

(112)

(
∏

i

∂

∂ϵi

)∫

X

Dλ
([
M ∂̄|XM

]
+ 2h|X

)∣∣∣∣
ϵi=0

= ⟨Vh1
Vh2

. . . Vhn
⟩0tree ,

where the ‘vertex operators’ Vhi
are defined as

(113) Vhi
=

∫

X

2hi|X Dλi ,
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and ⟨. . .⟩0tree denotes the correlation function obtained using connected, tree-
level Feynman diagrams of the twistor sigma model with trivial background
h = 0.

Proof. The generating functional of connected correlation functions of such
vertex operators is the effective action
(114)

W (ϵi) = −ℏ log

∫
DM exp

(
−1

ℏ

∫

X

[
M ∂̄|XM

]
Dλ− 1

ℏ

∑

i

ϵiVhi

)
,

as can be inductively confirmed by differentiation with respect to the ϵi.
Contributions of the connected tree-level graphs can be extracted through
the ℏ → 0 limit. Using the saddle point approximation, this reduces to the
corresponding on-shell action

W tree(ϵi) = lim
ℏ→0

W (ϵi) =

∫

X

[
M ∂̄|XM

]
Dλ+

∑

i

ϵiVhi

∣∣∣∣
on-shell

=

∫

X

Dλ
([
M ∂̄|XM

]
+ 2h|X

)∣∣∣∣
on-shell

,(115)

where now h =
∑

i ϵihi. □

At this point, the computation of this connected tree correlator follows
straightforwardly by an application of the weighted matrix-tree theorem.

Proposition 5.2.

(116) ⟨Vh1
Vh2

. . . Vhn
⟩0tree =

∫

Xn

∣∣∣Lj
j

∣∣∣
n∏

i=1

hi(Mi)Dλi ,

where: Mi =M(λi); Vhi
are as defined in (113); the n× n matrix L has

entries

(117) Lij =





1
⟨λi λj⟩

[
∂

∂Mi

∂
∂Mj

]
, i ̸= j ,

−∑k ̸=i
1

⟨λi λk⟩

[
∂

∂Mi

∂
∂Mk

]
, i = j ,

and |Lj
j | is the determinant of H with one row and column removed, corre-

sponding to any j ∈ {1, . . . , n}.
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Proof. Viewing the {Vhi
} as insertions at n points on X ∼= P1, each labeled

by homogeneous coordinate λi, we must extract the sum of connected tree-
level Feynman diagrams in the theory defined by the background twistor
sigma model with h = 0. The relevant kinetic term in the twistor sigma
model is [M ∂̄|XM ], which means that the propagator is determined by
inverting the ∂̄-operator on sections of O(−1). This gives the propagator
between insertions of M at λi and λj as:

(118)
〈
M α̇

i M
β̇
j

〉
=

ϵα̇β̇

⟨λi λj⟩
.

Wick contractions between any two vertex operator insertions are deter-
mined by this propagator by acting with M α̇-derivatives in the appropriate
way.

The weighted matrix tree theorem of algebraic combinatorics (cf., [63–
65]) states that the sum of all connected tree-level Feyman diagrams is given
by the determinant of the weighted Laplacian matrix for the configuration
of vertex operators with a row and column corresponding to any one of
the vertex operators, say j ∈ {1, . . . , n} removed. The theorem guarantees
that the sum is independent of this choice. From (118), it follows that the
weighted Laplacian matrix is given by L with entries as in (117), meaning
that the connected tree correlator takes the claimed form. □

When momentum eigenstates are used, (118) yields a factor of [ij]/⟨ij⟩;
this was the propagator for the tree-diagram formalism of [27, 28]. The
vertices similarly provide simple weight factors that can be identified with
those of [27, 28]. See [25, 29, 66] for analogous usages of the matrix tree
theorem to sum these tree diagrams.

5.4. MHV amplitudes

Here on inserting momentum eigenstates as wave functions into our general
formulae (112), our sum of tree diagrams reduce to those of [27, 28]. Its sum
via a matrix tree argument (116) is reduces to Hodges’ determinant formula
[26] following [29].

Proposition 5.2 combined with (111) provides an explicit twistorial for-
mula for the n-point, tree-level graviton MHV amplitude in (complexified)
Minkowski space:

(119) ⟨1 2⟩6
∫

M×Xn

d4x ei(k1+k2)·x
∣∣∣Lj

j

∣∣∣
n∏

i=3

hiDλi ,
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where an extra factor of ⟨1 2⟩2 has appeared upon converting from the com-

plex coordinates (zα̇, z̃
˙̃α) to the Cartesian xαα̇ on M. Each of the twistor

wavefunctions is a momentum eigenstate of the form (102); before substi-
tuting these expressions into (119) a small subtlety must be accounted for.
In particular, since we parametrize the twistor lines in terms of weight −1
rational maps (37), it follows that the explicit momentum eigenstates are
rescaled accordingly:

(120) hi(Z(x, λi)) =
1

⟨λi 1⟩2 ⟨λi 2⟩2
∫

C∗

dsi
s3i

δ̄2(κi − si λi) e
i si [µ(x,λi) i] .

That is, for the degree −1 parametrization, hi of weight +2 in twistor space
must have homogeneity −2 in the homogeneous coordinates λi on the twistor
line.

Consequently, (119) is equal to

⟨1 2⟩6
∫

M×Xn

d4x ei(k1+k2)·x
∣∣∣Lj

j

∣∣∣
n∏

i=3

1

⟨λi 1⟩2 ⟨λi 2⟩2

×
∫

C∗

dsi
s3i

δ̄2(κi − si λi) e
i si [µ(x,λi) i] ,(121)

when evaluated on momentum eigenstates. Now, using the fact that

(122)
∂

∂M α̇
i

= i si κ̃i α̇ ,

when acting on momentum eigenstates, it follows that

(123)
∣∣∣Lj

j

∣∣∣
∏

k ̸=1,2,j

⟨λk 1⟩−2 ⟨λk 2⟩−2 =
∣∣∣H12j

12j

∣∣∣ ,

where H is the n× n matrix whose entries are

(124) Hij =





sisj
[i j]

⟨λi λj⟩
, i ̸= j ,

−si
∑

k ̸=i sk
[i k]

⟨λi λk⟩
⟨λk 1⟩ ⟨λk 2⟩
⟨λi 1⟩ ⟨λi 2⟩

, i = j ,

and |H12j
12j | is the determinant with the rows and columns corresponding to

gravitons 1,2 and j removed.
On the flat background, µα̇i = xαα̇λi α and all integrations over X ∼= P1

can be performed against holomorphic delta functions in the momentum
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eigenstate representatives, which set si λi = κi. The remaining scale integrals
over the si parameters are also trivially performed against the holomorphic
delta functions in the representatives. The final result is:
(125)

⟨1 2⟩6
⟨1 j⟩2 ⟨2 j⟩2

∣∣∣H12j
12j

∣∣∣
∫

M

d4x exp

[
i

n∑

i=1

ki · x
]
:= δ4

(
n∑

i=1

ki

)
⟨1 2⟩8 det′(H) ,

where the n× nmatrixH – sometimes called the Hodges matrix – has entries

(126) Hij =





[i j]
⟨i j⟩ , i ̸= j ,

−∑k ̸=i
[i k]
⟨i k⟩

⟨k 1⟩ ⟨k 2⟩
⟨i 1⟩ ⟨i 2⟩ , i = j .

This is precisely Hodges’ formula for the n-point graviton MHV ampli-
tude [26], where gravitons 1 and 2 are negative helicity and all others are
positive helicity. Note that in this final momentum space expression, the fact
that det′(H) is independent of the choice of positive helicity graviton j used
to define the reduced determinant follows from 4-momentum conservation.

6. Higher degree and full tree-level S-matrix

Formulae for the full tree-level S-matrix of gravity in flat space were first
found by Cachazo and Skinner [30, 32] as integrals over the moduli space of
rational maps from the Riemann sphere to twistor space. As in the analogous
formula for the tree-level S-matrix of Yang-Mills theory [35, 67], a degree
d rational map corresponds to a scattering amplitude with d+ 1 negative
helicity external gravitons, also referred to as a Nd−1MHV amplitude. When
d = 1, the Cachazo-Skinner formula reduces to Hodges’ formula (125) for the
MHV amplitude. A worldsheet derivation of the Cachazo-Skinner formula
from twistor string theory was given by Skinner [31]. An alternative world-
sheet model [68] gives a simpler but equivalent formula with fewer moduli
integrals and a more direct expression for the determinants.

Despite the twistorial nature of the Cachazo-Skinner formula, the world-
sheet theories [31, 68] that have been used to generate it have target spaces
that are much bigger than twistor space; both the models contain conjugate
pairs (Z,W ) consisting of both a twistor and a dual twistor, i.e. ambitwistor
space. They further have a worldsheet supersymmetry that doubles up the
variables with those of opposite statistics. From this perspective, the twistor
sigma models of Section 3 are novel in the sense that they require only
twistor space as their target. Furthermore, in Section 5 we showed that the
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twistor sigma model of the first kind (i.e., the model corresponding to the
Kähler potential or first Plebanski scalar Ω) computes the MHV amplitude
– albeit as a classical sigma model rather than a string theory which would
use the full quantum correlator on the worldsheet.

The question naturally arises: can the twistor sigma model be extended
to compute the full tree-level S-matrix of gravity? We provide a partial an-
swer to this question by extending the twistor sigma model to higher-degree
maps and then conjecturing an appropriate generating functional based on
the model. This construction is most easily formulated for a non-vanishing
cosmological constant, with Λ → 0 taken at the end of the computation and
can be proved in that limit by comparison to the Cachazo-Skinner formula.

6.1. Twistor sigma model at higher degree

When dealing with holomorphic maps Z : P1 → PT of arbitrary degree d >
0, it is convenient to introduce homogeneous coordinates σa = (σ1, σ2) on
P1; at degree d, Z(σ) is homogeneous of degree d in σ. Rather than working
with unconstrained curves of degree d (as in the original Cachazo-Skinner
formula or its gauge theory predecessor), we again follow the strategy of
parametrizing Z(σ) by a rational map of homogeneity −1 by removing 4(d+
1) of the map moduli with boundary conditions.

A n-point tree-level Nk−2MHV amplitude will contain k negative helicity
gravitons12, indexed by a set h̃ with |h̃| = k; the remaining n− k positive
helicity gravitons are indexed by the set h, so that h ∪ h̃ = {1, . . . , n}. In
twistor space, this should correspond to degree k − 1 curves passing through
k points (one for each negative helicity graviton):

(127) ZA(σr) = ZA
r , ∀ r ∈ h̃ .

These conditions can be understood as arising from ‘elemental states’ for
the negative helicity gravitons supported at fixed twistors Zr. These arise
from elements of H0,1(PT,O(−6)) of the form13

δ̄3(Z(σr),Zr) :=

∫

C∗

s5 ds δ̄4(sZ(σr)−Zr)

∈ H0,1(PT,O(−6))⊗H0,2(PTr,O(2)) .(128)

12In this section, k always denotes the number of negative helicity gravitons in a
four-dimensional scattering process, and should not be confused with the k entering
into the dimension of a hyper/quaternion-Kähler manifold in earlier sections.

13The overall cohomology degree of this holomorphic delta function is (0, 3), but
is understood to be projected as a (0, 1)-distribution in Z and a (0, 2)-distribution
in Zr.
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An amplitude constructed from such wave functions will take values in
⊕rH

0,2(PTr,O(2)), so one can multiply by arbitrary twistor wave functions
h̃r ∈ H0,1(PTr,O(−6)), such as the momentum eigenstate

(129) h̃r(Zr) =

∫

C∗

s5 ds δ̄2(s λr − κr) e
i s [µr r] ,

and integrate against D3Zr to obtain a generic amplitude valued in the
complex numbers (cf. [34]).

Imposing (127) is equivalent to reducing Z(σ) to a rational map valued
in O(−1) on P1 passing through the k fixed points {Zr} associated to the
negative helicity graviton insertions:

(130) ZA(σ) =
∑

r∈h̃

ZA
r

(σ r)
+MA(σ) ,

where (σ r) := εbaσaσr b, each fixed twistor Zr carries homogeneity +1 with
respect to σr and M

A is a smooth section of O(−1). Then the higher-degree
generalisation of the twistor sigma model with cosmological constant is

(131) SΛ
k [M ] =

∫

P1

Dσ

(
1

Λ
⟨M, ∂̄M⟩+ 2h(Z(σ))

)
,

where Dσ := (σ dσ) trivializes the canonical bundle of P1. As usual, the
homogeneity −1 parametrization makes it easy to view this sigma model
as arising from another model for Z(σ) itself with delta function sources at
each σr:
(132)

SΛ
k [Z(σ)] =

∫

P1

Dσ


 1

Λ


⟨Z, ∂̄Z⟩+ 4πi

∑

r∈h̃

⟨Zr, Z(σ)⟩ δ̄(σr)


+ 2h(Z(σ))


 ,

from which it is immediately clear that classical solutions to the equations
of motion take the form (130).

For k = 2, this model is clearly equivalent to the twistor sigma model
for quaternion-Kähler geometry of (85) – (86) (where we have set ℏ = 1 and
renamed FA(σ) to ZA(σ) for ease of notation).

The Λ → 0 limit. In the limit of vanishing Ricci scalar curvature (i.e.,
Λ → 0), the leading term in (131) is proportional to Λ−1, which gives the free
quadratic action for the un-dotted spinor part of M . On-shell, this means
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that the un-dotted components of M must be holomorphic. But since M
takes values in O(−1) and there are no globally holomorphic sections of this
bundle, the un-dotted components of M will vanish on-shell in the Λ → 0
limit, leaving

(133) λα(σ) =
∑

r∈h̃

λr α
(σ r)

,

for the λ-components of the rational map Z(σ). The remaining part of the
action in the Λ → 0 limit is smooth, giving

(134) S0
k [M ] =

∫

P1

Dσ
(
[M ∂̄M ] + 2h(Z(σ))

)
,

for the dotted components of M . When |k| = 2, the GL(2,C) freedom in
the choice of homogeneous coordinates σa allows us to identify them with
(λ1, λ2), at which point it is clear that (134) agrees with SΩ given by (40).

6.2. The full tree-level graviton S-matrix

Our goal now is to obtain a formula for all tree-level graviton scattering
amplitudes on M at any Nk−2MHV helicity configuration from the higher-
degree twistor sigma model. To this end, we define a generating functional:

(135) Gk[h̃, h] =

∫ |L̃p
p|

vol GL(2,C)
SΛ
k

∏

r∈h̃

h̃r(Zr)Dσr d
4Zr ,

where L̃ is a k × k matrix whose entries correspond to the negative helicity
gravitons:

(136) L̃rs =





⟨Zr,Zs⟩
(r s) , r ̸= s ,

−∑q ̸=r

q∈h̃

⟨Zr,Zq⟩
(r q) , r = s ,

for all r, s ∈ h̃. The object |L̃p
p| appearing in the generating function is the

reduced determinant of L̃, with one row and column corresponding to any
p ∈ h̃ removed. The fact that |L̃p

p| is independent of the choice of p ∈ h̃

follows from the matrix tree theorem. The quotient by the (infinite) volume
of GL(2,C) accounts for the SL(2,C)× C∗ redundancy in the description of
the map ZA(σ) given by (130).
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While most of the ingredients in (135) are dictated simply by require-
ments of homogeneity, the appearance of |L̃p

p| should be viewed as the pri-
mary conjectural input for the generating functional. When k = 2, this factor
is equal to unity, and in the Λ → 0 limit it is easy to see that this generating
functional is equal to (111).

At this point, the perturbative expansion of the twistor sigma model
proceeds along the same lines as propositions 5.1 and 5.2, using the OPE

(137) MA(σi)M
B(σj) ∼

IAB

(i j)
,

where IAB is the (non-degenerate) infinity twistor (63). The resulting
weighted Laplacian matrix L is (n− k)× (n− k) with entries

(138) Lij =





1
(i j)

[
∂

∂Z(σi)
, ∂
∂Z(σj)

]
, i ̸= j ,

−∑k ̸=i
k∈h

1
(i k)

[
∂

∂Z(σi)
, ∂
∂Z(σk)

]
, i = j ,

for all i, j ∈ h. The weighted matrix tree theorem then gives the (n− k)th-
order term in the generating functional:

(139) MΛ
n,k =

∫ |L̃p
p| |Lj

j |
vol GL(2,C)

∏

r∈h̃

h̃r(Zr)Dσr d
4Zr

∏

i∈h

hi(Z(σi))Dσi ,

where |Lj
j | denotes the reduced determinant of L with one row and column

corresponding to any j ∈ h removed; independence of the choice of this j ∈ h

follows by the matrix tree theorem.
The Λ → 0 limit is easily taken by simply replacing L̃ → L̃ and L → L

with

(140)

L̃rs =





⟨λr λs⟩
(r s) , r ̸= s ,

−∑q
⟨λr, λq⟩
(r q) , r = s ,

Lij =





1
(i j)

[
∂

∂µ(σi)
∂

∂µ(σj)

]
, i ̸= j ,

∑
k ̸=i

−1
(i k)

[
∂

∂µ(σi)
∂

∂µ(σk)

]
, i = j ,
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leaving the formula

(141) M0
n,k =

∫ |L̃p
p| |Lj

j |
vol GL(2,C)

∏

r∈h̃

h̃r(Zr)Dσr d
4Zr

∏

i∈h

hi(Z(σi))Dσi ,

for the n-point tree-level Nk−2MHV amplitude.

This can be reduced to the Cachazo-Skinner formula as follows. First,
convert the weight −1 parametrization used here to a degree k − 1 holomor-
phic map. In particular, the weight−1 maps (130) are projectively equivalent
to the degree k − 1 holomorphic maps

(142) ZA(σ) =
∑

r∈h̃

ZA
r

∏

s ̸=r

(σ s)

(r s)
+MA(σ)

∏

r∈h̃

(σ r) ,

where MA remains a smooth section of O(−1). Performing this projective
rescaling in the formula (139), where Λ ̸= 0, gives
(143)∫ |h̃|8

vol GL(2,C)
det′(H̃) det′(H)

∏

r∈h̃

h̃r(Zr)Dσr d
4Zr

∏

i∈h

hi(Z(σi))Dσi ,

with the Vandermonde determinant |h̃| on P1 is defined by

(144) |h̃| :=
∏

r,s∈h̃
r<s

(r s) .

The two reduced determinants det′(H̃), det′(H) are defined by

(145) det′(H̃) :=

∣∣∣H̃h∪{p}
h∪{p}

∣∣∣
|h̃ \ {p}|2 ,

with H̃ the n× n matrix with entries:

(146) H̃ij =





⟨Z(σi), Z(σj)⟩
(i j) , i ̸= j ,

− ⟨Z(σi),dZ(σi)⟩
Dσi

, i = j ,

and

(147) det′(H) :=

∣∣∣Hh̃∪{j}

h̃∪{j}

∣∣∣
|h̃ ∪ {j}|2 ,
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with H the n× n matrix with entries:

(148) Hij =





1
(i j)

[
∂

∂Z(σi)
, ∂
∂Z(σj)

]
, i ̸= j ,

−∑k ̸=i
1

(i k)

[
∂

∂Z(σi)
, ∂
∂Z(σk)

]∏
r∈h̃

(r k)
(r i) , i = j .

It is straightforward to show that this formula is projectively well-defined;
for instance, the reduced determinant det′(H̃) is homogeneous of degree zero
in each {σr} and has no singularities in σr [31]; it therefore depends only on
the map moduli {Zr}.

The expression (143) for MΛ
n,k has appeared in the literature before,

as the degree k − 1 formula for the ‘bulk integral kernel’ of the tree-level
‘amplitudes’ of gravity in (A)dS4 found in [39]14. While the precise interpre-
tation of this bulk integral kernel in relation to the usual notions of (A)dS4
boundary correlators is not yet clear, when k = 2 the formula can also be
derived by taking the Einstein truncation of conformal gravity in twistor
space [25, 34].

In any case, the Λ → 0 limit of (143) is straightforward. In this case, the
entries of the matrices H and H̃ become

lim
Λ→0

Hij = Hij =
1

(i j)

[
∂

∂µ(σi)

∂

∂µ(σj)

]
,

lim
Λ→0

H̃ij = H̃ij =
⟨λ(σi)λ(σj)⟩

(i j)
,

(149)

for the off-diagonal entries, with diagonal entries following similarly by tak-
ing the degenerate limit of the infinity twistor. The result

M0
n,d =

∫ |h̃|8
vol GL(2,C)

det′(H̃) det′(H)

×
∏

r∈h̃

h̃r(Zr)Dσr d
4Zr

∏

i∈h

hi(Z(σi))Dσi ,(150)

is the Cachazo-Skinner formula for the tree-level Nk−2MHV graviton ampli-
tude on flat space [30]. Equivalently, this can be obtained directly from (141)
by performing the projective rescaling to degree k − 1 maps after setting
Λ = 0.

14More precisely, (143) is equal to the (A)dS4 formula of [39] with no super-
symmetry in a particular twistor gauge, corresponding to equation (2.17) in that
paper.
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7. Discussion

Following on from these results, there are many avenues for further investi-
gation in the study of scattering amplitudes, integrability and twistor con-
structions more generally.

Amplitudes. Despite arriving at equivalent formulae, the twistor sigma
models of this paper are quite distinct from the twistor string theory for
N = 8 supergravity [31] or the four-dimensional ambitwistor string [68]15.
In those models, gravity amplitudes arise from fully quantum correlation
functions of a worldsheet theory, generating the complete tree-level S-matrix
from the worldsheet CFT – albeit in a fashion in which the connection to
general relativity is perhaps not entirely clear. By contrast, the amplitudes
in our models are computed via the classical tree expansion of the sigma
model action. In the MHV sector, this gives a derivation of the amplitudes
which is directly connected to general relativity; however, for generic helicity
configurations a portion of the generating functional (135) (roughly corre-
sponding to the negative helicity gravitons) had to be inserted by hand.

Another distinction between our sigma models and twistor or four-
dimensional ambitwistor strings lies in the underlying geometry. The latter
theories have twice as many bosonic worldsheet fields as our sigma models,
including both a twistor and a dual twistor which make up an ambitwistor
parametrizing the space of null geodesics in space-time. Furthermore they
have worldsheet supersymmetry doubling the worldsheet fields with those
of opposite statistics. Our sigma models have only twistor space as their
target, and are purely bosonic.

This more direct connection with the underlying twistor geometry has
some powerful consequences. In [70], we gave a new formula for semi-classical
MHV graviton scattering in a strong self-dual gravitational plane wave back-
ground, derived using a combination of twistor string theory and a gener-
ating functional from [24]. As a consequence, the resulting formula was not
manifestly gauge (diffeomorphism) invariant. In forthcoming work, we use
the novel expression of the MHV generating functional given here to substan-
tially improve this formula, in particular making gauge invariance manifest
and extending it to any self-dual radiative gravitational background.

There are several other related topics for future investigation. Clearly,
an important challenge is to derive (directly from general relativity) all in-
gredients of the all MHV-degree generating functional (135), and thus give

15The original twistor strings of [35, 69] yield conformal gravity [36] rather than
Einstein gravity.
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a space-time derivation of the formula (141) for the tree-level S-matrix. One
could hope that this might correspond to a fully non-linear twistor con-
struction, perhaps following some of the ideas in [71, 72], or completing the
sigma model to a fully consistent string theory in its own right. It should
also be possible to extend the principles underlying this construction to
Einstein-Yang-Mills amplitudes, and thereby improve upon the calculations
of Yang-Mills amplitudes in strong self-dual background fields in [73]. In ad-
dition, the formula with non-vanishing cosmological constant (143) requires
significant further interpretation to ascertain whether it can be related to
conventional tree-level observables (i.e., boundary correlation functions) in
(A)dS4.

Finally, one can ask the following näıve question: what is produced by
the fully quantum, disconnected correlation functions of the twistor sigma
model? That is, what if we considered the full correlation function on the
right-hand-side of (112), rather than extracting connected trees? While there
is no reason to expect this to produce anything of physical significance, a
surprisingly compact momentum-space formula emerges for the ℏ-deformed
MHV ‘amplitude’:
(151)

δ4

(
n∑

r=1

kr

)
⟨1 2⟩2n

n∏

i=3

1

⟨1 i⟩2 ⟨2 i⟩2 exp


− i ℏ

8π

∑

j ̸=i

[i j]

⟨i j⟩
⟨1 i⟩2 ⟨2 j⟩2

⟨1 2⟩2


 .

The exponential factors in this formula resemble ‘holomorphic’ versions of
the Koba-Nielsen factors familiar from string theory scattering amplitudes
(though all worldsheet integrals have been localized), and it would be inter-
esting to know if there is any physics lurking in this formula.

Tau functions and integrability. One aspiration for this paper was to
extend the twistorial understanding of tau-functions for integrable systems
developed in [74, 75]. In those papers, the well-known tau-functions for the
KdV equations and its relatives (including the Painlevé and Ernst equations)
were related to the Ward construction for the appropriate symmetry reduc-
tions of the self-dual Yang-Mills equations. Tau-functions can be understood
both as correlation functions in a 2-dimensional quantum field theory (cf.,
[17]) and as sections of a determinant line bundle over an infinite-dimensional
Grassmannian (cf., [18]). In [75] the tau-functions were expressed as Quillen
determinants associated to the ∂̄-operator on a Ward bundle restricted to
a line in twistor space; this was also expressed in quantum field-theoretic
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language via Chern-Simons and WZW theory. In [74] the section of a de-
terminant line on an infinite-dimensional Grassmannian was introduced via
the Riemann-Hilbert problem for the Ward construction.

By identifying the Plebanski scalars with the action of twistor sigma
models, we have provided an analogous construction for hyper- and
quaternion-Kähler geometry, connecting with two-dimensional field theory
(albeit classical in this instance). Comparison with twistor string theory
(as described above) suggests an alternative and distinct connection to a
worldsheet quantum field theory, based on either of [31, 68]. Indeed, one
can imagine constructing the Kähler potential in those models by taking
the worldsheet theory on the full cotangent bundle of the non-projective
curved twistor space and computing the worldsheet correlation function for
two negative helicity gravitons (perhaps in the limit of zero momentum to
avoid extra plane wave factors).

There is also an interesting twistor theory for moduli spaces of integrable
systems in two dimensions; in particular, moduli spaces of Higgs bundles are
hyper-Kahler manifolds with preferred complex structures [21, 76, 77]. Re-
cently, a natural ‘energy’ functional on sections of the associated twistor
space was constructed with connections to many other twistorial struc-
tures [78]. It would be intriguing if there was an alternative understanding
of these energy functionals in terms of the scalar potentials studied here.

Connections to 4d Chern-Simons theory. The degree 1 versions of
our sigma models presented in (B.9), (B.12) and (B.14) are also interesting
from the perspective of recent reformulations of integrable systems in terms
of 4d Chern-Simons theories. The latter are defined on P1 × R2 (and also on
more general products of Riemann surfaces and topological planes) whose
actions utilize the same principle of inserting poles along P1 and interpreting
them as 2d surface defects in the theory. On compactification along P1, they
give rise to a host of 2d integrable systems [79] (see also [80, 81]), many of
which are also obtainable as symmetry reductions of self-dual Yang-Mills. As
a result, many 4d Chern-Simons theories are directly related to symmetry
reductions of holomorphic Chern-Simons actions on twistor space [82, 83].
Our sigma models can also be coupled to background fields occurring in
these holomorphic Chern-Simons theories in a variety of ways. This hints at
the possibility of obtaining these twistor actions as effective actions – possi-
bly after topological twists – of our models. Moreover, symmetry reductions
of our models when coupled to SD Einstein-Yang-Mills may also find ap-
plications to Beltrami-Chern-Simons theory [84]. Additionally, performing
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the symmetry reductions directly on our sigma models might lead to new
stringy descriptions of 4d Chern-Simons theories.
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Appendix A. Review of the MHV generating functional

Here we provide a summary of the derivation of the generating functional
(107) from [24] for completeness. The boundary term of (105) induces a
2-form on S:

(A.1) ω =
1

κ2

∫

C

δΣαβ ∧ δΓαβ ,

where δ is the exterior derivative on S and C is a Cauchy surface. It is
straightforward to show that ω is independent of the choice of Cauchy surface
and descends to the quotientR of S by the action of (orientation-preserving)
diffeomorphisms and spin-frame rotations [24, 34] where it gives a symplectic
form. Thus (A.1) induces a skew inner product on the vector space V =
T(Σ,0)S of linearised fluctuations (Σ + σ, γ) around the SD background. If
H1,2 = (σ1,2, γ1,2) are two such linearised fluctuations, then

(A.2) ω (H1, H2) =
1

κ2

∫

C

(
σαβ1 ∧ γ2αβ − σαβ2 ∧ γ1αβ

)
,

is this skew inner product16.
The linearised field equations around the SD background M, obeyed by

any fluctuation (σ, γ) are

(A.3) σ(αβ ∧ Σγδ) = 0 , dσαβ = −2 γγ
(α ∧ Σβ)γ , dγαβ = ψαβγδ Σ

γδ ,

where the linearisation of the constraint (104) is included and ψαβγδ =
ψ(αβγδ), and d is the exterior derivative onM. By acting with d on both sides

16This determines a Hermitian inner product on positive frequency fields by
⟨H2|H1⟩ = iω(H̄2, H1). Such a positive frequency projection will generically differ
between Cauchy surfaces or at I ±.
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of the third of these equations, it is easy to see that d(ψαβγδΣ
γδ) = 0; this

is the linearised spin-2 field equation associated with an ASD perturbation
of the metric on M.

Using (A.3) there is a natural splitting of V by a short exact sequence

(A.4) 0 → V + →֒ V → V − → 0 ,

where

(A.5)
V + = {(σ, 0) ∈ V } ,
V − =

{
γαβ ∈ Ω1 | dγαβ = ψ(αβγδ)Σ

γδ
}
/{dfαβ} ,

are respectively the space of linearised SD solutions and linearised ASD spin
connections. The SD curvature of M means that the space of linearised SD
metrics are defined directly, whereas the ASD degrees of freedom are defined
only via the appropriate variation in the ASD spin connection.

It is now clear that the inner product (A.2) vanishes upon restriction to
V + (i.e., V + is a Lagrangian subspace with respect to ω) as then both γiαβ =
0 for i = 1, 2. This can be used to define a splitting of (A.4), V = V − ⊕ V +

at a generic Cauchy surface C in M by defining V − ⊂ V according to:

Definition A.1. Let C ⊂ M be a Cauchy surface in the SD background.
A linearised fluctuation H1 ∈ V is ASD at C if

(A.6)

∫

C

σαβ1 ∧ γ2αβ = 0 ,

for all H2 ∈ V −.

However, it is easy to check that this definition is not conserved from
one Cauchy hypersurface to another.

The geometric picture of MHV scattering is as the perturbative expan-
sion of a two-point function of negative helicity gravitons on a SD back-
ground M, thought of as composed of positive helicity gravitons. Thus,
M is naturally viewed as asymptotically flat in the sense of [85, 86], with
asymptotic past and future null infinities I ± upon conformal compactifi-
cation. The relevant two-point function is between linearised fields in V −:
H1 which is ASD at I − and H2 which is ASD at I +. Evaluating the inner
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product at I + and using definition A.1 gives

ω(H2, H1) = − 1

κ2

∫

I +

σαβ1 ∧ γ2αβ

= − 1

κ2

∫

M

(
dσαβ1 ∧ γ2αβ + σαβ1 ∧ dγ2αβ

)
− 1

κ2

∫

I −

σαβ1 ∧ γ2αβ

=
1

κ2

∫

M
Σαβ ∧ γγ1 α ∧ γ2 γβ .(A.7)

Here, the second line follows by Stokes’ theorem with the boundary of the
SD background ∂M = I + − I −; the boundary term at I − vanishes since
H1 is ASD at I −. The final line follows by applying the linearised field
equations (A.3). This expression for ω(H2, H1) serves as the MHV generating
functional on M, upon perturbatively expanding M as a sum of positive
helicity gravitons in flat space.

Appendix B. Expressions in terms of positive degree maps

In our twistor sigma models we have described the holomorphic curves in
twistor space in terms of rational maps of homogeneity −1; however, in the
twistor literature (particularly when applied to scattering amplitudes) it is
more usual to use holomorphic curves of homogeneity degree +1. In this
appendix we provide the translation between these two pictures for each
twistor sigma model.

It is easy to see that the rational map of homogeneity −1 defined by (37)
is projectively equivalent to a degree +1 holomorphic map, as

λ1 λ2 F
α̇(x, λ) = λ1 z

α̇ + λ2 z̃
˙̃α +mα̇(x, λ) ,

where we have defined the degree +1 field

(B.8) mα̇(x, λ) = λ1 λ2M
α̇(x, λ) .

Working with the positive degree holomorphic map introduces various poles
in the action of the twistor sigma model, which becomes

(B.9) SΩ[m] =
1

ℏ

∫

X

Dλ

λ21 λ
2
2

([
m∂̄|Xm

]
+ 2h|X

)
.

where now h|X = h(λ1λ2F ), etc. These poles break manifest Möbius invari-
ance on the twistor curves, clarifying the breaking of local Lorentz invariance
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when working with an explicit choice of complex coordinates (zα̇, z̃
˙̃α) on M.

The conditions mα̇ = 0 at λ1 = 0 and λ2 = 0 arise as boundary conditions
required for a well-defined variational principle. To construct finite on-shell
actions, one must also impose that h vanishes to second order at both λ1 = 0
and λ2 = 0. This highlights the advantage of reformulating the degree one
holomorphic map as a curve passing through two fixed points.

For the model of the second kind, the translation into degree +1 again
follows by taking

(B.10) λ22 F
α̇(x, λ) = λ1 z

α̇ + λ2w
α̇ +mα̇(x, λ) ,

but now in terms of the degree +1 field

(B.11) mα̇(x, λ) = λ22 M̃
α̇(x, λ)

that vanishes to second order at λ2 = 0. The action of the twistor sigma
model becomes

(B.12) SΘ[m] =
1

ℏ

∫

X

Dλ

λ42

(
[m∂̄|Xm] + 2h|X

)
,

with h|X = h(λ22F ), etc. In this case, to avoid singularities one must impose
that h vanishes to fourth order at λ2 = 0.

Similarly, in the quaternion-Kähler case a projective rescaling to degree
+1 is given by

(B.13) σ1 σ2 Z
A(x, σ) = iΩ− 1

2

(
σ1ZA + σ2 Z̃A +mA(x, σ)

)
,

defining the degree +1 field mA(x, σ) = σ1 σ2M
A(x, σ). The twistor sigma

model becomes

(B.14) SΛ[m] =
1

ℏ

∫

X

Dσ

σ21 σ
2
2

(
1

Λ
⟨m, ∂̄|Xm⟩+ 2h|X

)
,

with h|X = h(σ1σ2F (x, σ)). To avoid singularities we require h = 0 to second
order at both σ1, σ2 = 0.
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