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From equivariant volumes to equivariant

periods

Luca Cassia, Nicolò Piazzalunga, and Maxim Zabzine

We consider generalizations of equivariant volumes of abelian GIT
quotients obtained as partition functions of 1d, 2d, and 3d su-
persymmetric GLSM on S1, D2 and D2 × S1, respectively. We
define these objects and study their dependence on equivariant
parameters for non-compact toric Kähler quotients. We generalize
the finite-difference equations (shift equations) obeyed by equivari-
ant volumes to these partition functions. The partition functions
are annihilated by differential/difference operators that represent
equivariant quantum cohomology/K-theory relations of the target
and the appearance of compact divisors in these relations plays a
crucial role in the analysis of the non-equivariant limit. We show
that the expansion in equivariant parameters contains information
about genus-zero Gromov–Witten invariants of the target.
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1. Introduction

This work continues our investigation [135] of Duistermaat–Heckman local-
ization formula for non-compact toric Kähler manifolds. The original moti-
vation comes from the study of higher-rank K-theoretic Donaldson–Thomas
theory on Calabi–Yau threefolds [39]. Let us sketch some ideas, while defini-
tions are given in section 2. Consider the Kähler quotient Xt = CN//U(1)r

with charge matrix Q. Its equivariant volume

(1) F(t, ϵ) =

∫

Xt

eϖt−Hϵ

can be computed as a contour integral

(2) F(t, ϵ) =

∮

JK

r∏

a=1

dϕa
2πi

e
∑

a
ϕata

∏N
i=1 (ϵi +

∑
a ϕaQ

a
i )
.

Once a chamber for t is fixed, the contour is given by the Jeffrey–Kirwan
(JK) prescription. In general, F(t, ϵ) is a function of t and the equivariant
parameters ϵ. If Xt is compact, then F(t, ϵ) is a regular function around
ϵ = 0 and F(t, 0) is a homogeneous polynomial that encodes the intersection
theory of Xt. If instead Xt is not compact, then F(t, ϵ) has singular terms
in ϵ around ϵ = 0, and there is no canonical way to extract a polynomial
in t that could be interpreted as intersection polynomial. The quantum
mechanical analog of F(t, ϵ) is the equivariant count of states (holomorphic
sections of appropriate line bundles over Xt), which can be presented as

(3) Z(T , q) =
∑

Q·n=T

N∏

i=1

qn
i

i ,
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From equivariant volumes to equivariant periods 963

where t = ℏT and q = e−ℏϵ. Here the sum is over integer points inside the
momentum polyhedron. The classical limit in ℏ gives the relation

(4) F(t, ϵ) = lim
ℏ→0

ℏdZ(T , q)

with d = dimCXt = N − r. If the manifold Xt is compact, then the sum
in eq. (3) has a finite number of terms since the momentum polyhedron is
compact. In this case Z(T , q) is a polynomial in q and we can set q = 1.
Thus Z(T , 1) is a polynomial in T ’s and its highest-degree part is the clas-
sical intersection polynomial. If instead Xt is non-compact, then Z(T , q)
is a meromorphic function in q’s and there is no canonical non-equivariant
limit. In the non-compact case the structure of F(t, ϵ) and Z(T , q) is con-
trolled [135] by the action of compact support cohomology H•

cpt(Xt) on de
Rham cohomology H•(Xt). If H

2
cpt(Xt) is non-empty, then the problem is

controlled by compact toric divisors (which are Poincaré dual to elements
of H2

cpt(Xt)). This results in the shift equation

(5)
(
1− e

−∑

i∈Icpt
mi Di

)
F(t, ϵ) = ℘d(t,m) +O(ϵ) ,

where Di = ϵi +Qa
i

∂
∂ta are first-order differential operators in t associated

to divisors Di and m
i are auxiliary parameters. The sum runs over the set

of compact toric divisors. This equation allows us to define the intersection
polynomial in a non-canonical way, which requires a non-canonical embed-
ding of H2

cpt(Xt) into H
2(Xt). Another way to look at eq. (5) is to present

F(t, ϵ) as a sum of singular and regular terms

(6) F(t, ϵ) = Fsing(t, ϵ) + pd(t) +O(ϵ) ,

which cannot be done canonically, as there is always a trade-off between
Fsing(t, ϵ) and pd(t). Here Fsing(t, ϵ) is in the kernel of Di for all compact
divisors. Equation (5) allows us to analyze possible ambiguities in the repre-
sentation via eq. (6). A similar shift equation exists for Z(T , q) and can be
analyzed similarly. We can consider more general cases with the insertion of
an equivariant cohomology class in eqs. (1) and (2)

Fα(t, ϵ) =

∫

Xt

eϖt−Hϵα(Req)

=

∮

JK

r∏

a=1

dϕa
2πi

e
∑

a
ϕata

∏N
i=1 (ϵi +

∑
a ϕaQ

a
i )
α(ϕ, ϵ)(7)
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with α being a suitable function of the equivariant curvature Req. The object
F(t, ϵ) can be regarded as a generating function for such insertions, since
they can be generated by derivatives in t’s. The previous discussion of the
behavior around ϵ = 0 can be extended to Fα(t, ϵ) and there is an analog of
the shift equation for Fα(t, ϵ) on non-compact quotients.

Our goal is to extend these ideas to more complicated objects such as the
partition function on the disk FD(t, ϵ;λ) and its K-theoretic generalization
ZD(T , q; q). What is the role of equivariant parameters in these generaliza-
tions? Is there an analog of shift equation? How to extract a non-equivariant
answer from the fully equivariant answer and what are the possible ambigu-
ities? What is the impact of these considerations on enumerative geometry
of non-compact toric Kähler manifolds?

In this paper we study a generalization of the equivariant volume eq. (2)

(8) FD(t, ϵ;λ) := λ−N

∮

QJK

r∏

a=1

dϕa
2πi

e
∑

a
ϕata

N∏

i=1

Γ

(
ϵi +

∑
a ϕaQ

a
i

λ

)
,

where the contour is specified by the quantum Jeffrey-Kirwan prescrip-
tion, discussed in section 3. Physically, eq. (8) is the partition function of
a (twisted) gauged linear sigma model (GLSM) with worldsheet a disk and
boundary condition a space-filling brane [78, 81, 151], based on earlier works
[15, 43] on S2. The parameter λ is an equivariant parameter on the disk,
such that

(9) lim
λ→∞

FD(t, ϵ;λ) = F(t, ϵ)

as we discuss in section 5, and the parameters ϵ’s are masses in the GLSM
(they are equivariant parameters from the target view-point). We refer to
FD(t, ϵ;λ) as the disk partition function.

In analogy with F(t, ϵ), the disk partition function FD(t, ϵ;λ) has a K-
theoretic lift, which we denote by ZD(T , q; q), with q = e−ℏλ. This reduces
to the known count when we collapse the disk, ZD(T , q; 1) = Z(T , q). In
section 4 we discuss the contour integral representation of ZD(T , q; q) and
the equivalent representation given by the sum

(10) ZD(T , q; q) =
∑

Q·n=T

N∏

i=1

qn
i

i

(q; q)ni

,
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From equivariant volumes to equivariant periods 965

which is the natural disk generalization of eq. (3) and has a nice combina-
torial interpretation. By construction we have the relation (see section 5)

(11) lim
ℏ→0

ℏdZD(T , q; q) = FD(t, ϵ;λ) .

The K-theoretic disk partition function ZD(T , q; q) is the partition function
on D × S1 of the 3d uplift of a 2d GLSM, and it is related to holomorphic
blocks [14].

The function FD(t, ϵ;λ) is regular around ϵ = 0 for compact quotients
and singular for non-compact quotients. The main issue is how to control
the singular terms. For every compact toric divisor, its equivariant volume
DiF(t, ϵ) is regular around ϵ = 0. A priori, we cannot expect this to hold
for DiFD(t, ϵ;λ), since there is no geometric interpretation of this object.
However, we find that DiFD(t, ϵ;λ) is regular at ϵ = 0 for every compact
divisor Di. Thus, we have a shift equation for the disk partition function

(12)
(
1− e

−∑

i∈Icpt
mi Di

)
FD(t, ϵ;λ) = regular

as well as a K-theoretic generalization of this equation. We explain these
ideas in section 6.

The disk partition function is the solution of equivariant Picard–Fuchs
(PF) equations

(13) Leq
γ FD(t, ϵ;λ) = 0

with prescribed semi-classics

(14) FD(t, ϵ;λ) =

∫

Xt

eϖt−HϵΓ̂eq +O(e−λt) ,

where we insert the equivariant Gamma-class. The equivariant PF differ-
ential operator Leq

γ encodes quantum equivariant cohomology relations. It
depends on geometric data, on λ and on ϵ’s. If we send λ→ ∞, then Leq

γ col-
lapses to the classical equivariant cohomology relations. If instead we set all
ϵ = 0, then it becomes the standard PF operator. (In the K-theoretic case,
quantum equivariant cohomology relations Leq

γ are promoted to difference

equations.) The disk partition function FD(t, ϵ;λ) can be generalized by
changing the semi-classical expansion and still requiring it to be annihilated
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by Leq
γ

(15) Leq
γ FD

α (t, ϵ;λ) = 0 , FD
α (t, ϵ;λ) = Fα(t, ϵ) +O(e−λt) .

This way we can find a basis of solutions to equivariant PF equations
(which we regard as equivariant periods). To understand the singularities in
ϵ’s we follow Givental’s approach [62, 64] to mirror symmetry and use the
formalism of Givental’s equivariant I-function IXt

(and the corresponding
Givental’s operator ÎXt

) to represent the disk partition function

FD(t, ϵ;λ) = λ−N

∮

JK

∏

a

dϕa
2πi

IXt

∏

i

Γ

(
ϵi +

∑
a ϕaQ

a
i

λ

)

= ÎXt
· FΓ(t, ϵ) .(16)

These ideas are discussed in section 7.
In analogy with eq. (6) we can represent the disk partition function as

(17) FD(t, ϵ;λ) = FD
sing(t, ϵ;λ) + FD

reg(t, ϵ;λ) ,

where the singular term FD
sing(t, ϵ;λ) is in the kernel of compact divisor

operators Di. This splitting is non-canonical and it requires some choices. In
section 8 we study the relation between the shift equation and equivariant
quantum cohomology relations encoded in the equivariant PF equations.
The appearance of compact divisors in the equivariant Givental function is
related to the possible ways of calculating the splitting eq. (17).

Our function FD(t, ϵ;λ), being a GLSM quantity, is related to the count
of quasi-maps [24, 32, 33, 150] from the formal disk to a target Xt. How-
ever, there’s a difference: rather than a fixed boundary condition at infinity
for the adjoint scalar, we sum over all possible choices, compatible with
symmetries, in a sense that is made precise in remark 7.5, and the ob-
ject we are computing is closer to the central charge of a brane [3, 101].
These are UV calculations. After integrating out gauge fields, the theory
of quasi-maps flows in the IR to a non-linear sigma model, counting stable
maps to the same target. Turning on the Ω-background λ corresponds to
equivariant GW theory [62] on Xt × P1, counting maps of bidegree (d, 1),
with an S1 action on P1. In this work, we concentrate on structural aspects
of FD(t, ϵ;λ) and ZD(T , q; q) (and other generalizations, e.g. FD

α (t, ϵ;λ))
for toric non-compact manifolds and base our considerations on the inte-
gral representations and on the equivariant Picard–Fuchs equation (or its
K-theoretic lift [60, 65, 108]).
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When the target is a Calabi–Yau three-fold, the RG flow corresponds
to mirror symmetry [111, 120, 159] and the semi-classical expansion of FD

coincides with the central charge of a single D6-brane wrapping Xt × S1

near large radius [81], which is the natural candidate for the classical action
of DT theory [39], so it is natural to conjecture a relation to Gromov–Witten
(GW) invariants. In section 9 we show how to extract closed genus-zero GW
invariants from FD(t, ϵ;λ), or more precisely from FD

reg(t, 0;λ), in the spirit
of the relation between GLSM localization calculations on S2 and genus-
zero closed GW invariants [20, 92]. The ambiguities in FD

reg(t, 0;λ) translate
into ambiguities for GW invariants (but not for all spaces). We trace these
ambiguities to some old issues for some of the examples in ref. [30], where
some rational Gopakumar–Vafa invariants appear. We explain how, within
our framework, certain instanton sectors cannot be trusted when we take the
non-equivariant limit, as certain quantum equivariant cohomology relations
do not contain compact divisors.

After presenting the general theory, we go through a number of exam-
ples. There are cases when all quantum equivariant cohomology relations
contain compact divisors and thus all singular terms sit within the semi-
classical part, for example local P1 × P1 and local P2. There can be other
cases when some of the quantum equivariant cohomology relations do not
contain compact divisors, and thus singular terms appear in specific parts
of the instanton expansion, for example local F2 and local A2 spaces. We
collect the examples with compact divisors in section 10. In section 11 we
present a few examples without compact divisors.

2. The setup

Let A = U(1)r be a torus of rank r acting on CN via an integer-valued matrix
of charges Q

(18) Zi 7→ ei
∑

r
a=1 ϑaQa

iZi, i = 1, . . . , N

for real variables ϑa and holomorphic coordinates Zi on CN . The corre-
sponding momentum map is µ : CN → Rr = (LieA)∗

(19) µa(Z, Z̄) =

N∑

i=1

Qa
i |Zi|2, a = 1, . . . , r.

Let t = (t1, . . . , tr) ∈ Rr be a regular value for µ, and C ⊆ (LieA)∗ an
open connected subset of the set of regular values, containing t. We call C
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a chamber. We consider toric Kähler manifolds of complex dimension d =
N − r obtained by symplectic reduction

(20) Xt = µ−1(t)/A .

They are equipped with a symplectic form ϖt. The Kähler moduli space
is partitioned into disjoint chambers, such that two manifolds Xt and Xt′

are symplectomorphic iff t and t′ are in the same chamber. We define the
dual of the cone C

(21) C∨ :=

{
d ∈ Rr

∣∣∣∣∣

r∑

a=1

dat
a ≥ 0, ∀t ∈ C

}
.

We require Xt to be smooth, which is equivalent [9, 61] to the require-
ment that any r × r minor of Q, such that t lies in the convex span of its
columns, has determinant ±1.

On Xt we have a non-faithful action of T = U(1)N inherited from the
standard action on CN , whose matrix of charges is the N ×N identity
matrix. The corresponding momentum maps are pi(Z, Z̄) = |Zi|2, for i =
1, . . . , N . We define ϵi ∈ H2

T
(CN ) to be the equivariant parameter corre-

sponding to the action of the i-th factor in T, while ϕa ∈ H2
A
(CN ) the one

corresponding to the action of the a-th factor in A. The variables ϕa de-
scend to generators of H2(Xt) and they correspond to Chern roots of r
tautological line bundles associated to the toric fibration µ−1(t) → Xt. We
package momentum maps and equivariant parameters together, by writ-
ing µϕ :=

∑r
a=1 ϕaµ

a and Hϵ :=
∑N

i=1 ϵip
i. We introduce equivariant Chern

roots xi := ϵi +
∑r

a=1 ϕaQ
a
i ∈ H2

T
(Xt). The Kähler moduli ta =

∫
Ca ϖt can

be obtained by integrating the symplectic form ϖt on a basis of cycles
Ca ∈ H2(Xt) dual to the classes ϕa.

The equivariant cohomology1 ring

(23) H•
T(Xt) ∼= C[ϕ1, . . . , ϕr, ϵ1, . . . , ϵN ]/ISR

is isomorphic to the quotient of the (A× T)-equivariant cohomology of CN

by the Stanley–Reisner ideal ISR generated by square-free monomials in the

1If instead we work with the d-dimensional torus T/A, we have the isomorphism
[18]

(22) H•

T/A(Xt) ∼= C[x1, . . . , xN ]/ISR.

This isomorphism identifies any variable xi with the equivariant Chern class of toric
divisor Di.
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Chern roots

(24) ISR =
〈
xi1 · · ·xis

∣∣Cone(ui1 , . . . , uis) is not a cone of Σ
〉
,

where Σ is the toric fan of Xt generated by the vectors ui ∈ ZN−r defined
by the property

(25)

N∑

i=1

Qa
i u

i = 0 .

To each coordinate in CN , we can associate a toric divisor Di = {pi =
0} ∩Xt, obtained as the symplectic reduction of the locus where that coor-
dinate is identically zero. A toric divisor Di is compact if its corresponding
vertex ui is an interior point of the toric fan Σ. Let us introduce the set

(26) Icpt := {i|Di is compact} .

We identify the equivariant Chern root xi ∈ H•
T
(Xt) as the image of

1 ∈ H•
T
(Di) under pushforward along the inclusion Di →֒ Xt. In the non-

equivariant setting, compact toric divisors inH2d−2(Xt) are Poincaré-dual to
classes in cohomology with compact support H2

cpt(Xt), and similarly lower-
dimensional compact cycles are dual to higher-degree classes in H•

cpt(Xt).
In the equivariant setting, we regard xi as the equivariant upgrade of the
Poincaré dual of Di, and we use the fact that Poincaré duality send inter-
sections to products as PD(Di1 ∩ · · · ∩Dis) = xi1 · · ·xis . With a slight abuse
of notation we use the same symbol for equivariant and non-equivariant
Poincaré duality.

The equivariant K-theory ring of Xt

(27) KT(Xt) ∼= C[w±
1 , . . . , w

±
r , q

±
1 , . . . , q

±
N ]/IKSR

is described in terms of equivariant K-theoretic parameters wa ∈ KA(C
N )

and qi ∈ KT(C
N ). It is isomorphic to the quotient of the A× T-equivariant

K-theory of CN by the ideal

IKSR =
〈
(1− qi1

∏

a

w
Qa

i1
a ) · · · (1− qis

∏

a

w
Qa

is
a )

∣∣∣Cone(ui1 , . . . , uis) is not a cone of Σ
〉
.(28)

generated by polynomials in the K-theoretic Chern roots.
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A toric quotientXt is Calabi–Yau (CY) iff the first Chern class of its tan-
gent bundle is zero, which is equivalent to the requirement that the charges
for each U(1)a sum to zero,

(29) c1(TXt) = 0 ⇐⇒
N∑

i=1

Qa
i = 0 , ∀a .

From this constraint on the charges, it follows that all toric CYs are non-
compact, which implies that their volume is divergent. This forces us to work
equivariantly with respect to the torus T, so that equivariance effectively
regularizes all integrals over Xt.

2.1. Cohomological partition function

We compute equivariant symplectic volumes as integrals over A-equivariant
parameters that implement the symplectic quotient

∫

Xt

eϖt−Hϵ

∼
∫

CN

N∏

i=1

dZi dZ̄i

2πi

∫

(iR)r

r∏

a=1

dϕa
2πi

exp

[
∑

a

ϕat
a −Hϵ − µϕ

]
.(30)

If we perform the Zi integrals first, we can use the identity

(31)

∫

C

dZi dZ̄i

2πi
exp [−Hϵ − µϕ] =

∫ ∞

0
dpie−xipi

=
1

xi

and we are led to the following integral representation for the equivariant
volume

(32) F(t, ϵ) :=

∮

JK

r∏

a=1

dϕa
2πi

e
∑

a
ϕata

∏N
i=1 xi

,

where (iR)r is replaced by a contour defined via the Jeffrey–Kirwan prescrip-
tion [22, 90]. The contour is defined in such a way that the integral can be
computed by iterated residues. The residues are specified by arrangements
of hyperplanes in Cr, i.e. choices of r-tuples of indices (i1, . . . , ir) that spec-
ify which of the denominators go to zero at the pole. The JK prescription
then says that the poles to be taken are those for which the cone spanned
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by vectors Qi1 , . . . , Qir contains the chamber C. Then we can define

(33) JK := {(i1, . . . , ir) |C ⊆ Cone(Qi1 , . . . , Qir)} .

With this JK prescription for the residue computation, we can rewrite the
integral for F via a fixed-point formula of Duistermaat–Heckman type

(34) F(t, ϵ) =
∑

p∈FP
e−Hϵ(p) 1∏

j /∈p εj(p)
,

where we identify JK poles with fixed points in Xt

(35) FP ∋ p = (i1, . . . , ir) ∈ JK .

The smoothness of Xt allows us to invert the matrix

(36) Qp = (Qi1 | . . . |Qir) ∈ SL(r,Z)

at each fixed point.2 At a JK pole the variables ϕa evaluate to

(37) ϕa ≡ ϕa(p) = −
r∑

b=1

ϵib(Q
−1
p )ba .

The local Hamiltonian

(38) Hϵ(p) =

r∑

a,b=1

ϵib(Q
−1
p )bat

a

is a linear function of t and ϵ, obtained by evaluating Hϵ at the fixed point,
and the εi(p) are the weights of the normal bundle to the fixed point w.r.t.
the T-action

(39) εj(p) = ϵj −
r∑

a,b=1

ϵib(Q
−1
p )baQ

a
j , for j = 1, . . . , N, j /∈ p .

The Kähler moduli ta are defined as conjugate variables to ϕa’s, therefore
we can formally identify the equivariant Chern roots xi with the differential

2To invert this matrix, it is sufficient that fixed points are isolated. Smoothness
implies that detQp = ±1.
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operators

(40) Di := ϵi +
∑

a

Qa
i

∂

∂ta
.

Acting with Di on the volume F(t, ϵ) corresponds to inserting xi in the
integral in eq. (32)

(41) Di1 · · · Dis F(t, ϵ) =

∫

Xt

eϖt−Hϵxi1 · · ·xis ,

which computes the intersection number of the divisors Di1 , . . . , Dis .
Suppose xi1 · · ·xis is a monomial in the ideal ISR of cohomology relations

and therefore a zero element in the cohomology of Xt, then we must have

(42) Di1 · · · Dis F(t, ϵ) = 0 ,

therefore F(t, ϵ) is a D-module for the equivariant cohomology of Xt.

2.2. K-theoretic partition function

The natural generalization of the volume F(t, ϵ) to K-theory is obtained
by computing the partition function of a supersymmetric QM on S1 with
target spaceXt. We can represent it as 1d GLSM withN chiral fields charged
under the gauge symmetry A and flavor symmetry T. Introduce K-theoretic
equivariant parameters

(43) wa = e−ℏϕa ∈ KA(C
N ) , qi = e−ℏϵi ∈ KT(C

N ) ,

where ℏ is the radius of S1. The partition function of the QM is the contour
integral

(44) Z(T , q) := ℏ−d

∮

JK

r∏

a=1

dϕa
2πi

e
∑

a
ϕata

∏N
i=1 xi

N∏

i=1

ℏxi
1− e−ℏxi

or equivalently, using the exponentiated parameters of eq. (43),

(45) Z(T , q) = (−1)r
∮

JK

r∏

a=1

dwa

2πiwa
w−T a

a

1
∏N

i=1

(
1− qi

∏
aw

Qa
i

a

) ,

where T a = ta/ℏ are rescaled Kähler moduli satisfying the quantization con-
dition T a ∈ Z. The contour picks up the same poles as in the cohomological
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setting, namely

(46) wa ≡ wa(p) =

r∏

b=1

q
−(Q−1

p )ba
ib

, for p = (i1, . . . , ir) ∈ JK

with JK defined as in eq. (33).
In analogy with eq. (31) we can write the identity

(47)

∞∑

ni=0

e−ℏxini

=
1

1− e−ℏxi
,

so that one can interpret the infinite sum
∑∞

ni=0 as the “quantization” of
the integral over momenta

∫∞
0 dpi where formally ℏni = pi.

By Hirzebruch–Riemann–Roch theorem, the index Z(T , q) is the push-
forward to the point of the K-theory class of a line bundle LT represented by∏

aw
−T a

a , i.e. Z(T , q) = χ(Xt, LT ). The K-theoretic version of Duistermaat–
Heckman localization formula gives

(48) Z(T , q) =
∑

p∈FP
e−Hϵ(p) 1∏

j /∈p
(
1− e−ℏεj(p)

) .

Similarly to eq. (40), we define difference operators

(49) ∆i := e−ℏDi = qi
∏

a

(T †
a )

−Qa
i ,

where T †
a is the shift operator that acts by shifting T a by 1,

(50) T †
af(T

1, . . . , T r) = f(T 1, . . . , T a + 1, . . . , T r) .

Insertions of equivariant K-theory classes Li := e−ℏxi = qi
∏

aw
Qa

i
a , the

class of the line bundle corresponding to divisor Di, can be realized by acting
with operators ∆i

(51) ∆iZ(T , q) = χ(Xt, LT ⊗ Li) .

Similarly we have

(52) (1−∆i)Z(T , q) = χ(Xt, LT ⊗ Λ•
−1Li) ,

where Λ•
−1 is the exterior power operator Λ•

yV := ⊕∞
n=0y

nΛnV , so that
Λ•
−1Li = (1− Li). These identities are the K-theory analogue of eq. (41).



✐

✐

“1-Cassia” — 2024/5/29 — 18:14 — page 974 — #14
✐

✐

✐

✐

✐

✐

974 L. Cassia, N. Piazzalunga, and M. Zabzine

To every relation in the equivariant K-theory of Xt, there corresponds
an element of the ideal IKSR defined in eq. (28), to which we can associate a
finite difference equation for the partition function Z(T , q)

(53) (1−∆i1) · · · (1−∆is)Z(T , q) = 0

for (1− Li1) · · · (1− Lis) ∈ IKSR.

3. The theory on the disk

We reviewed the construction of GLSM partition functions on the point
and on S1. In this section we uplift them to the backgrounds D2 and D2 ×
S1. The space of fields now admits an additional U(1) action associated
to rotations of the disk, to which we assign an equivariant parameter λ ∈
H2

U(1)(D
2). This is equivalent to an Ω-background on the disk. In the K-

theoretic setup we define the variable q = e−ℏλ ∈ KU(1)(D
2), which acts as

a fugacity for the U(1)-symmetry in the counting of BPS states. The disk
is fibered over S1 with holonomy q, which corresponds to the Ω-background
for 3d supersymmetric theories [14, 42].

3.1. Cohomological disk partition function

We start by analyzing the 2d GLSM case. Supersymmetric localization of
N = (2, 2) theories on D2 indicates that one-loop determinants of free chiral
fields contribute as λ−1 Γ (xi/λ) and the partition function of the GLSM is
defined as follows.

Definition 3.1. The disk partition function is given by the integral

(54) FD(t, ϵ;λ) := λ−N

∮

QJK

r∏

a=1

dϕa
2πi

e
∑

a
ϕata

N∏

i=1

Γ
(xi
λ

)
,

where we define the Quantum Jeffrey-Kirwan (QJK) contour via a gener-
alization of the JK prescription in the following way. Every Γ-function has
a classical pole associated to the hyperplane xi = 0, corresponding to the
same pole in eq. (32). To each such pole corresponds a tower of poles at
xi + λk = 0 for k ∈ Z>0. These integral shifts of the hyperplanes can be
re-absorbed in a redefinition of the corresponding ϵi, to which the JK pre-
scription is blind. Hence, if a classical pole is inside the classical JK contour,
then it is also picked up by the QJK contour and its infinite tower of higher
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poles is picked up as well. If instead a classical pole is not in the JK contour,
then that pole and its tower of higher poles are not in the QJK contour.
More concretely, we define the quantum JK poles as

(55) QJK := JK× Zr
≥0

so that at a QJK pole the variables ϕa evaluate to

(56) ϕa ≡ ϕa(p, k) = −
r∑

b=1

(ϵib + λkb)(Q
−1
p )ba .

Remark 3.2. From the definition of the QJK contour it follows that the
disk partition function FD(t, ϵ;λ) can be written via the fixed-point formula

(57) FD(t, ϵ;λ) =
∑

k∈Zr
≥0

(−1)
∑

r
i=1 ki

∏r
i=1 ki!

∑

p∈FP
e−Hϵ(p,k)

∏

j /∈p
Γ

(
εj(p, k)

λ

)
,

where the Hamiltonian and local weights at p ∈ FP get shifted by k as

(58) Hϵ(p, k) := Hϵ(p) + λ

r∑

a,b=1

kb(Q
−1
p )bat

a ,

(59) εj(p, k) := εj(p)− λ

r∑

a,b=1

kb(Q
−1
p )baQ

a
j .

The semi-classical part of FD(t, ϵ;λ) is the integral over the classical JK
contour

(60) FΓ(t, ϵ) :=

∮

JK

r∏

a=1

dϕa
2πi

e
∑

a
ϕata

∏N
i=1 xi

N∏

i=1

Γ
(
1 + xi

λ

)
=

∫

Xt

eϖt−HϵΓ̂(TXt)

so that we only pick up residues at the classical poles, while we drop all
higher poles. Since the JK contour avoids the poles of the Γ-function and
picks up only poles of the denominator, the factor

∏N
i=1 Γ(1 +

xi

λ ) can be seen
as the insertion of the Γ-class of Xt [88] in the integral for the equivariant
volume F , hence the notation FΓ. Moreover, as FΓ is a classical integral,
it follows that it must satisfy the same classical cohomology relations as in
eq. (42). This is however not true for the full disk function FD, which (as
we show below) satisfies a quantum deformation of cohomology relations.
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Remark 3.3. We point out a few important properties of the disk partition
function FD.

• The scaling property

(61) FD(t, ϵ;λ) = λ−dFD(λt, λ−1ϵ; 1) ,

which shows that it is a function of two dimensionless variables, up to
overall scaling.

• The action of the differential operators Di, defined in eq. (40),

(62)
(Di

λ

)
n
FD(t, ϵ;λ) = e

λn ∂

∂ϵi FD(t, ϵ;λ), n ∈ Z≥0

corresponds to shifts of equivariant parameters, where e
λ ∂

∂ϵi is the op-
erator that sends ϵi to ϵi + λ, and (z)n is the Pochhammer symbol in
eq. (A.3).

• One can trade shifts in equivariant parameters for shifts in Kähler
parameters

(63) e
λ
∑

a,i
γaQa

i

∂
∂ϵi FD(t, ϵ;λ) = e−λ

∑

a
γataFD(t, ϵ;λ), γ ∈ Zr ,

which follows from the change of variables ϕa 7→ ϕa − λγa inside the
integral.

From the localization formula in eq. (57) it is evident that the disk
function can be written as a sum of contributions weighted by the “non-
perturbative” factors e−λkata . These non-perturbative corrections are inter-
preted as instantonic contributions to the 2d partition function that vanish
in the large volume limit. For later convenience we introduce the instanton
counting variables za := e−λta (not to be confused with the coordinates on
CN ) so that we can write FD as a power series in the z’s.

3.2. K-theoretic disk partition function

The one-loop determinant of a free chiral in a 3d N = 2 supersymmet-
ric gauge theory on D2 × S1 [14, 163] gives (e−ℏxi ; q)−1

∞ = (qi
∏

aw
Qa

i
a ; q)−1

∞ ,
where we define the q-Pochhammer symbol (z; q)d as in eq. (A.6).
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Definition 3.4. We define the K-theoretic disk partition function

(64) ZD(T , q; q) := (−1)r
∮

QJK

r∏

a=1

dwa

2πiwa
w−T a

a

N∏

i=1

1(
qi
∏

aw
Qa

i
a ; q

)
∞

with QJK contour that selects the same poles as eq. (54).

The partition function ZD(T , q; q) is the K-theoretic (3d) refinement
of the (2d) disk partition function FD(t, ϵ;λ). One should think of it as a
Witten index on the space of holomorphic maps from D2 to Xt, computed
via an infinite-dimensional version of Hirzebruch–Riemann–Roch. Instead of
trying to make this picture rigorous, we use eq. (64) as the definition of the
index and a simultaneous generalization of FD(t, ϵ;λ) and Z(T , q).

To make the connection to the 2d function FD(t, ϵ;λ) clear, we rewrite
the integrand in terms of Jackson q-Gamma functions in eq. (A.8). We then
have the identity

ZD(T , q; q) =
ℏr(1− q)

∑

i
ϵi/λ−N

(q; q)N∞

×
∮

QJK

r∏

a=1

dϕa
2πi

e
∑

a
ϕa(ℏT a+λ−1 log(1−q)

∑

i
Qa

i )
N∏

i=1

Γq

(
xi

λ

)
,(65)

where the r.h.s. is a q-deformation of the integral in eq. (54). If Xt is a CY
manifold, as we assume in our examples, then there is no shift in Kähler
moduli in the r.h.s. of eq. (65).

The semi-classical part is the contribution of the classical poles only

(66) ZΓq
(T , q) := (−1)r

∮

JK

r∏

a=1

dwa

2πiwa
w−T a

a

N∏

i=1

1(
qi
∏

aw
Qa

i
a ; q

)
∞

and it satisfies the relation ZΓq
(T , q) = Z(T , q) +O(q). Moreover, we can

use the recurrence relation for the q-Gamma in eq. (A.10), to write

ZΓq
(T , q) =

(1− q)
∑

i
ϵi/λ(−1)r

(q; q)N∞

×
∮

JK

r∏

a=1

dwa

2πiwa

w−T a

a∏N
i=1(1− e−ℏxi)

N∏

i=1

Γq

(
1 +

xi
λ

)

=
(1− q)

∑

i
ϵi/λ

(q; q)N∞

[
Z(T , q) +O

(
λ−1

)]
(67)
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so that, up to an overall factor, this computes the insertion of the Γ̂q-class of
Xt in the 1d partition function Z(T , q). From this observation it follows that
the semi-classical function ZΓq

satisfies the same set of K-theoretic relations
as in eq. (53). This is however not true for the full disk function ZD, which
satisfies a quantum deformation of the K-theory relations.

Using eq. (A.11) we obtain the useful identity

(68) (∆i; q)nZD(T , q; q) = q
nqi

∂

∂qi ZD(T , q; q) , n ∈ Z≥0 ,

where ∆i is defined in eq. (49) and the operator q
qi

∂

∂qi sends qi to qqi.

4. BPS states counting

We provide an interpretation of K-theoretic partition functions ZD and Z
as equivariant indices counting BPS states in the Hilbert space of a certain
quantum mechanics on Xt. The physical theories have many U(1) flavor
symmetries, whose fugacities are identified with K-theoretic equivariant pa-
rameters [42, 136].

4.1. Free theory

We start with a quantum mechanical index on C. Physically, this is the
partition function of a free chiral field on S1 charged under a flavor symmetry
T = U(1) with fugacity q1.

The equivariant index is computed by the character map ch : KT(C)
∼=−→

C[q±1 ], applied to the Hilbert space of the QM. The computation goes as
follows: the single-particle Hilbert space H is one-dimensional, generated by
a state of charge 1 under the U(1) flavor symmetry, hence its character is
given by ch(H) = q1. The full space of states of the QM is the Fock space
Fock = S•H =

⊕
n≥0 S

nH, obtained by summing over all symmetric tensor
powers of H. The index is given by the character of this space Z(q1) =
ch(S•H) = 1

1−q1
. The index of two or more free chirals is the product of the

indices of each chiral, by the multiplicative nature of the character map.
Next we consider a 3d refinement of this counting. Physically, we uplift

the theory from the circle to D2 × S1. The Hilbert space of this theory splits
into components graded both by the action of T on the target and U(1)q on
the disk. As before we start by identifying the single-particle Hilbert space
HD ∼=

⊕
i≥1HD

(i), where HD
(i) are one-dimensional spaces corresponding to

an infinite tower of states coming from the disk. All these components have
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charge one under the symmetry T but they are distinguished by their U(1)q
charge ch(HD

(i)) = q1q
i−1. The full space of states of the 3d theory is the

Fock space FockD = S•HD and its index

(69) ZD(q1; q) = ch(S•HD) =
1

(q1; q)∞

matches the one-loop determinant of a free chiral obtained via localization.
The states of the 1d theory are contained in the Hilbert space of the 3d

theory as those states with zero charge under U(1)q. In the limit q → 0, all
3d states with higher U(1)q-charges decouple and the 3d index reproduces
the 1d index, limq→0ZD(q1; q) = Z(q1).

A basis for the space FockD is given by states of the form

(70) α−i1α−i2 · · ·α−in |0⟩ , i1 ≥ · · · ≥ in ≥ 1 ,

where α−i are mutually commuting creation operators with charges q1q
i−1.

Since the indices in eq. (70) are ordered, we can label each state by an integer
partition µ = [i1 − 1, i2 − 1, . . . , in − 1]. So the index can be computed as a
sum of charges over the Fock space of all such states

(71) ZD(q1; q) =

∞∑

n=0

∑

ℓ(µ)≤n

qn1 q
|µ| ,

where the second sum ranges over all integer partitions µ of length less or
equal to n (and arbitrary size). Equation (69) can then be recovered by using
eqs. (A.12) and (A.13).

4.2. Abelian GLSM

We consider a toric variety Xt obtained as symplectic quotient of CN by
the action of a torus A with momentum map µ as in eq. (20). The GLSM
describing such quotient has N chiral fields. Each chiral field is charged both
w.r.t. the flavor symmetry group T and the gauge group A, as specified by
the corresponding matrix of charges.

Before looking at the gauged sigma model, we consider the fully (A× T)-
equivariant index on the ambient space CN , where A is also regarded as a
global symmetry. This is the product of N copies of the index in eq. (69),
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each depending on the appropriate fugacities,

(72)

N∏

i=1

1(
qi
∏r

a=1w
Qa

i
a ; q

)
∞

=
∑

n∈ZN
+

N∏

i=1

qn
i

i

∏r
a=1w

Qa
i n

i

a

(q; q)ni

.

We can restrict the sum over Fock space in the r.h.s. of eq. (72) to a given
A-charge sector HT , T = (T 1, . . . , T r) ∈ Zr, by imposing the Gauss law

(73)

N∑

i=1

Qa
i n

i = T a , a = 1, . . . , r .

This can be implemented on eq. (72) by the contour integral

ZD(T , q; q) = (−1)r
∮

QJK

r∏

a=1

dwa

2πiwa
w−T a

a

N∏

i=1

1(
qi
∏r

a=1w
Qa

i
a ; q

)
∞

=
∑

Q·n=T

N∏

i=1

qn
i

i

(q; q)ni

= ch(HT )(74)

with a QJK contour defined as in section 3. The Fock space of the linear
sigma model splits as a sum over A-charge sectors, Fock = ⊕THT so that

(75) ch(Fock) =
∑

T

ZD(T , q; q)

r∏

a=1

wT a

a =

N∏

i=1

1(
qi
∏r

a=1w
Qa

i
a ; q

)
∞

.

Geometrically, the Gauss law constraint implements the restriction from
CN to the stable locus µ−1(t) and simultaneously the quotient w.r.t. the
A-action. By comparing eqs. (19) and (73) we can interpret the index as
a certain graded count of integer points inside Xt, where the integers ni

replace the real momenta pi.

5. Expansions

We study degeneration limits of the 3d partition function ZD(T , q; q) cor-
responding to shrinking either the disk D2, the circle S1 or both. These
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degenerations fit into the commutative diagram of world-volume geometries

(76)

D2 × S1 S1

D2 pt

to which we give an interpretation in terms of limits of partition functions.
For simplicity, in this section we assume that Xt is CY.

It turns out that the limit in which the disk D2 shrinks to zero-size can
be implemented by sending the equivariant disk parameter λ to ∞, so that
the K-theoretic variable q goes to 0. This limit corresponds to the horizontal
arrows in eq. (76). Moreover, as we explain below, in this limit the infinite
towers of poles coming from the functions Γ and Γq are sent to infinity and
only classical poles survive. For this reason the QJK contour can be shrunk
back to the classical JK contour when λ is infinitely large.

The limit corresponding to vertical arrows in eq. (76), in which the circle
S1 shrinks to zero radius, is modulated instead by the parameter ℏ going
to 0. This implies that all K-theoretic parameters go to one, as one would
expect from the reduction of K-theoretic computations to cohomology.

The two limits can be composed in two ways. First reducing along the
disk and then the circle or vice-versa. We consider these two cases separately.
The main goal of this section is to show that these two paths lead to the
same result, thus proving that we have a commutative diagram of partition
functions

(77)

ZD(T , q; q) Z(T , q)

FD(t, ϵ;λ) F(t, ϵ)

ℏ→0

q→0

ℏ→0

λ→∞

5.1. From 3d to 1d to 0d

The degeneration of ZD(T , q; q) to Z(T , q) is rather straightforward to im-
plement. Each q-Pochhammer factor in the integrand can be expanded using
eq. (71) and in the limit q → 0 we find

(78) lim
q→0

1

(e−ℏxi ; q)∞
=

1

1− e−ℏxi
.
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All the poles at xi + nλ = 0 for n > 0 are killed by the λ→ ∞ limit and one
is left with the integral representation for the 1d partition function Z(T , q)

(79) ZD(T , q; q) =
∑

Q·n=T

N∏

i=1

qn
i

i

(q; q)ni

q→0−−−→
∑

Q·n=T

N∏

i=1

qn
i

i = Z(T , q) ,

which agrees with previous results [135].
Next we reduce along the circle. This is the cohomological limit of the

Witten index Z(T , q) and it is known to reproduce the equivariant volume
F(t, ϵ). We review here how the limit goes. Using the series representation
of the Todd genus

(80)
ℏx

1− e−ℏx
=

∞∑

n=0

Bn(−ℏx)n

n!

we can write

Z(T , q) = ℏr−N

∮

JK

dϕi
2πi

e
∑

a
ϕata

∏N
i=1 xi

(1 +O(ℏ))

= ℏ−dF(t, ϵ) +O(ℏ−d+1) .(81)

Higher order corrections in ℏ correspond to insertions of characteristic classes
of Xt.

5.2. From 3d to 2d to 0d

The degeneration of ZD(T , q; q) to the 2d partition function FD(t, ϵ;λ) is
slightly more involved and it requires to use the representation in terms of
Jackson Γq function as in eq. (65). The function ZD(T , q; q) has infinitely
many poles at q = 1, therefore one needs to multiply it by (q; q)N∞ to get a
well-defined Laurent expansion. Using the standard identity limq→1 Γq(z) =
Γ(z), we then obtain

(82) (q; q)N∞ZD(T , q; q) = ℏ−dFD(t, ϵ;λ) +O(ℏ−d+1) .

The product is still divergent but it has a finite number of negative powers
of ℏ in its Laurent series expansion. Moreover, in the same limit we have

(83) (1−∆i) = (1− e−ℏDi) = ℏDi+O(ℏ2)
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so that the leading order in ℏ of the difference operator 1−∆i is the differ-
ential operator Di.

The next limit is the zero-volume limit of the disk, λ→ ∞. The function
FD(t, ϵ;λ) depends on λ through factors of Γ(xi

λ ) in the integrand. The limit
of the integrand can be computed using the series expansion of the Γ-function

(84) lim
λ→∞

1

λ
Γ
(xi
λ

)
=

1

xi
.

The QJK contour surrounds infinitely many poles of the Γ-functions, lo-
cated at xi + λk = 0. In the limit λ→ ∞ all of these poles run away to infin-
ity except for classical poles at k = 0. Therefore we obtain limλ→∞FD(t, ϵ;λ)
= F(t, ϵ). While the λ→ ∞ limit of FD(t, ϵ;λ) is well-defined, its Laurent
series expansion is not. The reason is that one can expand FD(t, ϵ;λ) as a
sum over infinitely many residues, each residue at xi + λk = 0 giving a con-
tribution proportional to e−λd·t times a power series in λ−1. Schematically,

(85) FD(t, ϵ;λ) =
∑

d

e−λd·t × (Laurent series in λ−1)

for d a vector of integers ranging over a convex subset of Zr as we show in
section 7.2. In the λ→ ∞ limit, the e−λd·t contributions go to zero exponen-
tially fast (provided d · t > 0, which we show in proposition 7.2), therefore
only the classical contributions at d = 0 survive. The limit can then be com-
puted by expanding FΓ(t, ϵ) as a Taylor series in λ−1 as in eq. (60). Hence
we can write

(86) FΓ(t, ϵ) = F(t, ϵ)− γ
λ

∫

Xt

eϖt−Hϵc1 +O(λ−2) ,

where we use the expansion of the Gamma-class of TXt as in eq. (A.1).
Due to the expansion in eq. (85), one should regard contributions from

higher poles as higher-order instanton corrections to the classical partition
function with instanton counting parameters za = e−λta . By analogy with
the genus zero Gromov–Witten theory of the target Xt, one can interpret
such contributions as coming from higher-degree maps. See section 9 for a
more detailed discussion.

6. Shift equations

As discussed in section 4, the disk partition function ZD(T , q; q) is a graded
count of integer points in Xt, or equivalently the graded dimension of the
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space of sections of a certain prequantum line bundle over the space of
maps from the disk to Xt. We want to know whether this function is well-
defined when T-equivariant parameters are turned off. This corresponds to
the limit in which all ϵi are set to zero, i.e. qi → 1 for i = 1, . . . , N . As
a generalization of the volume of Xt, we can immediately see that this
limit is not defined if Xt is non-compact, as the sum over integer points is
divergent. As a simple example consider the non-compact case of Xt = C,
then ZD(T , q; q) = (q1; q)

−1
∞ , which has a simple pole at q1 = 1. On the other

hand, if Xt is compact, then the disk partition function is a sum over a finite
number of points and therefore it has a well-defined limit for qi → 1.

We argue that while ZD(T , q; q) does not have a non-equivariant limit
for Xt non-compact, one can extract a convergent quantity by applying a
finite difference operator corresponding to a compact toric divisor of Xt.
This generalizes the shift equation from ref. [135, Section 4] to the disk
partition functions FD(t, ϵ;λ) and ZD(T , q; q). The statement of regularity
for ZD requires an analysis of the qi dependence of the disk function in the
q expansion.

For simplicity, we assume thatH2
cpt(Xt) is non-empty. Let ψ : H2

cpt(Xt)→
H2(Xt) be the map sending cohomology classes with compact support to
ordinary cohomology classes. One can decompose its image over a basis of
H2(Xt), so that ψ =

∑r
a=1 ϕaψ

a. For a toric Kähler quotient Xt with charge
matrix Qa

i , the map ψ can be represented by a matrix of integers

(87) ψa(PD(Di)) = −Qa
i , i ∈ Icpt .

If there are no compact divisors then the set Icpt is empty and the ψ-map
is identically zero.

Proposition 6.1. Let M =
∑

i∈Icpt M
i PD(Di) ∈ H2

cpt(Xt) with M i ∈ Z.
Assume that T + ψ(M) is in the same chamber as T . Then the difference

(88) ZD(T , q; q)−
∏

i∈Icpt

qM
i

i ZD(T + ψ(M), q; q) ∈ Z[q1, . . . , qN ] [[q]]

is a formal power series in q, with polynomial coefficients in the variables
qi.

Proof. The expression in eq. (88) can be rewritten as

(89)
(
1− e

−ℏ
∑

i∈Icpt
M i Di

)
ZD(T , q; q) =


1−

∏

i∈Icpt
∆M i

i


ZD(T , q; q) .
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We first consider the case when M = PD(Di) for some i ∈ Icpt. Using
eqs. (68) and (74), we can write

(90) (1−∆i)ZD(T , q; q) =

∞∑

ni=0

(qqi)
ni

(q; q)ni

∑

Λi(T ,ni)

∏

j ̸=i

qn
j

j

(q; q)nj

,

where the set

(91) Λi(T , k) :=



(n1, . . . , nN ) ∈ ZN

≥0

∣∣∣∣∣∣

N∑

j=1

Qa
jn

j = T a and ni = k





is finite by the assumption of compactness of divisor Di. By repeatedly ap-
plying eq. (A.13), we see that a given power of q in eq. (90) only receives
contributions from a finite number of Λ’s. This shows that (1−∆i)ZD sat-
isfies the thesis. Next we consider the case when M is an integer multiple of
a generator xi, i.e. M =M i PD(Di) with M

i ∈ Z (no sum over i is implied
here). We then have

(
1−∆M i

i

)
ZD(T , q; q)

=
(
1 + ∆i + · · ·+∆M i−1

i

)
(1−∆i)ZD(T , q; q) .(92)

Since the r.h.s. is a regular operator acting on the regular expression (1−
∆i)ZD, we can use the previous result to the deduce that the l.h.s. is also
regular for any M i > 1. For M i < 0 we use that (1−∆−M i

) = −∆−M i

(1−
∆M i

).
Given any pair of compact divisors Di and Dj , with i, j ∈ Icpt, we have

(
1−∆M i

i ∆Mj

j

)

=
(
1−∆M i

i

)
+
(
1−∆Mj

j

)
−
(
1−∆M i

i

)(
1−∆Mj

j

)
.(93)

Applying our previous result to terms on the right, we deduce that

(
1−∆M i

i ∆Mj

j

)
ZD

satisfies the thesis and by induction we conclude that
(
1−∏i∈Icpt ∆

M i

i

)
ZD

satisfies it as well. □
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By taking the 1d limit q → 0, we find an analogous compact divisor shift
equation

(94) (1−∆i)Z(T , q) =
∑

Λi(T ,0)

∏

j ̸=i

qn
j

j ∈ Z[q1, . . . , qN ]

for the S1 partition function [135]. In this case the quantity on the r.h.s. is
a polynomial in qi’s with integer coefficients, hence limq→1(1−∆i)Z(T , q)
is an integer.

If instead we reduce along the circle (cohomological limit ℏ → 0), we find
that

(95) DiFD(t, ϵ;λ) is analytic at ϵ = 0

if the divisor Di is compact.
A different 2d limit is the double scaling ℏ → 0 and M → ∞ with m :=

ℏM constant, in which case eq. (88) becomes the shift equation of ref. [135],
namely:

Proposition 6.2. Letm =
∑

i∈Icpt m
i PD(Di) ∈ H2

cpt(Xt). Assume that t+
ψ(m) is in the same chamber as t. Then the difference

(96) FD(t, ϵ;λ)− e
−∑

i∈Icpt
miϵiFD(t+ ψ(m), ϵ;λ)

is regular in the non-equivariant limit ϵ→ 0.

If H2
cpt(Xt) is empty, then we look at any set S ⊆ {1, . . . , n} of divi-

sors such that their intersection is compact; the action of the corresponding
product of operators makes the disk function regular in the non-equivariant
limit

(97)
⋂

i∈S
Di compact =⇒

∏

i∈S
(1−∆i)ZD(T , q; q) is analytic at q = 1 .

The proof of this statement is a straightforward generalization of the
argument in proposition 6.1. By reducing along the circle (ℏ → 0), we find
that

(98)
⋂

i∈S
Di compact =⇒

∏

i∈S
DiFD(t, ϵ;λ) is analytic at ϵ = 0 .
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In this case the analog of the shift equation corresponds to some higher-
order difference equation. We consider examples without compact divisors
in section 11.

7. Quantum cohomology and quantum K-theory

7.1. Equivariant Picard–Fuchs equations

Let us fix a chamber C, and work in cohomology for simplicity (everything
can be rephrased in K-theory terms). We define the equivariant Picard–
Fuchs operator

Leq
γ :=

∏

{i|∑
a
γaQa

i >0}

(Di

λ

)
∑

a
γaQa

i

− e−λ
∑

a
γata

×
∏

{i|∑
a
γaQa

i ≤0}

(Di

λ

)
−∑

a
γaQa

i

.(99)

Then, for any γ ∈ C∨ ∩ Zr, eqs. (62) and (63) imply the relations

(100) Leq
γ FD(t, ϵ;λ) = 0 .

By the formal identification of differential operators Di and Chern roots
xi, we can interpret eq. (100) as a differential operator representation of the
Batyrev or Quantum Stanley–Reisner ideal IQSR defined by products

(101)
∏

{i|∑
a
γaQa

i >0}
x
∑

a
γaQa

i

i −
∏

a

zγa

a

∏

{i|∑
a
γaQa

i ≤0}
x
−∑

a
γaQa

i

i

We argue that by eq. (100) the disk function FD is a D-module for the
Quantum Cohomology ring of the toric quotient Xt

(102) QH•
T(Xt) := C[ϕ1, . . . , ϕr, ϵ1, . . . , ϵN , z1, . . . , zr]/IQSR .

See refs. [13, 66] for a discussion of Batyrev description of quantum
cohomology and quantum deformations of the Kirwan map.

Differential equations of the type of eq. (100) encode a quantum defor-
mation of classical cohomology and are known as equivariant Picard–Fuchs
(PF) equations. In fact, it follows that in the classical limit λ→ ∞ (or large
volume limit t → ∞) the quantum deformation vanishes (by the assumption
on γ) and the operators Leq

γ provide a realization of the classical cohomology
relations as elements of the Stanley–Reisner ideal.
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The usual non-equivariant PF operators are recovered when we send all
ϵi to zero,

Lγ =
∏

{i|∑
a
γaQa

i >0}

(
−
∑

a

θaQ
a
i

)
∑

a
γaQa

i

− e−λ
∑

a
γata

×
∏

{i|∑
a
γaQa

i ≤0}

(
−
∑

a

θaQ
a
i

)
−∑

a
γaQa

i

(103)

with θa := ∂/∂ log za = − 1
λ∂/∂t

a. Observe that while the PF operators them-
selves always have a well-defined non-equivariant limit, this might not be
the case for the disk function. In fact, we have that for any non-compact
manifold Xt, the disk function is singular at ϵ = 0, and therefore eq. (100)
generically does not have a non-equivariant limit.

The equivariant K-theoretic Picard–Fuchs operators are defined as

LKeq
γ :=

∏

{i|∑
a
γaQa

i >0}
(∆i; q)∑

a
γaQa

i
− q

∑

a
γaT a

×
∏

{i|∑
a
γaQa

i ≤0}
(∆i; q)−∑

a
γaQa

i
(104)

and they annihilate the K-theoretic disk function,

(105) LKeq
γ ZD(T , q; q) = 0 ,

thus providing a representation of quantum K-theory relations.3 The non-
equivariant K-theoretic PF operators are obtained by using the formula

(106) lim
q→1

∆i = q−
∑

a
θaQa

i .

3The correspondence between 3d N = 2 gauge theories and quantum K-theory
has been previously observed in ref. [94], where a dictionary to match the two sides
was worked out. Here we extend the discussion to the equivariant setting for arbi-
trary toric CYs. Moreover, our results follow directly from the choice of integration
contour for the integral representation of the disk function that we postulated in
eqs. (54) and (64). This choice is motivated by the symplectic geometry of the tar-
get and extends naturally to any toric example. For simplicity, in our discussion we
omit any reference to the level structure of quantum K-theory [145], in other words
we assume level 0.
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7.2. The Givental Î-operator

Definition 7.1. Inspired by work of Givental [62, 64], we define the equiv-
ariant I-function

(107) IXt
:= e

∑

a
ϕata

∑

d∈Λ
e−λ

∑

r
a=1 data

N∏

i=1

(xi
λ

)
−∑

a
daQa

i

,

where Λ := C∨ ∩ Zr is the intersection of the lattice Zr with the dual of the
chamber.4

Our considerations in this section follow from the following fact.

Proposition 7.2. There is an identity

(108)

∮

QJK

∏

a

dϕa
2πi

e
∑

a
ϕata

∏

i

Γ
(xi
λ

)
=

∮

JK

∏

a

dϕa
2πi

IXt

∏

i

Γ
(xi
λ

)
.

Proof. Let us discuss the identity one JK pole p at a time. On the l.h.s. we
use the definition of the QJK contour to write

LHS =
∑

k∈Zr
≥0

∮

ϕ=ϕ(p)−λ(Q−1
p )tk

∏

a

dϕa
2πi

e
∑

a
ϕata

∏

i

Γ
(
ϵi+

∑

a
ϕaQa

i

λ

)

=
∑

d∈(Q−1
p )tZr

≥0

∮

ϕ=ϕ(p)−λd

∏

a

dϕa
2πi

e
∑

a
ϕata

∏

i

Γ
(
ϵi+

∑

a
ϕaQa

i

λ

)
,(109)

where we relabeled the sum in terms of da =
∑

b kb(Q
−1
p )ba. On the r.h.s.

we use the definition of the I-function and the change of variables ϕ̃a =
ϕa − λda,

RHS =
∑

d∈Λ

∮

ϕ=ϕ(p)

∏

a

dϕa
2πi

e
∑

a
(ϕa−λda)ta

×
∏

i

Γ

(
ϵi+

∑

a
ϕaQa

i

λ −
∑

a

daQ
a
i

)

=
∑

d∈Λ

∮

ϕ̃=ϕ(p)−λd

∏

a

dϕ̃a
2πi

e
∑

a
ϕ̃ata

∏

i

Γ
(
ϵi+

∑

a
ϕ̃aQa

i

λ

)
.(110)

4This choice guarantees that the classical cohomology limit λ→ ∞ is well-
defined.
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The difference between the two sides of the equation is in the range of the
sum over instanton charges d. At first glance one would like to show that
the two cones (Q−1

p )tZr
+ and Λ coincide for every fixed point p. On closer

inspection, however, we realize that a weaker condition is sufficient, namely
that

(111) (Q−1
p )tZr

+ ⊆ Λ .

This is because if d /∈ (Q−1
p )tZr

+ then there is at least one ka that becomes
negative and the contour integral in ϕa evaluates to zero because the corre-
sponding Γ-function has no pole at the positive integer −ka. We therefore
need to prove eq. (111) for any fixed point p. The l.h.s. is the cone generated
by the column vectors of the matrix (Q−1

p )t. For brevity we indicate this as
Cone((Q−1

p )t). The cone on the r.h.s. is by definition the integer cone dual
to the chamber, i.e. Λ = C∨ ∩ Zr. Hence we need to prove the inclusion

(112) Cone((Q−1
p )t) ⊆ C∨ ∩ Zr .

We can now use the simple fact that

(113) Cone((Q−1
p )t) = Cone(Qp)

∨

and the fact that inclusion of cones is reversed under duality, to rewrite
eq. (111) as

(114) C ∩ Zr ⊆ Cone(Qp) .

By definition this is true for any JK pole p and so the content of the propo-
sition is true. □

The argument used in the proof indicates that JK poles are the only
ones that allow for the integral over the quantum contour to be expressed
via the I-function. This observation then leads to the conclusion that JK
poles, together with their towers of quantum corrections, are in one-to-one
correspondence with solutions of equivariant PF equations, and that there
is a basis of solution labeled by fixed points of the T-action.

Definition 7.3. By replacing xi with Di in the I-function, let us define
the Givental operator

(115) ÎXt
:=
∑

d∈Λ
e−λ

∑

r
a=1 data

N∏

i=1

(Di

λ

)

−∑

a
daQa

i

.
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This definition together with proposition 7.2 imply the following.

Corollary 7.4. The I-function and the Î-operator are related by the iden-
tity

(116) IXt
= ÎXt

· e
∑

a
ϕata ,

therefore the disk function satisfies the relation

(117) FD = ÎXt
· FΓ .

Remark 7.5. Any solution to the classical cohomology equations can be
written as an integral over the classical JK contour for some cohomology
class α(ϕ, ϵ) ∈ H•

T
(Xt)

(118) Fα(t, ϵ) =

∮

JK

∏

a

dϕa
2πi

e
∑

a
ϕata

∏
i xi

α(ϕ, ϵ) =

∫

Xt

eϖt−Hϵ α .

The semi-classical partition function FΓ corresponds to the choice of α equal
to the Γ̂-class of the manifold Xt. Moreover, for every fixed point p there
exists a class PD(p) that evaluates to 0 on all fixed points but p. Since these
classes form a basis for the (localized) equivariant cohomology, we can then
write any classical solution as a linear combination

(119) Fα(t, ϵ) =
∑

p∈FP
αp(ϵ)FPD(p)(t, ϵ) , FPD(p)(t, ϵ) = e−Hϵ(p) ,

where αp(ϵ) are the coefficients of α in the fixed-point basis.

One can then use the operator ÎXt
to construct arbitrary solutions to

equivariant PF equations out of any solution to the classical cohomology
relations.

Proposition 7.6. For a generic solution Fα(t, ϵ) of classical cohomology
equations, the disk function ÎXt

· Fα(t, ϵ) is a formal solution to the equiv-
ariant PF equations.
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Proof. If Fα(t, ϵ) solves the classical cohomology equations, then it can be
written as a linear combination of integrals over classical JK poles. By propo-
sition 7.2, the function

(120) ÎXt
· Fα(t, ϵ) =

∑

p∈FP
αp(ϵ) ÎXt

· FPD(p)(t, ϵ)

can be written as a linear combination of integrals, each of which satisfies
equivariant PF equations in eq. (100). (In this sense, we call ÎXt

· Fα an
equivariant period.) □

In the K-theoretic case we define

(121) ÎKXt
:=
∑

d∈Λ
q
∑

r
a=1 daT a

N∏

i=1

(∆i; q)−∑

a
daQa

i
, IKXt

:= ÎKXt
·
∏

a

w−T a

a

and we have the identity

∮

QJK

∏

a

dwa

2πiwa

∏

a

wT a

a

∏

i

1

(Li; q)∞

=

∮

JK

∏

a

dwa

2πiwa
IKXt

∏

i

1

(Li; q)∞
.(122)

Similarly to the cohomological case, we can generate solutions to the
PF equations by applying the ÎK-operator to a classical K-theory solution,
written as a linear combination of fixed point solutions.

7.3. Non-equivariant limit, singularities and instantons

The non-equivariant limit is defined by sending all T-equivariant parameters
ϵi to zero. In this limit, the equivariant (quantum) cohomology of Xt reduces
to ordinary (quantum) cohomology and the operators Di simplify to linear
combinations of derivatives

(123) lim
ϵ→0

Di

λ
=

1

λ

∑

a

Qa
i

∂

∂ta
= −

∑

a

Qa
i θa ,

which act as operators inserting ordinary cohomology classes
∑

a ϕaQ
a
i ∈

H2(Xt). Picard–Fuchs operators Leq
γ are analytic in the ϵi’s, hence they

also degenerate in this limit to the non-equivariant PF operators Lγ and

similarly one can set all ϵi’s to zero in the Î-operator. However, the function
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Fα(t, ϵ) might have a singular behavior near ϵ = 0, and in that case the
disk function ÎXt

· Fα(t, ϵ) is not analytic at ϵ = 0. This follows from the
observation that the degree-zero term in the instanton expansion of ÎXt

is the identity operator. Corrections at higher instanton degree might or
might not cure the singularity in Fα(t, ϵ), according to the details of the
geometry of Xt. The main result of this section is proposition 7.8, which
establishes a criterion to determine whether instanton contributions to the
disk function are singular or not in the non-equivariant limit. In our case,
the semi-classical part FΓ is indeed singular in the non-equivariant limit
for non-compact manifolds Xt, as FΓ is a deformation of the volume. In
the compact case this function is regular and so also FD is regular, since
instanton corrections cannot introduce singular behavior.

In order to study the behavior of the instanton corrections we introduce
instanton operators

(124) Pd := e−λ
∑

a
data

N∏

i=1

(Di

λ

)

−∑

a
daQa

i

for d ∈ Λ .

From the definition of the Î-operator it follows that we can write

(125) ÎXt
=
∑

d∈Λ
Pd .

Proposition 7.7. The instanton operators Pd form an abelian monoid iso-
morphic to Λ.

Proof. The composition of instanton operators is commutative and gives:

PdPd
′ = e−λ

∑

a
data

∏

i

(Di

λ

)
−∑

a
daQa

i

e−λ
∑

a
d′
at

a
∏

i

(Di

λ

)
−∑

a
d′
aQ

a
i

= e−λ
∑

a
(da+d′

a)t
a
∏

i

(
Di

λ −
∑

a

d′aQ
a
i

)

−∑

a
daQa

i

(Di

λ

)
−∑

a
d′
aQ

a
i

= e−λ
∑

a
(da+d′

a)t
a
∏

i

(Di

λ

)
−∑

a
(da+d′

a)Q
a
i

= Pd+d
′(126)

for d,d′ ∈ Λ. This completes the proof. □

We can then discuss the behavior of the instanton corrections in the limit
ϵ→ 0 by making use of the fact that the instanton operators are proportional
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to products of divisor operators Di and when such products correspond to
compact intersections their action makes the integral regular as ϵ→ 0.

Proposition 7.8. For any fixed instanton charge d ∈ Λ, if the intersection

(127)
⋂

{i|∑
a
daQa

i <0}
Di

is compact in Xt, then the instanton corrections proportional to e−λ
∑

a
data ≡

zd are analytic at ϵ = 0. Conversely, if the intersection of all divisors Di with∑
a daQ

a
i < 0 is non-compact, then the instantons of degree d are singular

in the ϵ→ 0 limit.

Proof. Using the definition of the Pochhammer symbol in eq. (A.3) we can
write

Pd = e−λ
∑

a
data

[ ∏
{i|∑

a
daQa

i <0}
(Di

λ

)
−∑

a
daQa

i∏
{i|∑

a
daQa

i >0}(−1)
∑

a
daQa

i

(
1− Di

λ

)
∑

a
daQa

i

]

= e−λ
∑

a
data

[ ∏
{i|∑

a
daQa

i <0}
(
1 + Di

λ

)
−∑

a
daQa

i −1∏
{i|∑

a
daQa

i >0}(−1)
∑

a
daQa

i

(
1− Di

λ

)
∑

a
daQa

i

]

×
∏

{i|∑
a
daQa

i <0}

Di

λ
.(128)

Therefore, if
⋂

{i|∑
a
daQa

i <0}Di is compact in Xt, by the shift eq. (98)
the function Pd · FΓ is regular in the non-equivariant limit. All singulari-
ties of the semi-classical integral are cured by the insertion of the compact
class

∏
{i|∑

a
daQa

i <0} xi. If this class is non-compact, then the integral is still
singular at ϵ = 0, which implies that this instanton is singular. □

The K-theoretic instanton operators are defined as

(129) P
K
d := q

∑

a
daT a

N∏

i=1

(∆i; q)−∑

a
daQa

i

so that

(130) ÎKXt
=
∑

d∈Λ
P
K
d

and an analogous statement to proposition 7.8 holds. One can check that
limℏ→0 Î

K
Xt

= ÎXt
.
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8. Regularization

In the previous section we observed that for non-compact CY manifolds both
the classical part of the disk partition functions and the instanton corrections
can have singular behavior in the non-equivariant limit. This implies that
some PF solutions, such as the disk function itself, do not admit a limit and
therefore cannot be used to extract information about non-equivariant GW
theory and other enumerative geometric invariants. In this section we argue
that one can come up with some prescription to regularize the singular PF
solutions using the shift equations in section 6. We argue that there is no
canonical way to split the function FD into a regular and a singular parts.
However, using compact divisor operators Di, with i ∈ Icpt, we can construct
a family of functions that are both regular and in a certain sense contain
the same amount of information as the original function.

We define a “regularization” of FD to be any function FD
reg such that

(131) DiFD
reg = DiFD , ∀i ∈ Icpt .

It clearly follows from this definition that FD
reg differs from FD by some

singular function that sits in the common kernel of all compact divisor op-
erators, and FD

reg is no longer a solution of PF equations, but it does solve
an extended set of PDEs related to the original PF equations in a specific
way, such that solutions to this system contain the original PF solutions as
a subset. The main feature of this regularization procedure is that gener-
ically eq. (131) only defines FD

reg up to arbitrary elements of the kernel of
the compact divisor operators and therefore contains an intrinsic ambiguity
corresponding to the fact that the splitting between regular and parts of the
disk function is not canonically defined.

The extended system of PDEs are sometimes known as “modified Picard–
Fuchs equations”. Some specific cases of extended systems of quantum equa-
tions in the context of local mirror symmetry have previously appeared in
ref. [50] for manifolds with no compact divisors.Here we give a systematic
treatment of these equations in the toric CY case while also working in the
fully equivariant setting.

We start by defining the sub-lattice of singular instantonic contributions
as

(132) Λsing := {d ∈ Λ |Pd · FΓ is singular at ϵ = 0} ⊆ Λ .

If the manifoldXt is compact, then FD is regular and the singular sub-lattice
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is empty. For non-compact Xt, the disk function is singular and therefore
Λsing contains at least the origin, i.e. the semi-classical contribution. Higher
degree instanton contributions could also be singular as discussed in the
previous section. Then Λsing is a sub-cone of Λ. Similarly, let

(133) FD
sing :=

∑

d∈Λsing

Pd · FΓ

so that FD −FD
sing is regular by construction.

We give a prescription to regularize FD for a non-compact manifold Xt

by making use of the shift equation. For simplicity, we consider the case
when Xt admits at least one compact divisor. The strategy we adopt is the
following: we remove the singular part of the disk function and add it back
again after applying to it the shift operator in eq. (96). By construction,
the resulting function is regular, but we also show that it differs from the
original disk function by a term that is annihilated by all compact divisor
operators.

First observe that

(134)
(
FD −FD

sing

)
+
(
1− e

−∑

i∈Icpt
mi Di

)
FD
sing

is a regular function in the non-equivariant limit. To define a regularized
disk function we give a prescription to fix the values of m’s: we look for a
matrix Ri

a such that

(135)

r∑

a=1

Rj
aQ

a
i = δji , for i, j ∈ Icpt ,

i.e. a left-inverse of (minus) the ψ-map in eq. (87). If it exists (it may not
be unique), we let

(136) mi =

r∑

a=1

Ri
at

a

and we define the regularized disk function

FD
reg(t, ϵ;λ)

:= FD(t, ϵ;λ)− e
−∑

a

∑

i∈Icpt
ϵiRi

at
a

FD
sing (t+ ψ(R(t)), ϵ;λ) .(137)
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For this choice of m’s and for every i ∈ Icpt, we have

Di

(
FD −FD

reg

)
= (ϵi −

∑

a

∑

j∈Icpt
ϵjR

j
aQ

a
i )e

−∑

a

∑

j∈Icpt
ϵjRj

at
a

×FD
sing (t+ ψ(R(t)), ϵ;λ) + e

−∑

a

∑

j∈Icpt
ϵjRj

at
a

×
∑

a,b

Qa
i (δ

b
a −

∑

j∈Icpt
Qb

jR
j
a)
∂FD

sing

∂tb
(t+ ψ(R(t)), ϵ;λ) = 0 ,(138)

where the last equality follows from the property in eq. (135).

Proposition 8.1. For every PF operator Leq
γ with γ ∈ Λ and every compact

divisor Di, i ∈ Icpt, we have the modified Picard–Fuchs equations

(139)

{
Di Leq

γ ·FD
reg = 0 if

∑
a γaQ

a
i ≤ 0 ,

(Di+λ
∑

a γaQ
a
i )Leq

γ ·FD
reg = 0 if

∑
a γaQ

a
i > 0 .

Proof. Since FD is a solution of ordinary PF equations, it is also a solution
of modified PF equations. We compute the commutation relation between
Di and the PF operator.

There are two cases: if
∑

a γaQ
a
i ≤ 0, then

Di Leq
γ =


 ∏

{j|∑
a
γaQa

j>0}

(
Dj

λ

)
∑

a
γaQa

j

− e−λ
∑

a
γata

×
∏

{j|∑
a
γaQa

j≤0}

(
Dj

λ + δi,j

)
−∑

a
γaQa

j


Di .(140)

If instead
∑

a γaQ
a
i > 0, then

(Di+λ
∑

a

γaQ
a
i )Leq

γ =


 ∏

{j|∑
a
γaQa

j>0}

(
Dj

λ + δi,j

)
∑

a
γaQa

j

− e−λ
∑

a
γata

×
∏

{j|∑
a
γaQa

j≤0}

(
Dj

λ

)
−∑

a
γaQa

j


Di .(141)

Applying this to FD
reg together with eq. (138), we obtain the claim. □
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Remark 8.2. In the second case the semi-classical limit of the modified PF
equations is the same as that of the ordinary PF equations, while in the first
case the semi-classical limit gives different classical relations. In particular,
the order of the PDEs is increased by one. This implies that in the non-
equivariant limit there are logarithmic solutions of degree higher than those
of the ordinary non-equivariant PF equations.

We argue that FD
reg is obtained as a sum of two solutions of the modi-

fied PF equations in such a way that the singularities in the two cancel out
and give a regular solution. While this is somewhat nice, we remark that
FD
reg is not itself a solution of the ordinary PF equations. This follows from

the fact that its semi-classical part does not satisfy the classical cohomol-
ogy relations. However, the Givental operator associated to the modified
PF equations is the same as the operator associated to the ordinary PF
equations.

9. Enumerative geometry

We elucidate the relation of our disk partition functions to Gromov-Witten
theory and related computations in the enumerative geometry of the target
Xt. The discussion focuses mostly on the cohomological version of the story,
as the K-theoretic version is less understood [31, 55, 60, 65, 93, 94, 108].
While a connection to genus-zero GW theory is expected on general grounds,
the details of how to match the disk function FD with counts of stable maps
to Xt from first principles are still to be worked out. Nevertheless, we are
able to make some speculations deriving from explicit analysis of the disk
function in various examples.

First, we review the connection to enumerative geometry for compact
CY manifolds. Next we discuss the generalization to non-compact CY man-
ifolds with focus on toric quotients, where the need for equivariance becomes
manifest.

9.1. Review of the compact case

In this subsection, we consider compact CY targets X to which Givental’s
formalism can be applied, e.g. compact toric complete intersections [64]. The
solutions to non-equivariant PF equations are obtained by acting with the
corresponding Î-operator on solutions to non-equivariant classical cohomol-
ogy relations. In the compact case, these classical solutions are polynomials
in the Kähler moduli ta and there is a one-to-one map between solutions and
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compact cycles in the homology lattice of X. In particular, there are always
the solution corresponding to the point pt ∈ H0(X) and the fundamental
class [X]. More generally, the mapping between solutions and cycles goes as
follows. Let C be a (compact) cycle, then there is a classical solution Πcl(C)
defined as

(142) Πcl(C) := (−λ)dimC C

∫

X
eϖt PD(C) = (−λ)dimC C

∫

C
eϖt .

This solution is a polynomial in ta of degree equal to the complex dimen-
sion of the cycle C. The coefficients of the polynomial encode information
about the intersection numbers of C with all other cycles.

From this definition it follows that

(143) Πcl(pt) = 1 ,Πcl(Ca) = −λta = log za , . . . ,Π
cl(X) = (−λ)dpd(t) ,

where we used
∫
Ca ϖt = ta for Ca a basis of H2(X) and pd(t) is the inter-

section polynomial of X. The full non-equivariant PF solution is obtained
by acting with Givental’s operator,

(144) Π(C) := ÎX ·Πcl(C) .

Since Πcl(C) is polynomial in ta, one can compute the full solution by
expanding the Î-operator as a power series in the derivatives ∂

∂ta up to order
equal to the degree of the classical solution. All contributions of higher order
annihilate the polynomial and do not contribute to the solution. This gives
an efficient algorithm to construct PF solutions, completely equivalent to
the standard Frobenius method.

Let us consider the familiar example of the quintic X5. The PF operator
is

(145) L = θ4 − 5z (1 + 5θ)4 with θ = − 1
λ

∂
∂t = z ∂

∂z

from which we can construct the Givental operator

(146) ÎX =

∞∑

d=0

zd
(1 + 5θ)5d
(1 + θ)5d

,

which can be expanded as

ÎX = G(0) +G(1)θ +
(
1
2G

(2) − 5π2

3 G(0)
)
θ2
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+
(
1
6G

(3) + 40ζ(3)G(0) − 5π2

3 G(1)
)
θ3

+
(

1
24G

(4) − π4

3 G
(1) + 40ζ(3)G(1) − 5π2

6 G(2)
)
θ4 + . . .(147)

with

(148) G(i) :=

∞∑

d=0

zd
(

∂
∂d

)i Γ(5d+ 1)

Γ(d+ 1)5
.

Classical solutions are polynomials of degree not higher than 3, which
are annihilated by θ4. The homology lattice has dimension 4, hence we have
4 solutions to the PF equation, which are usually referred to as periods,

Π(pt) = G(0) ,

Π(C1) = G(0)
[
log z + G(1)

G(0)

]
= G(0) log z̃ ,

Π(C1) = G(0)
[
5
2 log z̃

2 + 5
(

G(2)

2G(0) − (G(1))2

2(G(0))2 − 5π2

3

)]
,

Π(X5) = G(0)
[
5
6 log z̃

3 + 5
(

G(2)

2G(0) − (G(1))2

2(G(0))2 − 5π2

3

)
log z̃

+ 5
(
40ζ(3) + G(3)

6G(0) − G(1)G(2)

2(G(0))2 + (G(1))3

3(G(0))3

) ]
,(149)

where C1 is the generator of H2(X5) and C1 is the generator of H4(X5).
One can introduce flat coordinates z̃a := za e

Ia
1 (z)/I0(z) defined so that

Π(Ca)/Π(pt) = log z̃a, where I0, I
a
1 are the coefficients of the Givental oper-

ator in the series expansion in θa, i.e.

(150) ÎX =

∞∑

n=0

∑

a1,...,an

Ia1,...,an

n θa1
· · · θan

.

Observe that for general CYs the zeroth-order term I0 can be non-trivial,
but for all toric CYs this function is identically 1. The change of coordinates
z̃(z) is known as mirror map.

Mirror symmetry predicts that solutions to the PF equations for a com-
pact CY manifold encode information about its genus-zero Gromov–Witten
invariants N0

d
. More specifically, one can read the GW potential Φ0 from

instanton corrections to the classical solutions

(151) Φ0(z̃) = (−λ)dpd(t̃) + Φ0
inst(z̃) ,Φ

0
inst(z̃) =

∑

d ̸=0

N0
d z̃

d , z̃d =
∏

a

z̃da

a ,



✐

✐

“1-Cassia” — 2024/5/29 — 18:14 — page 1001 — #41
✐

✐

✐

✐

✐

✐

From equivariant volumes to equivariant periods 1001

where d = (d1, . . . , dr) is a non-zero effective class inH2(X,Z) that labels the
degree of a non-constant map from a genus-zero surface to X. The classical
part of the potential is a generating function of classical intersection numbers

(152) κa1,...,ad
=

∂d

∂ta1 · · · ∂tad

pd(t) .

It is then conjectured that the potential Φ̃0(z̃) can be re-expanded over
a basis of PolyLogs with integer coefficients defining the Gopakumar–Vafa
(GV) invariants n0

d
that enumerate rational embedded curves of class d and

genus zero. In the following we drop the label for the genus since we are only
considering genus-zero invariants.

As all CY twofolds are Hyperkähler, their GW invariants are trivial, so
PF solutions in complex dimension two only encode classical information
(after mirror map)

(153) Π(pt) = I0 ,
Π(Ca)

Π(pt)
= log z̃a ,

Π(X)

Π(pt)
= 1

2

∑

a,b

κab log z̃a log z̃b .

The case of CY threefolds is the most studied one. The GV conjecture
can be stated as

(154) Φ0
inst(z̃) =

∑

d ̸=0

nd Li3(z̃
d)

and the GV invariants can be obtained via the Möbius inversion formula

(155) nd =
∑

k|d
Nd/k

µ(k)

k3
,

where µ(k) is the Möbius function.
The solutions to the PF equations are conjectured to be

Π(X)

Π(pt)
=
∑

a

t̃a
∂Φ0

∂t̃a
− 2Φ0

= 1
6

∑

a,b,c

κabc log z̃a log z̃b log z̃c +
∑

d ̸=0

nd log(z̃
d) Li2(z̃

d)

− 2
∑

d ̸=0

nd Li3(z̃
d) ,(156)
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(157)
Π(Ca)

Π(pt)
= − 1

λ

∂Φ0

∂t̃a
= 1

2

∑

b,c

κabc log z̃b log z̃c +
∑

d ̸=0

ndda Li2(z̃
d) ,

(158)
Π(Ca)

Π(pt)
= −λt̃a = log z̃a

with Ca ∈ H2(X) and Ca ∈ H4(X) such that Ca ∩ Cb = δab . In the case of a

CY fourfold it is conjectured that

(159)
Π(Cab)

Π(pt)
= 1

2

∑

c,d

κabcd log z̃c log z̃d +
∑

d ̸=0

nd(Cab) Li2(z̃
d) ,

where Cab ∈ H4(X) and

(160)
∑

d ̸=0

Ndz̃
d =

∑

d ̸=0

nd Li2(z̃
d), nd =

∑

k|d
Nd/k

µ(k)

k2
.

Solutions with higher order classical behavior have more complicated
expansions in GV invariants that we do not reproduce here. See refs. [79, 99]
for explicit formulas.

For CYs of higher dimension such formulas are not known and we do
not consider such examples in this section (even though solutions to PF
equations exist in any dimension).

Let us go back to the example of the quintic X5. Matching the solutions
we found to the conjectural formulas for CY3, we obtain the identities

(161) 5
(

G(2)

2G(0) − (G(1))2

2(G(0))2 − 5π2

3

)
=

∞∑

d=1

nddLi2(z̃
d)

and

(162) 5
(
40ζ(3) + G(3)

6G(0) − G(1)G(2)

2(G(0))2 + (G(1))3

3(G(0))3

)
= −2

∞∑

d=1

nd Li3(z̃
d) ,

which give the well-known GV invariants of X5.
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9.2. Non-compact case

In the non-compact case the discussion is more involved, as the volume
is only defined equivariantly and it is a divergent quantity in the non-
equivariant limit. This is the case relevant to our story, since all toric CY
quotients are non-compact. In the following, Xt is a toric Kähler quotient
with vanishing first Chern class as described in section 2.

We consider the fully equivariant PF operators Leq. The solution is ob-
tained by acting with the Î-operator on a basis of classical solutions to the
equivariant cohomology relations. These solutions are naturally labeled by
fixed points of the torus action, i.e. basis elements of the localized equiv-
ariant cohomology ring. By the localization formula eq. (34), we can write
F(t, ϵ) as a sum over this basis. Generically, to each fixed point p ∈ FP we
can associate the classical solution

(163) Πcl(p, ϵ) :=

∫

Xt

eϖt−Hϵ PD(p) = e−Hϵ(p)

with Hϵ(p) as in eq. (38) and PD(p) ∈ H2d
T
(Xt) defined as the pushforward

of 1 ∈ H0
T
(p) along the inclusion of the fixed-point p →֒ Xt. When compar-

ing with the non-equivariant case, we immediately notice that each of these
solutions goes to one in the ϵ→ 0 limit. A better choice of basis to per-
form the comparison is obtained by performing the equivariant upgrade of
eq. (142). We then define for each cycle C the equivariant solution

(164) Πcl(C, ϵ) := (−λ)dimC C

∫

Xt

eϖt−Hϵ PD(C) ,

which expands naturally over the basis of Πcl(p, ϵ). These are classical solu-
tions that give rise to full quantum solutions when we act on them with the
equivariant Givental operator

(165) Π(C, ϵ) := ÎXt

∫

Xt

eϖt−Hϵ PD(C) ⇒ Leq
γ Π(C, ϵ) = 0 .

By analogy with the compact case, we call the functions Π(C, ϵ) equivari-
ant periods, since they solve equivariant PF equations. When C is compact,
the integral in Πcl(C, ϵ) restricts to an integral over a compact space, there-
fore it defines an analytic function in the ϵi’s and its non-equivariant limit is
a finite quantity. As the Î-operator cannot introduce singularities, the same
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is true for the full PF solution. Then we have

(166) lim
ϵ→0

Π(C, ϵ) = Π(C) for C compact .

On the other hand, when C is non-compact, the solution Π(C, ϵ) is not
analytic at ϵ = 0. As Xt is non-compact, there is no fundamental class in
homology and this is reflected in the fact that Π(Xt, ϵ) does not admit a
non-equivariant limit of the form eq. (156). To obtain a well-defined non-
equivariant quantity, we need to perform some regularization.5

The number of independent solutions of the equivariant PF equations is
equal to the number of fixed points, which is the same as the Euler num-
ber χ. By definition, this equals the dimension of the homology lattice, i.e.
the number of independent compact cycles C. This implies that compact
equivariant periods generate all PF solutions and the non-equivariant limit
preserves the total number of independent solutions.

The GV expansion of the GW potential is expected to have an equivari-
ant generalization but these formulas have not been derived yet. Neverthe-
less, we can read some non-equivariant invariants from the ϵ→ 0 limit of the
solutions Π(C, ϵ) when C is compact. The numerical invariants obtained this
way are well-defined and non-ambiguous. However, not all GV invariants nd
can be obtained this way. Those that do not appear in the limit of compact
solutions are only defined equivariantly. A regularization scheme for these
solutions is necessary and we show in examples that this allows to compute
the integers nd. The result however depends on the chosen regularization
scheme and we argue that there is an intrinsic ambiguity in their definition
as non-equivariant quantities.

We argue that, for solutions with regular behavior in ϵ, the same type
of GV formulas hold once the non-equivariant limit is taken, while for those
that do not admit a limit a regularization needs to be performed first. For
the latter, GV formulas only hold up to a correction term δ that is annihi-
lated by all compact divisor operators. This term can bring both classical
and quantum corrections that depend on some non-canonical choices. In par-
ticular, we argue that FD

reg as defined in section 8 provides a regularization
for the equivariant solution Π(Xt, ϵ).

For toric CYs with H2
cpt(Xt) ̸= 0, we define a regularized volume as any

function Freg(t, ϵ) that is analytic at ϵ = 0 and such that

(167) DiFreg(t, ϵ) = DiF(t, ϵ) , ∀i ∈ Icpt .

5For instance, even classical intersection numbers are not uniquely defined unless
the intersection locus is compact (see ref. [51] for earlier attempts at regularization).
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If H2
cpt(Xt) is empty but H4

cpt(Xt) ̸= 0, then we define a regularized
volume as any regular function such that

(168) DiDj Freg(t, ϵ) = DiDj F(t, ϵ) , ∀i, j s.t. Di ∩Dj is compact .

and similarly for higher-codimension compact intersections. This condition
guarantees that when the intersection is compact the corresponding inter-
section numbers are the same before and after regularization. From this we
can define regularized intersection numbers

(169) κrega1,...,ad
=

∂d

∂ta1 · · · ∂tad

Freg(t, 0) ∈ Q .

Remark 9.1. If H2
cpt(Xt) ∼= H2d−2(Xt) is non-empty, then there is at least

one compact divisor Di =
∑

aD
a
i Ca and the corresponding equivariant pe-

riod Π(Di, ϵ) is regular. Then by eq. (167) this period is equal to its regular-
ization,

(170) Πreg(Di, ϵ) ≡ Π(Di, ϵ) .

Similarly, if H4
cpt(Xt) ∼= H2d−4(Xt) is non-empty, we can find two divisors

that intersect to a compact subspace and the corresponding period is regular

(171) Πreg(Di ∩Dj , ϵ) ≡ Π(Di ∩Dj , ϵ) .

From the remark it follows that for a toric CY three-fold with a compact
divisor Di

Π(Di, 0) = lim
ϵ→0

∑

a

Da
i Π(Ca, ϵ) = − 1

λ

∑

a

Da
i

∂Φ0

∂t̃a

=
∑

a

Da
i


1

2

∑

b,c

κregabc log z̃b log z̃c +
∑

d ̸=0

ndda Li2(z̃
d)


 .(172)

While the combination of derivatives of the GW potential in eq. (172)
is well-defined in the non-equivariant limit, this is not necessarily true for
each single derivative ∂Φ0/∂t̃a as the periods Π(Ca, ϵ) might not have a
regular behavior when considered individually. In the next sections we show
this explicitly for some concrete examples (see sections 10.6 and 10.7). For
a toric CY four-fold with a compact intersection Di ∩Dj , we obtain

Π(Di ∩Dj , 0)

= lim
ϵ→0

∑

a,b

Da
iD

b
j Π(Cab, ϵ)
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=
∑

a,b

Da
iD

b
j


1

2

∑

c,d

κregabcd log z̃c log z̃d +
∑

d ̸=0

nd(Cab) Li2(z̃
d)


 .(173)

While the limit of the double sum is well-defined, each term Π(Cab, ϵ)
may be singular.

Let us define the function

(174) Πreg(Xt, ϵ) := (−λ)dÎXt
Freg(t, ϵ) ,

which by construction satisfies the following properties:

• it is analytic at ϵ = 0,

• it satisfies the modified PF equations in eq. (139)

Observe, as previously pointed out, that the choice of regularization is
not unique and the prescription in section 8 is different from Πreg(Xt, ϵ).
It is however true that both choices carry a certain amount of “universal”
enumerative geometric data that is regularization independent and leads to
well-defined integer GV invariants. The difference between the two regu-
larization schemes is due to some intrinsic ambiguity in the definition of
the non-equivariant limit of Π(Xt, ϵ). The exact relation between the two
regularizations is clarified by the following.

Conjecture 9.2. Let Xt be a smooth toric CY three-fold. The following
GV formula holds

lim
ϵ→0

Πreg(Xt, ϵ) =
1
6

∑

a,b,c

κregabc log z̃a log z̃b log z̃c

+
∑

d ̸=0

nreg
d

log(z̃d) Li2(z̃
d)− 2

∑

d ̸=0

nreg
d

Li3(z̃
d) ,(175)

where the GV invariants are also regularized. The regularized disk function
in eq. (137) and the regularized period Πreg(Xt, ϵ) are related as

(−λ)3 lim
ϵ→0

FD
reg(t, ϵ;λ) = Πreg(Xt, 0)

− π2

6

∑

a,b,c

1
2κ

reg
abc c

ab
2 log z̃c + ζ(3)χ+ δ ,(176)

where c2 =
1
2

∑
a,b c

ab
2 ϕaϕb is the second Chern class and δ is in the kernel

of all compact divisor operators. If Xt has a compact divisor Di and nd
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can be read from eq. (172), then that integer is uniquely defined, nreg
d

≡ nd.
If instead nreg

d
only appears in eq. (175) (i.e. when

∑
a daD

a
i = 0 for all

i ∈ Icpt), then its value is not guaranteed to be integer and it might depend
on the choice of regularization.

We observe that not only classical intersection numbers need regulariza-
tion but in some cases also the instantonic contributions that define the GV
invariants. As discussed in proposition 7.8, this happens when FD

sing contains
both classical and instantonic contributions. We see two instances of this in
the examples of KF2

and local A2 geometry.

For general toric CYs the analogous claim reads

(177) (−λ)d lim
ϵ→0

FD
reg(t, ϵ;λ) = Πreg(Xt, 0) + sub-leading + δ ,

where Πreg(Xt, ϵ) is obtained by regularizing the classical intersection num-
bers and then applying the Givental operator. The sub-leading terms are
fixed by the expansion of the Gamma-class, see eq. (A.1). The presence of
the correction term δ is due to the fact that regularization and ÎXt

operator
do not commute, which means that FD

reg is not necessarily in the image of
the Givental operator.

10. Examples with compact divisors

10.1. O(−2) over P1

Consider Xt = KP1 , the total space of the canonical bundle over P1, defined
by charge matrix Q=(1,−2, 1) and chamber t > 0, also known as the A1

space. Its symplectic volume is

F(t, ϵ) =

∮

JK

dϕ

2πi

eϕt

(ϵ1 + ϕ)(ϵ2 − 2ϕ)(ϵ3 + ϕ)

=
e−ϵ1t

(ϵ2 + 2ϵ1) (ϵ3 − ϵ1)
+

e−ϵ3t

(ϵ1 − ϵ3) (ϵ2 + 2ϵ3)
,(178)

where JK contour selects poles at ϕ = −ϵ1 and ϕ = −ϵ3. We define differen-
tial operators

(179) D1 = ϵ1 +
∂
∂t , D2 = ϵ2 − 2 ∂

∂t , D3 = ϵ3 +
∂
∂t .
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Acting with the operator D1D3 we kill both poles inside of JK, so we get
the relation

(180) D1D3F(t, ϵ) = 0 ,

which corresponds to the description of equivariant cohomology of Xt as

(181) H•
T(Xt) ∼= C[ϕ, ϵ1, ϵ2, ϵ3]/⟨x1x3⟩ .

The generic solution to eq. (180) takes the form

(182) F(t, ϵ) = c1(ϵ) e
−ϵ1t + c3(ϵ) e

−ϵ3t

with c1 and c2 integration constants, which may depend on ϵi but not on t.
Indeed our symplectic volume is of this form, with

(183) c1 =
1

(ϵ2 + 2ϵ1) (ϵ3 − ϵ1)
, c3 =

1

(ϵ2 + 2ϵ3) (ϵ1 − ϵ3)
.

The space Xt has a single compact divisor D2 corresponding to the P1

base of the bundle. It follows that

(184) D2F(t, ϵ) is analytic at ϵ = 0 .

The cohomological disk partition function is

(185) FD(t, ϵ;λ) = λ−3

∮

QJK

dϕ

2πi
eϕt Γ

(
ϵ1+ϕ
λ

)
Γ
(
ϵ2−2ϕ

λ

)
Γ
(
ϵ3+ϕ
λ

)

with QJK selecting poles at ϕ = −ϵ1 − kλ and ϕ = −ϵ3 − kλ for k ∈ Z≥0.
The classical cohomology relation gets deformed to the quantum cohomology
relation

(186)
[
D1D3−e−λt(λ+D2)D2

]
FD(t, ϵ;λ) = 0 ,

which we can prove as follows:

D1D3FD(t, ϵ;λ)

= λ−1

∮

QJK

dϕ

2πi
eϕt Γ

(
ϵ1+ϕ+λ

λ

)
Γ
(
ϵ2−2ϕ

λ

)
Γ
(
ϵ3+ϕ+λ

λ

)

= λ−1

∮

QJK′

dϕ′

2πi
e(ϕ

′−λ)t Γ
(
ϵ1+ϕ′

λ

)
Γ
(
ϵ2−2ϕ′+2λ

λ

)
Γ
(
ϵ3+ϕ′

λ

)
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= e−λt(D2+λ)D2 λ
−3

∮

QJK′

dϕ′

2πi
eϕ

′t Γ
(
ϵ1+ϕ′

λ

)
Γ
(
ϵ2−2ϕ′

λ

)
Γ
(
ϵ3+ϕ′

λ

)

= e−λt(D2 + λ)D2FD(t, ϵ;λ) .

(187)

Here we repeatedly use the property xΓ(x) = Γ(x+ 1) together with the
change of variable ϕ′ = ϕ+ λ. Under this change of variables, the QJK
contour goes to QJK′, which picks the poles at ϕ′ = −ϵ1,2 − k′λ with k′ =
k − 1 ≥ −1, but at k′ = −1 there are no poles in the integrand, so we can
use the original contour: when we act with D1D3, the two classical poles at
k = 0 are killed and the contour retracts until the next poles at k = 1, i.e.
k′ = 0.

An explicit residue computation yields the series expansion of the disk
partition function

FD(t, ϵ;λ) = λ−2
∞∑

d=0

e−dλt (−1)d

d!

[
e−ϵ1t Γ

(
ϵ2+2ϵ1

λ + 2d
)
Γ
(
ϵ3−ϵ1

λ − d
)

+ e−ϵ3t Γ
(
ϵ1−ϵ3

λ − d
)
Γ
(
ϵ2+2ϵ3

λ + 2d
)]
,(188)

where z ≡ e−λt can be regarded as an instanton counting parameter that
distinguishes between contributions of maps of different degree. If we restrict
to zero-instanton sector (the contribution of classical poles) we obtain the
classical part of the disk function

FΓ(t, ϵ;λ) = λ−2
[
e−ϵ1t Γ

(
ϵ2+2ϵ1

λ

)
Γ
(
ϵ3−ϵ1

λ

)

+e−ϵ3t Γ
(
ϵ1−ϵ3

λ

)
Γ
(
ϵ2+2ϵ3

λ

)]
.(189)

This is of the same type as the solution in eq. (182) and it satisfies the
relation

(190) D1D3FΓ(t, ϵ;λ) = 0

of classical cohomology. In the limit λ→ ∞ both FD and FΓ reduce to the
equivariant volume F . Let us analyze eq. (186) and its solutions. Through
some formal manipulations we can re-write it as

(191)

[
1− e−λt (D2+λ)D2

(D1−λ)(D3−λ)

]
FD(t, ϵ;λ) = FΓ(t, ϵ;λ) .
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We can invert the operator on the LHS to obtain the solution

FD(t, ϵ;λ) =

∞∑

d=0

(
e−λt (D2+λ)D2

(D1−λ)(D3−λ)

)d

FΓ(t, ϵ;λ)

=

[ ∞∑

d=0

e−dλt

(D2

λ

)
2d(

1− D1

λ

)
d

(
1− D3

λ

)
d

]
FΓ(t, ϵ;λ)

= 3F2

(
1, D2

2λ + 1
2 ,

D2

2λ ; 1− D1

λ , 1− D3

λ ; 4e−λt
)
FΓ(t, ϵ;λ) ,(192)

where we used the identity

(193)
(
e−λtf

(
∂
∂t

))d
= e−dλt

d−1∏

i=0

f
(
∂
∂t − iλ

)
.

Substituting as initial condition FΓ(t, ϵ;λ) as in eq. (182) we obtain

FD(t, ϵ;λ) = c1e
−ϵ1t

2F1

(
ϵ2+2ϵ1

2λ , λ+2ϵ1+ϵ2
2λ ; ϵ1−ϵ3

λ + 1 ; 4e−λt
)

+ c3e
−ϵ3t

2F1

(
ϵ2+2ϵ3

2λ , λ+2ϵ3+ϵ2
2λ ; ϵ3−ϵ1

λ + 1 ; 4e−λt
)

(194)

so that for

(195) c1 = λ−2 Γ
(
ϵ2+2ϵ1

λ

)
Γ
(
ϵ3−ϵ1

λ

)
, c3 = λ−2 Γ

(
ϵ2+2ϵ3

λ

)
Γ
(
ϵ1−ϵ3

λ

)

we can reproduce the computation of FD via residues as in eq. (188).
The K-theoretic disk partition function is represented by the integral

(196) ZD(T, q; q) = −
∮

QJK

dw

2πiw
w−T 1

(q1w; q)∞(q2w−2; q)∞(q3w; q)∞

with poles at w = q−1
1 q−k and w = q−1

2 q−k for k ∈ Z≥0. A residue computa-
tion gives

ZD(T, q; q)

=

∞∑

d=0

qdT

(q; q)∞(q−d; q)d

×
[

qT1
(q2q21q

2d; q)∞(q3q
−1
1 q−d; q)∞

+
qT3

(q1q
−1
3 q−d; q)∞(q2q23q

2d; q)∞

]
,

(197)
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where qT can be regarded as instanton counting parameter.
We define the shift operators

(198) ∆1 = q1(T
†)−1, ∆2 = q2(T

†)2, ∆3 = q3(T
†)−1.

The K-theoretic compact divisor equation is

(1−∆2)ZD(T, q; q) = ZD(T, q; q)− q2ZD(T + 2, q; q)

=

∞∑

n2=0

(qq2)
n2

(q; q)n2

∑

Λ2(T,n2)

qn
1

1 qn
3

3

(q; q)n1(q; q)n3

,(199)

where Λ2(T, n
2) = {(n1, n3) ∈ N2 |n1 + n3 = T + 2n2}. By the argument in

proposition 6.1 the RHS is regular in the q1, q2, q3 → 0 limit.
The classical equivariant K-theory ring

(200) KT(Xt) ∼= C[w±, q±1 , q
±
2 , q

±
3 ]/⟨(1− q1w)(1− q3w)⟩

is defined by the relation

(201) (1−∆1)(1−∆3)ZΓq
(T, q) = 0 ,

whose generic solution is

(202) ZΓq
(T, q) = c1q

T
1 + c3q

T
3 .

The quantum K-theory ring is then defined by the relation

(203)
[
(1−∆1)(1−∆3)− qT (1− q∆2)(1−∆2)

]
ZD(T, q; q) = 0 ,

which can be derived similarly to eq. (187) by using the property in eq. (A.11).
The quantum K-theory relation can be rewritten as

(204)

[
1− qT

(1− q∆2)(1−∆2)

(1− q−1∆1)(1− q−1∆3)

]
ZD(T, q; q) = ZΓq

(T, q)

and its solution is formally given by

ZD(T, q; q) =

∞∑

d=0

(
qT

(1− q∆2)(1−∆2)

(1− q−1∆1)(1− q−1∆3)

)d

ZΓq
(T, q)

=

[ ∞∑

d=0

qdT
(∆2; q)2d

(q−d∆1; q)d(q−d∆3; q)d

]
ZΓq

(T, q) ,(205)
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where we used

(206)
(
qT f

(
T †
))d

= qdT
d−1∏

i=0

f
(
qiT †

)
.

With the initial data

c1 =
1

(q; q)∞(q2q21; q)∞(q3q
−1
1 ; q)∞

,

c3 =
1

(q; q)∞(q2q23; q)∞(q1q
−1
3 ; q)∞

(207)

we reproduce the function ZD obtained by residues in eq. (197).
The solutions to the equivariant PF equations are

(208) Π(pi, ϵ) = z
ϵi
λ

∞∑

d=0

zd
(
ϵ2+2ϵi

λ

)
2d(

1− ϵ1−ϵi
λ

)
d

(
1− ϵ3−ϵi

λ

)
d

, i = 1, 3

one for each fixed point. The non-equivariant Î-operator is

(209) lim
ϵ→0

ÎXt
=

∞∑

d=0

zd
(2θ)2d
(1 + θ)2d

= 1 + 2G(z)θ + 2G(z)2θ2 + . . .

with θ = z∂z and

(210) G(z) :=

∞∑

d=1

zd
Γ(2d)

Γ(d+ 1)2
= − log

(
1 +

√
1− 4z

2

)
.

The solutions to the non-equivariant PF equations are

Π(pt) = 1 ,

Π(P1) = log z + 2G(z) = log z̃ ,(211)

corresponding to the degree-zero and degree-two generators of the homology
lattice. The solution of logarithmic degree one defines the mirror map to flat
coordinates z̃ = z e2G(z). As D2

∼= P1 is compact, we have the identity

(212) lim
ϵ→0

(−λ)ÎXt
D2FΓ = Π(P1) .

The fundamental cycle of Xt is non-compact and therefore only defined
equivariantly. Its regularization is annihilated by the modified PF operator

(213) D1D2D3−zD2(D2+λ)(D2+2λ)
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and it can be computed using eq. (209) as

(214) Πreg(Xt) = −1
4 log

2 z̃ .

Moreover,

(215) lim
ϵ→0

(−λ)2FD
reg = Πreg(Xt)

so that in the flat coordinates z̃ = 4z

(1+
√
1−4z)

2 there are no instanton correc-

tions and the GV invariants are all vanishing, which is compatible with the
fact that Xt is Hyperkähler.

10.2. A2 geometry

Consider the A2 geometry defined by the charge matrix

(216) Q =

(
1 −2 1 0
0 1 −2 1

)

and chamber t1, t2 > 0. Its symplectic volume is

F(t, ϵ) =

∮

JK

dϕ1 dϕ2
(2πi)2

× eϕ1t1+ϕ2t2

(ϵ1 + ϕ1)(ϵ2 − 2ϕ1 + ϕ2)(ϵ3 + ϕ1 − 2ϕ2)(ϵ4 + ϕ2)
,(217)

where poles are located at (−ϵ1,−ϵ2 − 2ϵ1), (−ϵ1,−ϵ4) and (−ϵ3 − 2ϵ4,−ϵ4).
We have the following classical cohomology relations

(218) D1D4F(t, ϵ) = 0, D1D3F(t, ϵ) = 0, D2D4F(t, ϵ) = 0,

so the equivariant cohomology ring is given by

(219) C[ϕ1, ϕ2, ϵ1, ϵ2, ϵ3, ϵ4]/⟨x1x4, x1x3, x2x4⟩ .

There are two compact divisors D2 and D3.
The K-theoretic disk function is

ZD(T , q; q) =

∮

QJK

dw1 dw2

(2πi)2w1w2

× w−T 1

1 w−T 2

2

(q1w1; q)∞(q2w
−2
1 w2; q)∞(q3w1w

−2
2 ; q)∞(q4w2; q)∞

(220)
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with poles at (q−k1q−1
1 , q−2k1−k2q−2

1 q−1
2 ), (q−k1q−1

1 , q−k2q−1
4 ) and (q−k1−2k2q−1

3

q−2
4 , q−k2q−1

4 ) for k1, k2 ≥ 0. The three towers of poles correspond to instan-
ton contributions coming from the three fixed points in Xt. We get the
following quantum K-theory relations

[
(1−∆1)(1−∆4)− qT

1+T 2

(1−∆2)(1−∆3)
]
ZD(T , q; q) = 0 ,

[
(1−∆1)(1−∆3)− qT

1

(1−∆2)(1− q∆2)
]
ZD(T , q; q) = 0 ,

[
(1−∆2)(1−∆4)− qT

2

(1−∆3)(1− q∆3)
]
ZD(T , q; q) = 0 .(221)

We define the K-theoretic Givental operator

ÎKXt
=

∞∑

d1,d2=0

qd1T 1+d2T 2

(∆1; q)−d1

× (∆2; q)2d1−d2
(∆3; q)−d1+2d2

(∆4; q)−d2
(222)

so that we can write the solution as

(223) ZD(T , q; q) = ÎKXt
· ZΓq

(T , q)

with

(224) ZΓq
(T , q) = c1,2 q

T 1+2T 2

1 qT
2

2 + c1,4 q
T 1

1 qT
2

4 + c3,4 q
T 1

3 q2T
1+T 2

4 .

The integration coefficients c1,2, c1,4, c3,4 are not fixed by the equations and
they parametrize the moduli space of solutions. The solution corresponding
to the function ZD defined by the integral in eq. (220) is given by the choice
of semi-classical data

c1,2 =
1

(q; q)2∞(q31q
2
2q3; q)∞(q−2

1 q−1
2 q4; q)∞

,

c1,4 =
1

(q; q)2∞(q21q
2
2q

−1
4 ; q)∞(q−1

1 q3q24; q)∞
,

c3,4 =
1

(q; q)2∞(q1q
−1
3 q−2

4 ; q)∞(q2q23q
3
4; q)∞

.(225)

In the cohomological limit we have

(226) FD(t, ϵ;λ) = ÎXt
· FΓ(t, ϵ)
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with

ÎXt
=

∞∑

d1,d2=0

zd1

1 z
d2

2

(D1

λ

)
−d1

(D2

λ

)
2d1−d2

(D3

λ

)
−d1+2d2

(D4

λ

)
−d2

= 1 +
∑

2d1−d2>0
−d1+2d2≤0

zd1

1 (−z2)d2

(D2

λ

)
2d1−d2(

1− D1

λ

)
d1

(
1− D3

λ

)
d1−2d2

(
1− D4

λ

)
d2

+
∑

2d1−d2≤0
−d1+2d2>0

(−z1)d1zd2

2

(D3

λ

)
−d1+2d2(

1− D1

λ

)
d1

(
1− D2

λ

)
−2d1+d2

(
1− D4

λ

)
d2

+
∑

2d1−d2>0
−d1+2d2>0

(−z1)d1(−z2)d2

(D2

λ

)
2d1−d2

(D3

λ

)
−d1+2d2(

1− D1

λ

)
d1

(
1− D4

λ

)
d2

(227)

and initial data

(228) FΓ(t, ϵ) = c1,2 e
−ϵ1(t1+2t2)−ϵ2t2 + c1,4 e

−ϵ1t1−ϵ4t2 + c3,4 e
−ϵ3t1−ϵ4(2t1+t2)

and

c1,2 = λ−2 Γ
(
3ϵ1+2ϵ2+ϵ3

λ

)
Γ
(−2ϵ1−ϵ2+ϵ4

λ

)
,

c1,4 = λ−2 Γ
(
2ϵ1+2ϵ2−ϵ4

λ

)
Γ
(−ϵ1+ϵ3+2ϵ4

λ

)
,

c3,4 = λ−2 Γ
(
ϵ1−ϵ3−2ϵ4

λ

)
Γ
(
ϵ2+2ϵ3+3ϵ4

λ

)
.(229)

The function FD is annihilated by the following set of equivariant PF
operators

Leq
(1,1) = D1D4−z1z2D2D3 ,

Leq
(1,0) = D1D3−z1D2(D2+λ) ,

Leq
(0,1) = D2D4−z2D3(D3+λ) ,(230)

which encode the quantum cohomology relations of Xt.
The non-equivariant Î-operator can be expanded as

(231) lim
ϵ→0

ÎXt
= 1 + (2M1 −M2)θ1 + (−M1 + 2M2)θ2 + . . . ,

where we define
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M1(z1, z2)

:=
∑

2d1−d2>0
−d1+2d2≤0

Γ(2d1 − d2)

Γ(d1 + 1)Γ(d1 − 2d2 + 1)Γ(d2 + 1)
zd1

1 (−z2)d2 ,

M2(z1, z2)

:=
∑

2d1−d2≤0
−d1+2d2>0

Γ(−d1 + 2d2)

Γ(d1 + 1)Γ(−2d1 + d2 + 1)Γ(d2 + 1)
(−z1)d1zd2

2 ,

M3(z1, z2)

:=
∑

2d1−d2>0
−d1+2d2>0

Γ(2d1 − d2) Γ(−d1 + 2d2)

Γ(d1 + 1)Γ(d2 + 1)
(−z1)d1(−z2)d2 .(232)

The elementary solutions to the non-equivariant PF equations

Π(pt) = 1 ,

Π(C1) = log z1 + 2M1 −M2 = log z̃1 ,

Π(C2) = log z2 −M1 + 2M2 = log z̃2 ,(233)

correspond to the class of the point and the two generators C1, C2 ∈ H2(Xt).
We have

(−λ) lim
ϵ→0

ÎXt
D2FΓ = Π(C1) ,

(−λ) lim
ϵ→0

ÎXt
D3FΓ = Π(C2) .(234)

The modified PF equations admit an additional quadratic solution that
corresponds to the regularized fundamental cycle

(235) Πreg(Xt) = −1
3(log

2 z̃1 + log z̃1 log z̃2 + log2 z̃2) ,

and we have the identity

(236) (−λ)2 lim
ϵ→0

FD
reg = Πreg(Xt) ,

where

(237) FD
reg(t, ϵ;λ) = FD(t, ϵ;λ)− e

ϵ2
3
(2t1+t2)+

ϵ3
3
(t1+2t2)FΓ(0, ϵ)
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for a choice of left-inverse matrix

(238) R =

(
−2/3 −1/3
−1/3 −2/3

)

as defined in eq. (137). This solution (after mirror map) has no instanton
corrections, which can be explained by the fact that Xt is Hyperkähler.

10.3. O(−n) over Pn−1

The space Xt = KPn−1 is a toric CY defined by the charge matrix

(239) Q =
(
1 1 . . . 1 −n

)

and the chamber t > 0. The symplectic volume is

(240) F(t, ϵ) =

∮

JK

dϕ

2πi

eϕt

(ϵn+1 − nϕ)
∏n

i=1(ϵi + ϕ)
,

where we take the poles ϕ = −ϵi for i = 1, . . . , n. We have the following
classical relations

(241)

[
n∏

i=1

Di

]
F(t, ϵ) = 0

providing a representation for the equivariant cohomology

(242) H•
T(Xt) ∼= C[ϕ, ϵ1, ϵ2, . . . , ϵn+1]/⟨x1 . . . xn⟩ .

The K-theoretic disk function is

(243) ZD(T, q; q) = −
∮

QJK

dw

2πiw

w−T

(qn+1w−n; q)∞
∏n

i=1(qiw; q)∞
,

and it satisfies the quantum K-theory relation

(244)

[
n∏

i=1

(1−∆i)− qT
n−1∏

k=0

(1− qk∆n+1)

]
ZD(T, q; q) = 0 .

This is the K-theretic PF equation and it has the solution

(245) ZD(T, q; q) =

∞∑

d=0

qdT
(∆n+1; q)nd∏n
i=1(q

−d∆i; q)d
ZΓq

(T, q)
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with

(246) ZΓq
(T, q) =

n∑

i=1

qTi
(q; q)∞(q0qni ; q)∞

∏
j ̸=i(qjq

−1
i ; q)∞

.

In the cohomological limit we have the disk function

(247) FD(t, ϵ;λ) = λ−(n+1)

∮

QJK

dϕ

2πi
eϕt Γ

(
ϵn+1 − nϕ

λ

) n∏

i=1

Γ

(
ϵi + ϕ

λ

)
,

which satisfies the quantum cohomology relation

(248)

[
n∏

i=1

Di − e−λt
n−1∏

k=0

(kλ+Dn+1)

]
FD(t, ϵ;λ) = 0 .

The compact divisor of Xt is Dn+1 and we have

(249) Dn+1FD is analytic at ϵ = 0 .

The Givental Î-operator can be written as

(250) ÎXt
=

∞∑

d=0

(−1)ndzd

(
Dn+1

λ

)
nd∏n

i=1

(
1− Di

λ

)
d

,

which implies that all instanton contributions for d > 0 are regular and the
only singular term comes from the semi-classical contribution at d = 0. In
the non-equivariant limit

(251) lim
ϵ→0

ÎXt
= 1 + n

∞∑

d=1

(−1)ndzd
Γ(nd)

Γ(d+ 1)n
θ +O(θ2)

we can read the mirror map

(252) log z̃ = log z + n

∞∑

d=0

(−1)ndzd
Γ(nd)

Γ(d+ 1)n
.

The solutions to equivariant PF equations are labeled by fixed points

(253) Π(pi) = z
ϵi
λ

∞∑

d=0

((−1)nz)d
( ϵn+1+nϵi

λ

)
nd∏n

j=1

(
1− ϵj−ϵi

λ

)
d

, i = 1, . . . , n .
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The case n = 2 is discussed in section 10.1. In the following sub-sections
we discuss the examples n = 3, 4 in more detail.

10.3.1. O(−3) over P2. For n = 3 the non-equivariant Î-operator can
be expanded as

lim
ϵ→0

ÎXt
=

∞∑

d=0

(−z)d (3θ)3d
(1 + θ)3d

= 1 + 3G(0)θ + 3G(1)θ2 + 3
2(G

(2) − π2G(0))θ3 + . . . ,(254)

where we define the functions

(255) G(i)(z) :=

∞∑

d=1

(−z)d
(

∂
∂d

)i Γ(3d)

Γ(d+ 1)3
.

The solutions to the non-equivariant PF equations are

Π(pt) = 1 ,

Π(P1) = log z + 3G(0) = log z̃ ,

Π(P2) = 1
2 log

2 z̃ − 3
(
3
2(G

(0))2 −G(1)
)
.(256)

The modified PF operator

(257) D1D2D3D4−zD4(D4+λ)(D4+2λ)(D4+3λ)

admits an additional cubic solution associated to the regularized fundamen-
tal cycle,

Πreg(Xt) = − 1
18 log

3 z̃ + log z̃
(
3
2(G

(0))2 −G(1)
)

− 2
(
3
2(G

(0))3 − 3
2G

(0)G(1) + 1
4G

(2) − π2

4 G
(0)
)
.(258)

Moreover,

(259) (−λ)2 lim
ϵ→0

ÎXt
D4FΓ = Π(P2) + π2Π(pt) ,

(260) (−λ) lim
ϵ→0

ÎXt
D4DiFΓ = Π(P1) , i = 1, 2, 3 ,

(261) lim
ϵ→0

ÎXt
D4DiDj FΓ = Π(pt) , i, j = 1, 2, 3
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and we have

(262) (−λ)3 lim
ϵ→0

FD
reg = Πreg(Xt)− π2

3 Π(P1) .

The GV invariants nd can be read by matching eq. (259) to eq. (157),
i.e.

(263) 3
2(G

(0))2 −G(1) =

∞∑

d=1

dnd(P
2) Li2(z̃

d)

or equivalently by matching Πreg(Xt) to eq. (175), i.e.

(264) 3
2(G

(0))3 − 3
2G

(0)G(1) + 1
4G

(2) − π2

4 G
(0) =

∞∑

d=1

nd(P
2) Li3(z̃

d) ,

which give the same numbers as in ref. [30, Table 1]. The only singular con-
tributions are the classical ones, therefore all GV invariants are uniquely
defined and the only ambiguity is in the regularization of the classical inter-
section numbers.

10.3.2. O(−4) over P3. For n = 4 the non-equivariant Î-operator can
be expanded as

lim
ϵ→0

Î =

∞∑

d=0

zd
(4θ)4d
(1 + θ)4d

= 1 + 4G0θ + 4G1θ
2 + 2(G2 − 2π2G0)θ

3

+
(
2
3G3 − 4π2G1 + 80ζ(3)G0

)
, θ4 + . . .(265)

where we define the functions

(266) G(i)(z) :=

∞∑

d=1

zd
(

∂
∂d

)i Γ(4d)

Γ(d+ 1)4
.

The solutions to the non-equivariant PF equations are

Π(pt) = 1

Π(P1) = log z + 4G(0) = log z̃

Π(P2) = 1
2 log

2 z̃ + 4G(1) − 8(G(0))2

Π(P3) = 1
6 log

3 z̃ +
(
4G(1) − 8(G(0))2

)
log z̃
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+ 64
3 (G

(0))3 − 16G(0)G(1) − 4π2G(0) + 2G(2)(267)

The modified PF operator

(268) D1D2D3D4D5−zD5(D5+λ)(D5+2λ)(D5+3λ)(D5+4λ)

admits an additional quartic solution associated to the regularized funda-
mental cycle

Πreg(Xt) = − 1
96 log

4 z̃ +
(
(G(0))2 − 1

2G
(1)
)
log2 z̃

+
(
−16

3 (G
(0))3 + 4G(0)G(1) + π2G(0) − 1

2G
(2)
)
log z̃

+
(
8(G(0))4 − 8(G(0))2G(1) − 4π2(G(0))2 + 2G(0)G(2)

+ π2G(1) − 1
6G

(3) − 20G(0)ζ(3)
)
.(269)

Moreover,

(270) (−λ)4 lim
ϵ→0

FD
reg = Πreg(Xt)− 5π2

12 Π(P2) + 5ζ(3)Π(P1) ,

(271) (−λ)3 lim
ϵ→0

ÎXt
D5FΓ = Π(P3) + 5π2

3 Π(P1)− 20ζ(3)Π(pt) ,

(272) (−λ)2 lim
ϵ→0

ÎXt
D5DiFΓ = Π(P2) + 5π2

3 Π(pt) , i = 1, 2, 3, 4 .

The GV invariants nd can be read by matching eq. (272) to eq. (159),
i.e.

(273) 2(G(0))2 −G(1) =

∞∑

d=1

nd(P
2) Li2(z̃

d) ,

which gives the same numbers as in ref. [99, Table 1]. Instantons are non-
singular in this case and GV invariants are uniquely defined.

10.4. O(−2,−2) over P1 × P1

We consider Xt = KF0
, the canonical bundle of the Hirzebruch surface F0,

realized as the quotient of C5 by U(1)2 with charge matrix

(274) Q =

(
1 1 0 0 −2
0 0 1 1 −2

)
.
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The chamber is chosen so that t1, t2 > 0. The K-theoretic disk function
is defined as

ZD(T , q; q) =

∮

QJK

dw1 dw2

(2πi)2w1w2

× w−T 1

1 w−T 2

2

(q1w1; q)∞(q2w1; q)∞(q3w2; q)∞(q4w2; q)∞(q5w
−2
1 w−2

2 ; q)∞
(275)

with poles for (w1, w2) in the set

{
(q−1

1 q−d1 , q−1
3 q−d2), (q−1

1 q−d1 , q−1
4 q−d2),

(q−1
2 q−d1 , q−1

3 q−d2), (q−1
2 q−d1 , q−1

4 q−d2)|d1, d2 ∈ N
}
.(276)

The function ZD satisfies the quantum K-theory relations
[
(1−∆1)(1−∆2)− qT

1

(1−∆5)(1− q∆5)
]
ZD(T , q; q) = 0 ,

[
(1−∆3)(1−∆4)− qT

2

(1−∆5)(1− q∆5)
]
ZD(T , q; q) = 0 ,(277)

whose formal solution is

ZD =




∞∑

d1,d2=0

qd1T 1+d2T 2

× (∆5; q)2d1+2d2

(q−d1∆1; q)d1
(q−d1∆2; q)d1

(q−d2∆3; q)d2
(q−d2∆4; q)d2

]
ZΓq

(278)

with

(279) ZΓq
(T , q) = c1,3q

T 1

1 qT
2

3 + c1,4q
T 1

1 qT
2

4 + c2,3q
T 1

2 qT
2

3 + c2,4q
T 1

2 qT
2

4

and initial data

(280) c1,3 =
1

(q; q)∞(q2q
−1
1 ; q)∞(q4q

−1
3 ; q)∞(q5q21q

2
3; q)∞

,

(281) c1,4 =
1

(q; q)∞(q2q
−1
1 ; q)∞(q3q

−1
4 ; q)∞(q5q21q

2
4; q)∞

,

(282) c2,3 =
1

(q; q)∞(q1q
−1
2 ; q)∞(q4q

−1
3 ; q)∞(q5q22q

2
3; q)∞

,
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(283) c2,4 =
1

(q; q)∞(q1q
−1
2 ; q)∞(q3q

−1
4 ; q)∞(q5q22q

2
4; q)∞

.

The total space O(−2,−2) → P1 × P1 has a compact divisor D5 corre-
sponding to the zero section (i.e. the base P1 × P1) and therefore we have
that

(284) (1−∆5)ZD(T , q; q) is analytic at qi = 1 .

In the cohomological limit ℏ → 0 we have

FD =




∞∑

d1,d2=0

zd1

1 z
d2

2

×
(D5

λ

)
2d1+2d2(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

(
1− D3

λ

)
d2

(
1− D4

λ

)
d2

]
FΓ(285)

with

FΓ(t, ϵ) = c1,3e
−ϵ1t1−ϵ3t2

+ c1,4e
−ϵ1t1−ϵ4t2 + c2,3e

−ϵ2t1−ϵ3t2 + c2,4e
−ϵ2t1−ϵ4t2(286)

and semi-classical data

(287) c1,3 = λ−3 Γ
(
ϵ2−ϵ1

λ

)
Γ
(
ϵ4−ϵ3

λ

)
Γ
(
ϵ5+2ϵ1+2ϵ3

λ

)
,

(288) c1,4 = λ−3 Γ
(
ϵ2−ϵ1

λ

)
Γ
(
ϵ3−ϵ4

λ

)
Γ
(
ϵ5+2ϵ1+2ϵ4

λ

)
,

(289) c2,3 = λ−3 Γ
(
ϵ1−ϵ2

λ

)
Γ
(
ϵ4−ϵ3

λ

)
Γ
(
ϵ5+2ϵ2+2ϵ3

λ

)
,

(290) c2,4 = λ−3 Γ
(
ϵ1−ϵ2

λ

)
Γ
(
ϵ3−ϵ4

λ

)
Γ
(
ϵ5+2ϵ2+2ϵ4

λ

)
.

The disk function FD is annihilated by the equivariant PF operators

Leq
(1,0) = D1D2−z1D5(D5+λ) ,

Leq
(0,1) = D3D4−z2D5(D5+λ) ,(291)
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which shows that the instanton operators

(292) Pd1,d2
= zd1

1 z
d2

2

(D5

λ

)
2d1+2d2(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

(
1− D3

λ

)
d2

(
1− D4

λ

)
d2

are proportional to the compact divisor D5 if (d1, d2) ̸= (0, 0), and therefore
that the instantons are all regular in the non-equivariant limit.

The solutions to the equivariant PF equations are

Π(pij , ϵ) =

∞∑

d1,d2=0

zd1

1 z
d2

2

(
ϵ5+2ϵi+2ϵj

λ

)
2d1+2d2∏2

k=1

(
1− ϵk−ϵi

λ

)
d1

∏4
l=3

(
1− ϵl−ϵj

λ

)
d2

× e−ϵit1−ϵjt2 , i = 1, 2 j = 3, 4.(293)

The non-equivariant Î-operator expands as

lim
ϵ→0

ÎXt
= 1 + 2G(00)(θ1 + θ2) + 2G(10)θ21 + 2G(01)θ22

+ 2(G(10) +G(01))θ1θ2 + (2G(11) +G(20) − 5π2

3 G(00))θ21θ2

+ (2G(11) +G(02) − 5π2

3 G(00))θ1θ
2
2 + (G(20) − π2

3 G
(00))θ31

+ (G(02) − π2

3 G
(00))θ32 + . . . ,(294)

where we define

(295) G(ij)(z1, z2) =
∑

(d1,d2) ̸=(0,0)

zd1

1 z
d2

2 ∂
i
d1
∂jd2

Γ(2d1 + 2d2)

Γ(d1 + 1)2 Γ(d2 + 1)2
.

The solutions to the non-equivariant PF equations are

Π(pt) = 1 ,

Π(C1) = log z1 + 2G(00) = log z̃1 ,

Π(C2) = log z2 + 2G(00) = log z̃2 ,

Π(P1 × P1) = log z̃1 log z̃2 − 4(G(00))2 + 2G(01) + 2G(10) ,(296)

where C1 and C2 are the homology two-cycles corresponding to the two
P1’s. The modified PF operators

D1D2D5−z1D5(D5+λ)(D5+2λ)

D3D4D5−z2D5(D5+λ)(D5+2λ) ,(297)
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allow us to define the regularized cubic solution

Πreg(Xt)

= 1
24 log

3 z̃1 − 1
8 log

2 z̃1 log z̃2 − 1
8 log z̃1 log

2 z̃2 +
1
24 log

3 z̃2

+
(
(G(00))2 −G(01)

)
log z̃1 +

(
(G(00))2 −G(10)

)
log z̃2

− 2
(
4
3(G

(00))3 −G(00)G(01) −G(00)G(10) − π2

3 G
(00) + 1

2G
(11)
)
.(298)

Then we have,

lim
ϵ→0

(−λ)3FD
reg

= Πreg(Xt)

+ α
12

(
Π(C1)−Π(C2)

) (
8π2 +

(
16α2 − 3

) (
Π(C1)−Π(C2)

)2)
,

(299)

where Π(C1)−Π(C2) is annihilated by the compact divisor operator D5

and α parametrizes the intrinsic ambiguity in the choice of left-inverse Rj
a,

(300) R =
(
α− 1/4 −α− 1/4

)
.

Changing the value of α changes the semi-classical data in FD
reg but it leaves

the instanton part of the solution unchanged, therefore the GV invariants
do not depend on this choice.

Observing that

(301) lim
ϵ→0

(−λ)2ÎXt
D5FΓ = Π(P1 × P1) + 2π2

3 Π(pt)

we can match with eq. (157) to read the GV invariants nd1,d2
, namely

− 4(G(00))2 + 2G(01) + 2G(10)

=
∑

(d1,d2) ̸=(0,0)

(−2d1 − 2d2)nd(P
1 × P1) Li2(z̃

d1

1 z̃
d2

2 ) ,(302)

which reproduce the results of ref. [30, Table 9]. We can also match eqs. (175)
and (299)

4
3(G

(00))3 −G(00)G(01) −G(00)G(10) − π2

3 G
(00) + 1

2G
(11)

=
∑

(d1,d2) ̸=(0,0)

nd(P
1 × P1) Li3(z̃

d1

1 z̃
d2

2 ) ,(303)
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which gives the same GV numbers. Comparing to ref. [79], the redefinition
of Euler’s constant γ amounts in our setup to multiplying by a factor of
eϵ5(γ−h(z)) in the shift equation. A similar remark applies to all other cases.

10.5. SU(3)0 geometry

Consider the Calabi-Yau three-fold Xt given by the quotient of C6 by U(1)3

with

(304) Q =



1 1 1 −3 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1




and chamber t1 > t2 > 0, t3 > 0. This CY geometry corresponds to a 5d
gauge theory with SU(3) gauge group and zero Chern-Simons level. This
manifold has two compact toric divisors D4 and D5. The disk function is
defined as

FD(t, ϵ;λ) = λ−6

∮

QJK

dϕ1 dϕ2 dϕ3
(2πi)3

eϕ1t1+ϕ2t2+ϕ3t3 Γ
(
ϵ1+ϕ1

λ

)

× Γ
(
ϵ2+ϕ1

λ

)
Γ
(
ϵ3+ϕ1+ϕ2

λ

)
Γ
(
ϵ4−3ϕ1−2ϕ2+ϕ3

λ

)

× Γ
(
ϵ5+ϕ2−2ϕ3

λ

)
Γ
(
ϵ6+ϕ3

λ

)
(305)

and the poles are located at (ϕ1, ϕ2, ϕ3) equal to

(−ϵ1 − k1λ,−ϵ5 − 2ϵ6 − (k2 + 2k3)λ,−ϵ6 − k3λ) (1, 5, 6) ,
(−ϵ2 − k1λ,−ϵ5 − 2ϵ6 − (k2 + 2k3)λ,−ϵ6 − k3λ) (2, 5, 6) ,

(−ϵ1 − k1λ, ϵ1 − ϵ3 − (−k1 + k2)λ,−ϵ1 − 2ϵ3 − ϵ4 − (k1 + 2k2 + k3)λ) (1, 3, 4) ,
(−ϵ2 − k1λ, ϵ2 − ϵ3 − (−k1 + k2)λ,−ϵ2 − 2ϵ3 − ϵ4 − (k1 + 2k2 + k3)λ) (2, 3, 4) ,

(−ϵ1 − k1λ,−ϵ3 + ϵ1 − (−k1 + k2)λ,−ϵ6 − k3λ) (1, 3, 6) ,
(−ϵ2 − k1λ,−ϵ3 + ϵ2 − (−k1 + k2)λ,−ϵ6 − k3λ) (2, 3, 6) .

(306)

The equivariant cohomology ring of Xt is

(307) H•
T(Xt) ∼= C[ϕ1, ϕ2, ϕ3, ϵ1, . . . , ϵ6]/⟨x1x2, x3x5, x3x6, x4x6⟩

and the quantum cohomology relations are encoded in the equivariant PF
operators

Leq
(1,−1,0) = D1D2−e−λ(t1−t2)D4D5 ,

Leq
(0,1,0) = D3D5−e−λt2 D4(D4+λ) ,
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Leq
(0,1,1) = D3D6−e−λ(t2+t3)D4D5 ,

Leq
(0,0,1) = D4D6−e−λt3 D5(D5+λ) ,(308)

whose generic solution is

FD =
∑

d1≥0,
d2≥−d1,
d3≥0

zd1

1 z
d2

2 z
d3

3

(D1

λ

)
−d1

(D2

λ

)
−d1

(D3

λ

)
−d1−d2

×
(D4

λ

)
3d1+2d2−d3

(D5

λ

)
−d2+2d3

(D6

λ

)
−d3

FΓ(309)

with semi-classical data

FΓ(t, ϵ) = c1,5,6 e
−ϵ1t1−(ϵ5+2ϵ6)t2−ϵ6t3

+ c2,5,6 e
−ϵ2t1−(ϵ5+2ϵ6)t2−ϵ6t3 + c1,3,4 e

−ϵ1t1−(−ϵ1+ϵ3)t2−(ϵ1+2ϵ3+ϵ4)t3

+ c2,3,4 e
−ϵ2t1−(−ϵ2+ϵ3)t2−(ϵ2+2ϵ3+ϵ4)t3 + c1,3,6 e

−ϵ1t1−(−ϵ1+ϵ3)t2−ϵ6t3

+ c2,3,6 e
−ϵ2t1−(−ϵ2+ϵ3)t2−ϵ6t3 .

(310)

The instanton sum in eq. (309) contains only positive powers of z1, z3
but also negative powers of z2. This is consistent with the choice of chamber
for the Kähler moduli t1 > t2. After a change of coordinates in the Kähler
cone given by the unimodular matrix

(311)



1 −1 0
0 1 0
0 0 1


 ∈ SL(3,Z)

we can bring back the instanton sum to the standard cone d1, d2, d3 ≥ 0.
This choice of Kähler coordinates corresponds to the choice of transformed
charge matrix

(312) Q =



1 1 0 −1 −1 0
0 0 1 −2 1 0
0 0 0 1 −2 1




and the chamber is mapped to the region t1, t2, t3 > 0, where we use the
same symbols for the new coordinates on the transformed Kähler cone. This
geometry corresponds to two P2 connected by a P1 in one of the phases
related by a flop transition as described in ref. [30].
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The Givental Î-operator is

ÎXt
=
∑

d1≥0,
d2≥0,
d3≥0

zd1

1 z
d2

2 z
d3

3

(D1

λ

)
−d1

(D2

λ

)
−d1

(D3

λ

)
−d2

×
(D4

λ

)
d1+2d2−d3

(D5

λ

)
d1−d2+2d3

(D6

λ

)
−d3

= 1 +
∑

d1+2d2−d3>0,
d1−d2+2d3≤0

(−z1)d1zd2

2 (−z3)d3

×

(

D4

λ

)

d1+2d2−d3
(

1−D1

λ

)

d1

(

1−D2

λ

)

d1

(

1−D3

λ

)

d2

(

1−D5

λ

)

−d1+d2−2d3

(

1−D6

λ

)

d3

+
∑

d1+2d2−d3≤0,
d1−d2+2d3>0

(−z1)d1(−z2)d2zd3

3

×

(

D5

λ

)

d1−d2+2d3
(

1−D1

λ

)

d1

(

1−D2

λ

)

d1

(

1−D3

λ

)

d2

(

1−D4

λ

)

−d1−2d2+d3

(

1−D6

λ

)

d3

+
∑

d1+2d2−d3>0,
d1−d2+2d3>0

zd1

1 (−z2)d2(−z3)d3

×

(

D4

λ

)

d1+2d2−d3

(

D5

λ

)

d1−d2+2d3
(

1−D1

λ

)

d1

(

1−D2

λ

)

d1

(

1−D3

λ

)

d2

(

1−D6

λ

)

d3

,(313)

where all instanton operators are proportional to at least one of the two
compact divisor operators D4,D5 except for P(0,0,0) = 1, hence the only sin-
gular contribution to the disk function comes from the semi-classical part
FΓ.

If we define the functions

L
(ijk)
1 :=

∑

d1+2d2−d3>0,
d1−d2+2d3≤0

(−z1)d1zd2

2 (−z3)d3

× ∂id1
∂jd2

∂kd3

Γ(d1+2d2−d3)
Γ(d1+1)2 Γ(d2+1)Γ(−d1+d2−2d3+1)Γ(d3+1) ,(314)

L
(ijk)
2 :=

∑

d1+2d2−d3≤0,
d1−d2+2d3>0

(−z1)d1(−z2)d2zd3

3

× ∂id1
∂jd2

∂kd3

Γ(d1−d2+2d3)
Γ(d1+1)2 Γ(d2+1)Γ(−d1−2d2+d3+1)Γ(d3+1) ,(315)
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L
(ijk)
3 :=

∑

d1+2d2−d3>0,
d1−d2+2d3>0

zd1

1 (−z2)d2(−z3)d3

× ∂id1
∂jd2

∂kd3

Γ(d1+2d2−d3) Γ(d1−d2+2d3)
Γ(d1+1)2 Γ(d2+1)Γ(d3+1)(316)

and Ln ≡ L
(000)
n , we can write the solutions to the non-equivariant PF equa-

tions as

Π(pt) =1 ,

Π(C1) = log z1 + L1 + L2 = log z̃1 ,

Π(C2) = log z2 + 2L1 − L2 = log z̃2 ,

Π(C3) = log z3 − L1 + 2L2 = log z̃3 ,

Π(D4) =
1
2 log

2 z̃2 + log z̃1 log z̃2 − 4L2
1 + L1L2 +

1
2L

2
2

+ 2L
(100)
1 − L

(100)
2 + 3L

(010)
1 − L3 ,

Π(D5) =
1
2 log

2 z̃3 + log z̃1 log z̃3 +
1
2L

2
1 + L1L2 − 4L2

2

+ 2L
(100)
2 − L

(100)
1 + 3L

(001)
2 − L3 ,(317)

where Ca ∈ H2(Xt) are such that
∫
Ca ϕb = δab and D4, D5 ∈ H4(Xt) are the

compact divisors. Matching with eq. (157) we can read the GV invariants
nd1,d2,d3

and we obtain the same result as ref. [30, Table 6].
The additional solution to the non-equivariant modified PF equations is

Πreg(Xt)

= −1
3

(
log z̃1 log

2 z̃2 + log z̃1 log z̃2 log z̃3 + log z̃1 log
2 z̃3
)

+ 1
6

(
log2 z̃2 log z̃3 + log z̃2 log

2 z̃3
)

+
{
L2
1 − L1L2 + L2

2 + L3 − L
(010)
1 − L

(001)
2

}
log z̃1

+
{

3
2L

2
1 − L

(100)
1 − L

(010)
1

}
log z̃2 +

{
3
2L

2
2 − L

(100)
2 − L

(001)
2

}
log z̃3

+
{
L2
1L2 + L1L

2
2 − 8

3(L
3
1 + L3

2) + (L1 + L2)
(
2π2

3 − L3

)

+ L1(2L
(100)
1 − L

(100)
2 + 3L

(010)
1 − L3)

+ L2(2L
(100)
2 − L

(100)
1 + 3L

(001)
2 − L3)

− 1
2L

(020)
1 − 1

2L
(002)
2 − L

(110)
1 − L

(101)
2 + L

(100)
3

}
,

(318)
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which corresponds to

(−λ)3 lim
ϵ→0

FD
reg = Πreg(Xt)− 2π2

3 Π(C2)− 2π2

3 Π(C3)

+ 1
6

(
8α3 − 3α2β + 6α2 − 3αβ2 − 6αβ + 8β3 + 6β2

)

×
(
Π(C1)−Π(C2)−Π(C3)

)3

+ 2π2

3 (α+ β)
(
Π(C1)−Π(C2)−Π(C3)

)
,(319)

where the combination Π(C1)−Π(C2)−Π(C3) is in the kernel of the op-
erators D̃4, D̃5, as differential operators in the mirror variables t̃a. Here α, β
are arbitrary numbers that parametrize the choice of left-inverse Rj

a,

(320) R =

(
α −α− 2/3 −α− 1/3
β −β − 1/3 −β − 2/3

)
.

The K-theoretic uplift of the disk function is

ZD(T , q; q) = −
∮

QJK

dw1 dw2 dw3

(2πi)3w1w2w3

× w−T 1

1 w−T 2

2

(q1w1; q)∞(q2w1; q)∞(q3w1w2; q)∞(q6w3; q)∞

× w−T 3

3

(q4w
−3
1 w−2

2 w3; q)∞(q5w2w
−2
3 ; q)∞

(321)

satisfying the quantum K-theory relations

[
(1−∆1)(1−∆2)− qT

1−T 2

(1−∆4)(1−∆5)
]
ZD(T , q; q) = 0 ,

[
(1−∆3)(1−∆5)− qT

2

(1−∆4)(1− q∆4)
]
ZD(T , q; q) = 0 ,

[
(1−∆3)(1−∆6)− qT

2+T 3

(1−∆4)(1−∆5)
]
ZD(T , q; q) = 0 ,

[
(1−∆4)(1−∆6)− qT

3

(1−∆5)(1− q∆5)
]
ZD(T , q; q) = 0 .(322)

The K-theoretic I-function operator

ÎKXt
=

∑

d1≥0,
d2≥−d1,
d3≥0

qd1T 1+d2T 2+d3T 3

(∆1; q)−d1

× (∆2; q)−d1
(∆3; q)−d1−d2

(∆4; q)3d1+2d2−d3

× (∆5; q)−d2+2d3
(∆6; q)−d3

,(323)
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creates a solution to PF equations when acting on semi-classical data

ZΓq
(T , q)

= c1,5,6 q
T 1

1 qT
2

5 q2T
2+T 3

6 + c2,5,6 q
T 1

2 qT
2

5 q2T
2+T 3

6

+ c1,3,4 q
T 1−T 2+T 3

1 qT
2+2T 3

3 qT
3

4 + c2,3,4 q
T 1−T 2+T 3

2 qT
2+2T 3

3 qT
3

4

+ c1,3,6 q
T 1−T 2

1 qT
2

3 qT
3

6 + c2,3,6 q
T 1−T 2

2 qT
2

3 qT
3

6 .(324)

10.6. Local F2

We consider the toric quotient Xt = KF2
corresponding to the canonical

bundle of the Hirzebruch surface F2. This local CY geometry is defined by
the charge matrix

(325) Q =

(
1 1 −2 0 0
0 0 1 −2 1

)

and chamber t1, t2 > 0. The total space of the line bundle has one compact
toric divisor D4 corresponding to the base F2.

The disk function is defined by the integral

FD = λ−5

∮

QJK

dϕ1 dϕ2
(2πi)2

eϕ1t1+ϕ2t2 Γ
(
ϵ1+ϕ1

λ

)
Γ
(
ϵ2+ϕ1

λ

)

× Γ
(
ϵ3−2ϕ1+ϕ2

λ

)
Γ
(
ϵ4−2ϕ2

λ

)
Γ
(
ϵ5+ϕ2

λ

)
(326)

with classical poles in the set

(327) JK = {(1, 3), (1, 5), (2, 3), (2, 5)}

and quantum poles at the values of (ϕ1, ϕ2) equal to

(328)

(−ϵ1 − k1,−ϵ3 − 2ϵ1 − 2k1 − k2) ,
(−ϵ2 − k1,−ϵ3 − 2ϵ2 − 2k1 − k2) ,
(−ϵ1 − k1,−ϵ5 − k2) ,
(−ϵ2 − k1,−ϵ5 − k2) .

The equivariant cohomology ring is given by the quotient of

C[ϕ1, ϕ2, ϵ1, . . . , ϵ5]

by the ideal

(329) ISR = ⟨x1x2, x3x5⟩ .
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The equivariant PF operators are then defined as

Leq
(1,0) = D1D2−e−λt1(λ+D3)D3 ,

Leq
(0,1) = D3D5−e−λt2(λ+D4)D4 .(330)

The Î-operator is

ÎXt
=

∞∑

d1,d2≥0

zd1

1 z
d2

2

(D1

λ

)
−d1

(D2

λ

)
−d1

(D3

λ

)
2d1−d2

(D4

λ

)
2d2

(D5

λ

)
−d2

= 1 +

∞∑

d1=1

zd1

1

(D3

λ

)
2d1(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

+
∑

2d1−d2≤0
d2>0

zd1

1 z
d2

2

(D4

λ

)
2d2(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

(
1− D3

λ

)
−2d1+d2

(
1− D5

λ

)
d2

+
∑

2d1−d2>0
d2>0

zd1

1 (−z2)d2

(D3

λ

)
2d1−d2

(D4

λ

)
2d2(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

(
1− D5

λ

)
d2

,

(331)

all instanton operators are proportional to the compact divisor operator D4,
except for those of the form Pd1,0. These span the singular cone of the disk
function, which is non-trivial in this example. It follows that infinitely many
terms in the partition function are singular in the non-equivariant limit and
a regularization is necessary to get a cubic PF solution.

The regular solutions to the PF equations are in correspondence with
the four generators of the homology lattice and in the non-equivariant limit
can be written as

Π(pt) = 1 ,

Π(C1) = log z1 + 2G = log z̃1 ,

Π(C2) = log z2 −G+ 2H1 = log z̃2 ,

Π(D4) = log z̃1 log z̃2 + log2 z̃2 − 2(2H2
1 −H

(10)
1 − 2H

(01)
1 ) ,(332)

where we define the functions

G(i) :=

∞∑

d1=1

zd1

1 ∂
i
d1

Γ(2d1)

Γ(d1 + 1)2
(333)
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B(i) :=

∞∑

d1=1

zd1

1 ∂
i
d1

Γ(2d1)

Γ(d1 + 1)2
ψ(0)(2d1)(334)

H
(ij)
1 :=

∑

2d1−d2≤0
d2>0

zd1

1 z
d2

2 ∂
i
d1
∂jd2

Γ(2d2)

Γ(d1 + 1)2 Γ(−2d1 + d2 + 1)Γ(d2 + 1)
(335)

H
(ij)
2 :=

∑

2d1−d2>0
d2>0

zd1

1 (−z2)d2∂id1
∂jd2

Γ(2d1 − d2) Γ(2d2)

Γ(d1 + 1)2 Γ(d2 + 1)
(336)

and it is understood that where we do not write superscripts we mean that
they are all zero. The quadratic solution corresponding to the compact di-
visor D4 then satisfies

lim
ϵ→0

(−λ)2ÎXt
D4FΓ = Π(D4) +

2π2

3 Π(pt) .(337)

Using the regularization scheme in section 8 with

(338) R =
(
α −1/2

)

we can compute the regularized disk function

(−λ)3 lim
ϵ→0

FD
reg = −1

4 log z̃1 log
2 z̃2 − 1

6 log
3 z̃2 − π2

3 log z̃2

+ log z̃1

(
(12G−H1)

2 +H2 −H
(01)
1

)

+ log z̃2

(
2H2

1 −H
(10)
1 − 2H

(01)
1

)

− 1
6G

3 +G2H1 − 8
3H

3
1

−GH
(10)
1 − 2GH2

− π2

3 G+ 4H1H
(01)
1 + 2H1H

(10)
1 + 2π2

3 H1

−H
(02)
1 −H

(11)
1 +H

(10)
2 + α

3 (log z̃1 − 2G)

×
(
(4α(4α+ 3) + 3)G2 − (4α(4α+ 3) + 3)G log z̃1

+ α(4α+ 3) log2 z̃1 + 2π2
)
,(339)

which is a cubic solution to modified PF equations, obtained by operators

D1D2D4−z1D3(D3+λ)D4 ,

D3D4D5−z2D4(D4+λ)(D4+2λ) .(340)
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The regularized cubic solution associated to the fundamental cycle of Xt

is

Πreg(Xt) = −1
4 log z̃1 log

2 z̃2 − 1
6 log

3 z̃2

+ log z̃1

(
−1

2B − γ
2G+

(
1
2G−H1

)2 −H
(01)
1 +H2

)

+ log z̃2

(
2H2

1 −H
(10)
1 − 2H

(01)
1

)

− 2
(
1
4B

(1) − 1
2BG− γ

4G
2 + 1

12G
3 − 1

2G
2H1 +

4
3H

3
1

− 2H1H
(01)
1 + 1

2H
(02)
1 + 1

2GH
(10)
1 −H1H

(10)
1

+ 1
2H

(11)
1 +GH2 − 1

2H
(10)
2 − π2

12G− π2

3 H1

)
,(341)

and it differs from FD
reg by a lower-degree term proportional to the period

Π(C2) = log z̃2 and also by a correction term δ that only depends on z1 (and
not z2). As limϵ→0D4 =

∂
∂t1 , it follows that δ is in the kernel of the compact

divisor operator, as in eq. (176).
The GV invariants nd1,d2

can be read by matching eq. (341) with eq. (175),

∑

(d1,d2) ̸=(0,0)

nd1,d2
log(z̃d1

1 z̃
d2

2 ) Li2(z̃
d1

1 z̃
d2

2 )

= log z̃1

(
−1

2B − γ
2G+

(
1
2G−H1

)2 −H
(01)
1 +H2

)

+ log z̃2

(
2H2

1 −H
(10)
1 − 2H

(01)
1

)
(342)

or

∑

(d1,d2) ̸=(0,0)

nd1,d2
Li3(z̃

d1

1 z̃
d2

2 )

= 1
4B

(1) − 1
2BG− γ

4G
2 + 1

12G
3 − 1

2G
2H1

+ 4
3H

3
1 − 2H1H

(01)
1 + 1

2H
(02)
1 + 1

2GH
(10)
1 −H1H

(10)
1

+ 1
2H

(11)
1 +GH2 − 1

2H
(10)
2 − π2

12G− π2

3 H1 ,(343)

which give the same results as those in ref. [30, Table 11], including n1,0=−1
2 .

We should remark, however, that from Π(D4) one can read all nd with
d2 ̸= 0 and since D4 is compact these numbers are uniquely defined. The GV
invariants nd1,0 instead only appear in the expansion of Πreg(Xt), which is
regularization-dependent, hence they are not guaranteed to be integers, as it
is clear from the result n1,0 = −1/2. If we were to read nd1,0 from the non-
equivariant limit of FD

reg instead, we would get different results (precisely
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because of the correction term δ). This signals that when instantons are
singular then some of the GW invariants (as computed from PF solutions)
need regularization and no canonical choice exists. The discussion can be
easily generalized to the K-theoretic case and also there we observe that the
instantons of charges (d1, 0) are singular in the q → 1 limit.

10.7. Local A2

We consider the CY manifold corresponding to the charge matrix

(344) Q =



1 1 −2 0 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1




with chamber t1, t2, t3 > 0. By geometric engineering arguments this geom-
etry corresponds to a 5d gauge theory with gauge group SU(3) and Chern-
Simons level 3. This manifold has two compact toric divisors D4 and D5.

We define the disk function

FD(t, ϵ;λ) = λ−6

∮

QJK

dϕ1 dϕ2 dϕ3
(2πi)3

eϕ1t1+ϕ2t2+ϕ3t3 Γ
(
ϵ1+ϕ1

λ

)

× Γ
(
ϵ2+ϕ1

λ

)
Γ
(
ϵ3−2ϕ1+ϕ2

λ

)
Γ
(
ϵ4−2ϕ2+ϕ3

λ

)

× Γ
(
ϵ5+ϕ2−2ϕ3

λ

)
Γ
(
ϵ6+ϕ3

λ

)
(345)

with poles in (ϕ1, ϕ2, ϕ3) located at (minus)

(346)

(ϵ1 + k1, ϵ3 + 2ϵ1 + 2k1 + k2, ϵ6 + k3) ,
(ϵ2 + k1, ϵ3 + 2ϵ2 + 2k1 + k2, ϵ6 + k3) ,
(ϵ1 + k1, 2ϵ1 + ϵ3 + 2k1 + k2, 4ϵ1 + 2ϵ3 + ϵ4 + 4k1 + 2k2 + k3) ,
(ϵ2 + k1, 2ϵ2 + ϵ3 + 2k1 + k2, 4ϵ2 + 2ϵ3 + ϵ4 + 4k1 + 2k2 + k3) ,
(ϵ1 + k1, ϵ5 + 2ϵ6 + k2 + 2k3, ϵ6 + k3) ,
(ϵ2 + k1, ϵ5 + 2ϵ6 + k2 + 2k3, ϵ6 + k3) .

The equivariant cohomology ring is the quotient by the ideal

(347) ISR = ⟨x1x2, x3x5, x3x6, x4x6⟩ .

The quantum cohomology relations / equivariant PF operators are

Leq
(1,0,0) = D1D2−e−λt1(λ+D3)D3 ,

Leq
(0,1,0) = D3D5−e−λt2(λ+D4)D4 ,
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Leq
(0,1,1) = D3D6−e−λ(t2+t3)D4D5 ,

Leq
(0,0,1) = D4D6−e−λt3(λ+D5)D5 ,(348)

from which we can derive the Givental Î-operator

ÎXt
= 1 +

∞∑

d1=1

zd1

1

(D3

λ

)
2d1(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

+
∑

2d1−d2≤0
2d2−d3>0
−d2+2d3≤0

zd1

1 z
d2

2 (−z3)d3

×
(D4

λ

)
2d2−d3(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

(
1− D3

λ

)
−2d1+d2

(
1− D5

λ

)
d2−2d3

(
1− D6

λ

)
d3

+
∑

2d1−d2≤0
2d2−d3≤0
−d2+2d3>0

zd1

1 (−z2)d2zd3

3

×
(D5

λ

)
−d2+2d3(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

(
1− D3

λ

)
−2d1+d2

(
1− D4

λ

)
−2d2+d3

(
1− D6

λ

)
d3

+
∑

2d1−d2≤0
2d2−d3>0
−d2+2d3>0

zd1

1 (−z2)d2(−z3)d3

×
(D4

λ

)
2d2−d3

(D5

λ

)
−d2+2d3(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

(
1− D3

λ

)
−2d1+d2

(
1− D6

λ

)
d3

+
∑

2d1−d2>0
2d2−d3>0
−d2+2d3≤0

zd1

1 (−z2)d2(−z3)d3

×
(D3

λ

)
2d1−d2

(D4

λ

)
2d2−d3(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

(
1− D5

λ

)
d2−2d3

(
1− D6

λ

)
d3

+
∑

2d1−d2>0
2d2−d3≤0
−d2+2d3>0

zd1

1 z
d2

2 z
d3

3

×
(D3

λ

)
2d1−d2

(D5

λ

)
−d2+2d3(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

(
1− D4

λ

)
−2d2+d3

(
1− D6

λ

)
d3

+
∑

2d1−d2>0
2d2−d3>0
−d2+2d3>0

zd1

1 z
d2

2 (−z3)d3

(D3

λ

)
2d1−d2

(D4

λ

)
2d2−d3

(D5

λ

)
−d2+2d3(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

(
1− D6

λ

)
d3

.



✐

✐

“1-Cassia” — 2024/5/29 — 18:14 — page 1037 — #77
✐

✐

✐

✐

✐

✐

From equivariant volumes to equivariant periods 1037

The instanton operators are regular except for those of the form

P(d1,0,0) = zd1

1

(D3

λ

)
2d1(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

(349)

which are not proportional to any of the compact divisor operators D4,D5.
It follows that the z1 instantons are singular in the non-equivariant limit,
similarly to the local F2 case. All other instanton operators either contain
D4 or D5 in the numerator and the corresponding instanton contributions
are regular.

Observe that for z3 = 0 the Î-operator reduces to that of local F2, since
the two charge matrices are equal once we remove the last line from the one
of local A2. Similarly, for z1 = 0 the Î-operator reduces to that of the A2

case, which corresponds to removing the first line of the charge matrix.
The solutions to the non-equivariant PF equations are

Π(pt) =1 ,

Π(C1) = log z1 + 2M0 = log z̃1 ,

Π(C2) = log z2 −M0 + 2M1 −M2 = log z̃2 ,

Π(C3) = log z3 −M1 + 2M2 = log z̃3 ,

Π(D4) =(log z̃1 + log z̃2) log z̃2 − 4M2
1 + 4M1M2 −M2

2 − 4M3

+ 2M
(100)
1 + 4M

(010)
1 −M

(100)
2 − 2M

(010)
2 ,

Π(D5) =(log z̃1 + 2 log z̃2 + 2 log z̃3) log z̃3 + 2M2
1 − 2M1M2

− 4M2
2 + 2M3 −M

(100)
1 − 2M

(010)
1

+ 2M
(100)
2 + 4M

(010)
2 + 6M

(001)
2 ,(350)

where we define the functions

M0 :=

∞∑

d1=1

zd1

1

Γ(2d1)

Γ(d1 + 1)2
,

B(i) :=

∞∑

d1=1

zd1

1 ∂
i
d1

Γ(2d1)

Γ(d1 + 1)2
ψ(0)(2d1) ,(351)

M
(ijk)
1 :=

∑

2d1−d2≤0
2d2−d3>0
−d2+2d3≤0

zd1

1 z
d2

2 (−z3)d3
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× ∂id1
∂jd2

∂kd3

Γ(2d2 − d3)

Γ(d1 + 1)2 Γ(−2d1 + d2 + 1)Γ(d2 − 2d3 + 1)Γ(d3 + 1)
,

(352)

M
(ijk)
2 :=

∑

2d1−d2≤0
2d2−d3≤0
−d2+2d3>0

zd1

1 (−z2)d2zd3

3 ∂
i
d1
∂jd2

∂kd3

× Γ(−d2 + 2d3)

Γ(d1 + 1)2 Γ(−2d1 + d2 + 1)Γ(−2d2 + d3 + 1)Γ(d3 + 1)
,(353)

M
(ijk)
3 :=

∑

2d1−d2≤0
2d2−d3>0
−d2+2d3>0

zd1

1 (−z2)d2(−z3)d3

× ∂id1
∂jd2

∂kd3

Γ(2d2 − d3) Γ(−d2 + 2d3)

Γ(d1 + 1)2 Γ(−2d1 + d2 + 1)Γ(d3 + 1)
,(354)

M
(ijk)
4 :=

∑

2d1−d2>0
2d2−d3>0
−d2+2d3≤0

zd1

1 (−z2)d2(−z3)d3

× ∂id1
∂jd2

∂kd3

Γ(2d1 − d2) Γ(2d2 − d3)

Γ(d1 + 1)2 Γ(d2 − 2d3 + 1)Γ(d3 + 1)
.(355)

The GV invariants nd1,d2,d3
can be read from Π(D4) or Π(D5) if −2d2 +

d3 ̸= 0 or d2 − 2d3 ̸= 0, respectively. If d2 = d3 = 0, then nd1,0,0 cannot be
read from either of these regular solutions and a regularization for Π(Xt, ϵ)
is needed. The regularized cubic solution of the modified PF equations is

Πreg(Xt)

= −1
3 log z̃1 log

2 z̃2 − 1
3 log z̃1 log

2 z̃3 − 1
3 log

2 z̃2 log z̃3

− 2
3 log z̃2 log

2 z̃3 − 1
3 log z̃1 log

2 z̃2 log z̃3 − 2
9 log

3 z̃2 − 4
9 log

3 z̃3

+ log z̃1

{
−2

3(B + γM0 − M2
0

2 )−M0M1 +M2
1 −M1M2 +M2

2

+M3 +M4 −M
(010)
1 −M

(001)
2

}

+ log z̃2

{
2M2

1 − 2M1M2 − 2M
(010)
1 −M

(100)
1
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+ 2M2
2 − 2M

(001)
2 + 2M3

}

+ log z̃3

{
3M2

2 − 4M
(001)
2 − 2M

(010)
2 −M

(100)
2

}

+
{
− 2

3(B
(1) − γM2

0 − 2M0B + 1
3M

3
0 − π2

3 M0)

+M2
0M1 − 2M0M4 + 4M2

1M2 − 2M1M
2
2

− 4M1M3 + 2M2M3 − 8
3(M

3
1 +M3

2 ) +
2π2

3 (M1 +M2)

−M0M
(100)
1 +M1(4M

(010)
1 + 2M

(100)
1 − 2M

(010)
2 −M

(100)
2 )

+M2(4M
(010)
2 + 2M

(100)
2 − 2M

(010)
1 −M

(100)
1 + 6M

(001)
2 )

−M
(020)
1 −M

(110)
1 − 2M

(002)
2

− 2M
(011)
2 −M

(101)
2 + 2M

(010)
3 +M

(100)
3 +M

(100)
4

}
(356)

and by matching against eq. (175) we can read all GV invariants and re-
produce the results of ref. [30, Table 4] (modulo some typos); we also get
n1,0,0 = −2/3 as observed in ref. [80, Section 4.1.8]. The numbers affected
by typos are n1,d2,d3

= −2(d2 − 1)d3 + d2(d2 − 1) for d3 > d2, as well as the
bold entries in the tables
(357)

d1 = 2 :

d2⧹d3 0 1 2 3 4 5 6

3 −6 −10 −12 −12 −10 −14 −18
4 −32 −70 −96 −110 −112 −126 −192
5 −110 −270 −416 −518 −576 −630 −784

(358)

d1 = 3 :

d2⧹d3 0 1 2 3 4 5 6

4 −8 −14 −18 −20 −20 −18 −24
5 −110 −270 −416 −518 −576 −630 −784

Since nd1,0,0 can only be read from Πreg(Xt), it is not surprising that the
obtained GV invariants are not all integer.

The regularized disk function FD
reg can be obtained from eq. (137) by

using the left-inverse matrix

(359) R =

(
α −2/3 −1/3
β −1/3 −2/3

)
,

where α, β parametrize the ambiguity in the choice regularization.
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11. Examples without compact divisors

In this section we present three examples with empty H2
cpt(Xt) and non-

empty H4
cpt(Xt). The elements of H4

cpt(Xt) are in one-to-one correspondence
with compact double intersections of non-compact toric divisors.

11.1. Resolved conifold

The resolved conifold Xt = O(−1)⊕O(−1) → P1 is defined by the charge
matrix

(360) Q =
(
1 1 −1 −1

)

and the chamber t > 0. The equivariant symplectic volume is

(361) F(t, ϵ) =

∮

JK

dϕ

2πi

eϕt

(ϵ1 + ϕ)(ϵ2 + ϕ)(ϵ3 − ϕ)(ϵ4 − ϕ)
,

where we take poles at ϕ = −ϵ1 and ϕ = −ϵ2. We have the classical coho-
mology relation

(362) D1D2F(t, ϵ) = 0

so that the equivariant cohomology ring is

(363) H•
T(Xt) ∼= C[ϕ, ϵ1, ϵ2, ϵ3, ϵ4]/⟨(ϵ1 + ϕ)(ϵ2 + ϕ)⟩ .

The K-theoretic disk function is defined as

ZD(T, q; q) = −
∮

QJK

dw

2πiw

× w−T

(q1w; q)∞(q2w; q)∞(q3w−1; q)∞(q4w−1; q)∞
(364)

with two towers of poles at w = q−1
1 q−d and w = q−1

2 q−d for d ≥ 0. The
quantum K-theory is encoded in the difference equation

(365)
[
(1−∆1)(1−∆2)− qT (1−∆3)(1−∆4)

]
ZD(T, q; q) = 0

with solution

(366) ZD(T, q; q) =

∞∑

d=0

qdT
(∆3; q)d(∆4; q)d

(q−d∆1; q)d(q−d∆2; q)d
ZΓq

(T, q; q) ,
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where the function

(367) ZΓq
(T, q; q) = c1q

T
1 + c2q

T
2

with

c1 =
1

(q; q)∞(q2q
−1
1 ; q)∞(q3q1; q)∞(q4q1; q)∞

c2 =
1

(q; q)∞(q1q
−1
2 ; q)∞(q3q2; q)∞(q4q2; q)∞

,(368)

satisfies the classical K-theory relation

(369) (1−∆1)(1−∆2)ZΓq
(T, q; q) = 0 .

The resolved conifold has no compact divisors, but the intersection of D3

and D4 is the base of the fibration P1 that generates H2(Xt). It follows that
the disk partition function satisfies a generalization of the compact divisor
equation, namely

(370) (1−∆3)(1−∆4)ZD(T, q; q) is analytic at qi = 1 .

To see why this is the case, we rewrite

(1−∆3)(1−∆4)ZD(T, q; q)

=
∑

n3≥0

∑

n4≥0

(qq3)
n3

(q; q)n3

(qq4)
n4

(q; q)n4

∑

Λ3,4(T,n3,n4)

qn
1

1 qn
2

2

(q; q)n1(q; q)n2

(371)

with

(372) Λ3,4(T, n
3, n4) =

{
(n1, n2) ∈ N2

∣∣n1 + n2 = T + n3 + n4
}

so that each term in the q expansion is finite and polynomial in the qi.
Sending all the qi to 1 is therefore a well-defined limit.

The cohomological limit ℏ → 0 is straightforward to compute. The disk
function becomes

FD(t, ϵ;λ) = λ−4

∮

QJK

dϕ

2πi
eϕt

× Γ
(
ϵ1+ϕ
λ

)
Γ
(
ϵ2+ϕ
λ

)
Γ
(
ϵ3−ϕ
λ

)
Γ
(
ϵ4−ϕ
λ

)
(373)
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satisfying the quantum cohomology relation

(374)
[
D1D2−e−λtD3D4

]
FD(t, ϵ;λ) = 0 .

We can write the instanton expansion

(375) FD(t, ϵ;λ) =

∞∑

d=0

zd
(D3

λ

)
d

(D4

λ

)
d(

1− D1

λ

)
d

(
1− D2

λ

)
d

FΓ(t, ϵ;λ)

with

FΓ(t, ϵ;λ) =
e−ϵ1t

λ3
Γ
(
ϵ2−ϵ1

λ

)
Γ
(
ϵ1+ϵ3

λ

)
Γ
(
ϵ1+ϵ4

λ

)

+
e−ϵ2t

λ3
Γ
(
ϵ1−ϵ2

λ

)
Γ
(
ϵ1+ϵ3

λ

)
Γ
(
ϵ1+ϵ4

λ

)
.(376)

The instanton operators

(377) Pd = zd
(D3

λ

)
d

(D4

λ

)
d(

1− D1

λ

)
d

(
1− D2

λ

)
d

are proportional to the product D3D4, which corresponds to the intersection
of divisors D3, D4. Since the intersection is compact, by proposition 7.8, the
instanton corrections are non-singular. Hence we can compute

(378) lim
ϵ→0

[
FD(t, ϵ;λ)−FΓ(t, ϵ;λ)

]
=

1

(−λ)3 [log z Li2(z)− 2Li3(z)] .

The equivariant Givental I-function is

(379) IXt
=

∞∑

d=0

e−λdt+ϕt

(
x3

λ

)
d

(
x4

λ

)
d(

1− x1

λ

)
d

(
1− x2

λ

)
d

and the solutions to the equivariant PF equations are

(380) Π(pi) = z
ϵi
λ

∞∑

d=0

zd

∏4
j=3

(
ϵj−ϵi
λ

)
d∏2

j=1

(
1− ϵj−ϵi

λ

)
d

, i = 1, 2 .

The regular periods that survive the non-equivariant limit are

Π(pt) = 1 ,



✐

✐

“1-Cassia” — 2024/5/29 — 18:14 — page 1043 — #83
✐

✐

✐

✐

✐

✐

From equivariant volumes to equivariant periods 1043

Π(P1) = log z ,(381)

which correspond to the two generators of the homology lattice. The modi-
fied PF operator

(382) D1D2D3D4−z(D3+λ)D3(D4+λ)D4

admits the following quadratic and cubic solutions

Πreg(Di) = −1
2 log

2 z − Li2(z) , i = 3, 4 ,

Πreg(Xt) =
1
6 log

3 z + log z Li2(z)− 2Li3(z) ,(383)

corresponding to the non-compact cycles of Xt. By compactness of D3 ∩D4

we have

(384) lim
ϵ→0

(−λ)ÎXt
D3D4FΓ = Π(P1) .

Since there are no compact divisors, we cannot use eq. (157) to read
the GV invariants and we cannot apply the regularization procedure to
FD. What we can do in this case is restrict to a non-compact divisor and
regularize the restricted disk function. The non-compact divisor has itself a
compact divisor corresponding to the P1. Define

(385) FD|D4
:= ÎXt

D4FΓ ,

which is still singular but can be regularized via the procedure in section 8,
namely

(386) FD
reg(t)|D4

:= FD(t)|D4
− eϵ3tFD(0)|D4

,

where we used the fact that D3 is a compact divisor inside of D4. This
function is regular

(387) lim
ϵ→0

(−λ)2FD
reg(t)|D4

= Πreg(D4)

and from eq. (157) we can read the GV invariants nd = δd,1. The same can
be done upon exchanging the divisors D3 and D4.
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11.2. O(−1,−1) ⊕ O(−1,−1) over P1 × P1

The charge matrix is

(388) Q =

(
1 1 0 0 −1 −1
0 0 1 1 −1 −1

)

with the chamber defined by t1, t2 > 0 and the disk function is

FD =
1

λ6

∮

QJK

dϕ1 dϕ2
(2πi)2

eϕ1t1+ϕ2t2 Γ
(
ϵ1+ϕ1

λ

)
Γ
(
ϵ2+ϕ1

λ

)
Γ
(
ϵ3+ϕ2

λ

)

× Γ
(
ϵ4+ϕ2

λ

)
Γ
(
ϵ5−ϕ1−ϕ2

λ

)
Γ
(
ϵ6−ϕ1−ϕ2

λ

)
,(389)

which is annihilated by the equivariant PF operators

D1D2−z1D5D6 ,

D3D4−z2D5D6 .(390)

Similarly to the resolved conifold case, we have two non-compact divisors
D5, D6 that intersect to a compact four-cycle corresponding to the base
P1 × P1. The instanton operators are

(391) Pd1,d2
= zd1

1 z
d2

2

(D5

λ

)
d1+d2

(D6

λ

)
d1+d2(

1− D1

λ

)
d1

(
1− D2

λ

)
d1

(
1− D3

λ

)
d2

(
1− D4

λ

)
d2

so that instanton corrections of degree (d1, d2) ̸= (0, 0) are regular in the
non-equivariant limit. The non-equivariant Î-operator expands as

(392) lim
ϵ→0

ÎXt
= 1 +G(z1, z2)(θ1 + θ2)

2 + . . . ,

where

(393) G(z1, z2) =
∑

(d1,d2) ̸=(0,0)

zd1

1 z
d2

2

Γ(d1 + d2)
2

Γ(d1 + 1)2 Γ(d2 + 1)2
.

Since there is no linear term in the expansion, it follows that the mirror
map is trivial,

(394) z̃i = zi .

The solutions to the non-equivariant PF equations are

Π(pt) = 1 ,
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Π(C1) = log z1 ,

Π(C2) = log z2 ,

Π(P1 × P1) = log z1 log z2 + 2G(z1, z2) ,(395)

where C1 and C2 are the homology two-cycles corresponding to the two P1’s.
We can compute the following regular solution to the PF equations

(396) lim
ϵ→0

(−λ)2ÎXt
D5D6FΓ = Π(P1 × P1) + π2

3 Π(pt)

from which we can read the GV invariants nd1,d2
(P1 × P1) by using (159).

It follows that

(397) G(z1, z2) =
∑

(d1,d2) ̸=(0,0)

nd1,d2
(P1 × P1) Li2(z̃

d1

1 z̃
d2

2 )

and the nd1,d2
(P1 × P1) match those in ref. [99, Section 3.3].

In this case there are no singular instantons and we can read all GV
invariants from the period Π(P1 × P1). Similarly to the resolved conifold
case, one could also compute a regularized cubic solution and read the same
GV invariants from that solution.

11.3. O(−1) ⊕ O(−2) over P2

The charge matrix is

(398) Q =
(
1 1 1 −1 −2

)

with the chamber defined by t > 0 and the disk function is

FD =
1

λ5

∮

QJK

dϕ

2πi
eϕt Γ

(
ϵ1+ϕ
λ

)
Γ
(
ϵ2+ϕ
λ

)

× Γ
(
ϵ3+ϕ
λ

)
Γ
(
ϵ4−ϕ
λ

)
Γ
(
ϵ5−2ϕ

λ

)
,(399)

which is annihilated by the equivariant PF operator

(400) D1D2D3−zD4D5(D5+λ) .

Similarly to the resolved conifold case, we have two non-compact divisors
D4, D5 that intersect to a compact four-cycle corresponding to the base P2.



✐

✐

“1-Cassia” — 2024/5/29 — 18:14 — page 1046 — #86
✐

✐

✐

✐

✐

✐

1046 L. Cassia, N. Piazzalunga, and M. Zabzine

The instanton operators are

(401) Pd = (−z)d
(D4

λ

)
d

(D5

λ

)
2d(

1− D1

λ

)
d

(
1− D2

λ

)
d

(
1− D3

λ

)
d

,

so that instanton corrections are regular in the non-equivariant limit.
The non-equivariant Î-operator expands as

(402) lim
ϵ→0

ÎXt
= 1 +G(z)θ2 + . . . ,

where

G(z) =

∞∑

d=1

(−z)dΓ(2d+ 1)

d4 Γ(d)2

= 2Li2
(
1
2

(
1−

√
1 + 4z

))
− Li21

(
1
2

(
1−

√
1 + 4z

))
.(403)

Since there is no linear term in the expansion, it follows that the mirror map
is trivial,

(404) z̃ = z .

The solutions to the non-equivariant PF equations are

Π(pt) = 1 ,

Π(P1) = log z1 ,

Π(P2) = 1
2 log

2 z +G(z) .(405)

We can compute the following regular solution to the PF equations

(406) lim
ϵ→0

(−λ)2ÎXt
D4D5FΓ = Π(P2) + 2π2

3 Π(pt)

from which we can read the GV invariants nd(P
2) by using eq. (159). It

follows that

(407) G(z) = 2

∞∑

d=1

nd(P
2) Li2(z

d)

and the numbers nd(P
2) match those in ref. [99, Section 3.2]. In this case

too there are no singular instantons and all GV invariants can be read from
the period Π(P2).
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12. Conclusions

In this work we study the disk partition function FD(t, ϵ;λ) and its K-
theoretic generalization ZD(T , q; q) for toric non-compact Kähler manifolds.
We concentrate on structural issues related to the dependence of FD(t, ϵ;λ)
on equivariant parameters ϵ’s and the ability to extract a non-equivariant
answer. For non-compact manifolds the singularities in FD(t, ϵ;λ) at ϵ = 0
are controlled by compact divisors (if H2

cpt(Xt) is non-empty). The nature
of singularities depends on how compact divisors appear in the equivariant
quantum cohomology relations. Using the formalism of Givental’s equiv-
ariant I and J functions, we discuss the nature of singularities in ϵ’s, the
possibility to extract a non-equivariant answer (as well as the ambiguities
involved), and its impact on the enumerative geometry of the corresponding
non-compact toric manifolds. We explain the relation between equivariant
and modified PF equations, which are a natural generalization of PF for
non-compact manifolds. We perform a similar analysis for the K-theoretic
function ZD(T , q; q).

Physically, FD(t, ϵ;λ) is a GLSM disk partition function with a space-
filling brane (all boundary conditions are Neumann) [78, 81, 151]. Our con-
siderations on Givental’s equivariant function, operators and the contours
and formalism extend to a more general setup

FD
α (t, ϵ;λ) = λ−N

∮

QJK

r∏

a=1

dϕa
2πi

e
∑

a
ϕata

N∏

i=1

Γ
(xi
λ

)
α(x)

= λ−N

∮

JK

∏

a

dϕa
2πi

IXt

∏

i

Γ
(xi
λ

)
α(x) = ÎXt

· FαΓ(t, ϵ) ,(408)

where α(x) is a periodic function in all its variables with period λ. This
object satisfies the equivariant PF equation, and semiclassically it can be
identified [81] with the central charge of a brane B, with α being the Chern
character of B

(409) FD
α (t, ϵ;λ) =

∫

Xt

eϖt−HϵΓ̂eq ch(B) +O(e−λt) .

For example, if we split the set {1, 2, . . . , N} into two disjoint subsets
that we denote Neu (for Neumann directions) and Dir (for Dirichlet), then
we can define the periodic function

(410) α(x) =
∏

i∈Dir

(1− e2πixi/λ) .
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The corresponding object

FD
α (t, ϵ;λ) = λ−N (−2πi)|Dir|

∮

QJK

r∏

a=1

dϕa
2πi

e
∑

a
ϕata

×
∏

i∈Neu Γ
(
xi

λ

)
∏

j∈Dir Γ
(
1− xj

λ

)eiπ
∑

j∈Dir

xj

λ(411)

is the GLSM disk partition function with mixed boundary conditions [78].
We use the identity eq. (A.14) and the same contour QJK as before but,
due to the property that the function in eq. (410) vanishes at some towers
of poles, these disappear from the final answer.

All our considerations are applicable to these objects, and depending
on the choice of boundary conditions the result may (or may not) contain
singular terms in ϵ’s at ϵ = 0. It’s worth noting that, even when such ob-
jects are non-singular, for example for branes with a compact support, they
cannot be used to fix (regularization scheme dependent) ambiguities in the
GV numbers, as they are blind to such sectors. The semiclassical part of
eq. (411) can be interpreted as an integral

(412)

∫

M
eϖt−Hϵ

Γ̂eq(TM)

Γ̂eq(NM)
e

iπ

λ
c1(NM) +O(e−λt)

over the submanifold M =
⋂

i∈DirDi, where we denote by the same symbol
ϖt −Hϵ and its pull-back toM , TM stands for tangent bundle and NM for
normal bundle ofM in Xt. This is the equivariant extension of the curvature
terms of the D-brane effective action [11], with the Γ̂-class replaced by some
square root of Â. The story can be generalized to K-theory [163].

The disk partition function FD(t, ϵ;λ) is well-defined only when equiv-
ariant parameters are turned on, and for non-compact spaces some non-
canonical choices are always involved when we try to extract the non-
equivariant part of the answer. Since FD(t, ϵ;λ) satisfies the equivariant
PF equation, we can think of it as a generalized period on the mirror [82].
We think that equivariant parameters should be taken seriously and one
needs to understand their role in mirror symmetry. We hope to come back
to these issues in the future.
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Appendix A. Useful formulas

We collect useful formulas that we refer to in the main body of the paper.
The Gamma-class of a complex vector bundle E (whenever E is omitted,

it is understood that E = TX) is defined in terms of its Chern roots xi as
the power series

Γ̂(E)

:=
∏

i

Γ
(
1 + xi

λ

)
= 1− γc1λ

−1 +
[(

γ2

2 + π2

12

)
c21 − π2

6 c2

]
λ−2

+
[(
ζ(3) + γπ2

6

)
c1c2 −

(
ζ(3)
3 + γ3

3 + γπ2

12

)
c31 − ζ(3)c3

]
λ−3

+
[(

π4

90 + γζ(3)
)
c1c3 −

(
γ2π2

12 + π4

40 + γζ(3)
)
c21c2

+
(
γ4

24 + γ2π2

24 + π4

160 + γζ(3)
3

)
c41 − π4

90 c4 +
7π4

360 c
2
2

]
λ−4 +O(λ−5) ,(A.1)

where γ is the Euler–Mascheroni constant and the r.h.s. is expanded over a
basis of Chern classes ci. The equivariant version Γ̂eq is obtained by replacing
Chern roots with equivariant Chern roots. (For E = TX, it is thus a function
of the equivariant curvature.) From the expansion, it follows that forX=CYd

d = 2 =⇒
∫

X
eϖΓ̂(TX) = 1

2

∫

X
ϖ2 − π2

6λ2

∫

X
c2 ,

d = 3 =⇒
∫

X
eϖΓ̂(TX) = 1

6

∫

X
ϖ3 − π2

6λ2

∫

X
ϖc2 − ζ(3)

λ3

∫

X
c3 ,

d = 4 =⇒
∫

X
eϖΓ̂(TX) = 1

24

∫

X
ϖ4 − π2

12λ2

∫

X
ϖ2c2 − ζ(3)

λ3

∫

X
ϖc3

− π4

90λ4

∫

X

(
c4 − 7

4c
2
2

)
(A.2)

with the caveat that equivariant versions should be used for non-compactX.
The Pochhammer symbol is defined as the function

(A.3) (z)n :=
Γ(z + n)

Γ(z)



✐

✐

“1-Cassia” — 2024/5/29 — 18:14 — page 1050 — #90
✐

✐

✐

✐

✐

✐

1050 L. Cassia, N. Piazzalunga, and M. Zabzine

for n ∈ Z. It satisfies the following useful identities

(A.4) (z)n =





n−1∏

i=0

(z + i) if n > 0

1 if n = 0
−1∏

i=n

1

(z + i)
if n < 0

and

(A.5) (z)−n =
1

(z − n)n
=

(−1)n

(1− z)n
.

The q-analog of the Pochhammer symbol is known as the q-Pochhammer
symbol (w; q)n. For n ∈ Z it is defined as

(A.6) (w; q)n :=





n−1∏

i=0

(1− qiw) if n > 0

1 if n = 0
−1∏

i=n

1

(1− qiw)
if n < 0

and it satisfies the following identity

(A.7) (w; q)−n =
1

(q−nw; q)n
=

(−qw−1)nq
n(n−1)

2

(qw−1; q)n
.

Then one can introduce the Jackson q-Gamma function

(A.8) Γq(z) :=
(q; q)∞(1− q)1−z

(qz; q)∞
,

which we regard as the q-analog of the Euler Gamma function. Similarly to
eq. (A.1) one can use the q-Gamma function to define a q-Gamma-class in
K-theory as

(A.9) Γ̂q(E) :=
∏

i

Γq

(
1 + xi

λ

)
= (q; q)rkE∞ (1− q)−c1(E)/λ

∏

i

1

(qLi; q)∞
,

where Li = e−ℏxi are the K-theoretic Chern roots of E and q = e−ℏλ.
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The q-Gamma function satisfies the recurrence relation

(A.10)
1− qz

1− q
Γq(z) = Γq(z + 1) ,

which is the q-analogue of the standard identity z Γ(z) = Γ(z + 1).
The infinite q-Pochhammer satisfies the q-difference equation

(A.11)
(1− z)

(z; q)∞
=

1

(qz; q)∞

as well as the q-binomial theorem

(A.12)
1

(z; q)∞
=

∞∑

n=0

zn

(q; q)n
,

where we can write the coefficient as a sum over integer partitionsµ
of length ≤ n

(A.13)
1

(q; q)n
=
∑

ℓ(µ)≤n

q|µ| .

Finally, we recall Euler’s reflection formula

(A.14) Γ(1 + z) Γ(1− z) =
πz

sin(πz)
=

(−2πiz)eπiz

(1− e2πiz)

and its q-analogue

(A.15) Γq(1 + z) Γq(1− z) =
(1− qz)(q; q)2∞

θ(qz; q)
,

where θ(w; q) := (w; q)∞(qw−1; q)∞ is a theta function.
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matics Birkhäuser Verlag, Basel, revised edition, 2004.

[10] H. Awata and H. Kanno, Quiver matrix model and topological partition
function in six dimensions, JHEP 07 (2009) 076.

[11] C. P. Bachas, P. Bain, and M. B. Green, Curvature terms in D-brane
actions and their M theory origin, JHEP 05 (1999) 011.

[12] N. Banerjee, S. Banerjee, R. K. Gupta, I. Mandal, and A. Sen, Super-
symmetry, localization and quantum entropy function, JHEP 02 (2010)
091.

[13] V. V. Batyrev, Quantum cohomology rings of toric manifolds, Jour-
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