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Finding Ricci-flat (Calabi–Yau) metrics is a long standing prob-
lem in geometry with deep implications for string theory and phe-
nomenology. A new attack on this problem uses neural networks
to engineer approximations to the Calabi–Yau metric within a
given Kähler class. In this paper we investigate numerical Ricci-
flat metrics over smooth and singular K3 surfaces and Calabi–Yau
threefolds. Using these Ricci-flat metric approximations for the
Cefalú family of quartic twofolds and the Dwork family of quin-
tic threefolds, we study characteristic forms on these geometries.
We observe that the numerical stability of the numerically com-
puted topological characteristic is heavily influenced by the choice
of the neural network model, in particular, we briefly discuss a
different neural network model, namely spectral networks, which
correctly approximate the topological characteristic of a Calabi–
Yau. Using persistent homology, we show that high curvature re-
gions of the manifolds form clusters near the singular points. For
our neural network approximations, we observe a Bogomolov–Yau
type inequality 3c2 ≥ c21 and observe an identity when our geome-
tries have isolated A1 type singularities. We sketch a proof that
χ(X ∖ SingX) + 2 |SingX| = 24 also holds for our numerical ap-
proximations.
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1. Introduction, rationale, and summary

Ricci-flat metrics satisfy the Einstein equations without any energy-moment-
um tensor source, and so describe empty spacetime. They are thus of funda-
mental physical interest and have been studied intensely for over a century.
The closely related Kähler metrics on compact, complex geometries of Eu-
clidean signature — the Calabi–Yau spaces — describe (to lowest order) the
extra spacelike dimensions in string compactifications.

While many Calabi–Yau properties are accessed purely via topology,
knowledge of the Ricci-flat metric is crucial for certain explicit computa-
tions, such as finding α′ corrections, fixing the Kähler potential, determin-
ing Yukawa couplings, and deducing aspects of supersymmetry breaking in
the low-energy effective field theory [1–3]. All of these are prerequisites for
calculating the proverbial electron mass in a Standard Model derived from
string compactification.

Yau’s proof [4, 5] of the Calabi conjecture [6] is famously not construc-
tive. We know that a Calabi–Yau manifold has a unique Ricci-flat metric
in each Kähler class, but not the actual expressions for such metrics. In re-
cent years, there has been revived interest in obtaining Ricci-flat Calabi–Yau
metrics. On the analytical side, explicit expressions have been obtained for
the metric on certain K3 manifolds [7, 8].1 On the computational side, var-
ious machine learning techniques have been employed to obtain numerical
as well as spectral approximations to flat metrics [10–18]. In some of these
machine driven approaches, neural networks have provided new representa-
tions to study metrics over manifolds with special holonomy. Although there
are guarantees to a neural network’s ability to approximate reasonably well
behaved functions with arbitrary accuracies, there are further mathematical

1The analytic expression for the flat metric on the Calabi–Yau onefold was writ-
ten by Clifford in 1873 [9].
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guarantees for neurocomputing stemming from the powerful Kolmogorov–
Arnold representation theorem from the middle of the previous century. To
date, the state of the art in approximating Ricci-flat Calabi–Yau metrics us-
ing machine learning methods is the cymetric code [14, 19], which permits
us to obtain approximate flat metrics for complete intersection (CICYs), as
well as toric Calabi–Yau spaces derived from triangulations of reflexive poly-
topes from the Kreuzer–Skarke list [20]. Past efforts to obtain flat metrics
include the so-called Donaldson’s algorithm [21–23] as well as applications of
the Gauss–Seidel method in [24], the optimization of energy functionals [25],
and examination of scaling properties [26, 27]. (See also [28–32].)

In this paper, we apply machine learning techniques to singular and
non-singular K3 manifolds and quintic threefolds. One of the goals of this
work is to characterize how good the machine learned metrics are for phe-
nomenology. In order to perform this assessment, we consider computations
of topological quantities such as the Euler character and the Chern classes as
obtained from the metric — as well as the corresponding curvature distribu-
tions. Thereby, we seek to determine which parts of the geometry contribute
most significantly to the various topological quantities. To benchmark these
observations, it is useful to compare the Fubini–Study metric to the machine
learned metric.

We also propose a different neural network model, called spectral net-
works, for approximating the Ricci-flat metric. We find that the numerical
invariants computed using the spectral networks exhibit higher numerical
stability than standard fully-connected networks which directly use the ho-
mogeneous coordinates as input. Furthermore, we briefly discuss the final
loss achieved by these networks and find that for Fermat quartic, the lowest
σ-loss is below 10−3, which is at the same level of accuracy as the method
described in [25] using k = 8.

The organization of this paper is as follows. Section 2 describes the defor-
mation families of Calabi–Yau twofolds and threefolds we investigate in this
paper and the considered curvature related features. Section 3 briefly sum-
marizes the numerical methods we apply. Section 4 considers the machine
learned metrics. Certain details of numerical computations are discussed in
the appendices.

2. The testbed models and their curvature

We consider several simple, one parameter deformation families of Calabi–
Yau twofolds and threefolds. In each case, we focus on a few curvature related



✐

✐

“3-Hubsch” — 2024/5/29 — 18:29 — page 1110 — #4
✐

✐

✐

✐

✐

✐

1110 P. Berglund, G. Butbaia et al.

features for which we compare the results obtained with a numerical approx-
imation to the Ricci-flat metric, with those obtained using the pullback of
the Fubini–Study metric, as well as with the known exact results.

2.1. The deformation families

The Cefalú pencil: Consider a complex one parameter deformation family
of quartics in P3 [33]:

(1) P3 ⊃ Xλ :=
{
pλ(z)= 0

}
: pλ(z) :=

3∑

i=0

z4i −
λ

3

(
3∑

i=0

z2i

)2

.

The Cefalú hypersurface [33] is the λ=1 case. We call the general λ
deformation, the Cefalú family (pencil) of quartics. While this deformation
family of hypersurfaces provides for a rather more detailed analytic analy-
sis [34–37], we focus on a few immediate results for the purpose of comparing
with numerical computations of the metric and various metric characteris-
tics on these K3 surfaces. For each λ∈C, the defining polynomial pλ(z) is
manifestly invariant under all permutations of the zi, as well as sign changes
zi 7→ − zi, separately for each i = 0, 1, 2, 3. Subject to preserving the holo-
morphic two-form, Ω :=

∮ (z d3z)
pλ(z)

, viz., the Calabi–Yau condition, and modulo

the P3-projectivization, this generates an S4 × (Z2)
2 symmetry. Of the var-

ious possible quotients, here we only need X0/Z2. The overall situation is
sketched in Figure 1, and includes both the λ-plane of the hypersurfaces (1)
as well as the λ-plane of their Z2 quotients.

λ

/
Z2

♠/
Z2

ℜ(λ)

Kähler clas
s variation

[24]

X0:={p0(z)=0}

X 3

4

:={p 3

4

(z)=0} X1:={p1(z
)=0}≈{T

4/Z2}

X 3

2

:={p 3

2

(z)=
0}

X3
:={

p3(
z)=

0}

X0/Z2 [24]

Figure 1. The Cefalú (complex structure) deformation family of quartics (1)
(lower λ-plane), and their Z2 quotients (upper plane), together with the
identifications X1≈{T 4/Z2} and X 3

4

≈
(
X0/Z2

)
, the latter identification

labeled by “♠”.
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Variation of λ parametrizes a deformation of the complex structure of the
hypersurfaceXλ, while the subsequently discussed numerical computation of
the various metric characteristics is explicitly designed, as in (35), to preserve
the Kähler class of the embedding P3. The defining polynomial pλ(z) fails to
be transverse only for λ→λ♯ ∈{3

4 , 1,
3
2 , 3} in the finite2 λ-plane (|λ|<∞),

and the quartic hypersurface, Xλ, singularizes there and has, respectively:
8, 16, 12, and 4 isolated singular points. Each of these singular points is
an A1-singularity (i.e., node or double point): the gradient of the defining
equation (1) vanishes there, but the Hessian (matrix of second derivatives in
local coordinates) is regular; for any other A-D-E (so-called Du Val) singular
point the local Hessian would vanish.3 The singularities of each Xλ♯ are thus
all hypersurface singular points of the form (0, 0, 0)∈{xy= z2}⊂C3 in local
coordinates, and are also equivalently described as discrete quotient (orb-
ifold) singularities of the form (0, 0)∈C2/Z2. Deforming any of the singular
hypersurfaces Xλ♯ → Xλ♯+ϵ for |ϵ|≪ 1 changes its complex structure and
smooths it by replacing each of its nodes with an S2-like so-called vanishing
cycle of radius ∝ |ϵ|.

Alternatively and without changing either λ or the complex structure in
general, each node can also be desingularized by a blow-up. This surgically
replaces each node with a copy of the (again S2-like) so-called exceptional
set, which admits a compatible complex structure and is biholomorphic4 to
the complex projective space, P1 — and changes the overall Kähler class
by contributing5 a (variable) multiple of the Kähler class inherent to the

2At λ→∞, the vanishing of p∞ =
(∑

i z
2

i

)
2 defines an “everywhere singular” hy-

persurface (more properly, a scheme), X∞, since ∂⃗p∞(z) vanishes wherever p∞(z)
does. Also, denoting Z∞ := {∑i z

2
i =0}, we have that X∞ = Z∞ ∪Z∞ is an every-

where doubled space, which is singular at X♯
∞

= Z∞ ∩Z∞ — indeed, everywhere.
In this respect, the limλ→∞Xλ limit is an extremely degenerate case of Tyurin
degenerations [38].

3All the relevant details and facts about these singularities and their (complex
structure variation) deformations and (Kähler class variation) desingularizations
are found in Reid’s comprehensive survey [39].

4In fact, it is the total space of the OP1(−2) line bundle over this P1 that replaces
the excised singularity compatibly with the global complex structure of the quartic
hypersurface. The tangent bundle being TP1 =OP1(2), the adjunction theorem im-
plies that the patching preserves c1. Also, the self-intersection of this exceptional
P1 is then −2.

5In the overall Kähler metric, g
(0)
ab , defined without/before the blow-up, the ex-

ceptional set replacing a point is null ; g
(0)
ab continues to “see” it as a point. To

correct this, one varies the metric by adding a local contribution inherent to the
exceptional set.
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exceptional P1. Such Kähler class variations were studied in [24] and were
shown by numerical computation to connect the orbifolds T 4/Z2 and X0/Z2.
By desingularizing T 4/Z2 via blowup and successively increasing the size of
the exceptional sets, these eventually intersect and form new Z2-orbifold
singularities, the so-obtained singular space identifiable with X0/Z2.

Explicit λ-deformation connects X1→X 3

4

by varying the complex struc-
ture while holding the Kähler class constant. One would expect the vanishing
cycles of X1−ϵ to grow as ϵ∈ [0, 14), come closer to each other and intersect
as ϵ→ 1

4 , creating the singularities of X 3

4

. On the other hand, the number,
type and highly symmetric distribution of singularities in the hypersurfaces
X 3

4

and X1 suggests identifying these with the two global orbifolds consid-

ered in [24], resulting in an interesting double connection (the “≈” symbols
denote a likely but not rigorously proven identification):

(2) {X0/Z2}
Kähler class variation [24]

≈ X 3

4

λ−−−−−−−−−→
cpx. str. deform

X1 ≈ {T 4/Z2} .

For the crepant (c1-preserving [40]) desingularization of both of these
orbifolds, the Euler characteristic may be computed by

(3) χ
(
M̃/G

)
=

1

|G|
(
χ(M)− χ(F )

)
+ χ(N) ,

where M is a smooth manifold with the discrete group action G for which
F is the fixed point set and N the desingularizing surgical replacement of
F ; for a complete and detailed refinement see [41] and [40, § 4.5]. Assuming
a similar identification with a global finite quotient to be possible also for
X 3

2

(and X3), since these have 12 (4) isolated A1-singular points, both with

|G=Z2|=2 and where N consists of 12 (4) isolated exceptional P1s with
χ(P1)= 2, we compute

1

2

(
χ(M 3

2

)− 12
)
+ 12·2 = 24 = χ(X̃ 3

2

) =⇒ χ(M 3

2

) = 12 ;(4a)

1

2

(
χ(M3)− 4

)
+ 4·2 = 24 = χ(X̃3) =⇒ χ(M3) = 36 .(4b)

Here, M 3

2

(M3) denotes a nonsingular complex surface with a Z2 action

that has 12 (4) fixed points, the Z2-orbifolds of which may be identified
with X 3

2

(X3). Whereas in (2), we have M 3

4

≈X0 (the Fermat quartic) and

M1≈T 4, we do not have any obvious candidate for M 3

2

and M3, but note

that these would have to have h2,0⩾ 1, and that precisely one holomorphic
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volume form must remain after the Z2 quotient. SinceX 3

4
+ϵ,X1+ϵ,X 3

2
+ϵ and

X3+ϵ are all smoothed by a “λ♯→λ♯+ ϵ” (complex structure) deformation,
they are conceptual mirrors of the (Kähler class variation) desingularizations
indicated in (3) and (4).

The Dwork pencils: Analogous to the Dwork pencil of quintics [34]

(5) P4 ⊃ Zψ :=
{
Qψ(z)= 0

}
: Qψ(z) :=

4∑

i=0

z 5
i − 5ψ

4∏

i=0

zi ,

we also consider the Dwork pencil of quartics

(6) P3 ⊃ Yψ :=
{
qψ(z)= 0

}
: qψ(z) :=

3∑

i=0

z 4
i − 4ψ

3∏

i=0

zi .

Following the by now well known analysis of the quintic (5), it is easy
to show that ψ≃αψ, with α4=1, so Arg(ψ)∈ [0, π/2] provides a fundamen-
tal domain, subject to identifying the edges {Arg(ψ)= 0}≃{Arg(ψ)=π/2},
thus forming a cone. The two families (1) and (6) are related: evidently,
Y0=X0. Furthermore, qψ(z) fails to be transverse only for ψ=α with α4=1,
where Yα has 16 isolated A1-singular points, (1, αβ

2iγ3j , αβiγ2j , αβiγ3j) for
α4=β4= γ4=1 and i, j = 0, . . . , 3. Thus, Y1 has the same number and type
of isolated singular points as X1 (albeit in different locations), and as in
Figure 1, we identify Y1≈X1≈{T 4/Z2}. This implies that within the K3
complex structure moduli space, the λ-plane and the ψ-cone have two points
in common: (λ=0) = (ψ=0) and (λ=1) = (ψ=1). Finally, we note that
the Y∞ model is a complex projective tetrahedron, the union of four P2s
that meet in six P1s that meet in four points. Unlike X∞ (which is singular
everywhere), Y∞ is singular only at the union of those six P1s.

2.2. General remarks on Kähler geometry

Since it is a complex, Kähler manifold, the Calabi–Yau metric is Hermitian
and can be obtained from a Kähler potential K(z, z̄):

(7) gab̄ = ∂a∂b̄K(z, z̄) .

The corresponding Kähler form, written in terms of the metric, reads

(8) J =
i

2
gab̄ dz

a ∧ dz̄b̄ .
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As a consequence of Kählerity, the only non-zero Christoffel symbols are
those for which holomorphic and antiholomorphic indices do not mix:

(9) Γabc = Γā
b̄c̄
= (∂bgcd̄)g

d̄a .

From this, we readily compute the non-zero components of the Riemann
tensor:

(10) Rabc̄d = −∂̄c̄Γabd , Rab̄cd = ∂̄b̄Γ
a
cd ,

together with

(11) Rabc̄d = Rā
b̄cd̄

, Rab̄cd = Rā
bc̄d̄
.

The only non-vanishing entries for the Ricci tensor of a Kähler metric are
given by

(12) Rab̄ = Rccab̄ = −∂a∂b̄ log det g .

We may sometimes write det g = |g|. R is closed but not necessarily exact.
It serves to define the Ricci form Ric(J) = iRab̄dz

a ∧ dz̄b̄ which is closed by
construction. Since c1(J) is required by the Calabi–Yau condition to be zero,
the Ricci form of a Calabi–Yau is also exact. For further details, the reader
should consult the classic references [40, 42, 43].

The Riemann tensor can be used to construct the curvature form

(13) Ra
b = Rabmn̄dz

m ∧ dz̄n̄ .

We then have

TrR = Raamn̄dz
m ∧ dz̄n̄ = −i Ric(J) ,(14)

TrR2 = Rabm1n̄1
Rbam2n̄2

dzm1(15)

∧ dz̄n̄1 ∧ dzm2 ∧ dz̄n̄2 ,

TrR3 = Rabm1n̄1
Rbcm2n̄2

Rcam3n̄3
dzm1 ∧ dz̄n̄1(16)

∧ dzm2 ∧ dz̄n̄2 ∧ dzm3 ∧ dz̄n̄3 ,

which can be used to obtain the various Chern characteristic forms ci ∈
Ωi,i(M), resulting from the expansion

c(t) = det

(
1 +

it

2π
J

)
= c0 + c1t+ c2t

2 + . . . .(17)
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Written in terms of the curvature form, the corresponding Chern forms
are given by

c0 = 1 ,(18)

c1 =
i

2π
TrR ,(19)

c2 =
1

2(2π)2
(TrR2 − (TrR)2) ,(20)

c3 =
1

3
c1 ∧ c2 +

1

3(2π)2
c1 ∧ TrR2 − i

3(2π)3
TrR3 .(21)

For complex n-dimensional manifolds, X,
∫
X cn is the Euler charac-

teristic so the top Chern class, cn, is also the Euler (curvature) density
e(J) = cn(J). For dim(X) = 2 CY, c2 may be further identified with the
standard volume form multiple of the Kretschmann invariant of Ricci-flat
metric, the tensor norm-square of the Riemann tensor; see (22), below. As
an additional check on Ricci-flatness, this approximation has been studied
in [24].

Restricting to the Calabi–Yau twofold and threefold examples of rele-
vance to this paper, we have that the Euler densities simplify for the Ricci-
flat metric due to the condition c1 = 0. For K3 we expect the Euler density
to be

(22) c2(J
CY) =

1

2(2π)2
TrR2 =

1

8π2
√
g Rab̄cd̄R

ab̄cd̄ d4z ,

and similarly for a Calabi–Yau threefold

(23) c3(J
CY) = − i

3(2π)3
TrR3 .

Note however that the above expressions only hold for the Ricci-flat Calabi–
Yau metric. Since we only have numerical approximations to this and since
we’re interested in checking how well-defined is the resulting metric ap-
proximated using neural networks (See Section 4.3), our curvature density
estimates are always obtained by means of (20) and (21).
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2.3. Topological checks and the curvature distribution

In the pursuit of computing the Ricci-flat metric by varying an initial choice
such as the Fubini–Study metric on the embedding projective space, it be-
hooves to verify that computationally feasible and otherwise known quanti-
ties, such as the Euler number, continue to be evaluated accurately.

For complex surfaces, the second Chern class is the Euler density, which
is given by the following:

(24)

χ
E
=

∫

K3
c2 =

1

2(2π)2

∫

K3
(TrR2 − (TrR)2)

=

∫

K3
d4z

√
gρ− 1

2(2π)2

∫

K3
(TrR)2 ,

where ρ is the Kretschmann scalar, which may be more familiar from gen-
eral relativity, where it is used to distinguish coordinate singularities from
physical singularities, and is analogous to the FµνF

µν term in gauge theory.
In nearly singular hypersurfaces Xλ♯+ϵ, the Euler density receives significant
contributions from the vicinity of the vanishing cycles, these being heavily
curved and nearly singular. For small enough but nonzero ϵ, these regions
are also well separated since they limit to isolated singular points in the
ϵ→ 0 limit, and it is possible to exclude the contribution from these large
curvature regions.

The numerically computed Euler density distribution indeed turns out
to be heavily peaked near zero, indicating that a relatively large portion
of the hypersurface harbors little curvature. The distribution however also
has a long and thin “tail,” indicating rather small (rarely sampled) but
highly curved regions. The bulk of the contributions sampled at essentially
randomly distributed points therefore misses these “curvature peaks.” For
example, in the actually singular hypersurfaces at the special choices λ=λ♯,
the Euler number computation using the Fubini–Study metric finds:

1) At λ = 3
4 , χ(X 3

4

)FS ≈ 8, missing the contribution of 8 singular points;
2) At λ = 1, χ(X1)FS ≈ −8, missing the contribution of 16 singular points;
3) At λ = 3

2 , χ(X 3

2

)FS ≈ 0, missing the contribution of 12 singular points;
4) At λ = 3, χ(X 3

4

)FS ≈ 16, missing the contribution of 4 singular points.

This is consistent with the fact that all singular points areA1-singularities,
the blow-up of each of which contributes χ(P1)= 2, completing the result
to χ(Xλ)= 24 (the “stringy,” i.e., equivariant Euler number [41]) even for
these singular quartics.
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The numerical computation of the Euler density and its integral (the
Euler number) to a predetermined precision shows that a significantly larger
number of sampling points is required for the nearly singular Xλ than for
Xλ with λ far from the four special values, λ♯.

2.4. Some useful results for (singular) K3s

The singular K3 manifolds considered in this work are P3
C
embedded pro-

jective surfaces with isolated singularities. Since the singularities prevent
definition of smooth forms (such as curvature form J on X), we may con-
sider the smooth locus Xs ⊆ X and induce a curvature form J using the
pullback of Fubini–Study metric on P3

C
. This action, however bears the cost

of cn ∈ Ωn,n(Xs) no longer carrying the topological information of X. In or-
der to study the topological Euler characteristic of the resulting variety, we
instead consider Chern–Schwartz–MacPherson classes cSM [44–46]. In partic-
ular, we have the following relation between the cSM(X) and the topological
Euler characteristic χ(X) of a possibly singular variety X [47]:

χ(X) = deg cSM(X) .(25)

Furthermore, we may relate the Fulton class cF (X) to the Chern–Schwar-
tz–MacPherson characteristic class cSM(X) using [48, 49]:

(−1)dimX deg(cF (X)− cSM(X)) =
∑

p∈Sing X

µX(p) ,(26)

where µX(p) is the Milnor number of the singularity p ∈ Sing X. The actual
Euler number can be computed with aid of Proposition 1, which we prove.

Proposition 1. Let X ⊆ P3
C
be a possibly singular projective surface with

curvature form J defined on the smooth locus Xs of X. If |Sing X| <∞ and
the singularities are of type A1, then:

∫

Xs

e(J) + 2|Sing X| = deg cF (X) ,(27)

where cF (X) is the Fulton class of X and e(J) is given by Pfaffian: Pf(J)/(2π)2.
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Proof. Build a stratification of X in the following manner: define

X0 := X ∖ Sing X = Xs

and for every singular point pi ∈ Sing X, define Xi := {pi}. Note that X0

is the largest stratum, and Xi for i > 0 are the singular strata. Using the
results from [50], we may express the integral of Pfaffian Pf(J) on Xs in
terms of the local Euler obstructions Eup(X) [44] as:

1

4π2

∫

Xs

Pf(J) = χ(X)− χ(Sing X) +
∑

p∈SingX

Eup(X)χ({p}) ,(28)

where we have χ(Xs) = χ(X)− χ(Sing X) since X is a complex projective
variety and |Sing X| <∞. Furthermore, χ(Sing X) = |Sing X|. Thus, the
proof reduces to computation of χ(X) and the Euler obstructions Eup(X)
for p ∈ Sing X. Using the results of [51], we may express Eup(X) in terms
of the Milnor numbers:

Eup(X) = 1− (−1)dimXµX∩H(p) ,(29)

where H is a generic hyperplane through p ∈ Sing X. In case of dimCX = 2,
for A1 type singularities p ∈ Sing X, we have µX∩H(p) = 1 (see [52, 53]),
thus, the Euler obstructions vanish. Using the identity (26) and the property
of Chern–Schwartz–MacPherson classes (25), we have:

χ(X) = deg cSM(X) = deg cF (X)−
∑

p∈Sing X

µX(p)(30)

= deg cF (X)− |Sing X| .

Thus, by combining the results, we obtain:

1

4π2

∫

Xs

Pf(J) = deg cF (X)− 2|Sing X| ,(31)

which concludes the proof. □

It is easy to see that the singularities of singular Xλ varieties in the
Cefalú pencil (λ <∞) are of type A1

6. Furthermore, we may regard the

6By symmetry of the defining polynomial, all singularities have equal Milnor
number; moreover, it equals 1, in agreement with the analysis in Section 2.1.
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Cefalú pencil as a smoothing family near each singular Xλ′ . Using [50], we
have the following identity:

lim
λ→λ′

lim
δ→0

∫

Xλ∩Nϵ(Sing X)
e(Jλ) = (−1)2


 ∑

p∈Sing X

µX(p) + µX∩H(p)


(32)

= 2|Sing X| .

From [54–57] it is known that for surfaces admitting Kähler–Einstein
metric with curvature form J , the characteristic forms c2(J) and c1(J) sat-
isfy the Bogomolov–Yau (BY) inequality:

3c2(J)− c1(J)
2 ≥ 0 .(33)

3. Numerical methods

3.1. Calabi–Yau metrics from neural networks

Here we briefly review the existing paradigm of approaches based on di-
rect prediction of the metric tensor by a neural network [10–14]. Focusing,
for example, on the Calabi–Yau threefold case, the metric tensor in local
coordinates has a representation as a Hermitian 3× 3 matrix, with three
independent off-diagonal complex parameters and three independent diago-
nal real parameters. The first order approach would be to have the neural
network predict nine real components in local coordinate charts such that
the metric tensor satisfies the Ricci-flatness conditions on the Calabi–Yau
geometry. However, this may be overly general, and we can consider more
restrictive ansätze (classes of functions which the neural network may rep-
resent) that may help the approximation.

By Yau’s theorem [5], any compact Kähler manifold of complex dimen-
sion n with vanishing first Chern class admits a unique Ricci-flat metric
in each of its h1,1 Kähler classes. That is to say, given a choice of reference
metric gref with Kähler form J ref on the Calabi–Yau X, there exists a Kähler
form JCY associated with the unique Ricci-flat metric. JCY is cohomologous
to J ref and hence given by an exact correction:

(34) JCY = J ref + i∂∂̄ϕ .

Here, ϕ ∈ C∞(X) is a global smooth real function on X. If X is embedded
into a projective space (or a product of projective spaces), the reference
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Kähler form on X may be taken to be the pullback of the canonical Fubini–
Study form in the ambient space, JFS. To approximate the true Ricci-flat
metric on X, one may estimate the correction term in (34) by employing a
neural network to model ϕNN : X → R via a patch invariant scalar function
using local coordinate points, and then subsequently pulling back to X.

Assuming one has found an embedding of the Calabi–Yau X in the
ambient space, ι : X →֒ A, the Ansatz for the predicted metric gCY takes
the following form:7

(35) gCY ≜ ι∗gFS + ∂∂̄ϕNN .

By computing the eigenvalue distribution (see Appendix B), we ver-
ify that the so-defined metric, gCY, continues to be positive (Riemannian),
but defer the analysis8 of the necessary and sufficient conditions for that
throughout the computational framework. While positivity is not explicitly
enforced, the metric is symmetric by construction and its determinant is en-
couraged to be positive by the objective function. If ϕ is a global function,
the associated Kähler form is remains in the same Kähler class as J ref. How-
ever, if ϕ changes between coordinate patches, then this is not guaranteed,
and further precautions must be taken to preserve the Kähler class.

To compute the approximations of the Calabi–Yau metric for twofolds,
we use the cymetric library [14, 19]. For Calabi–Yau threefolds, we also
use a custom implementation of the routines in the cymetric library in
JAX [58], with extended functionality for computing topological quantities.
The cymetric package supports different approaches to numerically approx-
imating the Ricci-flat metric. The model (35) is known as the PhiModel. We
use the PhiModel to obtain metric approximations for the K3 and quintic
examples and the JAX implementation for the quintic examples only. For
the underlying neural network model which approximates ϕ, we use a fully
connected/dense network with 3 hidden layers and 64 nodes in each hidden
layer; see Figure 2.9

A variation of this algorithm is to make ϕNN invariant under C∗ from the
beginning. Instead of taking real and imaginary parts of the homogeneous
coordinates as inputs, one can take the following: ziz̄i/|z|2, Re(ziz̄j/|z|2),
Im(ziz̄i/|z|2) (j < i, where i, j = 1, ..., N + 1). Thus, instead of 2(N + 1) we
have (N + 1)2 inputs for this modified neural network. This results in a

7With a slight abuse of notation, (35) should be interpreted component-wise.
8We thank Oisin Kim for constructive discussion on this subtlety.
9We train for 50 epochs, with batch sizes: (64, 50000) using Adam optimizer with

the default parameters. We use gelu activation functions.
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globally defined function ϕNN on PN
C
. We briefly describe the results derived

from this method in Section 4.3, and leave a more detailed survey of these
techniques for an upcoming publication [59].

z0

z1

z2n−1

... ...64
...64

ϕ

Input layer:
p ∈ X ⊆ Pn

C

g = P ∗gFS + P ∗∂∂ϕ

Figure 2. Neural-network architecture for building the PhiModel using
cymetric.

3.2. Persistent homology

Let f : Σ → R be a function on a simplicial complex Σ such that whenever
σ1 is a facet of σ2 in Σ, f(σ1) ≤ f(σ2). For x ∈ R, define the level set Σx =
f−1(Ix), with Ix = (−∞, x]; this is a subcomplex of Σ. The ordering of values
of f on the simplices in Σ defines a filtration,

(36) ∅ = Σ0 ⊆ Σ1 ⊆ . . . ⊆ Σn = Σ .

For p ≤ q, we have the k-th persistent homology group Hp,q
k (Σ) that is

induced by the inclusion Σp →֒ Σq. In particular, we have homomorphisms
fp,qk : Ck(Σp) → Ck(Σq) modulo boundaries, with Ck(Σp) the free Abelian
group generated by k-simplices in Σp. The persistent homology groups are
the images of these homomorphisms, and the Betti numbers bp,qk are the
dimensions of these groups. Proceeding across the filtration, topological fea-
tures are born and die. For instance, connected components may be added
to the space, cycles can form or be filled in, etc. The barcode is a graphical
way of visualizing this information. Persistent homology provides a micro-
scope that images the shape of a dataset and is a key tool in topological
data analysis. We use this to identify high curvature regions on Calabi–Yau
spaces.
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4. Results

In our analysis we compute the various curvature forms using both the
pullback of the Fubini–Study metric from the ambient space (FS) and the
machine learned approximation to the Ricci-flat metric (ML). This approach
has various advantages. First, having the explicit expressions for the Chern
forms in the case of the Fubini–Study metric, we can ensure that the nu-
merical errors in the topological computations are solely due to the Monte
Carlo (MC) integration. The Fubini–Study metric then serves to check con-
vergence of the integration as we increase the number of points. This also
provides a consistency check for the computations leading to the Euler num-
ber in the various examples considered. These results clarify which limita-
tions are due to the numerical integration and which limitations are due
to the machine learned approximation. As an hors d’œuvre we present the

0 10 20 30 40 50

-206

-204

-202

-200

-198

Number of Sample points (x1000)

χ

Figure 3. Euler number for the Fermat quintic Yψ=0 computed using differ-
ent numbers of sample points.

convergence results for the Monte Carlo integration for the Euler density
of the Fubini–Study metric. Consider the Fermat quintic Yψ=0 and take a
dataset of 100, 000 points uniformly distributed with respect to the pullback
Fubini–Study metric. Then we take a subsample of a given size, ranging
from 1, 000 to 55, 000, and for each subsample size we repeat the experiment
ten times. For a given subsample, we compute the Euler density and out
of the ten repetitions we obtain an estimate of the error (by means of the
standard deviation). The results are shown in Figure 3.

We observe that the variance reduces as the number of points is in-
creased. For 100, 000 points we obtain an Euler number of χ = −196.43,
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roughly 2% off the expected value. In the simplest compactifications of the
heterotic string, the number of generations of particles in the low energy
spectrum is given by the index of the Dirac operator and is 1

2 |χ|. Being off by
even 1% for the quintic reports the wrong number of families of elementary
particles (in the standard embedding of Heterotic String compactifications).

4.1. Characteristic forms on the Cefalú pencil

Let Jλ be a curvature form on Xλ. In the case of singular Xλ, (24) is no
longer true. In studies of moduli dependent metrics [11, 24], it has been
observed that the accuracy of the approximately flat metric is moduli de-
pendent. These ideas prompt us to analyze the performance of neural net-
work based approaches for studying Calabi–Yau spaces which are singular
or nearly singular. In particular, we numerically compute the integral (24)
using the curvature forms JFS

λ and JCY
λ calculated using the induced and nu-

merical Calabi–Yau metrics, respectively. The numerical values of the Euler
characteristic for different Xλ in the vicinity of singular Xλ♯ are shown in
Figure 4. Using the fully-connected network approximation of ϕ, we observe
a decreasing trend of the accuracy as we approach the singular Xλ♯ varieties
in the pencil. In particular, we note that the Euler characteristic computed
using the machine learned approximation to the Calabi–Yau metric deviates
significantly from the expected value of 24 by a margin that is too large to
be attributed to the numerical Monte Carlo integration. Furthermore, we
see a significant discrepancy between the numerical values computed using
JFS
λ and JCY

λ at the singular Xλ. From Figure 4, we notice that for the
cases λ = 1 and λ = 3 we obtain the most significant discrepancies between
Fubini–Study and machine learned results.

In order to make sense of the results for singular Xλ’s, let us con-
sider the degrees of the Chern–Schwartz–MacPherson classes which are pre-
sented in Table 1 and the Monte Carlo computations for the Fubini–Study
metric shown in Table 2. To compute the cSM(Xλ) and cF (Xλ) we use
Macaulay2 [60]. From these tables we can see that the numerical results
are in agreement with Proposition 1.

We also notice that the Fubini–Study results satisfy the Bogolomov–Yau
inequality (33). Note, however, that for singularXλ, we have a non-zero value
for the numerical approximation of the integral of the first Chern class. That
is,

∫

Xλ♯∖Sing Xλ♯

c1(J
FS
λ )2 ̸= 0 ,(37)
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Figure 4. Numerical values of (24) along the Cefalú pencil. Black points
and error bars showing a 95% confidence interval are associated to Fubini–
Study results, while the red dots correspond to the machine learned metric
approximation using fully-connected networks. See the Appendix for details
on integration.

λ deg cSM(Xλ) deg cF (Xλ) |Sing Xλ|
0 24 24 0

3/4 16 24 8
1 8 24 16

3/2 12 24 12
3 20 24 4

Table 1. Degrees of Fulton and Chern–Schwartz–MacPherson classes for Ce-
falú pencil.
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λ # of sing. pt. deg c2(J
FS

λ ) deg c1(J
FS

λ )2 deg(3c2(J
FS

λ )− c1(J
FS

λ )2) ≥ 0

0 0 24 0 True
3/4 8 7.99± 0.03 −16.0± 0.2 True
1 16 −7.99± 0.08 −31.9± 0.3 True

3/2 12 0.0± 0.1 −23.9± 0.3 True
3 4 16.00± 0.09 −8.0± 0.1 True

Table 2. Values of the integrals of the possible top characteristic forms on
Xλ. The integrals were evaluated using MC integration. The uncertainties
correspond to 95% confidence interval.

as shown in Table 2. In addition, note that Table 2 exhibits the following
property:

∫

Xλ♯∖Sing Xλ♯

c2(J)− c1(J)
2 = 24 = χ(K3) ,(38)

which prompts us to formulate the following conjecture.

Conjecture 1. Let X ⊆ P3
C
be a possibly singular K3 surface, whose smooth

locus Xs has curvature form J induced by the Fubini–Study metric on P3
C
.

If the singularities of X are isolated and of type A1, then (38) holds true.

For a singular algebraic surface Xλ♯ with λ♯ <∞, the crepant (c1-preser-
ving) desingularization of an isolated A1-singularity replaces it with an ex-
ceptional P1-like divisor, S, with the self-intersection [S]2 = −2.

The deg c1(J
FS
λ )2 column in Table 2 evidently equals the total sum of

these isolated contributions — as if Xλ♯ was desingularized. We thus arrive
at the next conjecture.

Conjecture 2. Each Xλ♯ in (1) with λ♯ <∞ may be identified with a
global finite quotient, and the deg c2(J

FS
λ ) column contributions to χ(K3 ) in

Table 2 appropriately display the leading term in (3).

This corroborates our expectation that X3/2 and X3 are also identifiable
as global finite Z2 quotients as shown in (4).

We note that Conjecture 1 fails if the singular locus of X contains a
singularity of dimension greater than zero, which is possible for geometries
that combine the Dwork and the Cefalú deformations.
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(a) λ = 0.77 (b) λ = 1.01 (c) λ = 1.51 (d) λ = 2.98

Figure 5. Visualization of the real subset of Xλ♯+ϵ in a patch {z0 ̸= 0}. The
coloring is defined by the values of the trained spectral network ϕ. (See
Section 4.3.)

We shall separately consider each singular Xλ♯ in the following. The
visualizations of ϕ for some near-singular surfaces Xλ are shown on Figure 5.
The training progress is shown on the Figure 6.

100 101

Epochs
10 3

10 2

10 1

-m
ea

su
re

Training on Cefalú surfaces

= 0.0
= 0.75
= 1.00
= 1.50
= 3.00

Figure 6. Evolution of the σ loss when training at λ = λ♯. The σ-measure
is evaluated on validation set.

4.1.1. λ = 0. We first consider the smooth K3 obtained from turning off
the Cefalú deformation. This supplies a reference point with which to com-
pare calculations on the singular K3 spaces corresponding to the special
values λ = λ♯ ∈ {3/4, 1, 3/2, 3}. The distribution of the values of c21 is shown
on the Figure 7. There we see a widespread distribution for the Fubini–Study
metric curvature distribution, while for the trained metric the curvature den-
sity concentrates in a sharp peak around zero, as expected for a flat metric.
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Also notice in Figure 8 the Euler density distribution for the learned metric
is positive at all points, in accordance to the Bogolomov-Yau inequality.

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.00.0
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cFS2

1

cCY2

1

Figure 7. Distribution of the values of c21 using both Fubini–Study and ma-
chine learned Calabi–Yau metrics for the Fermat quartic.

Similarly, the distribution of the values of c2 is shown on the Figure 8.
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Figure 8. Distribution of the values of c2 using both Fubini–Study and ma-
chine learned Calabi–Yau metrics for the Fermat quartic.

The integral of the Euler density gives the following values:
∫

X0

c2(J
FS
0 ) ≈ 24.23 ,

∫

X0

c2(J
CY
0 ) ≈ 24.04 ,(39)



✐

✐

“3-Hubsch” — 2024/5/29 — 18:29 — page 1128 — #22
✐

✐

✐

✐

✐

✐

1128 P. Berglund, G. Butbaia et al.

where the integral is approximated using 60, 000 points.

4.1.2. λ = 3/4. The number of points in the singular locus Sing X3/4 is
8. The singular points of X3/4 are of form:

Sing X3/4 = {[±1 : ±1 : ±1 : ±1], . . . } .(40)

We consider a small deviation from λ = 3/4 by considering varieties
X3/4±ϵ for some sufficiently small ϵ > 0. This allows us to study the behav-
ior of the Ricci-flat metric and the curvature thereof as we approach X3/4.
In particular, by observing the histogram of the Euler density on Figure 9,
we see that the varieties are not uniformly curved. The histograms high-
light the contrast between the Fubini–Study and machine learned curvature
distributions. A persistent feature is the positivity of the curvature for the
machine learned flat approximation. Näıvely, this should be expected from
the Bogolomov–Yau inequality, because a nearly Ricci-flat metric must have
c1(J)

2 close to zero. This feature is persistent for all values of λ considered
in this work. Let us now explore the curvature tails, i.e., the high curvature
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Figure 9. Distribution of the values of the Euler density e(J3/4±ϵ) using both

JFS

3/4±ϵ and J
CY

3/4±ϵ.
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regions. In particular, let e(J3/4±ϵ) denote the Euler density corresponding
to the curvature form J3/4±ϵ and consider a subset of X3/4±ϵ defined by a
one parameter family:

Xδ
3/4±ϵ := {p ∈ X3/4±ϵ | |e(J3/4±ϵ)(p)| ≥ δ} ,(41)

where the cut-off parameter δ ∈ R for the Euler density limits to the high
curvature regions in Xλ. The motivation for defining δ is to construct a
multi-parameter persistent homology, with δ controlling the cut-off of cur-
vature. We observe that there exists a sufficiently large value of δ > 0 and
sufficiently small value of ϵ > 0 such that that the high curvature regions
become disconnected in Xδ

3/4±ϵ.
To study the high Euler density regions, we consider zeroth persistent

homology groups Hr
0(X

δ
3/4±ϵ). In this expression, r is the filtration parame-

ter, i.e., the radius of the sphere around each point on the Calabi–Yau, δ is
the lower cutoff of the curvature, and ϵ is the displacement from the singular
locus λ = 3/4 in complex structure moduli space.

Hence, the high curvature regions close to the singularity are at δ ≫
1 and 0 < ϵ≪ 1. For λ = 3/4, we chose ϵ = 0.02 and normalized δ = 0.5
(normalization is such that the value of 1 corresponds to the maximum
value of Euler density), and computed the filtration in the range 0 ≤ r ≤ 2.
For larger values of r, the persistence diagram of Hr

0(X
δ
3/4±ϵ) has stabilized

to a single connected component.
For simplicity, we compute the persistent homology in each patch sepa-

rately using the Euclidean metric. Specifically, we cover the ambient space
P3 by sets Di = {zi ̸= 0} and consider homology groups of Xδ

3/4±ϵ ∩Di. For

ϵ = 0, using (40), note that there are total of 8 singular points in each such
intersection. In order to ensure that the variety admits well-defined Ricci-
flat metric, we consider non-zero ϵ > 0. Thus, the number of generators for
different values of δ > 0 at different points in the filtration at λ = 0.73 is
shown in Figure 10 whereas, the persistence barcode for some sufficiently
large δ > 0 (in the sense as defined above) is shown in Figure 11. There,
for each patch Di, we observe 8 cycles with large persistence, each corre-
sponding to some neighborhood of a point p ∈ Sing X3/4. Typical points in
each cycle are shown in the Table 3 and are thus consistent with points in
Sing X3/4.

4.1.3. λ = 1. The number of points in the singular locus Sing X1 is 16.
The singular points of X1 are of form:

Sing X1 = {[±1 : ±1 : ±1 : 0], [±1 : ±1 : 0 : ±1], . . . } .(42)
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Patch Point Closest point in Sing X3/4

D0 [1.0 : 0.87 : −0.93 : −0.84] [1 : 1 : −1 : −1]
[1.0 : −0.86 : −0.83 : 0.96] [1 : −1 : −1 : 1]
[1.0 : −0.82 : −0.87 : −0.82] [1 : −1 : −1 : −1]
[1.0 : −0.95 : 0.98 : 0.95] [1 : −1 : 1 : 1]
[1.0 : −0.95 : 0.80 : −0.87] [1 : −1 : 1 : −1]
[1.0 : 0.97 : −0.95 : 0.98] [1 : 1 : −1 : 1]
[1.0 : 0.84 : 0.91 : 0.96] [1 : 1 : 1 : 1]
[1.0 : 0.92 : 0.82 : −0.89] [1 : 1 : 1 : −1]

Table 3. Typical points in each of the large persistence cycle of Hr
0(X

δ
0.73 ∩

D0).
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Figure 10. Dimension of H0(Σ
δ
r) for different values of δ > 0, where Σδr is

a Vietoris–Rips filtration of Xδ
0.73 ∩D0. Notice sharp jump in persistence

(difference between death and birth indices in Vietoris–Rips filtration) of
n = 8 generators. The normalized threshold δ is such that normalized δ = 1
corresponds to the largest value of the Euler density.
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Figure 11. Persistence barcode and diagram of Hr
0(X

δ
0.73 ∩D0) where D0 =

{z0 ̸= 0}. The number n indicates the number of generators γ with persis-
tence pers(γ) > 0.7 (colored as red).
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Similarly as in Section 4.1.2, we contemplate deviations from λ = 1 by con-
sidering manifolds X1±ϵ for some sufficiently small ϵ > 0. Histograms of the
Euler density e(J1±ϵ) for the Fubini–Study metric as well as the machine
learned approximation are shown in Figure 12. Similarly, we see that X1±ϵ

is not uniformly curved, thus, we consider Xδ
1±ϵ defined similarly as a one

parameter family:

Xδ
1±ϵ := {p ∈ X1±ϵ | |e(J1±ϵ)(p)| ≥ δ} .(43)

The threshold parameter δ ∈ R is not necessarily the same as in Section 4.1.2.
For studying the high Euler density regions, we analogously consider per-
sistent homology groups Hr

0(X
δ
1±ϵ ∩Dk) for each patch Dk. For ϵ = 0, each

patch contains: 3× 22 = 12 singular points. The persistence barcode at λ=
0.98 is shown in Figure 13. For each patch Di, we observe 12 cycles with
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Figure 12. Distribution of the values of the Euler density e(J1±ϵ) using both
JFS
1±ϵ and J

CY
1±ϵ.

large persistence, each corresponding to some neighborhood of a point p ∈
Sing X1. Typical points in each cycle are shown in Table 4 and are thus also
consistent with the points (42) in Sing X1.
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Figure 13. Persistence barcode ofHr
0(X

δ
0.98 ∩D0) whereD0 = {z0 ̸= 0}. The

number n indicates the number of generators γ with persistence pers(γ) >
0.7 (colored as red).

.

Furthermore, note that the Euler density e(JCY
1±ϵ) also satisfies the same

positivity property as X3/4, that is: e(J
CY
1±ϵ) ≳ 0, even in the case when ϵ = 0.

Patch Point Closest point in Sing X1

D0 [1. : −0.96 : 0.97 : 0.04] [1 : −1 : 1 : 0]
[1. : 0.98 : 0.95 : 0.04] [1 : 1 : 1 : 0]
[1. : −0.05 : −0.99 : 0.95] [1 : 0 : −1 : 1]
[1. : 0.85 : 0.22 : 1.] [1 : 1 : 0 : 1]
[1. : −0.92 : 0.02 : −0.97] [1 : −1 : 0 : −1]
[1. : −0.19 : 0.86 : −0.99] [1 : 0 : 1 : −1]
[1. : 0.19 : −0.99 : −0.86] [1 : 0 : −1 : −1]
[1. : 0.90 : −0.03 : −0.91] [1 : 1 : 0 : −1]
[1. : −0.99 : −0.96 : −0.08] [1 : −1 : −1 : 0]
[1. : 0.15 : 0.88 : 0.98] [1 : 0 : 1 : 1]
[1. : 0.96 : −0.85 : −0.16] [1 : 1 : −1 : 0]
[1. : −0.94 : −0.10 : 0.98] [1 : −1 : 0 : 1]

Table 4. Typical points in each of the large persistence cycle of Hr
0(X

δ
0.98 ∩

D0).

4.1.4. λ = 3/2. The number of points in the singular locus Sing X3/2 is
12. The singular points of X3/2 are of form:

Sing X3/2 = {[±1,±1, 0, 0], . . . } .(44)

Similarly, we consider deviation from λ = 3/2 by considering X3/2±ϵ for
some sufficiently small ϵ > 0. The histogram of the Euler density e(J3/2±ϵ)
is shown in Figure 14. For each k, the patch X3/2 ∩Dk contains total of
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Figure 14. Distribution of the values of the Euler density e(J3/2±ϵ) using

both JFS

3/2±ϵ and J
CY

3/2±ϵ.

3× 2 = 6 singular points. The persistence barcode for Xδ
1.48 ∩D0 is shown

in Figure 14. For each patch Di we observe 6 cycles with large persistence,
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Figure 15. Persistence barcode ofHr
0(X

δ
1.48 ∩D0) whereD0 = {z0 ̸= 0}. The

number n indicates the number of generators γ with persistence pers(γ) >
0.7 (colored as red).

.

each corresponding some neighborhood of a point p ∈ Sing X3/2. Typical
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points in each cycle are shown in the Table 5 and are consistent with the
points (44).

Patch Point Closest point in Sing X3/2

D0 [1. : 0.04 : −0.96 : 0.15] [1 : 0 : −1 : 0]
[1. : −0.97 : −0. : 0.06] [1 : −1 : 0 : 0]
[1. : 0.93 : 0.11 : 0.03] [1 : 1 : 0 : 0]
[1. : −0.06 : −0.01 : 0.96] [1 : 0 : 0 : 1]
[1. : −0.02 : 0.90 : −0.14] [1 : 0 : 1 : 0]
[1. : 0.17 : 0.04 : −1.] [1 : 0 : 0 : −1]

Table 5. Typical points in each of the large persistence cycle of Hr
0(X

δ
1.48 ∩

D0).

4.1.5. λ = 3. The number of points in the singular locus Sing X3 is 4.
The singular points of X3 are of form:

Sing X3 = {[1 : 0 : 0 : 0], [0 : 1 : 0 : 0], . . . } .(45)

Similarly, we consider deviation from λ = 3 by considering X3 for sufficiently
small ϵ > 0. The histogram of the Euler density e(J3±ϵ) is shown in Figure 16.
For each k, the patch X3 ∩Dk contains only a single singular point, thus,
instead we consider the persistence barcode ofXδ

2.98, shown on the Figure 17.

Point Closest point in Sing X3

[0.04 : −0.03 : 1. : −0.07] [0 : 0 : 1 : 0]
[0.03 : −0.10 : 0.08 : 1. ] [0 : 0 : 0 : 1]
[1. : 0.06 : 0.01 : 0.0 ] [1 : 0 : 0 : 0]
[0.00 : 1. : 0.04 : −0.05] [0 : 1 : 0 : 0]

Table 6. Typical points in each of the large (pers(γ) > 0.7) persistence cycle
of Hr

0(X
δ
2.98).

The typical points in each large persistence generator of Hr
0(X2.98) are

shown in Table 6, which is consistent with the singular locus (45).

4.1.6. Asymptotics near large Euler density regions. In the previ-
ous sections we have considered the large curvature regions in the vicinity
of the singularities for the various Xλ♯ in the Cefalú pencil. Taking points in
Xλ♯±ϵ with a given curvature density e(J) larger than a given parameter t,
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Figure 16. Distribution of the values of the Euler density e(J3±ϵ) using both
JFS
3±ϵ and J

CY
3±ϵ.
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Figure 17. Persistence barcode of Hr
0(X

δ
2.98). The number n indicates the

number of generators γ with persistence pers(γ) > 0.7 (colored as red).

we managed to identify a clustering of points consistent with the singularity
distribution for Xλ♯ . In addition to the Euler density c2(Jλ), we may also
consider c1(Jλ)

2. The top forms c2(Jλ) and c1(Jλ)
2 induce filtrations of Xλ
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Figure 18. Projection of Xλ♯+ϵ,t ∩D3 to (Re(z0), Re(z1), Re(z2)) for some
large t > 0. The shading is induced by the Euler density: e(Jλ♯+ϵ). The red
labels indicate the singular points of Xλ♯ ∩D3.

.

defined by:

(46)
X1
λ,t1 :=

{
p ∈ Xλ |

∣∣c1(Jλ)2(p)
∣∣ < t1

}
,

X2
λ,t2 := {p ∈ Xλ | |c2(Jλ)(p)| < t2} .

To better visualize the occurrence of large curvature values, we pick a
patch D3 = {z3 ̸= 0} and for all λ♯ we construct the scatter plots of Xλ,t ∩
D3, by projecting each point p = [z0 : z1 : z2 : 1]∈Xλ,t to (Re(z0),Re(z1),
Re(z2)). This allows us to visualize the clustering behavior observed in the
persistence diagrams shown on Figures 11, 13, 15 and 17. We pick values
of λ to be λ♯ + ϵ for some small |ϵ| > 0 and pick sufficiently large threshold
t > 0 to highlight the clustering behavior. The results of this are shown on
Figure 18. We also include similar plots of the curvature on for the real parts
of Xλ in the Figures 19 and 20. Using the definitions for X1

λ,t1
and X2

λ,t2
,
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(a) λ = 0.98, JCY (b) λ = 1.48, JCY

(c) λ = 0.98, JFS (d) λ = 1.48, JFS

Figure 19. Plot of Xλ♯ ∩D3 ∩ R3 with shading induced by the Euler density.
Brighter colors denote larger value of e(J). In order to correctly take into
account the identification λp ∼ p for λ ∈ C×, we have used spectral networks
to compute ϕ (See 4.3).

we may study the asymptotic behavior of F1 and F2 defined by:

F1(t1) :=

∫

X1

λ,t1

c1(Jλ)
2 and F2(t2) :=

∫

X2

λ,t2

c2(Jλ) .(47)

The numerical result for F2 is shown on Figure 21. As can be observed from
Figure 21, the F FS

2 , corresponding to the Fubini–Study metric, converges to
the values shown in Table 2, whereas FCY

2 seems to converge in all cases
with the exception of λ = 1. Comparing to the learning curves in Figure 6,
we see that λ = 1 exhibits the poorest training (i.e., highest sigma loss). We
must also highlight the case of λ = 3 as it gives the best results in terms of
convergence and also yields the smallest loss among the singular models, this
can be due to the fact that we have the smallest number of high curvature
regions for λ = 3.
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(a) λ = 0.98, JCY (b) λ = 1.48, JCY

(c) λ = 0.98, JFS (d) λ = 1.48, JFS

Figure 20. Plot of Xλ♯ ∩D3 ∩ R3 with shading induced by the c21. Brighter
colors denote larger value of c21(J). In order to correctly take into account the
identification λp ∼ p for λ ∈ C×, we have used spectral networks to compute
ϕ (See 4.3).

Similar behavior can be observed with F1, for which the result of numer-
ical computation is shown on Figure 22. As it can be seen in that figure, the
quantity F1 computed using the machine learned metric becomes unstable
and diverges once normalized log(1 + t) is greater than 0.5. Observing the
histogram on Figure 23 corresponding to c21 shows a similar disagreement:
the Fubini–Study and Calabi–Yau metric produce different results.

As a cautionary note, we observe that local data derived from the metric,
such as the extent to which the Monge–Ampère equation is satisfied point-
wise, does not necessarily indicate whether the metric is able to reliably
recover global, topological properties of X. Therefore, such local quantities
may be unable to provide a complete diagnostic of the phenomenological
suitability of the metric.
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Figure 21. Asymptotic behavior of F2 for both Fubini–Study and Calabi–
Yau metrics.
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Figure 23. Distribution of the values of c1(Jλ)
2 using both JFS

λ and JCY
λ .

.

4.2. Dwork quintic

Similarly to the Dwork quartic, the Dwork quintic can be defined as a 1-
parameter family of Calabi–Yau threefolds:

Zψ =

{
4∑

i=0

z5i − 5ψ

4∏

i=0

zi = 0

}
⊆ P4

C .(48)

Recall that the Dwork quintic family is singular iff the complex structure
parameter ψ ∈ C is a 5-th root of unity.

We may generalize Proposition 1 to n-folds with isolated A1 singularities
as follows:

Proposition 2. Let X ⊆ Pm be a possibly singular projective variety with
curvature form J defined on the smooth locus Xs of X. If |Sing X| <∞ and
the singularities have type A1, then:

∫

Xs

e(J) = deg cF (X)− 2(−1)dimX |Sing X| .(49)

Proof.

(50)

∫

Xs

e(J) = χ(X)− (−1)dimX |Sing X|

= deg cF (X)− 2(−1)dimX |Sing X| .
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Figure 24. Curvature distributions c3(Jψ) for the Fubini–Study and machine
learned metric approximations. These distributions were obtained with the
JAX implementation.

□

Similarly as for Cefalú/Dwork quartic pencils, we consider the histograms
of different possible top forms generated by the products of the characteristic
forms. The histograms are shown on Figure 25.
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Figure 25. Distribution of the values of the c31 for both JFS
ψ and JCY

ψ at
ψ ∈ {1/2, 1}.

4.2.1. Toric quintic vs. CICY quintic. There are 7, 890 Calabi–Yau
threefolds realized as complete intersections of polynomial equations in prod-
ucts of projective space [61]. Some of these are also Calabi–Yau hypersur-
faces in toric varieties obtained from triangulations of reflexive polytopes in
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the Kreuzer–Skarke list [20]. The quintic in P4 is one such geometry with a
double description. Thus, we can calculate a numerical Ricci-flat metric us-
ing cymetric by considering this manifold in either language. The machine
learned metric as a complete intersection Calabi–Yau (CICY) is better than
the one obtained from the toric description, where in the latter a random
choice of coefficients is used for the degree five defining equation, which is
consistent with the general observation that the accuracy of the numerical
method is significantly dependent on the choice of a point in the complex
structure moduli space.
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Figure 26. Distribution of curvature densities c31 for the toric quintic with
random choice of coefficients on the left, CICY Fermat quintic (ψ = 0) in
the middle, and toric quintic at the same point in complex structure moduli
as Fermat quintic on the right.

Indeed, by fixing the coefficients to be the same as that of the Fermat
quintic, we see that the histogram for c31, shown on the right in Figure 26, is
similar to that of CICY Fermat quintic shown in the middle in Figure 26.

Type deg c3(J) deg c1(J) ∧ c2(J) deg c1(J)
3

ToricFS −183.87 16.24 16.58
Toric −193.46 11.31 8.27

QuinticFS −196.43 1.28 −0.28
Quintic −203.55 0.09 0.00

Table 7. Values of the integrals of the possible top characteristic forms for
threefold. The integrals were evaluated using MC integration with 100, 000
points.
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4.3. Epilogue: Globally defined φ-models and spectral neural
networks

Note that the neural network architecture described above does not define a
global smooth function ϕ : X → R. This in turn implies that JCY and J ref are
not necessarily in the same Kähler class under the Ansatz JCY = J ref + ∂∂ϕ,
in fact, JCY might not even be well-defined. We observe this discrepancy
by numerically studying the global topological characteristics of (X, JCY).
In particular, from Figure 4, it is evident that the numerical computation
of the topological Euler characteristic χ(X), computed using (51) deviates
significantly from the expected value of χ(X) = 24 for non-singular X.

χ(X) =

∫

X
Pf(JCY) ≈ (−2i)2

2!

1

N

N∑

i=1

w(pi)c2(pi)

(Ω ∧ Ω)(pi)
.(51)

Furthermore, note that if ϕ had been a global function on X, then, the
difference of Pfaffians must be exact [62, 63]:

Pf(JCY)− Pf(J ref) = dTPf(JCY, J ref) .(52)

Thus, the numerical approximation (51) should produce results which are
within the expected χ(X) = 24 within the margin of the error of numerical
integration error.

Recently there has been some progress in designing C-homogeneous and
holomorphic neural networks [12, 64]. The idea is to construct pair-wise
products of the homogeneous coordinates and apply activation functions
which are holomorphic. This allows one to define networks ϕ (called biholo-
morphic networks) such that:

∀λ ∈ C : ϕ(λ · z) = |λ|2kϕ(z) , for some k ∈ N .(53)

However, although homogeneous, ϕ does not define a global function on X,
but a section of OX(k)⊗OX(k).

Motivated by the observations above, we propose a modified method
which allows us to define ϕ to be a global function in C∞(X). To define the
setup, let X be a CICY defined as a zero locus of homogeneous polynomials
{fi}i=1,...,N where fi ∈ C[Z0, . . . , Zni

], thus X lies in P
n1

C
× · · · × P

nN

C
. For

each component Pni

C
of the product, define a mapping:

αni
: Pni

C
−→ Cni+1,ni+1 ,(54)
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whose action on a general point p ∈ [Z0 : Z1 : . . . : Zni
] ∈ P

ni

C
is defined as:

αni
(p) =




Z0Z0

|Z|2
Z0Z1

|Z|2 . . .
Z0Zni

|Z|2
Z1Z0

|Z|2
Z1Z1

|Z|2 . . .
Z1Zni

|Z|2
...

...
. . .

...

Zni
Z0

|Z|2
Zni

Z1

|Z|2 . . .
Zni

Zni

|Z|2




.(55)

Note that αni
is a well-defined global smooth function on P

ni

C
and thus its

restriction αni
|X is a well-defined smooth function on X. Furthermore, note

that the components of αni
correspond to kϕ = 1 basis used in [65] to build

the eigenfunctions of Laplace operator ∆, thus we shall refer to the layer of
the neural network which applies αn as a spectral layer and the correspond-
ing neural network - a spectral neural network. We then decompose αni

into
a real and imaginary components:

ReIm: αni
(p) 7→ (Re ◦ αni

(p), Im ◦ αni
(p)) /“redundancies” .(56)

Bearing in mind that αni
is a Hermitian matrix, we see that ReIm ◦ αni

is
made up of(ni + 1)2 independent real entries.We then define ρ:R

∑
i
(ni+1)2−→

R to be a neural network with d-layers and Wi-nodes in layer i ∈ {1, . . . , d}.
Finally, we combine these mappings to define ϕ : X → R as:

ϕ := ρ ◦
(
ReIm ◦ αn1

|X , ReIm ◦ αn2
|X , . . . , ReIm ◦ αnN

|X
)
.(57)

That ϕ is well-defined on X is trivial, since for all

p=([Z
(1)
0 : . . . : Z(1)

n1
], . . . , [Z

(N)
0 : . . . : Z(N)

nN
])

in X, and for every λ = (λ1, . . . , λN ) ∈ C×N , we have:

(58)

ϕ(λ · p) = ϕ((λ1p1, . . . , λNpN ))

= ρ ◦
(
ReIm ◦ αn1

(λ1p1), . . . , ReIm ◦ αnN
(λNpN )

)

= ρ ◦
(
ReIm ◦ αn1

(p1), . . . , ReIm ◦ αnN
(pN )

)
= ϕ(p) .

The spectral neural network architecture of ϕ is shown on Figure 27. Note
that the spectral networks with 0 hidden layers and x 7→ ln(x) activation
function are equivalent to algebraic metrics with k = 1 [24, 25]. In Figure 28,
we present the values for the Euler number obtained using the spectral neural
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Figure 27. Spectral neural network architecture: Prior to the fully connected
neural network we introduce the spectral layer, taking real and imaginary
parts of C∗-invariant quantities.

networks. The numerical integrals computed using the spectral networks
sketched in Figure 27 are mostly close to the expected Euler characteristic,
within the margin of the error due to the Monte Carlo integration.
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Figure 28. Numerical values of (24) along the Cefalú pencil. Black points
and error bars showing a 95% confidence interval are associated to Fubini–
Study results, while the red and blue dots correspond to the machine learned
metric approximation using fully-connected and spectral networks, respec-
tively. See Appendix A for the details on integration.

The numerical values of (24) along the Cefalú pencil near λ = 1 are
shown on the Figure 29. There are no convergence issues for spectral network
Euler number at λ = 1, in sharp contrast with the fully connected neural
network. The convergence plot in shown in Figure 30.

The plots in Figure 30 highlight a sharp contrast among the ϕ-model
neural network and the spectral neural network. As one includes points
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Figure 29. Numerical values of (24) along the Cefalú pencil near λ = 1. The
plot markers are the same as in Figure 4. The value of χCY using fully-
connected network at λ = 0.99 is off the chart: χCY ≈ 85510.
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Figure 30. Convergence plot for c2(Xλ) around λ = 1; the spectral network
results (green, “s” subscript) show significant improvement.

λ |Sing X| deg c2(J
FS

λ ) deg c2(J
CY

λ ) deg c2(J
CY

λ )
w/ Spectral Layer w/o Spectral Layer

0 0 24 24 24
3/4 8 7.99± 0.03 9.48 10.52
1 16 −7.99± 0.08 −6.71 117.59

3/2 12 0.0± 0.1 −2.07 5.90
3 4 16.00± 0.09 15.77 9.44

Table 8. Values of the Monte Carlo approximations of the integrals of
c2(Xλ). Note that the results computed using spectral networks are closer
to the expected value. The points that were sampled in order to compute
above integrals are different than the ones sampled in Figure 4.

close to the singularities, the curvature for the ϕ-model starts diverging.
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This suggests that as one approaches the singularity the neural network
is not to be trusted. This is not the case for the spectral networks. Here,
as one continues adding points to the curvature integral it keeps following
the Fubini–Study. In Table 8, we notice that spectral neural networks and
Fubini–Study produce similar results for the curvature.

5. Conclusions

In this work we have considered two families of Calabi–Yau manifolds: the
Cefalú family of quartics and the more broadly studied Dwork quintic fam-
ily. For both of these, we have developed the algorithms to compute topo-
logical quantities derived from their corresponding Chern characters. This
implementation can be easily extended to the whole CICY dataset. Our al-
gorithms utilize some of the neural network approximation models of the
cymetric package: the so called PhiModel. We also employ our own JAX

implementation of this.
Computation of topological quantities is a crucial fitness check for nu-

merical Calabi–Yau metrics. At first one might think that these relatively
straightforward computations automatically work out as they are metric
independent. However, one has to bear in mind that the possible neural
network approximations constitute a far broader set of solutions than that
of globally defined Kähler metrics. Choosing smooth activation functions
for the neural network ensures that the metric is smooth over each of the
patches. Similarly, if the metric is obtained from the so-called PhiModel,
over each patch one has dJ = 0, satisfying some local form of Kählerity. In
the matching of patches, however, it is not guaranteed a priori that the per-
turbation ϕNN respects the Kähler transformation rules of the seed Kähler
potential (in our case, the Fubini–Study potential). That is an inherent is-
sue with these numerical approximations and for the cases in which this
situation is non-negligible we expect significant deviations when computing
topological quantities.

Deviations from the expected values are not necessarily due to the ap-
proximation: they might also be due to the sample size. In the smooth
Calabi–Yau cases, we have observed that the neural network approximation
to the flat metric behaves well over the entire manifold, and convergence
to the right Euler number is achieved. In some of the singular cases, the
neural network approximation gives curvature values in the vicinity of the
singularities, that once weighted in the Euler number integral produce diver-
gent results. While this is expected, it is also problematic, as increasing the



✐

✐

“3-Hubsch” — 2024/5/29 — 18:29 — page 1148 — #42
✐

✐

✐

✐

✐

✐

1148 P. Berglund, G. Butbaia et al.

number of points inevitably brings us close to the singularities, leading ul-
timately to unacceptable metrics. We notice that these situations can occur
in the case of the ϕ-model neural network for some values of λ. As a sur-
prising result, we observe that for the spectral networks, the curvatures near
the singularities remain in check and that the global computations match
the Fubini–Study results within numerical errors. We observed that for all
values of λ considered here there is convergence for the Euler number as
one increases the number of points. This suggests that in the singular cases,
the spectral neural network is a good generalization of the metric in high
curvature regions. The best results were obtained in cases where the number
of points used for training is of similar order as the number of points used
for the integration.

Spectral networks seem to be able to provide reliable topological data
even for singular manifolds. As a proof of principle we demonstrated how
the spectral network predictions for the Euler number are within error bars
for the Cefalú family of quartics. The spectral networks also lead to smaller
sigma losses compared to a standard neural network approximation: As we
see in Figure 31, the σ loss for the spectral network at λ = 0 is below 10−3.
This is consistent with the level of accuracy attained for k = 8 in [25].

100 101

Epochs

10 3

10 2

-m
ea

su
re Fully connected

Spectral

Figure 31. Evolution of σ loss at λ = 0 using fully-connected and spectral
networks indicates a better performance for the latter. The σ loss is evaluated
on the validation set. This network is elaborated further in [59].

A globally consistent Calabi–Yau metric must be able to produce the
right value for any topological value on the manifold. Having numerical ap-
proximations implies having errors in the computation. A natural question
is what error values are tolerable and how they can be related to the error



✐

✐

“3-Hubsch” — 2024/5/29 — 18:29 — page 1149 — #43
✐

✐

✐

✐

✐

✐

Machine learned Calabi–Yau metrics and curvature 1149

(loss) function in the numerical approximation. Clearly, topological quanti-
ties are not sensible to flatness, but as we already highlighted, they are a
crucial check for the global consistency of the metric approximation. This
global consistency if of utmost importance, particularly in computation of
“global” quantities such as the Yukawa couplings for a given string com-
pactification model.

Our work makes use of the JAX
∫
Q c3, where the third Chern form c3 is

derived from the curvature two-form on a Hermitian manifold. Using a three-
layer densely connected neural network with 64 units in each layer as the
ϕ-approximant,10 employing 1024 points in the Monte Carlo integration, this
computation takes 387ms± 7.54 ms using JAX compared to 4.41s± 18.3 ms
(mean ± standard deviation over 7 runs.)

We intend to open source our codebase as a fully-fledged package in a
forthcoming publication [59].
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Appendix A. Numerical integration

The sampled points are not uniformly distributed with respect to the desired
Ricci-flat metric [66, 67]. Instead, the density sampled points ρ is built in
such a way that

(A.1)

∫

X
dVolFS ρ = 1 ,

having the condition that the sampled points are uniformly distributed with
respect to the Fubini–Study metric ρ ∼ 1/dVolFS, we obtain the following
expression

(A.2) ρ =
1

VolCY

dVolCY
dVolFS

.

with dVolCY = Ω ∧ Ω̄. In this fashion, integration of a given function over
the Calabi–Yau one obtains

(A.3)

∫

X
dVolCY f(z, z̄) = VolCY

∫

X
dVolFS f(z, z̄) ρ .

Let’s now consider the integration as a finite sum of Np points uniformly
distributed with respect to the Fubini–Study metric, (A.1) reads

(A.4)

∫

X
ρ dVolFS =

VolFS
Np

∑

i

ρ(pi) = 1 .

Similarly, (A.3) reads:

(A.5)

∫

X
dVolCY f(z, z̄) = VolCY

VolFS
Np

∑

i

f(pi) ρ(pi)

=
VolCY∑
i ρ(pi)

∑

i

f(pi) ρ(pi) .

Special care needs to be taken when dealing with topological quantities,
such as

(A.6)

∫

X
c3 =

∫

X
dVolFS

c3
dVolFS

=
VolFS
Np

∑

i

c3
dVolFS

ρ(pi) .
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Using a different expression for the Euler number (from the Chern–
Gauss–Bonnet theorem)

(A.7) χ =

∫

X
dVolg K(Rg) ,

where K(Rg) is a function of the Riemann tensor. Then if we want to com-
pute the Euler number for the Fubini–Study metric we get:

(A.8) χFS =
VolFS
Np

∑

i

K(RFS) .

For the machine learned numerical metric

(A.9) χML =
VolFS
Np

∑

i

K(RML)
dVolML

dVolFS
.

Appendix B. Plurisubharmonic property (metric positivity)

In order for Jϕ = JFS + ∂∂ϕ to define a Kähler metric, the corresponding
Riemannian metric must be positive definite, that is, ϕ ∈ C∞(X) must be
JFS-psh function, that is, for every point p ∈ X, there is a neighborhood U
of p, s.t. locally J |U = ∂∂(ψ + ϕ), where ψ + ϕ is psh on U . Equivalently, ϕ
is JFS-psh if we have:

JFS + ∂∂ϕ ≥ 0 ,(B.10)

in the sense of currents. The strict positivity is guaranteed by non-degeneracy
of Jϕ. We may numerically check this, by computing the eigenvalues of the
Hermitian matrix of coefficients of Jϕ. Then, Jϕ > 0 iff all of the eigenvalues
λ of its matrix of coefficients are positive.

The numerical result for λ = 0.99 using a spectral network ϕ compared
against JFS is shown on Figure B1. We observe a similar positivity of eigen-
values for different values of λ in the Cefalú pencil. However, it must be noted
that although this is a necessary condition for ϕ to be JFS-plurisubharmonic,
this is not sufficient.

Appendix C. Classical volume terms dominate

As an additional crosscheck we must ensure that the numerical quantities
obtained are the most relevant even after including quantum corrections.
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Figure B1. Distribution of the minimum of the eigenvalues over Xλ for
λ=0.99.

Writing the Kähler form in a basis for H(1,1)(X,Z) as J = tiJi we obtain
the volume as

(C.11) V =

∫

X
J ∧ J ∧ J = kijkt

itjtk ,

where kijk are the triple intersection numbers. Take the Kähler potential for
the quintic

(C.12) K(z, z̄) =
t

2π
log(zz̄)

in this manner, J(z, z̄) = tJ0, and the volume

(C.13) V = t3V0 , V0 =

∫

X
J0 ∧ J0 ∧ J0 .

The Kahler potential for the IIB flux compactification on the Calabi–Yau
is given (with the first α′ corrections is given by [68])

(C.14)

K = −2 log

(
V − χ(X) ζ(3)

4(4π)3g
3/2
s

)

− log(S + S̄)− log

(
−i
∫

X
Ω ∧ Ω̄

)
.

The term χ(X) ζ(3)/4(4π)3g
3/2
s is the first α′ correction term. Note that

it does not scale with t as the Euler number is topological. In general, α′

does not have a t dependence. Note that g ∼ t, and hence g−1 ∼ t−1. In
this manner, the Christoffel symbols Γ ∼ g−1∂g and therefore the Riemann
tensors are independent of t.
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