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Time symmetric electrodynamics, electric

charge conservation, and the Lorenz gauge

Călin Galeriu

We reveal a new way in which the Lorenz gauge condition is related
to the electric charge conservation, in a universe where all electri-
cally charged point particles are created and annihilated. We derive
our results using time symmetric electrodynamics, relying on ob-
servations made by Jacov Frenkel (in 1925) and John Archibald
Wheeler (in 1940). Both the Lorenz gauge condition and the elec-
tric charge conservation are expressed as closed path integrals in
Minkowski space. The integration path is the same, it is the sum
of all “Wheeler electrons”.

1. Introduction

There are many ways in which Maxwell’s equations can be solved in order
to obtain the electromagnetic four-potential of a point particle. Most often
[1] one starts by imposing the Lorenz gauge condition

(1) ∂αA
α = 0,

where the four-potential Aα is (Φ,A), in Gaussian units, and the covariant
differential operator ∂α is (1

c
∂
∂t
,∇). In this way we obtain four decoupled

wave equations, one for each component of the four-potential

(2) �Aα =
4π

c
Jα,

where the four-current density Jα is (cρ,J), and the d’Alembertian opera-
tor � is ∂α∂

α = ηαβ∂α∂β. The Minkowski metric tensor ηαβ has signature
(1,−1,−1,−1). The four-current density satisfies the continuity equation

(3) ∂αJ
α = 0.

The conservation of electric charge is an empirical fact that does not
need a mathematical demonstration. In our calculations, the conservation
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of electric charge is taken for granted. Nonetheless we notice that, once
Maxwell’s equations are accepted, one can derive the continuity equation.
This only shows that Maxwell’s equations are consistent with the continuity
equation.

The Lorenz gauge condition is an assumption that we make in order
to derive the Liénard-Wiechert electromagnetic potentials. Since this gauge
is our choice, and we are free to choose differently, we cannot talk about
a mathematical proof of it. Nonetheless we notice that, once the Liénard-
Wiechert potentials are accepted, one can derive the Lorenz gauge condition.
This only shows that the Liénard-Wiechert potentials are consistent with the
Lorenz gauge.

Any conservation law can be written in a differential form, as in (3), or
in an integral form, in which the rate of variation of the 3D volume integral
of the relevant density is related to the 2D closed surface integral of the
corresponding flux.

Frenkel [2] has also expressed the Lorenz gauge condition as a 1D integral
over a closed path in the complex plane. We give in Section 2 a modern
account of his theory.

Inspired by Frenkel’s idea, and using time symmetric electrodynamics,
in Section 3 we express the Lorenz gauge condition as a 1D integral over
a closed path in Minkowski space. In fact this integration path is a sum of
very special closed paths, each of these individual closed paths being, by
definition, a “Wheeler electron”. We also express the continuity equation as
a 1D integral over the same closed path. This common integration path is
the newly discovered connection between the Lorenz gauge condition and
the electric charge conservation.

2. A modern exposition of Frenkel’s work

The inhomogeneous electromagnetic wave equation (2) can be solved by
finding its Green function, which satisfies the equation

(4) �xG(x, x′) = δ4D(x− x′),

where x = (ct,x) and x′ = (ct′,x′) are position four-vectors in Minkowski
space. In the absence of boundary surfaces, the four-potential is given by

(5) Aα(x) =
4π

c

∫

G(x, x′) Jα(x′) d4x′.
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At this moment, instead of solving equation (4) in order to find G(x, x′),
we simply notice that [3, 4]

(6) �δ(x2) = 4πδ4D(x),

which allows us to identify the Green function as

(7) G(x, x′) =
1

4π
δ
(

(x− x′)2
)

,

where (x− x′)2 denotes the square of the spacetime interval between the two
points at x and x′. We notice that the Green function (7) has an important
translation invariance property, G(x, x′) = G(x− x′, 0), which means that
the derivatives of the Green function with respect to x and x′ must have
equal magnitudes and opposite signs. This property will prove essential in
the derivation of equation (15).

The electromagnetic four-potential (5) becomes

(8) Aα(x) =
1

c

∫

δ
(

(x− x′)2
)

Jα(x′) d4x′.

To this solution of equation (2) one could also add a solution of the
homogeneous electromagnetic wave equation. When working with only the
retarded (advanced) potential, this incoming (outgoing) field takes care of
the initial (final) conditions [1]. When working with time symmetric action-
at-a-distance electrodynamics, there is no need for such incoming or outgoing
fields [3, 5].

While it is common practice to use another Dirac delta function identity

(9) δ(w2 − a2) =
1

2|a|

[

δ(w − a) + δ(w + a)
]

,

in order to split the Green function (7) into causal and acausal parts, and
the time symmetric potential (8) into retarded and advanced parts, such
course of action would not be helpful to our next derivation steps.

We now turn our attention toward the four-current density. Consider
an electrically charged point particle A, with an electric charge qA, whose
worldline is given by xA(t) =

(

ct,xA(t)
)

. The velocity of this particle is

vA(t) = dxA

dt
. The electric charge density is given by

(10) ρ(x′, t′) = qA δ3D
(

x
′ − xA(t′)

)

,
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while the electric current density is given by

(11) J(x′, t′) = qA vA(t′) δ3D
(

x
′ − xA(t′)

)

.

The four-current density can be written in a manifestly covariant form
by introducing an additional Dirac delta function δ(t′ − t) = c δ(ct′ − ct) and
by integrating over the time, obtaining [1]

Jα(x′) = qA Uα
A(t

′) δ3D
(

x
′ − xA(t′)

) 1

γA(t′)
(12)

=

∫

qA Uα
A(t) δ

3D
(

x
′ − xA(t)

) 1

γA(t)
δ(t′ − t)dt

=

∫

qA Uα
A(t) δ

4D
(

x′ − xA(t)
) c

γA(t)
dt

=

∫

qA Uα
A(τA) δ

4D
(

x′ − xA(τA)
)

c dτA,

where Uα
A = (γA c, γA vA) is the four-velocity, γA is the corresponding

Lorentz factor, and τA is the proper time of particle A.
It is generally assumed that it doesn’t matter what happens with the

worldline of particle A very early, before it intersects the past lightcone (with
vertex at the field point), or what happens with the worldline very late, after
it intersects the future lightcone. This is because only the retarded electro-
magnetic potentials, and maybe also the advanced potentials, are needed
in order to calculate the electromagnetic field at the point of interest. As
a consequence, sometimes the limits of integration in equation (12) are left
unspecified, like for example in [1], and sometimes the integral is extend-
ing from −∞ to +∞, like for example in [3, 5–7]. The latter option is in
direct conflict with the assumption that “the sources are localized in space
and time”[1]. To avoid any ambiguity, we should recognize that particle A

is created at the initial time t
(i)
A and annihilated at the final time t

(f)
A , and

we should explicitly show these actual limits of integration in equation (12).
We will return to this idea later.

With the four-current density (12), the four-potential (8) becomes
(13)

Aα(x) =
1

c

∫

δ
(

(x− x′)2
)

(

∫

qA Uα
A(τA) δ

4D
(

x′ − xA(τA)
)

c dτA

)

d4x′.

We perform the four-dimensional integration and we obtain

(14) Aα(x) =

∫

δ
(

(

x− xA(τA)
)2
)

qA Uα
A(τA) dτA.
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Frenkel [2], working before the time when Dirac [8] introduced his delta
function, and using more heuristic arguments, reaches a similar conclusion.
Following Frenkel, we calculate the divergence of the four-potential (14) and
we obtain a perfect differential inside the integral

∂Aα(x)

∂xα
=

∫

[ ∂

∂xα
δ
(

(

x− xA(τA)
)2
)]

qA Uα
A(τA) dτA(15)

= −

∫

[ ∂

∂xαA
δ
(

(

x− xA(τA)
)2
)]

qA
dxαA
dτA

dτA

= −

∫

[ d

dτA
δ
(

(

x− xA(τA)
)2
)]

qA dτA.

At this moment Frenkel notices the fact that the Lorenz gauge condi-
tion is automatically satisfied whenever the integral (15) is calculated along
a closed path. Writing before the time when the processes of creation and
annihilation of particles were fully understood, Frenkel proposes a rather
abstract procedure: replace the time t, a real number, with a complex num-
ber, assume that the position functions in xA(t) admit a direct analytic
continuation over the entire complex plane, and close the integration path
inside this complex plane. As an added benefit, Cauchy’s residue theorem
now applies, and the Liénard-Wiechert potentials are thus calculated. This
derivation of the Liénard-Wiechert potentials is also given by Stratton [9].

3. The Wheeler electron

We believe that the integration path in equation (15) can be closed in an
alternative, more intuitive procedure that keeps the time coordinate as a
real number. Assuming that there are no electric charges at t → −∞ and

at t → ∞, we must recognize that particle A is created at a time t
(i)
A in a

process that, due to the conservation of electric charge, also produces another
particle B with electric charge qB = −qA. For the same reason, particle A is

annihilated at a time t
(f)
A in a process that also eliminates another particle

C with electric charge qC = −qA. If particles B and C are the same particle,
then we stop. We have closed the path in spacetime. If particles B and C are
not the same particle, then we must recognize that particle B is annihilated

at a time t
(f)
B in a process that also eliminates another particle D with

electric charge qD = −qB = qA. For the same reason, particle C is created

at a time t
(i)
C in a process that also produces another particle E with electric

charge qE = −qC = qA. If particles D and E are the same particle, then we
stop. We have closed the path in spacetime, as shown in Figure 1. If particles
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D and E are not the same particle, then we repeat the procedure, over and
over, until the two particles coincide. This must happen sooner or later,
due to the finite number of electrically charged particles in the universe. In
fact, any electrically charged particle in the world will have to belong to one
or another of these spacetime structures, its entire worldline being only a
section of such a closed path.

These closed paths, these roundtrips in spacetime, we will call them
“Wheeler electrons”, for it was John Archibald Wheeler [10] who first de-
scribed such a knot of worldlines going up and down in time, in his one-
electron universe. Now, of course, we must recognize that in reality there
isn’t just one very large Wheeler electron, linking together all the electrons
and all the positrons in the universe, as he originally suggested, but many of
them. And we must also recognize that, in a given Wheeler electron, the par-
ticles with positive electric charge don’t have to necessarily be positrons, and
the particles with negative electric charge don’t have to necessarily be elec-
trons. The process in which electrically charged particles are created could
be the birth of an electron-positron pair, but it could also be something else,
like for example beta minus decay. The process in which electrically charged
particles are annihilated could be the disappearance of an electron-positron
pair, but it could also be something else, like for example electron capture.

c t

x y z

b

O

b

b

b

b

A

B

C

D
E

I1

F1

I2

F2

Figure 1: A “Wheeler electron” composed of four particles.

We now go back to the formula for the four-current density (12), and
we include in it all the electrically charged particles in the universe, while
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at the same time explicitly showing the limits of integration

Jα(x′) =

∫ τ
(f)
A

τ
(i)
A

qA Uα
A(τA) δ

4D
(

x′ − xA(τA)
)

c dτA(16)

+

∫ τ
(f)
B

τ
(i)
B

qB Uα
B(τB) δ

4D
(

x′ − xB(τB)
)

c dτB

+

∫ τ
(f)
C

τ
(i)
C

qC Uα
C(τC) δ

4D
(

x′ − xC(τC)
)

c dτC + ...

With this new formula for the four-current density, the four-potential
becomes

Aα(x) =

∫ τ
(f)
A

τ
(i)
A

δ
(

(

x− xA(τA)
)2
)

qA Uα
A(τA) dτA(17)

+

∫ τ
(f)
B

τ
(i)
B

δ
(

(

x− xB(τB)
)2
)

qB Uα
B(τB) dτB

+

∫ τ
(f)
C

τ
(i)
C

δ
(

(

x− xC(τC)
)2
)

qC Uα
C(τC) dτC + ...

and the divergence of the four-potential becomes

∂Aα(x)

∂xα
= −

∫ τ
(f)
A

τ
(i)
A

[ d

dτA
δ
(

(

x− xA(τA)
)2
)]

qA dτA(18)

−

∫ τ
(f)
B

τ
(i)
B

[ d

dτB
δ
(

(

x− xB(τB)
)2
)]

qB dτB

−

∫ τ
(f)
C

τ
(i)
C

[ d

dτC
δ
(

(

x− xC(τC)
)2
)]

qC dτC − ...

The integrals in equation (18) are grouped according to the Wheeler
electron they belong to. For each Wheeler electron, the negative electric
charges of its composing particles are replaced by −e, while the positive
electric charges are replaced by e, where e is the electric charge of a pro-
ton. Then the limits of integration for the positively charged particles are
swapped, this introduces a change of sign. The integrals for the negatively
charged particles (the “electrons”) are calculated by going forward in time,
while the integrals for the positively charged particles (the “positrons”) are
calculated by going backward in time. (This is in complete agreement with



✐

✐

“4-Galeriu” — 2024/4/19 — 13:51 — page 792 — #8
✐

✐

✐

✐

✐

✐
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Wheeler’s observation that “positrons could simply be represented as elec-
trons going from the future to the past”[10].) In this way, the contribution to
equation (18) of each Wheeler electron is written as the closed path integral
of a perfect differential, which is zero. For example, assuming that particles
A and D have negative electric charge, the Wheeler electron in Figure 1
gives

e

∫ F1

I1

[ d

dτA
δ
(

(

x− xA(τA)
)2
)]

dτA(19)

+ e

∫ I1

F2

[ d

dτB
δ
(

(

x− xB(τB)
)2
)]

dτB

+ e

∫ I2

F1

[ d

dτC
δ
(

(

x− xC(τC)
)2
)]

dτC

+ e

∫ F2

I2

[ d

dτD
δ
(

(

x− xD(τD)
)2
)]

dτD

= e

∮

W

[ d

dτW
δ
(

(

x− xW (τW )
)2
)]

dτW = 0,

whereW stands for A, B, C, orD, depending on which section of the integral
we are. Alternatively, one could also reparameterize the whole closed path.

In this way the Lorenz gauge condition is recovered in a very natural
and intuitive way, without the need to extend the time coordinate (a real
number) to the complex plane. These two apparently independent concepts,
the Lorenz gauge and the time symmetric action-at-a-distance electrody-
namics, are seen to reinforce each other in very harmonious ways. From this
point of view, out of all the possible linear combinations of retarded and ad-
vanced potentials, the time symmetric electrodynamics (where the two po-
tentials enter with equal weights) holds special status. And similarly, out of
all the possible electromagnetic gauges (Lorenz, Coulomb, etc. [11, 12]), the
Lorenz gauge holds special status. No wonder José A. Heras and Guillermo
Fernández-Anaya [13] have concluded that the electromagnetic potentials in
the Lorenz gauge could be considered physical quantities.

Our verification of the Lorenz gauge condition, based on the electric
charge conservation during the creation and annihilation of point particles,
complements quite nicely an alternative calculation based on the electric
charge conservation written in differential form. It is well known that, once
the retarded Liénard-Wiechert potentials are assumed, the Lorenz gauge
condition is recovered as a direct consequence of the equation of continuity
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[14, 15]. This also happens with the time symmetric four-potential (8)

∂Aα(x)

∂xα
=

1

c

∫

[ ∂

∂xα
δ
(

(x− x′)2
)

]

Jα(x′) d4x′(20)

= −
1

c

∫

[ ∂

∂x′α
δ
(

(x− x′)2
)

]

Jα(x′) d4x′

=
1

c

∫

δ
(

(x− x′)2
) ∂Jα(x′)

∂x′α
d4x′ = 0,

where we have integrated by parts, assuming that the electric sources Jα

are localized in space and time.
While this last calculation apparently avoids the decomposition into

Wheeler electrons, this decomposition is in fact hidden inside the equation
of continuity. By taking the divergence of the four-current density (16), and
by performing the same procedural steps as done for the divergence of the
four-potential, instead of the Lorenz gauge condition we now recover the
equation of continuity.

The divergence of the four-current density (12) is

∂Jα(x)

∂xα
=

∫

[ ∂

∂xα
δ4D

(

x− xA(τA)
)

]

qA Uα
A(τA) c dτA(21)

= −

∫

[ ∂

∂xαA
δ4D

(

x− xA(τA)
)

]

qA
dxαA
dτA

c dτA

= −

∫

[ d

dτA
δ4D

(

x− xA(τA)
)

]

qA c dτA,

and the divergence of the four-current density (16) is

∂Jα(x)

∂xα
= −

∫ τ
(f)
A

τ
(i)
A

[ d

dτA
δ4D

(

x− xA(τA)
)

]

qA c dτA(22)

−

∫ τ
(f)
B

τ
(i)
B

[ d

dτB
δ4D

(

x− xB(τB)
)

]

qB c dτB

−

∫ τ
(f)
C

τ
(i)
C

[ d

dτC
δ4D

(

x− xC(τC)
)

]

qC c dτC − ...

which is zero, since the contribution of each Wheeler electron is zero.
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4. Conclusions

The Lorenz gauge condition and the equation of continuity are usually con-
sidered from a local perspective. In this case, they are verified by direct
differentiation of the expressions of the (retarded) Liénard-Wiechert poten-
tials, the electric charge density, and the electric current density, known in
an infinitesimal neighborhood of a point. However, the Lorenz gauge con-
dition and the conservation of electric charge can also be considered from
a global perspective. In this case, they are verified by integrating a perfect
differential function along a closed path. While the expressions of these two
perfect differential functions are different in the two corresponding deriva-
tions, the closed path is the same. This common path, most clearly notice-
able in the formulas (16) and (17) that give the four-current density and the
four-potential, is the newly discovered connection between the Lorenz gauge
condition and the conservation of electric charge. We also remark that, since
this closed path (in fact a sum of very special closed paths, consisting of all
the Wheeler electrons in the universe) goes into the past as well as into the
future, by necessity we have to use time symmetric electrodynamics when
verifying the Lorenz gauge condition in this manner.

In conclusion, the derivations presented here are made possible by two
somewhat restrictive assumptions. Our first assumption is that the electro-
dynamic interaction is time symmetric, one half retarded and one half ad-
vanced, exactly as described in the action-at-a-distance absorber theory of
Wheeler and Feynman [5, 16]. Our second assumption is that the electrically
charged particles are localized in space and time. This could be a universe
void of electric charges before the Big Bang and after the Big Crunch. If we
agree that the universe had a beginning, and if we accept the time symmet-
ric nature of interactions, it is only natural to also assume that the universe
will have an end. The Lorenz gauge condition can be verified, of course, even
without these two restrictive assumptions. This is exactly what Frenkel has
done in his groundbreaking article [2].
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