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Amoebae from tropical geometry and the Mahler measure from
number theory play important roles in quiver gauge theories and
dimer models. Their dependencies on the coefficients of the Newton
polynomial closely resemble each other, and they are connected via
the Ronkin function. Genetic symbolic regression methods are em-
ployed to extract the numerical relationships between the 2d and
3d amoebae components and the Mahler measure. We find that the
volume of the bounded complement of a d-dimensional amoeba is
related to the gas phase contribution to the Mahler measure by a
degree-d polynomial, with d = 2 and 3. These methods are then
further extended to numerical analyses of the non-reflexive Mahler
measure. Furthermore, machine learning methods are used to di-
rectly learn the topology of 3d amoebae, with strong performance.
Additionally, analytic expressions for boundaries of certain amoe-
bae are given.
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1. Introduction

The amoebae of affine algebraic varieties are interesting objects at the in-
tersection of tropical geometry [18, 45, 53, 61] in mathematics and dimer
models in physics [23, 24, 29, 41]. Amoebae are constructed out of loga-
rithmic projections of complex varieties described by toric diagrams. These
toric diagrams are lattice polytopes whose dimensions can be associated to
complex coordinates and vertices to monomial terms in the varieties defin-
ing equation, via the Newton polynomial [11, 19, 25]. How the topology and
geometry of the surface changes under the amoeba projection makes them
particularly interesting objects of study.

The Mahler measure, which was first introduced by Kurt Mahler in
1962 [47], can be interpreted as the limit height function and the free energy
in these dimer models [12, 60]. Further to this in crystal melting models
[13, 49, 50, 59], the Mahler measure and the amoeba are closely related by
the Ronkin function which is the limit shape of the molten crystal; with
relation to quiver Yangians [3, 4]. In particular, the Mahler measure is the
Ronkin function at the origin and the gradient of the Ronkin function is
constant over each components of the amoeba complement. In [14], a number
of observations were made which explicated how the dynamical aspects of the
gauge theory are encoded in the Mahler measure by defining a concept called
the Mahler flow. So far, the appearance of the Mahler measure in physics has
only been studied in the context of 2-dimensional reflexive polygons, which
have only a single free parameter in the Mahler flow. Thus, there is lots of
room to dive deeper into the properties and relations related to the Mahler
measure in broader context, such as in the case of non-reflexive polytopes.

In recent years, there has been an increasing effort in applying data
science techniques to mathematical sciences based on the observation that
mathematical data often take the form of labelled or unlabelled tensors
that naturally resemble the data structure required in machine learning
(ML). In mathematical physics, this was initiated in the exploration of
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string landscape [20, 30, 42, 54] and extended to a broader range of top-
ics in [2, 6, 9, 10, 16, 17, 21, 22, 27, 28, 33, 34, 43, 44]. Interested readers
can refer to [7, 31, 32] for comprehensive reviews on this application.

Specifically, [8] integrated these two directions by applying ML tech-
niques to study the amoebae and tropical geometry, taking advantage of the
classification and image-processing power of ML. In this paper, we extend
the discussion in [8] to 3-dimensional amoebae, consider the Mahler flow
proposed in [14] in greater details in the context of non-reflexive polytopes,
and then apply standard ML techniques to make precise the qualitative re-
lation between the Mahler measure and the bounded amoeba complements
observed and conjectured in [14], as well as considering the implications in
theories built from non-reflexive polytopes as discussed in [5]. Since com-
puting exact properties of the amoeba has been a challenge with analytic
results mostly concerning its approximations and special limits, for example
in [40, 53], our numerical results obtained from ML could provide insights
in its understanding in more general scenarios.

The paper is organised as follows. Section 2 reviews some preliminaries
about amoebae and the Mahler measure and their relations in dimer models
which motivate the effort of this paper to explore the links between these
concepts in mathematics and physics. The following Sections 3 and 4 dis-
cuss some interesting physical properties related to amoebae and the Mahler
measure respectively. More specifically, in Section 3, we apply feed-forward
neural networks and convolutional neural networks to ML the second Betti
number of the 3-dimensional amoebae associated with reflexive polytopes,
based on the discussion of 2-dimensional amoebae in [8]. Section 4 extends
the discussion of the Mahler flow of reflexive polytopes in [14] to the case
of non-reflexive polytopes, where there are more than one amoeba holes,
leading to interesting dynamics. In Section 5, we consider the more physi-
cally relevant quantities, namely the relations between the Mahler measure
and the area (volume) of the bounded complementary region of the amoe-
bae, implementing a genetic algorithm for symbolic regression. In doing so,
we also obtain analytic expressions for the boundary of some amoebae. Fi-
nally, Section 6 discusses the main results in this paper and possible future
directions.
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2. Preliminaries

2.1. Amoeba

The amoeba, AV ⊂ Rr, of an algebraic hypersurface, VC(f) ⊂ Cr, is defined
as the image of the logarithmic map,

(1) AV ≡ Log(VC(f)) ,

where

(2) Log(z1, . . . , zn) ≡ (log|z1|, . . . , log|zn|) .

Since the hypersurface VC(f) = {z ∈ Cn : f(z) = 0} is the zero locus of the
function f , the corresponding amoeba may also be denoted as Af .

The function of interest is the Newton polynomial defined with respect to
a Newton polytope which is a convex lattice polytope, also known as a toric
diagram. In the case of n complex dimensions, the Newton polynomial is of
the form P (z) =

∑

p cpz
p, summing over the polytope vertices p each with

coordinates pi in the i-th lattice dimension. In particular, in three complex
dimensional (r = 3) cases, Newton polynomial is of the form P (u, v, w) =
∑

p c(p1,p2,p3)u
p1vp2wp3 ; and now denoting (z1, z2, z3) 7→ (u, v, w) to empha-

sise the restriction to r = 3.
An amoeba can be approximated using lopsidedness which is defined

as follows. A list of positive numbers {c1, . . . , cn} is lopsided if one of the
numbers is greater than the sum of the rest of numbers. If {c1, . . . , cn} is
not lopsided, there exists a list of phases {φi} such that

∑

i φicn = 0, via
the triangle inequality [18]. Thus, the lopsided amoeba, LAf , is defined by

(3) LAf ≡ {a ∈ R
r| f{a} is not lopsided} ,

so that LAf ⊇ Af .
Let n be a positive integer, x ∈ Rr, and f(x) a (Newton) polynomial,

define f̃n to be

(4) f̃n(x) :=

n−1
∏

k1=0

· · ·
n−1
∏

kr=0

f(e2πik1/nx1, . . . , e
2πikr/nxr) ,

which is a cyclic resultant defined as

f̃n = resur
(resur−1

(. . . resu1
(f(u1x1, . . . , urxr), u

n
1 − 1)
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. . . , unr−1 − 1), unr − 1)(5)

where resu(f, g) is the resultant of f, g with respect to the variable u.

Theorem 2.1. The lopsided amoeba LAf̃n
converges uniformly to Af as

n → ∞, where f̃n is the cyclic resultant of f .

The Newton polytope of f̃n is nr∆(f), as a dilation of the original poly-
tope [53].

An example of a 3-dimensional amoeba is given in Figure 1, generated
through Monte Carlo sampling of points on the Riemann surface.

Figure 1. Amoeba of the hypersurface P (z1, z2, z3) = z1 + z−1
1 + z2 + z−1

2 + z3 + z−1
3 +

10 = 0 .

Figure 2. The amoeba and its cross-section in Figure 1 after transformation while

preserving its topology.

Additionally, to improve the visualisation of the amoeba image, aGL(3,Z)
transformation can be performed, such that the Monte Carlo generated
points occur as a more even sample across the full amoeba [8]. These trans-
formations although changing the geometry preserve the amoebae topology,
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in particular the number of cavities (3-dimensional holes). The transforma-

tion matrix used here is M =





5 1 2
1 2 5
1 5 1



, producing the amoeba shown in

Figure 2. The complementary components of an amoeba may be bounded or
unbounded. In Figure 2, there is a single bounded 3-dimensional hole (cav-
ity), which is emphasised through plotting a cross-section of this amoeba.
The number of such cavities depends on the choice of coefficients of the
Newton polynomial, and is bounded above by the number of internal points
in the respective toric diagram. The variation of the Newton polynomial
coefficients considered changes the Riemann surface geometry but preserves
the topology and existence of holes, however as the coefficients change the
amoeba projection of this surface changes and coefficient values where the
topology of the respective amoeba changes is the focus of interest in this
study. It is worth noting here also there will be coefficient choices that make
the Riemann surface singular, and change its topology, but we leave con-
sideration of the respective amoeba transitions at these Riemann surface
topological transitions to future work.

A lattice polytope ∆n is reflexive if its dual polytope is also a lattice
polytope in Zn. A necessary but not sufficient condition for reflexivity is for
the polytope to have a single interior point, and this unique interior point
is taken to be the origin.

Each lattice polytope can be associated with a compact toric variety with
complex dimension equal to the polytope lattice dimension. For a reflexive
polytopes, the corresponding compact toric variety is a Gorenstein toric Fano
variety. Separately a non-compact toric Calabi-Yau (n+ 1)-fold can also be
created from the polytope by embedding it in Zn+1, setting pn+1 = 1 ∀p∈∆n,
and using the respective fan; effectively constructing the non-compact CY4
as the affine cone over the comapct Fano variety.

From the physics perspective, the toric CY4 singularities (from the non-
compact construction with 3d lattice polyhedra) can be probed byD1−bran-
es to give rise to the classical mesonic moduli space of the 2d N = (0, 2)
gauge theory. These theories are encoded by the periodic quiver diagrams
which specify their matter content involving two types of matter fields and
gauge symmetry [26]. The graph dual to the periodic quivers on T 3 repre-
sents brane configurations of NS5-brane and D4-branes. The complex sur-
face defined by the zero locus of the Newton polynomial of the toric CY4
is the surface wrapped by the NS5-brane, which can be studied using the
(co)amoeba/algae projection [23].



✐

✐

“3-Chen” — 2024/6/18 — 11:08 — page 1411 — #7
✐

✐

✐

✐

✐

✐

Mahler measuring the genetic code of Amoebae 1411

2.2. Mahler measure

The Mahler measure was first introduced in algebraic number theory in [47],
and it is defined as such1. Given a non-zero Laurent polynomial in n complex
variables, P (z1, . . . , zn) ∈ C[z±1

1 , . . . , z±1
n ], the Mahler measurem(P ) is given

by

(6) m(P ) =
1

(2πi)n

∫

|z1|=1
· · ·
∫

|zn|=1
log |P (z1, . . . , zn)|

dz1
z1

. . .
dzn
zn

.

In this paper, we focus on two- and three-variable Laurent polynomials.
For simplicity, consider the two-variable Laurent polynomials of the form

(7) P (z, w) = k − p(z, w) ,

where p(z, w) does not have a constant term. Then, for |k| > max
|z|=|w|=1

|p(z, w)|,
Mahler measure (6) becomes

(8) m(P ) = Re

(

1

(2πi)2

∫

|z|=|w|=1
log(k − p(z, w))

dz

z

dw

w

)

.

The series expansion of log(k − p(z, w)) converges uniformly on the sup-
port of the integration path and leads to

(9) m(P ) = log k +

∫ ∞

k
(u0(t)− 1)

dt

t
,

where

(10) u0(k) =
1

(2πi)2

∫

|z|=|w|=1

1

1− k−1p(z, w)

dz

z

dw

w
.

The Mahler measure (9) in the context of quiver gauge theories was
discussed in [14], where the Mahler flow equation was introduced:

(11)
dm(P )

d log k
= k

dm(P )

dk
= u0(k) .

Interestingly, this equation takes the similar form as the RG flow where the
energy sale is replaced by u0(k).

1The Mahler measure is often referred to the exponential quantity, exp(m(P )),
in the literature.
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2.3. Relation between amoebae and the Mahler measure

A close connection between amoebae and the Mahler measure is expected
through their relations to the Ronkin function in the context of dimer mod-
els. In this section, we introduce the Ronkin function, dimer models, quivers
and crystal melting models in order to explicate the significance of searching
for their relations in both mathematics and physics and motivate our use of
ML in the process.

To begin with, the n-dimensional Ronkin function R(x1, x2, ..., xn) for a
Newton polynomial P is defined as

R(x1, x2, ..., xn) :=
1

(2πi)n

∫

|z1|=1
· · ·
∫

|zn|=1
log |P (ex1z1, . . . , e

xnzn)|

× dz1
z1

. . .
dzn
zn

.(12)

The Ronkin function links to amoebae and the Mahler measure sep-
arately as follows: Different regions of the amoeba can be probed by the
Ronkin function by considering the gradient of the Ronkin function. Specif-
ically, the Ronkin function is strictly convex over the interior of amoeba and
linear over each component of its complements [14]. Its gradient is given
by the corresponding lattice point. This is important for the derivation of
the expressions for the boundary of the amoeba, which is elaborated in Sec-
tion 5.1. On the other hand, following their definitions, the Mahler measure
is the Ronkin function defined at the origin (0, 0). The convexity of the
Ronkin function also implies that the Mahler measure is at the minimum of
the Ronkin function.

Their relations are more of interest when considered in the context of
quiver gauge theories and crystal melting models arising from dimer models.
Given a bipartite graph G where each edge connects a black and a white
node, the dimer model is the study of all perfect matchings of G where
each edge is only incident on one node. For a reference matching with a
unit flow, a height function is defined as the total flux with respect to the
reference matching across a path from one face to another. The partition
function of the set of all perfect matchings is given by the absolute value of
the Kasteleyn matrix K which, after embedding on a torus, is given by the
Newton polynomial P which then defines for us the corresponding amoeba
and Mahler measure.

The crystal melting models relate the counting of BPS bound states to
melting crystals where different gauge groups in the quiver correspond to
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different types of atoms and matter contents correspond to chemical bonds in
the crystals [50, 51]. Crystals are molten by removing atoms from them, and
the thermodynamic limit is when a large number of atoms are removed. In
this limit, the Ronkin function is the limit height function of the dimer model
that can be interpreted as the limit shape of the molten crystal [41]. More
importantly, the crystal melting models admit a statistical interpretation
with respect to the height fluctuations where their phase structures are
described by the corresponding amoebae [38, 39, 41]. This is illustrated in
Figure 3. Specifically, the solid phase is where the height fluctuations are
bounded almost certainly; liquid phase is where the covariance in the height
function is unbounded as the distance between two distant points goes to
infinity; and the gas phase is where the covariance of the average height
difference is bounded but itself is unbounded (detailed discussion can be
found in [38]). In the context of crystal melting models, the solid phase
corresponds to the unmolten parts of the crystal which are the unbounded
amoeba compliments, whereas the gas phase corresponds to the opening of
the amoeba hole (oval).

Moreover, a particularly interesting boundary of the amoebae is the
boundary of the bounded complement of the amoebae. It was observed
in [14] that after recasting the Newton polynomial P into P (z) = k − p(z)
where p contains no constant terms, the value of the parameter k controls
geometrically the opening of the amoeba holes. The isoradial limit k = kc
is the critical point where the amoeba hole would emerge. At k = kc, the
bounded complement of the amoebae is degenerated to a point, which can
always be transformed to the origin. Beyond the critical point k > kc, the
area of the amoeba hole evolves as the value of k increases. This is consistent
with the statistical interpretation of the crystal melting models as the gas
phase grows when more atoms are removed. Correspondingly, the Mahler
measure also changes continuously as k is varied as described by the Mahler
flow equation (11) introduced in [14]. Importantly, the Mahler measure also
grows monotonically along the Mahler flow as k increases above the isora-
dial limit. Thus, it is natural to expect that the Mahler flow is related to
the evolution of the amoeba hole, and the Mahler measure is related to the
bounded complement of the amoebae and perhaps its area.

The critical value of k at which the amoeba hole appears characterises
the phase transition from the liquid phase to the gas phase. This motivates
an associated definition of different phase contributions to the Mahler mea-
sure, proposed in [14]. In particular, the liquid and gas phase contributions
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to the Mahler measure, ml,g, are defined as

ml(P ) =

{

m(P ) for k ≤ kc

m(P (kc)) for k > kc
,

mg(P ) = m(P )−m(P (kc)) for k ≥ kc .(13)

Figure 3. The Ronkin function (left) and the amoeba of F0 (right). Figures are adapted

from [14].

From the physics perspective, the bounded complement of the amoebae
is the gas phase of the dimer model and its entropy is related to the Mahler
measure of the gas phase mg, [14]. The relations between the area of the
complement and mg are numerically studied in concrete examples in Sec-
tion 5. However, the precise analytic relation between the area of the gas
phase and the Mahler measure is not yet understood and we hope to further
study this problem in future.

Besides the interpretation of k as the parameter that controls the size of
the Mahler measure and the area of the amoeba hole, it is also given physical
interpretations in quiver gauge theories. As k is one of the coefficients of
the Newton polynomial which are given by perfect matchings in the dimer
models, they are understood to be related to Kähler moduli of the toric
Gorenstein singularity [36], as discussed in more details in [14].

Given the difficulties in finding analytic expressions of areas of the
amoeba and its compliments, discussions in this area have mainly focused
on special limits or approximations of amoebae. In particular, the geomet-
ric interpretation of the Mahler flow in relation to amoebae was studied in
[14] in the limit of k → ∞ which is a tropical limit of the amoeba, and the
topological features of two-dimensional amoebae were studied in [8] using
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the lopsided amoeba as a crude approximation. Therefore, in this paper,
we adopt several ML techniques in the hope to provide some insights in
obtaining explicit relations in general.

3. Machine learning 3-dimensional amoebae Betti numbers

from coefficients

In this section, a variety of example complex 3d Riemann surfaces are con-
sidered, for each surface a set of polynomial coefficient vectors are generated
for the respective Newton polynomial; each coefficient set giving a geomet-
rically different surface. Each of these surfaces will have a different amoeba
projection with potentially different topology under the projection.

The aim of this investigation is to establish how well ML architectures
can learn to predict the second Betti number, b2, dictating the number of
3-dimensional cavities, from the polynomial coefficients alone. For each of
the example surfaces, across the set of generated amoebae the b2 values
are calculated using the topological data analysis technique of persistent
homology on Monte Carlo sampled point clouds of the amoeba. These values
are used as the outputs to be learnt from the coefficient vector inputs.

3.1. Estimating Betti numbers with persistent homology

The k-th homology group Hk(X) of a topological space X is a key concept
in algebraic topology. It is defined as the quotient group of the cycle group
Zk by the boundary group Bk,

(14) Hk ≡ Zk/Bk ,

where

(15) Zk ≡ Ker(∂k), Bk ≡ Im(∂k+1) ,

under the boundary operator ∂k, which in the simplicial complex context
maps k-simplices to their boundaries made up of (k − 1)-simplices. Thus, the
dimension of the k-th homology group Hk(X), i.e., the k-th Betti number
bk, counts the number of k-dimensional holes in X (the number of cycles
that are not boundaries of some simplicial complexes). The largest homology
group one can consider is bounded by the dimension of X, such that in the
case of 3-dimensional amoebae, the first homology group of interest isH2(X)
with dimension b2, as the boundary of a 3-dimensional cavity is of dimension
two.
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Since the amoeba can be easily sampled to obtain the point cloud data
for the space, its topological invariants can be obtained directly using a
filtration starting from these points, via topological data analysis. This fil-
tration of complexes is created by first considering the sampled points in
R3, and a respective simplicial complex of as many points. Then imagining
a 3d ball of radius δ centred on each point, the value of δ is continuously
increased from 0 to ∞ and at each δ value where there is a new intersection
of the balls the respective simplicial complex is updated to produce the next
complex in the filtration. When (k + 1) balls intersect a k-simplex is drawn
between their respective points in the simplicial complex (up to k = 3 for
these 3d data clouds).

The (p, q)-persistent k-homology H
p,q
k hence describes the birth (p) and

death (q) of k-cycles created and subsequently filled as the complex changes
through the filtration. There are many available algorithms and software
tools for computing persistent homology, and we adopted the python pack-
age ripser due to its relative efficiency [56].

3.2. ML architecture

As in [8], we compared feed-forward neural networks and convolutional neu-
ral networks, coded in Mathematica [37], to ML the number of cavities
present in the amoebae from the coefficients. The architectures are the same
as in [8]:

MLP: one hidden layer of 100 perceptrons and ReLU activation func-
tion.

CNN: four 1d convolutional layers, each followed by a Leaky ReLU layer
and a 1d MaxPooling layer.

For all neural networks, we used learning rates of 0.001 and Adam opti-
mizer. We also used a 5-fold cross validation to compute the standard errors.
The input data are the coefficients of a particular Newton polynomial and
the output is the second Betti number of the corresponding amoeba,

(16) {c1, . . . , cn} → b2 .

3.3. Example: P1 × P1 × P1

Consider the example surface of P (z1, z2, z3) = c1z1 + c2z
−1
1 + c3z2 + c4z

−1
2

+ c5z3 + c6z
−1
3 + c7 = 0, where the corresponding toric diagram is shown in

Figure 4, which is analogous to the toric diagram of F0 with an extra P1

fibration. An example of the associated amoeba is given in Figure 5 from
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Monte Carlo sampling. Since its toric diagram has only one interior point,
the maximum number of 3-dimensional cavities is one, i.e., b2 = 0 or 1, such
that this is a binary classification.

Figure 4. Toric diagram for P
1 × P

1 ×

P
1 .

Figure 5. An example of the correspond-

ing P
1 × P

1 × P
1 amoeba from Monte Carlo

sampling.

3.3.1. Learning persistent homology b2. A balanced dataset of 7200
random samples was generated of real coefficients with

c(1,0,0), c(−1,0,0), c(0,1,0), c(0,−1,0), c(0,0,1), c(0,0,−1) ∈ [−5, 5]

and c(0,0,0) ∈ [−20, 20]. For each set of coefficients, we used LAf̃1
to ap-

proximate Af , and sampled LAf̃1
with around 700 points to allow feasible

computation. A matrix transformation is performed on the amoeba such
that its boundary is clearer while preserving the value of b2. Then, the point
cloud data is passed into the ripser package to obtain the persistent pairs
of H2.

After obtaining all the persistent pairs, a selection is required, as when
the birth (p) and death (q) times are close to each other this may be the result
of point sampling not being dense enough. Thus, persistent pairs (p, q) with
q − p ≤ 1.45 are discarded as noise. This value was selected as a heuristic
optimum for the dataset considered, and negligible classification improve-
ments were seen with values ∼ 1 and for larger datasets (∼ 10×). Since there
is at most one cavity, the value of b2 is determined by

b2 =

{

0 No persistent pairs with q − p > 1.45 ;

1 Otherwise .
(17)
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The identification of the b2 Betti number from the topological data analysis
is exemplified in Figure 6. Within this, the main source of error comes from
the number of sampling points and the selection of the persistent pairs.

Figure 6. Example of a persistent diagram showing the homology groups H0, H1, H2 for

the point cloud data of the amoeba in Figure 1. The H2 point (10.62652588, 14.6450882)

(represented by the green point with coordinates (10.62652588, 14.6450882)) suggests the

existence of a 2-dimensional cavity, i.e., b2 = 1.

These b2 values extracted from the persistent homology where used as
the data labels for each amoeba. The subsequent ML hence performed the
binary classification task of learning the b2 value from the input vector of
amoeba coefficients. Two NN architectures were used, and classification per-
formance was measured with accuracy as the proportion of correctly pre-
dicted b2 values. Across the 5-fold cross validation runs for both architec-
tures, the performance measures of accuracy (ACC) and Matthews Corre-
lation Coefficient (MCC) were:

MLP: ACC: 0.771± 0.014 , MCC: 0.543± 0.029 ,(18)

CNN: ACC: 0.776± 0.014 , MCC: 0.550± 0.031 .(19)

Note also that performance could be marginally improved by increasing the
number of sampling points at a cost of longer computation time for the
persistent homology.

3.3.2. Learning analytic lopsidedness b2. This example is simple eno-
ugh that the condition for the number of cavities (b2) can be derived in a
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similar way as for the example of F0 in 2d, using lopsidedness. The condition
obtained is

(20) b2 =

{

0 |c7| ≤ 2|c1c2|1/2 + 2|c3c4|1/2 + 2|c5c6|1/2 ;
1 Otherwise .

Now performing the ML using the analytic condition from the lop-
sided amoeba approximation to generate the b2 output values for each input
amoeba coefficient vector, the results improved. A balanced dataset of 5400
random samples was used to achieve learning measures for each architecture

MLP: ACC: 0.937± 0.008 , MCC: 0.874± 0.016 ,(21)

CNN: ACC: 0.894± 0.014 , MCC: 0.789± 0.026 .(22)

The mismatch between two datasets is mostly due to the sampling points
not being dense enough such that the separation of the points becomes
comparable with the size of the cavity. Plotting the corresponding amoeba
shows that it is difficult to tell the number of 3-dimensional cavities by eye
in such cases.

3.3.3. MDS projection. Using the yellowbrick package [15], multi-
dimensional scaling (MDS) projections (Figure 7) on the dataset obtained
via persistent homology and the dataset obtained via analytic condition
show similar separations. This MDS method performs non-linear dimen-
sionality reduction of the R7 space of coefficient vectors into R3 for effective
visualisation, and amoeba (as coefficient vector points) are coloured accord-
ing to their computed b2 value (via persistent homology, or analytically).

The difference in these plots may be attributed to poor sampling over
the amoeba leading to false results for the persistent homology, or conversely
may be due to the error caused by approximating the true amoeba by its lop-
sided counterpart for the analytic condition derivation. Both these features
highlight the subtlety in determining amoebae topology.

Figure 7. MDS manifold projection on dataset obtained using persistent homology (left)

and analytic condition (right).
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Surface
P
1
× P

1
× P

1
P
3

P
2
× P

1

PH Analytic PH Analytic PH Analytic

ACC
MLP

0.771 ±

0.014
0.937 ±

0.008
0.840 ±

0.015
0.939 ±

0.009
0.830 ±

0.016
0.947 ±

0.007

CNN
0.776 ±

0.014
0.894 ±

0.014
0.727 ±

0.031
0.910 ±

0.010
0.825 ±

0.027
0.920 ±

0.011

MCC
MLP

0.543 ±

0.029
0.874 ±

0.016
0.699 ±

0.022
0.876 ±

0.017
0.652 ±

0.035
0.893 ±

0.014

CNN
0.550 ±

0.031
0.789 ±

0.026
0.457 ±

0.073
0.819 ±

0.019
0.630 ±

0.063
0.841 ±

0.023

Table 1. Summary of the ML results, learning the homology of amoebae constructed from

the stated Riemann surfaces with varying coefficients. Learning was performed by MLP

and CNN architectures, predicting the b2 values computed using persistent homology (PH)

or lopsidedness (Analytic). Performance was measured with accuracy (ACC) and MCC

over the 5-fold cross validation.

3.4. Summary of the ML results

Across the three 3d examples that we considered (details are given in Ap-
pendix A), the ML architectures perform similarly learning the b2 Betti num-
bers computed from either persistent homology or lopsidedness. For ease of
comparison the ML results are repeated for all 3 examples in Table 1, and
the MDS projections computed for each in Table 2.

A consistently poorer ML performance for the data obtained using per-
sistent homology is observed across these examples, in comparison to the
results using analytic lopsidedness. It is worth noting that this is expected
due to the two sources of errors in data generation using persistent homol-
ogy mentioned in Section 3.3.3 instead of the limitation of ML techniques.
Nonetheless, this could, in principle, be improved by using a larger number
of sampling points and could be useful in more complex examples where the
analytic condition using lopsidedness is absent.

4. Non-Reflexive Mahler measure and Mahler flow

As we mention in Section 2, a reflexive polytope ∆ on Zn is one whose dual
polytope

(23) ∆◦ = {v ∈ Z
n|v · u ≤ −1, ∀u ∈ ∆}

is also reflexive. For n = 2, we can show that ∆ is reflexive iff the polytope
has one interior point. In this section, we focus on polytopes with two interior
points, which are therefore non-reflexive.

We can deal with the Mahler measure of non-reflexive polytopes in a sim-
ilar way to the reflexive case introduced in Section 2. We first consider poly-
nomials of the form P (z, w) = k1 − p(z, w), where all coefficients of p(z, w)
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Surface P
1 × P

1 × P
1

P
3

P
2 × P

1

MDS
Projection

(PH)

MDS
Projection
(Analytic)

Table 2. MDS projections for each of the three Riemann surface examples considered,

colouring according to the b2 values {0, 1} computed via persistent homology (PH) or

lopsidedness (Analytic) respectively.

are positive. For polytopes with two interior points, we can write this as
P (z, w) = k1 − k2z

nwm − p′(z, w), where p′(z, w) = p(z, w)− k2z
nwm, and

the position of the second interior point is (n,m). For cases where k2 >
max|k1 − p′(z, w)|, we can calculate the Mahler measure m(P ) using Cauch-
y’s residue theorem. We factor out log(k2z

nwm) and are left with:

m(P ) = Re
(

log k2

+
1

(2πi)2

∫

|w|,|z|=1
log

(

1− 1

k2znwm
(k1 − p′(z, w))

)

dz

z

dw

w

)

,(24)

where the log k2 term contributes to the residue, and therefore to the Mahler
measure. The log(znwm) term also contributes to the residue, but since it is
purely imaginary, it does not contribute to the measure. To get the full value
of the Mahler measure, we expand the log

(

1− (k2(z
nwm)−1(k1 − p′(z, w)))

)

in powers of the second argument. A full example of this can be seen in
Appendix C.

Similar to Eq. (9), we can also write the above equation as:

(25) m(P ) = log k2 +

∫ ∞

k2

(u2(t)− 1)
dt

t
,

where

(26) u2(k2) =
1

(2πi)2

∫

|w|,|z|=1

1

1− (k2znwm)−1(k1 − p′(z, w))
dz

z

dw

w
.
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As in the single variable case, u2(k2) is the period of a holomorphic 1-form ωY

on the curve Y defined by 1− (k2(z
nwm)−1(k1 − p′(z, w))), and it therefore

satisfies the Picard-Fuchs equation [57]:

(27) A(k2)
d2u2(k2)

dk22
+B(k2)

du2(k2)

dk2
+ C(k2)u2(k2) = 0 .

Combined with the similar equation for computing the Mahler measure
when the polynomial is lopsided in favour of k1 (i.e. k1 > max |p(z, w)|), we
now have a means of calculating the measure for the whole k1k2-plane except
for a strip of width

√
2max|p′(z, w)| centered along k1 = k2. Within these

two disconnected parts of the k1, k2-plane, the Mahler measure behaves as
we expect.

We can redefine the Mahler flow, first introduced in [14], using two equa-
tions, one for each disconnected section:

∂m(P )

∂ log k1
= u0(k1)

∂m(P )

∂ log k2
= u2(k2) .(28)

As u0 and u2 both represent periods, they are always positive. Therefore, the
Mahler measure is always increasing as we move along each flow. When trav-
elling perpendicular to the respective flows, however, this is not necessarily
true, as we will see in the next subsection.

As in the reflexive case, many polytopes also have lattice points lying
on the edges. We often like to vary the coefficients of these edge points as
well as the interior points. If the coefficient of this point is such that the
polynomial becomes lopsided in its favour, we deal with it analogously to
how we did above. In general, for a polynomial of the form P (z) =

∑

n cnz
n,

where z = (z1, . . . , zi) and n = (n1, . . . , ni) are lattice points, as any cn tends
to ∞, the Mahler measure m(P ) tends to maxn log cn.

In the limit of large (k1, k2), the Mahler measure tends to

max(log k1, log k2) ,

and we therefore get an infinite measure at the tropical limit at infinity.
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4.1. Example: C3/Z5

For a concrete example, we will analyse the surface of C3/Z5 toric Calabi-
Yau threefold whose associated toric diagram is pictured below. As men-
tioned above, for cases where k1 > max |p(z, w)| or k2 > max |k1 − p′(z, w)|,
we can expand the Newton polynomial, taking only the constant term. In
this section, we have primarily used Mathematica [37] for computations, and
the infinite sum is truncated by taking the first 200 terms for a reasonable
approximation.

rs

p1

p2

p3

There are two expansions of the Mahler measure, depending on the val-
ues of k1 and k2. In both cases we take the origin to be the left interior point
(labelled s in the above figure). This corresponds to a Newton polynomial
given by P (z, w) = k1 − k2z − zw − z2w−1 − z−1. First, we expand for cases
where the Newton polynomial is lopsided in favor of k1. We get a Mahler
measure given by:

(29) m1 (Ps(z, w)) = log k1 −
∞
∑

n=1

n
∑

i=0

(

n

i

)(

n− i
n−i
2

)(

i
5i−3n

4

)

k
5i−3n

4

2

kn1n
.

Similarly, when the polynomial is lopsided in favor of k2, we get an
expression given by:

(30) m2 (Ps(z, w)) = log k2 −
∞
∑

n=1

n
∑

i=0

(

n

i

)(

i
i
2

)(

n− i
3i−2n

2

)

k
4n−5i

2

1 (−1)
5i−2n

2

kn2n
.

In both cases, we have constraints on allowed combinations of n and i,
such that for every binomial coefficient

(

n
r

)

all coefficients are positive in-
tegers, and n ≥ r (if not, the contributing summand is zero). This greatly
reduces the number of terms we need to calculate, reducing the computing
time.

From Figure 8, we see that in each component, the Mahler measure
increases monotonically along the respective Mahler flows. As we increase
the value of k1 and/or k2, the plot tends to max(log k1, log k2). At large
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Figure 8. The Mahler measure of the C
3/Z5 polynomial. As expected, we see two dis-

connected components.

values of k1, the plot therefore looks like log k1 as we move parallel to the k1-
axis and likewise for k2. We can explicitly check this monotonic increase by
using the definition of the Mahler flow, differentiating the above equations:

(31)
∂m1(P )

∂ log k1
= 1 +

∞
∑

n=1

n
∑

i=0

(

n

i

)(

n− i
n−i
2

)(

i
5i−3n

4

)

k
5i−3n

4

2

kn1
.

As k1 and k2 are always positive, the right hand side of Eq. (31) is
clearly always positive and the Mahler measure always increases. This is not
necessarily true while travelling along the perpendicular direction (on the
same component of the surface). In this case, we obtain

(32)
∂m1(P )

∂ log k2
= −

∞
∑

n=1

n
∑

i=0

(

n

i

)(

n− i
n−i
2

)(

i
5i−3n

4

)

5i− 3n

4

k
5i−3n

4

2

kn1
.

One of the conditions for the third binomial coefficient in Eq. (32) to
be defined is that (5i− 3n) ≥ 0. Since all other terms are also necessarily
positive, this derivative is negative. As we travel along a path of constant k1
within the k1 component, the Mahler measure is therefore always decreasing.
We can see this behaviour in the orange surface in Figure 8.

Although we observe the same behaviour for the k2 section of the plot
in Figure 8, it is not as immediately obvious from the derivatives. First
examining the behaviour along the Mahler flow as defined above, we get:
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(33)
∂m2(P )

∂ log k2
= 1 +

∞
∑

n=1

n
∑

i=0

(

n

i

)(

i
i
2

)(

n− i
3i−2n

2

)

k
4n−5i

2

1 (−1)
5i−2n

2

kn2
.

The factor of −1 means that we will have some negative terms in the
expansion in Eq. (33). In order to have a monotonically increasing Mahler
measure, the second term on the right hand side of Eq. (33) must be greater
than −1 for all values of (k1, k2) within the blue region in Figure 8, i.e.,
for all values of (k1, k2) which satisfy k1 < k2 − 4. Specifically, we plot this
second term for these values of (k1, k2) as in Figure 9. We see a decrease
in the size of the term as we move along k1, but it never goes below zero.
For the values mentioned above, the sum over n will always converge. This
corresponds to the value of each consecutive term decreasing. As we move
along k2, we decrease the size of each term, causing the sum to converge to
a smaller number. As k2 → ∞, this term tends to zero, and the derivative
tends to 1, as expected. Moving along k1 also decreases the Mahler measure,
though the gradient is much less than its equivalent in the k1 section. This
is again expected, as all terms in the k1 section are negative, while the sign
of the terms in the k2 section alternate. This gradient is given by:

(34)
∂m2(P )

∂ log k1
= −

∞
∑

n=1

n
∑

i=0

(

n

i

)(

i
i
2

)(

n− i
3i−2n

2

)

4n− 5i

2

k
4n−5i

2

1 (−1)
5i−2n

2

kn2n
.

Figure 9. Derivative of the second term in the k2 section of the C
3/Z5 expansion.
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4.2. Numerical analysis

Although we cannot obtain a similar expression for the Mahler measure
when |k1 − k2| ≤ max |p′(z, w)| using the expansion method, we can resort
to direct numerical integration to obtain values. Specifically, results from
numerical integration in the case of C3/Z5 are plotted in Figure 10. Polyno-
mials whose measure can not be calculated using the expansion method will
have poles for certain values of (z, w), which means we will have to integrate
over singularities. Nevertheless, results are still accurate to at least 5 deci-
mal places when tested against known exact results, such as those found in
[55] and results found using the expansion method above. These singulari-
ties correspond to instances when the origin lies within the interior of the
related amoeba. In general, shorter computation time is required for numer-
ical integration for polynomials with many terms than using the expansion
method above.

Figure 10. The Mahler measure of the C
3/Z5 polynomial calculated numerically.

4.3. Summary of results for non-reflexive Mahler measure

We repeated this analysis for more non-reflexive polytopes and obtained
expressions for their expansions for large k1 and k2, which are summarised
in Table 3 for clarity. We also plotted the Mahler measure numerically in each
case. Although we only performed these expansions around interior points,
similar expressions can be obtained when the polynomial is lopsided in favour
of points lying on the polytope edges. As we can see from the plots in Table 3,
the numerical and expansion methods give the same results wherever the
expansion is defined. Within each section for the expansion plots, the Mahler
measure increases monotonically along the Mahler flow, but may decrease
or increase when moving perpendicular to it. This variability is particularly
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visible in the k2 section, where the expansion series alternates its sign. In
the k1 section, we do not see this as there is no factor of −1, and all terms
in the expansion are negative. This results in a decreasing measure.

Toric diagram Mahler measure (Expansion) Mahler measure (Numerical)

m1 (Ps(z, w)) = log k1 −
∞
∑

n=1

n
∑

i=0

n−i
∑

l=0

(

n
i

)(

i
i
2

)(

n−i
l

)( i
2

5i+2l−4n
2

) kl
2

kn
1 n

m2 (Ps(z, w)) = log k2 −
∞
∑

n=1

n
∑

i=0

n−i
∑

l=0

(

n
i

)(

i
i
2

)(

n−i
l

)( i
2

n−2l−2i

) kl
1(−1)n−2i−l

kn
2 n

Toric diagram Mahler measure (Expansion) Mahler measure (Numerical)

m1 (Ps(z, w)) = log k1 −
∞
∑

n=1

n
∑

i=0

n−i
∑

l=0

i
2
∑

h=0

(

n
i

)(

n−i
l

)(

i
i
2

)( i
2

n+h−2i−2l

) kl
2

kn
1 n

m2 (Ps(z, w)) = log k2 −
∞
∑

n=1

n
∑

i=0

n−i
∑

l=0

i
2
∑

h=0

(

n
i

)(

i
i
2

)(

n−i
l

)( i
2
h

)( i
2

h+2n−l−2i

) kl
1(−1)n−l

kn
2 n

Toric diagram Mahler measure (Expansion) Mahler measure (Numerical)

m1 (Ps(z, w)) = log k1 −
∞
∑

n=1

n
∑

i=0

i
∑

l=0

(

n
i

)(

n−i
2n−3i

)(

i
l

)(

l
2l−i

) k
2n−3i
2
kn
1 n

m2 (Ps(z, w)) = log k2 −
∞
∑

n=1

n
∑

i=0

i
∑

l=0

(

n
i

)(

n−i
n−3i

2

)(

i
l

)(

l
i−l

) k

n−3i
2

1 (−1)
n+3i

2

kn
2 n

Table 3. Summary of results for some non-reflexive polytopes. Plots generated by the

expansion method and the numerical method are consistent with each other. As we travel

along the Mahler flow, the Measure increases monotonically.
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5. ML, amoeba, and the Mahler measure

It is noticed in [14] that the changes in the liquid and gas phase contributions
to the Mahler measure along the Mahler flow are similar to the changes in
the area of the amoeba and the area of the bounded amoeba complement.
The conjecture is that given a Newton polynomial P (z, w) = k − p(z, w), the
liquid phase contribution to the Mahler measure ml(P ) is solely determined
by the area of the amoeba and the gas phase contribution mg(P ) is solely
determined by the area of the bounded amoeba complement, i.e., its hole.

As introduced in Section 2.3, the relation between Mahler measure and
amoeba is evident via the Ronkin function. The amoeba is the region where
the gradient of the Ronkin function is non-linear, whereas the Mahler mea-
sure is the Ronkin function evaluated at (0, 0). It is possible to use ML to
make this relation more precise.

5.1. Area of the bounded amoeba complement

Only reflexive polytopes as toric diagrams are considered such that the defi-
nition of the gas phase contributions to the Mahler measure is most obvious.
Thus, we are only considering a single bounded region for the amoeba. The
area of this bounded amoeba complement (the amoeba hole), Ah, is obtained
using both sampling and analytic solutions as a crosscheck for each other.

It is possible to sample only the bounded complement of the amoeba
using lopsidedness and restricting the sampled region to the bounded re-
gion formed by its spines. This bounded region formed by its spines can be
determined from Theorem 3.7 in [14].

The analytic boundary of the amoeba is derived by considering the
boundary conditions where the gradient of the Ronkin function changes
from being linear to being non-linear. This is when the pole in the gradient
of the Ronkin function, i.e., P (z, w) = 0, within the integration path is in-
dependent of the phase angle of w = |w|eiθ at constant y = ln |w|, following
the considerations in [46].

The areas obtained from both methods agree with each other rather
well, so we choose to use the analytic solutions in this section for the ease
of computation.

5.2. Symbolic regression and genetic algorithm

Symbolic regression is a machine learning technique which allows us to deter-
mine the mathematical relationship between the independent variables and
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the dependent variable targets. Genetic Programming refers to the technique
of automated evolution of programs, usually starting from random programs
which are progressively evolved using operations analogous to naturally oc-
curring genetic operations. The gplearn package is an implementation of
Genetic Programming to perform symbolic regression. It first generates a
population of random formulas and then each subsequent population is ob-
tained by performing genetic operations on the fittest individuals from the
preceding population. With the help of gplearn, we were able to obtain
numerical relations between the area(volume) of the amoeba hole and the
coefficients of the Newton polynomial and the numerical relations between
the area(volume) of the amoeba hole and gas phase contribution to the
Mahler measure.

Specifically, in this section, the genetic algorithm has the following struc-
ture in which equations are represented as trees with selected operations
from {addition, subtraction, multiplication, division, negation, square root,
logarithm, inverse, absolute value} applied to variables and constants in the
range (−10, 10). It begins by initialising with a random population of size
5000. The raw fitness metric, the mean absolute error (MAE) in this case,
of the true output values for all input values is calculated for each equa-
tion in the population to give a performance loss which is weighted by the
complexity of the equation with weight 0.02. Then, the fittest 0.4 percent of
the population are selected to evolve to successive generation of equations
via the genetic operations including performing crossover with probability
of 0.85, subtree mutation with probability of 0.02, leave mutation with prob-
ability 0.01, and hoist mutation with probability of 0.015. This process is
iterated for 100 generations, and equations are selected early if the metric
score reaches 0.001.

5.3. 2d Example: F0 = P1 × P1

The Newton Polynomial in this case is P (z, w) = k − z − z−1 − w − w−1.
The analytic boundary of the amoeba is found to be

(35) x = ln
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 ,

where x = ln |z|, y = ln |w|. The boundaries of amoebae with k = −0.5, 4, 10
are plotted in Figure 11, where k = 4 is the critical value of k at which the
amoeba hole starts to appear. The boundary of the hole agrees well with
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the sampled boundary of the amoeba. The areas of the hole obtained by
sampling and by analytic boundaries agree with each other to at least 2
decimal places depending on the density of points.

Figure 11. The analytic boundaries of amoebae with k = −0.5 (left), k = kc = 4 (middle)

and k = 10 (right).

The relation between the amoeba hole area and the value of k is fitted
with 7500 pairs of (k,Ah) and is found to be

(36) Ah = 4 ln2 k − 6.601 ,

with an R2 score of 1.0000 and a mean absolute error of 0.0318. In the limit
of k → ∞, the leading term scales as 4 ln2 k (as plotted in Figure 12). This
agrees with Conjecture 3.9 in [14], and the power of ln k is given by the
dimension of the amoeba.

Figure 12. The relation between amoeba

hole area Ah and k. Original data points are

shown red, and the relation found is plotted

blue.

Figure 13. Plot of gas phase contribution

to Mahler measure mg against k.
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5.3.1. Mahler measure and hole area for k ≥ 4. The Mahler measure
for the Newton polynomial P (z, w) = k − z − z−1 − w − w−1 is

(37) m(P ) = ln k − 2k−2
4F3

(

1, 1,
3

2
,
3

2
; 2, 2, 2; 16k−2

)

,

for k ≥ 4 [14]. The gas phase contribution to the Mahler measure, mg(P ) =
m(P )−m(P (k = 4)), is plotted in Figure 13 which shows similar trend as
in Figure 12. This suggests a possible direct relationship between Ah and
mg(P ), as motivated in Section 2.

The relation between the gas phase contribution mg(P ) and the amoeba
hole area is fitted with about 50000 data pairs and found to be

(38) Ah = 3.9804m2
g + 9.888mg − 1.5243

√
mg ,

with an R2 score of 1.0000 and a mean absolute error of 0.0249 (plotted in
Figure 14). In the limit of large k and hence large mg, Ah ∼ 4m2

g and the
leading coefficient in Eq. (38) is close to the leading coefficient in Eq. (36).
This is expected as the large k behaviour of the Mahler measure is of ln k.

Figure 14. Data points (red) and the fitted relation (blue) between Ah and mg.

5.4. 2d Example with more than one parameter: Y 2,2

We also considered an example which has more than one coefficient of the
Newton polynomial that is not constant. Specifically, we looked at the sur-
face Y 2,2 with the associated Newton polynomial P (z, w) = z2 + bz + k +
r(w + w−1) and coefficients (b, k, r). Its toric diagram is given in Figure 15.
The physical interpretation of the coefficients can be found in [46].
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The analytic boundaries of the amoeba can be determined using the
same method as before, and they are given by

(39) x = ln

∣

∣

∣

∣

∣

− b

2
±
√

b2

4
− (k ± 2r cosh y)

∣

∣

∣

∣

∣

,

where x = ln |z|, y = ln |w|. The boundary of the amoeba hole agrees with
the sampled boundary of the n = 1 lopsided amoeba, as shown in Figure 16.

Figure 15. The toric diagram associated

with Y2,2 .

Figure 16. The boundary curves of the

amoeba.

The relation between the coefficients b, k, r and the amoeba hole area is
fitted with 40328 pairs of ({b, k, r}, Ah) where 0 < b, k, r ≤ 40 and Ah ̸= 0,
and it is found to be

(40) Ah =

√

(

b+ 2.4142
√
r − r

)(

b√
r
− ln k

)

with an R2 score of 0.9519 and a mean absolute error of 1.0478. The area
of the amoeba hole does not scale as ln2 k in the large k limit at constant b
and r, and it is most significantly affected by the value of b instead of k.

Moreover, the gas phase contribution to the Mahler measure cannot be
analogously defined here because the Mahler measure takes different values
for coefficients that give the same hole area. An example is given in Table 4.

(b, k, r) (4, 1, 1) (8, 4, 4) (12, 9, 9) (16, 16, 16) (20, 25, 25) (24, 36, 36)

Ah 1.63644 1.63644 1.63644 1.63644 1.63644 1.63644

m(P ) 1.43518 2.17779 2.7313 3.15535 3.51961 3.8322

Table 4. Example of numerical values of the Mahler measure for different sets of coeffi-

cients (b, k, r) with the same amoeba hole area.
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5.5. Summary of 2d results

The 2d compact Fano varieties considered in this work, along with the re-
spective Newton polynomials used and toric diagrams, are given in Table 5.
The amoebae and Mahler measure information for each are respectively col-
lected in Table 6 for ease of comparison; along with the symbolic regression
results in Table 7. Another detailed example is given in Appendix B.

Surface Newton Polynomial Toric Diagram

F0 P (z, w) = k − (z + z−1 + w + w−1)

P2(dP0) P (z, w) = k − (z + w + z−1w−1)

dP1
P (z, w) =

k − (z + w + w−1 + z−1w−1)

dP2
P (z, w) =

k − (z + z−1 + w + w−1 + z−1w−1)

dP3
P (z, w) = k − (z + z−1 + w + w−1 +

zw−1 + z−1w)

Table 5. Examples of toric surfaces, each with an associated specific Newton polynomial

and the respective toric diagram.

5.6. 3d Example: P1 × P1 × P1

Similar methods are applied to the 3-dimensional example of P1 × P1 × P1.
The analytic expressions for the boundary surfaces of the associated amoeba
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V Amoeba Boundary Example Mahler measure

F0 x = ln

(∣

∣

∣

∣

k
2 ± cosh y ±

√

(

k
2 ± cosh y

)2 − 1

∣

∣

∣

∣

)

m(P ) = ln k − 2k−2
4F3

(

1, 1, 32 ,
3
2 ; 2, 2, 2; 16k

−2
)

P2

(dP0) x = ln

(∣

∣

∣

∣

k
2 ± ey

2 ±
√

1
4 (k ± ey)2 ± e−y

∣

∣

∣

∣

)

m(P ) = ln k − 2k−3
4F3

(

1, 1, 43 ,
5
3 ; 2, 2, 2; 27k

−3
)

dP1 x = ln

(∣

∣

∣

∣

k
2 ± cosh y ±

√

(

k
2 ± cosh y

)2 ± e−y

∣

∣

∣

∣

) m(P ) = ln k −∑∞
n=1

∑n
i=0

1
nkn

(

n
i

)(

i
i

2

)( n−i
2n−i

4

)

,

2n− i mod 4 = 0 and i mod 2 = 0.

dP2 x = ln

(∣

∣

∣

∣

k
2 ± cosh y ±

√

(

k
2 ± cosh y

)2 − (1± e−y)

∣

∣

∣

∣

) m(P ) = ln k −∑∞
n=1

∑n
i=0

∑i
j=0

1
nkn

(

n
i

)(n−i
n−i

2

)(

i
j

)(j
i

2

)

,

n− j mod 2 = 0, i mod 2 = 0, and j ≥ i
2 .

dP3

x = ln

(

∣

∣

∣
(1± e−y)−1

(

k
2 ± cosh y

±
√

(

k
2 ± cosh y

)2 − (2± 2 cosh y)

)

∣

∣

∣

)

m(P ) = ln k −∑∞
n=1

∑n
i=0

∑i
l=0

∑n−i
j=0

1
nkn

(

n
i

)(

i
l

)(

l
l+n−i−2j

2

)( i−l
2i+2j−l−n

2

)(

n−i
j

)

,

l + n mod 2 = 0, i mod 2 = 0, and n− i− 2j ≤ l ≤ n− 2j.

Table 6. Summary of 2d results for surfaces V.
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V Fitted Ah(k) Plot Ah(k) Fitted Ah(mg) Plot Ah(mg)

F0

Ah = 4 ln2 k − 6.601
with an R2 score of 1.0000 and a mean

absolute error of 0.0318.

Ah = 3.9804m2
g + 9.888mg − 1.5243

√
mg

with an R2 score of 1.0000 and a mean
absolute error of 0.0249.

P2

(dP0)

Ah = 2 ln2 k + ln(k ln k)− 5.49 +
ln k2 ln

(

(k − ln k2)(ln(k ln k)− 5.49)
)

with an R2 score of 0.9998 and a mean
absolute error of 1.0983.

Ah = 4.5904m2
g + 7.2486mg + 5.0980

with an R2 score of 1.0000 and a mean
absolute error of 0.1340.

dP1

Ah = 3.891 ln(k − 9.457)×
ln(k − 3.891 ln(x− 9.457))

with an R2 score of 0.9994 and a mean
absolute error of 0.8515.

Ah =
4.146m2

g + 8.291mg + lnmg + 2.958
with an R2 score of 1.0000 and a mean

absolute error of 0.1514.

dP2

Ah = 3.891 ln k ln
(

0.246k + k
ln(k ln k)

)

with an R2 score of 0.9998 and a mean
absolute error of 0.4549.

Ah = 5.471m2
g

√

1− 0.194 lnmg +
3.407mg + 7.294

with an R2 score of 1.0000 and a mean
absolute error of 0.1442.

dP3

Ah = 2.783(ln k + 1)× (ln k −
1

ln(2.510(0.025k+1)1/4))− 5.809

with an R2 score of 1.000 and a mean
absolute error of 0.2014.

Ah = 3m2
g + 9.623mg − 1.573

with an R2 score of 1.0000 and a mean
absolute error of 0.0618.

Table 7. Summary of 2d results for surfaces V.



✐

✐

“3-Chen” — 2024/6/18 — 11:08 — page 1436 — #32
✐

✐

✐

✐

✐

✐

1436 S. Chen, Y. He et al.

are given by (Figure 17)

(41) x = ln





∣

∣

∣

∣

∣

∣

|k|
2

± cosh y ± cosh z ±
√

( |k|
2

± cosh y ± cosh z

)2

− 1

∣

∣

∣

∣

∣

∣



 ,

where x = ln |u|, y = ln |v|, z = ln |w| and the ± sign in front of two cosh’s
are the same for both y and z.

Figure 17. Boundary surfaces of the amoeba corresponding to P (u, v, w) = k − u−

u−1 − v − v−1 − w − w−1 and its cross-section at z = 0.

In particular, the boundary surfaces of the amoeba hole are formed by

x = ln
(

∣

∣

∣

∣

|k|
2

− cosh y − cosh z

±
√

( |k|
2

−− cosh y − cosh z

)2

− 1

∣

∣

∣

∣

)

.(42)

The numerical relation between the volume of the bounded complement
of the amoeba, Vh, and the value of k is found by fitting 20000 pairs of
(k, Vh) values. It is found to be

Vh(k) = ln(k + ln(0.4854k))

×
(

8.374 ln
(

0.4854k − ln2(0.4854k)
)

+ ln

(

7.19

ln k

))

ln(k + ln k) ,(43)

with an R2 score of 1.0000 and a mean absolute error of 3.2689 (plotted in
Figure 18). In the limit of k → ∞, the leading term scales as ln3 k, which
again agrees with Conjecture 3.9 in [14].
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Figure 18. Data points (red) and the fitted relation (blue) for Vh against k.

Using Taylor expansion and Cauchy residue theorem, Mahler measure for
P (u, v, w) = k − u− u−1 − v − v−1 − w − w−1 as a function of k for k > 6
is found to be

(44) m(P ) = ln k −
∞
∑

n=1

1

2nk2n

(

2n

n

) n
∑

l=0

(

2l

l

)(

n

l

)2

.

If there exists an associated 3-dimensional dimer model that allows a sim-
ilar interpretation of the Mahler measure in different phases, the gas phase
contribution to the Mahler measure mg(P ) may be analogously defined as
mg(P ) = m(P )−m(P (kc)). For the expansion method used in obtaining
Eq. (44) to be valid, k must be greater than max|u|,|v|,|w|=1 |u+ u−1 + v +
v−1 + w + w−1| = 6. Thus, the critical value of k is kc = 6, which is also
the value at which the bounded amoeba complement begins to form. The
relation between the volume of the amoeba hole and the analogously defined
mg is fitted with 5000 pairs of values, and is found to be

Vh = 3.835

∣

∣

∣

∣

∣

mg

(

7.968

−√
mg(−9.743mg + ln(mg − 9.664) + ln(0.170mg))

)

∣

∣

∣

∣

∣

,(45)

with an R2 score of 1.0000 and a mean absolute error of 6.0229 (plotted in

Figure 19). In the large k limit, Vh is found to scale as m
5/2
g which deviates

from the expected power of 3. This may be due to the erratic nature of
genetic algorithm, so we explicitly tested this conjectured relation again
with specific ansatz which will be elaborated in the following subsection.
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Figure 19. Data points (red) and the fitted relation (blue) between gas phase Mahler

measure mg and amoeba hole volume Vh.

5.7. Summary of 3d results

In Tables 8, 9, and 10, we summarise our results of ML the relationship
between the coefficient k, the volume of bounded complementary region of
amoeba, and the Mahler measure for clarity.

Surface
Newton

Polynomial
Toric

Diagram
Boundary

Cross section
at z=0

P1 ×
P1 ×
P1

P (z, u, w) =
k − (z +
z−1 + u+
u−1 + w +

w−1)

P3

P (z, u, w) =
k − (z + u+

w +
z−1u−1w−1)

P2 ×
P1

P (z, u, w) =
k − (z + u+
w + z−1 +
u−1w−1)

Table 8. Examples of 3d Fano varieties and their associated Newton polynomials, toric

diagrams, plots of the boundary, and cross-sections of their amoebae.

Moreover, since the results obtained using symbolic regression in the
3-dimensional case are too complicated to be useful, we also included the
results obtained using NonlinearModelFit in Mathematica [37] in Table 11 to



✐

✐

“3-C
h
en

”
—

2
024

/
6/

1
8
—

1
1:08

—
p
age

1439
—

#
35

✐

✐

✐

✐

✐

✐

M
a
h
ler

m
ea
su
rin

g
th
e
gen

etic
co
d
e
of

A
m
o
eb

ae
1439

Surface Amoeba Boundary Mahler measure

P1 × P1 × P1
x = ln

(∣

∣

∣

∣

∣

|k|
2 ± cosh y ± cosh z ±

√

(

|k|
2 ± cosh y ± cosh z

)2
− 1

∣

∣

∣

∣

∣

)

m(P ) = ln k −∑∞
n=1

∑n
l=0

1
2nk2n

(

2n
n

)(

2l
l

)(

n
l

)2

P3
x = ln

(∣

∣

∣

∣

∣

|k|−(±ey±ez)
2 ±

√

(

|k|−(±ey±ez)
2

)2
− (±e−y)(±e−z)

∣

∣

∣

∣

∣

)

m(P ) = ln k −∑∞
n=1

1
4nk4n

(

4n
2n

)(

2n
n

)2

P2 × P1
x = ln

(

∣

∣

∣

∣

|k|−(±ey±ez+(±e−y)(±e−z))
2 ±

√

(

|k|−(±ey±ez+(±e−y)(±e−z))
2

)2
− 1

∣

∣

∣

∣

) m(P ) =

ln k −∑∞
n=1

∑n
i≥n

2

(ni)(
i

2n−3i)(
n−i

2n−3i)(
4i−2n

2i−n )
nkn

Table 9. Summary of 3d results.
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Surface Fitted Vh(k) Fitted Vh(mg)

P1 × P1 ×
P1

Vh(k) = ln(k + ln(0.4854k))
(

8.374 ln
(

0.4854k − ln2(0.4854k)
)

+ ln
(

7.19
ln k

)

)

ln(k + ln k)

with an R2 score of 1.0000 and a mean absolute error of 3.2689.

Vh = 3.835
∣

∣mg

(

7.968−√
mg(−9.743mg + ln(mg − 9.664) +

ln(0.170mg))
)∣

∣

with an R2 score of 1.0000 and a mean absolute error of 6.0229.
kc = 6 and mg(k) = m(P (k))−m(P (6)).

P3

Vh =

∣

∣

∣

∣

− 0.380

(

− 3.732 + πi+ 2.397
√
0.174k − 1

(

3.724k − 73.933×
∣

∣

∣
ln
∣

∣

√
k − 314.956|(k − 5.744)(2.489k − k−0.5)|(0.174k − 1)2k9.5

∣

∣

∣

∣

∣

)

× (2.397
√
0.174k − 1−

0.489k)−1 − 73.933
√
k + 1.489k

)

× (ln |7.888k − 731.045|)−0.5 + 244.509
√

|0.174k − 1| −

0.186k − 1.074

∣

∣

∣

∣

with an R2 score of 1.0000 and a mean absolute error of 4.1666.

Vh =
(√

mg + 7.95
)

(1.523mg + 12.4201)
(

0.4794m2
g +

(

0.0264
(

3.385 +

5.424/mg + 0.0028/
√
mg + 0.8802mg − 0.4794m2

g

)

)

/
√
mg

)

with an R2 score of 0.9998 and a mean absolute error of 1.5644.
kc = 4 and mg(k) = m(P (k))−m(P (4)).

P2 × P1

Vh =

∣

∣

∣

∣

1
0.0068 ln k− 0.0068

0.215−0.0068
√

k

+ (256.761 + 5.049πi)
√
0.118k − 1−

√
k +

√

1
0.0068 ln k−0.0068

√
k
+ 0.550k + 4.174

√

k
ln k−

√
k
+ k

ln k +

4.174
√

− k

ln
(

2k−72.719k
√

k

ln k−
√

k
+ k

ln k
+0.0061

)

−
√
k
+ 1

0.0045 log(k−8.338)−0.0045
√
k
− 0.214k + ln k

∣

∣

∣

∣

with an R2 score of 0.9999 and a mean absolute error of 8.0802.

Vh =

∣

∣

∣

∣

53.0889 +
(

m2
g − 0.054mg − 1.09316

)

(

53.0889 +
(

(

− 2mg +

( 0.146092
mg−8.175 −mg − 3.60814)× ( 9.966

mg−8.175 − 7.324mg(mg +

2.04377i))
)

ln−1mg

)

)∣

∣

∣

∣

with an R2 score of 1.0000 and a mean absolute error of 3.1879.
kc = 5 and mg(k) = m(P (k))−m(P (5)).

Table 10. Summary of 3d results using symbolic regression.
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specifically test Conjecture 3.9 in [14]. Notably, the use of NonlinearModelFit
or other fitting functions in Mathematica requires an input assumption of the
structure of the fit model. In this case, a cubic equation in ln k and a cubic
equation in mg were assumed based on the results of symbolic regression in
two dimensions. The results are relatively accurate based on their R2 values
and the mean prediction errors. Using the functional form obtained from ML
directly in Mathematica provides us with a faster way to get better fitting
results in comparison to speculating possible functional forms as inputs to
try in Mathematica. For example, if we make a guess of a second-order
equation in mg for the relation between Vh and mg based on the plot of the
data in the case of P2 × P1, the fitted relation obtained is Vh = 138.74m2

g −
321.537mg + 346.213. It has a mean prediction error of 0.5920 which is much
greater than the error of 0.0131 using the cubic relation based on previous
ML results.

Results in Table 11 agree with Conjecture 3.9 in [14] in the n = 3 case:
In the large k limit, the volume of a bounded complementary region of the
amoeba, Vh, is cubic in ln k. However, we also notice that it is not possible
to generalise an analytic expression for Vh analogous to the expression in
Conjecture 3.8 in [14], because the volume of the 3-dimensional amoeba
is almost always infinite whereas the area of the 2-dimensional amoeba is
bounded from above [52].

5.8. Non-reflexive polytopes

Following our consideration of the non-reflexive case in Section 4, it is in-
teresting to also look at the relation between amoeba holes and the Mahler
measure in this case. Amoebae for non-reflexive polytopes can have a geo-
metric genus ranging from 1 to n, where n is the number of interior points
in the corresponding Newton polytope. It is noted in [40] that for amoebae
with all holes open, a decrease in the size of one hole corresponds to an
increase in the size of all others.

Specifically, we are going to consider here the polytopes with two inte-
rior points, which corresponds to amoebae with a maximum of two bounded
complementary regions. As we mention in Section 4, the Mahler measure can
now be represented as a function of two variables, k1 and k2, which corre-
spond the two interior points. We can make a choice of which interior point
we use as the origin. Where in the one dimensional case, we can generally
find a critical value for k at which the gas phase emerges in the amoeba, in
two or more dimensions, we instead get a set of values for (k1, k2) where gas
phases emerge. We get another set of (k1, k2) points where the genus of the
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Surface Fitted Vh(k) Plot Vh(k) Fitted Vh(mg) Plot Vh(mg)

P1 ×
P1 × P1

Vh =
7.981 ln3 k + 0.292 ln2 k − 26.439 ln k − 17.822

with an R2 score of 1.0000 and a mean
prediction error of 0.0175.

Vh =
7.912m3

g + 41.381m2
g + 36.856mg − 17.055

with an R2 score of 1.0000 and a mean
prediction error of 0.0357.

P3

Vh =
10.299 ln3 k − 0.941 ln2 k − 25.871 ln k + 4.027

with an R2 score of 1.0000 and a mean
prediction error of 0.0051.

Vh =
10.294m3

g + 40.936m2
g + 27.867mg − 6.787

with an R2 score of 1.0000 and a mean
prediction error of 0.0055.

P2 × P1

Vh =
8.196 ln3 k + 1.986 ln2 k − 26.103 ln k − 9.320

with an R2 score of 1.0000 and a mean
prediction error of 0.0123.

Vh =
8.169m3

g + 40.011m2
g + 35.901mg − 12.671

with an R2 score of 1.0000 and a mean
prediction error of 0.0131.

Table 11. Summary of 3d results using NonlinearModelFit in Mathematica [37].
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amoeba changes from 1 to 2. Each of these gas phases appear and disappear
individually depending on both the value of k1 and of k2.

Based on our observation, for polytopes with two interior points, there
are three ways that the bounded complementary regions of amoeba can
evolve as we fix k1 and move along k2, or vice versa:

1) There are initially no holes. At some critical value of k2 a hole opens
up and continues to grow as we increase k2 → ∞. This is similar to
the reflexive case and only occurs when k1 is also small.

2) There is initially one hole. As we move along k2, the area of this hole
decreases, until it closes. Another hole subsequently opens at the same
or larger value of k2. This hole increases as we increase k2 → ∞, like
the reflexive case.

3) There is initially one hole. As we move along k2, the area of this hole
decreases. At some value of k2, a second hole opens. The area of this
second hole continues to increase as the area of the first hole decreases.
At some finite value of k2, the first hole closes, and the area of the
second hole increases, as in the reflexive case.

We get the same three cases if we instead fix k2 and move along k1. The
values of k1 and k2 for which holes open up are not symmetrical, however.
This is illustrated in Figure 20.

With respect to the relation between the amoeba holes and the Mahler
measure, in general we expect a monotonic increase in the Mahler measure
if we start at a point where no holes are open and move along either k1 or
k2. This is very similar to the reflexive case, with there only ever being at
most one hole open. This hole opens at some critical value of k1, and its area
continues to increase as k1 → ∞. However, there are also instances where as
the Mahler measure decreases, the area of the holes increase, or vice versa.
An example is given in Figures 21 and 22 where the value of the Mahler
measure decreases as k1 increases, but when compared with the evolution of
the holes of the amoeba for coefficients in the same range, we see their area
increases with increasing k1.

We have however observed that as we move along the Mahler flow, as
defined for the two disconnected regions of the (k1, k2) plane in Section 4, we
do seem to get a monotonic increase in the area of the holes. This matches
the monotonic behaviour we see in the Mahler measure in these regions.

It is evident that in the case of non-reflexive polytopes, the relations
between the coefficients, the amoeba holes, and the Mahler measure are
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Both holes open

Left hole only open

Right hole only open

No holes open

k2

k1

Figure 20. The number of bounded amoeba complements present with respect to the

value of k1, k2 in the case of 2-dimensional non-reflexive polytopes with two interior points.

Figure 21. Mahler measure of polynomial associated with C
3/Z5, with the origin being

the left interior point. We set k2 = 60 and varied k1. We can see a clear decrease in the

Mahler measure as we move along k1

much more complicated. Nonetheless, we can still employ ML techniques,
especially generic algorithm, to make their relations more precise.

5.8.1. 2d Example: C3/Z5. As a concrete example, we considered again
the surface C3/Z5 whose associated toric diagram is given in Figure 23, which
has two interior points and is thus non-reflexive. Taking the left interior point
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Figure 22. Amoebae of polynomial associated with C
3/Z5. In both cases we take the left

hand interior point to be the origin and set k2 = 60. In the left amoeba, we set k1 = 10

and in the right we set k1 = 55. There is a clear increase in hole size for larger k2.

as the origin, the Newton polynomial is

P (z, w) = k1 + k2z + z−1 + zw + z2w−1.

Following the same method in Section 5.1, the analytic boundary of the
amoeba (Figure 24) is given by

(46) y = ln
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 .

Figure 23. The toric diagram associated

with C
3/Z5 . Figure 24. The boundary curves of the

amoeba where k1 = 10 and k2 = 10 .

We then explored the numerical relations between the areas of the bound-
ed amoeba complements, the values of k1 and k2, and the Mahler measure
using symbolic regression and NonLinearModelFit with an assumed form.
Specifically, we restricted ourselves to the range of values where the two
amoeba holes are both present.
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We first machine-learned the relation between A1,2 and k1,2: From our
discussion in the reflexive case and observation of the gplearn results, we
expect the leading order dependence of the area on k1,2 should be second
order in the logarithm of k1,2. Thus, we assumed the form of

a ln2 k1 + b ln k1 ln k2 + c ln2 k2 + d ln k1 + e ln k2 + h

to use the NonLinearModelFit function in Mathematica. The ML and fitting
results are presented in Table 12.

gplearn result Mathematica result

A1(k1, k2) =
−k0.25

1 + 9.62(k1/ ln
0.5 k2)

0.5 − 2k2/k1
with an R2 score of 0.98054 and mean

absolute error of 4.22914.

A1(k1, k2) = −20.0273 + 8.9449 ln k1 +
2.81341 ln2 k1 − 4.3546 ln k2 +

1.9363 ln k1 ln k2 − 1.6381 ln2 k2
with an R2 score of 0.99997 and mean

prediction error of 0.00378.

A2(k1, k2) =
2.4692

(

− (0.1086k1 ln
(

k0.5
2 /k1

)

+

7.527k2 − 69.3161)/ ln(7.527/k1)
)0.5

with an R2 score of 0.99431 and mean
absolute error of 1.19120.

A2(k1, k2) = −0.7777− 3.4303 ln k1 +
0.9557 ln2 k1 + 1.9742 ln k2 −

3.3533 ln k1 ln k2 + 4.5230 ln2 k2
with an R2 score of 0.99998 and mean

prediction error of 0.00170.

Table 12. Fits obtained from symbolic regression and NonLinearModelFit function

To learn the relation between m(P ) and A1,2, we computed the Mahler
measure associated with the amoeba with two holes present in the range of
0 ≤ k1,2 ≤ 800. The data points are plotted in Figure 25. There seems to be
a discontinuous transition in the Mahler measure as we vary the sizes of the
amoeba holes, and meaningful ML results using genetic symbolic regression
can only be obtained if we fit two regions (left and right) separately. The
numerical relations obtained are presented in Table 13.

Figure 25. Plot of the Mahler measure against the areas of two amoeba holes
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gplearn result Mathematica result

mL(A1, A2) =

(

(

0.115314A2 − 0.0832856A0.5
1

)

(A1 +A2)

)0.25

with an R2 score of 0.98803 and mean absolute error of 0.03493.

mL(A1, A2) = 1.4397− 0.1465A0.25
1 + 0.2205A0.5

1 − 0.5654A0.25
2 −

0.1208A0.25
1 A0.25

2 + 0.6588A0.5
2

with an R2 score of 1.00000 and mean prediction error of 0.00002.

mR(A1, A2) = 1.1745(−0.1761A1 − 0.7250A0.5
2 + 1)0.5

with an R2 score of 0.99545 and mean absolute error of 0.01709.

mR(A1, A2) = 1.0878− 0.4489A0.25
1 + 0.5654A0.5

1 − 0.0019A0.25
2 −

0.1194A0.25
1 A0.25

2 + 0.1639A0.5
2

with an R2 score of 0.99999 and mean prediction error of 0.00005.

Table 13. Fits obtained from symbolic regression and NonLinearModelFit function
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Moreover, we changed the parsimony coefficient in gplearn which con-
trols the complexity of the equations from 0.02 to 0.002 in order for bet-
ter learning result. The ansatz used in the NonLinearModelFit function is
a+ bA0.25

1 + cA0.5
1 + dA0.25

2 + eA0.25
1 A0.25

2 + hA0.5
2 in both regions, by invert-

ing the conjectured relation in 2d. Specifically, the line of intersection of two
surfaces is found to be

A2 = −0.4975− 0.7157A
1/4
1 + 1.1806A

1/2
1 − 0.8423A

3/4
1 + 0.4857A1

+ (−0.0079− 0.1660A
1/4
1 − 0.7928A

1/2
1 + 1.0819A

3/4
1 + 2.7237A1

− 4.5800A
5/4
1 + 1.7311A

3/2
1 + 0.0090A

7/4
1 + 0.0000116A2

1)
1/2.(47)

The presence of this line of special values resemble the plots of Mahler
measure in Section 4. The fitting results are plotted together with the data
points in Figure 26.

Figure 26. Plots of the two fitted surfaces (blue and orange), the plane that passes

through the line of intersection (grey), and the data points (red).

The fitting results using NonLinearModelFit in Tables 12 and 13 have a
rather high R2 value close to 1. This provides further support for the adopted
assumed forms based on previous gplearn results and conjectures, i.e. the
degree of the polynomial relation equals to the dimension of the amoeba.

Given the extraordinary performance using NonLinearModelFit in
Mathematica, one is tempted to conjecture an exact formula. Converting
the numerical coefficients to potential closed form [58], an example for mL

in Table 13 is:

mL(A1, A2) =
11π

24
− 2π

43
A

1/4
1 +

4π

57
A

1/2
1
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− 9π

50
A

1/4
2 − π

26
A

1/4
1 A

1/4
2 +

56

85
A

1/2
2 .(48)

It would be interesting to prove results such as the above.
Additionally, we would like to note that the choice of origin would affect

the areas of the corresponding amoeba holes given the same toric diagram.
Specifically, if we set the coefficients to be of the form P (z, w) = k1 − p(z, w),
with all coefficients of p(z, w) positive, the values of (k1, k2) for which holes
open up do not seem to be related. If we however set all coefficients in P (z, w)
to be the same sign, amoebae are equivalent to each other i.e. Al(k1, k2) =
Ar(k2, k1), where Al is the amoeba when the left interior point is taken to
be the origin. This is expected, as it is the same as multiplying the related
polynomial by a factor of zawb, while keeping all coefficients the same.

6. Discussions and outlook

In this paper, we brought together amoebae in tropical geometry and the
Mahler measure in number theory, in the context of brane configurations
and dimer models.

First, we continued the study of applying machine learning techniques
to the analysis of amoebae topology, initiated in [8]. We applied both MLP
and CNN to examples of 3-dimensional reflexive amoebae and compared the
results using data obtained from persistent homology and analytic conditions
using lopsidedness. Although the analytic conditions always give clearer data
separation shown with the MDS projection, it may not be available for
complicated examples and persistent homology can be helpful in those cases.
The ML performance on data from lopsidedness only improves marginally
if the size of the ML data is increased, whilst the ML performance on data
from persistent homology can be improved by increasing the data size at the
cost of longer computation time. Similar to the 2-dimensional results in [8],
a simple MLP or CNN can predict the number of 2-dimensional cavities
characterised by the second Betti number to a high accuracy.

Second, we extended the definition of the Mahler flow in [14] to incor-
porate the extra degrees of freedom present in non-reflexive polytopes. We
investigate the properties of the flow using a combination of analytical and
numerical techniques, and discuss its relation to amoebae and dimers.

Finally and most importantly, we obtained a more precise relation be-
tween the amoeba and the Mahler measure which are closely but mysteri-
ously related through dimer models and crystal melting models. To do so,
we performed symbolic regression using genetic algorithms to machine learn
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the numerical relations between the volume of the bounded amoeba com-
plement, coefficient k in the Newton polynomial, and the Mahler measure,
which are conjectured in [14]. We obtained the analytic expressions of the
amoeba boundary by considering the poles of the gradient of the Ronkin
function, which allowed computation of the volume of the bounded amoeba
complement. Although the mean absolute error may be high in complicated
examples such as the 3-dimensional amoebae or non-reflexive amoebae, the
ML results are useful in making ansätzen required in the NonLinearMod-
elFit function in Mathematica to obtain a better fit. At the end, we also
considered an example 2-dimensional non-reflexive polytopes where the dy-
namics between the coefficients, the Mahler measure, and the areas of the
amoeba holes is much more complicated. That said, we were able to find a
numeric relation between these non-reflexive amoebae and the Mahler flow.

Our results from genetic symbolic regression in Section 5 provide numer-
ical evidence for Conjecture 3.8 in [14] in both two and three dimensions.
Specifically, we found that the volume of the bounded complement of the
amoeba is related to the gas phase contribution to the Mahler measure by
a polynomial of degree of the dimension of the amoeba.

In our discussion of the relation between Mahler measure and amoeba
hole, we used the notion of gas phase contribution to the Mahler measure,
but we also found that this notion needs to be refined in the case involving
multiple coefficients or non-reflexive polytopes in 2-dimensional cases. In 3
dimensions, we defined an analogous notion ofmg(k) = m(k)−m(kc), where
kc is the critical value at which the 2-dimensional cavity first appears. The
interpretation of this mg would require a 3-dimensional dimer model and
can be a subject of future studies. We will leave the physical interpretation
of the Mahler measure in these more complicated scenarios to future work.

Our analysis also implies the power of numerical analysis in this context,
and we can continue in this direction to study concepts such as the closely
related Ronkin functions and its Legendre dual.
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Appendix A. Additional examples of ML the Betti number

of 3d amoebae

A.1. P3

The Newton polynomial corresponding to P3 is P (z1, z2, z3) = c1z1 + c2z2 +
c3z3 + c4z

−1
1 z−1

2 z−1
3 + c5, whose toric diagram is given in Figure A1, with

an example Monte Carlo sampled amoebae in Figure A2.

Figure A1. Toric diagram for P3 .

Figure A2. An example of the corre-

sponding P
3 amoeba from Monte Carlo

sampling.

A.1.1. Learning persistent homology b2. Using persistent homology
to obtain the values of b2 for a set of 3000 coefficient lists. The values of b2
is determined as follows

(A.1) b2 =

{

0 No persistent pairs with q − p > 0.24 ;

1 Otherwise .

Then performing ML on this dataset achieves performance measures

MLP: ACC: 0.840± 0.015 , MCC: 0.699± 0.022 ,(A.2)

CNN: ACC: 0.727± 0.031 , MCC: 0.457± 0.073 .(A.3)

A.1.2. Learning analytic lopsidedness b2. The analytic condition for
b2 using lopsidedness is

(A.4) b2 =

{

0 |c5| ≤ |c1c4|1/4 + |c2c4|1/4 + |c3c4|1/4 + |c1c2c3|3/4|c4|1/4 ;
1 Otherwise .

For a balanced dataset of 7000 random samples with c1,2,3,4 ∈ [−5, 5] and
c5 ∈ [−10, 10] using this analytic condition, the ML performance measures
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achieved over the 5-fold cross-validation were

MLP: ACC: 0.939± 0.009 , MCC: 0.876± 0.017 ,(A.5)

CNN: ACC: 0.910± 0.010 , MCC: 0.819± 0.019 .(A.6)

A.2. P2 × P1

The Newton polynomial associated with P2 × P1 is P (z1, z2, z3) = c1z1 +
c2z2 + c3z3 + c4z

−1
1 + c5z

−1
2 z−1

3 + c6, and the toric diagram and example
Monte Carlo amoeba are given in Figures A3 and A4. This is also a re-
flexive polytope with only one interior point. Thus, b2 = 0 or 1.

Figure A3. Toric diagram for P2 × P
1 .

Figure A4. An example of the corre-

sponding P
2 × P

1 amoeba from Monte

Carlo sampling.

A.2.1. Learning persistent homology b2. A balanced data set of 4000
random samples is used with with c1,2,3,4,5 ∈ [−5, 5] and c6 ∈ [−15, 15]. The
values of b2 were determined as follows using persistent homology

(A.7) b2 =

{

0 No persistent pairs with q − p > 0.28 ;

1 Otherwise ,

leading to ML results

MLP: ACC: 0.830± 0.016 , MCC: 0.652± 0.035 ,(A.8)

CNN: ACC: 0.825± 0.027 , MCC: 0.630± 0.063 .(A.9)
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A.2.2. Learning analytic lopsidedness b2. Following the same deriva-
tion methods, the b2 values determined using lopsidedness used

(A.10) b2 =

{

0 |c6| ≤ 2|c1c4|1/2 + 3|c2c3c5|1/3 ;
1 Otherwise ,

equivalently leading to ML results

MLP: ACC: 0.947± 0.007 , MCC: 0.893± 0.014 ,(A.11)

CNN: ACC: 0.920± 0.011 , MCC: 0.841± 0.023 .(A.12)

Appendix B. Additional example of ML 2d amoebae and

Mahler measure

B.1. P2

The Newton Polynomial in this case is P (z, w) = k − z − w − z−1w−1. The
analytic boundary of the amoeba is

(B.13) x = ln

(∣

∣

∣

∣

∣

k

2
± ey

2
±
√

1

4
(k ± ey)2 ± e−y

∣

∣

∣

∣

∣

)

,

for k ≥ 3 (Figure B1).

Figure B1. The analytic boundary of amoeba with k = 4.

The Mahler measure for P (z, w) = k − z − w − z−1w−1 as a function of
k obtained using Taylor expansion and Cauchy residue theorem is

(B.14) m(P ) = ln k − 2k−3
4F3

(

1, 1,
4

3
,
5

3
; 2, 2, 2; 27k−3

)

,
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The relation between the gas phase contribution mg(P ) and the amoeba
hole area is fitted with 20000 data pairs and found to be

(B.15) Ah = 4.59038m2
g + 7.24861mg + 5.09803 ,

with an R2 score of 1.0000 and mean absolute error of 0.1340 (plotted in
Figure B2).

Figure B2. Data points (red) and the fitted relation (blue) between Ah and mg.

The relation between the amoeba hole area and the value of k for k ≥ 3
is fitted with 5000 data pairs, and is found to be

Ah = 2 ln2 k + ln(k ln k)− 5.49 + ln k2 ln
(

(k − ln k2)(ln(k ln k)− 5.49)
)

,

with an R2 score of 0.9998 and mean absolute error of 1.0983 (plotted in
Figure B3).

Figure B3. Data points (red) and the fitted relation (blue) between Ah and k.

Appendix C. Explicit example of the expansion method

In this section we outline the method used to calculate expressions for the
Mahler measure, and present an explicit example. This method can be used
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to calculate the Mahler measure of any polynomial. In this example, we will
derive Eq.(29), which corresponds to the C3/Z5 polygon with s as the origin:

(C.16) m(Ps(z, w)) = m

(

k1 − k2z −
1

z
− zw − z2

w

)

.

In order to expand, we write Ps(z, w) = k1 − ps(z, w), where ps(z, w) =
k2z + z−1 + zw + z2w−1. From Eq.(25), we expand as:

(C.17) m(Ps(z, w)) = log k1 −
∞
∑

n=1

[pns (z, w)]0
nkn1

,

where [pns (z, w)]0 is the constant term of the nth power of ps(z, w). To cal-
culate these constant terms, we use a binomial expansion as follows:

pns (z, w) =
(

k2z + z−1 + zw + z2w−1
)n

(C.18)

=

n
∑

i=0

(

n

i

)

(k2z + z−1)i(zw + z2w−1)n−i(C.19)

=

n
∑

i=0

(

n

i

)

[

i
∑

l=0

(

i

l

)

kl2z
lzl−i

]

×





n−i
∑

j=0

(

n− i

j

)

z2(n−i−j)w−(n−i−j)zjwj



 .(C.20)

We are looking for constant terms only, so the sum of the powers of both
z and w should be equal to zero. Grouping w and z terms individually, we
get:

(C.21) 2j + i− n = 0 ⇒ j =
n− i

2
,

(C.22) 2l + 2n− 3i− j = 0 ⇒ l =
5i− 3n

4
.

Subbing this into Eq.(C.20), we arrive at
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(C.23) [pns (z, w)]0 =

n
∑

i=0

(

n

i

)(

n− i
n−i
2

)(

i
5i−3n

4

)

k
5i−3n

4

2 .

Finally, inserting this into Eq.(C.17), we arrive at our final result:

(C.24) m (Ps(z, w)) = log k1 −
∞
∑

n=1

n
∑

i=0

(

n

i

)(

n− i
n−i
2

)(

i
5i−3n

4

)

k
( 5i−3n

4
)

2

kn1n
,

which is valid for all k1 ≥ max
|z|,|w|=1

|ps(z, w)|. This expression comes with some

constraints, which ensures all entries in the binomials are positive integers,
and for

(

n
r

)

, we always have n ≥ r. We require that i ≥ 3n/5 and that (3i−
5n)mod 4 = 0. This can greatly decrease the number of terms in the series.

This method can be used to calculate the Mahler measure of any polyno-
mial. In cases where the number of terms in the polynomial becomes large,
we may have to sum over a large number of indices. In general, the number
of indices we sum over is equal to (excluding n): Number of indices summed
over = ((Number of non-constant terms in the polynomial)−1)−(Number
of variables). Because of this, for polynomials with a large number of vari-
ables, this expansion method is often much more efficient than numerical
integration method, where we would have to integrate over each variable.
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