
✐

✐

ł2-Szabož Ð 2024/7/1 Ð 9:13 Ð page 1665 Ð #1
✐

✐

✐

✐

✐

✐

ADV. THEOR. MATH. PHYS.

Volume 27, Number 6, 1665–1757, 2023

Instanton counting and Donaldson–Thomas

theory on toric Calabi–Yau four-orbifolds

Richard J. Szabo and Michelangelo Tirelli

We study rank r cohomological Donaldson–Thomas theory on a

toric Calabi–Yau orbifold of ❈4 by a finite abelian subgroup Γ of

SU(4), from the perspective of instanton counting in cohomological

gauge theory on a noncommutative crepant resolution of the quo-

tient singularity. We describe the moduli space of noncommutative

instantons on ❈4/Γ and its generalized ADHM parametrization.

Using toric localization, we compute the orbifold instanton parti-

tion function as a combinatorial series over r-vectors of Γ-coloured

solid partitions. When the Γ-action fixes an affine line in ❈4, we

exhibit the dimensional reduction to rank r Donaldson–Thomas

theory on the toric Kähler three-orbifold ❈3/Γ. Based on this

reduction and explicit calculations, we conjecture closed infinite

product formulas, in terms of generalized MacMahon functions,

for the instanton partition functions on the orbifolds ❈2/❩n ×❈2

and ❈3/(❩2 × ❩2)×❈, finding perfect agreement with new math-

ematical results of Cao, Kool and Monavari.
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1. Introduction

The counting of BPS states in string theory and quantum field theory of-
ten leads to deep mathematical insights into counting problems of enumera-
tive geometry. Of particular interest are vacuum moduli spaces of D-branes
and instantons, which often provide alternative contructions of the relevant
moduli spaces that are otherwise technically difficult to define rigorously in
geometrical approaches. Looking in the other direction, mathematical con-
structions of enumerative geometry can shed light on structural properties
of the BPS spectrum of particles in string theory and quantum field theory.

In this paper we are concerned with the connections between BPS state
counting problems and DonaldsonśThomas theory [1, 2]. DonaldsonśThomas
invariants are virtual numbers counting sheaves on a complex variety. They
are defined as integrals of cohomology classes over virtual cycles of moduli
spaces of sheaves. Their best understood physics connection is to type II
string theory compactified on a Kähler threefold M , where BPS states pre-
serve half of the N = 2 supersymmetry and correspond to bound states of
D-branes. The vacuum degeneracies are computed by the Witten index and
the corresponding partition function reproduces the generating function for
the DonaldsonśThomas invariants of M (see e.g. [3, 4] for reviews).

The enumeration of D-brane bound states on M can be equivalently re-
formulated as an instanton counting problem in a six-dimensional NT = 2
cohomological gauge theory on M . The computation of DonaldsonśThomas
partition functions from this perspective has been studied in great detail
by [5ś8] in the case where M is a toric CalabiśYau threefold. For this, the
moduli space of U(r) instantons is compactified in two ways: by deform-
ing the first order partial differential equations defining BPS states to op-
erator algebraic equations for noncommutative instantons, and by a local
Ω-deformation of M which preserves its SU(3)-holonomy.

For the simplest example M = ❈3, the DonaldsonśThomas partition
function enumerates BPS bound states of Dp-branes inside r D(p+6)-branes.
A six-dimensional version of the ADHM construction in four dimensions [9]
establishes that, from a geometric point of view, the compactified instan-
ton moduli space is isomorphic to a moduli space of torsion-free sheaves on
complex projective space P3 with suitable characteristic classes and framing
conditions [6, 7]. The Coulomb branch instanton partition function can be
written in a simple compact form as [5, 6]

Zr
❈3(q) =M

(
(−1)r q

)r
,(1)
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where M(q) =
∏

n≥1 (1− qn)−n is the MacMahon function and q is the
Boltzmann weight parameter for instantons. See [10, 11] for reviews of vari-
ous physical and geometrical aspects of this correspondence.

General DpśDp′-brane systems can be considered after turning on ŕuxes
for the NeveuśSchwarz (NS) B-field, in such a way that supersymmetry is
restored in the vacuum [12, 13]. In this paper we are interested in the codi-
mension p′ − p = 8. Many new features appear in eight dimensions. The cor-
responding eight-dimensional cohomological gauge theories were constructed
and studied in the late 1990s [14ś16]. They are in many respects similar to
their four-dimensional counterparts, namely DonaldsonśWitten theory [17]
and VafaśWitten theory [18] on complex surfaces. The equivariant instanton
partition functions on❈4 were recently studied by Nekrasov and Piazzalunga
in [19, 20].

The renewed interest in these eight-dimensional quantum field theo-
ries has been sparked by recent mathematical advances in the Donaldsonś
Thomas theory of CalabiśYau fourfolds, starting with the seminal work of
Cao and Leung [21] which constructed a virtual fundamental class in special
cases. Subsequently, virtual cycles of the DonaldsonśThomas moduli spaces
for fourfolds were developed more generally by Borisov and Joyce [22] in the
setting of derived differential geometry, as well as by Oh and Thomas [23] in
the setting of algebraic geometry. The virtual cycle is defined via a suitable
choice of a local orientation at each point of the moduli space. This corre-
sponds to a choice of signs, a well-known phenomenon in eight dimensions
that does not arise in lower dimensions. These signs are the most impor-
tant and non-trivial aspects of the theory, while at the same time presenting
one of the major difficulties. The computations of Cao and Kool [24] show
that the choice of signs seems unique (up to overall orientation), and that
they always give the simplest answer for the DonaldsonśThomas partition
functions.

In the following we shall elaborate on several aspects of the construction
of noncommutative instantons in eight dimensions and the evaluation of their
partition functions. We give a new derivation of the equivariant instanton
partition function on ❈4 that carefully incorporates the correct sign choices.
Our sign choice differs from other choices that have appeared so far in the
literature.

The central achievement of this paper is a detailed systematic study and
computations of the rank r degree zero cohomological DonaldsonśThomas
invariants of the toric CalabiśYau four-orbifolds ❈4/Γ, extending the ŕat
space treatment on ❈4. These have so far received only limited attention
in both the physics and mathematics literature. The analogous instanton
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counting problem in six dimensions has been studied in detail in [7, 8];
see [4] for a review with comparisons to the instanton counting problems in
the DonaldsonśWitten and VafaśWitten theories. In eight dimensions, only
the instanton partition functions for some simple cyclic orbifolds have been
brieŕy discussed in [25, 26]. A thorough mathematical treatment of the rank
one K-theoretic DonaldsonśThomas theory of CalabiśYau four-orbifolds ap-
pears in parallel to our work in [27], complementing the results of the present
paper, as we discuss further below.

In this paper we construct and study rank r cohomological gauge theory
on quotient stacks

[
❈4/Γ

]
, where Γ is a finite abelian subgroup of SL(4,❈).

This is equivalent to the gauge theory on a noncommutative crepant reso-
lution of the quotient singularity ❈4/Γ provided by the path algebra A of
a generalization of the McKay quiver determined by representation theory
data of Γ, with relations given by a generalized ADHM parametrization of the
orbifold noncommutative instanton equations. The topological gauge theory
localizes by construction on Γ-equivariant instanton configurations. Using
toric localization, the orbifold instanton partition function can be reduced
to the fixed points of the moduli space under the action of the maximal
torus of SU(4) which are also Γ-invariant. These are classified by r-vectors
of Γ-coloured solid partitions whose Boltzmann weights depend on the rep-
resentations of Γ; this was also mentioned by [25] and is analogous to the
combinatorial description of orbifold instantons in six dimensions in terms
of plane partitions [7]. We assert that the BPS partition function on [❈4/Γ]
conjecturally provides the corresponding orbifold DonaldsonśThomas invari-
ants.

Noncommutative DonaldsonśThomas invariants of four-CalabiśYau al-
gebras already appear in the seminal work of [21]; see also [28] for the example
of the local resolved conifold. Our path algebras A are always four-Calabiś
Yau, and in fact they are Koszul since Γ ⊂ SL(4,❈). In the three-orbifold
case, this fact was used repeatedly in [7] to establish the relation between
equivariant sheaves on ❈3 and BPS states in the noncommutative resolution
chamber of resolved CalabiśYau singularities. The wall-and-chamber struc-
ture of the Kähler moduli space is discussed in [28] for the example of the
local resolved conifold, building on the standard threefold case [29].

If there exists a toric crepant resolution X of the quotient singularity
❈4/Γ, we can expect an analogous relation, as well as a version of the
McKay correspondence which would establish an equivalence between the
derived category of A-modules and the derived category of X, when the for-
mer admits a tilting object. This should then relate the instanton partition
functions in the ‘orbifold’ and ‘large radius’ phases by changes of variables
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and wall-crossing formulas. As such an analysis is out of reach with our
current techniques, we defer it to future investigations.

Summary of results. Before starting a systematic study of our main
topic, we first review in some detail the analogous problem on the ŕat space
❈4, in order to set the stage as the extension to orbifolds is then relatively
straightforward. We elaborate on the analysis of noncommutative instantons
in U(r) cohomological gauge theory on ❈4 with SU(4)-holonomy and their
generalized ADHM parametrization. They are realized in a dimensional re-
duction of N = 1 supersymmetric YangśMills theory from ten dimensions,
and also in type II string theory where the noncommutative deformation
corresponds to turning on a non-zero constant background B-field in the
ŕat ten-dimensional target spacetime [30]. The instanton partition function
on an Ω-background is then regarded as an equivariant integral over the
instanton moduli space [31] and can be evaluated using toric localization
techniques as a combinatorial expansion in random solid partitions.

We evaluate the equivariant instanton partition function of the U(r) co-
homological gauge theory on ❈4 with r massive fundamental matter fields.
It can be expressed in an exact closed form as (Conjecture 112)

Zr
❈4(q; ϵ⃗, m) =M(−q)−

r m ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4(2)

with

m =
1

r

r∑

l=1

(ml − al) ,(3)

where al and ml are the Coulomb and mass parameters associated to the
maximal tori of the global U(r) colour and ŕavour symmetry groups, respec-
tively, while ϵa are coordinates on the maximal torus of SU(4) satisfying the
CalabiśYau constraint ϵ1 + · · ·+ ϵ4 = 0; we use the notation ϵab = ϵa + ϵb.

The formula (2) for the equivariant DonaldsonśThomas partition func-
tion on ❈4 is well-known and has appeared many times before in the litera-
ture. We sketch a possible alternative analytic proof which, while incomplete
and lacking conceptual insight, highlights the symmetries of the theory which
are not evident in other approaches and can be potentially extended to the-
ories on more complicated spaces, like some of our orbifolds. It is based on
the fact that in six dimensions the Coulomb branch instanton partition func-
tion is known for generic Ω-deformation of ❈3 [32ś34] and is recovered from
the eight-dimensional theory through the mass specialization ml = ϵ4 + al
(Proposition 78). The idea then is to show that (2) is the unique expression
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determined by the instanton deformation complex which correctly reduces in
the six-dimensional limit and preserves all symmetries of the cohomological
matrix model representation of the instanton partition function.

Moving on to our orbifold theories, we prove an orbifold version of Propo-
sition 78 which relates the equivariant instanton partition function on an
orbifold of the form ❈3/Γ×❈, where Γ ⊂ SL(3,❈), to the noncommutative
DonaldsonśThomas partition function for the toric Kähler orbifold ❈3/Γ
through mass specialisation (Proposition 189). In the rank one case r = 1,
the noncommutative DonaldsonśThomas partition function on ❈3/Γ is ex-
pressed by a closed formula precisely for the the Kleinian group Γ = ❩n in
SL(2,❈) and the orbifold group Γ = ❩2 × ❩2 in SL(3,❈) at the CalabiśYau
specialization ϵ1 + ϵ2 + ϵ3 = 0 on ❈3 [7, 35].

For Γ = ❩n the infinite product formula is extended to generic triples
(ϵ1, ϵ2, ϵ3) in [36]. From this we assert that our proposed proof of Conjec-
ture 112 should be possible to adapt to show that the equivariant instanton
partition function of the cohomological U(1) gauge theory with massive fun-
damental matter on [C2/Zn]× C2 is given by (Conjecture 233)

Z[❈2/❩n]×❈2 (⃗q; ϵ⃗, m) =M
(
(−1)n Q

)−n
mϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

−n2−1

n

mϵ12
ϵ1 ϵ2

×
∏

0<p≤s<n

M̃
(
(−1)p−s+1 q[p,s], (−1)n Q

)−mϵ12
ϵ3 ϵ4 ,(4)

where Q = q0 q1 · · · qn−1, q[p,s] = qp qp+1 · · · qs−1 qs, and we weigh the frac-
tional instanton contributions with fugacities qs indexed by the irreducible
representations of Γ = ❩n. The infinite product M(x, q) =

∏
k≥1 (1− x qk)−k

is the generalized MacMahon function and we have set

M̃(x, q) =M(x, q)M(x−1, q).

For Γ = ❩2 × ❩2 we do not yet have available results for a generic Ω-
deformation of ❈3, but we provide strong evidence in favour of the closed
formula of Conjecture 267. It seems unlikely that there are any other orbifolds
❈4/Γ for which exact infinite product expressions for the instanton partition
functions are even conjecturally possible; see [27] for a geometric explanation
of this.

For higher rank theories we formulate various conjectural closed formulas
for orbifold instanton partition functions with particular framing decompo-
sitions r⃗ of the rank r according to the irreducible representations of Γ,
for the orbifolds ❈2/❩n ×❈2 and ❈3/(❩2 × ❩2)×❈ (Conjectures 237, 247
and 272). These conjectures are developed from the Γ-equivariant instanton
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deformation complex associated to the ADHM-type parametrization of the
orbifold instanton moduli space. From this we obtain a combinatorial expres-
sion for the orbifold instanton partition function as a sum over r-vectors of
Γ-coloured solid partitions, from which we deduce its symmetries and proper-
ties that are enforced in our conjectures. Then we require that they correctly
reduce to the known expressions on ❈3/Γ.

One of the novelties in eight dimensions is that, contrary to the standard
noncommutative DonaldsonśThomas invariants [29], our invariants depend
explicitly on the framing vector r⃗, and contrary to the invariants of [7, 8], the
r⃗ dependence here is genuine and cannot simply be encoded in a multiplica-
tive factor. In the case of the orbifold ❈2/❩2 ×❈2 we obtain a conjectural
formula for the equivariant instanton partition function of type r⃗ = (r0, r1)
for the rank r cohomological gauge theory with r massive fundamental mat-
ter fields on [❈2/❩2]×❈2. It is given by (Conjecture 247)

Z r⃗
[❈2/❩2]×❈2 (⃗q; ϵ⃗, m⃗) =M(Q)

−2
mr ϵ12 ϵ13 ϵ3

ϵ1 ϵ2 ϵ3 ϵ4
− 3

2

mr ϵ12
ϵ1 ϵ2

× M̃(−q1, q0 q1)−
m0 r0 ϵ12

ϵ3 ϵ4 M̃(−q0, q0 q1)−
m1 r1 ϵ12

ϵ3 ϵ4 ,(5)

where m⃗ = (m0,m1) is the Γ-module decomposition of the center of mass
parameter (3).

As offsprings of our conjectures, we obtain predictions for the rank r
DonaldsonśThomas partition functions on the Kähler three-orbifolds❈2/❩n×
❈ and ❈3/❩2 × ❩2 with generic U(3)-holonomy, in the cases where they are
not yet known. See Propositions 242, 250, 269 and 275.

The Ω-deformation also enables the definition of the łpurež cohomologi-
cal gauge theory on ❈4 without the massive fundamental matter fields. The
instanton partition function for the pure gauge theory is related to (2) by
the infinite mass limit of Proposition 119 which decouples the fundamental
hypermultiplet. For rank r = 1 this gives (Corollary 122)

Z❈4(Λ; ϵ⃗ )pure = exp
(
− Λ

ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

)
,(6)

where Λ is the ultraviolet scale of the quantum field theory, whereas for
higher rank r > 1 the instanton contributions all vanish.

Analogously, we define the łpurež gauge theory on orbifolds. The orb-
ifold instanton partition function for the pure gauge theory is related to the
orbifold instanton partition function of the cohomological gauge theory with
massive fundamental matter by the infinite mass limit of Proposition 225.
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For rank r > 1 the orbifold instanton contributions also all vanish (Proposi-
tions 253 and 277).

Remark 7. As the writing of this paper was nearing completion, a related
work by Kimura appeared [26], which writes down the same matrix integral
expression (188) from a different perspective for the instanton partition func-
tion on the orbifold ❈4/Γ, in the special case where Γ = ❩n is a generic cyclic
subgroup of SU(4). Kimura also gives a free field representation of the orb-
ifold instanton partition function in that case, in the spirit of the BPS/CFT
correspondence [37], but does not discuss the explicit evaluation of the con-
tour integrals nor the geometrical applications to DonaldsonśThomas theory.

Relation to the work of Cao, Kool and Monavari. Our work is com-
plementary to new independent mathematical work by Cao, Kool and Mon-
avari [27] who consider DonaldsonśThomas invariants of general Calabiś
Yau four-orbifolds using an algebro-geometric approach. In the local toric
model, they compute rank one DonaldsonśThomas invariants using equiv-
ariant localization and a vertex formalism on quotient singularities ❈4/Γ,
where Γ is a finite abelian subgroup of SL(4,❈). When Γ is the Kleinian
subgroup ❩n ⊂ SL(2,❈) or the subgroup ❩2 × ❩2 ⊂ SL(3,❈), they also con-
jecture closed formulas for the equivariant K-theoretic partition functions,
generalizing the NekrasovśPiazzalunga partition function [20]. They recover
the cohomological invariants as well as three-orbifold invariants via the di-
mensional reduction of [38].

They also consider the PandharipandeśThomas invariants of the crepant
resolutions of ❈4/Γ (when they exist), including the cases of non-abelian orb-
ifold groups Γ. They again conjecture closed formulas for the equivariant K-
theoretic partition functions, as well as relate the DonaldsonśThomas invari-
ants for orbifold groups ❩n and ❩2 × ❩2 with the PandharipandeśThomas
invariants of the corresponding crepant resolutions by certain changes of
variables.

Their work complements ours by developing the rank one K-theory ver-
sion of the story from a rigorous purely algebro-geometric perspective, whereas
we also develop the higher rank cohomological DonaldsonśThomas invariants
of toric CalabiśYau four-orbifolds from the viewpoint of quantum field the-
ory. Up to slightly different conventions, our results perfectly match. More
precisely, we can summarise the main agreements as follows:

• Conjecture 233 agrees with the cohomological limit of [27, Conjecture 5.13]
(see [27, Corollary 6.6]).

• The rank one case of Proposition 253 agrees with [27, Corollary 6.10].
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• Conjecture 267 agrees with the cohomological limit of [27, Conjecture 5.14]
(see [27, Corollary 6.6]).

• The rank one case of Proposition 277 agrees with [27, Corollary 6.10].

Outline. Throughout our presentation we gloss over numerous technical
subtleties without comment. The organisation of the remainder of this paper
can be brieŕy summarised as follows:

• In Section 2 we provide an elaborate review of the construction of an eight-
dimensional cohomological gauge theory for the holonomy group SU(4). We
study its instanton solutions, discuss properties of the instanton moduli
space and define an ADHM-type parametrization. We evaluate the equiv-
ariant instanton partition function using a quiver matrix model for the
ADHM data and the tangent-obstruction complex of the instanton mod-
uli space. We discuss the relations to DonaldsonśThomas invariants of ❈4

and the analogous enumerative theory in six dimensions.
• In Section 3 we study instantons on orbifolds ❈4/Γ with Γ a finite abelian

subgroup of SL(4,❈). We extend the results of Section 2 to the cohomolog-
ical gauge theories on quotient stacks [❈4/Γ] for generic Γ-actions, provid-
ing numerous explicit examples. We also give a supplementary overview
of crepant resolutions of ❈4/Γ as well as their relevance to the BPS state
counting problems for D-brane bound states and instantons.

• In the final two Sections 4 and 5 we focus on two examples of orbifolds
where it appears possible to explicitly sum the instanton series, namely
❈2/❩n ×❈2 and ❈3/(❩2 × ❩2)×❈. We conjecture closed infinite prod-
uct formulas for the orbifold instanton partition functions in terms of com-
binations of generalized MacMahon functions.

• Appendix A presents some details of the generalized ADHM construction
of the instanton moduli space, while in Appendix B we sketch possible an-
alytic proofs of the closed expressions for the instanton partition functions
on ❈4 for general rank r, as well as on the orbifold ❈2/❩n ×❈2 in the
rank one case.
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2. Eight-Dimensional cohomological gauge theory

In this section we review and elaborate on several well-known aspects of gen-
eralized instantons and their equivariant partition functions in cohomological
gauge theory on❈4. We do this in some detail, as the treatment is needed and
is parallel to the set-up used in discussing the orbifold theories. In particular,
we discuss in detail Spin(7)-instantons in noncommutative gauge theory and
their ADHM parametrizations, which also figure in the generalized gauge
theories of [39, 40], where some explicit solutions are also discussed. It is
instructive for the reader to keep in mind the analogous treatments in lower
dimensions; see [41] for a review and comparison of instanton counting the-
ories in four, six and eight dimensions, and [42] for the analogue discussion
of ADHM-type quiver matrix models.

2.1. Spin(7)-Instanton equations

Let M ≃ ❘8 be an oriented eight-dimensional real vector space endowed
with the standard ŕat Euclidean metric. Instantons on M are solutions to
first order self-duality equations for gauge fields, which are preserved by a
holonomy group H ⊂ SO(8) [15, 16]. The largest possible holonomy group is
Spin(7) ⊂ SO(8) [43], where the Spin(7)-structure is specified by the closed
non-degenerate Cayley four-form Φ. It can be expressed in an oriented or-
thonormal coframe {eµ}8µ=1 of M ≃ ❘8, where the metric is δµν e

µ ⊗ eν ,
as [44]

Φ = e1256 + e1278 + e3456 + e3478 + e1257 − e1368 − e2456

+ e2468 − e1458 − e1467 − e2358 − e2367 + e1234 + e5678 ,(8)

where we generally use the shorthand notation eµ1···µn := eµ1 ∧ · · · ∧ eµn . The
four-form Φ is self-dual, ∗Φ = Φ, where ∗ : ∧k

❘8 −→ ∧8−k
❘8 is the Hodge

duality operator on the space of k-forms associated to the metric on M .
The generalized instanton equations can be written as

λF = ∗ (Φ ∧ F ) ,(9)

where F = dA+A ∧A is the curvature two-form of a U(r) gauge connection
A on M . The eigenvalues λ = −3 and λ = 1 correspond respectively to the



✐

✐

ł2-Szabož Ð 2024/7/1 Ð 9:13 Ð page 1675 Ð #11
✐

✐

✐

✐

✐

✐

Instanton Counting and DonaldsonśThomas Theory 1675

two eigenspaces of the self-adjoint operator ∗ (Φ ∧ −) in the decomposition
of the 28-dimensional space of two-forms ∧2

❘8 into two irreducible repre-
sentations 28|Spin(7) = 7⊕ 21 of Spin(7). In this paper we focus on solutions
of (9) with λ = 1, which are called Spin(7)-instantons and form the basis of
DonaldsonśThomas theory in eight dimensions [1, 2].

The Bianchi identity DF = dF +A ∧ F = 0 together with (9) for λ = 1
imply

D ∗ F = D(Φ ∧ F ) = Φ ∧DF = 0 ,(10)

where we used dΦ = 0. Thus every solution of the Spin(7)-instanton equa-
tions is a solution of the second order YangśMills equations. A typical solu-
tion has moduli parametrizing the center of the instanton in ❘8 and its scale
ℓ ∈ ❘>0 (see e.g. [45]). Thus the instanton moduli space Mr, i.e. the space
of smooth solutions to (9) for λ = 1 modulo gauge transformations, is not
compact because instantons can be shrunk to zero size (ℓ→ 0+) where they
become singular. Deforming the equations (9) to noncommutative instanton
equations provides an ultraviolet regularization which resolves these small
instanton singularities.

The noncommutative deformation amounts to quantizing a constant Pois-
son structure on ❘8 defined by a bivector θ of maximal rank. After using
an SO(8) rotation to transform θ into its Jordan canonical form and a suit-
able rescaling of coordinates, it defines a complex structure on ❘8. Con-
versely, we can choose one of the seven complex structures on ❘8, consider
the associated Kähler form ω corresponding to the metric δµν e

µ ⊗ eν , and
set θ = ζ ω−1, where ζ is a positive real parameter. The noncommutative
deformation introduces an additional length scale ζ which serves as a min-
imum size for the instantons, so it resolves the moduli space singularity
as instantons can no longer reach the singularity where their size vanishes.
The introduction of a complex structure J breaks the holonomy group to
SU(4) ≃ Spin(6) ⊂ Spin(7), so that the instanton equations are now defined
on the CalabiśYau fourfold ❈4.

Let Θa = e2a−1 + i e2a and Θā = Θ̄a be a coframe on M = ❈4 which
forms a basis of (1, 0)-forms and (0, 1)-forms with respect to J , that is

J Θa = iΘa for a ∈ 4 := {1, 2, 3, 4} .(11)

Then there is a non-degenerate (4, 0)-form Ω and a (1, 1)-form ω defined
by [46]

Ω = Θ1 ∧Θ2 ∧Θ3 ∧Θ4 and
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ω = i
2

(
Θ1 ∧Θ1̄ +Θ2 ∧Θ2̄ +Θ3 ∧Θ3̄ +Θ4 ∧Θ4̄

)
,(12)

which obey

Ω ∧ ω = 0 and Ω ∧ Ω̄ = 2
3 ω

4 = 16 vol .(13)

The pair (ω,Ω) defines an SU(4)-structure on M and there is a compatible
Spin(7)-structure determined by

Φ = 1
2 ω ∧ ω − ReΩ ,(14)

which coincides with the Cayley four-form (8). The corresponding Kähler
metric is ω ◦ J = δaāΘ

a ⊗Θā.
We can write the field strength F in the basis of (1, 0)-forms and (0, 1)-

forms as

F = F 2,0 + F 1,1 + F 0,2

= 1
2 FabΘ

a ∧Θb + Fab̄Θ
a ∧Θb̄ + 1

2 Fāb̄Θ
ā ∧Θb̄ .(15)

When the Spin(7)-structure is determined by an SU(4)-structure via (14),
the Spin(7)-instanton equations (9) can be reduced via the inclusion SU(4) ⊂
Spin(7) to the equations [1, 2]

Fab =
1
2 εabc̄d̄ Fc̄d̄ and δaā Faā = 0 ,(16)

for a, b ∈ 4, where εabc̄d̄ is the LeviśCivita tensor in four dimensions.
The Spin(7)-instanton equations (16) are weaker than the Hermitian

YangśMills equations that appear in the analogue instanton equations in
four and six dimensions, which amount to replacing the first equation of
(16) with Fab = 0 and describe semistable holomorphic vector bundles on
M . Any solution of the Hermitian YangśMills equations is automatically a
solution of the Spin(7)-instanton equations, but not conversely in general.

2.2. Cohomological gauge theory

The cohomological YangśMills theory which describes the instanton moduli
problem in eight dimensions corresponding to the SU(4)-structure defined
by (12) was constructed in [14, 47] using the BRST formalism to gauge fix
the topological action functional

S0 :=

∫

M
Ω ∧ Tr

(
F 0,2 ∧ F 0,2

)
,(17)
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where Tr denotes the trace in the fundamental representation of the (com-
plexified) gauge group. It can be equivalently obtained by dimensional reduc-
tion from ten-dimensional N = 1 supersymmetric YangśMills theory with
gauge group U(r) [48], whose field content consists of the gauge field A and
a MajoranaśWeyl spinor in the adjoint representation of U(r). This also iden-
tifies it as the low-energy effective field theory on D-branes in type II string
theory.

One starts by compactifying the time dimension and the ninth spatial
dimension of ❘1,9 on a square torus ❚1,1 = ❘1,1

/
2π R❩2 of radius R. Ac-

cordingly, the field theory is defined on the spacetime ❘8 ×❚1,1, and in the
limit R→ 0 the unbroken global symmetry group is

SO(1, 9) ⊃ SO(8)× SO(1, 1) .(18)

The components of the gauge field A0 and A9 become a pair of adjoint scalar
fields on M = ❘8 after dimensional reduction. The reduced field theory has
a non-compact R-symmetry group SO(1, 1) which in the bosonic sector acts
only on these scalars. The MajoranaśWeyl spinor field reduces according
to the decomposition of the positive chirality real spinor representation of
SO(1, 9) into irreducible representations of the subgroup (18) given by

16+
∣∣
SO(8)×SO(1,1)

= (8s,+1) ⊕ (8c,−1) ,(19)

where 8s and 8c are respectively the chiral and antichiral real spinor repre-
sentations of SO(8).

With the reduced holonomy group SU(4) ⊂ Spin(7), the ambient space
becomes the CalabiśYau fourfold ❈4, characterized by a complex structure
J and a compatible SU(4)-structure (ω,Ω) from (11)ś(13). The doublet of
real scalars are naturally grouped into a complex Higgs field φ. Under SU(4)
the curvature two-form F decomposes as in (15).

The SU(4) holonomy preserves two supercharges. Under SU(4) the spinor
representations 8s and 8c branch into irreducible representations as

8s
∣∣
SU(4)

= 1⊕ 6⊕ 1 ≃ ∧0
❈

4 ⊕ ∧2,0
❈

4 ⊕ ∧4,0
❈

4 ,

8c
∣∣
SU(4)

= 4⊕ 4̄ ≃ ∧1,0
❈

4 ⊕ ∧3,0
❈

4 .(20)

Accordingly, in the fermionic sector the spectrum consists of a complex scalar
and a (2, 0)-form, along with (1, 0)-forms and (0, 1)-forms. This matches the
field content of the bosonic spectrum, which consists of the complex gauge
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field

A = A1,0 +A0,1 = AaΘ
a +AāΘ

ā(21)

and Higgs field φ along with their complex conjugates. This recovers the field
content of the holomorphic NT = 2 topological YangśMills theory in eight
dimensions [14, 47].

Here we shall focus on the purely bosonic sector of the dimensionally
reduced field theory on ❈4. For this, let ∗ : ∧k,l

❈4 −→ ∧4−l,4−k
❈4 be the

map induced by the Hodge duality operator. Together with the holomorphic
four-form Ω, it defines an anti-linear operator ⋆Ω : ∧0,k

❈4 −→ ∧0,4−k
❈4 by

⋆Ω β := ∗(β ∧ Ω) for β ∈ ∧0,k
❈4. With g := gl(r,❈), this operation has the

property that the standard inner product of α, β ∈ ∧0,k T ∗❈4 ⊗ g can be
expressed as

⟨α, β⟩ :=
∫

M
Tr

(
α ∧ ∗β†

)
=

∫

M
Ω ∧ Tr

(
α ∧ ⋆Ω β

)
.(22)

There is a related gauge-invariant complex quadratic form defined for α ∈
∧0,2 T ∗❈4 ⊗ g by

(α, α)Ω :=

∫

M
Ω ∧ Tr(α ∧ α) .(23)

The YangśMills Lagrangian density on M can be written as volTr
(
−

1
4 F

2
µν

)
= 1

2 Tr(F ∧ ∗F ), and so the YangśMills action functional is expressed

in terms of the norm induced by the inner product (22) as 1
2 ∥F∥2. This may

be rewritten for gauge fields with suitable boundary conditions at infinity
and vanishing first Chern form (i.e. F ∈ ∧2 T ∗❘8 ⊗ su(r)) using the useful
identity [49]

1
2 ∥F∥2 = 2

∥∥F 0,2
∥∥2 + 1

2 ∥ω ⌟F∥2 +K ,(24)

where ω ⌟F = ∗ (ω ∧ ∗F ) is the contraction of the two-form F with the
(1, 1)-form ω, while K = 6

∫
M ω2 ∧ Tr(F 2) is a topological term. This en-

ables us to write the purely bosonic part of the dimensionally reduced action
functional in the form

S = 2
∥∥F 0,2

∥∥2 + 1
2 ∥ω ⌟F∥2 + ∥Dφ∥2 + V (φ, φ̄) +K ,(25)

where V (φ, φ̄) = 1
2

∫
M vol Tr

(
[φ, φ̄]2

)
is the Higgs potential.
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The involution ⋆Ω : ∧0,2
❈4 −→ ∧0,2

❈4 enables an orthogonal decom-
position of the field strength F 0,2 = ∂̄A0,1 +A0,1 ∧A0,1 = F 0,2

+ + F 0,2
− into

eigencurvatures as

F 0,2
± = 1

2

(
F 0,2 ± ⋆Ω F

0,2
)

with ⋆Ω F
0,2
± = ±F 0,2

± .(26)

This self-duality condition arises from the reality of the representation 6 in
the branching of 8s from (20), which yields a splitting

∧0,2
❈

4 = ∧0,2
+ ❈

4 ⊕∧0,2
− ❈

4(27)

into real ±1-eigenspaces ∧0,2
± ❈4 of ⋆Ω, since (⋆Ω)

2 = ✶.
The quadratic form (23) is maximally positive/negative definite on

∧0,2
± T ∗

❈
4 ⊗ g .

This enables us to write the topological action functional (17) as

S0 =
(
F 0,2, F 0,2

)
Ω
=

∥∥F 0,2
+

∥∥2 −
∥∥F 0,2

−
∥∥2 .(28)

From
∥∥F 0,2

∥∥2 =
∥∥F 0,2

+

∥∥2 +
∥∥F 0,2

−
∥∥2 = 2

∥∥F 0,2
−

∥∥2 + S0 we can then bring (25)
to the form

S = 4
∥∥F 0,2

−
∥∥2 + 1

2 ∥ω ⌟F∥2 + ∥Dφ∥2 + V (φ, φ̄) + 2S0 +K .(29)

In particular, it follows that S ≥ 2S0 +K.
Since SU(4) ⊂ Spin(7), and dimensional reduction of ten-dimensional

N = 1 supersymmetric YangśMills theory on a manifold of Spin(7)-holonomy
is equivalent to a topological twist of the resulting eight-dimensional super-
symmetric gauge theory [14], this field theory is cohomological and has a
BRST symmetry. Hence in the topological sector with 2S0 +K fixed, it lo-
calizes onto the moduli space of solutions of the BRST fixed point equations
given by

F 0,2
− = 0 , ω ⌟F = 0 and Dφ = 0 .(30)

The first equation implies Fab =
1
2 εabc̄d̄ Fc̄d̄, while the second equation gives

δaā Faā = 0. In other words, the gauge theory localizes on the instanton equa-
tions (16) on the CalabiśYau fourfold ❈4. The solutions of these equations
minimize the action functional (29). When S0 = 0, the Spin(7)-instanton
equations are equivalent to the Hermitian YangśMills equations.
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2.3. Equivariant gauge theory

We shall now describe the moduli space Mr of solutions to the Spin(7)-
instanton equations (16), and use this to compute the instanton partition
function of the eight-dimensional cohomological gauge theory. We begin with
an informal discussion of ‘integration’ over instanton moduli spaces, and
then quantify how to compute these formal expressions practically in the
remainder of this section through a generalized ADHM parametrization of
Mr.

Generally, the BRST symmetry of a rank r cohomological gauge theory
localizes its path integral (in a fixed topological sector) to an integral over
a virtual fundamental class [Mr]

vir, which is represented by a coarse moduli
space Mr and a vector bundle Obr −→ Mr called the obstruction bundle,
whose fibres are spanned by the antighost zero modes; it is non-trivial when
there is a quadratic Kuranishi map obstructing the extension of first order
deformations, parametrized by the fibres of the tangent bundle TMr −→ Mr,
to second order. If Mr is smooth and oriented (which is seldom the case),
then [Mr]

vir is the Poincaré dual of the Euler class e(Obr). Partition functions
of the topological field theory are then defined geometrically by integrating
the Euler class e(K ) of a ‘matter bundle’ K −→ Mr whose rank equals the
virtual dimension of the moduli space, i.e. the rank of the virtual tangent
bundle T virMr = TMr ⊖ Obr.

In our eight-dimensional theory, we let P−
Ω = 1

2 (✶− ⋆Ω) : ∧0,2
❈4 −→

∧0,2
− ❈4 be the projection to the −1-eigenspace of the involution ⋆Ω induced

by the Kähler metric and the holomorphic (4, 0)-form Ω on the CalabiśYau
fourfold M = ❈4. The local geometry of the instanton moduli space Mr is
captured by the instanton deformation complex [14]

0 −→ ∧0 T ∗
❈

4 ⊗ g
∂̄A−−−→ ∧0,1 T ∗

❈
4 ⊗ g

∂̄−
A−−−→ ∧0,2

− T ∗
❈

4 ⊗ g −→ 0 ,(31)

where the first arrow is an infinitesimal complex gauge transformation, while
the second arrow with ∂̄−A := P−

Ω ◦ ∂̄A is the linearization of the first equa-
tion in (30). Associated to this complex is a local cyclic L∞-algebra which
describes the full cohomological field theory in the BV formalism and Mr as
the corresponding MaurerśCartan moduli space.

The cochain complex (31) is elliptic and its degree one cohomology repre-
sents the (complex) tangent space to the moduli space Mr at a fixed holomor-
phic self-dual connection A. We assume that the degree zero cohomology van-
ishes, i.e. ker

(
∂̄A

)
= 0, which amounts to restricting to irreducible connec-

tions with only trivial automorphisms. There is also a non-trivial degree two
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cohomology which defines the real self-dual obstruction bundle Ob−r −→ Mr,
whose fibre over A is given by coker

(
∂̄−A

)
⊂ ∧0,2

− T ∗❈4 ⊗ g.
This is the starting point for the construction of a corresponding (real)

virtual fundamental class [Mr]
vir in [21ś23, 50ś53]. We consider the strati-

fication of the moduli space Mr into its connected components Mr,k which
are labelled by the instanton number (fourth Chern class)

k =
1

384π4

∫

M
Tr(F ∧ F ∧ F ∧ F ) .(32)

The obstruction bundle correspondingly restricts to real vector bundles

Ob−r,k −→ Mr,k ,

which are orientable. The real virtual dimension is 2 r k and the virtual fun-
damental class [Mr,k]

vir
o depends on the choice of an orientation o of Ob−r,k.

The Euler class of the self-dual obstruction bundle, which is naturally
induced by integration over the BRST antighost fields in the cohomological
gauge theory, can be thought of as defining a square root Euler class for the
complexification Obr,k := Ob−r,k ⊗❘ ❈ through

√
e(Obr,k) := e(Ob−r,k) .(33)

In [23] an alternative definition of the square root Euler class is given as
follows. The complex vector bundle Obr,k carries a natural quadratic form
induced by (23), which restricts to a metric on Ob−r,k. Then

√
e(Obr,k) can be

defined using a maximally isotropic holomorphic sub-bundle of Obr,k with
respect to this quadratic form, which is isomorphic to Ob−r,k as a real bundle.
This comes with a sign determined by the choice of orientation. It has the
advantage of yielding a class that lifts to Chow cohomology (with ❩[12 ]-
coefficients) and provides a construction of [Mr,k]

vir
o as an algebraic cycle.

A natural choice of ‘matter bundle’ K in this case is provided by the bun-
dle Vr,k −→ Mr,k whose fibre over a gauge orbit [A] is the complex vector
space V entering the generalized ADHM parametrization of Mr,k in Sec-
tion 2.4 below; this is a complex vector bundle of rank k, and taking r tensor
powers of it gives a vector bundle K of the desired real rank 2 r k. To in-
corporate masses m⃗ = (m1, . . . ,mr) for the matter fields we use the Chern
polynomial of the vector bundle Vr,k which is defined by the formula

c(Vr,k;m) =

k∑

i=0

mi ck−i(Vr,k) ,(34)



✐

✐

ł2-Szabož Ð 2024/7/1 Ð 9:13 Ð page 1682 Ð #18
✐

✐

✐

✐

✐

✐

1682 R. J. Szabo and M. Tirelli

where ci(Vr,k) is the i-th Chern class of Vr,k. The Euler class is the top Chern
class e(Vr,k) = ck(Vr,k).

The instanton partition function of the eight-dimensional cohomological
gauge theory then schematically has the form

Zr
❈4(q; m⃗) =

∞∑

k=0

qk
∫

[Mr,k]viro

r∏

l=1

c(Vr,k;ml) ,(35)

where the counting parameter q weighs the instanton number and is deter-
mined by the couplings of the gauge theory.

To make sense of the symbolic expression (35), we will work in the setting
of equivariant gauge theory and define it via an equivariant integral over the
instanton moduli space. The global symmetry group of the cohomological
field theory with matter is

G = U(r)col × SU(4) × U(r)fla ,(36)

where the colour symmetry U(r)col acts by rotating the framing of the gauge
bundle at infinity in ❈4, and the ŕavour symmetry U(r)fla acts on its vector
representation r. This group can be rotated into its maximal torus

T = Ta⃗ × Tϵ⃗ × Tm⃗ ,(37)

where we label the torus factors by the corresponding complexified Cartan
subalgebra elements, which we assume to consist of generic complex param-
eters in the following.

The framing rotation parameters a⃗ = (a1, . . . , ar) are vacuum expecta-
tion values of the complex Higgs field φ, while ϵ⃗ = (ϵ1, ϵ2, ϵ3, ϵ4) satisfy

ϵ1 + ϵ2 + ϵ3 + ϵ4 = 0(38)

and correspond to the natural complex scaling action of the three-torus
Tϵ⃗ on ❈4. This couples the gauge theory to Nekrasov’s Ω-background [31]
through an SU(4)-invariant deformation of the BRST supercharges. The Ω-
deformation does not change the instanton equations (16), but it confines
their solutions to the fixed point 0 ∈ ❈4 and so provides an infrared regular-
ization of the singularities of Mr,k due to instantons that escape to infinity.
The ŕavour rotation parameters m⃗ = (m1, . . . ,mr) are masses of r funda-
mental matter fields.

The torus T acts on the moduli space Mr,k and its obstruction bundle
Obr,k (with Tm⃗ acting trivially), as well as on the vector bundle Vr,k ⊗ r
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(with Tm⃗ acting trivially on Vr,k and Ta⃗,⃗ϵ := Ta⃗ × Tϵ⃗ acting trivially on r).
The product of Chern polynomials in (35) can be regarded as the equiv-
ariant Euler class eT(Vr,k ⊗ r). The integrations are then interpreted as the
pushforwards

∫ T

[Mr,k]viro

eT(Vr,k ⊗ r) to a point in the T-equivariant Chow co-
homology of Mr,k, whose coefficient ring is ❈[⃗a, ϵ⃗, m⃗]/⟨ϵ1 + · · ·+ ϵ4⟩. The Ω-
deformation localizes the moduli space Mr,k onto its isolated T-fixed points
σ⃗ ∈ MT

r,k. The virtual localization formula of [23, 54] computes the integrals
in (35) as a sum over these fixed points, giving the instanton partition func-
tion as a combinatorial expansion in q whose terms are rational functions of
the equivariant parameters (⃗a, ϵ⃗, m⃗). It reads as

Zr
❈4(q; a⃗, ϵ⃗, m⃗) =

∞∑

k=0

qk
∑

σ⃗∈MT
r,k

√
eT

(
(Obr,k)σ⃗

)
eT

(
(Vr,k)σ⃗ ⊗ r

)

eT
(
Tσ⃗Mr,k

) .(39)

The fixed points of the instanton moduli spaces have a combinatorial sig-
nificance that we discuss below. The square root Euler class

√
eT

(
(Obr,k)σ⃗

)

in (39) is defined up to a sign which depends explicitly on the orientation
of Ob−r,k at the fixed point σ⃗. The formula (39) assumes that the spaces
Tσ⃗Mr,k and (Obr,k)σ⃗ carry only non-zero weights for the action of the torus
Ta⃗,⃗ϵ , so that the equivariant Chow cohomology classes eT(Tσ⃗Mr,k) and√
eT

(
(Obr,k)σ⃗

)
are invertible. We shall elaborate further on these points later

on in this section.
The equivariant theory also allows for the definition of the instanton par-

tition function of the cohomological gauge theory without matter [19], that
is, the łpurež holomorphic NT = 2 topological YangśMills theory in eight
dimensions defined by integrating 1 over [Mr,k]

vir
o . This is analogous to the

definition of the Nekrasov partition function for the pure N = 2 supersym-
metric YangśMills theory in four dimensions [31]. The field theory is now
equivariant with respect to the torus Ta⃗,⃗ϵ ⊂ T, and the localization theorem
gives

Zr
❈4(Λ; a⃗, ϵ⃗ )pure :=

∞∑

k=0

Λk

∫ Ta⃗,ϵ⃗

[Mr,k]viro

1

=

∞∑

k=0

Λk
∑

σ⃗∈MT
r,k

√
eT

(
(Obr,k)σ⃗

)

eT
(
Tσ⃗Mr,k

) .(40)
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2.4. Noncommutative field theory

As we discussed in Section 2.1, the noncommutative deformation is equiv-
alent to the choice of a complex structure on ❘8, which induces a Poisson
bivector θ = ζ ω−1 that we wish to quantize, where ζ ∈ ❘>0 and ω is the
corresponding Kähler form of ❘8. The quantization map sends the local
complex coordinates za, z̄ā of M = ❈4 to operators with the commutation
relations

[za, zb] = 0 = [z̄ā, z̄b̄] and [za, z̄b̄] = ζ δab̄ ,(41)

for a, ā, b, b̄ ∈ 4. We write A for the noncommutative algebra generated by
these operators over ❈. The unique irreducible representation of this algebra
is given by the Fock module

H = ❈[z̄1, z̄2, z̄3, z̄4]|⃗0 ⟩ =
⊕

n⃗∈❩4
≥0

❈|n⃗ ⟩ ,(42)

with vacuum vector |⃗0 ⟩.
Let W ≃ ❈r be the fundamental representation of the colour symmetry

U(r)col, regarded as a Hermitian vector space. Using the quantization map,
we send all fields of the eight-dimensional cohomological gauge theory to
operators acting on the separable Hilbert space Hr :=W ⊗H, i.e. to ele-
ments of the algebra Matr×r(A) := End❈(W )⊗A of r×r matrices valued in
A. This turns the gauge theory into an infinite-dimensional matrix model.
The fixed point equations (30) become operator algebraic equations for the
noncommutative fields given by

[Za, Zb] =
1
2 εabc̄d̄

[
Z†
c̄ , Z

†
d̄

]
,

4∑

a=1

[
Z†
ā, Za

]
= ζ ✶Hr and [Za, φ] = 0(43)

for a, b ∈ 4, where the operators Za := 1
2 (za + iAā) are called covariant co-

ordinates. The Ω-deformation leaves unchanged the instanton equations but
alters the last equation of (43) to

[Za, φ] = ϵa Za .(44)

It follows that charge k noncommutative U(r) instantons in eight dimen-
sions are described as elements of the algebra Matr×r(A) acting on the free
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A-module Ar :=W ⊗A. Through the natural isomorphism of A-modules
Er,k ≃ Ar, they can be related to connections ∇ : Er,k −→ Er,k ⊗A Ω1

A on
the projective modules Er,k := Hk ⊕Ar over A, where Hk := V ⊗H for a
Hermitian vector space V ≃ ❈k and Ω1

A is the bimodule of one-forms over
the algebra A. This induces a decomposition of the covariant coordinates
Za ∈ EndA(Er,k) as

Z1 =
(

B1 Î1

Î ′1 R1

)

, Z2 =
(

B2 Î ′2

Î2 R2

)

,

Z3 =
(

B3 Î ′3

Î3 R3

)

and Z4 =
(

B4 Î ′4

Î4 R4

)

,(45)

where the diagonal blocks consist of linear maps Ba ∈ End❈(V ) and opera-
tors Ra ∈ EndA(W ⊗A), while the off-diagonal blocks are operators

Î1, Î
′
2, Î

′
3, Î

′
4 ∈ HomA(W ⊗A, V ) and

Î ′1, Î2, Î3, Î4 ∈ HomA(V,W ⊗A) .(46)

We can set Î ′a = 0 for a ∈ 4 thanks to the freedom of gauge choice.
Using the isomorphisms

HomA(W ⊗A, V ) ≃ Hom❈(W,V )⊗ EndA(Ar)(47)

and

HomA(V,W ⊗A) ≃ Hom❈(V,W )⊗ EndA(Ar)(48)

we decompose the operators from (46) as Îa = Ia ⊗ ψa, where I1 ∈ Hom❈(W,
V ), Iα ∈ Hom❈(V,W ) for α ∈ {2, 3, 4} and the operators

ψa ∈ EndA(Ar) ≃ Matr×r(A)

satisfy ψ1 ψα = ✶Ar . Relabelling I := I1 and Jα := Iα+1, it is then straight-
forward to see that the first and second equations of (43) yield the matrix
equations

[B1, Bα] + I Jα − 1
2 ε1αβ̄γ̄

[
B†

β̄
, B†

γ̄

]
= 0 ,

[Bα, Bβ ]− 1
2 ε1αβ̄γ̄

([
B†

1̄
, B†

γ̄

]
− J†

γ̄ I
†) = 0 ,

4∑

a=1

[
Ba, B

†
ā

]
+ I I† −

3∑

α=1

J†
ᾱ Jα = ζ ✶k ,(49)
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for α, β, γ ∈ {1, 2, 3}, along with other relations which are not relevant here.
We observe that the space of solutions to the system of equations (49)

is independent of the value of ζ > 0 as a consequence of the scaling symme-
try Ba → κBa, I → κ I, Jα → κJα and ζ → κ2 ζ for κ ∈ ❘. If the Spin(7)-
instanton equations reduce to the Hermitian YangśMills equations (i.e. S0 =
0), then the first instanton equation of (43) would reduce to the holomor-
phic equations [Za, Zb] = 0 and the non-holomorphic terms in the first two
matrix equations of (49) would drop out. In this instance one can repeat
the stability argument of [6] to infer that, in the equivariant gauge theory of
Section 2.3, one may set Jα = 0 for α ∈ {1, 2, 3}. In fact, it is the equations
[Ba, Bb] = 0 that arise for the vacua in the string theory setting discussed
below, which we shall see are equivalent to the non-holomorphic equations
with Jα = 0 that retain the information of the original Spin(7)-instantons.
With this in mind, we restrict the solutions of (49) to the closed subvariety
defined by the condition

Jα = 0 for α ∈ {1, 2, 3} .(50)

Altogether we have shown that the noncommutative instanton equa-
tions (43) can be reduced to the ADHM-type equations

µ❈ab := [Ba, Bb]− 1
2 εabc̄d̄

[
B†

c̄ , B
†
d̄

]
= 0

and µ❘ :=

4∑

a=1

[
Ba, B

†
ā

]
+ I I† = ζ ✶k .(51)

In Appendix A we describe how to explicitly construct an SU(4)-instanton
connection A from the generalized ADHM data. For later considerations, it
is convenient to encode the ADHM data in a framed representation of the
four-loop quiver L4:

(52) W V

B1 B2

B3B4

I

Physical interpretation. The ADHM equations (51) describe supersym-
metric bound states of k coincident D1-branes along ❘1,1 with r D9-branes
filling ❘1,9 ≃ ❘1,1 ×❈4 in the low energy limit of type IIB string theory
(or the T-dual D0śD8 and D(−1)śD7 systems), with a large constant Kalbś
Ramond field preserving 1

8 of the supercharges [19, 20, 39, 40, 55ś57]. The
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massless spectrum of D9śD9 strings yields ten-dimensional N = 1 Yangś
Mills theory with gauge group U(r), and the noncommutative instanton
equations (43) describe D1śD9-brane bound states from the perspective of
the D9-branes. Our choice of vanishing first Chern form in Section 2.2 ex-
cludes D7śD9 bound states, while the restriction of vanishing second Chern
form, i.e. S0 = 0, also excludes D5śD9 bound states.

From the point of view of the D1-branes, the D9-branes are heavy and the
degrees of freedom supported on them are frozen to their vacuum expecta-
tion values. Then the ChanśPaton gauge symmetry becomes a global U(r)col
colour symmetry on the D9-branes. The parameter ζ is determined by the
constant background B-field along ❈4 and it plays the role of the coupling of
a FayetśIliopoulos term in the low energy N = (0, 2) field theory with gauge
group U(k) on the D1-branes. The arrows Ba of the ADHM quiver represen-
tation (52) for a ∈ 4 are the lowest components of chiral superfields on ❘1,1

that arise from quantizing the D1śD1 strings which generate four complex
scalar fields in the adjoint representation of U(k), while the arrow I is the
lowest component of a chiral superfield on ❘1,1 associated to the massless
spectrum of D1śD9 open strings in the NeveuśSchwarz sector which give rise
to a complex scalar field transforming in the bifundamental representation
of U(k)× U(r)col.

The ADHM equations (51) are the equations for the classical Higgs
branch of the D1-brane theory [39, 40]. Since

Tr
(
µ❘

)
= Tr

(
I I†

)
= ζ k ,(53)

and the term in the middle is non-negative, a solution to µ❘ = ζ ✶k exists
only if ζ ≥ 0. If ζ = 0 then I = 0, which corresponds to the two-dimensional
N = (8, 8) supersymmetric YangśMills theory with gauge group U(k) on
❘1,1 associated to the massless spectrum of D1śD1 strings alone. It can be
obtained as the dimensional reduction of ten-dimensional N = 1 supersym-
metric YangśMills theory with gauge group U(k).

Thus the interesting case for us is ζ > 0; in this case the D1śD9-brane sys-
tem is tachyonic and unstable [13], so it decays to a supersymmetric vacuum
via tachyon condensation. The presence of the FayetśIliopoulos term with
coupling ζ in string theory corresponds to a noncommutative deformation of
the U(r) gauge theory on the D9-branes [30, 58], and this is why one has to
work with noncommutative instantons. Thus the situation here is somewhat
different from the four-dimensional case: for instantons on ❘4 ≃ ❈2 a similar
analysis, now done for a D1śD5-brane system, leads to a theory where ζ = 0
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is a permitted and non-trivial choice, though ζ ̸= 0 prevents the system from
entering the Coulomb branch through the small instanton singularity [58].

Finally, as discussed in Section 2.3, the partition function of the topologi-
cal field theory is defined by adding r fundamental fermions whose functional
integration brings down the Euler class of the matter bundle Vr,k ⊗ r −→
Mr,k. In string theory language this is conjecturally equivalent to adding
r anti-D9-branes to the interacting system of D-branes [19, 20], with the
masses m⃗ = (m1, . . . ,mr) corresponding to the equivariant Chern roots of
the ChanśPaton bundle on the D9-branes. Similarly to the D9śD9 strings,
the degrees of freedom supported on the D9śD9 strings are frozen to their
vacuum expectation values, leaving a global U(r)fla ŕavour symmetry on the
D9-branes. Although the D9-branes and anti-D9-branes need not annihilate
completely to a supersymmetric vacuum in the background of a B-field [59],
any remaining open string ground states will be invisible to the D1-branes.

Altogether the spectrum of stable states (free from tachyonic modes)
in the presence of r anti-D9-branes involves reversed GSO projections and
changes only the Fermi field content in the N = (0, 2) field theory on the D1-
branes, adding to the ADHM data an antichiral spinor on ❘1,1 in the bifun-
damental representation of U(k)× U(r)fla associated to the D1śD9-strings
from the Ramond sector, whose lowest component we denote by Ī. It does
not modify the form of the ADHM equations (51) nor the non-trivial values
of the FayetśIliopoulos coupling ζ.

Geometrical interpretation. The moduli space Mr,k of U(r) noncom-
mutative k-instantons can be described as the ADHM moduli space, that
is, the space of quintuples (Ba, I)a∈4 satisfying the ADHM equations (51)
modulo the action of the unitary group GV = U(k) of the vector space V
given by

g · (Ba, I)a∈4 = (g Ba g
−1, g I)a∈4 with g ∈ U(k) ,(54)

which leaves invariant the ADHM equations (51). In this parametrization,
the vector space V descends to Mr,k as the vector bundle Vr,k discussed in
Section 2.3.

Let us consider the complex moment map equations in (51), given by
µ❈ab = 0 for 1 ≤ a < b ≤ 4. As noted by [19], there is an identity

∑

1≤a<b≤4

∥∥µ❈ab
∥∥2

F
=

∑

1≤a<b≤4

∥∥[Ba, Bb]
∥∥2

F
,(55)

where ∥ − ∥F is the Frobenius norm on End❈(V ). From (55) it follows that
the equations µ❈ab = 0 are equivalent to the equations [Ba, Bb] = 0. Instead,
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the real moment map equation µ❘ = ζ ✶k in (51) for ζ > 0 is equivalent to a
stability condition: There is no proper subspace S ⊂ ❈k such that Ba(S) ⊂ S
for a ∈ 4 and im(I) ⊂ S. The stability condition is equivalent to the condition
that the operators Ba for a ∈ 4 acting on im(I) generate the vector space V =
❈[B1, B2, B3, B4] I(W ); it can be interpreted physically as the requirement
that all D1-branes are bound to D9-branes.

Writing Bst for the space of stable quintuples, it follows that the in-
stanton moduli space has an explicit holomorphic parametrization as the
geometric invariant theory (GIT) quotient

Mr,k =
{
(Ba, I)a∈4 ∈ Bst

∣∣ [Ba, Bb] = 0 , 1 ≤ a < b ≤ 4
}/

GL(k,❈) .(56)

From this one easily sees that the real virtual dimension of Mr,k is (8 k2 +
2 r k)− 6 k2 − 2 k2 = 2 r k.

As a consequence, by results of [60, 61] the instanton moduli space Mr,k

is isomorphic to the Quot scheme Quotkr (❈
4) of zero-dimensional quotients

of the free sheaf O⊕r
❈4 with length k,

Mr,k ≃ Quotkr (❈
4) ,(57)

which parametrizes framed torsion free sheaves E on complex projective space
P4 of rank r and ch4(E) = k. Any such sheaf sits in a short exact sequence

0 −→ E −→ O⊕r
P4 −→ SZ −→ 0 ,(58)

where SZ is a pure torsion sheaf of length k supported on a zero-dimensional
subscheme Z ⊂ P4.

Remark 59. In the rank one case r = 1, it follows from (57) that the
instanton moduli space is isomorphic to the Hilbert scheme of k points on
❈4,

M1,k ≃ Hilbk(❈4) ,(60)

which is parametrized by ideals J of codimension k in the polynomial ring
❈[z1, z2, z3, z4]. The correspondence follows from defining the k-dimensional
vector space V = ❈[z1, z2, z3, z4]/J for an ideal J ∈ Hilbk(❈4). We then take
Ba ∈ End❈(V ) to be given as multiplication by za mod J and I ∈ Hom❈(❈, V )
as I(1) = 1 mod J .
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2.5. Quiver matrix model

From the perspective of D9-branes, the noncommutative field theory of Sec-
tion 2.4 computes the instanton partition function (35) for the cohomological
field theory of Section 2.2 [41]. Here we shall study the theory from the per-
spective of the D1-branes. Following [6, 7], this uses the generalized ADHM
parametrization of the instanton moduli space Mr,k to construct a matrix
model representation of the integral in (35), which is based on the fields of
the quiver (52). The construction of the cohomological matrix model pro-
ceeds analogously to the construction of the eight-dimensional cohomological
gauge theory from [14, 47].

The symmetry group of the quiver matrix model is U(k)× U(r)col ×
SU(4). The gauge and global framing symmetries act on the ADHM vari-
ables (Ba, I)a∈4 as

(g, h) · (Ba, I)a∈4 = (g Ba g
−1, g I h−1)a∈4 for (g, h) ∈ U(k)× U(r)col .

(61)

We work equivariantly with respect to the (complex) maximal torus Tϵ⃗ of
SU(4), which acts on the ADHM data as

(ta)a∈4 · (Ba, I)a∈4 = (t−1
a Ba, I)a∈4 for (ta)a∈4 =

(
e i ϵa

)
a∈4 ∈ Tϵ⃗ .(62)

The BRST multiplets are (Ba, ψa)a∈4 and (I, ϱ) with the BRST transforma-
tions

QBa = ψa , Qψa = [ϕ,Ba]− ϵaBa ,

QI = ϱ , Qϱ = ϕ I − I a ,(63)

for a ∈ 4, where ϕ is the generator of U(k) gauge transformations and a =
diag(a1, . . . , ar) is a background field which parametrizes an element of the
(complex) Cartan subalgebra of U(r)col.

The matrix fields (Ba, I)a∈4 are required to satisfy the seven constraints
(51). Note that the complex moment map equations µ❈ab = 0, for a, b ∈ 4 with
a < b, only contribute three independent constraints, which we choose to be

µ❈αβ = 0 with (α, β) ∈ 3⊥ :=
{
(1, 2) , (1, 3) , (2, 3)

}
.(64)

To implement the equations (64) and µ❘ = ζ ✶k in (51), we add the Fermi
multiplets (χ⃗, H⃗), where χ⃗ = (χ❈αβ , χ

❘)(α,β)∈3⊥ are the antighost fields in



✐

✐

ł2-Szabož Ð 2024/7/1 Ð 9:13 Ð page 1691 Ð #27
✐

✐

✐

✐

✐

✐

Instanton Counting and DonaldsonśThomas Theory 1691

End❈(V ) and H⃗ = (H❈αβ , H
❘)(α,β)∈3⊥ are the auxiliary fields. Their BRST

transformations are

Qχ❈αβ = H❈αβ , QH❈αβ = [ϕ, χ❈αβ ]− ϵαβ χ
❈

αβ ,

Qχ❘ = H❘ , QH❘ = [ϕ, χ❘] ,(65)

for (α, β) ∈ 3⊥, where generally we abbreviate ϵab··· := ϵa + ϵb + · · · through-
out. Finally, we add the scalar gauge multiplet (ϕ, ϕ̄, η) to close the algebra
of BRST transformations as

Qϕ = 0 , Qϕ̄ = η and Qη = [ϕ̄, ϕ] .(66)

We also add matter fields to the theory, associated to the matter bundle
Vr,k ⊗ r, which transform under a U(r)fla ŕavour symmetry. Corresponding
to r anti-D9-branes, in the cohomological matrix model we include the Fermi
multiplet (Ī , ϱ̄) of fields in Hom❈(r, V ) with the BRST transformations

QĪ = ϱ̄ and Qϱ̄ = ϕ Ī − Īm ,(67)

where the masses m = diag(m1, . . . ,mr) parametrize an element of the (com-
plex) Cartan subalgebra of U(r)fla.

The action functional which corresponds to this system of fields and
equations is given by

S = QTr
( ∑

(α,β)∈3⊥

χ❈ †
αβ

(
g❈H

❈

αβ − µ❈αβ
)
+ χ❘

(
g❘H

❘ − µ❘ − ζ ✶k
)

+
∑

a∈4
ψa

[
ϕ̄, B†

a

]
+ I† ϕ̄ ϱ+ Ī† ϕ̄ ϱ̄+ η

[
ϕ, ϕ̄

]
+ c.c.

)
+ g1QTr

(
χ❘ ϕ̄

)

+ g2QTr
(∑

a∈4

(
Ba ψ

†
a − ψaB

†
a

)
+ I ϱ† − ϱ I† + Ī ϱ̄† − ϱ̄ Ī†

)
,

(68)

where c.c. means complex conjugate and we introduced appropriate coupling
constants for convenience. The last two terms have been added by hand to
respectively give a nondegenerate mass matrix for χ❘ as well as kinetic terms
for ψa, ϱ and ϱ̄. After dividing out by the volume of the gauge group, the
path integral form of the equivariant integral over the ADHM variables can
then be written symbolically as

∫
D [fields]

vol
(
U(k)

) e−S .(69)
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To evaluate the integral (69), we follow the technique employed in [6].
The first step is to use the U(k) gauge invariance to diagonalize the gauge
generator ϕ. This produces a measure on ❘k with Vandermonde determinant

1

k!

k∏

i=1

dϕi
2π i

k∏

i,j=1
i ̸=j

(ϕi − ϕj) ,(70)

where k! is the order of the Weyl group of U(k).
By construction of the cohomological theory, the path integral (69) is

independent of the coupling constants g❈, g❘, g1 and g2. Taking the limit
g1 → ∞, the relevant part of the action functional is Tr(H❘ ϕ̄+ χ❘ η), which
shows that the fields (H❘, ϕ̄, χ❘, η) can simply be integrated out and do not
contribute non-trivially to the path integral.

Sending g❈ → ∞, the relevant part of the action functional is

∑

(α,β)∈3⊥

Tr
(
H❈ †

αβ H
❈

αβ + χ❈ †
αβ

(
[ϕ, χ❈αβ ]− ϵαβ χ

❈

αβ

))
.(71)

This shows that the auxiliary fields H❈αβ do not contribute non-trivially. On
the other hand, integrating the antighost fields χ❈αβ produces

k∏

i,j=1

∏

(α,β)∈3⊥

(ϕi − ϕj − ϵαβ) ,(72)

which contributes to the equivariant Euler class of the self-dual obstruction
bundle Ob−r,k, with global orientation corresponding to the choice (64) and
our choice of ordering of antighosts in the Grassmann integration measure.

Finally, for g2 → ∞ the contribution of the ADHM fields (Ba, I)a∈4 to
the path integral (69) is

k∏

i,j=1

∏

a∈4

1

ϕi − ϕj − ϵa

k∏

i=1

r∏

l=1

1

ϕi − al
,(73)

while the contribution of the matter fields Ī is

k∏

i=1

r∏

l=1

(ϕi −ml) .(74)
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Putting everything together we arrive at the matrix model representation
of the equivariant integral in (39) given by

Zr,k
❈4 (⃗a, ϵ⃗, m⃗) :=

∫ T

[Mr,k]viro

eT(Vr,k ⊗ r) =
(−1)k

k!

(ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

)k

×
∮

Γr,k

k∏

i=1

dϕi
2π i

Pr(ϕi|m⃗)

Pr(ϕi |⃗a)

k∏

i,j=1
i ̸=j

R(ϕi − ϕj |⃗ϵ )(75)

at a generic point ϵ⃗ of the Ω-deformation, where

Pr(x|w⃗) =
r∏

l=1

(x− wl) and

R(x|⃗ϵ ) = x (x− ϵ12) (x− ϵ13) (x− ϵ23)

(x− ϵ1) (x− ϵ2) (x− ϵ3) (x− ϵ4)
.(76)

The instanton partition function (39) is then the generating function for the
integrals (75), obtained from a weighted sum over all the instanton sectors:

Zr
❈4(q; a⃗, ϵ⃗, m⃗) = 1 +

∞∑

k=1

qk Zr,k
❈4 (⃗a, ϵ⃗, m⃗) .(77)

The polynomial Pr(x|w⃗) encodes the Sr-invariants for the action of the
Weyl group Sr of U(r) by permutations of the entries of w⃗ = (w1, . . . , wr).
There is also a symmetry under the group ❩2 which acts on theΩ-deformation
parameters ϵ⃗ by permuting ϵ1 ↔ ϵ4 = −ϵ123. Note that the action of the cen-
ter U(1) ⊂ U(r)col on the partition function (75) can be absorbed into an ac-
tion of the center U(1) ⊂ U(r)fla: an overall shift al → al + a of the Coulomb
parameters can be absorbed by a simultaneous overall shift ϕi → ϕi + a of
the integration variables and redefinition ml → ml + a of the masses. Hence
there is a natural action of P

(
U(r)col × U(r)fla

)
on Zr,k

❈4 (⃗a, ϵ⃗, m⃗).
The integral (75) also appears in [20, 26, 56, 57] from different perspec-

tives. It is ill-defined as a Lebesgue integral over ❘k because its integrand
does not converge to zero at infinity. Instead, as suggested by the notation,
it should be interpreted as a contour integral where the sum of residues re-
produces the sum over T-fixed points in (39). However, assigning a choice
of contour Γr,k ⊂ ❈k to the integral (75) directly is not straightforward. We
shall discuss this point further below.

Dimensional reduction. From (75) we may immediately deduce
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Proposition 78. The equivariant instanton partition function of the coho-
mological gauge theory with a massive fundamental hypermultiplet on ❈4

is related to the Coulomb branch partition function Zr
❈3(q; a⃗, ϵ1, ϵ2, ϵ3) for

DonaldsonśThomas theory on the toric Kähler threefold ❈3 through the
mass specialisations

Zr
❈4(q; a⃗, ϵ⃗,ml = al + ϵ4) = Zr

❈3

(
(−1)r+1 q; ϵ1, ϵ2, ϵ3

)

=M(−q)−
r ϵ12 ϵ13 ϵ23

ϵ1 ϵ2 ϵ3 ,(79)

where

M(q) =

∞∏

n=1

1

(1− qn)n
(80)

is the MacMahon function.

Proof. Using the CalabiśYau condition ϵ4 = −ϵ123 on ❈4 one finds that the
matrix integral (75) gives

Zr,k
❈4 (⃗a, ϵ⃗,ml = al − ϵ123) =

1

k!

( ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ123

)k

×
∮

Γr,k

k∏

i=1

dϕi
2π i

Pr(ϕi + ϵ123 |⃗a)
Pr(ϕi |⃗a)

k∏

i,j=1
i ̸=j

R(ϕi − ϕj |ϵ1, ϵ2, ϵ3,−ϵ123) .(81)

Up to an overall sign (−1)(r+1) k, this is exactly the charge k integral contri-
bution Zr,k

❈3 (⃗a, ϵ1, ϵ2, ϵ3) from [6, eq. (5.23)] to the rank r instanton partition
function on ❈3 at a generic point (ϵ1, ϵ2, ϵ3) of the Ω-deformation. This
proves the first equality in (79).

In the rank one case r = 1, the second equality in (79) was originally
proven in [32, Theorem 1], where Z1,k

❈3 (ϵ1, ϵ2, ϵ3) computes the equivariant
volume of the Hilbert scheme of k points on ❈3:

Z1,k
❈4 (⃗ϵ,m = a− ϵ123) = Z1,k

❈3 (ϵ1, ϵ2, ϵ3) =

∫ Tϵ⃗

[Hilbk(❈3)]vir
1 .(82)

The general higher rank result for r > 1 was conjectured in [33, 62] and
proven in [34], where Zr,k

❈3 (⃗a, ϵ1, ϵ2, ϵ3) computes the equivariant volume of
the Quot scheme Quotkr (❈

3) of zero-dimensional quotients of O⊕r
❈3 of length k.

□
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Remark 83. From the string theory perspective, Proposition 78 superfi-
cially supports Sen’s conjecture [59]: it implies that the specification ml =
al + ϵ4, which corresponds to the diagonal coordinates for the maximal torus
U(1)rfla × U(1)rcol of the global symmetry group U(r)fla × U(r)col, can be in-
terpreted as a particular configuration of D9-branes and anti-D9-branes that
decay into D7-branes, whose bound states with D1-branes correspond to in-
stantons on ❈3. This was noted in the K-theory version of the theory for
r = 1 by Nekrasov [19]. The rank one version of the dimensional reduction
of Proposition 78 was also studied rigorously by [24] and its K-theory coun-
terpart by [38].

Fixed points and solid partitions. Starting from the integral (75) di-
rectly, we can identify the combinatorial enumeration problem computed by
the sum over residues. The integrand has poles along the hyperplanes

ϕi − ϕj − ϵa = 0 and ϕi − al = 0 .(84)

These are exactly the fixed points of the equivariant action of Tϵ⃗ on the
ADHM variables, which are given by

taBa = g Ba g
−1 and I = g I h−1 ,(85)

for ta = e i ϵa ∈ Tϵ⃗, g = exp(iϕ) ∈ U(k) and h = exp(ia) ∈ U(r)col. These equ-
ations define a group representation Ta⃗ × Tϵ⃗ −→ U(k), and they are equiv-
alent to

(Ba)ij (ϕi − ϕj − ϵa) = 0 and Iil (ϕi − al) = 0 .(86)

Together with ϱ̄il = 0, these are the equations for the fixed points of the
BRST charge Q, onto which the path integral of the topological field theory
localizes.

The fixed points (84) have a standard combinatorial description. A sub-
tlety here is that the fixed point equations (85) are given for the equivariant
action of the (complex) maximal torus Tϵ⃗ of SU(4), rather than the maximal
torus Tϵ⃗ ′ of U(4). Following Nekrasov’s approach from [19], one can argue
that the two sets of fixed point equations are equivalent: The gauge trans-
formations generated by ϕ can be replaced with U(k) gauge transformations
generated by ϕ′ such that

[Ba, ϕ
′] = ϵ′aBa ,(87)
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for a ∈ 4 and generic ϵ⃗ ′ = (ϵ′1, ϵ
′
2, ϵ

′
3, ϵ

′
4). Clearly if (87) holds generically,

then it holds in particular at the CalabiśYau specialisation with ϵ4 = −ϵ123.
Conversely, if [Ba, ϕ] = ϵaBa with ϵ1234 = 0, then X := B1B2B3B4 is

nilpotent, that is, [X,ϕ] = 0. By the JacobsonśMorozov theorem, it follows
that X can be extended to an sl(2,❈) triple (X,Y,H) in End❈(V ):

[X,H] = 2X , [H,Y ] = −2Y and [X,Y ] = H ,(88)

where Y is nilpotent and H is the generator of the associated Cartan sub-
algebra. Given arbitrary ϵ⃗ ′, we define ϕ′ = 1

2 ϵ
′
1234H with ϵ′1234 ̸= 0. Then

[X,ϕ′] = ϵ′1234X, and in particular

[B1, ϕ
′]B2B3B4 +B1 [B2, ϕ

′]B3B4 +B1B2 [B3, ϕ
′]B4

+B1B2B3 [B4, ϕ
′] = ϵ′1234X .(89)

It follows that [Ba, ϕ
′] = ϵ′aBa (up to relabelling of the entries of ϵ⃗ ′), as

required. A geometric proof of this fact (at the level of fixed points of Hilbert
schemes of points on ❈4) is found in [24].

With this equivalence in mind, we write a generic fixed point (84) by
setting the eigenvalues of ϕ to

ϕ(al;p⃗ ) = al + p⃗ · ϵ⃗ ,(90)

where l ∈ {1, . . . , r} and p⃗ = (p1, p2, p3, p4) ∈ ❩4
>0 is a quadruple of positive

integers; here and in the following we denote p⃗ · ϵ⃗ := ∑
a∈4 pa ϵa and we used

the CalabiśYau condition (38). In other words, a fixed point is parametrized
by a set of tuples (al; p⃗ ). There are k different tuples, because there are k
eigenvalues. Given an instanton number k, we can partition it into integers
k = k1 + · · ·+ kr such that for fixed l, and hence fixed al, kl ≥ 0 is the total
number of quadruples p⃗ of integers.

Since the quadruple (1, 1, 1, 1) is always present, the collection of tuples
(al; p⃗ ) for fixed l may be represented by a solid partition σl = (σi,j,n)i,j,n≥1,
that is, a sequence of non-negative integers σi,j,n ∈ ❩≥0 satisfying

σi,j,n ≥ σi+1,j,n , σi,j,n ≥ σi,j+1,n and σi,j,n ≥ σi,j,n+1 ,(91)

for all i, j, n ≥ 1. The size of the solid partition σl is

|σl| :=
∑

i,j,n≥1

σi,j,n = kl .(92)
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It follows that there is a one-to-one correspondence between fixed points
(al; p⃗ ) and solid partitions σl = {p⃗ ∈ ❩4

>0 | 1 ≤ p4 ≤ σp1,p2,p3
}, and there-

fore one may associate to any fixed point an array of solid partitions σ⃗ =
(σ1, . . . , σr) whose total size is the instanton number:

|σ⃗| =
r∑

l=1

|σl| =
r∑

l=1

kl = k .(93)

Note that here the only role of the ADHM field I, which arises from D1śD9
strings, is to assign a ‘colouring’ of the solid partitions into the r-tuple σ⃗.

Remark 94. Recall that a plane partition is a collection of triples of positive
integers (p1, p2, p3) where the pairs (p1, p2) define a Young diagram λ and
p3 ≤ πp1,p2

, with π a ❩>0-valued function of (i, j) ∈ λ such that πi,j ≥ πi+1,j

and πi,j ≥ πi,j+1. The rank one instanton partition function for the NT = 2
cohomological gauge theory on ❈3 at the CalabiśYau specialisation of the Ω-
deformation, or equivalently the MacMahon function (80), is the generating
function for the number of plane partitions π of fixed size |π| = ∑

i,j≥1 πi,j :

Zr=1
❈3

(
q; ϵ1, ϵ2, ϵ3

)∣∣
ϵ123=0

=M(−q) =
∑

π

(−q)|π| .(95)

More generally, Zr
❈3

(
q; ϵ1, ϵ2, ϵ3

)∣∣
ϵ123=0

=M
(
(−1)r q

)
is the generating func-

tion for r-tuples π⃗ = (π1, . . . , πr) of plane partitions.
Given a solid partition σ = (σi,j,n)i,j,n≥1, we can view it as a stack of

plane partitions, with cubes piled in the positive 16-multiant (x1, x2, x3, x4) ∈
❩4
≥0, where σi,j,n is the height function of the stack of hypercubes defined

on the (x1, x2, x3) hyperplane.

2.6. Instanton partition function

We shall now discuss the explicit evaluation of the equivariant partition
function (39) as a combinatorial expansion based on the generalized ADHM
parametrization of the instanton moduli spaces Mr,k. As discussed in Sec-
tion 2.5, the partition function (75) receives contributions from the fixed
points [(Ba, I)a∈4] ∈ MT

r,k of the ADHM moduli space. Thus we need to de-
scribe the local geometry of the instanton moduli space Mr,k around these
fixed points, and suitably incorporate the moduli of the matter fields.
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Let σ⃗ be a fixed point, corresponding to an r-tuple of solid partitions,
and consider the ADHM deformation complex

0 −→ End❈(Vσ⃗)
d1−−→

End❈(Vσ⃗)⊗Q

⊕
Hom❈(Wσ⃗, Vσ⃗)

d2−−→ End❈(Vσ⃗)⊗∧0,2
− Q −→ 0 ,(96)

where Q ≃ ❈4 is the four-dimensional fundamental Tϵ⃗ -module with weight
decomposition

Q = t−1
1 + t−1

2 + t−1
3 + t−1

4 ,(97)

and the weights ta = e i ϵa satisfy the CalabiśYau condition

t1 t2 t3 t4 = 1 .(98)

The map d1 is an infinitesimal GL(k,❈) gauge transformation, while d2 is the
linearization of the holomorphic ADHM equations [Bα, Bβ ] = 0; explicitly

d1ϕ =

((
[ϕ,Ba]

)
a∈4

ϕ I

)
and

d2

(
(ba)a∈4

i

)
=

(
[bα, Bβ ] + [Bα, bβ ]

)
(α,β)∈3⊥ .(99)

By construction, the first cohomology of the cochain complex (96) is a lo-
cal model for the tangent space Tσ⃗Mr,k at the fixed point σ⃗, while the second
cohomology parametrizes the local obstruction space (Ob−r,k)σ⃗. We assume
that ker(d1) = 0. Then the equivariant index of this complex computes the
virtual sum

√
chT

(
T vir
[E] Mr,k

)
= Ext1O

P4
(E , E) ⊖ Ext2−O

P4
(E , E)(100)

of cohomology groups, where [E ] is the isomorphism class of a framed torsion
free sheaf on P4 corresponding to the fixed point σ⃗. This gives

√
chT

(
T vir
σ⃗ Mr,k

)
= V ∗

σ⃗ ⊗ Vσ⃗
(
t−1
1 + t−1

2 + t−1
3 + t−1

4

)
+W ∗

σ⃗ ⊗ Vσ⃗

− V ∗
σ⃗ ⊗ Vσ⃗

(
1 + t−1

1 t−1
2 + t−1

1 t−1
3 + t−1

2 t−1
3

)
.(101)

Recalling that the fibre of the matter bundle (Vr,k)σ⃗ ⊗ r at the fixed
point σ⃗ is Hom❈(r, Vσ⃗), the total index we wish to compute is

χσ⃗ :=
√

chT
(
T vir
σ⃗ Mr,k

)
− chT

(
(Vr,k)σ⃗ ⊗ r

)
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= −V ∗
σ⃗ ⊗ Vσ⃗

(
1− t−1

1 − t−1
2 − t−1

3 − t−1
4 + t−1

1 t−1
2 + t−1

1 t−1
3 + t−1

2 t−1
3

)

+
(
W ∗

σ⃗ − r∗
)
⊗ Vσ⃗ .

(102)

In these expressions we regard the various vector spaces in (101) and (102)
as elements of the representation ring of the torus T = Ta⃗ × Tϵ⃗ × Tm⃗, i.e.
as polynomials in ta for a ∈ 4 as well as in el := e i al and fl := e iml for
l = 1, . . . , r. The dual involution acts on the weights as t∗a = t−1

a , e∗l = e−1
l

and f∗l = f−1
l .

As the notation suggests, the character (101) can be identified as a square
root of the character of the virtual tangent bundle at the fixed point σ⃗:

chT
(
T vir
σ⃗ Mr,k

)
= −V ∗

σ⃗ ⊗ Vσ⃗
∏

a∈4

(
1− t−1

a

)
+W ∗

σ⃗ ⊗ Vσ⃗ + V ∗
σ⃗ ⊗Wσ⃗

=
√

chT
(
T vir
σ⃗ Mr,k

)
+
√

chT
(
T vir
σ⃗ Mr,k

)∗
.(103)

The choice of square root is not unique and different choices will produce
contributions to the k-instanton partition functions Zr,k

❈4 (⃗a, ϵ⃗, m⃗) below which
coincide up to a sign ±1 which we fix by hand, see e.g. [20, 24, 27, 38, 63].
Every sign choice is equivalent to a choice of local orientation at each Ta⃗,⃗ϵ -
fixed point σ⃗ of the instanton moduli space [23], and it produces a sign factor
(−1)Oσ⃗ .

With suitable choices of bases we can decompose the U(r)col-module
W at a fixed point σ⃗ and the U(r)fla-module r into one-dimensional vector
spaces for the Ta⃗ -action and the Tm⃗-action, respectively, with the weight
decompositions

Wσ⃗ =

r∑

l=1

el and r =

r∑

l=1

fl .(104)

On the other hand, from the fixed point equations (85) and the stability
condition (cf. Section 2.4) it follows that the Ta⃗,⃗ϵ -module decomposition of
the vector space V at the fixed point σ⃗ is given by

Vσ⃗ =

r∑

l=1

el
∑

p⃗∈σl

tp1

1 tp2

2 tp3

3 tp4

4 .(105)

Hence each term in the weight decomposition of the vector space Vσ⃗ corre-
sponds to an element in the collection of solid partitions σ⃗ = (σ1, . . . , σr).
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After inserting the decompositions (104) and (105) into (102), we can use
the equivariant characters χσ⃗ to evaluate the instanton partition function
(39) by using the operation

ê

[∑

I

nI e
wI

]
=

∏

wI ̸=0

wnI

I(106)

that converts the additive Chern characters to multiplicative (top form) Eu-
ler classes. Then wI (⃗a, ϵ⃗, m⃗) gives the weights of the T-action on the virtual
tangent bundle and on the matter bundle.

Altogether this leads to the general combinatorial formula

Zr,k
❈4 (⃗a, ϵ⃗, m⃗) =

∑

|σ⃗|=k

(−1)Oσ⃗ ê[−χσ⃗]

=
∑

|σ⃗|=k

(−1)Oσ⃗

r∏

l=1

̸=0∏

p⃗l∈σl

Pr(al + p⃗l · ϵ⃗ |m⃗)

Pr(al + p⃗l · ϵ⃗ |⃗a)

×
r∏

l′=1

̸=0∏

p⃗ ′
l′
∈σl′

R
(
al − al′ + (p⃗l − p⃗ ′

l′) · ϵ⃗
∣∣⃗ϵ
)

(107)

for the partition function (75), where the polynomial Pr and the rational
function R are defined in (76). The superscripts ̸=0 on the products indicate
the omission of terms with zero numerator or denominator from the for-
mula (107), according to the prescription in (106). The sign factors (−1)Oσ⃗

are given by sums of cardinalities

Oσ⃗ =

r∑

l=1

∣∣∣
{
(p⃗l, p⃗

′
l ) ∈ σl × σl

∣∣∣ (pl)α ̸= (p′l)α
(pl)α − (pl)4 + 1 = (p′l)α − (p′l)4

, α ∈ {1, 2, 3}
}∣∣∣ .

(108)

The full partition function (77), including all instanton sectors, is given
by

Zr
❈4(q; a⃗, ϵ⃗, m⃗) =

∑

σ⃗

(−1)Oσ⃗ q|σ⃗| ê[−χσ⃗] ,(109)

where the sum runs over all r-tuples σ⃗ = (σ1, . . . , σr) of solid partitions σl
(including the empty solid partitions of sizes |σl| = 0).

Remark 110. The expression for Oσ⃗ in (108) differs from the sign factor
conjectured by Nekrasov and Piazzalunga in [20], which is proved by Kool
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and Rennemo in [64], and also from those of [23, 27, 38], because our choice
of square root (101) is different. It was found by comparing the character√
chT

(
T vir
σ⃗ Mr,k

)
in (101) with the character of [27, Section 5.7] and [64]:

they differ in the sign factor (−1)k (r−1)+rankAσ⃗ given by

Aσ⃗ =
(
V ∗
σ⃗ ⊗ Vσ⃗ t

−1
4

)fix
,(111)

where the superscript fix stands for the Ta⃗,⃗ϵ -fixed part. This is tantamount
to counting the zeroes of al − al′ + (p⃗l − p⃗ ′

l′) · ϵ⃗− ϵ4, for p⃗l ∈ σl and p⃗ ′
l′ ∈ σl′ .

Then the sign factor (108) is calculated as the difference of (111) and the
sign factor from [27].

Since our choice of square root differs from the square root of [27] by
conjugation of a finite number of terms, which is shown to be movable in [20],
our square root is movable as well.1 That is, each term contains weights ta
and el.

With our choice of square root
√
chT

(
T vir
σ⃗ Mr,k

)
in (101), and subse-

quently of the index χσ⃗, the first term affected by the sign (−1)Oσ⃗ appears
at instanton number k = 16.

The formula (107) makes evident the evaluation of (75) as a sum over
residues; the signs (−1)Oσ⃗ should then come from a careful residue calcula-
tion. From this perspective the dimensional reduction of Proposition 78 can
be seen to arise through the introduction of extra fixed parts to the index χσ⃗

from terms involving f−1
l el t4, which keeps only contributions to (109) from

solid partitions σ⃗ with (pl)4 = 1 for all p⃗l ∈ σl, l = 1, . . . , r; these correspond
to arrays π⃗ of plane partitions (cf. Remark 94) and the sign factors (108)
become Oπ⃗ = |π⃗|. In fact, it is possible to łupliftž the result of Proposition 78
to infer

Conjecture 112. The equivariant instanton partition function of the co-
homological gauge theory with a massive fundamental hypermultiplet on ❈4

is given by

Zr
❈4(q; a⃗, ϵ⃗, m⃗) = Zr

❈4(q; ϵ⃗, m) =M(−q)−
r m ϵ12 ϵ13 ϵ23

ϵ1 ϵ2 ϵ3 ϵ4 with

m =
1

r

r∑

l=1

(ml − al) .(113)

Remark 114. We checked explicitly that the order q and q2 terms of the
series (109) agree with (113) in the rank one case r = 1, as well as with an

1We thank an anonymous referee for pointing this out to us.
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elementary Cauchy residue evaluation of the contour integrals in (75) if one
considers contours Γr,k ⊂ ❈k which enclose all singularities of the integrand.
The rank one case of Conjecture 112 was conjectured by Cao and Kool
in [24]. The k-instanton contributions with k ≥ 1 give the rank r equivariant
DonaldsonśThomas invariants of ❈4:

∫ T

[Mr,k]viro

eT(Vr,k ⊗ r)

=

k∑

n=1

1

n!

(rm ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

)n ∑

k1,...,kn≥1
k1+···+kn=k

n∏

i=1

∑

d|ki

k1 · · · kn
d2

.(115)

Following [65, 66], one can write a well-defined general integration pre-
scription starting from (75) which calculates the partition function

Zr,k
❈4 (⃗a, ϵ⃗, m⃗)

by uplifting the theory to an 8+1-dimensional theory on❈4 × S1β , where S1β is
the circle of circumference β. This defines the K-theory version of the gauge
theory, wherein the eight-dimensional instantons are viewed as constant loops
on ❈4 × S1β ; the original theory is recovered in the cohomological limit β → 0
where the circle shrinks to a point. We choose as integration contour for the
uplifted integral any contour large enough to enclose all singularities of the
integrand, and finally we apply a residue theorem to evaluate the contour
integrals.

Nekrasov and Piazzalunga propose a plethystic exponential formula in [20]
for the uplifted instanton partition function on ❈4 × S1β , generalizing the
rank one conjecture of [19]; in their approach, the sign factors arise from
evaluation of the JeffreyśKirwan residue formula. Their conjectured formula
is proven by Kool and Rennemo in [64]. It is straightforward to show that this
formula reproduces Conjecture 112 in the cohomological limit (see [19, 20, 38]
for the rank one case).

In Appendix B.1 we sketch the steps of a direct but less conceptual proof
of the formula (113) using the combinatorial evaluation (107) of the quiver
matrix model (75), which is based on the dimensional reduction of Propo-
sition 78. We believe that such an argument, while presently incomplete,
provides useful insights into the symmetries of the theory, which are not ev-
ident through other approaches. These arguments can also be extended to
more general settings, such as some of our orbifold theories below, for which
rigorous results are not yet available.
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2.7. Pure NT = 2 gauge theory

As we discussed in Section 2.3, Nekrasov’s Ω-deformation permits the def-
inition of the equivariant partition function (40) for the eight-dimensional
cohomological gauge theory even in the absence of fundamental matter fields.
It should come as no surprise that the only difference from our previous cal-
culations is the absence of the matter bundle Vr,k ⊗ r, i.e. the theory is based
entirely on the generalized ADHM data. The same BRST construction from
Section 2.5 applies by dropping the matter field contribution to the path
integral, giving the equivariant integral

Zr,k
❈4 (⃗a, ϵ⃗ )

pure :=

∫ Ta⃗,ϵ⃗

[Mr,k]viro

1

=
(−1)k

k!

(ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

)k
∮

Γr,k

k∏

i=1

dϕi
2π i

1

Pr(ϕi |⃗a)

k∏

i,j=1
i ̸=j

R(ϕi − ϕj |⃗ϵ )(116)

from the field theory perspective.
The contour integral (116) can be computed from the Chern charac-

ter (101) alone, giving the combinatorial expansion into solid partitions

Zr,k
❈4 (⃗a, ϵ⃗ )

pure =
∑

|σ⃗|=k

(−1)Oσ⃗

r∏

l=1

̸=0∏

p⃗l∈σl

1

Pr(al + p⃗l · ϵ⃗ |⃗a)

×
r∏

l′=1

̸=0∏

p⃗ ′
l′
∈σl′

R
(
al − al′ + (p⃗l − p⃗ ′

l′) · ϵ⃗
∣∣⃗ϵ
)
.(117)

The instanton partition function (40) is then given by

Zr
❈4(Λ; a⃗, ϵ⃗ )pure = 1 +

∞∑

k=1

Λk Zr,k
❈4 (⃗a, ϵ⃗ )

pure .(118)

From the field theory perspective, we expect that (39) reduces to (40)
in a suitable infinite mass limit which decouples the fundamental matter
hypermultiplets [19]. This physical expectation is confirmed by

Proposition 119. The equivariant instanton partition function for the pure
cohomological gauge theory is related to the partition function with a massive
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fundamental hypermultiplet on ❈4 through the double scaling limit

Zr
❈4(Λ; a⃗, ϵ⃗ )pure = lim

m1,...,mr→∞
lim
q→0

Zr
❈4(q; a⃗, ϵ⃗, m⃗)

∣∣∣
Λ=(−1)r m1···mr q

.(120)

Proof. From (107) the relevant terms of the combinatorial expansion (109)
in the limit of large masses are given by

q|σ⃗|
r∏

l=1

̸=0∏

p⃗l∈σl

Pr(al + p⃗l · ϵ⃗ |m⃗)
m1,...,mr≫1−−−−−−−−→q|σ⃗|

r∏

l=1

∏

p⃗l∈σl

(−1)rm1 · · ·mr

=
(
(−1)rm1 · · ·mr q

)|σ⃗|
,(121)

and the result now follows from (117) and (118). □

Corollary 122. Assume Conjecture 112 is true. Then the equivariant in-
stanton partition function of the pure cohomological gauge theory on ❈4 is
given by

Zr
❈4(Λ; ϵ⃗ )pure =





exp
(
− Λ

ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

)
for r = 1 ,

1 for r > 1 .

(123)

Proof. We combine Propositions 119 and Conjecture 112 using the series
representation

logM(q) =

∞∑

n=1

1

n

qn

(1− qn)2
(124)

for the logarithm of the MacMahon function (80), which converges for any
q ̸= 1. For q ≪ 1 this yields the behaviour logM(−q) = −q+O(q2). For
r = 1 the result follows by fixing Λ = −m q in the limits m→ ∞ and q → 0.
For r > 1, the partition function is identically equal to one in the double
scaling limit ml → ∞ and q → 0 with (−1)rm1 · · ·mr q = Λ fixed. □

Remark 125. We checked explicitly that the order Λ and Λ2 terms of
the series (118) agree with (123) in the rank one case r = 1, and that the
contributions for r = 2 with k = 1, 2 and for r = 3 with k = 1 are trivial:
Zr,k
❈4 (⃗a, ϵ⃗ )pure = 0.

Geometrically, the large mass limit of Proposition 119 defines the insertion-
free equivariant DonaldsonśThomas invariants of ❈4 [38]. The rank one for-
mula of Corollary 122 was originally discussed in [24, 38]. It implies that the
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equivariant volume of the Hilbert scheme of k points on ❈4 is given by

∫ Tϵ⃗

[Hilbk(❈4)]viro

1 =
(−1)k

k!

(ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

)k
,(126)

whereas the equivariant volume of the Quot scheme Quotkr (❈
4) of zero-

dimensional quotients of O⊕r
❈4 with length k vanishes for all r > 1. This is

in marked contrast to the equivariant volumes of the Quot schemes of zero-
dimensional quotients of O⊕r

❈2 and O⊕r
❈3 , which are all non-zero.

3. Orbifolds of the Eight-Dimensional theory

In Section 2 we have studied eight-dimensional noncommutative instantons
on ŕat space. As a natural non-trivial generalization beyond ŕat space ❈4,
on the way towards local CalabiśYau fourfolds, in this section we will extend
these considerations to quotients ❈4/Γ by a finite group Γ acting linearly on
❈4. In order to preserve the holonomy group SU(4) of the cohomological
gauge theory, the group Γ has to be a subgroup of SU(4). To define the
equivariant instanton partition functions, we will further restrict to toric
CalabiśYau orbifolds ❈4/Γ, which requires that Γ is abelian and that the
Γ-action commutes with the action of the maximal torus Tϵ⃗ ⊂ SU(4) on ❈4.
This restricts to orbifold groups of the form Γ = ❩n1

× ❩n2
× ❩n3

, with order
n = n1 n2 n3. Such an orbifold theory was studied in [25, 26] for a specific
example; here we will vastly extend and generalize their considerations using
the framework of Section 2.

3.1. Noncommutative gauge theory on ❈4/Γ

A conventional quantum field theory on an orbifold ❈4/Γ is singular. How-
ever, an orbifold field theory can be constructed by allowing fields to be
equivariant under the action of Γ and gauging the Γ-action, together with a
subsequent projection to Γ-invariant states of the cohomological gauge the-
ory of Section 2.2. Such a construction incorporates łtwisted sectorsž into
the theory, analogously to string orbifolds, and can be thought of as a coho-
mological gauge theory on the quotient stack [❈4/Γ]. It is naturally realised
in noncommutative field theory.

Suppose that the generators of the orbifold group Γ act on the coordinates
of ❈4 as

(z1, z2, z3, z4) 7−→ (e 2π i s1/n z1, e
2π i s2/n z2, e

2π i s3/n z3, e
2π i s4/n z4) ,(127)
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where n is the order of Γ. This induces a decomposition of the fundamental
representation Q ≃ ❈4 of SL(4,❈) as

Q = ρs1 ⊕ ρs2 ⊕ ρs3 ⊕ ρs4 ,(128)

where ρsa denotes the irreducible representation of Γ with weight sa. The
CalabiśYau constraint implies ρs1 ⊗ · · · ⊗ ρs4 ≃ ρ0, where ρ0 is the trivial
representation of weight zero.

Let Γ̂ denote the finite abelian group of irreducible representations of
Γ; since each representation ρs for s ∈ Γ̂ is one-dimensional, we can regard
elements of Γ̂ as characters χs : Γ −→ ❈× of Γ. Then the decomposition of
Q also defines a Γ̂-colouring ❩⊕4

≥0 −→ Γ through the identification Γ̂ ≃ Γ by

(n1, n2, n3, n4) 7−→ ρ⊗n1
s1 ⊗ ρ⊗n2

s2 ⊗ ρ⊗n3
s3 ⊗ ρ⊗n4

s4 .(129)

Via this colouring, the Γ-action on ❈4 induces an isotopical decomposition
of the Fock space (42) into irreducible representations as

H =
⊕

s∈Γ̂

Hs with Hs = Span❈
{
|n⃗ ⟩

∣∣ ρ⊗n1
s1 ⊗ · · · ⊗ ρ⊗n4

s4 ≃ ρs
}
.(130)

Consequently, in the rank one case r = 1 the covariant coordinates Za

decompose into maps Z =
⊕

s∈Γ̂ (Z
s
a)a∈4 : H −→ Q⊗H with Zs

a : Hs −→
Hs+sa for a ∈ 4 , and the Higgs field φ into maps φ =

⊕
s∈Γ̂ φ

s : H −→ H
with φs : Hs −→ Hs. The operator algebraic equations (43) now read as

Zs+sb
a Zs

b − Zs+sa
b Zs

a = 1
2 εabc̄d̄

(
Zs−sd−sc†
c̄ Zs−sd†

d̄
− Zs−sd−sc†

d̄
Zs−sc†
c̄

)
,

4∑

a=1

(
Zs†
ā Zs

a − Zs−sa
a Zs−sa†

ā

)
= ζs ✶Hs

,

Zs
a φ

s − φs+sa Zs
a = ϵa Z

s
a ,(131)

where the FayetśIliopoulos parameters ζs > 0 for s ∈ Γ̂ are determined by
the decomposition of the B-field into NSśNS twisted sectors of type II string
theory on ❈4/Γ. Note that the first equation of (131) makes sense because
of the CalabiśYau condition ρs1234 ≃ ρ0.

The generalization of the set of equations (131) to higher rank r > 1
involves an action of the orbifold group Γ on the ChanśPaton space W ≃
❈r that we describe below, which is defined by a homomorphism Γ −→
U(r)col. This breaks the colour symmetry to the centralizer of the image



✐

✐

ł2-Szabož Ð 2024/7/1 Ð 9:13 Ð page 1707 Ð #43
✐

✐

✐

✐

✐

✐

Instanton Counting and DonaldsonśThomas Theory 1707

of Γ. Solutions of these equations describe noncommutative U(r) instantons
on the orbifold ❈4/Γ.

The splitting of the covariant coordinates induces an equivariant de-
composition of the ADHM data (Ba, I)a∈4 from (45). With respect to the
decomposition of the orbifold group action into irreducible representations,
the vector spaces on which the ADHM variables are defined decompose as

V =
⊕

s∈Γ̂

Vs ⊗ ρ∗s and W =
⊕

s∈Γ̂

Ws ⊗ ρ∗s .(132)

The multiplicity spaces Vs = Hom❈[Γ](ρs, V ) and Ws = Hom❈[Γ](ρs,W ) con-
sist of Γ-equivariant homomorphisms, where ❈[Γ] is the group ring of Γ

over ❈. The dimensions k = dim❈ V and r = dim❈W correspondingly de-
compose as

k =
∑

s∈Γ̂

ks =
∑

s∈Γ̂

dim❈ Vs and r =
∑

s∈Γ̂

rs =
∑

s∈Γ̂

dim❈Ws ,(133)

which define arrays of fractional instanton charges k⃗ = (ks)s∈Γ̂ with ranks

r⃗ = (rs)s∈Γ̂ in ❩
|Γ|
≥0, whose size is |⃗k | := ∑

s∈Γ̂ ks = k and |r⃗| := ∑
s∈Γ̂ rs := r.

By Schur’s lemma this implies the decompositions

B =
⊕

s∈Γ̂

(Bs
a)a∈4 ∈ Hom❈[Γ](V, V ⊗Q) with Bs

a : Vs −→ Vs+sa ,

(134)

I =
⊕

s∈Γ̂

Is ∈ Hom❈[Γ](W,V ) with Is :Ws −→ Vs .(135)

Starting from the equations (131), the same argument from Section 2.4 then
defines the orbifold version of the ADHM equations (51):

µ❈s
ab := Bs+sb

a Bs
b −Bs+sa

b Bs
a

− 1
2 εabc̄d̄

(
Bs−sd−sc†

c̄ Bs−sd†
d̄

−Bs−sd−sc†
d̄

Bs−sc†
c̄

)
= 0 ,

µ❘s :=

4∑

a=1

(
Bs−sa

a Bs−sa†
ā −Bs†

ā Bs
a

)
+ Is Is† = ζs ✶ks

,(136)

for each s ∈ Γ̂ and 1 ≤ a < b ≤ 4.
The N = (0, 2) gauge theories on D1-branes at CalabiśYau orbifolds

of ❈4 are also obtained by orbifold projection and have been studied by
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e.g. [67ś69] (in the absence of D1śD9 strings). This theory is anomaly-free
with suitable ChernśSimons couplings to background RśR chiral scalars. It
consists of four types of chiral superfields on ❘1,1, transforming in the bi-
fundamental representation of U(ks+a)× U(ks) for a ∈ 4 and s ∈ Γ̂, whose
lowest components are the linear maps Bs

a. The choice of ks = n for all s ∈ Γ̂

corresponds to a stack of n regular D1-branes, while more general dimension
vectors k⃗ correspond to fractional D1-branes. The ADHM equations (136)
are equations for the Higgs branch of this N = (0, 2) theory.

Moduli spaces of orbifold instantons. The moduli space MΓ
r,k of charge

k noncommutative U(r) instantons on the orbifold ❈4/Γ stratifies into con-
nected components

MΓ
r,k =

⊔

|r⃗ |=r , |⃗k |=k

M
r⃗,⃗k

(137)

according to the decompositions above, where the disjoint union runs over all
Γ-representations W and V of dimensions r and k, respectively. The Γ-action
breaks the U(k) gauge symmetry of V to the subgroup ×s∈Γ̂ U(ks), whose
action on the ADHM variables is given by

g ·
(
Bs

a , I
s
)
s∈Γ̂
a∈4

=
(
gs+sa B

s
a g

−1
s , gs I

s
)
s∈Γ̂
a∈4

with g = (gs)s∈Γ̂ ∈×
s∈Γ̂

U(ks) .

(138)

Then M
r⃗,⃗k

can be described as the space of solutions to (136) modulo these
gauge transformations.

The moduli space M
r⃗,⃗k

admits an equivalent holomorphic parametriza-
tion as a GIT quotient. For this, we note that the equations µ❈s

ab = 0 from
(136) arise as the complex moment map equations µ❈ab = 0 from (51) for the
equivariant decomposition µ❈ab =

⊕
s∈Γ̂ µ

❈s
ab . Since the latter are equivalent

to the equations [Ba, Bb] = 0 by the identity (55), the equivariant decompo-
sition (134) shows that the former can be substituted with the holomorphic
equations

Bs+sb
a Bs

b = Bs+sa
b Bs

a ,(139)

for 1 ≤ a < b ≤ 4 and s ∈ Γ̂.
On the other hand, the real moment map equations µ❘s = ζs ✶ks

in (136)
for generic FayetśIliopoulos parameters ζs > 0 can be traded for a stability
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condition: A set of maps (134) and (135) is stable if there are no proper
Γ-subrepresentations

S =
⊕

s∈Γ̂

Ss ⊗ ρ∗s(140)

of V such that Bs
a(Ss) ⊂ Ss+sa for a ∈ 4 and im(Is) ⊂ Ss for all s ∈ Γ̂.

The proof is similar to the stability proof of [37]: Let Ps be the orthogonal
projection of Vs to the orthogonal complement S⊥

s of the invariant subspace
Ss ⊂ Vs, for each s ∈ Γ̂. Then Ps I

s = 0 and Ps+sa B
s
a Ps = Ps+sa B

s
a, so

0 ≤
∑

s∈Γ̂

ζs dim❈ S
⊥
s =

∑

s∈Γ̂

Tr
(
Ps µ

❘s
)

=
∑

s∈Γ̂

∑

a∈4
Tr

(
Ps+sa B

s
aB

s†
ā −Bs

a PsB
s†
ā

)

= −
∑

s∈Γ̂

∑

a∈4

∥∥(✶ks+sa
− Ps+sa)B

s
a Ps

∥∥2
F

≤ 0 ,(141)

which implies Ss = Vs for all s ∈ Γ̂. The stability condition is equivalent to
the condition that the actions of the operators Bs

a for a ∈ 4 and s ∈ Γ̂ on
Is

′

(Ws′) generate the isotopical subspaces Vs′′ . Conversely, the orbit of any
set of stable maps (B, I) under

G
k⃗
:=×

s∈Γ̂

GL(ks,❈)(142)

intersects the locus
⊕

s∈Γ̂ µ
❘s =

⊕
s∈Γ̂ ζs ✶ks

.
Then M

r⃗,⃗k
can be described as the space of stable maps (B, I) which

satisfy the holomorphic equations (139), modulo the natural action of the
complex gauge group G

k⃗
of the Γ-module V . It follows that the real virtual

dimension of the moduli space M
r⃗,⃗k

is given by

vdim❘M
r⃗,⃗k

=
∑

s∈Γ̂

(
2

4∑

a=1

ks ks+sa + 2 rs ks −
∑

1≤a<b≤4

ks ks+sab
− 2 k2s

)
.

(143)

The moduli space M
r⃗,⃗k

has a remaining symmetry under framing ro-
tations: The global colour symmetry U(r)col is broken to the centralizer
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×s∈Γ̂ U(rs)col, which acts on the orbifold ADHM data as

h ·
(
Bs

a , I
s
)
s∈Γ̂
a∈4

=
(
Bs

a , I
s h−1

s

)
s∈Γ̂
a∈4

with h = (hs)s∈Γ̂ ∈ ×
s∈Γ̂

U(rs)col .

(144)

Its maximal torus is

Ta⃗ =×
s∈Γ̂

Ta⃗s ,(145)

where Ta⃗s is the maximal torus of U(rs)col.
In addition, M

r⃗,⃗k
has an SU(4) symmetry inherited from the holonomy

group of the toric CalabiśYau four-orbifold ❈4/Γ. In particular, the action
of the (complexified) maximal torus Tϵ⃗ is the evident descent of (62).

3.2. Crepant resolutions

While our constructions of orbifold instanton partition functions will hold
quite generally for any toric CalabiśYau four-orbifold, a central role is played
by those orbifolds which admit a crepant resolution [70]: Recall that, for a sin-
gular variety Y , a proper algebraic map π : X −→ Y is a crepant resolution
if X is smooth and π is a birational morphism which preserves the canonical
bundles, i.e. KX ≃ π∗KY . We are interested in the case where Y = ❈4/Γ, or
more generally Y = ❈d/Γ. The existence of a crepant resolution then requires
the group Γ to be a finite subgroup of SL(d,❈) [71, 72].

Type II string theory on an orbifold is defined by imposing equivariance
under the action of the finite group Γ. When all twisted NSśNS sectors
have age one, a crepant resolution is induced by vacuum expectation values
of scalar fields in these sectors. This allows one to continuously smoothen
the quotient singularities while preserving the CalabiśYau properties. The
spectrum of the orbifold string theory is then the spectrum of type II string
theory on a compactification over a smooth CalabiśYau space obtained by
blow-up of the orbifold singularities [73, 74], whose sizes are controlled by the
moduli of the scalar fields. In particular, the BPS states can be considered
in ‘orbifold’ and ‘large radius’ phases, which are related by collapsing the
compact cycles of the resolution [75]. For example, partition functions of
fractional D-branes on orbifolds can be related to partition functions of D-
branes wrapping compact cycles of a crepant resolution through changes of
variables and wall-crossing formulas.
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It is well-known that the existence of a crepant resolution of ❈d/Γ de-
pends dramatically on the dimension d of the orbifold [76]. In dimensions
two and three such resolutions always exist [77, 78], and in particular in
dimension two they are also unique. In these cases a crepant resolution is
always provided by the HilbertśChow morphism from the Γ-Hilbert scheme
X = HilbΓ(❈d) of Γ-invariant zero-dimensional subschemes Z ⊂ ❈d of length
|Γ| whose global sections H0(OZ) form the regular representation R of Γ,
which are called Γ-clusters in ❈d; it can be parametrized by Γ-invariant
ideals J ⊂ ❈[z1, . . . , zd] of codimension |Γ|, where Γ acts on the coordinate
functions z1, . . . , zd. On the other hand, for d ≥ 4 little is known: they exist
in rather special cases. A simple example for which no crepant resolution
exists is given by the action of the generator of Γ = ❩2 on ❈4 by simultane-
ous reŕection za 7−→ −za for a ∈ 4. It is unknown if a priori there exists a
crepant resolution given an orbifold group action, and even when one does
it is not necessarily given by the Γ-Hilbert scheme, which generally behaves
badly and can be singular.

In the type II string theory picture, the absence of a crepant resolution
means that compactification on ❈d/Γ does not yield the requisite moduli
fields from the twisted NSśNS sectors. For the worldvolume gauge theories
of D-branes localized at the singularity of a CalabiśYau orbifold ❈d/Γ for
d = 2 [79, 80] or d = 3 [81], the Higgs moduli space is a smooth CalabiśYau
manifold which is a resolution of the original orbifold, for generic choices of
FayetśIliopoulos parameters. In marked contrast, for d = 4 the Higgs moduli
space is not necessarily a smooth CalabiśYau fourfold even if the orbifold
admits a smooth resolution: MΓ

r⃗,⃗k
is a CalabiśYau fourfold only if ❈4/Γ

admits a crepant blow-up to it [67].
Now suppose that Γ is abelian, and that

π : X −→ ❈
d/Γ(146)

is a crepant resolution. Under certain technical conditions which are spelled
out in [82, Theorem 5.2], the crepant resolution X can be obtained as a
fine moduli space of stable Γ-equivariant coherent sheaves E on ❈d such
that H0(E) ≃ R as a Γ-module, which are called Γ-constellations; it can be
parametrized by Γ-equivariant modules over the coordinate ring ❈[z1, . . . , zd]
which are isomorphic to R as Γ-modules. This includes the cases where X
is the Γ-Hilbert scheme: the structure sheaf OZ of a Γ-cluster Z in ❈d is a
Γ-constellation. Physically X can be interpreted as an orbifold resolution by
regular D-branes [81], with FayetśIliopoulos parameters controlling the size
of the blow-ups.
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Specialising to d = 4, if ❈4/Γ admits a suitable crepant resolution X,
then X can be realised as a moduli space of Γ-constellations, which in turn
should be isomorphic to a moduli space of noncommutative instantons in
the Coulomb branch. This is the starting point for a generalization of the
d = 3 construction of [7], which is based on the Γ-Hilbert scheme and uses
Beilinson’s theorem along with some homological algebra to interpret orbifold
noncommutative instantons geometrically in terms of equivariant sheaves.
This would lend a geometrical parametrization of the instanton moduli space
MΓ

r,k in terms of Γ-equivariant coherent sheaves on ❈4. Such a construction
is brieŕy sketched in [25] for a special case where X is the Γ-Hilbert scheme
by directly applying the techniques of [7]. We do not pursue these technical
considerations in this paper, and instead proceed to look at these blow-ups
in more detail for the types of theories we are interested in; the orbifold
example of [25] is contained in our general formalism as a special case.

Toric orbifold resolutions. Let Γ be a finite abelian subgroup ofSL(d,❈)
acting linearly on❈d, which we require to be a subgroup of the maximal torus
of the holonomy group SU(d). The space ❈d is a toric CalabiśYau manifold
and the coarse moduli space of the toric CalabiśYau orbifold ❈d/Γ has quo-
tient singularities. These can be resolved through a blow-up process [72]
which defines a crepant resolution. To discuss the blow-up we will use the
language of toric geometry [83, 84].

We start by recalling the relevant notions from toric geometry. Let N≃❩d

be a ❩-lattice and let {v1, . . . , vp} be a set of linearly independent vectors in
the vector space N❘ = N ⊗❩ ❘ ≃ ❘d. The set

σ := ❘≥0 v1 + · · ·+❘≥0 vp ⊂ N❘(147)

is called a polyhedral cone if σ ∩ (−σ) = {0}. We say that σ is rational if
vi ∈ N , and that the cone is smooth if its generators v1, . . . , vp form part of
an integral basis of N . In the following we use the notation ⟨v1, . . . , vp⟩ to
indicate the rational cone generated by the vectors v1, . . . , vp. For a lattice
point α⃗ = (α1, . . . αd) of N ∩ σ, the age of α⃗ is defined by age(α⃗) =

∑d
a=1 αa.

A fan ∆ ⊆ N❘ is a finite collection of polyhedral cones in N❘ such that
every face of any cone σ ∈ ∆ is also a cone of ∆, and the intersection of
any two cones of ∆ is also a cone of ∆; it is smooth if all of its cones are
smooth. For our purposes it suffices to say that a toric variety X∆ is a d-
dimensional complex variety defined combinatorially by a fan ∆, which has
an open covering by invariant subsets Xσ ⊂ X∆ with σ ∈ ∆ for the natural
action of the algebraic torus N❈× = N ⊗❩ ❈× ≃ (❈×)d; it is smooth if ∆ is
smooth.
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Our main example is the quotient variety ❈d/Γ := Spec
(
❈[z1, . . . , zd]

Γ
)
,

the spectrum of the Γ-invariant subring of ❈[z1, . . . , zd], which can be repre-
sented by a fan containing a single rational polyhedral cone σ. Indeed, if Γ
is a finite abelian group of order n whose generators act on the coordinates
of ❈d as

(z1, . . . , zd) 7−→ (e 2π i s1/n z1, . . . , e
2π i sd/n zd) ,(148)

then the local coordinates ofXσ are Ua = (z1)
(v1)a · · · (zd)(vd)a for a=1, . . . , d,

where v1, . . . , vd are the generators of the cone σ [85]. We require the coor-
dinates Ua to be invariant under the action of Γ, thus the cone is given by
the solution of the system of equations

s1 (v1)a + · · ·+ sd (vd)a = 0 mod n ,(149)

for a = 1, . . . , d.
Let Σ be a subdivision of σ through lattice points α⃗ with age(α⃗) = 1,

which defines a hyperplane Π inN❘. If Σ is smooth, then the toric varietyXΣ

determined by Σ is a crepant resolution of ❈d/Γ; it is CalabiśYau because
its canonical bundle KXΣ

is trivial, and so is acted on by a d−1-dimensional
CalabiśYau subtorus in N❈× . The McKay correspondence associates the
prime exceptional divisors of XΣ to the elements of Γ with age 1

n (s1 + · · ·+
sd) = 1 [82].

In what follows we will consider two particular classes of orbifolds of ❈4

explicitly for which crepant resolutions are always guaranteed. They both
involve non-generic subgroups Γ ⊂ SL(4,❈) which also preserve a smaller
holonomy subgroup of SU(4).

(2, 0) orbifolds❈2/❩n ×❈2. Consider the quotient singularity❈2/❩n×
❈2, where Γ = ❩n is the cyclic group of order n in SL(2,❈) whose generator
acts on ❈4 as

(z1, z2, z3, z4) 7−→ (ω z1, ω
−1 z2, z3, z4) ,(150)

with ω = e 2π i/n a primitive n-th root of unity. We call these (2,0) orbifolds.
They have SU(2) holonomy, leading to an enhanced N = (0, 4) supersym-
metry in the two-dimensional D1-brane theory, which can be obtained by
dimensional reduction of the six-dimensional N = 2 worldvolume theories of
D5-branes at ALE singularities ❈2/❩n.

The conditions (149) leave an arbitrariness in choosing the generators
v3 and v4. Instead, the generators v1 and v2 define a plane which, with an
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appropriate choice of an orthonormal basis {ea}a∈4 of ❘4, is spanned by e1
and e2. Consider now the rational cone σ12 = ⟨v1, v2⟩. Since ❈2/❩n admits
a crepant resolution (by Hilb❩n(❈2)), there is a subdivision Σ12 of σ12 which
is smooth. By arbitrariness of v3 and v4 we can pick them such that they
define a smooth rational cone; for instance, v3 = e3 and v4 = e4 with respect
to the basis {ea}a∈4.

The fan

Σ =
{
⟨β12, v3, v4⟩

∣∣ β12 ∈ Σ12

}
(151)

is a smooth subdivision of σ = ⟨v1, v2, v3, v4⟩. Therefore the orbifold❈4/❩n ≃
❈2/❩n ×❈2, with the action of ❩n ⊂ SL(2,❈) ⊂ SL(4,❈) given by (150),
admits a crepant resolution XΣ, which is a (trivial) fibration of An−1 ALE
spaces over the affine plane, or equivalently the total space of the rank three
bundle OP1(−n+ 1)⊕OP1 ⊕OP1 .

Example 152. Take the orbifold ❈2/❩2 ×❈2 considered in [25]. By the
conditions (149) we can choose the generators of the rational cone σ to be

v1 = (2,−1, 0, 0) , v2 = (0, 1, 0, 0) , v3 = (0, 0, 1, 0) , v4 = (0, 0, 0, 1) .
(153)

Its subdivision Σ using the hyperplane Π is

Σ =
{
⟨v1, v3, v4, v5⟩ , ⟨v2, v3, v4, v5⟩ ,
⟨v1, v3, v4⟩ , ⟨v2, v3, v4⟩ , ⟨v3, v4, v5⟩ , ⟨v3, v4⟩

}
,(154)

where

v5 = (1, 0, 0, 0) .(155)

Each tuple of vectors vi forms part of a basis of the lattice ❩4, so Σ is smooth
and XΣ is a crepant resolution of ❈2/❩2 ×❈2.

(3, 0) orbifolds ❈3/Γ ×❈. Another tractable quotient singularity we
will consider explicitly is ❈4/Γ ≃ ❈3/Γ×❈ where Γ is a finite abelian sub-
group of SL(3,❈) ⊂ SL(4,❈). We call these (3,0) orbifolds. They have SU(3)
holonomy and again lead to an enhancement of the supersymmetry in the
two-dimensional D1-brane theory, which can be obtained from dimensional
reduction of the four-dimensional N = 2 worldvolume theories of D3-branes
at toric CalabiśYau threefold singularities ❈3/Γ.



✐

✐

ł2-Szabož Ð 2024/7/1 Ð 9:13 Ð page 1715 Ð #51
✐

✐

✐

✐

✐

✐

Instanton Counting and DonaldsonśThomas Theory 1715

The construction for (2, 0) orbifolds above can be generalized directly
here, with obvious modifications, starting from the key fact that ❈3/Γ always
admits a crepant resolution for any finite abelian subgroup Γ of SL(3,❈) (for
example by HilbΓ(❈3)). Note that any (2, 0) orbifold is also a (3, 0) orbifold.

3.3. Noncommutative crepant resolutions and their ADHM
representations

As in the example studied in [25], all information about the moduli space of
orbifold instantons can be encoded in the data of a quiver Q which generalizes
the McKay quiver for surface singularities and is analogous to the four-loop
quiver L4 of (52). It is determined by the representation theory data of
the Γ-action, with L4 corresponding to the trivial group Γ = {✶}, and the
generalized McKay correspondence asserts that it captures the geometry of
the orbifold ❈4/Γ. The quiver Q encodes the isotopical decomposition of the
usual ADHM data according to the Γ-action and it has the orbifold ADHM
equations (139) as relations. For background, see [86] for a concise overview
of the theory of quivers.

One starts from the irreducible representations Γ̂ of Γ ⊂ SL(4,❈). To
each representation ρs in Γ̂, including the trivial representation ρ0 of weight
zero, we associate a node of a quiver Q. A node s is connected to a node s′

by a number of arrows ass′ from s to s′ determined by the adjacency matrix
A = (ass′) in the decomposition of Γ-modules

Q⊗ ρs =
⊕

s′∈Γ̂

ass′ ρs′ ,(156)

where the multiplicities are given by

ass′ = dim❈ Hom❈[Γ](ρs′ , Q⊗ ρs) =
1

|Γ|
∑

g∈Γ
χQ(g)χs(g)χs′(g) .(157)

In this graphical representation the sum over the irreducible representa-
tions Γ̂ of Γ in (134) becomes a sum over the nodes Q0 of the quiver and the
matrices Bs

a are associated to the arrows Q1. The resulting quiver is known
as the (generalized) bounded McKay quiver (Q,R) and it is associated with
a two-sided ideal of relations ⟨R⟩ in the corresponding path algebra ❈Q gen-
erated by the arrows Q1; recall that the product in ❈Q is the concatenation
of paths in Q whenever this makes sense and 0 otherwise. The remaining
data in (135) define a framing of the quiver.
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Representations of the McKay quiver Q = (Q0,Q1) with relations (139)
are functorially equivalent to finitely-generated left modules over its path
algebra A := ❈Q/⟨R⟩. This can be identified as the standard noncommuta-
tive crepant resolution of the abelian quotient singularity ❈4/Γ, in the sense
that A is Morita equivalent to the skew group ring ❈[z1, z2, z3, z4]⋊❈[Γ]
of the quotient stack [❈4/Γ], whereas the centre Z(A) of A is isomorphic to
the Γ-invariant subring ❈[z1, z2, z3, z4]

Γ. Thus while ❈4/Γ may not have a
geometric crepant resolution, it always possesses a noncommutative crepant
resolution by A. This can be seen as a consequence of the fact that the de-
rived category of coherent sheaves of A-modules on ❈4/Γ is a categorical
crepant resolution of ❈4/Γ [87], in the sense that it mimicks the functorial
behaviour one expects from the derived category of a (geometric) crepant
resolution; see e.g. [88, 89] for introductions.

The moduli space MΓ
r,k of instantons on❈4/Γ, viewed as the moduli space

of Γ-equivariant instantons on ❈4, is then identified as the moduli space of
stable framed representations of the bounded quiver (Q,R). The connected
component M

r⃗,⃗k
is the moduli space of stable framed quiver representations

with fixed dimension vector (r⃗, k⃗ ), that is, the (stacky) quotient by the action
of the group (142) of the subvariety of the framed quiver representation space

Rep
r⃗,⃗k

= Hom❈[Γ](V, V ⊗Q) ⊕ Hom❈[Γ](W,V )(158)

cut out by the ADHM equations (139). In particular, regular instantons
with V ≃ R the regular representation of Γ correspond to orbits in M

r⃗,⃗k
for

r = 1 and k⃗ = (1, . . . , 1), which is a moduli space parametrizing isomorphism
classes of Γ-constellations by [82, 90].

From this perspective, the (complex) obstruction bundle over the in-
stanton moduli space has the explicit description [21] as the pullback along
M

r⃗,⃗k
−֒→ Rep

r⃗,⃗k
of the bundle

Ob
r⃗,⃗k

= Rep
r⃗,⃗k

×Gk⃗
Ext2A

( ⊕

s∈Γ̂
Ds ⊗ Vs ,

⊕

s∈Γ̂
Ds ⊗ Vs

)
,(159)

whose fibre computes the relations R of the quiver Q. Here Ds is the one-
dimensional simple A-module defined by (Ds)s′ = δs,s′ ❈ for s, s′ ∈ Γ̂.

Recall from Section 2.4 that the introduction of a ŕat B-field on ❈4

leads to a representation of D-branes by complexes of modules over the
noncommutative algebra Matr×r(A). This description is valid when the B-
field is large compared to the metric on ❈4. For generic orbifold groups
Γ ⊂ SL(4,❈), the theory on ❈4/Γ is regarded as a limit where the volume of
a subspace containing the orbifold fixed point shrinks to zero but the B-field
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is non-vanishing, which regularises the string worldsheet theory and leads
to a noncommutative crepant resolution of the quotient singularity; this is a
highly non-geometric limit of the worldvolume gauge theory. The vacua of
the D1-brane theory of Section 3.1, and therefore the stable D-brane config-
urations, then correspond to stable representations of the noncommutative
algebra A associated to (Q,R). In particular, a regular D-brane corresponds
to a module over A of dimension vector k⃗ = (1, . . . , 1) which is the A-module
of global sections H0(E) of a Γ-constellation E .

Example 160. Let Γ = ❩4 acting on ❈4 with generator

(z1, z2, z3, z4) 7−→ (i z1,−i z2, z3, z4) .(161)

This ❩4-action defines a (2, 0) quotient singularity ❈4/❩4 ≃ ❈2/❩4 ×❈2.
From the general discussion of Section 3.2, it admits a geometric crepant
resolution by a fibration of A3 ALE spaces over ❈2.

With respect to this ❩4-action, the fundamental representation Q ≃ ❈4

decomposes into irreducible ❩4-modules as Q = ρ1 ⊕ ρ3 ⊕ ρ0 ⊕ ρ0, which im-
plies

Q⊗ ρ0 = ρ1 ⊕ ρ3 ⊕ ρ0 ⊕ ρ0 , Q⊗ ρ2 = ρ3 ⊕ ρ1 ⊕ ρ2 ⊕ ρ2 ,

Q⊗ ρ1 = ρ2 ⊕ ρ0 ⊕ ρ1 ⊕ ρ1 , Q⊗ ρ3 = ρ0 ⊕ ρ2 ⊕ ρ3 ⊕ ρ3 .(162)

The finite abelian group Γ̂ is defined by the character table of ❩4:

(163)

ρ0 ρ1 ρ2 ρ3
χ0 1 1 1 1
χ1 1 i −1 −i
χ2 1 −1 1 −1
χ3 1 −i −1 i

The generalized McKay quiver Q is

(164)

0

1 3

2
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The generalized ADHM equations, which determine the relations R of
the quiver (164), assume the form

Bs+sa
b Bs

a = Bs+sb
a Bs

b with





Bs
1 : Vs −→ Vs+1

Bs
2 : Vs −→ Vs+3

Bs
3,4 : Vs −→ Vs

.(165)

Explicitly

(166)

B1
2 B

0
1 = B3

1 B
0
2 , B1

3 B
0
1 = B0

1 B
0
3 , B1

4 B
0
1 = B0

1 B
0
4 , B0

3 B
0
2 = B0

2 B
0
3 ,

B3
4 B

0
2 = B0

2 B
0
4 , B0

4 B
0
3 = B0

3 B
0
4 , B2

2 B
1
1 = B0

1 B
1
2 , B2

3 B
1
1 = B1

1 B
1
3 ,

B2
4 B

1
1 = B1

1 B
1
4 , B0

3 B
1
2 = B1

2 B
1
3 , B0

4 B
1
2 = B1

2 B
1
4 , B1

4 B
1
3 = B1

3 B
1
4 ,

B3
2 B

2
1 = B1

1 B
2
2 , B3

3 B
2
1 = B2

1 B
2
3 , B3

4 B
2
1 = B2

1 B
2
4 , B1

3 B
2
2 = B2

2 B
2
3 ,

B1
4 B

2
2 = B2

2 B
2
4 , B2

4 B
2
3 = B2

3 B
2
4 , B0

2 B
3
1 = B2

1 B
3
2 , B0

3 B
3
1 = B3

1 B
3
3 ,

B0
4 B

3
1 = B3

1 B
3
4 , B0

3 B
1
2 = B1

2 B
1
3 , B2

4 B
3
2 = B3

2 B
3
4 , B3

4 B
3
3 = B3

3 B
3
4 .

The center Z(A) of the path algebra A of (Q,R) is generated as a ring by
elements

X11 = B3
1 B

2
1 B

1
1 B

0
1 , X22 = B1

2 B
2
2 B

3
2 B

0
2 , X12 = B3

1 B
0
2 ,

Y3 = B0
3 , Y4 = B0

4 .(167)

Then given the ❩4-action (161), we can identify these generators with the
❩4-invariant elements in the ring ❈[z1, z2, z3, z4] through

X11 ❀ z41 , X22 ❀ z42 , X12 ❀ z1 z2 ,

Y3 ❀ z3 , Y4 ❀ z4 .(168)

It follows that Spec(Z(A)) ≃ ❈2/❩4 ×❈2 and the path algebra A is a non-
commutative crepant resolution of the quotient singularity ❈4/❩4.
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Finally, the generalized ADHM data (Ba, I)a∈4 define a framed repre-
sentation of the quiver (164), which we depict by the oriented graph

(169)

W0

V0

W1 V1 V3 W3

V2

W2

Example 170. Let Γ = ❩2 × ❩2 be the subgroup of order four in SL(4,❈)
acting non-trivially on all four coordinates of❈4 with weights s1 = (1, 1, 0, 0),
s2 = (0, 0, 1, 1) and s3 = s1 + s2 = (1, 1, 1, 1). Although this does not de-
fine a (3, 0) orbifold, the existence of a geometric crepant resolution of
❈4/❩2 × ❩2 is guaranteed by [84, Proposition 3.1], which may be taken to
be Hilb❩2×❩2(❈4) by [84, Proposition 3.2].

The generators of ❩2 × ❩2 with respect to this action are

g1 =




−1
−1

1
1


 and g2 =




1
1

−1
−1


 .(171)

The group action has four irreducible representations ρs where ρ0 is the
trivial representation, ρ1 and ρ2 have weights s1 and s2, respectively, while
ρ3 = ρ1 ⊗ ρ2 has weight s3. The character table of ❩2 × ❩2 is

(172)

ρ0 ρ1 ρ2 ρ3
χ0 1 1 1 1
χ1 1 1 −1 −1
χ2 1 −1 1 −1
χ3 1 −1 −1 1
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The ADHM equations are

(173)

B1
2 B

0
1 = B1

1 B
0
2 , B1

3 B
0
1 = B2

1 B
0
3 , B1

4 B
0
1 = B2

1 B
0
4 , B1

3 B
0
2 = B2

2 B
0
3 ,

B1
4 B

0
2 = B2

2 B
0
4 , B2

4 B
0
3 = B2

3 B
0
4 , B0

2 B
1
1 = B0

1 B
1
2 , B0

3 B
1
1 = B3

1 B
1
3 ,

B0
4 B

1
1 = B3

1 B
1
4 , B0

3 B
1
2 = B3

2 B
1
3 , B0

4 B
1
2 = B3

2 B
1
4 , B3

4 B
1
3 = B3

3 B
1
4 ,

B3
2 B

1
1 = B3

1 B
2
2 , B3

3 B
2
1 = B0

1 B
2
3 , B3

4 B
2
1 = B0

1 B
2
4 , B3

3 B
2
2 = B0

2 B
2
3 ,

B3
4 B

2
2 = B0

2 B
2
4 , B0

4 B
2
3 = B0

3 B
2
4 , B2

2 B
3
1 = B2

1 B
3
2 , B2

3 B
3
1 = B1

1 B
3
3 ,

B2
4 B

3
1 = B1

1 B
3
4 , B2

3 B
3
2 = B1

2 B
3
3 , B2

4 B
3
2 = B1

2 B
3
4 , B1

4 B
3
3 = B1

3 B
3
4 .

These are relations R for the corresponding McKay quiver Q given by

(174)

0

1 3

2

The centre Z(A) of the path algebra A of the quiver (174) with rela-
tions (173) is generated as a ring by the elements

Xabcd = B2
a B

3
b B

1
c B

0
d with b ≤ d < 3 ≤ a ≤ c ≤ 4 ,

Xab = B2
a B

0
b with b ≤ 2 < a ≤ 4 ,(175)

which are again identified with the ❩2 × ❩2-invariant elements in

❈[z1, z2, z3, z4].

It follows that Spec(Z(A)) ≃ ❈4/❩2 × ❩2.
Similarly to Example 160, the ADHM data define a framed quiver rep-

resentation
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(176)

W0

V0

W1 V1 V2 W2

V3

W3

of the bounded McKay quiver (174,173).

3.4. Cohomological field theory on noncommutative crepant
resolutions

We shall now modify the construction of Section 2.5 to calculate the instan-
ton partition function of the cohomological field theory on orbifolds ❈4/Γ,
which we regard as a gauge theory on the quotient stack [❈4/Γ] following [7].
We begin with a framed representation of the generalized McKay quiver as-
sociated with the abelian quotient singularity, which is uniquely determined
by the decomposition of the fundamental representation Q = ρs1 ⊕ · · · ⊕ ρs4
of the orbifold group into irreducible Γ-modules. The topological field theory
on [❈4/Γ] is invariant under a set of Γ-equivariant BRST transformations
and it localises onto the relations R of the generalized McKay quiver Q.
The resulting orbifold instanton partition functions encode noncommutative
DonaldsonśThomas invariants associated to (Q,R), which count semistable
representations of the noncommutative path algebra A = ❈Q/⟨R⟩.

If the quotient singularity ❈4/Γ admits a geometric crepant resolution
π : X −→ ❈4/Γ, it is natural to conjecture that the noncommutative crepant
resolution A of ❈4/Γ is realised in the stringy Kähler moduli space of X. In
particular, the orbifold instanton partition function should be related to the
large radius partition functions which compute the DonaldsonśThomas and
PandharipandeśThomas invariants of X via a version of the McKay corre-
spondence, through suitable changes of variables and wall-crossing formulas
in the derived category of X using the methods of [7]. As they presently
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stand, our techniques do not immediately extend to these resolutions and
so we defer further discussion to future work. A conjectural mathematical
treatment of the rank one partition functions in this setting is discussed
in [27].

We begin from the BRST transformations with Γ-module structure, where
now the matrix fields decompose according to the irreducible representations
of Γ. The action of the symmetry group

(×s∈Γ̂ U(ks)× U(rs)col
)
× SU(4)

is described in Section 3.1, and the BRST transformations of the ADHM
variables are given by

QΓB
s
a = ψs

a , QΓψ
s
a = ϕs+sa Bs

a −Bs
a ϕ

s − ϵaB
s
a ,

QΓI
s = ϱs , QΓϱ

s = ϕs Is − Is as ,(177)

for a ∈ 4 and s ∈ Γ̂. Here ϕs parametrizes U(ks) gauge transformations, while
the vector as collects the rs Higgs field eigenvalues al associated with the
irreducible representation ρs. The latter defines a map

l 7−→ s(l) ∈ Γ̂

for l ∈ {1, . . . , r}.
The Γ-module structure of the antighost fields in End❈[Γ](V ) are dic-

tated by the generalized ADHM equations (136), where again we choose
µ❈s
αβ = 0 for (α, β) ∈ 3⊥ :=

{
(1, 2) , (1, 3) , (2, 3)

}
as the independent com-

plex moment map equations. Their decomposition into equivariant maps is
given by

χ❈s
αβ : Vs −→ Vs+sαβ

and χ❘s : Vs −→ Vs .(178)

Together with the auxiliary fields their BRST transformations are

QΓχ
❈s
αβ = H❈s

αβ , QΓH
❈s
αβ = ϕs+sαβ χ❈s

αβ − χ❈s
αβ ϕ

s − ϵαβ χ
❈s
αβ ,

QΓχ
❘s = H❘s , QΓH

❘s = [ϕs, χ❘s] ,(179)

while the gauge multiplet closes the BRST algebra

QΓϕ
s = 0 , QΓϕ̄

s = ηs and QΓη
s = [ϕs, ϕ̄s] .(180)

For the fundamental matter fields, we treat the global ŕavour symmetry
identically to the global colour symmetry, which is thereby broken to the
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subgroup ×s∈Γ̂ U(rs)fla by the Γ-action; its maximal torus is

Tm⃗ =×
s∈Γ̂

Tm⃗s ,(181)

where Tm⃗s is the maximal torus of U(rs)fla. From the string theory per-
spective of Section 2.4, this aligns the ChanśPaton factors of D9-branes and
D9-branes on the orbifold such that they still annihilate. Since both the
framing of the gauge bundle and the fundamental matter fields transform
in the fundamental representation r of U(r), it decomposes into irreducible
representations of the orbifold group Γ as

r =
⊕

s∈Γ̂

rs ⊗ ρ∗s ,(182)

with multiplicity spaces rs = Hom❈[Γ](ρs, r) and

r =
∑

s∈Γ̂

rs =
∑

s∈Γ̂

dim❈ rs .(183)

We use Schur’s lemma to decompose the Fermi multiplet in Hom❈[Γ](r, V )
into isotopical components

Īs : rs −→ Vs .(184)

Then the BRST transformations are given by

QΓĪ
s = ϱ̄s and QΓϱ̄

s = ϕs Īs − Īsms ,(185)

where the vector ms collects the rs masses ml associated with the irreducible
representation ρs.

Following the same steps as in Section 2.5 we can now write down the
instanton partition function. We introduce a set of fugacities q⃗ = (qs)s∈Γ̂ for
the corresponding fractional instanton sectors k⃗ = (ks)s∈Γ̂ ∈ ❩|Γ|

≥0 and define

Z r⃗
[❈4/Γ](⃗q; a⃗, ϵ⃗, m⃗) =

∑

k⃗∈❩|Γ|
≥0

q⃗ k⃗ Z r⃗,⃗k
[❈4/Γ](⃗a, ϵ⃗, m⃗) ,(186)

where

q⃗ k⃗ :=
∏

s∈Γ̂

qks

s(187)
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and the quiver matrix model is defined by the integral

Z r⃗,⃗k
[❈4/Γ](⃗a, ϵ⃗, m⃗) =

∮

Γr⃗,k⃗

∏

s∈Γ̂

1

ks!

ks∏

i=1

dϕsi
2π i

Prs(ϕ
s
i |m⃗s)

Prs(ϕ
s
i |⃗as)

ks∏

i,j=1
i ̸=j

(
ϕsi − ϕsj

)

×
ks∏

i,j=1

∏

(α,β)∈3⊥

(
ϕ
s+sαβ

i − ϕsj − ϵαβ
)

∏

a∈4

(
ϕs+sa
i − ϕsj − ϵa

) ,(188)

which again we make sense of via a suitable contour integral prescription.

Dimensional reduction. From the matrix model representation (188) we
immediately obtain the orbifold version of Proposition 78, which reads

Proposition 189. The equivariant instanton partition function on a (3, 0)
orbifold ❈3/Γ×❈ is related to the partition function Z r⃗

[❈3/Γ](⃗q; a⃗, ϵ1, ϵ2, ϵ3)
for noncommutative DonaldsonśThomas invariants of type r⃗ for the toric
Kähler orbifold ❈3/Γ through the mass specialisation

Z r⃗
[❈3/Γ]×❈(⃗q; a⃗, ϵ⃗,m

s
l = asl + ϵ4) = Z r⃗

[❈3/Γ](⃗q
′; a⃗, ϵ1, ϵ2, ϵ3) ,(190)

where q⃗ ′ =
(
(−1)rs+1 qs

)
s∈Γ̂.

Proof. Since any (3, 0) orbifold has weight s4 = 0, and s123 = 0 since Γ ⊂
SL(3,❈), using the CalabiśYau condition ϵ4 = −ϵ123 on ❈3/Γ×❈ one finds
that the matrix integral (188) gives

Z r⃗,⃗k
[❈3/Γ]×❈(⃗a, ϵ⃗,m

s
l = asl − ϵ123)

=

∮

Γr⃗,k⃗

∏

s∈Γ̂

1

ks!

ks∏

i=1

dϕsi
2π i

Prs(ϕ
s
i + ϵ123 |⃗as)

Prs(ϕ
s
i |⃗as)

ks∏

i,j=1
i ̸=j

(
ϕsi − ϕsj

)

×
ks∏

i,j=1

(
ϕs+s12
i − ϕsj − ϵ12

)(
ϕs+s13
i − ϕsj − ϵ13

)
(
ϕsi − ϕsj − ϵ123

) (
ϕs+s1
i − ϕsj − ϵ1

) (
ϕs+s2
i − ϕsj − ϵ2

)

×
(
ϕs+s23
i − ϕsj − ϵ23

)
(
ϕs+s3
i − ϕsj − ϵ3

) .(191)

Up to an overall sign
∏

s∈Γ̂ (−1)(rs+1) ks , this is the same as the straightfor-
ward generalization of the matrix integral representation from [6, eq. (5.23)]
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for the instanton partition function on ❈3/Γ using the orbifold quiver matrix
model from [7, Section 5.5], slightly modified to include a generic point of
the Ω-deformation on ❈3 with ϵ123 ̸= 0. □

Remark 192. The noncommutative crepant resolution of ❈3/Γ in this di-
mensional reduction is obtained by erasing a single loop from each node of
the McKay quiver for the quotient singularity ❈3/Γ×❈.

Fixed points and coloured solid partitions. The integrand of (188)
has poles along the hyperplanes

ϕs+sa
i − ϕsj − ϵa = 0 and ϕsi − asl = 0(193)

in ❘k, for a ∈ 4 and s ∈ Γ̂. In completely analogy with the matrix model of
Section 2.5, these are the fixed points of the orbifold ADHM data

(Bs
a, I

s)
a∈4, s∈Γ̂

under the equivariant action of the symmetry group

(×
s∈Γ̂

U(ks)× U(rs)col
)
× SU(4).

They reside on the locus of fixed points of the BRST charge QΓ of the
cohomological gauge theory on [❈4/Γ].

Since the actions of Γ and T commute, we can argue as in Section 2.5
that these are parametrized by arrays of solid partitions σ⃗ = (σ1, . . . , σr),
where the splitting of the ADHM data into irreducible representations of Γ
induces a Γ̂-colouring of the solid partitions according to (129). A coloured
solid partition σl is in one-to-one correspondence with the fixed points

ϕs
(a

s(l)
l ,p⃗ )

= a
s(l)
l + p⃗ · ϵ⃗ ,(194)

for p⃗ = (p1, p2, p3, p4) ∈ ❩4
>0, which carry an irreducible representation ρs of

the orbifold group Γ given by

ρs = ρs(l) ⊗ ρp⃗ with ρp⃗ := ρ⊗p1
s1 ⊗ ρ⊗p2

s2 ⊗ ρ⊗p3
s3 ⊗ ρ⊗p4

s4 .(195)

The Γ̂-colouring of the array of solid partitions defines the total number of
boxes of colour ρs in σ⃗ for each s ∈ Γ̂ as the fractional instanton number
|σ⃗|s = ks; we write this condition as |σ⃗|

Γ̂
= k⃗.
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3.5. Orbifold instanton partition functions

The partition function of the cohomological theory on [❈4/Γ] can be com-
puted explicitly by considering the Γ-equivariant version of the instanton
deformation complex (96), which reads

0 −→ End❈[Γ](Vσ⃗)
dΓ
1−−→

Hom❈[Γ](Vσ⃗, Vσ⃗ ⊗Q)

⊕
Hom❈[Γ](Wσ⃗, Vσ⃗)

dΓ
2−−→ Hom❈[Γ](Vσ⃗, Vσ⃗ ⊗∧0,2

− Q) −→ 0 ,(196)

where the map dΓ1 is an infinitesimal G
k⃗

gauge transformation, while dΓ2 is
the linearization of the holomorphic ADHM equations B

s+sβ
α Bs

β = Bs+sα
β Bs

α

for (α, β) ∈ 3⊥.
Since the actions of the groups Γ and T commute, the character we wish

to calculate is now the Γ-invariant part of the character of the complex (96),
that is

χΓ
σ⃗ : =

√
chΓT

(
T vir
σ⃗ M

r⃗,⃗k

)
− chΓT

(
(Vr,k)σ⃗ ⊗ r

)

=

√
chΓT

(
T vir
σ⃗ M

r⃗,⃗k

)
−
[
r∗ ⊗ Vσ⃗

]Γ
,(197)

with

√
chΓT

(
T vir
σ⃗ M

r⃗,⃗k

)
=

[
V ∗
σ⃗ ⊗ Vσ⃗

(
t−1
1 + t−1

2 + t−1
3 + t−1

4

)
+W ∗

σ⃗ ⊗ Vσ⃗

− V ∗
σ⃗ ⊗ Vσ⃗

(
1 + t−1

1 t−1
2 + t−1

1 t−1
3 + t−1

2 t−1
3

)]Γ
.(198)

Since the dual involution commutes with the Γ-action, by taking the Γ-
invariant part of (103) it follows that

chΓT
(
T vir
σ⃗ M

r⃗,⃗k

)
=

√
chΓT

(
T vir
σ⃗ M

r⃗,⃗k

)
+

√
chΓT

(
T vir
σ⃗ M

r⃗,⃗k

)∗
.(199)

The subgroup inclusion Γ −֒→ Tϵ⃗ defines the irreducible representations
of Γ associated to the toric generators ta for a ∈ 4. Consequently the vector
spaces V and W at a fixed point σ⃗ decompose into

Vσ⃗ =

r∑

l=1

el
∑

p⃗∈σl

tp1

1 tp2

2 tp3

3 tp4

4 ⊗ ρ∗p⃗ ⊗ ρ∗s(l) and
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Wσ⃗ =

r∑

l=1

el ⊗ ρ∗s(l) ,(200)

and the U(r)fla-module r into

r =

r∑

l=1

fl ⊗ ρ∗s(l) ,(201)

as elements of the representation ring of the group T× Γ. The index (197)
is calculated by projecting the character (102) onto those terms which carry
the trivial representation ρ0, giving an element in the representation ring
of T.

Then the orbifold instanton partition function is evaluated by using the
top form operation (106) to get the combinatorial formula

Z r⃗
[C4/Γ](⃗q; a⃗, ϵ⃗, m⃗) =

∑

k⃗∈❩|Γ|
≥0

q⃗ k⃗
∑

|σ⃗|
Γ̂
=k⃗

(−1)O
Γ
σ⃗ ê

[
− χΓ

σ⃗

]
,(202)

where

ê
[
− χΓ

σ⃗

]
=

r∏

l=1

̸=0∏

p⃗l∈σl

Pr ◦ δΓ0 (al + p⃗l · ϵ⃗ |m⃗)

Pr ◦ δΓ0 (al + p⃗l · ϵ⃗ |⃗a)
r∏

l′=1

̸=0∏

p⃗ ′
l′
∈σl′

R ◦ δΓ0
(
al − al′ + (p⃗l − p⃗ ′

l′) · ϵ⃗
∣∣⃗ϵ
)
.(203)

Here the operation δΓ0 acts on a combination of equivariant parameters x as
the identity if x is associated to the trivial representation ρ0 and returns 1
otherwise; for example

δΓ0
(
al − al′ + (p⃗l − p⃗ ′

l′) · ϵ⃗
)

=

{
al − al′ + (p⃗l − p⃗ ′

l′) · ϵ⃗ if ρp⃗ ⊗ ρs(l) ⊗ ρ∗p⃗ ′ ⊗ ρ∗s(l′) ≃ ρ0 ,

1 otherwise .
(204)

As previously, we understand (203) as a residue contribution to the matrix
integral (188), regarded as a contour integral over Γ

r⃗,⃗k
⊂ ❈k where k = |⃗k |

is the size of k⃗ ∈ ❩|Γ|
≥0.

Remark 205. Since the character (198) is obtained by projection to the
Γ-invariant part of the character (101), we believe that the sign factors OΓσ⃗
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in (202), which should come from a careful residue calculation of (188), do
not depend on the Γ-colourings of the solid partitions and coincide with (108).
This same assertion is made in [27].

U(1) gauge theories. Let us consider the rank one case r = 1. Then there
are only single equivariant parameters as and ms for the gauge and ŕavour
symmetry, which are both associated to the same irreducible representation
ρs of Γ. Since ρs ⊗ ρ∗s ≃ ρ0, the partition function (202) does not depend
on the choice of framing vector r⃗ = (rs)s∈Γ̂, where we use the convention
that r0 is the first entry of r⃗. In other words, all framing vectors of the
form r⃗ = (0, . . . , 0, 1, 0, . . . , 0), with zeroes in all but one entry, give the same
partition function. Moreover, the partition function (202) depends only on
the combination m := ms − as and hence is effectively independent of the
Coulomb parameter. The rank one partition functions are therefore simply
denoted as

Z[C4/Γ](⃗q; ϵ⃗, m)

=
∑

σ

(−1)O
Γ
σ q⃗ |σ|

Γ̂

̸=0∏

p⃗∈σ

δΓ0 (p⃗ · ϵ⃗−m)

δΓ0 (p⃗ · ϵ⃗ )

̸=0∏

p⃗ ′∈σ
R ◦ δΓ0

(
(p⃗− p⃗ ′) · ϵ⃗

∣∣⃗ϵ
)
.(206)

Example 207. Let Γ = ❩3 act on ❈4 with generator

(z1, z2, z3, z4) 7−→ (ξ z1, ξ z2, ξ z3, z4) ,(208)

where ξ = e 2π i/3 is a primitive third root of unity. This defines a (3, 0) orb-
ifold ❈3/❩3 ×❈, whose natural geometric crepant resolution induced by the
❩3-Hilbert scheme Hilb❩3(❈3) is a fibration of local del Pezzo surfaces of
degree zero over the affine line, or equivalently the total space of the rank
two bundle OP2(−3)⊕OP2 . Its McKay quiver is

(209)
0

1 2

which is obtained from the Beilinson quiver B by adding a loop at each node.
The fractional instanton contributions to the corresponding U(1) partition
function are given by

Z k⃗
[❈3/❩3]×❈(⃗ϵ,m) =

∑

|σ|❩3
=k⃗

(−1)O
❩3
σ
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×
̸=0∏

p⃗∈σ
p1+p2+p3 ≡3 0

p⃗ · ϵ⃗−m

p⃗ · ϵ⃗

̸=0∏

p⃗,p⃗ ′∈σ
p1+p2+p3 ≡3 p′

1+p′
2+p′

3

(p⃗− p⃗ ′) · ϵ⃗
(p⃗− p⃗ ′) · ϵ⃗− ϵ4

×
̸=0∏

p⃗,p⃗ ′∈σ
p1+p2+p3+1≡3 p′

1+p′
2+p′

3

(
(p⃗− p⃗ ′) · ϵ⃗− ϵ12

) (
(p⃗− p⃗ ′) · ϵ⃗− ϵ13

)
(
(p⃗ ′ − p⃗ ) · ϵ⃗− ϵ1

) (
(p⃗ ′ − p⃗ ) · ϵ⃗− ϵ2

)

×
̸=0∏

p⃗,p⃗ ′∈σ
p1+p2+p3+1≡3 p′

1+p′
2+p′

3

(
(p⃗− p⃗ ′) · ϵ⃗− ϵ23

)
(
(p⃗ ′ − p⃗ ) · ϵ⃗− ϵ3

) ,(210)

where ≡3 denotes congruence modulo 3.

Higher rank gauge theories. In contrast to the rank one case, the par-
tition function for higher rank r > 1 depends explicitly on the choice of
decomposition r⃗ = (rs)s∈Γ̂ of the rank r according to the irreducible repre-
sentations of Γ, and different framing Γ-modules W ≃ ❈r generally lead to
inequivalent theories.

Example 211. Consider the ❩2 × ❩2-action of Example 170. Three k⃗ =
(2, 0, 0, 0) contributions to rank two partition functions Z r⃗

[❈4/❩2×❩2]
(⃗q; a⃗, ϵ⃗, m⃗)

are

Z
r⃗=(2,0,0,0),⃗k=(2,0,0,0)
[❈4/❩2×❩2]

(⃗a, ϵ⃗, m⃗) =
ϵ212m1m2

(a1 − a2)2
(a1 − a2 +m1) (a1 − a2 −m2) ,

Z
r⃗=(1,1,0,0),⃗k=(2,0,0,0)
[❈4/❩2×❩2]

(⃗a, ϵ⃗, m⃗) = ϵ212m1m2 = Z
r⃗=(1,0,1,0),⃗k=(2,0,00)
[❈4/❩2×❩2]

(⃗a, ϵ⃗, m⃗) .

(212)

However, some higher rank theories are equivalent. Looking at the con-
tribution (203) from the index χΓ

σ⃗, we see that all framing vectors r⃗ of the
form (0, . . . , 0, r, 0, . . . , 0) yield equivalent partition functions, irrespecitve of
the location of the entry r. Indeed, in these cases the equivariant parameters
a⃗ and m⃗ are associated the same irreducible Γ-representation. Thus the dif-
ferences al − al′ and al −ml′ are associated to the trivial representation ρ0
and one always counts the same contributions Z r⃗,⃗k

[❈4/Γ](⃗a, ϵ⃗, m⃗).

Example 213. Consider Γ = ❩4 acting on ❈4 with generator

(z1, z2, z3, z4) 7−→ (i z1, i z2, i z3, i z4) .(214)
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The quotient singularity❈4/❩4 admits a geometric crepant resolution by [67,
Claim 2] and [84, Proposition 3.1]. Its McKay quiver is

(215)

0

1 3

2

and the noncommutative crepant resolution can be associated with the to-
tal space of the canonical bundle OP3(−4) [21]. The leading contributions
for r⃗ = (2, 0, 0, 0) and r⃗ = (0, 2, 0, 0) to the rank two partition functions
Z r⃗
[❈4/❩4]

(⃗q; a⃗, ϵ⃗, m⃗) coincide and are given by

Z
r⃗=(2,0,0,0)
[❈4/❩4]

(⃗q; a⃗, ϵ⃗, m⃗) = Z
r⃗=(0,2,0,0)
[❈4/❩4]

(⃗q; a⃗, ϵ⃗, m⃗)

= −(m1 +m2) q0

+
ϵ212m1m2

(a1 − a2)2
(a1 − a2 +m1) (a1 − a2 −m2) q

2
0 + · · · .(216)

From (188) it follows that Z r⃗,⃗k
[❈4/Γ](⃗a, ϵ⃗, m⃗) is invariant under the action of

the Weyl group×s∈Γ̂ Srs of the colour and ŕavour symmetries by permuting
the entries of the parameters a⃗ and m⃗. It is natural to ask if the permutation
symmetry of the type r⃗ = (0, . . . , 0, r, 0, . . . , 0) instanton partition functions
observed above persists in more generality. That is, whether the theories with
rank vectors r⃗ = (rs)s∈Γ̂ and ς r⃗ := (rς(s))s∈Γ̂ are equivalent, for a permuta-
tion ς ∈ S|Γ| of degree |Γ|. Despite the appearance of the symmetric case in
Example 211, it is easy to see that this is not true in general.

Example 217. For the ❩4-action of Example 160, consider the rank two
partition functions with framing vectors r⃗ = (1, 1, 0, 0) and r⃗ = (1, 0, 1, 0)
for k⃗ = (1, 1, 0, 0). In this case there are only two pairs of ❩4-coloured solid
partitions that contribute to (202) which are given by

σ⃗1 = (σ, ∅) and σ⃗2 = (∅, σ) ,(218)

where

σ =
{
(1, 1, 1, 1) , (2, 1, 1, 1)

}
.(219)
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The corresponding charge two contributions are given by

Z
r⃗=(1,1,0,0),⃗k=(1,1,0,0)
[❈2/❩4]×❈2 (⃗a, ϵ⃗, m⃗) = − ϵ12

ϵ3 ϵ4

(
m1 +m2 −

m1m2

a1 − a2 + ϵ1

)
,

Z
r⃗=(1,0,1,0),⃗k=(1,1,0,0)
[❈2/❩4]×❈2 (⃗a, ϵ⃗, m⃗) = − ϵ12

ϵ3 ϵ4
(m1 +m2) .(220)

3.6. Pure NT = 2 gauge theory on [❈4/Γ]

By dropping the matter bundle contribution to the matrix integral (188), we
obtain the quiver matrix model for the pure gauge theory on [❈4/Γ] given
by

Z r⃗,⃗k
[❈4/Γ](⃗a, ϵ⃗ )

pure =

∮

Γr⃗,k⃗

∏

s∈Γ̂

1

ks!

ks∏

i=1

dϕsi
2π i

ks∏

j=1
j ̸=i

(
ϕsi − ϕsj

)

Prs(ϕ
s
i |⃗as)

×
ks∏

i,j=1

∏

(α,β)∈3⊥

(
ϕ
s+sαβ

i − ϕsj − ϵαβ
)

∏

a∈4

(
ϕs+sa
i − ϕsj − ϵa

) .(221)

The contour integral (221) can be evaluated by using the index (198) to get

Z r⃗,⃗k
[❈4/Γ](⃗a, ϵ⃗ )

pure =
∑

|σ⃗|
Γ̂
=k⃗

(−1)O
Γ
σ⃗

r∏

l=1

̸=0∏

p⃗l∈σl

1

Pr ◦ δΓ0 (al + p⃗l · ϵ⃗ |⃗a)

×
r∏

l′=1

̸=0∏

p⃗ ′
l′
∈σl′

R ◦ δΓ0
(
al − al′ + (p⃗l − p⃗ ′

l′) · ϵ⃗
∣∣⃗ϵ
)
.(222)

The corresponding orbifold instanton partition function is

Z r⃗
[❈4/Γ](Λ⃗; a⃗, ϵ⃗ )

pure =
∑

k⃗∈❩|Γ|
≥0

Λ⃗ k⃗ Z r⃗,⃗k
[❈4/Γ](⃗a, ϵ⃗ )

pure ,(223)

where Λ⃗ = (Λs)s∈Γ̂ and

Λ⃗ k⃗ =
∏

s∈Γ̂

Λks

s .(224)
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Similarly to the pure gauge theory on ŕat space ❈4 from Section 2.7,
the pure gauge theory on the quotient stack [❈4/Γ] can be computed as an
appropriate limit of the cohomological gauge theory on [❈4/Γ] with massive
matter. The orbifold version of Proposition 119 reads

Proposition 225. The instanton partition function for the pure cohomo-
logical gauge theory is related to the partition function with a massive fun-
damental hypermultiplet on [❈4/Γ] through the double scaling limit

Z r⃗
[❈4/Γ](Λ⃗; a⃗, ϵ⃗ )

pure

= lim
m1,...,mr→∞

lim
q0→0

Z r⃗
[C4/Γ](⃗q; a⃗, ϵ⃗, m⃗)

∣∣∣
Λ0=(−1)r m1···mr q0

,(226)

with Λs = qs for s ̸= 0.

Proof. This follows immediately from (203) and (222). □

4. The (2,0) orbifolds ❈2/❩n ×❈2

Proposition 189 suggests that the equivariant partition functions on (2, 0)
orbifolds ❈2/❩n ×❈2 can be expressed as a generalization of equivariant
partition functions on the toric three-orbifolds ❈2/❩n ×❈, when the lat-
ter are known explicitly, similarly to the uplifting from Proposition 78 to
Conjecture 112. In this section we will propose uplifts of the rank one in-
stanton partition functions, building on the known generating function for
❩n-coloured plane partitions from [35] and its extension to the toric three-
orbifolds ❈2/❩n ×❈ with U(3) holonomy from [36]. We shall also propose
conjectural closed formulas for the higher rank instanton partition functions,
as well as consider the corresponding pure gauge theories.

4.1. Noncommutative U(1) instantons on ❈2/❩n ×❈2

Generalizing Example 160, consider noncommutive U(1) instantons on the
toric CalabiśYau four-orbifold ❈2/❩n ×❈2. The ❩n-action is generated by
(150). The cyclic group ❩n has n irreducible representations ρs, with s =
0, 1, . . . , n− 1 and ρs = ρ⊗s

1 . The fundamental representation of SU(4) re-
stricts to ❩n as Q=ρ1 ⊕ ρn−1 ⊕ ρ0 ⊕ ρ0, and the McKay quiver assumes the
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form

(227)

0

1 n− 1

2 3

This is obtained as the double of the cyclic quiver Cn with arrows s→ s+ 1,
whose underlying graph is the extended Dynkin diagram of type Ân−1, and
adding a pair of loops at each node.

The fractional instanton contributions to the corresponding U(1) parti-
tion function are given by

Z k⃗
[❈2/❩n]×❈2 (⃗ϵ,m)

=
∑

|σ|❩n=k⃗

(−1)O
❩n
σ

̸=0∏

p⃗∈σ
p1 ≡n p2

p⃗ · ϵ⃗−m

p⃗ · ϵ⃗

×
̸=0∏

p⃗,p⃗ ′∈σ
p1+p2+p3 ≡n p′

1+p′
2+p′

3

(
(p⃗− p⃗ ′) · ϵ⃗

) (
(p⃗− p⃗ ′) · ϵ⃗− ϵ12

)
(
(p⃗− p⃗ ′) · ϵ⃗− ϵ3

) (
(p⃗− p⃗ ′) · ϵ⃗− ϵ4

)

×
̸=0∏

p⃗,p⃗ ′∈σ
p1−p2+1≡n p′

1−p′
2

(
(p⃗− p⃗ ′) · ϵ⃗− ϵ13

) (
(p⃗ ′ − p⃗ ) · ϵ⃗− ϵ23

)
(
(p⃗− p⃗ ′) · ϵ⃗− ϵ1

) (
(p⃗ ′ − p⃗ ) · ϵ⃗− ϵ2

) ,(228)

where ≡n denotes congruence modulo n.
The equivariant partition function for rank one noncommutative Donal-

dsonśThomas invariants of the toric three-orbifold ❈2/❩n ×❈ with U(3)
holonomy can be written in the closed form [36]

Z[❈2/❩n]×❈(⃗q; ϵ1, ϵ2, ϵ3)

=M(−Q)−n
ϵ12 ϵ13 ϵ23

ϵ1 ϵ2 ϵ3
+n2−1

n

ϵ12 ϵ123
ϵ1 ϵ2

∏

0<p≤s<n

M̃(q[p,s],−Q)−
ϵ12
ϵ3 ,(229)

where

Q = q0 q1 · · · qn−1 and q[p,s] = qp qp+1 · · · qs−1 qs ,(230)
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while

M(x, q) =

∞∏

k=1

1

(1− x qk)k
and M̃(x, q) =M(x, q)M(x−1, q) .(231)

The generalized MacMahon function M(x, q) counts weighted plane parti-
tions (cf. Remark 94) and specialises to (80) at x = 1: M(1, q) =M(q).

At the CalabiśYau specialization ϵ1 + ϵ2 + ϵ3 = 0 of the Ω-deformation,
the formula (229) reduces to the instanton partition function on ❈2/❩n ×❈
with SU(3) holonomy and agrees with the closed formula found in [7, 35]:

Z[❈2/❩n]×❈(⃗q; ϵ1, ϵ2, ϵ3)
∣∣
ϵ123=0

=M(−Q)n
∏

0<p≤s<n

M̃(q[p,s],−Q)

=
∑

π

(−q0)|π|0 q|π|11 · · · q|π|n−1

n−1 .(232)

In the second equality the sum runs through plane partitions π which are
❩n-coloured with respect to (129).

Together with Proposition 189, the forms of the partition functions (229)
and (232) suggest that the partition function for U(1) noncommuative instan-
tons on ❈2/❩n×❈2 assumes a closed form as a combination of generalized
MacMahon functions M(x, q). This is encapsulated in

Conjecture 233. The equivariant instanton partition function of the coho-
mological U(1) gauge theory with massive fundamental matter on [C2/Zn]×
C2 is given by

Z[❈2/❩n]×❈2 (⃗q; ϵ⃗, m) =M
(
(−1)n Q

)−n
mϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

−n2−1

n

mϵ12
ϵ1 ϵ2

×
∏

0<p≤s<n

M̃
(
(−1)p−s+1 q[p,s], (−1)n Q

)−mϵ12
ϵ3 ϵ4 .(234)

Using the combinatorial expression (228) we explicitly checked

Proposition 235. Conjecture 233 is true for n = 2, 3, 4 and

k = |⃗k | = 1, 2, 3.

Remark 236. In Appendix B.2 we sketch the steps of a possible direct
proof of Conjecture 233, analogous to the sketch of the analytic proof of
Conjecture 112 .
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4.2. Higher rank generalizations

Conjecture 112 shows that the equivariant instanton partition function of
the rank r > 1 cohomological gauge theory with a massive fundamental hy-
permultiplet on ❈4 is given by the simple closed formula (113), express-
ing it as the r-th power of the rank one partition function with the mass
parameter m given by coordinates on the center U(1|1) of the global sym-
metry U(r|r) ⊃ U(r)col × U(r)fla. We would now like to generalize Conjec-
ture 233 to the case of higher rank framing vectors r⃗. Unfortunately, we do
not have available any higher rank noncommutative DonaldsonśThomas par-
tition functions on the orbifold ❈2/❩n ×❈ with generic U(3) holonomy to
uplift, so our results will be limited to a set of well-substantiated conjectures.

Instantons on ❈2/❩n ×❈2 of type r⃗ = (0, . . . , 0, r, 0, . . . , 0). For
the framing vectors of the form r⃗ = (r, 0, . . . , 0), we propose

Conjecture 237. Set

m =
1

r

r∑

l=1

(ml − al) .(238)

Then the equivariant instanton partition function of type r⃗ = (r, 0, . . . , 0) for
the cohomological U(r) gauge theory with massive fundamental matter on
[❈2/❩n]×❈2 is given by

Z
r⃗=(r,0,...,0)
[❈2/❩n]×❈2 (⃗q; ϵ⃗, m) =M

(
(−1)n Q

)−n
mr ϵ12 ϵ13 ϵ23

ϵ1 ϵ2 ϵ3 ϵ4
−n2−1

n

mr ϵ12
ϵ1 ϵ2

×
∏

0<p≤s<n

M̃
(
(−1)p−s+1 q[p,s], (−1)n Q

)−mr ϵ12
ϵ3 ϵ4 .(239)

Using the combinatorial expression (202) we explicitly checked

Proposition 240. Conjecture 237 is true for r = 2, 3, k = |⃗k | = 1, 2 and
n = 2, 3.

Remark 241. The partition function (239) is invariant under permutation
of the location of the entry r in the array r⃗ = (r, 0, . . . , 0) (cf. Section 3.5).

Proposition 242. Assume Conjecture 237 is true. Then the partition func-
tion for rank r noncommutative DonaldsonśThomas invariants of type r⃗ =
(r, 0, . . . , 0) for the orbifold ❈2/❩n ×❈ with U(3) holonomy is given by
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Z
r⃗=(r,0,...,0)
[❈2/❩n]×❈(⃗q; ϵ1, ϵ2, ϵ3) =M

(
(−1)r Q

)−n
r ϵ12 ϵ13 ϵ23

ϵ1 ϵ2 ϵ3
+n2−1

n

r ϵ12 ϵ123
ϵ1 ϵ2

×
∏

0<p≤s<n

M̃
(
q[p,s], (−1)r Q

)− r ϵ12
ϵ3 .(243)

Proof. This follows immediately from (239) by using Proposition 189. □

Instantons on ❈2/❩2 ×❈2 of type r⃗ = (r0, r1). It appears to be dif-
ficult to make a concrete conjecture for the closed form of the instanton parti-
tion function on❈2/❩n ×❈2 for generic framing vectors r⃗ = (r0, r1, . . . , rn−1),
as the calculations become much more cumbersome in general. Here we con-
sider the simplest case n = 2, and propose a closed formula which holds in
full generality.

Example 244. The leading terms in the expansions of the rank two parti-
tion functions for the orbifold ❈2/❩2 ×❈2 are

Z
r⃗=(2,0)
[❈2/❩2]×❈2(q0, q1; a⃗, ϵ⃗, m⃗) = 2

mϵ12
ϵ3 ϵ4

q0 +
mϵ12
ϵ1 ϵ2

(
4
ϵ13 ϵ3
ϵ3 ϵ4

+ 3
)
q0 q1

+
mϵ12
ϵ3 ϵ4

(
2
mϵ12
ϵ3 ϵ4

− 1
)
q20 + · · · ,

Z
r⃗=(1,1)
[❈2/❩2]×❈2(q0, q1; a⃗, ϵ⃗, m⃗) = 2

mϵ12
ϵ3 ϵ4

q0 +
(
4
mϵ12 ϵ13 ϵ3
ϵ1 ϵ2 ϵ3 ϵ4

+ 3
mϵ12
ϵ1 ϵ2

+
(m1 − a1) (m2 − a2) ϵ12

ϵ3 ϵ4

)
q0 q1

+
mϵ12
ϵ3 ϵ4

(
2
mϵ12
ϵ3 ϵ4

− 1
)
q20 + · · · ,(245)

where m = 1
2 (m1 − a1 +m2 − a2).

Since we are working with the ❩2-action of Section 4.1 in evaluating the
contribution (203) from the index χ❩2

σ⃗ , we can use

ρs ⊗ ρs′ =

{
ρ0 if s = s′ ,

ρ1 otherwise ,
(246)

for s, s′ ∈ {0, 1}. Then the partition function (202) is symmetric under per-
mutation of r0 and r1, and it must reduce to (239) with n = 2 for r⃗ = (r, 0)
and r⃗ = (0, r). These properties together with Example 244 prompt us to
formulate
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Conjecture 247. The equivariant instanton partition function of type r⃗=
(r0, r1) for the cohomological gauge theory with massive fundamental matter
on [❈2/❩2]×❈2 is given by

Z
r⃗=(r0,r1)
[❈2/❩2]×❈2 (⃗q; a⃗, ϵ⃗, m⃗) =M(Q)

−2
mr ϵ12 ϵ13 ϵ3

ϵ1 ϵ2 ϵ3 ϵ4
− 3

2

mr ϵ12
ϵ1 ϵ2

× M̃(−q1, q0 q1)−
m0 r0 ϵ12

ϵ3 ϵ4 M̃(−q0, q0 q1)−
m1 r1 ϵ12

ϵ3 ϵ4 ,(248)

where r = r0 + r1 and

ms =
1

rs

∑

s(l)=s

(ml − al)(249)

are coordinates on the center of the global symmetry supergroup U(rs|rs)
associated to the irreducible representation ρs of ❩2, for s ∈ {0, 1}.

Proposition 250. Assume Conjecture 247 is true. Then the partition func-
tion for noncommutative DonaldsonśThomas invariants of type r⃗ = (r0, r1)
for the orbifold ❈2/❩2 ×❈ with U(3) holonomy is given by

Z
r⃗=(r0,r1)
[❈2/❩2]×❈(⃗q; ϵ1, ϵ2, ϵ3) =M

(
(−1)r Q

)−2
r ϵ12 ϵ13 ϵ23

ϵ1 ϵ2 ϵ3
+ 3

2

r ϵ12 ϵ123
ϵ1 ϵ2

× M̃
(
(−1)r1 q1, (−1)r q0 q1

)− r0 ϵ12
ϵ3

× M̃
(
(−1)r0 q0, (−1)r q0 q1

)− r1 ϵ12
ϵ3 .(251)

Proof. This follows immediately from (248) by using Proposition 189. □

Remark 252. At the CalabiśYau specialization ϵ123 = 0, both partition
functions (243) and (251) agree with the generating functions for Coulomb
branch invariants found in [7, Section 7].

4.3. Pure NT = 2 gauge theory on [❈2/❩n] ×❈
2

Using Proposition 225 together with the results of Sections 4.1 and 4.2 we can
immediately infer corresponding closed formulas for the partition functions
of the pure gauge theories on the quotient stack [❈2/❩n]×❈2. They read
as

Proposition 253. If Conjecture 233 is true, then the equivariant instanton
partition function of the pure cohomological U(1) gauge theory on [❈2/❩n]×
❈2 is given by
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Z[❈2/❩n]×❈2(Λ⃗; ϵ⃗ )pure = exp (−1)n Λ
(
n
ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

+
n2 − 1

n

ϵ12
ϵ3 ϵ4

− ϵ12
ϵ3 ϵ4

∑

0<p≤s<n

(−1)p−s
(
Λ[p,s] + Λ−1

[p,s]

))
,(254)

where

Λ = Λ0 Λ1 · · ·Λn and Λ[p,s] = Λp Λp+1 · · ·Λs−1 Λs .(255)

If in addition Conjecture 237 is true, then the higher rank partition functions
of type r⃗ = (r, 0, . . . , 0) are all trivial:

Z
r⃗=(r,0,...,0)
[❈2/❩n]×❈2(Λ⃗; ϵ⃗ )

pure = 1 for r > 1 .(256)

Proof. The proof is completely analogous to the proof of Corollary 122 using
the series representation

logM(x, q) =

∞∑

k=1

xk

k

qk

(1− qk)2
(257)

for the logarithm of the generalized MacMahon function. □

5. The (3,0) orbifold ❈3/(❩2 × ❩2) ×❈

As another explicit example, we repeat our treatment from Section 4 in the
case of the (3, 0) orbifold ❈3/Γ×❈ for the action of the group Γ = ❩2 × ❩2

in SL(3,❈) defined below. By the results of [91] it admits four geometric
projective toric crepant resolutions related to each other by ŕops, which
can each be constructed as fine moduli spaces of stable Γ-constellations; for
the symmetric resolution induced by Hilb❩2×❩2(❈3), the geometric crepant
resolution of ❈3/(❩2 × ❩2)×❈ is a fibration of closed topological vertex
geometries over ❈. Whereas the dimensionally reduced partition functions
are well understood for the CalabiśYau three-orbifolds ❈3/❩2 × ❩2 by the
results of [7, 35], we are currently lacking closed expressions for generic U(3)
holonomy, even in the rank one case. Hence in this section our considerations
will again be limited to conjectural but well-substantiated closed formulas.
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5.1. Noncommutative U(1) instantons on ❈3/(❩2 × ❩2) ×❈

Consider the toric CalabiśYau four-orbifold ❈3/(❩2 × ❩2)×❈, where the
action of the group ❩2 × ❩2 = {✶, g1, g2, g3} on ❈4 is given by the SU(4)
matrices

g1 =




−1
−1

1
1


 and g2 =




−1
1

−1
1


 ,(258)

together with g3 = g1 g2. The four irreducible representations

Γ̂ = {ρ0, ρ1, ρ2, ρ3}

have weights s0 = (0, 0, 0, 0), s1 = (1, 1, 0, 0), s2 = (1, 0, 1, 0) and s3 = s1 +
s2 = (0, 1, 1, 0), respectively.

The tensor product decomposition of the fundamental representation Q
gives an adjacency matrix

A = (ass′) =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 .(259)

The generalized McKay quiver constructed from the representation theory
of ❩2 × ❩2 is

(260)

1 3

0

2

To write the corresponding U(1) instanton partition function explicitly,
it is convenient to use the imaginary unit quaternions i, j and k which satisfy
the relations

i2 = j2 = k2 = i j k = −1 .(261)
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Then the fractional instanton contributions are given by

Z k⃗
[❈3/❩2×❩2]×❈(⃗ϵ,m)

=
∑

|σ|❩2×❩2
=k⃗

(−1)O
❩2×❩2
σ

̸=0∏

p⃗∈σ
ip1 jp2 kp3=±1

p⃗ · ϵ⃗−m

p⃗ · ϵ⃗

×
̸=0∏

p⃗,p⃗ ′∈σ
ip1−p′1 jp2−p′2 kp3−p′3=±1

(p⃗− p⃗ ′) · ϵ⃗
(p⃗− p⃗ ′) · ϵ⃗− ϵ4

×
̸=0∏

p⃗,p⃗ ′∈σ
ip1−p′1 jp2−p′2 kp3−p′3=±i

(p⃗− p⃗ ′) · ϵ⃗− ϵ23
(p⃗− p⃗ ′) · ϵ⃗− ϵ1

×
̸=0∏

p⃗,p⃗ ′∈σ
ip1−p′1 jp2−p′2 kp3−p′3=±j

(p⃗− p⃗ ′) · ϵ⃗− ϵ13
(p⃗− p⃗ ′) · ϵ⃗− ϵ2

×
̸=0∏

p⃗,p⃗ ′∈σ
ip1−p′1 jp2−p′2 kp3−p′3=±k

(p⃗− p⃗ ′) · ϵ⃗− ϵ12
(p⃗− p⃗ ′) · ϵ⃗− ϵ3

.(262)

The rank one DonaldsonśThomas partition function for the three-orbifold
❈3/❩2 × ❩2 with holonomy group SU(3) is discussed in detail in [7, 35]. It
can be expressed as the closed formula

Z[❈3/❩2×❩2](⃗q; ϵ1, ϵ2, ϵ3)
∣∣
ϵ123=0

=
M(−Q)4

L(q1, q2, q3,−Q)
∏

1≤p<s≤3

M̃(qp qs,−Q)

=
∑

π

(−1)|π|1+|π|2+|π|3 q|π|00 q
|π|1
1 q

|π|2
2 q

|π|3
3 ,(263)

where the sum runs through ❩2 × ❩2-coloured plane partitions π. We have
set Q = q0 q1 q2 q3 and

L(x1, x2, x3, q) = M̃(x1, q) M̃(x2, q) M̃(x3, q) M̃(x1 x2 x3, q) .(264)

With an argument analogous to that of Section 4.1, we expect that the
rank one instanton partition function for❈3/(❩2 × ❩2)×❈ assumes a closed
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form in terms of a generalization of the formula (263). Using (202) we eval-
uate the leading terms in the expansion of Z[❈3/❩2×❩2]×❈(⃗q; ϵ⃗, m) to be

Z[❈3/❩2×❩2]×❈(⃗q; ϵ⃗, m) =
m

ϵ4
q0 +

(m− ϵ4)m

2 ϵ24
q20 +

(ϵ1 − ϵ23)m

2 ϵ1 ϵ4
q0 q1

+
(ϵ2 − ϵ13)m

2 ϵ2 ϵ4
q0 q2

+
(ϵ3 − ϵ12)m

2 ϵ2 ϵ4
q0 q3 +

m

ϵ4
q0 q1 q2 + · · · .(265)

Dimensionally reducing this result according to Proposition 189 at the Calabiś
Yau specialization of the Ω-deformation on ❈3 yields the leading contribu-
tions predicted by (263):

Z[❈3/❩2×❩2]×❈(⃗q; ϵ⃗,m = ϵ4)
∣∣
ϵ123=0

= q′0 − q′0 q
′
1 + q′0 q

′
2 + q′0 q

′
3 + q′0 q

′
1 q

′
2 + · · ·

= Z[❈3/❩2×❩2](⃗q
′; ϵ1, ϵ2, ϵ3)

∣∣
ϵ123=0

,(266)

where q⃗ ′ = (q0,−q1,−q2,−q3).
This prompts us to formulate

Conjecture 267. The equivariant instanton partition function of the coho-
mological U(1) gauge theory with massive fundamental matter on [❈3/❩2 ×
❩2]×❈ is given by

Z[❈3/❩2×❩2]×❈(⃗q; ϵ⃗, m) =
M(Q)

m
ϵ1 ϵ2 ϵ3−ϵ21 ϵ2−ϵ21 ϵ3−ϵ22 ϵ3−ϵ1 ϵ22−ϵ1 ϵ23−ϵ2 ϵ23

ϵ1 ϵ2 ϵ3 ϵ4

L(−q1,−q2,−q3, Q)
m

ϵ4

×
∏

1≤p<s≤3

M̃(qp qs, Q)
m

ϵ
(ps)−

−ϵps

2 ϵ4 ϵ
(ps)− ,(268)

where (ps)− ∈ {1, 2, 3} \ {p, s}.

Proposition 269. Assume Conjecture 267 is true. Then the partition func-
tion for rank one noncommutative DonaldsonśThomas invariants of the orb-
ifold ❈3/❩2 × ❩2 with holonomy group U(3) is given by

Z[❈3/❩2×❩2](⃗q; ϵ1, ϵ2, ϵ3) =
M(−Q)

ϵ1 ϵ2 ϵ3−ϵ21 ϵ2−ϵ21 ϵ3−ϵ22 ϵ3−ϵ1 ϵ22−ϵ1 ϵ23−ϵ2 ϵ23
ϵ1 ϵ2 ϵ3

L(q1, q2, q3,−Q)
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×
∏

1≤p<s≤3

M̃(qp qs,−Q)
ϵ
(ps)−

−ϵps

2 ϵ
(ps)− .(270)

Proof. This follows immediately from (268) by using Proposition 189. □

Remark 271. For holonomy group SU(3), the partition function (270) re-
duces to (263). As noted by [27], it is possible to adapt the techniques of [36]
to the orbifold ❈3/❩2 × ❩2 and hence provide a direct proof of (270).

5.2. Higher rank generalization

For higher rank noncommutative instantons on ❈3/(❩2 × ❩2)×❈ of type
r⃗ = (0, . . . , 0, r, 0, . . . , 0), the analogue of Conjecture 237 reads as

Conjecture 272. The equivariant instanton partition function of type r⃗ =
(r, 0, . . . , 0) for the cohomological U(r) gauge theory with massive fundamen-
tal matter on [❈3/❩2 × ❩2]×❈ is given by

Z
r⃗=(r,0...,0)
[❈3/❩2×❩2]×❈(⃗q; ϵ⃗, m) =

M(Q)
mr

ϵ1 ϵ2 ϵ3−ϵ21 ϵ2−ϵ21 ϵ3−ϵ22 ϵ3−ϵ1 ϵ22−ϵ1 ϵ23−ϵ2 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

L(−q1,−q2,−q3, Q)
mr

ϵ4

×
∏

1≤p<s≤3

M̃(qp qs, Q)
mr

ϵ
(ps)−

−ϵps

2 ϵ4 ϵ
(ps)− .(273)

Using the combinatorial expansion (202) we explicitly checked

Proposition 274. Conjecture 272 is true for r = 2, 3 and k = |⃗k | = 1, 2.

Proposition 275. Assume Conjecture 272 is true. Then the partition func-
tion for rank r noncommutative DonaldsonśThomas invariants of type r⃗ =
(r, 0, . . . , 0) for the orbifold ❈3/❩2 × ❩2 with U(3) holonomy is given by

Z
r⃗=(r,0...,0)
[❈3/❩2×❩2]

(⃗q; ϵ1, ϵ2, ϵ3) =
M

(
(−1)r Q

)r ϵ1 ϵ2 ϵ3−ϵ21 ϵ2−ϵ21 ϵ3−ϵ22 ϵ3−ϵ1 ϵ22−ϵ1 ϵ23−ϵ2 ϵ23
ϵ1 ϵ2 ϵ3

L
(
q1, q2, q3, (−1)r Q

)r

×
∏

1≤p<s≤3

M̃
(
qp qs, (−1)r Q

)r ϵ
(ps)−

−ϵps

2 ϵ
(ps)− .(276)

Proof. This follows immediately from (273) by using Proposition 189. □
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5.3. Pure NT = 2 gauge theory on [❈3/❩2 × ❩2] ×❈

For the pure gauge theories on the quotient stack [❈3/❩2 × ❩2]×❈, ob-
tained via the decoupling limit of Proposition 225, the analogue of Proposi-
tion 253 reads as

Proposition 277. Assume Conjectures 267 and 272 are true. Then the
equivariant instanton partition function of the pure cohomological U(1) gauge
theory on [❈3/❩2 × ❩2]×❈ is given by

Z[❈3/(❩2×❩2)×❈](Λ⃗; ϵ⃗ )
pure

= exp−Λ
(ϵ1 ϵ2 ϵ3 − ϵ21 ϵ2 − ϵ21 ϵ3 − ϵ22 ϵ3 − ϵ1 ϵ

2
2 − ϵ1 ϵ

2
3 − ϵ2 ϵ

2
3

ϵ1 ϵ2 ϵ3 ϵ4

+
∑

1≤p<s≤3

(
ϵ(ps)− − ϵps

) (
Λp Λs + Λ−1

p Λ−1
s

)

2 ϵ4 ϵ(ps)−

+
1

ϵ4

3∑

s=1

(
Λs + Λ−1

s

)
− 1

ϵ4

(
Λ123 + Λ−1

123

))
,(278)

where Λ = Λ0 Λ1 Λ2 Λ3 and Λ123 = Λ1 Λ2 Λ3, while the higher rank partition
functions of type r⃗ = (r, 0, . . . , 0) are all trivial:

Z
r⃗=(r,0,...,0)
[❈2/❩2×❩2]×❈(Λ⃗; ϵ⃗ )

pure = 1 for r > 1 .(279)

Proof. The proof is completely analogous to the proof of Proposition 253. □

Appendix A. Generalized ADHM construction

In this appendix we construct the ADHM type finite-dimensional matrix
model of the moduli space of finite action solutions to the noncommutative
instanton equations (43). To write these generalized ADHM equations, we
first introduce two Hermitian vector spaces V and W of complex dimensions
k and r, respectively. Let U be an (8 k+r)×r matrix which solves the Weyl
equation

∆† U = 0 ,(A.1)
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where ∆ is the (8 k + r)×8 k matrix

∆ =




b
†
1 b2 b3 b4 0 0 0 0

b
†
2 −b1 0 0 b3 −b4 0 0

b
†
3 0 −b1 0 b2 0 b4 0

b
†
4 0 0 b

†
1 0 b2 b3 0

0 0 0 0 b
†
4 b

†
3 b

†
2 b1

0 0 −b
†
4 b

†
3 0 0 −b

†
1 b2

0 b
†
4 0 −b

†
2 0 −b

†
2 −b

†
1 b3

0 −b
†
3 −b

†
2 0 −b

†
1 0 0 b4

I† 0 0 0 0 0 0 0




.(A.2)

Here ba = Ba − za ✶k, with Ba ∈ End❈(V ) for a ∈ 4 and I ∈ Hom❈(W,V ).
The auxiliary matrix ∆ is required to satisfy the equation

∆†∆ = ✶8 ⊗ f−1
k ,(A.3)

where fk is an invertible k×k matrix. This leads to the equations for the
ADHM data (Ba, I)a∈4 given by (51):

[Ba, Bb]− 1
2 ϵabc̄d̄

[
B†

c̄ , B
†
d̄

]
= 0 and

4∑

a=1

[
Ba, B

†
ā

]
+ I I† = ξ ✶k .(A.4)

One asks that the matrix U be normalized: U † U = ✶r. Then the columns of
U together with ∆ form a complete basis in ❈8 k+r, and therefore

✶8 k+r − U U † = ∆(✶8 ⊗ fk)∆
† .(A.5)

The Spin(7)-instanton connection can now be written as A = U † dU . In-
deed, using (A.5) we compute the components of its curvature two-form to
get

Fµν = ∂µU
† ∂νU − ∂νU

† ∂µU +
[
U † ∂µU,U

† ∂νU
]

= ∂[µU
† (
✶8 k+r − U U †) ∂ν]U

= U † ∂[µ∆(✶8 ⊗ fk) ∂ν]∆
† U

= U † (Σ(+)
µν ⊗ fk

)
U ,(A.6)

which satisfy the self-duality equations (9) (λ = 1) for Spin(7)-holonomy.
Here we have introduced the eight-dimensional counterparts of the ’t Hooft
symbols

Σ(+)
µν = Σ̄µΣν − Σ̄ν Σµ and Σ(−)

µν = Σµ Σ̄ν − Σν Σ̄µ .(A.7)
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The 8×8 spin matrices Σµ and Σ̄µ for µ = 1, . . . , 8 are generators of the
Clifford algebra Cℓ(8), where Σ8 = Σ̄8 = ✶8 and the matrices Σa = −Σ̄a for
a = 1, . . . , 7 satisfy the anticommutation relations {Σa,Σb} = −2 δab ✶8.

Consequently, the complex connection

Aa = 1√
2 ξ
U † ∂aU(A.8)

for a ∈ 4 satisfies the instanton equations (16).

Appendix B. Infinite product formulas
for instanton partition functions

In this appendix we outline a possible alternative proof of Conjecture 112
based on the quiver matrix model and its combinatorial evaluation, and then
proceed to sketch how this can be extended to provide a potential similar
proof of Conjecture 233.

B.1. Evidence for Conjecture 112

We start by explicitly computing the k = 1 contribution to the instanton
partition function (109), resulting in

Lemma B.9. For any rank r ≥ 1, the one-instanton contribution to

Zr
❈4(q; a⃗, ϵ⃗, m⃗)

is given by

Zr,1
❈4 (⃗a, ϵ⃗, m⃗) =

ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

rm with m =
1

r

r∑

l=1

(ml − al) .(B.10)

Proof. Using the formula (107) we immediately see the result for r = 1. So
we assume r > 1, and shifting the masses ml to m′

l := ml − al for l = 1, . . . , r
we get

Zr,1
❈4 (⃗a, ϵ⃗, m⃗) =

ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

r∑

l=1

m′
l

r∏

p=1
p ̸=l

(
1−

m′
p

alp

)
,(B.11)

where alp = al − ap = −apl. Using (B.11) the result is easy to check for r = 2,
so henceforth we restrict to ranks r > 2. The sum in (B.11) can be rewritten
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as

r∑

l=1

m′
l

r∏

p=1
p ̸=l

(
1−

m′
p

alp

)
=

r∑

l=1

m′
l

(
1 +

r−1∑

p=1

∑

1≤i1<···<ip≤r
ij ̸=l

m′
i1
· · ·m′

ip

ai1l · · · aipl

)

= rm+

r−1∑

p=1

r∑

l=1

m′
l

∑

1≤i1<···<ip≤r
ij ̸=l

m′
i1
· · ·m′

ip

ai1l · · · aipl
.(B.12)

For each 1 ≤ p ≤ r − 1, the second sum of (B.12) can be expressed in
the form

r∑

l=1

m′
l

∑

1≤i1<···<ip≤r
ij ̸=l

m′
i1
· · ·m′

ip

ai1l · · · aipl

=
( ∑

1≤l<i1<···<ip≤r

+
∑

1≤i1<l<i2<···<ip≤r

+ · · ·+
∑

1≤i1<···<ip<l≤r

)

×
m′

i1
· · ·m′

ip
m′

l

ai1l · · · aipl

=
∑

1≤l<i1<···<ip≤r

m′
i1 · · ·m′

ip m
′
l

(
(ai1l · · · aipl)−1 +

p∑

j=1

a−1
lij

p∏

n=1
n ̸=j

a−1
inij

)

=
∑

1≤l<i1<···<ip≤r

m′
i1
· · ·m′

ip
m′

l

ai1l · · · aipl
∏

1≤j<n≤p

aijin
Ai1···ipl ,

(B.13)

where, for each increasing sequence 1 ≤ l < i1 < · · · < ip ≤ r, we set

Ai1···ipl :=
∏

1≤j<n≤p

aijin −
p∑

j=1

(−1)p−j
p∏

j′=1
j′ ̸=j

aij′ l
∏

1≤q<n≤p
n,q ̸=j

aiqin

=

p+1∑

t=1

(−1)p−t−1
∏

1≤j<n≤p+1
j,n ̸=t

aijin ,(B.14)

with the convention ip+1 := l.
Although it should be possible to show directly that (B.14) vanishes (in-

deed we have checked this explicitly up to p = 4), a more straightforward
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proof uses Proposition 78 to assert that (B.10) holds at the mass special-
isations m′

l = ϵ4 for l = 1, . . . , r. Since (B.14) is independent of the shifted
mass parameters, it follows that

Ai1···ipl = 0(B.15)

as required. □

We are now ready to sketch an argument that may prove Conjecture 112.
Consider the instanton partition function

Zr
❈4(q; a⃗, ϵ⃗, m⃗′) = 1 +

∞∑

k=1

qk Zr,k
❈4 (⃗a, ϵ⃗, m⃗

′)(B.16)

with the explicit combinatorial expansion (107), where m⃗′ := m⃗− a⃗. By
Proposition 78 we know that

Zr
❈4(q; a⃗, ϵ⃗,m′

l = −ϵ123) = Zr
❈3

(
(−1)r+1 q; ϵ1, ϵ2, ϵ3

)
=M(−q)−

r ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 .

(B.17)

Armed with this information, we can assume that the partition function
takes a form given by

logZr
❈4(q; a⃗, ϵ⃗, m⃗′) = fr (⃗a, ϵ⃗, m⃗

′) logM(−q) + logGr(q; a⃗, ϵ⃗, m⃗
′) ,(B.18)

where fr is a rational function of the equivariant parameters with

fr (⃗a, ϵ⃗,m
′
l = −ϵ123) = −r ϵ12 ϵ13 ϵ23

ϵ1 ϵ2 ϵ3
,(B.19)

and the function Gr has a power series expansion

Gr(q; a⃗, ϵ⃗, m⃗
′) = 1 +

∞∑

k=1

qkG(k)
r (⃗a, ϵ⃗, m⃗′)(B.20)

whose coefficients G
(k)
r are rational functions of the equivariant parameters

with

G(k)
r (⃗a, ϵ⃗,m′

l = −ϵ123) = 0 .(B.21)

From Lemma B.9 it follows that

fr (⃗a, ϵ⃗, m⃗
′)−G(1)

r (⃗a, ϵ⃗, m⃗′) = −rm ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

.(B.22)
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Hence, by redefining the functions fr and G
(1)
r if necessary, we can assume

that

fr (⃗a, ϵ⃗, m⃗
′) = −rm ϵ12 ϵ13 ϵ23

ϵ1 ϵ2 ϵ3 ϵ4
and G(1)

r (⃗a, ϵ⃗, m⃗′) = 0 .(B.23)

The idea now is to prove that G
(k)
r (⃗a, ϵ⃗, m⃗′) = 0 by induction on k. We

know this for k = 1, so we suppose G
(n)
r (⃗a, ϵ⃗, m⃗, r) = 0 for 1 ≤ n ≤ k − 1 with

k > 1. Then

Zr,k
❈4 (⃗a, ϵ⃗, m⃗

′) = F (k)
r (⃗a, ϵ⃗, m⃗′) +G(k)

r (⃗a, ϵ⃗, m⃗′) ,(B.24)

where F
(k)
r (⃗a, ϵ⃗, m⃗′) is the coefficient of qk in the series expansion of

exp(fr (⃗a, ϵ⃗, m⃗
′) logM(−q)).

Recalling the symmetries of the matrix integral (75), we know that

Zr,k
❈4 (⃗a, ϵ⃗, m⃗

′)

is invariant under permutation of ϵ1 and ϵ4 = −ϵ123, as well as under permu-
tation of the entries of m⃗′ = (m′

1, . . . ,m
′
r). Since F

(k)
r (⃗a, ϵ⃗, m⃗′) is invariant

under these permutations, so is G
(k)
r (⃗a, ϵ⃗, m⃗′).

Looking at (107), we can decompose the k-instanton contributions for
k > 1 into

Zr,k
❈4 (⃗a, ϵ⃗, m⃗

′)

=

k∑

ı1,...,ır=1

Z
r,k;⃗ı
❈4 (⃗a, ϵ⃗ )

r∏

l=1

(m′
l + ϵ123)

ıl + (−1)(r+1) k Zr,k
❈3 (ϵ1, ϵ2, ϵ3)

(B.25)

for some functions Z
r,k;⃗ı
❈4 (⃗a, ϵ⃗ ). We now write

fr (⃗a, ϵ⃗, m⃗
′) = −r ϵ12 ϵ13 ϵ23

ϵ1 ϵ2 ϵ3
−

r∑

l=1

ϵ12 ϵ13 ϵ23 (m
′
l + ϵ123)

ϵ1 ϵ2 ϵ3 ϵ4
(B.26)

and use this to separate out the polynomial mass dependence in F
(k)
r (⃗a, ϵ⃗, m⃗′),

similarly to (B.25), as

F (k)
r (⃗a, ϵ⃗, m⃗′)
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=

k∑

ı1,...,ır=1

F(k);⃗ı
r (⃗a, ϵ⃗ )

r∏

l=1

(m′
l + ϵ123)

ıl + (−1)(r+1) k Zr,k
❈3 (ϵ1, ϵ2, ϵ3)

(B.27)

with some functions F
(k);⃗ı
r (⃗a, ϵ⃗ ). The coefficient functions Z

r,k;⃗ı
❈4 (⃗a, ϵ⃗ ) and

F
(k);⃗ı
r (⃗a, ϵ⃗ ) are independent of the masses m⃗′ and symmetric in the entries of
ı⃗ = (ı1, . . . , ır).

Then (B.24) determines G
(k)
r as the Taylor expansion

G(k)
r (⃗a, ϵ⃗, m⃗′) =

k∑

ı1,...,ır=1

(
Z
r,k;⃗ı
❈4 (⃗a, ϵ⃗ )− F(k);⃗ı

r (⃗a, ϵ⃗ )
) r∏

l=1

(m′
l + ϵ123)

ıl .

(B.28)

At this stage one should be able to exploit the ❩2-symmetry ϵ1 ↔ −ϵ123 of

G
(k)
r (⃗a, ϵ⃗, m⃗′), together with the analytic behaviour of (107) in ϵ⃗ , to infer that

Z
r,k;⃗ı
❈4 (⃗a, ϵ⃗ ) = F

(k);⃗ı
r (⃗a, ϵ⃗ ) for each ı⃗. It would be very interesting to understand

this further and complete the proof of Conjecture 112 along these lines.

B.2. Evidence for conjecture 233

A possible proof of Conjecture 233 follows the same line of reasoning as in
Appendix B.1, starting with the dimensional reduction (229) according to
Proposition 189. We choose r⃗ = (1, 0, . . . , 0) without loss of generality. We
can assume that

Z[❈2/❩n]×❈2 (⃗q; ϵ⃗, m)

=M
(
(−1)n Q

)−n
mϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

−n2−1

n

mϵ12
ϵ1 ϵ2

×
∏

0<p≤s<n

M̃
(
(−1)p−s+1 q[p,s], (−1)n Q

)−mϵ12
ϵ3 ϵ4 G(⃗q; ϵ⃗, m) ,(B.29)

where the function G has a power series expansion

G(⃗q; ϵ⃗, m) = 1 +
∑

k⃗∈❩n
≥0\ 0⃗

q⃗ k⃗ G(k⃗ )(⃗ϵ,m)(B.30)

whose coefficients are rational functions of the equivariant parameters with

G(k⃗ )(⃗ϵ,m = −ϵ123) = 0.
The idea is to proceed by induction on the size of k⃗ ∈ ❩n

≥0 \ 0⃗ to show that

G(k⃗ )(⃗ϵ,m) = 0. For |⃗k | = 1 the only contribution to the instanton partition
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function is

q0
mϵ12
ϵ3 ϵ4

.(B.31)

Thus G(k⃗ )(⃗ϵ,m) = 0 for all k⃗ of size one. Now suppose G(k⃗ )(⃗ϵ,m) = 0 for all
k⃗ of sizes 1 ≤ |⃗k | ≤ k − 1 with k > 1. Then for k⃗ of size |⃗k | = k we can write

Z k⃗
[❈2/❩n]×❈2 (⃗ϵ,m) = F (k⃗ )(⃗ϵ,m) +G(k⃗ )(⃗ϵ,m) ,(B.32)

where F (k⃗ )(⃗ϵ,m) is the coefficient of q⃗ k⃗ in the power series expansion of

M
(
(−1)n Q

)−n
mϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

−n2−1

n

mϵ12
ϵ1 ϵ2

×
∏

0<p≤s<n

M̃
(
(−1)p−s+1 q[p,s], (−1)n Q

)−mϵ12
ϵ3 ϵ4 .(B.33)

From the matrix integral (188) with r⃗ = (1, 0, . . . , 0) for the ❩n-action of
Section 4.1, with weights s1 = 1, s2 = n− 1 and s3 = s4 = 0, it follows that
the fractional instanton contribution Z k⃗

[❈2/❩n]×❈2 (⃗ϵ,m) is invariant under the
permutation of ϵ3 and ϵ4 = −ϵ123. From the combinatorial expansion (228)
it follows that it can be decomposed into

Z k⃗
[❈2/❩n]×❈2 (⃗ϵ,m)

=

|⃗k |∑

ı=1

(m+ ϵ123)
ı Z

k⃗;ı
[❈2/❩n]×❈2 (⃗ϵ ) + (−1)|⃗k |+k0 Z k⃗

[❈2/❩n]×❈(ϵ1, ϵ2, ϵ3) ,

(B.34)

with some functions Zk⃗;ı
[❈2/❩n]×❈2 (⃗ϵ ) for ı = 1, . . . , |⃗k | which are independent

of the mass m.
The powers of the generalized MacMahon functions in (B.33) can be

rewritten respectively as

−n ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3

+
n2 − 1

n

ϵ12 ϵ123
ϵ1 ϵ2

−
(
n
ϵ12 ϵ13 ϵ23
ϵ1 ϵ2 ϵ3 ϵ4

− n2 − 1

n

ϵ12
ϵ1 ϵ2

)
(m+ ϵ123)

(B.35)

and

−ϵ12
ϵ3

− ϵ12 (m+ ϵ123)

ϵ3 ϵ4
.(B.36)
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Since F (k⃗ )(⃗ϵ,m) is symmetric under ϵ3 ↔ −ϵ123, it follows from (B.32) that

so is G(k⃗ )(⃗ϵ,m), and that it is given as the Taylor expansion

G(k⃗ )(⃗ϵ,m) =

|⃗k |∑

ı=1

(
Z
k⃗;ı
[❈2/❩n]×❈2 (⃗ϵ )− F(k⃗ );ı(⃗ϵ )

)
(m+ ϵ123)

ı ,(B.37)

with some functions F(k⃗ );ı(⃗ϵ ) for ı = 1, . . . , |⃗k | which are independent of the
mass parameter m. At this stage one should be able to exploit invariance un-
der the ❩2-action ϵ3 ↔ −ϵ123, together with the analytic behaviour of (228)
in ϵ⃗ , to show that F(k⃗ );ı(⃗ϵ ) = Z

k⃗;ı
[❈2/❩n]×❈2 (⃗ϵ ) for all ı ∈ {1, . . . , |⃗k |}.

References

[1] S. K. Donaldson and R. P. Thomas, Gauge theory in higher dimensions,
in Conference on Geometric Issues in Foundations of Science in honor
of Sir Roger Penrose’s 65th Birthday, pp. 31ś47, 1996.

[2] S. K. Donaldson and E. Segal, Gauge theory in higher dimensions II,
arXiv:0902.3239.

[3] M. Yamazaki, Crystal melting and wall crossing phenomena, Int. J. Mod.
Phys. A 26 (2011) 1097.

[4] M. Cirafici and R. J. Szabo, Curve counting, instantons and McKay
correspondences, J. Geom. Phys. 72 (2013) 54.

[5] A. Iqbal, N. Nekrasov, A. Okounkov and C. Vafa, Quantum foam and
topological strings, JHEP 04 (2008) 011.

[6] M. Cirafici, A. Sinkovics and R. J. Szabo, Cohomological gauge theory,
quiver matrix models and Donaldson–Thomas theory, Nucl. Phys. B 809
(2009) 452.

[7] M. Cirafici, A. Sinkovics and R. J. Szabo, Instantons, quivers and non-
commutative Donaldson–Thomas theory, Nucl. Phys. B 853 (2011) 508.

[8] M. Cirafici, A. Sinkovics and R. J. Szabo, Instanton counting and wall-
crossing for orbifold quivers, Ann. Henri Poincaré 14 (2013) 1001.

[9] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld and Y. I. Manin, Construc-
tion of instantons, Phys. Lett. A 65 (1978) 185.

[10] R. J. Szabo, Instantons, topological strings and enumerative geometry,
Adv. Math. Phys. 2010 (2010) 107857.



✐

✐

ł2-Szabož Ð 2024/7/1 Ð 9:13 Ð page 1752 Ð #88
✐

✐

✐

✐

✐

✐

1752 R. J. Szabo and M. Tirelli

[11] R. J. Szabo, Crystals, instantons and quantum toric geometry, Acta
Phys. Polon. Supp. 4 (2011) 461.

[12] E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460
(1996) 335.

[13] E. Witten, BPS Bound states of D0–D6 and D0–D8 systems in a B-field,
JHEP 04 (2002) 012.

[14] L. Baulieu, H. Kanno and I. M. Singer, Special quantum field theories
in eight-dimensions and other dimensions, Commun. Math. Phys. 194
(1998) 149.

[15] L. Baulieu, H. Kanno and I. M. Singer, Cohomological Yang–Mills theory
in eight-dimensions, in APCTP Winter School on Dualities of Gauge
and String Theories, pp. 365ś373, 1997, arXiv:hep-th/9705127.

[16] B. S. Acharya, M. O’Loughlin and B. J. Spence, Higher dimensional
analogs of Donaldson–Witten theory, Nucl. Phys. B 503 (1997) 657.

[17] E. Witten, Topological quantum field theory, Commun. Math. Phys. 117
(1988) 353.

[18] C. Vafa and E. Witten, A strong coupling test of S-duality, Nucl. Phys.
B 431 (1994) 3.

[19] N. Nekrasov, Magnificent four, Adv. Theor. Math. Phys. 24 (2020) 1171.

[20] N. Nekrasov and N. Piazzalunga, Magnificent four with colors, Commun.
Math. Phys. 372 (2019) 573.

[21] Y. Cao and N. C. Leung, Donaldson–Thomas theory for Calabi–Yau
4-folds, arXiv:1407.7659.

[22] D. Borisov and D. Joyce, Virtual fundamental classes for moduli spaces
of sheaves on Calabi–Yau four-folds, Geom. Topol. 21 (2017) 3231.

[23] J. Oh and R. P. Thomas, Counting sheaves on Calabi–Yau 4-folds, I,
arXiv:2009.05542.

[24] Y. Cao and M. Kool, Zero-dimensional Donaldson–Thomas invariants
of Calabi–Yau 4-folds, Adv. Math. 338 (2018) 601.

[25] G. Bonelli, N. Fasola, A. Tanzini and Y. Zenkevich, ADHM in 8d,
coloured solid partitions and Donaldson–Thomas invariants on orbifolds,
arXiv:2011.02366.



✐

✐

ł2-Szabož Ð 2024/7/1 Ð 9:13 Ð page 1753 Ð #89
✐

✐

✐

✐

✐

✐

Instanton Counting and DonaldsonśThomas Theory 1753

[26] T. Kimura, Double quiver gauge theory and BPS/CFT correspondence,
arXiv:2212.03870.

[27] Y. Cao, M. Kool and S. Monavari, A Donaldson–Thomas crepant reso-
lution conjecture on Calabi–Yau 4-folds, arXiv:2301.11629.

[28] Y. Cao and Y. Toda, Counting perverse coherent systems on Calabi–Yau
4-folds, arXiv:2009.10909.

[29] B. Szendrői, Noncommutative Donaldson–Thomas invariants and the
conifold, Geom. Topol. 12 (2008) 1171.

[30] N. Seiberg and E. Witten, String theory and noncommutative geometry,
JHEP 09 (1999) 032.

[31] N. Nekrasov, Seiberg–Witten prepotential from instanton counting, Adv.
Theor. Math. Phys. 7 (2003) 831.

[32] D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande, Gro-
mov–Witten theory and Donaldson–Thomas theory, II, Compos. Math.
142 (2006) 1286.

[33] R. J. Szabo, N = 2 gauge theories, instanton moduli spaces and geomet-
ric representation theory, J. Geom. Phys. 109 (2016) 83.

[34] N. Fasola, S. Monavari and A. T. Ricolfi, Higher rank K-theoretic
Donaldson–Thomas theory of points, Forum Math. Sigma 9 (2021) e15.

[35] B. Young and J. Bryan, Generating functions for colored 3D Young di-
agrams and the Donaldson–Thomas invariants of orbifolds, Duke Math.
J. 152 (2010) 115.

[36] Z. Zhou, Donaldson–Thomas theory of [❈2/❩n+1]×P1, Sel. Math. New
Ser. 24 (2018) 3663.

[37] N. Nekrasov, BPS/CFT correspondence: Non-perturbative Dyson–
Schwinger equations and qq-characters, JHEP 03 (2016) 181.

[38] Y. Cao, M. Kool and S. Monavari, K-Theoretic DT/PT correspondence
for Toric Calabi–Yau 4-Folds, Commun. Math. Phys. 396 (2022) 225.

[39] N. Nekrasov, BPS/CFT correspondence II: Instantons at crossroads,
moduli and compactness theorem, Adv. Theor. Math. Phys. 21 (2017)
503.

[40] E. Pomoni, W. Yan and X. Zhang, Tetrahedron instantons, Commun.
Math. Phys. 393 (2022) 781.



✐

✐

ł2-Szabož Ð 2024/7/1 Ð 9:13 Ð page 1754 Ð #90
✐

✐

✐

✐

✐

✐

1754 R. J. Szabo and M. Tirelli

[41] R. J. Szabo and M. Tirelli, Noncommutative instantons in diverse di-
mensions, arXiv:2207.12862.

[42] H. Kanno, Quiver matrix model of ADHM type and BPS state counting
in diverse dimensions, PTEP 2020 (2020) 11B104.

[43] E. Corrigan, C. Devchand, D. B. Fairlie and J. Nuyts, First order equa-
tions for gauge fields in spaces of dimension greater than four, Nucl.
Phys. B 214 (1983) 452.

[44] D. Joyce, Compact 8-manifolds with holonomy Spin(7), Invent. Math.
123 (1996) 507.

[45] J. D. Lotay and T. B. Madsen, Instantons on flat space: Explicit con-
structions, arXiv:2204.11517.

[46] A. D. Popov and R. J. Szabo, Double quiver gauge theory and nearly
Kähler flux compactifications, JHEP 02 (2012) 033.

[47] L. Baulieu and I. M. Singer, Topological Yang–Mills symmetry, Nucl.
Phys. B Proc. Suppl. 5 (1988) 12.

[48] M. Blau and G. Thompson, Euclidean SYM theories by time reduction
and special holonomy manifolds, Phys. Lett. B 415 (1997) 242.

[49] P. D. Bartolomeis and G. Tian, Stability of complex vector bundles, J.
Diff. Geom. 43 (1996) 231.

[50] Y. Cao and N. C. Leung, Orientability for gauge theories on Calabi–Yau
manifolds, Adv. Math. 314 (2017) 48.

[51] Y. Cao, J. Gross and D. Joyce, Orientability of moduli spaces of Spin(7)-
instantons and coherent sheaves on Calabi–Yau 4-folds, Adv. Math. 368
(2020) 107134.

[52] A. Bojko, Orientations for DT invariants on quasi-projective Calabi–
Yau 4-folds, Adv. Math. 388 (2021) 107859.

[53] Y.-H. Kiem and H. Park, Localizing virtual cycles for Donaldson–
Thomas invariants of Calabi–Yau 4-folds, arXiv: 2012.13167.

[54] T. Graber and R. Pandharipande, Localization of virtual classes, Invent.
Math. 135 (1999) 487.

[55] Y. Hiraoka, Eight-dimensional noncommutative instantons and D0–D8
bound states with B-field, Phys. Lett. B 536 (2002) 147.



✐

✐

ł2-Szabož Ð 2024/7/1 Ð 9:13 Ð page 1755 Ð #91
✐

✐

✐

✐

✐

✐

Instanton Counting and DonaldsonśThomas Theory 1755

[56] F. Fucito, J. F. Morales and R. Poghossian, The chiral ring of gauge
theories in eight dimensions, JHEP 04 (2021) 198.

[57] M. Billò, M. Frau, F. Fucito, L. Gallot, A. Lerda and J. F. Morales, On
the D(–1)–D7-brane systems, JHEP 04 (2021) 096.

[58] N. Nekrasov and A. S. Schwarz, Instantons on noncommutative ❘4 and
(2,0) superconformal six-dimensional theory, Commun. Math. Phys. 198
(1998) 689.

[59] A. Sen, Tachyon condensation on the brane–anti-brane system, JHEP
08 (1998) 012.

[60] A. A. Henni and D. M. Guimarães, A note on the ADHM description
of Quot schemes of points on affine spaces, Int. J. Math. 32 (2021)
2150031.

[61] A. Cazzaniga and A. T. Ricolfi, Framed sheaves on projective space and
Quot schemes, Math. Z. 300 (2022) 745.

[62] H. Awata and H. Kanno, Quiver matrix model and topological partition
function in six dimensions, JHEP 07 (2009) 076.

[63] S. Monavari, Canonical vertex formalism in DT theory of toric Calabi–
Yau 4-folds, J. Geom. Phys. 174 (2022) 104466.

[64] M. Kool and J. V. Rennemo, Proof of a magnificent conjecture, in
preparation.

[65] G. W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs
branches, Commun. Math. Phys. 209 (2000) 97.

[66] G. W. Moore, N. Nekrasov and S. Shatashvili, D-particle bound states
and generalized instantons, Commun. Math. Phys. 209 (2000) 77.

[67] K. Mohri, D-branes and quotient singularities of Calabi–Yau fourfolds,
Nucl. Phys. B 521 (1998) 161.

[68] H. García-Compéan and A. M. Uranga, Brane box realization of chiral
gauge theories in two-dimensions, Nucl. Phys. B 539 (1999) 329.

[69] S. Franco, D. Ghim, S. Lee, R.-K. Seong and D. Yokoyama, 2d (0,2)
Quiver gauge theories and D-Branes, JHEP 09 (2015) 072.

[70] H.-W. Lin, On crepant resolution of some hypersurface singularities and
a criterion for UFD, Trans. Amer. Math. Soc. 354 (2002) 1861.



✐

✐

ł2-Szabož Ð 2024/7/1 Ð 9:13 Ð page 1756 Ð #92
✐

✐

✐

✐

✐

✐

1756 R. J. Szabo and M. Tirelli

[71] D. D. Joyce, Deforming Calabi–Yau orbifolds, Asian J. Math. 3 (1999)
853.

[72] P. S. Aspinwall, Resolution of orbifold singularities in string theory,
AMS/IP Stud. Adv. Math. 1 (1996) 355.

[73] K. S. Narain, M. H. Sarmadi and C. Vafa, Asymmetric orbifolds, Nucl.
Phys. B 288 (1987) 551.

[74] S. Alexandrov, Twistor approach to string compactifications: a review,
Phys. Rept. 522 (2013) 1.

[75] M. R. Douglas, B. Fiol and C. Romelsberger, The spectrum of BPS
branes on a noncompact Calabi–Yau, JHEP 09 (2005) 057.

[76] A. Degeratu, Geometrical McKay correspondence for isolated singulari-
ties, arXiv:math/0302068.

[77] Y. Ito and I. Nakamura, McKay correspondence and Hilbert schemes,
Proc. Japan Acad. Ser. A 72 (1996) 135.

[78] T. Bridgeland, A. King and M. Reid, The McKay correspondence as an
equivalence of derived categories, J. Amer. Math. Soc. 14 (2001) 535.

[79] M. R. Douglas and G. W. Moore, D-branes, quivers, and ALE instan-
tons, arXiv:hep-th/9603167.

[80] C. V. Johnson and R. C. Myers, Aspects of type IIB theory on ALE
spaces, Phys. Rev. D 55 (1997) 6382.

[81] M. R. Douglas, B. R. Greene and D. R. Morrison, Orbifold resolution
by D-branes, Nucl. Phys. B 506 (1997) 84.

[82] R. Yamagishi, Moduli of G-constellations and crepant resolutions I: the
abelian case, arXiv:2209.11900.

[83] W. Fulton, Introduction to Toric Varieties. Princeton University Press,
1993.

[84] Y. Sato, Crepant resolutions and HilbG(❈4) for certain abelian subgroups
for SL(4,❈), arXiv:1905.06244.

[85] D. Lüst, S. Reffert, E. Scheidegger and S. Stieberger, Resolved toroidal
orbifolds and their orientifolds, Adv. Theor. Math. Phys. 12 (2008) 67.

[86] A. Savage, Finite-dimensional algebras and quivers, in Encyclopedia of
Mathematical Physics, pp. 313ś320, Elsevier, 2006.



✐

✐

ł2-Szabož Ð 2024/7/1 Ð 9:13 Ð page 1757 Ð #93
✐

✐

✐

✐

✐

✐

Instanton Counting and DonaldsonśThomas Theory 1757

[87] R. Abuaf, Categorical crepant resolutions for quotient singularities,
Math. Z. 282 (2016) 679.

[88] M. Wemyss, Noncommutative resolutions, Math. Sci. Res. Inst. Publ.
64 (2016) 239.

[89] M. Van den Bergh, Noncommutative crepant resolutions, an overview,
Proc. Int. Cong. Math. 7 (2022) 2.

[90] A. Craw, D. Maclagan and R. R. Thomas, Moduli of McKay quiver
representations I. The coherent component, Proc. London Math. Soc 95
(2007) 179.

[91] M. Wemyss, Flops and clusters in the homological minimal model pro-
gramme, Invent. Math. 211 (2018) 435.

Department of Mathematics, Heriot–Watt University

Edinburgh, EH14 4AS, UK

Maxwell Institute for Mathematical Sciences

Edinburgh, EH8 9BT, UK

Higgs Centre for Theoretical Physics

Edinburgh, EH9 3JZ, UK

E-mail address: R.J.Szabo@hw.ac.uk

Department of Mathematics, Heriot–Watt University

Edinburgh, EH14 4AS, UK

Maxwell Institute for Mathematical Sciences

Edinburgh, EH8 9BT, UK

E-mail address: mt2001@hw.ac.uk



✐

✐

ł2-Szabož Ð 2024/7/1 Ð 9:13 Ð page 1758 Ð #94
✐

✐

✐

✐

✐

✐


	Introduction
	Eight-Dimensional cohomological gauge theory
	Orbifolds of the Eight-Dimensional theory
	The (2,0) orbifolds C2/ZnC2
	The (3,0) orbifold C3/(Z2Z2)C
	Appendix Generalized ADHM construction
	Appendix Infinite product formulas  for instanton partition functions
	References

