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Topology change with Morse functions

progress on the Borde–Sorkin conjecture

Leonardo Garćıa-Heveling

Topology change is considered to be a necessary feature of quan-
tum gravity by some authors, and impossible by others. One of the
main arguments against it is that spacetimes with changing spatial
topology have bad causal properties. Borde and Sorkin proposed
a way to avoid this dilemma by considering topology changing
spacetimes constructed from Morse functions, where the metric is
allowed to vanish at isolated points. They conjectured that these
Morse spacetimes are causally continuous (hence quite well be-
haved), as long as the index of the Morse points is different from 1
and n− 1. In this paper, we prove a special case of this conjecture.
We also argue, heuristically, that the original conjecture is actually
false, and formulate a refined version of it.
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1. Introduction

In General Relativity, by solving the initial value problem for Einstein’s
Equations, one finds the time evolution of the spacetime metric. In this
picture, the topology of the constant time slices always remains the same.
More precisely, the maximal globally hyperbolic developement of some initial
data V is, on the level of topology (Geroch [15]) and differentiable structure
(Bernal and Sánchez [4, 5]), simply V × R. The question remains whether
this rigid product structure is desirable, or whether we should allow the
topology to change over time as well. There are several instances where
topology change is desirable. The dynamical creation of a wormhole, for ex-
ample, is necessarily a topology changing process, as it involves attaching
a handle to space. Already in 1957, Wheeler argued that quantum fluctu-
ations of spacetime should modify the topology [31]. Moreover, in certain
approaches to Quantum Gravity, instead of considering the deterministic
evolution of a spatial slice under the Einstein Equations, the idea is to find
the transition probability between two spatial slices V1, V2. This is done by
computing a path-integral over all cobordisms betweeen V1 and V2; that is,
manifolds M with boundary ∂M = V1 ⊔ V2. These cobordisms also have to
be equipped with a Lorentzian (or, in Euclidean Quantum Gravity, Rie-
mannian) metric, and possibly satisfy some additional conditions. It is then
natural to think that the transition probability between V1 and V2 might be
non-zero also when V1 and V2 are not homeomorphic, as long as appropriate
cobordisms exist. We refer to [9, 29] for further discussion on the role of
topology change within Quantum Gravity.

Which properties should a Lorentzian cobordism satisfy, in order to con-
sider it physically reasonable? In this paper, we will focus on the case of
compact cobordisms (i.e. spatially closed universes). Geroch [16] showed
that any non-trivial (meaning with V1 ̸= V2) compact Lorentzian cobordism
must contain closed timelike curves. Because of this, the only way to have
topology change without time travel is by allowing the spacetime metric
to degenerate at certain singular points [21, 33]. Notice that the case of
non-compact time slices is less restricted, with examples of topology change
without closed timelike curves and without singular points obtained by mul-
tiple authors (see Sánchez [27] for the most recent ones and for the overview
of previous work on p. 16).

One interpretation is to consider the singular points as naked singulari-
ties, and not as points in the spacetime manifold. In this paper, however, we
do the opposite: we consider the singular points as points in the spacetime,
where nothing special happens, except that, in some sense, the topology



✐

✐

“4-Garcia” — 2024/5/29 — 18:16 — page 1161 — #3
✐

✐

✐

✐

✐

✐

Topology change with Morse functions 1161

change happens there. Our point of view implies that the spacetime metric
is not Lorentzian everywhere, but this is not so bad, since the metric is not a
physical observable in itself. Indeed, we will show that the causal and length
structures can be satisfactorily generalized to include the singular points
(some work on the curvature has also been done [23]). Still, allowing degen-
erate metrics does introduce many new questions and problems (irrespective
of our point of view on the singular points). Already in the 1980s, Anderson
and DeWitt showed that on their famous “trousers spacetime”, quantum
fields create infinite bursts of energy in the presence of singular points [1].
This result was later refined and confirmed in Manogue et al. [24] and Buck
et al. [7]. The aim of subsequent work was to impose additional conditions
that avoid such pathologies.

A concrete and very useful construction of degenerate Lorentzian metrics
on cobordisms was given by Yodzis [33, 34] using Morse functions. This idea
was further developed by Sorkin [28] and collaborators [6, 10–13, 23], under
the name of Morse geometries. We continue this approach in the present
paper.

The construction of a Morse geometry is as follows. For simplicity, all
objects are assumed to be smooth. LetM be a compact cobordism of dimen-
sion n, h a Riemannian metric, ζ > 1 a constant, and f a Morse function.
Recall that a smooth function f : M → R is called a Morse function if all its
critical points (where df = 0) are non-degenerate (not to be confused with
the (non-)degeneracy of the spacetime metric). This is equivalent to saying
that around each critical point, there exist coordinates xi such that

(1) f =
1

2

∑

i

ai(x
i)2 ,

where ai ̸= 0 are constants. It follows, in particular, that the critical points
are isolated. The index of a critical point is defined as the number of negative
ai (see [25] for more details). Louko and Sorkin define the Morse metric
corresponding to (M, h, f, ζ) by

(2) g = ∥df∥2h h− ζdf ⊗ df ,

which, in coordinates, gives

(3) gµν := (hαβ∂αf∂βf)hµν − ζ∂µf∂νf .

Let M = M\ (∂M∪ {pi}i), where {pi}i is the set of critical points of
f . By abuse of notation, we call the restriction of g to M also g. Since
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df vanishes only at the critical points, g is Lorentzian on M , and the pair
(M, g) forms a spacetime in the usual sense. It is clear from (2) that f is
a time function on (M, g), when choosing the time orientation to be given
by the gradient vector field ∇αf := hαβ∂βf . Following the nomenclature of
Borde et al. [6], we call (M, g) a Morse spacetime and (M, h, f, ζ) a Morse
geometry1. It is known that for any pair of connected 3-manifolds, there
exists a Morse geometry interpolating between them [10, 13].

According to the following two conjectures, the infinite bursts of en-
ergy found by Anderson and DeWitt are only present on certain topology-
changing spacetimes, but not on others.

Conjecture 1 (Sorkin). A quantum field propagating on a Morse geome-
try (M, h, f, ζ) has an unphysical singular behaviour if and only if the Morse
spacetime (M, g) is causally discontinuous.

Conjecture 2 (Borde–Sorkin). The Morse spacetime (M, g) induced by
a Morse geometry (M, h, f, ζ) is causally continuous if and only if all critical
points of f have index different from 1 and n− 1.

Recall that causal continuity roughly means that the past and future
I±(p) varies continuously with the point p (see Appendix B for details).
Causal continuity was introduced in Hawking and Sachs [17] as a minimal
requirement for a spacetime to be physically reasonable, for reasons unre-
lated to quantum theory. Thus Conjecture 2 is also interesting beyond the
obvious link to Conjecture 1. Conjecture 1 is mentioned as early as 1990 in
Sorkin [28], while the earliest reference for Conjecture 2 is an indirect source
(Dowker and Garcia [11] from 1998). Both of them remain open to this
day. Conjecture 2 has seen important progress trough the works of Borde,
Dowker, Garcia, Sorkin and Surya [6, 12, 13]. In this paper, we contribute
to this effort by showing the following special case:

Theorem 1. Let (M, h, f, ζ) be a Morse geometry of dimension n with a
single critical point pc ∈ M. Suppose that pc has index λ ̸= 0, 1, n− 1, n, and
is contained in a coordinate neighborhood where

f =
1

2

∑

i

ai(x
i)2, h =

∑

i

(dxi)2 ,(4)

1In [13], the inverted nomenclature is used.
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for some real constants ai ̸= 0 satisfying

(5)
1

ζ
<

∣

∣

∣

∣

ai
aj

∣

∣

∣

∣

< ζ and
5

8
≤

∣

∣

∣

∣

ai
aj

∣

∣

∣

∣

≤
8

5
for all i , j .

Then the corresponding Morse spacetime (M, g) is causally continuous.

In Section 3 (Proposition 1) we will show that one can always find co-
ordinates where (4) holds, up to adding a perturbation to h which vanishes
at pc. Moreover, we conjecture that the first part of (5) is sharp, in the
sense that its violation leads to causal discontinuity (see Example 2 and
Conjecture 3).

Combining Theorem 1 with previous results by other authors (fleshed
out below), we can summarize the current progress on Conjecture 2 in the
next theorem.

Theorem 2. Let (M, h, f, ζ) be a Morse geometry of dimension n ≥ 2, and
(M, g) the corresponding Morse spacetime. Assume f has a single critical
point for each critical value.

(i) If f has at least one critical point of index λ = 1, n− 1, then (M, g) is
causally discontinuous.

(ii) If each critical point of f has index λ = 0, n, or has any index λ ̸=
1, n− 1 and is contained in a neighborhood as in Theorem 1, then
(M, g) is causally continuous.

The case λ = 0, n in part (ii) was solved in Borde et al. [6], along with
the special case of Theorem 1 corresponding to |ai| = 1 for all i. Part (i)
of Theorem 2 was shown in Dowker et al. [13]. Also in [13], it was shown
that the case of multiple critical points (as long as there is only one per
critical value) reduces to the case of a single critical point: the Morse space-
time is causally continuous if and only if every critical point has a causally
continuous neighborhood.

The proof of Theorem 1 is contained in Section 2. In Section 3, we discuss
the necessity of our assumptions, and possible generalizations of our proof.
Based on this discussion, we propose a modified version of the Borde–Sorkin
conjecture in Section 4, where we also give concluding remarks. Appendix A
contains results of [6] that we need in our proofs, and Appendix B gives
some background on causal continuity.
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2. Proof of Theorem 1

Before starting, let us give a brief outline of the proof. Recall from the
introduction that the case of |ai| = 1 for all i has already been solved in
Borde et al. [6], a result that we build upon. While in the case of |ai| = 1
there are a lot of symmetries, which allow for good coordinate choices (see
Appendix A), this is no longer true in the general case. Our strategy is
to extend the causal structure from (M, g) to M, in a way that preserves
its most important properties: openness of the chronological relation I+,
the push-up principle J+(I+(q)) = I+(J+(q)) = I+(q), and the properties
of limits of causal curves. Once these properties are proven, causal continuity
follows almost immediately, as it would in Minkowski spacetime.

The most difficult to establish, out of the three properties, is the open-
ness of the chronological relation. We do this in Subsection 2.2. The ar-
gument is based on reduction to the |ai| = 1 case. Once openness of the
chronological relation is established, the rest of the proof can be performed
without the need to make any coordinate choices whatsoever, and without
further use of the assumptions (4) and (5). This second part of the proof is
contained in Subsection 2.3. It requires heavy use of the limit curve theorems
of Minguzzi [26].

2.1. Notation and first steps

Throughout this section, we assume that (M, h, f, ζ) is a Morse geometry of
dimension n ≥ 4, with a single critical point pc of index λ ̸= 0, 1, n− 1, n
lying in the interior of M. As in the introduction, we write M := M\
(∂M∪ {pc}), and g denotes the metric (2), which is Lorentzian on M and
degenerate-Lorentzian on M. We do not use Einstein’s summation conven-
tion: all sums are written out, but without making explicit the summation
limits. Hence

∑

i means
∑n

i=1, and similarly maxi means maxi=1,...,n. For
convenience, we refer to the hypothesis of Theorem 1 as Condition 1.

Condition 1. There exists an open set U ⊆ M with pc ∈ U , an open ball
B ∈ R

n around the origin, and a coordinate chart ϕ : U → B of M such that
ϕ(pc) = 0 and

f ◦ ϕ−1 =
1

2

∑

i

ai(x
i)2, h ◦ ϕ−1 =

∑

i

(dxi)2 ,(6)
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for some real constants ai ̸= 0. Moreover, setting

ζc := max
i,j

∣

∣

∣

∣

ai
aj

∣

∣

∣

∣

,

we have

(7) ζc ≤
8

5
and ζc < ζ .

The value of ζc does not depend on the choice of coordinates, as long
they satisfy (6) (we give a detailed argument for this in Section 3.1). We will
usually suppress the coordinate map ϕ from the notation, and whenever we
write xi, it will refer to the coordinates as given by Condition 1. In these
coordinates, the metric (2) takes the form

(8) g =
∑

i,j

(

aix
idxj

)2
− ζ

(

∑

k

akx
kdxk

)2

.

An important tool in our proof will be to reduce some computations to
the case of isotropic neighborhoods as studied in Borde et al. [6] (see also
Appendix A). These are metrics where Condition 1 is satisfied, but with
the stronger requirement that |ai| = 1 for all i. The following lemma gives
us such an isotropic neighborhood metric giso with lightcones narrower than
those of g.

Lemma 1. Suppose that Condition 1 is satisfied, and consider on U the
linear change of coordinates

xi 7→ yi :=
√

|ai|ζ
1

4

c x
i .

Then the tensor given in these new coordinates by

(9) giso :=
∑

i,j

(

yidyj
)2

−
ζ

ζc

(

∑

k

sign(ak)y
kdyk

)2

is a Lorentzian metric on U \ {pc}, with lightcones narrower that those of g.

Proof. By (7), ζ/ζc > 1, and hence giso is a neighborhood metric in the sense
of Borde et al. (see Appendix A). In particular, giso is Lorentzian everywhere
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except at the origin. In the y-coordinates, the metric (8) takes the form

g =
1

ζc

∑

i,j

∣

∣

∣

∣

ai
aj

∣

∣

∣

∣

(

yidyj
)2

−
ζ

ζc

(

∑

k

sign(ak)y
kdyk

)2

.

For a vector V ∈ TU (with components V i in the y-coordinates), this
means

g(V, V ) =
1

ζc

∑

i,j

∣

∣

∣

∣

ai
aj

∣

∣

∣

∣

(

yiV j
)2

−
ζ

ζc

(

∑

k

sign(ak)y
kV k

)2

≤
∑

i,j

(

yiV j
)2

−
ζ

ζc

(

∑

k

sign(ak)y
kV k

)2

= giso(V, V )

Hence if giso(V, V ) ≤ 0, then also g(V, V ) ≤ 0. In other words, giso has nar-
rower lightcones than g. □

Another crucial element in the proof will be the extension of the causal
relation from M to M. Let γ : I → M be a locally Lipschitz curve. By
continuity, γ−1(M) is open in R and hence can be written as a union of
intervals

⋃

i Ii. If γ : Ii → M is future-directed (f.d.) causal for every i, then
we say that γ : I → M is future-directed causal, and analogously for timelike
and/or past-directed curves. This gives rise to a notion of futures and pasts
I±M(p), J±

M(p) in M. Additionally, for p ̸= pc, we denote by I±M (p), J±
M (p)

the usual past and future sets in the spacetime (M, g).
Given a f.d. causal curve γ : I → M as above, since f is a time function

on (M, g), f ◦ γ is strictly increasing on γ−1(M). Therefore f is increasing
along all of γ and can only cross pc once, i.e. γ

−1(pc) is empty, a point, or a
closed connected interval in R. The following lemma tells us that furthermore
no causal curve can be imprisoned in a neighborhood of pc (see [3, pp. 61-62]
for the definition of non-imprisonment on non-degenerate spacetimes).

Lemma 2. Let γ : (a, b) → M be a causal curve which is future inextendible
in M . Then either lims→b γ(s) = pc or γ runs into ∂M.

Proof. Because f is a time function on (M, g), (M, g) is strongly causal.
Then, by [3, Prop. 3.13], given any compact set K ⊆ M , there exists δ > 0
such that γ(s) ̸∈ K for all s ∈ (b− δ, b) (in other words, γ must leave K and
never enter it again). Let U ⊆ M be any open set (not necessarily connected)
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containing pc and ∂M. Then we can choose K = M\ U , and hence there
exists δ > 0 such that γ(s) ∈ U for all s ∈ (b− δ, b). Since U was arbitrary,
we are done. □

2.2. Openness of chronological pasts and futures

In this subsection, we characterize the past I−M(pc) of the critical point pc.
Every statement has a time-reversed analogue for the future I+M(pc) (which
we do not write out explicitly). The following condition is very important. It
states that if from a point q ∈ M we can reach pc via timelike curves, then
we can also reach a whole neighborhood of pc. This is a well-known fact for
spacetimes without singular points.

Condition 2 (Openness of I+M). For every q ∈ I±M(pc) there exists a
neighborhood U of pc such that U \ {pc} ⊆ I∓M (q).

An important consequence of Condition 2 is that the chronological rela-
tion is not altered by removing pc.

Lemma 3 (I+M = I+M ∩M). Suppose Condition 2 is satisfied. Then, for
every p ∈ M it holds that I+M (p) = I+M(p) ∩M .

Proof. The inclusion I+M (p) ⊂ I+M(p) ∩M is trivial. It remains to show th
eother direction. Let q ∈ I+M (p), and let γ : [a, b] → M be a timelike curve
from p to q. If γ avoids pc, there is nothing to prove. Hence suppose that
γ(c) = pc for some c. Then pc ∈ I+M(p) ∩ I−M(q), so by Condition 2 we can
find neighborhoods U , V of pc such that U \ {pc} ⊆ I+M (p) and V \ {pc} ⊆
I−M (q). But then we can find a point z ∈ U ∩ V \ {pc}, and a timelike curve
σ : [a, b] → M from p to q passing though z. □

In Appendix A (Lemma 10), we show that Condition 2 holds for the
isotropic metric giso, which is simpler than g, and has narrower lightcones
(Lemma 1). Making use of this fact, we show through the following lemma
that Condition 2 also holds for our metric of interest g.

Lemma 4. Condition 1 implies Condition 2.

The rest of this subsection is dedicated to proving Lemma 4. We start
by discussing coordinate choices. Assume w.l.o.g. that we have ordered our
coordinates xi, where f ,h take the form (6), so that ai < 0 for i = 1, ..., λ and
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aj > 0 for j = λ+ 1, ..., n. We then define the following “radial” coordinates

r2 :=
1

2

λ
∑

i=1

−ai(x
i)2, ρ2 :=

1

2

n
∑

j=λ+1

aj(x
j)2 .

By following the flow of the gradient vector ∇r (by which we mean
the gradient taken with respect to h, so that h(∇r, ·) = dr(·)) we get a
diffeomorphism from R

n−λ \ {0} to R× Sλ−1. This gives us a coordinate
system (r, θ1, ..., θλ−1) on R

λ, where we view R
λ as the subspace spanned by

the xi coordinates with i = 1, ..., λ. Essentially, all we have done is changing
to polar coordinates, but it is important that we have done so in a way
that the angular directions are g-orthogonal to the r-direction. We can do
the same construction with ρ, obtaining coordinates (ρ, ϕ1, ..., ϕn−λ−1) on
R
n−λ. Furthermore, we have

f = ρ2 − r2 , α := (ρr)
1

p ,(10)

where p > 0 is a constant, f is just our Morse function, and α is chosen so
that h(∇f,∇α) = 0. Using (f, α, θ1, ..., θλ, ϕ1, ..., ϕn−λ−1) as our coordinates,
the Euclidean metric h takes the form

h =
df2

∥∇f∥2
+

dα2

∥∇α∥2
+ hΘ + hΦ ,

and thus the Morse metric g takes the form

(11) g = −(ζ − 1)df2 +
∥∇f∥2

∥∇α∥2
dα2 + ∥∇f∥2(hΘ + hΦ) .

Here we have used that, by definition, ∥∇f∥ = ∥df∥. Having chosen our
coordinates, we now state a lemma that constitutes the most important
step in the proof of Lemma 4.

Lemma 5. Suppose Condition 1 is satisfied. Let q ∈ I−M(pc), and let γ : [0, 1]
→ M be any f.d. timelike curve from γ(0) = q to γ(1) = pc, which we express
in coordinates as

(12) γ(s) = (f(s) , α(s),Θ(s),Φ(s)) .

Then, for every 0 < ε < α(0), the curve σ : [0, sε] → M given by

(13) σ(s) := (f(s) , α(s)− ε ,Θ(s) ,Φ(s))
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is f.d. timelike. Here sε := min{s ∈ (0, 1) | α(s) = ε}.

Proof. The statement is trivially true if α(0) = 0 (since then there exist
no suitable ε), and otherwise sε is well-defined (the minimum exists) by
continuity of α(s). Moreover, our choice of ϵ and sε ensures that α(s)− ε ≥ 0
for all s ∈ [0, sε], so that the curve σ is also well-defined.

Note that shifting α by a constant ε while leaving f,Θ,Φ fixed (as is
done in (13)), is equivalent to shifting both ρ2 and r2 by a quantity ϵ(s). We
are going to show that g(σ̇(s), σ̇(s)) ≤ g(γ̇(s), γ̇(s)) < 0. This will be done
in multiple steps, corresponding to various terms in (11).

Step 1 (Angular part). Let πΘ denote the orthogonal projection onto
the subspace of the tangent space spanned by the Θ angular directions. We
will show that

h(πΘσ̇, πΘσ̇) ≤ h(πΘγ̇, πΘγ̇) .

An analogous statement holds for πΦ. We proceed by computing πΘσ̇. Notice
that shifting r(s)2 to r(s)2 − ϵ(s) means following the flow F : M× R → M
of the vector field ∇r for a certain time t(s) > 0. Then

(14) σ̇(s) = DF (γ(s), t(s))γ̇(s) +
∂F

∂t
(γ(s), t(s))ṫ .

Similary, shifting ρ2 means following the flow of −∇ρ. Notice also that

∂F

∂t
(γ(s), t(s)) = ∇r(F (γ(s), t(s))) ,

Hence the second term on the RHS of (14) only adds a contribution to the
r component of σ̇(s) (but not to the angular components). We can compute
DF by solving the ODE

∂

∂t
DF (x, t) = D(∇r)(F (x, t))DF (x, t)

with initial condition DF (x, 0) = Id. In Cartesian coordinates D∇r takes a
block diagonal form:

D∇rij =











aiδij for i, j = 1, ..., λ ,

δij for i, j = λ+ 1, ..., n ,

0 otherwise,
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hence

(15) DF (x, t)ij =











eaitδij for i, j = 1, ..., λ ,

δij for i, j = λ+ 1, ..., n ,

0 otherwise.

Moreover, we have that DF (x, t)∂r ∝ ∂r because F is the flow of a vector
field collinear to ∂r. Therefore

πΘDF V = πΘDFπΘV for any V ∈ TM ,

and thus we can write

h(πΘσ̇ , πΘσ̇) = h(πΘDFπΘγ̇, πΘDFπΘγ̇)

≤ h(DFπΘγ̇ , DFπΘγ̇)

≤ h(πΘγ̇ , πΘγ̇).

Here we have first used that the orthogonal projection πΘ cannot increase
the norm, and then that DF cannot increase the norm either, because it
does not increase any of the Cartesian components (15).

Step 2 (α direction). We want to show that ∥∇f∥2

∥∇α∥2 does not increase

when shifting r2 and ρ2 by ϵ, so that we do not get a larger contribution in
(11). Thus in what follows we view r and ρ as functions of ϵ, in the sense
that r2 = r20 + ϵ and ρ2 = ρ20 + ϵ with respect to some reference values r0, ρ0
(but we will omit the subscript 0 from the notation). From this point of
view, what we want to show is

∂

∂ϵ

∣

∣

∣

ϵ=0

∥∇f∥2

∥∇α∥2
≥ 0 .

We begin with some preliminary computations, where ν := 2− 1
p , and

all derivatives are evaluated at ϵ = 0.

∂

∂ϵ
ρ2 = 1 ,

∂

∂ϵ
ρ4 = 2ρ2 ,

∂

∂ϵ
(rρ)2ν = ν(rρ)2ν−2(r2 + ρ2) ,

∥∇f∥2 = ∥df∥2 = ∥d(r2)∥2 + ∥d(ρ2)∥2 ,

∥∇α∥2 = ∥dα∥2 =
1

(2p(rρ)ν)2
(

ρ4∥d(r2)∥2 + r4∥d(ρ2)∥2
)

.
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Moreover, we need the following estimates, where a = 2mini=1,...,n ai, A =
2maxi=1,...,n ai.

aρ2 ≤ ∥d(ρ2)∥2 ≤ Aρ2 ,

a ≤
∂

∂ϵ
∥d(ρ2)∥2 ≤ A .

These are easily proven in Cartesian coordinates.
Applying the chain rule and substituting the previous computations and

estimates, we get, after a lengthy but trivial computation, the estimate

∂

∂ϵ

∥∇f∥2

∥∇α∥2
≥

(νa2 −A2)(r6 + ρ6) +
(

(3ν + 2)a2 − 5A2
)

(ρ4r2 + ρ2r4)

(2p(rρ)ν)2∥∇α∥4
,

where the RHS is guaranteed to be positive if

A2

a2
≤ min{ν,

3ν + 2

5
} .

Since ν ∈ (1, 2) only enters in our choice of coordinates, we can freely choose
it. In particular, as long as

A2

a2
≤

8

5
,

we can choose ν close enough to 2 so that ∂
∂ϵ

∥∇f∥2

∥∇α∥2 ≥ 0.

Step 3. (Final argument). It simply remains to compare g(σ̇, σ̇) to
g(γ̇, γ̇), term by term, according to (11). By step 1, we have

hΘ(σ̇, σ̇) ≤ hΘ(γ̇, γ̇) ,

hΦ(σ̇, σ̇) ≤ hΦ(γ̇, γ̇) .

Moreover, by computing ∥df∥2 in Cartesian coordinates, and using the fact
that under the flow of ∇r and −∇ρ, the Cartesian coordinates are non-
increasing (in absolute value), it is easy to check that

∥df∥2(σ(s)) ≤ ∥df∥2(γ(s)) .

By step 2, we have that

∥∇f∥2

∥∇α∥2
(σ(s)) ≤

∥∇f∥2

∥∇α∥2
(γ(s)) ,
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and since the ∂α component of σ̇ is the same as that of γ̇ (because αγ(s) and
ασ(s) only differ by a constant),

dα(σ̇) = dα(γ̇) .

Finally, because fγ(s) = fσ(s), we have

df(σ̇) = df(γ̇) .

Plugging all of the above into (11), we conclude that

g(σ̇, σ̇) ≤ g(γ̇, γ̇) ,

as desired. □

The following lemma is an easy consequence of Lemma 5, and from it
we can derive Lemma 4.

Lemma 6. Suppose Condition 1 is satisfied, and let q ∈ I−M(pc). Then there
exists a point q̃ ∈ J+

M (q) such that αq̃ = 0 and fq̃ < 0. Equivalently, ρq̃ = 0
and rq̃ > 0.

Proof. The equivalence of the two statements follows simply by definition
(10). Now for the proof of existence: If αq = 0, choose q̃ = q, and we are done
because q ∈ I−M(pc) implies fq < fpc

= 0. Otherwise, choose a f.d. timelike
curve γ : [0, 1] → M from γ(0) = q to γ(1) = pc, and write it in components
as in (12). If α(1/2) = 0, choose q̃ = γ(1/2), noting that γ(1/2) ∈ I−M(pc)
and therefore fγ(1/2) < fpc

= 0. If α(1/2) ̸= 0, then since γ(1/2) ∈ I+M (q),
we can choose 0 < ε < α(1/2) small enough so that q̂ := (f(1/2), α(1/2)−
ε,Θ(1/2),Φ(1/2)) ∈ I+M (q). Then, by Lemma 5, there exists a f.d. timelike
curve σ from q̂ until some point q̃ := σ(sϵ) such that αq̃ = 0. Moreover,
fq̃ = f(sϵ) < f(1) = 0. □

Proof of Lemma 4. Let q ∈ I−M(pc). Then we can choose q̃ ∈ J+
M (q) as in

Lemma 6. We claim that q̃ ∈ I−M(pc), not only with respect to our metric
g, but even with respect to the metric giso (see Lemma 1). To prove this
claim, simply note that we can reach pc from q̃ by following the integral
curve of ∇f through q̃ (which has ρ = 0 initially, hence ρ = 0 on the whole
integral curve, while r must decrease, thus we reach pc). By Lemma 10, q̃ ∈
I−M(pc, giso) implies that there exists a neighborhood U of pc such that U \
{pc} ⊆ I+M (q̃, giso). By Lemma 1, I+M (q̃, giso) ⊆ I+M (q̃), and since q̃ ∈ J+

M (q),
it follows that U \ {pc} ⊆ I+M (q), as desired. □
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2.3. Limit curves, push-up and proof of Theorem 1

Having established the crucial Lemma 4, the rest of the proof of Theorem 1
does not require any computations in coordinates. Yet it follows the same
philosophy of showing that the causal relation on M has some of the same
(good) properties that it would have on a non-degenerate spacetime.

The next lemma is a sort of limit curve theorem, but can also be in-
terpreted as telling us that (M, h, f, ζ) is causally simple (see [3, p. 65] for
causal simplicity of non-degenerate spacetimes).

Lemma 7 (I+M ⊆ J+
M). Suppose Condition 2 is satisfied. Let (pi)i, (qi)i be

sequences of points in M such that qi ∈ I+M(pi). If pi → p and qi → q, then
q ∈ J+

M(p).

Proof. We first show the case pi, qi, p, q ̸= pc. Then, by Lemma 3, there exists
a sequence of f.d. timelike curves γi : [ai, bi] → M such that γi(ai) = pi and
γi(bi) = qi. The idea is quite simple: we claim that (γi), up to a subsequence,
converges to a causal curve γ : [a, b] → M. We show this by applying the
usual limit curve theorem [26, Thm. 3.1] on the spacetime M . It is necessary
to distinguish between the case when the limit curve is also in M , and the
case when the limit curve crosses over the singular point pc (then, technically
speaking, there are two limit curves in M , which can be joined in M).

• Case 1: The sequence γi converges uniformly to a causal curve γ : [a, b]
→ M , or to a single point. Either way, q ∈ J+

M (p) ⊆ J+
M(p), and we are

done.

• Case 2: There exist reparametrizations γpi : [0, b
p
i ) → M of γi and a

future endless (in M) causal curve γp : [0,∞) → M with γ(0) = p such
that γpi → γp uniformly on compact subsets. Analogously, there exist
reparametrizations γqi : (−bqi , 0] → M of γi and a past endless causal
curve γq : (−∞, 0] → M with γq(0) = y such that γqi → γq uniformly
on compact subsets.

In case 2, we claim that limt→∞ γp(t) = lims→−∞ γq(s) = pc. This is a
direct consequence of Lemma 2 and the fact that f is bounded away from
0, 1 on γp and γq, hence γp, γq cannot run into the boundary ∂M. But if
limt→∞ γp(t) = lims→−∞ γq(s) = pc, then (after suitable reparametrization)
we can extend γp, γq to pc and concatenate them, forming a causal curve in
M that joins p with q, as desired.
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In case that some of pi, qi, p, q equal pc, we can proceed with an analogous
proof, but we have to add a third case, where pc is an endpoint of the limit
curve. □

The next lemma is well-known for non-degenerate spacetimes.

Lemma 8 (Push-up). Suppose Condition 2 is satisfied. If q ∈ J+
M(p), then

I+M(q) ⊆ I+M(p).

Proof. If p = q, the result is trivial, so assume p ̸= q, and let σ : [0, 1] → M
be a causal curve from p to q.

Case 1: q = pc. Let q̃ ∈ I+M (pc) (see Figure 1a). Then, by Condition 2,
there exists a neighborhood U of pc such that U \ {pc} ⊆ I−M (q̃). Because
σ(1) = pc, there must exist some 0 < s0 < 1 such that σ(s0) ∈ U \ {pc}. But
then q̃ ∈ I+M (σ(s0)), and since also σ(s0) ∈ J+

M (p), we conclude by the stan-
dard push-up lemma in M that q̃ ∈ I+M (p) ⊆ I+M(p). Since q̃ was arbitrary,
we are finished with this case.

Case 2: p = pc. The argument is similar to the one in [2, Prop. 2.1]. Let
q̃ ∈ I+M(q) = I+M (q) (see Figure 1b). We construct a timelike curve γ from pc
to q̃. Let yn := σ(1/n), and choose a point z1 ∈ I+M (y1) ∩ I−M (q̃). By open-
ness of I−M (z1), and since, by the usual push-up lemma in M , y2 ∈ J−

M (y1) ⊂
I−M (z1), we may choose z2 ∈ I−M (z1) ∩ I+M (y2) ∩Bh

1/2(y2). HereB
h
1/2(y2) deno-

tes the ball of radius 1/2 around y2, measured with respect to the Rie-
mannian metric h. Iterating this procedure, we obtain a sequence (zl)l
such that zl ∈ I−M (zl−1) ∩ I+M (yl) ∩Bh

1/l(yl). Then we construct γ by join-
ing all the timelike segments going from zl to zl+1. Since, by contruction,
liml→∞ zl = liml→∞ yl = pc, the timelike curve γ connects pc and q̃.

Case 3: p, q ̸= pc. If σ lies entirely in M , the result follows from the
standard theory. Therefore, we assume w.l.o.g. that σ(12) = pc. Then, in
particular, q ∈ J+

M(pc), so by case 2, we have that I+M(q) ⊆ I+M(pc). But
since also pc ∈ J+

M(p), by case 1 it follows that I+M(pc) ⊆ I+M(p), and we are
done. □

Lemma 9 below, together with Lemma 4, completes the proof of Theo-
rem 1.

Lemma 9. If Condition 2 is satisfied, then the Morse spacetime (M, g) is
causally continuous.

Proof. By Definition 1 (in Appendix B), (M, g) is causally continuous if
it is distinguishing and reflecting. Because f is a time function, (M, g)



✐

✐

“4-Garcia” — 2024/5/29 — 18:16 — page 1175 — #17
✐

✐

✐

✐

✐

✐

Topology change with Morse functions 1175

q̃

σ(1) = pc

σ(0) = p

σ(s0)

U

(a) Case 1.

q̃

z1

y1 = qz2

y2
z3

y3
pc

σ

γ

(b) Case 2.

Figure 1. An illustration of the proof of Lemma 8. The red line represents
σ, and the black curves represent future-directed causal curves.

must be distinguishing [6, Sec. 2]. Thus we only need to prove reflectiv-
ity. Let p, q ∈ M be such that I−M (p) ⊆ I−M (q) (the future case is analogous).
We need to prove that I+M (q) ⊆ I+M (p). By the time-reverse of Lemma 3,

I−M(p) ⊆ I−M(q), and then, since p ∈ I−M(p) ⊆ I−M(q), Lemma 7 tells us that
p ∈ J−

M(q). But then, by Lemma 8, I+M(q) ⊆ I+M(p), which again by Lemma 3
implies I+M (q) ⊆ I+M (p). □

Remark. One may even say that the Morse geometry (M, h, f, ζ) is glob-
ally hyperbolic. Firstly, it follows from Lemma 2 that f is a Cacuhy time
function, in the sense that any causal curve that is inextendible in M, must
start at one boundary component and end at the other, crossing each level
set exactly once. Secondly, by compactness of M, it is easy to see that the
causal diamonds J+

M(p) ∩ J−
M(q) are compact, for all p, q ∈ M. However,

both arguments are also true when (M, g) is causally discountinuous, such
as in the index 1, n− 1 case. The point we would like to make here, is that
one should additionally require Condition 2 to hold, and then the causal
structure of M is very well-behaved.

We can turn this remark into a mathematically precise statement by
using the language of Lorentzian length spaces, introduced by Kunzinger
and Sämann [22] (see also [8], where topology change is discussed in this
context). Lorentzian length spaces are topological spaces equipped with a
notion of causal order and satisfying a set of axioms which, in particular,
imply a version of Condition 2 [22, Lem. 2.12]. A somewhat related point is
that (M, g) is semi-globally hyperbolic, meaning that it can be divided into
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globally hyperbolic pieces, which in our case are separated by the critical
level sets of f . The notion of semi-globally hyperbolic spacetime was intro-
duced by Janssen in [18], with the goal of defining quantum field theories
on them (note the connection to Conjecture 1).

3. Towards a full resolution of the Borde–Sorkin Conjecture

Throughout this section, we employ the same notational conventions as in
Section 2, except that we allow our Morse functions to have multiple critical
points. The current progress on Conjecture 2 is summarized in Theorem 2
in the Introduction. What still remains open is the case when f has critical
points of index λ = 2, ..., n− 2, and h is arbitrary. In other words, we do not
know what happens if we drop Condition 1.

Notice that Condition 1 is basically telling us two things:

(i) We can find a coordinate neighborhood U of pc where both h and f
take a specified standard form.

(ii) We have the bounds ζc < ζ and ζc ≤ 8/5 (see (7)), which can be inter-
preted as a bound on how much anisotropy is allowed.

In the first part of this section, we show that the neighborhood U can
always be found, the only difference being that in the general case, we need to
add a perturbation to h that vanishes at pc. In the second part of this section,
we give a candidate counterexample to Conjecture 2, which suggests that
ζ > ζc is a necessary condition for causal continuity. We then conclude by
proposing a modified version of the conjecture which takes this into account.

3.1. Generalized standard neighborhoods

The statement of the next proposition can be seen as a weaker version of
the first part of Condition 1.

Proposition 1. Let (M, h, f, ζ) be a Morse geometry and pc be a critical
point of f . Then there exists an open neighborhood U ⊆ M of pc, an open
ball B ∈ R

n around the origin, and a coordinate chart ϕ : U → B such that
ϕ(pc) = 0 and

f ◦ ϕ−1 =
1

2

∑

i

ai(x
i)2, h ◦ ϕ−1 =

∑

i

(dxi)2 +
∑

k,l

h
(1)
kl (x)dx

kdxl ,

for some real constants ai ̸= 0 and some tensor h(1) satisfying h(1)(pc) = 0.
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The proof relies on the following two results from the literature.

Simultaneous Diagonalization Theorem [14, Thm. 13.4.3]. Let H, D
be two real symmetric n× n matrices, and let H be positive definite. Then
there exists a real non-singular matrix Λ such that both ΛTHΛ and ΛTDΛ
are diagonal.

Morse Lemma [25, Lem. 2.2]. Let M be a manifold, f : M → R be a
Morse function and pc be a critical point of f . Then there exists an open
neighborhood U ⊆ M of pc, an open ball B ⊆ R

n around the origin, and a
coordinate chart ϕ : U → B such that ϕ(pc) = 0 and

f ◦ ϕ−1 =
1

2

∑

i

ai(x
i)2 ,

for some real constants ai ̸= 0.

Proof of Proposition 1. By the Morse Lemma, we can find coordinates where
f already has the desired form. Then we apply a linear change of coordi-
nates in order to simultaneously diagonalize the bilinear forms h(pc) and
hess f(pc). Finally, we scale each coordinate, in order to normalize our new
basis with respect to h(pc). □

We use Proposition 1 to formulate a relaxed version of Condition 1. Let
(M, h, f, ζ) be a Morse geometry, and suppose we have chosen a critical
point pc.

Condition 3. The constants ai appearing in Proposition 1 (applied to pc)
satisfy

ζ > ζc := max
i,j

∣

∣

∣

∣

ai
aj

∣

∣

∣

∣

.

We do not include the bound ζc ≤ 8/5, because it will not be relevant in
the upcoming examples, and it seems likely to not be a necessary condition
for causal continuity. Note also that in this paper, we take the point of view
that ζ is specified as part of the Morse geometry. If, instead, we only specify
h and f , then we can always choose ζ > ζc at a given critical point (hence
also at any finite number of critical points). In this sense, Condition 3 is not
very restrictive. Note, in any case, that ζc depends on both h and f in a
neighborhood of pc.



✐

✐

“4-Garcia” — 2024/5/29 — 18:16 — page 1178 — #20
✐

✐

✐

✐

✐

✐

1178 L. Garćıa-Heveling

Since the coordinate system that we get from Proposition 1 is not nec-
essarily unique, the question arises whether the truth or falsehood of Condi-
tion 3 depends on any coordinate choices. The answer is no. To see this, note
that maxi ai is the maximum value of the quadratic form hess f(pc) applied
to the h(pc)-unit ball. Similarly, mini ai is the minimum. These maxima and
minima are independent of the basis, so we conclude that the value of ζc
is the same among all coordinate bases satisfying the properties listed in
Proposition 1.

One is left to wonder how much our proofs in Section 2 are affected when
adding the perturbation h(1) that appears in Proposition 1. We can say the
following:

• If Condition 3 is satisfied, then a generalization of Lemma 1 holds. The
only difference is that in (9), we need to replace ζ by 1 < ζ̂ < ζ. This
makes the lightcones of giso a bit narrower, compensating for the fact
that the perturbation h(1) might have also made the lightcones of g a
bit narrower.

• The proofs in Section 2.2 are no longer valid.

• If we can prove that Condition 3 implies Condition 2 (compare with
Lemma 4), then causal continuity follows by the same arguments as in
Section 2.3.

• On general spacetimes, causal continuity is not stable under perturba-
tions of the metric. This remains true even if we require said pertur-
bations to always widen or narrow the lightcones with respect to the
original metric (see Examples 3 and 4 in Appendix B).

3.2. A potential counterexample

The discussion in Section 3.1 leads to a natural question: is Condition 3
necessary in order to have causal continuity? If the answer is yes, it would
mean that Conjecture 2 is false in its original form. We believe that this
is indeed so. Constructing examples that violate Condition 3 is easy, but
showing that they are causally discontinuous is not (and we do not achieve
it in this paper).

The following examples are meant to illustrate what happens when Con-
dition 3 is not satisfied. For convenience, we take M non-compact and with-
out boundary, the idea being that it represents a neighborhood of a critical
point in some larger Morse geometry.
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Example 1. Let M be an open ball in R
2, centered around the origin

pc := 0, and equipped with coordinates (x, y). Define

h := dx2 + dy2, f := −
1

2

(

x2 + by2
)

,

so that

g = (x2 + b2y2)(dx2 + dy2)− ζ(xdx+ bydy)2 .

The case b = 1 is considered in Appendix A: it is a neighborhood spacetime in
the sense of Borde et al. [6]. We will refer to is as an isotropic neighborhood,
while in the case of b ̸= 1, we will talk about anisotropic neighborhoods.

Consider a radial line γ(s) = (s,ms), for m ∈ R. Then

(16) g (γ̇(s), γ̇(s)) =
(

(1− ζ)b2m4 + (1 + b2 − 2ζb)m2 + 1− ζ
)

s2 .

If b = 1, this quantity reduces to

g (γ̇(s), γ̇(s)) = (1− ζ)
(

m2 + 1
)2

s2 ,

which negative for all m, hence all radial lines are timelike (see Figure 2a). In
this case, the past of pc, which is the whole Morse spacetime M = M\ {pc},
can be written as a single TIP,M = I−M(pc) = I−M (γ), for any future directed
timelike curve γ that ends at pc (see Appendix A).

Taking the limit b → 0 in (16), we get an expression that is positive
whenever m2 > 1− ζ. By continuity, we conclude that for 0 < b < 1 small
enough, g(γ̇(s), γ̇(s)) can be negative, zero or positive, depending on m
(the dependence, however, is more complicated than in the b → 0 limit).
Concretely, for b small (relative to ζ):

• There exist null radial lines, which form the boundaries of the future
sets2 F1,F2 and the pasts sets P1,P2. Intuitively, this happens because
the lightcones tilt much faster when moving in the x direction, com-
pared to moving in the y direction (see Figure 2b). Regardless, we still
have that M = I−M(pc).

• I+M(q) is not open, for any q ∈ M . This is because pc ∈ I+M(q), but
no neighborhood of pc is entirely contained in I+M(q) (compare with
Lemma 4).

2Here by future set we mean a set F such that I+
M
(F) = F . Analogously, a past

set P satisfies I−
M
(P) = P.
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Note that there also exists an intermediate case, when b has the exact
value so that setting (16) equal to zero has degenerate solutions, and then
the boundaries of the sets F1,F2,P1,P2 overlap. The case of b > 1 very large
can be reduced to the case of b < 1 small by rescaling both x and y by a
factor of 1/b (then also h is rescaled, but this does not affect g).

Since the critical point in this example has index 0, the Morse spacetime
(M, g) is causally continuous, no matter how small we choose b (see Theo-
rem 2). In fact, (M, g) is even globally hyperbolic, with f being a Cauchy
time function. Note however that in this example, I+M(pc) = ∅, which sim-
plifies things a lot.

x

y

(a) b = 1

P1P2

F1

F2

x

y

(b) b ≪ 1

Figure 2. The causal structure of Example 1.

Building upon the previous example, we propose our candidate coun-
terexample to Conjecture 2.

Example 2. Let M be an open ball in R
4, centered around the origin

pc := 0, and equipped with coordinates (x, y, z, w). Define

h := dx2 + dy2 + dz2 + dw2, f :=
1

2

(

−x2 − by2 + z2 + w2
)

,

and g, as usual, by (3). We claim that reflectivity (see Definition 1) is violated
by the pair of points

p := (1, 0, 0, 0) , q := (m, 0, 1, 0) ,
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where m :=
√
ζ−1√
ζ−1

. From the causal analysis of the punctured (x, z)-plane

(see Figure 3 and Appendix A) it follows that I+M (q) ⊆ I+M (p). However,
I−XZ(q) ̸⊇ I−XZ(p), where the subscript XZ means that we are only consid-
ering causal curves in the punctured (x, z)-plane. Nonetheless, it is possi-
ble that I−M (q) ⊇ I−M (p) when also considering causal curves that leave said
plane. In particular, if b = 1 (or close enough to 1), we see from the analysis
in Example 1 (see also Figure A1b) that from p we can reach the negative x-
axis via a future-directed timelike curve contained in the (x, y)-plane. Then,
from the negative x-axis, we can reach q. If b is too small, however, this
construction is no longer possible (see Figure 2b), suggesting that probably
I−M (q) ̸⊇ I−M (p). This is not a bulletproof argument, of course, because we
are ignoring all timelike curves that are not contained in any coordinate
plane.

p

q

I−XZ(q)

I+XZ(q)

I−XZ(p)

I+XZ(p)

x

z

Figure 3. The points p, q of Example 2 and their futures and pasts (restricted
to the (x, z)-plane XZ).

4. Conclusions

With the proof of Theorem 1, we have established a new case of the Borde–
Sorkin conjecture (Conjecture 2 in the Introduction). In doing so, we have
advanced the current progress on the conjecture to that summarized in The-
orem 2. Along the way, we have developed a notion of causal structure for
Morse geometries that includes the critical points. This supports the view
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that degenerate metrics are physically reasonable, and is a first step towards
understanding quantum fields on Morse geometries (in view of Conjecture 1).

Let us briefly mention here three recent approaches to quantum field
theory that are specially relevant for topology change. The algebraic ap-
proach of Janssen [18] has been developed specifically with topology change
as one of its applications, but the existence of states in this approach is still
an open problem. Another approach is that of Sorkin and Johnston [19, 30];
so far it has been applied to the trousers topology change [7] (confirming the
energy divergences there), but, to our knowledge, not to any of the causally
continuous Morse geometries (where Conjecture 1 predicts a well-behaved
QFT). Lastly, the recent paper of Kontsevich and Segal [20] defines QFTs on
the category of cobordisms with certain complex metrics. Real Lorentzian
metrics arise as a limit case of these complex metrics, and so do Morse met-
rics [23, 32]. So far, however, it is only known that a QFT is induced on the
limit spacetime when the latter is a non-degenerate and globally hyperbolic
[20, Thm. 5.2]. It remains to be seen if this result can be generalized to
Morse geometries.

Another important conclusion of the present paper is that we have found
a potential counterexample to Conjecture 2 (Example 2 in Section 3.2).
Despite being of dimension 4 and having only a critical point of index 2,
we believe that our example is causally discontinuous, due to being highly
anisotropic (i.e. because it has ζc > ζ). The lack of symmetries and good co-
ordinate choices has prevented us from proving this fully. Regardless, we pro-
pose the following refinement of Conjecture 2, which incorporates a bound
on the anisotropy (Condition 3).

Conjecture 3. Let (M, h, f, ζ) be a Morse geometry of dimension n, and
(M, g) the corresponding Morse spacetime. Assume f has a single critical
point for each critical value. Then (M, g) is causally continuous if and only
if the following hold:

(i) None of the critical points has index 1 or n− 1,

(ii) Condition 3 is satisfied at every critical point of index different from
0, n.

In order to prove Conjecture 3, two steps remain. One is to show that
Condition 3 is really necessary, by showing that Example 2 (where it is vi-
olated) is causally discontinuous. The other remaining step is to generalize
Theorem 1 by adding a perturbation to h that vanishes at the critical points,
and by removing the requirement that ζc ≤ 8/5. This is nontrivial, because



✐

✐

“4-Garcia” — 2024/5/29 — 18:16 — page 1183 — #25
✐

✐

✐

✐

✐

✐

Topology change with Morse functions 1183

causal continuity is, in general, not stable under perturbations (see Exam-
ples 3 and 4 in Appendix B). Yet the second half of our proof (Section 2.3)
is robust under perturbations, and does not require ζc ≤ 8/5, so it would
suffice to prove openness of the chronological relation in M (Condition 2),
and then causal continuity would follow.

Acknowledgements. I would like to thank Elefterios Soultanis and Max-
imilian Ruep for very interesting discussions, and Annegret Burtscher for
comments on the draft. I am also grateful to Bernardo Araneda and Simon
Pepin Lehalleur for pointing me to reference [20].

Appendix A. Neighborhood spacetimes

In this appendix, we review the causal structure of isotropic neighborhood
spacetimes, as studied in Borde et al. [6]. At the end, we prove Lemma 10,
which is new, although it follows quite straightforwardly from the analysis
in [6].

Let M ⊆ R
n be an open neighborhood of the origin, equipped with a

coordinate system (x1, ..., xλ, y1, ..., yn−λ), where λ ̸= 0, 1, n− 1, n, and

h :=

λ
∑

i=1

(dxi)2 +

n−λ
∑

j=1

(dyj)2, f := −
1

2

λ
∑

i=1

(xi)2 +
1

2

n−λ
∑

j=1

(yj)2 .(A.1)

Note that the origin pc = (0, ..., 0), is the only critical point of f in this
case. We write M := M\ {pc}, as usual (here M has no boundary, but can
be thought of as a neighborhood of a critical point in some cobordism). It
is convenient to change to polar coordinates (ρ,Θ, r,Φ), where

ρ :=

n−λ
∑

j=1

(yj)2, r :=

λ
∑

i=1

(xi)2 ,

and where Θ,Φ denote the angular coordinates corresponding to the sub-
spaces {r = 0} and {ρ = 0} respectively (thus each of Θ,Φ is a collection
of angular variables, rather than a single one). The Lorentzian metric (2) is
then given by

g =
(

r2 − (ζ − 1)ρ2
)

dρ2 +
(

ρ2 − (ζ − 1)r2
)

dr2 + 2ζρrdρdr

+
(

ρ2 + r2
) (

ρ2dΘ2 + r2dΦ2
)

.(A.2)
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Because the coefficients in front of dΘ and dΦ are positive, any null geodesic
in the Θ,Φ = const. plane (with respect to the restricted metric), must also
be a null geodesic in the full spacetime.

Thus we start by commenting on the situation with constant angles.
Recall also that in 2 dimensions, any null curve is automatically a null
geodesic. The implicit equations for any null geodesic can thus be found
from (A.2):

(A.3)
√

ζ − 1(x2 − y2) = ±2xy + c± ,

where c± are constants. In particular, the case of c± = 0 corresponds to
geodesics that bound I±M(pc), which are radial lines of a certain slope (depict-
ed as dashed lines in Figure A1a). We can use this information to find the
future and past sets of any point (depicted as colored regions in Figure A1a).

Next we analyse the case when of ρ = 0 and Θ = const. (the case r = 0
and Φ = const. is analogous). We restrict to the case where Φ = ϕ is just
a single angular variable, hence again reducing the problem to two dimen-
sions. The null geodesics on the ρ = 0,Θ = const. plane (with respect to the
induced metric) are then given by

r(ϕ) = r0 e
±ϕ/

√
ζ−1 .

Again, we can use this to find the future and past sets of any point on the
plane, with respect to the induced metric (see Figure A1b). In this case,
there are no null geodesics going through the origin pc, and all points with
ρ = 0 lie in the past of pc.

Lemma 10. Let (M, h, f, ζ) be an isotropic Morse neighborhood, with h, f
given by (A.1). For every q ∈ I±M(pc), there exists a neighborhood U of pc
such that U \ {pc} ⊆ I∓M (q).

Proof. We show the case when q ∈ I−M(pc). W.l.o.g. we may choose our coor-
dinates such that q = (ρq, 0, rq, 0), where necessarily ρq ̸= 0 (otherwise q can-
not be in I−M(pc)). We want to find ρ0, r0 such that all points (ρ,Θ, r,Φ) ̸= pc
with ρ < ρ0, r < r0 and Θ,Φ arbitrary, are contained in I+M (q). By symme-
try, we may choose our coordinates such that at most one of the Θ- and one
of the Φ-angles may be different from zero, hence effectively reducing the
problem to four dimensions.
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q

I−M (q)

I+M (q)

r

ρ

(a) (r, ρ)-plane

I−M (q)

I+M (q)

q

(b) (r, φ)-plane

Figure A1. The causal structure of an isotropic neighborhood.

Our argument now resembles the one in the proof of [6, Claim 1]. Let
≪ denote the chronological relation in M . If ρq, rq ̸= 0, then

x = (ρx, 0, rx, 0) ≪ (ϵ1, 0, 0, 0) ≪ (ϵ1δ, θ, 0, 0) ≪ (ϵ1δϵ2, θ, ϵ3, ϕ) .

In every step where we have added an ϵ, we have used our analysis of the
causal structure in the case θ, ϕ constant. In the step where we have added
δ, it is using our analysis of the ρ = 0 and θ = const. case. In principle, δ
depends on θ. We see, however, that the “worst case scenario” (when δ has
to be the smallest) is when θ = π. Thus we can choose this largest value, so
that the procedure works in all cases. Note also that in the last step, since
we starting from the origin of the (r, ϕ)-plane, we can choose any value for
ϕ that we want. Setting ρ0 := ϵ1δϵ2 and r0 := ϵ3, and again considering the
causal structure in the case θ, ϕ constant, we are done. □

Appendix B. Causal continuity

Let (M, g) be a non-degenerate spacetime. We refer to [3, Chap. 3] for the
basic concepts and notation of causality theory. The idea is that (M, g) is
causally continuous if the set valued functions q 7→ I±M (q) are continuous.
There are various equivalent ways to make this precise [3, pp. 59-71]. In
this paper, we use the following definition, which is perhaps the most stan-
dard one, even though it does not directly capture the intuition behind the
concept.
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Definition 1. A spacetime (M, g) is called

(i) distinguishing if

I−M (p) = I−M (q) ⇐⇒ p = q ⇐⇒ I+M (p) = I+M (q)

for all p, q ∈ M ,

(ii) reflecting if

I−M (p) ⊆ I−M (q) ⇐⇒ I+M (p) ⊇ I+M (q)

for all p, q ∈ M ,

(iii) causally continuous if it is distinguishing and reflecting.

The following example shows that causal continuity is not stable under
perturbations of the metric g, even if we only allow perturbations that make
the lightcones narrower.

Example 3. Let M := R
2 \ {(x, t) | x ≥ 2|t|} and gα = −αdt2 + dx2. Then

(M, gα) is causally continuous for α ≥ 2 and causally discontinuous for α <
2. This can be seen in Figure B1a: Reflectivity is violated for pairs of points
lying on the diagonal red line, one above and one below the origin (such as
the depicted points p, q). The red line has slope 1/α, hence if α ≥ 2, half
of the red line lies inside the removed wedge, and there is no violation of
reflectivity anymore.

The next example shows that causal continuity is not stable under widen-
ing of the lightcones, either.

Example 4. LetM := R
2 \ {(x, t) | t ≤ −2|x|} and gα = −αdt2 + dx2. Then

(M, gα) is causally continuous for α ≤ 1
2 and causally discontinuous for

α > 1
2 . The argument is similar to the one in Example 3 (see Figure B1b).
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p

q

remove

I+M (q)

I+M (p)

I−M (p)

I−M (q)

(a) Example 3 with α = 1.

p

q

remove

I+M (q)

I+M (p)

I−M (p)

I−M (q)

(b) Example 4 with α = 1.

Figure B1. A pair of points p, q for which reflectivity is violated.
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