
✐

✐

“3-Tan” — 2024/7/1 — 9:43 — page 1759 — #1
✐

✐

✐

✐

✐

✐

ADV. THEOR. MATH. PHYS.
Volume 27, Number 6, 1759–1812, 2023

Vafa-Witten theory:

invariants, Floer homologies, Higgs bundles,

a geometric Langlands correspondence,
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We revisit Vafa-Witten theory in the more general setting whereby
the underlying moduli space is not that of instantons, but of the
full Vafa-Witten equations. We physically derive (i) a novel Vafa-
Witten four-manifold invariant associated with this moduli space,
(ii) their relation to Gromov-Witten invariants, (iii) a novel Vafa-
Witten Floer homology assigned to three-manifold boundaries, (iv)
a novel Vafa-Witten Atiyah-Floer correspondence, (v) a proof and
generalization of a conjecture by Abouzaid-Manolescu in [2] about
the hypercohomology of a perverse sheaf of vanishing cycles, (vi) a
Langlands duality of these invariants, Floer homologies and hyper-
cohomology, and (vii) a quantum geometric Langlands correspon-
dence with purely imaginary parameter that specializes to the clas-
sical correspondence in the zero-coupling limit, where Higgs bun-
dles feature in (ii), (iv), (vi) and (vii). We also explain how these
invariants and homologies will be categorified in the process, and
discuss their higher categorification. We thereby relate differential
and enumerative geometry, topology and geometric representation
theory in mathematics, via a maximally-supersymmetric topologi-
cal quantum field theory with electric-magnetic duality in physics.
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1. Introduction

For an N = 4 SYM theory on a Euclidean four-manifold M4 with gauge
group G, where G is a real, simple, compact Lie group, one can perform
topological twisting in three different ways [40], allowing one to end up with
three different twisted theories. The multiplet of an N = 4 theory contains
a single gauge gauge boson Aµ (µ = 1, 2, 3, 4) with spin 1, gauge fermions
λiα and λiα̇ (α̇, α = 1, 2) with spin 1

2 , and six adjoint-valued bosonic scalars
ϕij = −ϕji (i = 1, 2, 3, 4) with spin 0 in the six-dimensional representation
of its SU(4)R R-symmetry. Here, µ represents spacetime indices; α, α̇ rep-
resents spinor indices of SU(2)L ⊗ SU(2)R of spacetime; and i, j represent
the internal indices of SU(4)R.

∗

The idea of twisting in order to shift the spin of the supercharges such
that they behave as scalars whence they are insensitive to the geometry of
M4, was pioneered by Witten in [39]. To explain twisting, first notice that
the sixteen fermions λiα, λ

i
α̇ and thus, the sixteen supercharges Qi

α, Qi
α̇,

transform under SU(4)R. Then, twisting just involves making a choice of
homomorphism SO(4)→ SU(4)R of the spacetime symmetry group to the

∗One can obtain N = 4 SYM in 4d from a dimensional reduction of N = 1
supersymmetry in 10d, by compactifying along six dimensions. This explains the
adjoint-valued bosonic scalar fields being in the six-dimensional representation of
the internal SU(4)R R-symmetry.
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R-symmetry group, whence the aforementioned shift in the spin of the su-
percharges can be effected. This will modify the spins of not just the λi’s
and Qi’s (where they are necessarily shifted in the same way), but also that
of the ϕi’s (as they also transform under SU(4)R). Amongst the sixteen
supercharges with shifted spins, one can always find scalar supercharges Q
such that Q2 = 0. Because Q is insensitive to the geometry of M4, it is a
topological supercharge whereby the generated supersymmetry remains un-
broken under smooth metric deformations of M4. This ‘shifted’ theory with
topological supercharge Q, is also known as a (cohomological) Topological
Quantum Field Theory (TQFT).

A feature of such a TQFT is that the action can be expressed as

(1) S = {Q,V}+ topological term,

where V is called a gauge fermion. This allows us to rescale V whilst leaving
the path integral invariant (since the expectation value of any operator of
the form {Q, . . . } is zero), whence we can compute the path integral exactly
using a convenient rescaling of V for which its contributions localize to a
finite-dimensional moduli space.

That such a TQFT is independent of the metric can be seen from the
fact that its energy-momentum tensor δS/δgµν = Tµν is Q-exact, i.e., it can
be written as Tµν = {Q, Gµν} for a certain fermionic symmetric tensor Gµν ,
whence a variation of the metric would leave the path integral invariant
(according to our explanation in the last paragraph). That being said, it
is only in this sense that the word ‘topological’ holds, since TQFT’s are
not independent of all non-topological information. We will see that there
are dependencies on symplectic structures when dimensional reduction via
a deformation of the metric is performed later.

Another feature of such a TQFT, is that the nilpotency of Q means that
one can define its spectrum to be the Q-cohomology of Q-closed operators
which are not Q-exact that therefore have nonvanishing expectation values.
These Q-supersymmetric operators correspond to certain BPS states of the
original N = 4 theory. Moreover, their correlation functions are topological
invariants of M4, whence they have useful mathematical applications.

Last but not least, note that anything that is Q-exact is cohomologous
to zero. That the action can be expressed as (1) means that it is actually zero
in Q-cohomology. This just reflects the fact that there are no field dynamics
of the theory (since supersymmetry will allow us to integrate out non-zero
modes up to a factor of ±1 in the path integral). In other words, the crux
of any TQFT is in the structure of its zero modes. This is also consistent
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with the observation that the Hamiltonian of TQFT’s, H ∼ T00 = {Q, G00},
is also zero in Q-cohomology, i.e., only ground states are relevant in the
spectrum of a TQFT.

In this paper, we will concern ourselves with the twist leading to the the-
ory studied in [37], also known as Vafa-Witten (VW) theory. Unlike in [37],
we will consider the more general setting whereby the underlying moduli
space is not that of instantons, but of the full Vafa-Witten equations. We
will explore and elucidate the mathematical implications of this theory by
exploiting its invariance under metric deformations of the underlying M4,
and its electric-magnetic S-duality.

Let us now give a brief plan and summary of the paper.

2. A brief plan and summary of the paper

In 3, we discuss general aspects of the VW twist leading up to the action
with complexified gauge coupling parameter τ , where the theory will localize
on a virtually zero-dimensional moduli space of configurations satisfying the
VW equations. We then give a physical, path integral derivation of a novel
τ -dependent Vafa-Witten invariant of M4, as the partition function of VW
theory, in (42):

(2) ZVW,M4
(τ,G) =

∑

k

akq
mk .

Here, q = e2πiτ , k denotes the kth sector of the moduli space MVW of the
VW equations in (36), the number ak is given in (43) as

(3) ak =

∫

Mk
VW

Ω0 ∧ e(TMk
VW

), where Ω0(Mk
VW) = (1 +B4)dimCMk

VW .

B is a coordinate onMk
VW(A,B), e is the signed Euler class of the tangent

bundle TMk
VW

, and mk is the corresponding VW number given in (44) as

(4) mk =
1

8π2

∫

M4

Tr

(

F(k) ∧ F(k) + dB(k) ∧ ⋆DB(k) +B(k) ∧ d(⋆DB(k))

)

,

where A(k) is a one-form G-connection with two-form curvature F(k), and
B(k) is a self-dual two-form.

When B = 0, ak will become the Euler characteristic χ(Mk
inst), while

mk will become the instanton number. Then, ZVW,M4
will just become the

usual partition function for instantons first derived in [37], as expected.
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In Section 4, we compactify VW theory on M4 = Σ× C along C, where
both Σ and C are closed Riemann surfaces, and C has a genus g ≥ 2. This al-
lows us to arrive at an A-model in complex structure I on Σ with N = (4, 4)
supersymmetry and target space MG

H(C), the moduli space of Hitchin’s
equations on C. In complex structure I, MG

H(C) can be identified with
MG

Higgs(C), the moduli space of stable Higgs G-bundles on C. We then
show that the partition function of the A-model in (68) gives a τ -dependent
Gromov-Witten (GW) invariant in (72):

(5) ZGW,Σ(τ,MG
Higgs(C)) =

∑

l

ãlq
m̃l ,

where l denotes the lth sector of the moduli space Mmaps of holomorphic
maps described in (67) for genus one, the rational number ãl is given in (70)
as

(6) ãl =

∫

Ml
maps

e(V),

where e is the signed Euler class of the vector bundle V with fiberH0(Σ,K ⊗
Φ∗T ∗Ml

maps) and canonical bundle K on Σ, and m̃l is the corresponding
worldsheet instanton number given in (71) as

(7) m̃l =
1

2π

∫

Σ
Φ∗
l (ωI).

Here, ωI is the symplectic two-form ofMG
Higgs(C)). In turn, the topological

invariance of VW theory will mean that we have a 4d-2d correspondence of
partition functions in (73), whence we have a correspondence between the
VW and GW invariants in (74):

(8) ZVW,M4
(τ,G) = ZGW,Σ(τ,MG

Higgs(C)).

In other words, we have a correspondence between the VW invariant of
M4 = Σ× C and the GW invariant ofMG

Higgs(C)). In fact, (74) means that
we have, in (75),

(9) ak = ãl.

Thus, one can also determine the ak’s, the VW invariants of T 2 × C, via the
signed Euler class of a bundle V overMl

maps.
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In Section 5, we consider boundary VW theory on M4 =M3 × R+, with
M3 a closed three-manifold, where in temporal gauge, one can now interpret
A and B as one-forms on M3. Then, we will recast the 4d theory as 1d
supersymmetric quantum mechanics (SQM) on A, the space of all complex-
ified connections A = A+ iB of a GC-bundle on M3,

† with potential being
the complex Chern-Simons functional, which action is (90). This will in turn
allow us to compute the partition function as (99):

ZVW,M4
(τ,G) =

∑

k

FG,τ
VW(Ψk

M3
)

=
∑

k

HFVW
dk

(M3, G, τ) = ZFloer
VW,M3

(τ,G).(10)

Here, HFVW
∗ (M3, G, τ) is a novel Vafa-Witten Floer homology assigned to

M3 defined by the Morse functional in (96):

(11) CS(A) = − 1

4π2

∫

M3

Tr

(

A ∧ dA+
2

3
A ∧A ∧A

)

,

with Floer differential described by the gradient flow equation (97):

(12)
dAi

dt
= −sgijA

∂CS(A)
∂Aj

,

where the τ -dependence is due to a factor of qsk that is present in the kth

term of the above summation, and the number sk is given in (100) as
(13)

sk =
1

8π2

∫

M3

Tr

(

A(k) ∧ dA(k) +
2

3
A(k) ∧A(k) ∧A(k) +B(k) ∧ ⋆DB(k)

)

.

Here, (A(k), B(k)) are the kth time-invariant solution to the VW equations
on M3 × R+ restricted to M3.

In Section 6, we continue with an M4 =M3 × R+ and perform a Hee-
gaard split of M3 along the Riemann surface C. Topological invariance of
VW theory then allows us to compactify C and equate the resulting theory
with the original uncompactified theory. Via the calculations in Section 4,
we find that the resulting theory is an open A-model with boundaries given
by Lagrangian (A,B,A)-branes L0 and L1 in MG

Higgs(C), where they rep-
resent solutions to the relevant equations on the left and right Heegaard

†GC denotes a complex (algebraic reductive) group, that is a complexification
of G.



✐

✐

“3-Tan” — 2024/7/1 — 9:43 — page 1765 — #7
✐

✐

✐

✐

✐

✐

Vafa-Witten theory 1765

split pieces of M3, respectively. Then, via the expression (10) for the orig-
inal theory, we will be able to obtain a novel Vafa-Witten Atiyah-Floer
correspondence in (109) as

(14) HFVW
∗ (M3, G, τ) ∼= HFLagr

∗

(

MG
Higgs(C), L0, L1, τ

)

,

where HFLagr
∗ is the Lagrangian Floer homology of L0 and L1 inMG

Higgs(C).
Also, a hypercohomology HP∗(M3) of a perverse sheaf of vanishing cycles

in the moduli space of irreducible flat SL(2,C)-connections on M3 was con-
structed by Abouzaid-Manolescu in [2], where it was conjectured to be iso-
morphic to instanton Floer homology assigned to M3 for the complex gauge
group SL(2,C). We proceed further in this section to physically prove this
conjecture. To this end, we first physically realize the result of [10, Remark
6.15] in (111) as

(15) HP∗(M3) ∼= HFLagr
∗

(

Xirr(C), L0, L1, τ
)

,

where Xirr(C) is the moduli space of irreducible flat SL(2,C)-connections on
C. Next, from (11) and (12), and the fact that the (A,B,A)-branes L0 and
L1 can also be interpreted as Lagrangian branes inMG

H(C) in complex struc-
ture K i.e., MGC

flat(C), the moduli space of irreducible flat GC-connections
on C, we find that (14) can also be expressed as an Atiyah-Floer correspon-
dence for GC-instantons, whence for GC = SL(2,C), the RHS of (15) can
be identified with the LHS of (14), such that we will have in (113)

(16) HP∗(M3) ∼= HFinst
∗ (M3, SL(2,C), τ),

for some value of τ . This is exactly the aforementioned conjecture by Abouzaid-
Manolescu in [2].

Clearly, since the underlying VW theory is defined for general G, the
above results for SL(2,C) can be generalized to GC. In particular, we have,
in (115),

(17) HP∗(M3, GC) ∼= HFLagr
∗

(

MGC

flat(C), L0, L1, τ
)

,

which again physically realizes the result of [10, Remark 6.15], and, in (114),

(18) HP∗(M3, GC) ∼= HFinst
∗ (M3, GC, τ),

which is a GC generalization of the Abouzaid-Manolescu conjecture. Our
physically derived generalization is also consistent with their arguments in [2,
sect. 9.1] which show that a generalization to SL(N,C) is mathematically
possible.
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In Section 7, we will show that S-duality of VW theory will result in a
Langlands duality of the invariants, Floer homologies and hypercohomology
stated hitherto. Specifically, we have, in (116),

(19) ZVW,M4
(τ,G)←→ ZVW,M4

(

− 1

ngτ
, LG

)

,

a Langlands duality of VW invariants of M4. In (117),

(20) ZGW,Σ

(

τ,MG
Higgs(C)

)

←→ ZGW,Σ

(

− 1

ngτ
,MLG

Higgs(C)
)

,

a Langlands duality of GW invariants that can be interpreted as a mirror
symmetry of Higgs bundles. In (119),

(21) HFVW
∗ (M3, G, τ)←→ HFVW

∗

(

M3,
LG,− 1

ngτ

)

,

a Langlands duality of VW Floer homologies assigned to M3. In (121),

HFLagr
∗

(

MG
Higgs(C), L0, L1, τ

)

←→ HFLagr
∗

(

MLG
Higgs(C), L0, L1,−

1

ngτ

)

,(22)

a Langlands duality of Lagrangian Floer homologies of Higgs bundles. And
lastly, in (122),

(23) HP∗(M3, GC, τ)←→ HP∗(M3,
LGC,−1/ngτ),

a Langlands duality of the Abouzaid-Manolescu hypercohomology of a per-
verse sheaf of vanishing cycles in the moduli space of irreducible flat complex
connections on M3.

Figure 1. The physical approach taken in this paper.
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In Section 8, we will show that S-duality of VW theory will also result
in a geometric Langlands correspondence. Specifically, we have, in (125),

(24) CatA-branes

(

τ,MG
Higgs(C)

)

←→ CatA-branes

(

− 1

ngτ
,MLG

Higgs(C)
)

,

a homological mirror symmetry of a τ -dependent (derived) category of A-
branes on the space of Higgs bundles, where if Re(τ) = 0, we have, in (126),

(25) Dc
−h∨-mod

(

q,BunGC

)

←→ Dc
−Lh∨-mod

(

− 1

ngq
, BunLGC

)

,

a quantum geometric Langlands correspondence for complex group GC with
complex curve C and purely imaginary parameter q. Furthermore, in the
zero-coupling, ‘classical’ limit of VW theory in G where Im(τ)→∞ whence
q →∞, we have, in (127),

(26) Catcoh
(

MGC

flat(C)
)

←→ Dc
−Lh∨-mod

(

0, BunLGC

)

,

a classical geometric Langlands correspondence forGC with complex curve C.

In Section 9, we will present a novel web of mathematical relations,
summarizing the dualities, correspondences, and identifications between the
various mathematical objects we physically derived in Section 3–8 starting
from VW theory, in Fig. 6. We will go on to explain how the VW invariant
will be systematically categorified in our framework as depicted in (132):

ZVW
categorification−−−−−−−−−→ HFVW

∗
categorification−−−−−−−−−→ CatA-branes

categorification−−−−−−−−−→ 2-Catmod-cat

(

FF-cat(T 2)
)

(27)

where Fig. 6 will be enhanced to Fig. 7.
In summary, the physical approach that we have taken in this paper is

given in Fig. 1, where it will lead us to the novel mathematical relations in
Fig. 2.

3. Vafa-Witten twist of N = 4 gauge theory,
and a Vafa-Witten invariant

In this section, we start by reviewing aspects of VW theory onM4 with gauge
group G necessary for this paper, referring to [28, 37]. We then physically
derive a novel VW invariant of M4.
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Figure 2. A novel web of mathematical relations stemming from Vafa-
Witten Theory.

3.1. Vafa-Witten theory

First, note that in Euclidean signature (the case natural to TQFT’s), we can
express the 4d spacetime group as SO(4) = SU(2)L ⊗ SU(2)R. Next, note
that forN = 4 supersymmetry in 4d, we have an SU(4)R R-symmetry group
that can be broken down and expressed as SO(4)R = SU(2)A ⊗ SU(2)B.
Then, in order to obtain the VW-twist of [37], we just need to replace
the SU(2)L ⊂ SO(4) with SU(2)L′ , the diagonal subgroup of SU(2)L and
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SU(2)A. The resulting fields will consequently have quantum numbers corre-
sponding to the total group SU(2)L′ ⊗ SU(2)R ⊗ SU(2)B. The field content
of the N = 4 theory is then modified as follows:

(28)

Aαα̇ → Aαα̇ (2,2,1),

ϕij → Bαβ (3,1,1) , Cab (1,1,3),

λiα̇ → ψa
αα̇ (2,2,2),

λiα → χa
αβ (3,1,2) , ηa (1,1,2).

In (28), the labels a, b represent indices for SU(2)B; the labels α, α̇ represent
spinor indices. The supercharges Qi

α and Qi
α̇, being fermions, are modified

in the same way as the gauge fermions λiα and λiα̇ to

(29)
Qi

α → Qa
αβ (3,1,2), Qa (1,1,2),

Qi
α̇ → Qa

αα̇ (2,2,2).

The VW twist thus produces a scalar supercharge Qa within an SU(2)B
doublet. We now split the fields along their SU(2)B representation. There
are 3 independent components for Cab (being in the 3 of SU(2)B), and
we will label them as separate scalar fields C(0), ϕ(+2) and ϕ̄(−2). Here
C(0) represents the field C with a ghost number of 0. Similarly, ψa

αα̇ will
be labelled as ψαα̇(+1) and χ̃αα̇(−1); χa

αβ will be labelled as χαβ(−1) and

ψ̃αβ(+1); and ηa will be labelled as η(−1) and ζ(+1). The two bosonic fields
Aµ(0) and Bαβ(0) remain unchanged since they are singlets of SU(2)B. We
can also split Qa into Q±.

The supersymmetry transformations are then

[Q+, A] = ψ, {Q+, ψ} = −Dϕ,
[Q+, B] = ψ̃, {Q+, ψ̃} = [ϕ,B],

[Q+, C] = ζ, {Q+, ζ} = [ϕ,C],

[Q+, ϕ] = 0,

[Q+, ϕ̄] = η, {Q+, η} = [ϕ, ϕ̄],

{Q+, χ̃} = H̃, [Q+, H̃] = [ϕ, χ̃],

{Q+, χ} = H, [Q+, H] = [ϕ, χ],

[Q−, A] = −χ̃, {Q−, χ̃} = Dϕ̄,
[Q−, B] = −χ, {Q−, χ} = [ϕ̄, B],

[Q−, C] = −η, {Q−, η} = [ϕ̄, C],

[Q−, ϕ̄] = 0,

[Q−, ϕ] = ζ, {Q−, ζ} = [ϕ̄, ϕ],

{Q−, ψ} = −H̃, [Q−, H̃] = [ψ, ϕ̄],

{Q−, ψ̃} = H, [Q−, H] = [ϕ̄, ψ̃],

(30)
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satisfying the algebra

(31)

{Q+,Q+} = δg(ϕ),

{Q−,Q−} = δg(ϕ̄),

{Q+,Q−} = δg(C),

where δg represents a gauge transformation. From (30), we see that Q± is
nilpotent up to a gauge transformation. The auxiliary fields H and H̃ have
been included in (30) for (31) to hold off-shell.

We note that despite the existence of two supercharges Q±, linear combi-
nations ofQ± are equivalent up to an SU(2)B symmetry transformation [37].
Hence, it does not matter which of Q± we consider. Therefore, let us use Q+

for our construction of VW theory.
With the complex coupling parameter

(32) τ =
θ

2π
+ i

4π

e2
,

the action can be written as the sum of a Q+-exact term and a topological
term:‡

(33) SVW =
1

e2

∫

M4

d4x
√
gTr{Q+,V} − iτ

4π

∫

M4

TrF ∧ F,

where§

(34)

V = χµν

(

Hµν − 2F+µν

)

+ 2ϕ̄Dµψ
µ

+ χ̃µ

(

H̃µ − 2DµC − 2DνB
νµ

)

− χµν

(

[Bµν , C] +
1

2
[Bµτ , Bν

τ ]

)

− ϕ̄
(

1

2
[ψ̃µν , B

µν ] + 2[ζ, C]

)

+ η[ϕ, ϕ̄].

‡One can also write the action as a Q−-exact term, but we will only show the
case for it being Q+-exact.

§Clebsh-Gordan coefficients (σ)µαα̇ and (σ̄µ)αα̇ allow us to express Aαα̇(σ̄
µ)αα̇ =

Aµ, and (σµν)αβBαβ = Bµν , where (σµν)αβ = 1
4

[

σµσ̄ν − σν σ̄µ
]αβ

.
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Upon integrating out the auxiliary fields H and H̃, we obtain the local-
ization equations by setting to zero {Q+, fermion} in (30):

(35a)

(35b)

(35c)

F+
µν +

1

2
[Bµν , C] +

1

4
[Bµρ, Bλν ]g

ρλ = 0,

DµC +DνB
νµ = 0,

Dϕ = [ϕ,B] = [ϕ,C] = [ϕ, ϕ̄] = 0.

These constitute the BPS equations for the theory, with the zero modes of
Aµ, Bµν , C, ϕ and ϕ̄ that satisfy (35) defining a moduli space which the
path integral localizes on. Like in [39], we can set (the zero modes of) C, ϕ
and ϕ̄ to vanish in (35) if we wish to consider only irreducible connections.In
short, we will henceforth concern ourselves with the following localization
equations:¶

F+
µν +

1

4
[Bµρ, Bλν ]g

ρλ = 0(36a)

DνB
νµ = 0(36b)

This set of equations in (36) have also been studied in [21, 24, 35]. Upon
evaluating (33), the part of SVW involving only A and B is

(37)

SA,B
VW =

1

e2

∫

M4

d4x
√
gTr

(

(

F+
µν +

1

4

[

Bµρ, B
ρ
ν

])2
+ (DµBµν)

2

)

− iτ

4π

∫

M4

Tr

(

F ∧ F + dB ∧ ⋆DB +B ∧ d(⋆DB)

)

,

where we have taken the liberty to add the term {Q+, d(B ∧ χ̃)} (that is
null in the spectrum of VW theory given by the Q+-cohomology), for later
convenience. Also, we have used the fact that B is self-dual, whence ⋆B = B,
and here, D = d+A where ⋆DB is a one-form on M4.

With N = 4 supersymmetry, VW theory posseses an SL(2,Z) symme-
try, having both S-duality and T -duality. On a generic M4, T -duality corre-
sponds to shifting τ → τ + 1, generating a 2π shift of θ, which is a symmetry.
Less obvious is S-duality, which, at the quantum level, says that a theory
with coupling τ and simply-laced gauge group G is isomorphic to a dual

¶The 2-form Bµν need not vanish if the scalar curvature of Kähler M4 and
the gauge group G are not simultaneously non-negative and locally a product of
SU(2)’s [37], and we have assumed this to be the case here.
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theory with the Langlands dual group LG and coupling

(38) Lτ = −1

τ
.

For non-simply-laced gauge groups, the coupling transforms as

(39) Lτ = − 1

ngτ

instead, where ng is the lacing number of the group.

3.2. A Vafa-Witten invariant

The VW equations in (36), and its moduli space, MVW, will now enable
us to furnish a purely physical derivation of a novel Vafa-Witten invariant
of M4.

To this end, first note that an examination of the supersymmetry trans-
formations (30) indicates that the observables for VW theory ought to be
similar to that for Donaldson-Witten (DW) theory. Insertion of these oper-
ator observables Oi into the path integral amounts to computing the corre-
lation function

(40) ⟨
∏

i

Oi⟩VW =

∫

MVW

∏

i

Oie
−SVW ,

where the subscript ‘MVW’ means that the zero modes of A and B in the
path integral measure lie alongMVW. Enforcing R-charge anomaly cancel-
lation, one can interpret the correlation function as an integral of a top-form
onMVW. That said, note that unlike DW theory, VW theory belongs to a
class of TQFT’s called ‘balanced TQFT’, where there is never an R-charge
anomaly [12], whence the virtual dimension ofMVW is always zero.∥ Hence,

∥The virtual dimension of MVW was first computed in [28] by analyzing the
deformation complex corresponding to the moduli space of solutions to (35), and
it was shown to be zero for any M4. Specifically, it is given by the number of 1-
form fermion zero modes minus the total number of 2-form and 0-form fermion zero
modes. In our case of (36) where we consider (the zero modes of) C, ϕ and ϕ̄ to
vanish in (35) whence there are no 0-form fermion zero modes by supersymmetry,
the virtual dimension ofMVW continues to be zero [21, 35], reflecting the physical
fact that VW is a balanced TQFT such that there continues to be an equal number
of 1-form and 2-form fermion zero modes.
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the nonvanishing correlation function of VW theory will be

(41) ⟨1⟩VW =

∫

MVW

e−SVW = ZVW,M4
(τ,G),

where ZVW,M4
(τ,G) is the VW partition function that can be interpreted

as an integral of a virtual zero-form on virtually zero-dimensionalMVW,∗∗

whence it can be evaluated as

(42) ZVW,M4
(τ,G) =

∑

k

akq
mk

Here, q = e2πiτ , k denotes the kth sector of MVW, the number ak is given
by

(43) ak =

∫

Mk
VW

Ω0 ∧ e(TMk
VW

) , where Ω0(Mk
VW) = (1 +B4)dimCMk

VW

B is a coordinate onMk
VW(A,B), e is the signed Euler class of the tangent

bundle TMk
VW

, and mk is the corresponding VW number given by
(44)

mk =
1

8π2

∫

M4

Tr

(

F(k) ∧ F(k) + dB(k) ∧ ⋆DB(k) +B(k) ∧ d(⋆DB(k))

)

Notice that ZVW,M4
is a topological invariant ofM4 which is an algebraic

count of VW solutions with corresponding weight given by akq
mk that we

elaborated on above. This defines a novel τ -dependent Vafa-Witten invariant
of M4.

††

When B = 0, ak will become the Euler characteristic χ(Mk
inst), while

mk will become the instanton number. Then, ZVW,M4
will just become the

usual partition function for instantons first derived in [37], as expected.

∗∗Although the virtual dimension is zero, there are still fermion zero modes
in the path integral measure that need to be absorbed for the path integral to
be nonvanishing. One then needs to “pull down” the interaction terms of SVW

in the path integral to absorb these fermion zero modes. These terms can then be
interpreted as a virtual zero-form, where their total contribution to the path integral
would be given by an integral of this virtual zero-form on virtually zero-dimensional
MVW.

††A purely algebro-geometric definition of ZVW,M4
, in particular the ak’s, was

first given by Tanaka-Thomas in in [35], albeit for projective algebraic surfaces only.
The novelty here is that we provide a purely differentio-geometric definition of the
ak’s for a more general M4.
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4. An N = (4, 4) A-model, Higgs bundles
and Gromov-Witten theory

In this section, we will perform dimensional reduction of the 4d VW theory
with action (33) down to 2d. The four-manifold M4 will be taken to be
M4 = Σ× C, where Σ and C are both closed Riemann surfaces, and C is
of genus g ≥ 2. Dimensional reduction is then performed by shrinking C,
whence we will show that we obtain an N = (4, 4) theory in 2d that is a
topological A-model on Σ. In turn, we obtain a correspondence between the
VW invariant of M4 and the GW invariant of Higgs bundles. The method
employed for dimensional reduction will be the one in [6].

4.1. Reduction of 4d terms

We consider a block diagonal metric g for M4 = Σ× C,

(45) g = diag
(

gΣ, ϵgC
)

,

where ϵ is a small parameter to deform gC . We shall use capital letters
A,B = x1, x2 to denote coordinates on Σ, and small letters a, b = x3, x4 to
denote coordinates on C. Taking the limit ϵ→ 0 then gives us a 2d theory
on Σ with N = (4, 4) supersymmetry.‡‡

Deforming the metric inevitably affects the fields in the action, since they
involve contraction of indices by the metric tensor. With the introduction
of the ϵ paramter, the determinant changes by

√
g → ϵ

√
g. Thus, fields that

survive after taking the limit ϵ→ 0 require one contraction of indices a, b on
C, giving a factor of ϵ−1.

On the other hand, terms with higher negative powers of ϵ will blow
up, and we are forced to set to zero these terms to ensure finiteness of the
action. The topological term aside, terms in (37) with µ, ν, ρ = A,B vanish
as ϵ→ 0. For µ, ν, ρ = a, b, each term must be set to zero individually since
the action (37) is a sum of squares . Using F+

µν = 1
2(Fµν +

1
2ϵµνρλF

ρλ), we
obtain a finiteness condition for the first squared term:

(46) F34 +
1

4

[

B3ρ, B
ρ
4

]

= 0.

Since Bµν is an anti-symmetric and self-dual 2-form (Bµν = 1
2ϵµνρλB

ρλ),
there are only 3 independent components which we can take to be B12, B13

‡‡Compactification of an N = 4 theory in 4d on a Riemann surface C breaks
half of the 16 supersymmetries to give an N = (4, 4) theory in 2d.
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and B14. We then perform a final contraction of indices in (46) with gAB to
obtain

(47) F34 −
[

B13, B14

]

= 0

after a rescaling of the metric on Σ and using the self-dual properties of Bµν .
This is our first finiteness condition.

Similarly, the second finiteness condition comes from the other squared
term as

D3B13 +D4B14 = 0(48a)

D3B14 −D4B13 = 0(48b)

where we have used the self-dual properties of Bµν .
Identifying B13 and B14 as the two components of a 1-form φ on C,

equations (47) and (48) are in fact Hitchin’s equations on C [22] given by§§

F − φ ∧ φ = 0(49a)

Dφ = D∗φ = 0(49b)

where

(50) φ = B13dx
3 +B14dx

4 = φ3dx
3 + φ4dx

4

The space of solutions of (AC , φ) to (47) and (48) modulo gauge transfor-
mations then span Hitchin’s moduli spaceMG

H(C) for a connection AC on a
principal G-bundle P over the Riemann surface C, and a section φ ∈ Ω1(C).
The above equations leave the (x1, x2) dependence of AC and φ arbitrary,
and thus the fields (AC , φ) define a map Φ : Σ→MG

H(C).
Another finiteness condition we obtain is

(51) D3B34 = D4B43 = 0,

which again using the self-duality properties of Bµν , we obtain

(52) D3B12 = −D4B12 = 0

The field B12 is a 0-form w.r.t rotations on both C and Σ, so (52) tells us
that the 0-form B12 is covariantly constant on C, which means B12 generates

§§D∗φ = ⋆D ⋆ φ = Dµφ
µ, where ⋆ is the Hodge star operator.
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infinitesimal gauge transformations while leaving AC fixed. We can however
set B12 = 0, since we require gauge connections to be irreducible to avoid
complications onMG

H(C).
For the 2d action on Σ, we require terms with at most one contraction

of indices of C. These are (excluding the topological term for now)

(53)

Seff =
1

e2

∫

d4x
√
gTr

(

(F+
Aa)

2 + (DAB
Aa)2

)

+ fermions

=
1

e2

∫

d4xTr

(

1

2
(F13 − F24)

2 +
1

2
(F14 + F23)

2

+ (∂1B13 + ∂2B14)
2 + (∂1B14 − ∂2B13)

2

)

+ fermions.

We can take F13 = ∂1A3, since A1 does not have derivatives on Σ and are
thus non-dynamical fields which can be integrated out in the 2d action on Σ.
A1 will then be equal to a combination of fermionic fields (and the same goes
for A2). Switching to complex coordinates z = x1 + ix2 and w = x3 + ix4,
we obtain

(54)
Seff =

1

e2

∫

Σ
(idz ∧ dz̄)

∫

C
(idw ∧ dw̄)Tr

(

2∂zAw∂z̄Aw̄ + 4∂zφw̄∂z̄φw

)

+ fermions.

After suitable rescalings, we can then rewrite (54) (with idz ∧ dz̄ = |dz2|)
as
(55)

S2d =
1

e2

∫

Σ
|dz2|gij̄

(

∂zX
ī∂z̄X

j + ∂zX
i∂z̄X

j̄ + ∂zY
ī∂z̄Y

j + ∂zY
i∂z̄Y

j̄

)

+ fermions,

where X corresponds to AC , and Y to φC . Thus, we have an N = (4, 4)
sigma model on Σ,¶¶ which hyper-Kähler target MG

H(C) is split into two
halves, each parameterized by coordinates (Xi, X ī) and (Y i, Y ī) with basis
(αw̄i, αwī) and (βwi, βw̄ī), respectively. The cotangent space toMG

H(C) are
spanned by the one-form fermions ψC and χ̃C , and from (30), we see that
these will be cotangent to AC and φC , respectively. More details about
MG

H(C) will be discussed shortly.

¶¶Even though we have, for brevity, only demonstrated the reduction of the 4d
bosonic terms to 2d bosonic ones, the rest of the 4d fermionic terms can also be
shown to reduce to 2d fermionic ones consistently, a fact that is also guaranteed by
the surviving N = (4, 4) supersymmetry in 2d.
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4.2. BPS equations in 2d and an N = (4, 4) A-model

To obtain the corresponding 2d BPS equations of theN = (4, 4) sigma model
on Σ, we start with the 4d, N = 4 action (37). It is of the form

(56)
1

e2

∫

M4

Tr(|s|2 + |k|2) + topological term,

with

(57)
sµν = F+

µν +
1

4

[

Bµρ, B
ρ
ν

]

,

kν = DµBµν .

By taking s = k = 0, we can also obtain (36), the 4d BPS equations of
VW theory, i.e., the equations which the 4d VW path integral localizes on.
By performing dimensional reduction of (57) on C with s = k = 0, we can
directly obtain the corresponding 2d BPS equations.

Noting the fact that only terms with mixed indices on Σ× C survive the
reduction on C, together with the self-duality properties of Bµν , we obtain,
from (57) and s = k = 0,

(58)
F+
Aa = 0,

DAB
Aa = 0.

Via the first equation, F+ = 0, and its implied anti-self-duality of F , we get

(59)
∂1A3 = ∂2A4,

∂1A4 = −∂2A3.

These are Cauchy-Riemann equations for Aw̄ = 1
2(A3 + iA4). Switching to

complex coordinates as before, (59) can be written as ∂z̄Aw̄ = 0. A similar
computation can be performed for DAB

Aa = 0, where instead, we obtain
the Cauchy-Riemann equations∗∗∗

(60)
∂1B13 = −∂2B14,

∂1B14 = ∂2B13,

for an anti-holomorphic field φw̄ = 1
2(B13 + iB14). In complex coordinates,

(60) becomes ∂zφw̄ = 0. Alternatively, we can also express (60) as ∂z̄φw = 0,

∗∗∗A1, A2 in the covariant derivative can be ignored since we are only considering
bosonic terms for BPS equations.
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with φw = 1
2(B13 − iB14). Seeing that Aw̄ corresponds to Xi and φw to Y i,

we get the 2d BPS equations as

∂z̄X
i = 0(61a)

∂z̄Y
i = 0(61b)

Hence, the path integral of the 2d, N = (4, 4) sigma model on Σ with
action (55), localizes on the moduli space of holomorphic maps Φ(Xi, Y i) :
Σ→MG

H(C):

(62) Mmaps = {Φ(Xi, Y i) : Σ→MG
H(C) | ∂z̄Xi = ∂z̄Y

i = 0}.

In other words, we have a 2d, N = (4, 4) A-model on Σ with targetMG
H(C).

This conclusion has also been anticipated in [6].

4.3. An A-model in complex structure I

The space of fields (AC , φ) span an infinite-dimensional affine spaceW. The
cotangent vectors δAC and δφ toMG

H(C) are solutions to the variations of
equations (47) and (48). We can then introduce a basis (δAw, δφw̄) and
(δAw̄, δφw) in W, where the (flat) metric onMG

H(C) is given by

(63) ds2 = − 1

2π

∫

C
Tr

(

δAw ∧ ⋆δAw̄ + δφw ∧ ⋆δφw̄

)

.

Note thatMG
H(C) is necessarily hyper-Kähler [3]. As a hyper-Kähler mani-

fold, the metric (63) has three independent complex structures I, J and K,
satisfying quarternion relations I2 = J2 = K2 = −1.

From the BPS equations (61), which are ∂z̄Aw̄ = 0 and ∂z̄φw = 0, one
can see that the complex structure relevant to the A-model is I, with linear
holomorphic functions consisting of Aw̄ and φw.

††† In complex structure I,
MG

H(C) can be identified as the moduli space of stable Higgs G-bundles on
C, MG

Higgs(C). One can write the corresponding symplectic form as ωI =
ω′
I − δλI , where

(64) ω′
I = − 1

4π

∫

C
Tr δAC ∧ δAC and λI =

1

4π

∫

C
Trφ ∧ δφ,

and ωI is cohomologous to ω′
I .

†††The holomorphic functions for J are Aw̄ + iφw̄ and Aw + iφw, and for K are
Aw̄ − φw̄ and Aw + φw.
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Comparing the 4d topological term in (37) to (64), we see that the
topological term can be written as

(65) iτ

∫

Σ
Φ∗(ωI).

Clearly, Φ∗ represents a pullback fromMG
Higgs(C) onto Σ. The 2d action (55),

including the topological term, is then

S2d =
1

e2

∫

Σ
|dz2|gij̄

(

∂zX
ī∂z̄X

j + ∂zX
i∂z̄X

j̄ + ∂zY
ī∂z̄Y

j + ∂zY
i∂z̄Y

j̄

)

+iτ

∫

Σ
Φ∗(ωI) + . . .

(66)

where “. . . ” represent fermionic terms. (62) then becomes

(67) Mmaps = {Φ(Xi, Y i) : Σ→MG
Higgs(C) | ∂z̄Xi = ∂z̄Y

i = 0},

the moduli space of holomorphic maps Φ : Σ→MG
Higgs(C). In short, we

have a 2d, N = (4, 4) A-model on Σ with targetMG
Higgs(C).

4.4. Vafa-Witten invariants as Gromov-Witten invariants of
Higgs bundles

The virtual dimension ofMmaps, like that ofMVW, ought to also be zero.
This is because the 2d A-model is obtained via a topological deformation
that sets C → 0 in the original 4d VW theory, whence the relevant index
of kinetic operators counting the virtual dimension of moduli space remains
the same. Thus, as in the 4d case, the nonvanishing correlation function here
is the partition function

(68) ⟨1⟩A,Σ =

∫

Mmaps

e−S2d = Zclosed
A,Σ (τ,MG

Higgs(C)),

where the subscript ‘Mmaps’ means that the zero modes of X and Y in the
path integral measure lie along Mmaps. Like ZVW,M4

in 4d, Zclosed
A,Σ can be

interpreted as an integral of a virtual zero-form on virtually zero-dimensional
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Mmaps, whence it can be evaluated as

(69) Zclosed
A,Σ (τ,MG

Higgs(C)) =
∑

l

ãlq
m̃l .

Here, l denotes the lth sector ofMmaps defined in (67) for genus one Σ, the
rational number ãl is given by [23]

(70) ãl =

∫

Ml
maps

e(V)

where e is the signed Euler class of the vector bundle V with fiberH0(Σ,K ⊗
Φ∗T ∗Ml

maps) and canonical bundle K on Σ, and m̃l is the corresponding
worldsheet instanton number given by

(71) m̃l =
1

2π

∫

Σ
Φ∗
l (ωI)

Notice that Zclosed
A,Σ is an enumerative invariant which is an algebraic

count of holomorphic maps with corresponding weight given by ãlq
m̃l that we

elaborated on above. This coincides with the definition of the GW invariant,
which then means that one can identify Zclosed

A,Σ as

(72) ZGW,Σ(τ,MG
Higgs(C)) =

∑

l

ãlq
m̃l

where ZGW,Σ is a τ -dependent GW invariant ofMG
Higgs(C).

From the topological invariance of the 4d theory, we have a 4d-2d cor-
respondence of partition functions

(73) ZVW,M4
(τ,G) = Zclosed

A,Σ (τ,MG
Higgs(C)),

whence from our above discussion, it will mean that

(74) ZVW,M4
(τ,G) = ZGW,Σ(τ,MG

Higgs(C))

In other words, we have a correspondence between the VW invariant of
M4 = Σ× C and the GW invariant ofMG

Higgs(C)).
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In fact, recall that the numbers m̃l (in (72)) correspond to the numbers
mk (in (42)). Hence, (74) means that we have

(75) ak = ãl

where ak and ãl are given in (43) and (70), respectively. Thus, one can also
determine the ak’s, the VW invariants of T 2 × C, via the signed Euler class
of a bundle V overMl

maps.
‡‡‡

5. A novel Floer homology from
boundary Vafa-Witten theory

In this section, we will show how we can physically derive a novel Floer
homology by considering boundary VW theory on M4 =M3 × R+.§§§ We
will first give a relevant summary of supersymmetric quantum mechanics
(SQM). After which, we will recast the 4d N = 4 boundary VW theory into
an SQM model, which will in turn allow us to physically derive a VW Floer
homology assigned to M3.

5.1. A summary of supersymmetric quantum mechanics

Supersymmetric quantum mechanics is a one-dimensional topological sigma
model with a map ϕ : t→M, where time t parameterizes the worldline, and
M represents a generic target manifold. The worldline can either be closed
or open, i.e., either S1 or R+, but for our purposes, we shall take it to be
open, i.e., R+. For a comprehensive review of SQM, the reader can refer
to [7, 23].

‡‡‡Computing the ãl’s and thus ak’s for T
2 × C explicitly is a purely mathemat-

ical endeavour that is beyond the scope of this physical mathematics paper which
main objective is to furnish their fundamental definitions via the expressions (70)
and (43), respectively. The reader who seeks an explicit computation of these in-
variants may be happy to know that after our work appeared, this was done purely
mathematically in [41].

§§§To be precise, VW theory is still being defined on an M4 with no boundary.
However, to make contact with Floer theory, we will need to examine a hyper-slice
of M4, which we can topologically regard as M3 × I ∼=M3 × R

− ∪M3
M3 × R

+. As
there is no evolution in the R

± time-direction in our topological theory, it suffices
to examine only M3 × R

+, where M3 can then be viewed as a boundary. This
is consistent with the idea that categorification of topological invariants can be
achieved via successive introductions of boundaries to M4, which we will elaborate
upon in §9.
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The action for SQM is of the form

(76) SSQM =

∫

dt

[

i
dϕi

dt
Hi +

1

2
gijHiHj +

1

4
Rij

klψ̄iψ
kψ̄jψ

l − iψ̄i∇tψ
i

]

.

Indices i, j belong toM, with the ϕi’s being coordinates onM. The ψ̄i, ψ
i’s

are Grassmann odd coordinates (that are the supersymmetric partners to
the ϕi’s), and gij is the metric onM. The field Hi is an auxiliary field which
can be integrated out from the action. The covariant derivative ∇t is the
pull-back of the covariant derivative on M to the worldine (parameterized
by) t, and Rij

kl is the Riemann curvature tensor onM.
There is only one nilpotent scalar supersymmetry generator Q, generat-

ing the transformations

(77)

{Q, ϕi} = ψi,

{Q, ψi} = 0,

{Q, ψ̄i} = Hi − ψ̄jΓ
j
ikψ

k,

{Q, Hi} = HjΓ
j
ikψ

k − 1

2
ψ̄jR

j
ilkψ

lψk,

where Γj
ik is the Riemannian connection onM.

One can always generalize the action (78) by including a potential V (ϕ).
The action then becomes

SSQM =

∫

dt

[

i

(

dϕi

dt
+ sgij

∂V (ϕ)

∂ϕj

)

Hi +
1

2
gijHiHj

+
1

4
Rij

klψ̄iψ
kψ̄jψ

l − iψ̄i

(

δij∇t + sgik∇k∂jV (ϕ)

)

ψj

]

,

(78)

where V (ϕ) is some functional onM, and s is a parameter. Upon integrating
out Hi via its equation of motion, (78) becomes

SSQM =

∫

dt

[

1

2

(

dϕi

dt
+ sgij

∂V (ϕ)

∂ϕj

)2

+
1

4
Rij

klψ̄iψ
kψ̄jψ

l − iψ̄i

(

δij∇t + sgik∇k∂jV (ϕ)

)

ψj

]

.

(79)

The resulting action (79) is minimized by the gradient flow equation

(80)
dϕi

dt
+ sgij

∂V

∂ϕj
= 0.
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We thus have (80) as the BPS equation for this theory. One can see that
a non-fixed ϕi satisfying (80) flows along the t-direction between boundary

configurations where ϕ̇i = 0, i.e., it is fixed. Notice that (80) tells us that
these boundary configurations are also critical points of V (ϕ). Thus, this is
similar to how an instanton tunnels between the ground states of a potential.

In non-topological theories, minimisation of the action only gives a semi-
classical approximation to the theory. In supersymmetric topological theo-
ries, which is the case here, the semiclassical approximation is in fact, exact,
as pointed out in the introduction. Specifically, the path integral of the the-
ory localizes on a moduli space defined by (80), whence one can compute
the path integral exactly. A relevant fact at this point is that the ‘squar-
ing argument’ (see [9]) tells us that for (80) to hold identically whence the

path integral localizes, it must be that ϕ̇i = sgij∂V/∂ϕj = 0. In other words,
the path integral of the theory localizes on the fixed critical points of V (ϕ).
Indeed, these fixed points are also time-invariant points that therefore corre-
spond to the Q-cohomology (since its Hamiltonian is necessarily zero), and
the path integral is expected to count just that.

Assuming that the fixed critical points of V (ϕ) are isolated and non-
degenerate, and, for s ̸= 0, each fixed critical point contributes ±1 to the
partition function ZSQM , then

(81) ZSQM =
∑

ϕi: ϕ̇i=dV (ϕi)=0

±1

exactly. Notice that ZSQM is just an algebraic count of the fixed critical
points of V (ϕ), where there are BPS flow lines between these fixed critical
points.

5.2. SQM interpretation of boundary Vafa-Witten theory

Let the manifold of the 4d theory in (37) be M4 =M3 × R+, where the
M3 boundary is a closed three-manifold, and R+ is the ‘time’ coordinate.
We also let spacetime indices take the values µ = 0, 1, 2, 3, with µ = 0 being
the time direction, while µ = i, j, k = 1, 2, 3 being the spatial directions. We
shall first review the method where boundary DW theory can be recast as
an SQM model. Then, we will apply this same method to boundary VW
theory.

5.2.1. Review of SQM interpretation of boundary DW theory.
We first consider a 4d N = 2 topologically twisted boundary DW theory
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of gauge group G with a principal G-bundle P →M4 and nilpotent scalar
supercharge Q. Our aim is to review how this theory can be recast as an
SQM model, as was first done in [8, 9].

Of central importance in DW theory is the BPS equation

(82) F+ = 0,

which characterises instantons. The path integral of the 4d theory localizes
on the moduli space of this equation, i.e., instantons. Using F+

µν = 1
2(Fµν +

1
2ϵµνρλF

ρλ), (82) can be written as

(83) Ȧi +
1

2
ϵijkFjk = 0,

where the temporal gauge A0 = 0 is taken, and Ȧi = F 0i. The boundary
DW action can then be written as

(84)

Sbdry
DW =

1

e2

∫

M4

Tr
(

F+
)2 − iτ

4π

∫

M4

TrF ∧ F + . . .

=
1

e2

∫

dt

∫

M3

Tr
(

Ȧi +
1

2
ϵijkFjk

)2

− iτ

4π

∫

M3

Tr
(

A ∧ dA+
2

3
A ∧A ∧A

)

+ . . . ,

where “. . . ” refers to fermionic terms and scalar fields in the N = 2 multi-
plet. Note that A ∈ Ω1(M3) in the final expression of the topological term,
i.e., it is a one-form on M3.

Next, let A be the space of irreducible connections A on P , where the
cotangent space T ∗

AA to A is spanned by δA. The metric gA on A can
then be defined as

(85) gA =

∫

M3

Tr
(

δA ∧ ⋆δA
)

.

With the metric on A defined as such, one can see that the first term in (84)
resembles the bosonic kinetic term of the SQM action in (79), where ϵijkFjk,
being the gradient vector field of a Chern-Simons functional, means that
V (ϕ) can be interpreted as the Chern-Simons functional itself, while Ȧi =
dAi/dt can be identified with dϕi/dt. The terms indicated by “. . . ” then
give, via equations of motion, the Riemann curvature terms and the fermion
kinetic terms in (79). Altogether, this means that we can interpret (84) as
the action of an SQM model with target M = A that also has a single
nilpotent topological scalar supercharge Q.
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Thus, with the potential on A being the Chern-Simons functional, and
the identification of (83) with (80), we conclude that (83), which is the
instanton equation, can be interpreted as a gradient flow equation between
fixed critical points of the Chern-Simons functional. Hence, just like (81),
assuming that the fixed critical points are isolated and nondegenerate in A ,
the partition function of boundary DW theory will be an algebraic count
of fixed critical points of the Chern-Simons functional, i.e., fixed flat G-
connections on M3, where there are instanton flow lines between these fixed
critical points.

The second term in (84) is a topological term that only contributes to
an overall factor in the path integral. The τ -dependence of this term will not
be important for boundary DW theory. It will, however, play a significant
role in boundary VW theory, as we will explain shortly.

5.2.2. SQM interpretation of boundary VW theory. Likewise, let
us turn to the BPS equations (36) of boundary VW theory, and split the
indices into space and time directions. Using F+

µν = 1
2(Fµν +

1
2ϵµνρλF

ρλ) and

Bµν = 1
2ϵµνρλB

ρλ, we can reexpress the VW equations (36) as

(86)
Ȧi +

1

2
ϵijk

(

Fjk − [Bj , Bk]
)

= 0,

Ḃi + ϵijk
(

∂jBk + [Aj , Bk]
)

= 0,

where the temporal gaugeA0 = 0 is taken,Bi = B0i, ϵijk = ϵ0ijk, andAi, Bi ∈
Ω1(M3).

¶¶¶

Our aim is to recast boundary VW theory into an SQM model, in the
same way that was done for boundary DW theory above. To this end, let us
introduce a complexified connection A = A+ iB ∈ Ω1(M3), of a GC-bundle
on M3. We then find that (86) can be expressed as

(87) Ȧi +
1

2
ϵijkFjk = 0,

where F ∈ Ω2(M3) is the complexified field strength. This is just a complex-
ified gauge field version of (83).

¶¶¶Using self-duality properties, we have B0i = Bi = ϵijkBjk.
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As in the boundary DW theory case, we can write the action for bound-
ary VW theory as

Sbdry
VW =

1

e2

∫

dt

∫

M3

Tr

(

Ȧi +
1

2
ϵijkFjk

)2

− iτ
4π

∫

M3

Tr

(

A ∧ dA+
2

3
A ∧A ∧A+B ∧ ⋆DB

)

+ . . .

(88)

where “. . . ” refers to fermionic terms and scalar fields in the N = 4 multi-
plet.

Now, let A denote the space of complexified connections A. Then, we
can define a metric gA on A in similar fashion to (85) as

(89) gA =

∫

M3

Tr
(

δA ∧ ⋆δA
)

.

Noticing also that ϵijkFjk is a gradient vector field of a complex Chern-
Simons functional, it will then mean that we can rewrite (88) as

Sbdry
VW =

1

e2

∫

dt

(

dAi

dt
+ sgijA

∂V (A)
∂Aj

)2

− iτ
4π

∫

M3

Tr

(

A ∧ dA+
2

3
A ∧A ∧A+B ∧ ⋆DB

)

+ . . .

(90)

where

(91) V (A) = − 1

4π2

∫

M3

Tr

(

A ∧ dA+
2

3
A ∧A ∧A

)

and from (87),

(92)
dAi

dt
+ sgijA

∂V (A)
∂Aj

= 0

One can see that (90) and (92) resemble (79) and (80), respectively,
with A corresponding to ϕ. In fact, the terms in (90) indicated by “. . . ”
give, via equations of motion, the Riemann curvature terms and the fermion
kinetic terms in (an N = 4 generalization of) (79). Altogether, this means
that we can interpret (90) as the action of an SQM model with target A

and a single nilpotent topological scalar supercharge Q+, where (92), which
describes the VW equations, can be interpreted as a gradient flow equation
between fixed critical points (Ȧi = 0) of the potential on A given by (91).
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Hence, just like (81), assuming that the fixed critical points are isolated
and nondegenerate in A, the partition function of boundary VW theory will

be an algebraic count of fixed critical points of the complex Chern-Simons

functional, i.e., fixed flat GC-connections on M3, where there are VW flow

lines between these fixed critical points.

The second term in (90) is a τ -dependent topological term that con-
tributes to an overall factor in the path integral. Contrary to the situation
in boundary DW theory, τ is now scale-invariant, and will thus play a sig-
nificant role in the S-duality of the path integral later.

5.3. A novel Vafa-Witten Floer homology

5.3.1. The spectrum of states of boundary VW theory as states
on M3. Recall from the introduction that for a TQFT such as VW theory,
the Hamiltonian H vanishes in the Q+-cohomology, whence this means that
for any state |O⟩ that is nonvanishing in the Q+-cohomology, we have

H|O⟩ = {Q+, · · · }|O⟩ = Q+(· · · |O⟩) = Q+|O′⟩
= {Q+,O′}|0⟩ = |{Q+,O′}⟩ ∼ 0.

(93)

In other words, the |O⟩’s which span the spectrum of states in VW theory
are actually ground states that are therefore time-invariant. In particular, for
boundary VW theory onM4 =M3 × R+, where R+ is the ‘time’ coordinate,
its spectrum of states is associated only with M3. This will indeed be the
case, as we will see shortly.

Now, for anM4 with boundary ∂M4 =M3, one needs to specify “bound-
ary conditions” on M3 to compute the path integral. We can do this by first
defining a restriction of the fields to M3, which we shall denote as ΨM3

, and
then specifying boundary values for these restrictions. Doing this is equiva-
lent to inserting in the path integral, an operator functional F (ΨM3

) that is
nonvanishing in the Q+-cohomology (so that the path integral will continue
to be topological). This means that the partition functions in boundary VW

This is guaranteed (though not necessary) when all critical points are isolated
and nondegenerate. This can be the case for an appropriate choice of G andM3. For
example, one could choose (1) G compact and M3 of nonnegative Ricci curvature
such as a three-sphere or its quotient, or (2) an M3 with a finite GC representation
variety, and introduce physically-trivial Q-exact terms to the action to perturb
V (A). We would like to thank A. Haydys for discussions on this.
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theory can be computed as [39, eqn. (4.12)]

(94) ⟨1⟩F (ΨM3
) =

∫

MVW

F (ΨM3
) e−Sbdry

VW .

In other words, we can write the partition function on M4 as

(95) ZVW,M4
(τ,G) = ⟨1⟩F (ΨM3

) =
∑

k

FG,τ
VW(Ψk

M3
).

Here, the summation in ‘k’ is over all sectors of MVW labeled by the VW
number mk, and FG,τ

VW(Ψk
M3

) is the kth contribution to the partition func-
tion that depends on the expression of F (ΨM3

) in the bosonic fields on M3

evaluated over the corresponding solutions of the VW equations restricted
to M3.

What else can we say about FG,τ
VW(Ψk

M3
)?

5.3.2. A novel Vafa-Witten Floer homology assigned to M3. To
this question, first note that in the previous subsection, we showed that
boundary VW theory onM3 × R+ can also be interpreted as an SQM model
on A, the space of complexifed connections A on M3, and the partition
function can be expressed as an algebraic count of fixed critical points of
the complex Chern-Simons functional (91), i.e., fixed flat GC-connections
on M3, where there are VW flow lines between these fixed critical points
described by the gradient flow equation (92).

Next, note that according to [16], the fixed critical points as described
above, just generate a Floer complex with Morse functional

(96) CS(A) = − 1

4π2

∫

M3

Tr

(

A ∧ dA+
2

3
A ∧A ∧A

)

the complex Chern-Simons functional, where the VW flow lines, described
by the gradient flow equation

(97)
dAi

dt
= −sgijA

∂CS(A)
∂Aj

can be interpreted as the Floer differential, whence the number of outgoing
flow lines at each fixed critical point would be the degree of the corresponding
chain in the complex.
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In other words, we can also write (95) as

(98) ZVW,M4
(τ,G) =

∑

k

Fk
VW-Floer(M3, G, τ),

where each Fk
VW-Floer(M3, G, τ) can be identified with a class in what we

shall henceforth call a Vafa-Witten Floer homology HFVW
dk

(M3, G, τ) as-
signed to M3 of degree dk, defined by (96) and (97).

In summary, from (95) and (98), we can write

(99)
ZVW,M4

(τ,G) =
∑

k

FG,τ
VW(Ψk

M3
) =

∑

k

HFVW
dk

(M3, G, τ)

= ZFloer
VW,M3

(τ,G)

where ‘k’ sums from zero to the maximum number of fixed VW solutions
on M3 × R+ that correspond to isolated and non-degenerate fixed critical
points of CS(A).

5.3.3. About the τ -dependence. Notice theτ -dependence ofFG,τ
VW(Ψk

M3
)

and therefore HFVW
dk

(M3, G, τ) that we have yet to explain. This arises be-
cause in evaluating (95), there will be a factor of qsk for the kth term, where
from the action Sbdry

VW in (88), we have a number

(100)

sk =
1

8π2

×
∫

M3

Tr

(

A(k) ∧ dA(k) +
2

3
A(k) ∧A(k) ∧A(k) +B(k) ∧ ⋆DB(k)

)

Here, the subscript ‘(k)’ denotes that they are the kth fixed solution to the
VW equations on M3 × R+ restricted to M3.

6. A Vafa-Witten Atiyah-Floer correspondence

In this section, we consider a four-manifold of the form M4 =M3 × R+,
where a Heegaard split of M3 into M ′

3 and M ′′
3 along a Riemann surface

This is guaranteed (though not necessary) when all critical points are isolated
and nondegenerate. This can be the case for an appropriate choice of G andM3. For
example, one could choose (1) G compact and M3 of nonnegative Ricci curvature
such as a three-sphere or its quotient, or (2) an M3 with a finite GC representation
variety, and introduce physically-trivial Q-exact terms to the action to perturb
V (A). We would like to thank A. Haydys for discussions on this.
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C is performed. This will allow us to relate Vafa-Witten Floer homology
obtained in the previous section to Lagrangian Floer homology, in what is a
novel Vafa-Witten version of the Atiyah-Floer correspondence [4] based on
instantons. In doing so, we would be able to physically prove and generalize
a conjecture by mathematicians Abouzaid-Manolescu about the hyperco-
homology of a perverse sheaf of vanishing cycles in the moduli space of
irreducible flat SL(2,C)-connections on M3.

6.1. Heegaard splitting

We perform a Heegaard split of M3 =M ′
3 ∪C M ′′

3 along C, as shown in
Fig. 3 (left), whence we can view M ′

3 and M ′′
3 as nontrivial fibrations of C

over intervals I ′ and I ′′, respectively, where C goes to zero size at one end
of the intervals. The metric on M ′

3 and M ′′
3 can then be written as

(101) ds2
M

′,′′

3

= (dxB)2 + f(xB)(gC)abdx
adxb,

where a, b are indices on the Riemann surface C, B are indices on I ′ and I ′′,
and f(xB) is a scalar function along I ′ and I ′′.

6.1.1. Topological invariance of VW theory and Weyl rescaling.
Because of the topological invariance of VW theory on M4, we are free to
perform a Weyl rescaling of the corresponding Heegaard split metrics onM4

to

(102) ds2
M

′,′′

4

=
1

f(xB)

[

(dxA)2 + (dxB)2
]

+ (gC)abdx
adxb,

where A represent indices on R+. The prefactor is simply a scaling factor on
both R+ × I ′ and R+ × I ′′, whence their topologies are left unchanged. We
can thus write M4 =

(

R+ × I ′ × C
)

∪C
(

R+ × I ′′ × C
)

, where M ′
3 = I ′ × C

and M ′′
3 = I ′′ × C. This is illustrated in Fig. 3 (right), where if C → 0, we

indeed have R+ × I ′ and R+ × I ′′.

This diagram is adapted from Fig.2 in [19].
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Figure 3. Left:M3 as a connected sum of three-manifoldsM ′
3 andM

′′
3 along

a common Riemann surface C.Right:M4 split along four-manifoldsM ′
4 and

M ′′
4 with corners.

6.2. A Vafa-Witten version of the Atiyah-Floer correspondence

6.2.1. An A-model on R+ × I. If C → 0, we end up with an open

A-model in complex structure I (recall from Section 4) on R+ × I ′ and
R+ × I ′′, respectively, with target spaceMG

Higgs(C). It describes open strings
with worldsheets R+ × I ′ and R+ × I ′′ that propagate (starting from t = 0)
inMG

Higgs(C) and end on A-branes. Because we have an A-model in complex
structure I, the admissible branes are those of type (A, ∗, ∗), i.e., they are
A-branes in complex structure I, but can be either A or B-branes in complex
structures J and K.

Specifically, we need an (A, ∗, ∗)-brane in MG
Higgs(C) that corresponds

to Higgs pair on C that can be extended to flat complex connections A on
M

′,′′

3 – recall from Section 5.2 that the partition function of the underlying
boundary VW theory gets contributions from the critical points of the com-
plex Chern-Simons functional, and these are flat complex connections A on
M3 =M ′

3 ∪C M ′′
3 .

Such an (A, ∗, ∗)-brane has indeed been obtained in [25]. It is an (A,B,A)-
brane α

M
′,′′

3

, that is simultaneously an A-brane in MG
Higgs(C) and an A-

brane in MG
H(C) in complex structure K, i.e., MGC

flat(C), the moduli space
of flat GC-connections on C, where it corresponds to flat connections that
can be extended to M

′,′′

3 . It is middle-dimensional, and is therefore a La-
grangian brane. Let us henceforth denote this brane as L.

Now, with two split piecesM ′
4 andM

′′
4 , when C → 0, we have two strings,

each ending on pairs of Lagrangian branes (L0, L
′) and (L′′, L1) (see Fig. 4.)

The 4d theory considered in [25] is not the VW but the GL theory of [27],
albeit with parameter t = 0. However, both these 4d theories descend to the same
2d A-model with target MG

Higgs(C) after dimensional reduction on C, and since

our A-branes of interest are A-model objects within MG
Higgs(C), the arguments

used and examples stated in [25] are applicable here.
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We then glue the open worldsheets together along their common boundary
L′ and L′′, giving us a single A-model, with a single string extending from
L0 to L1, which is equivalent to gluingM ′

4 andM
′′
4 along C × R+. (see Fig. 4

again.)

Figure 4. Identifying L′ and L′′ and gluing them together to form a single
open string.

6.2.2. The A-model on R+ × I as an SQM model. Similar to what
had been done in Section 5.2, one can recast the A-model here as an SQM
model, where R+ is ‘time’, and the target space is P(L0, L1), the space of
smooth trajectories from L0 to L1 (arising from the interval I that connects
them).

The BPS equations for this A-model are (61), i.e., holomorphic maps
from the worldsheet to the target space. The boundary conditions on the
worldsheet, however, will impose additional constraints on (61), which we
will elaborate upon shortly. At any rate, note that (61) can be written as a
gradient flow equation on the worldsheet

(103)
∂Z l

∂t
+ i

∂Z l

∂s
= 0,

where we have used real coordinates t and s (for z = t+ is), and here,
Z l = X l + Y l.

Comparing (103) with (80), one can see that the fixed critical points of
the underlying potential of the SQM model that contribute to the partition
function are defined by Ż l = ∂Z l/∂s = 0. Since ‘s’ is the spatial coordinate
of I, it would mean that the fixed critical points just correspond to fixed sta-
tionary trajectories in P(L0, L1), i.e., the intersection points of L0 and L1.

Notice that the worldsheet of the (topological) A-model can be identified
as a disk, D, which left and right boundary arcs end on L0 and L1 in
MG

Higgs(C), respectively.
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Each flow line satisfying (103) then corresponds to a holomorphic map
Z : D →MG

Higgs(C), such that the boundary conditions are

(104)
Z|D0

∈ L0, Z|D1
∈ L1,

Z|S = p, Z|N = q,

where D0, D1 are the left and right boundary arcs of D; ‘S’ and ‘N ’ denote
the south and north points of D, which represent time t = 0 and t =∞,
respectively; and p, q are two different points inMG

Higgs(C).
Thus, the partition function of the A-model, which, from the SQMmodel

perspective, is given by an algebraic count of the fixed critical points of its
underlying potential, will be an algebraic count of the intersection points of
L0 and L1, where there are flow lines between the intersection points that
obey (103). These flow lines correspond to holomorphic disks with boundary
conditions (104), in which p and q are different intersection points of L0 and
L1 that the corresponding flow line will start and end at, respectively. In
other words, these flow lines correspond to holomorphic Whitney disks.

6.2.3. Lagrangian Floer homology. Note that from this description
of the partition function, we have physically realized the Lagrangian Floer
homology first defined in [17], where the intersection points of L0 and L1

actually generate the chains of the Lagrangian Floer complex, and the Floer
differential, which counts the number of holomorphic Whitney disks, can be
interpreted as the outgoing flow lines at each intersection point of L0 and
L1 which number would be the degree of the corresponding chain in the
complex.

Specifically, let (L0 ∩ L1)
ni

i denote the ith point of the intersection L0∩
L1 where there are ni outgoing flow lines, whence we can identify

(105) (L0 ∩ L1)
ni

i ∈ HFLagr
ni

(

MG
Higgs(C), L0, L1

)

,

where HFLagr
ni

(

MG
Higgs(C), L0, L1

)

is the Lagrangian Floer homology of

(L0, L1) on MG
Higgs(C) of degree ni. Then, the partition function of the

A-model will be given by

(106) ZA,L

(

τ,MG
Higgs(C)

)

=
∑

i

HFLagr
ni

(

MG
Higgs(C), L0, L1, τ

)

,

A τ -dependency appears here because of a τ -dependent term in the A-model
action (see (66)).
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6.2.4. A novel Vafa-Witten Atiyah-Floer correspondence. Since
the underlying boundary VW theory on M4 =M3 × R+ is topological, we
will have the following equivalence of partition functions:

(107) ZVW,M4
(τ,G) = ZA,L

(

τ,MG
Higgs(C)

)

,

which, from (99) and (106), means that

(108)
∑

k

HFVW
dk

(M3, G, τ) =
∑

i

HFLagr
ni

(

MG
Higgs(C), L0, L1, τ

)

.

A natural question to ask at this juncture, is whether the gradings in
‘dk’ and ‘ni’ match, whence we would have a degree-by-degree isomorphism
of the VW Floer homology and the Lagrangian Floer homology.

To ascertain this, recall that the VW flow lines between fixed critical
points in A are non-fixed solutions to the VW equations (36) on M3 × R+.
Also, in Section 4.2, it was shown that the VW equations descend to the
worldsheet instanton equations (61) defining holomorphic maps from the
worldsheet toMG

Higgs(C), the non-fixed solutions of which are the flow lines
between the fixed critical points in P(L0, L1). Thus, there is a one-to-one
correspondence between the flow lines that define HFVW

∗ through dk and
underlie the LHS of (108), and the flow lines that define HFLagr

∗ through ni
and underlie the RHS of (108).

In other words, the gradings ‘dk’ and ‘ni’ in (108) do match, and more-
over, since ‘k’ and ‘i’ obviously match, we do have a degree-by-degree iso-
morphism of the VW Floer homology and the Lagrangian Floer homology,
whence we would have a Vafa-Witten Atiyah-Floer correspondence

(109) HFVW
∗ (M3, G, τ) ∼= HFLagr

∗

(

MG
Higgs(C), L0, L1, τ

)

Notice that in the special case that B = 0 in the underlying VW equa-
tions whence they become the instanton equation (see (36)) whileMG

Higgs(C)
gets replaced by the moduli space of flat G-connections on C (see (49)–
(50)), (109) just reduces to the celebrated Atiyah-Floer correspondence.
Thus, (109) is indeed a consistent generalization thereof.
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6.3. A physical proof and generalization of a conjecture by
Abouzaid-Manolescu about the hypercohomology of a

perverse sheaf of vanishing cycles

A hypercohomology HP∗(M3) was constructed by Abouzaid-Manolescu in [2],
where it was conjectured to be isomorphic to instanton Floer homology as-
signed to M3 for the complex gauge group SL(2,C).

Its construction was via a Heegaard split ofM3 =M ′
3 ∪C M ′′

3 along C of
genus g, and the intersection of the two associated Lagrangians in the moduli
space Xirr(C) of irreducible flat SL(2,C)-connections on C (that represent
solutions extendable toM ′

3 andM
′′
3 , respectively), to which one can associate

a perverse sheaf of vanishing cycles. HP∗(M3) is then the hypercohomology
of this perverse sheaf of vanishing cycles in Xirr(M3), where it is an invariant
of M3 independent of the Heegaard split.

6.3.1. A physical realization of HP∗(M3). Based on the mathemati-
cal construction of HP∗(M3) described above, it would mean that a physical
realization of (the dual of) HP∗(M3) ought to be via an open A-model with
Lagrangian branes L0 and L1 in the target Xirr(C), where the observables
contributing to the partition function can be interpreted as classes in the
Lagrangian Floer homology HFLagr

∗

(

Xirr(C), L0, L1, τ
)

. One can argue that
this is indeed the case.

To this end, first, note that there is an isomorphism between HFLagr
∗ and

the homology of Lagrangian submanifolds in Xirr(C) [33, Theorem 11], i.e.,

(110) HFLagr
∗

(

Xirr(C), L0, L1, τ
) ∼= H∗(L,Z2)⊗Z2

Λ,

where Λ is a scalar function over Z2, called the Novikov field, and L on the
RHS can be taken as either L0 or L1. The homology cycles of the Lagrangian
(i.e., middle-dimensional) submanifolds of Xirr(C) have a maximum dimen-
sion of 1

2dim(Xirr(C)), where
1
2dim(Xirr(C)) = 2(3g − 3). Including the zero-

cycle, the grading of H∗(L,Z2)⊗Z2
Λ and therefore HFLagr

∗

(

Xirr(C), L0, L1, τ
)

,
goes as 0, 1, . . . , 2(3g − 3).

Second, note that in [2, Theorem 1.8], it was computed that HPk is
nonvanishing only if −3g + 3 ≤ k ≤ 3g − 3. In other words, the grading of
HP∗ goes as −(3g − 3), . . . , 0, . . . , (3g − 3).

It is a fact that dim(Xirr(C)) is given by 4(N2 − 1)(g − 1) for GC = SL(N,C),
where g is the genus of C.
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These two observations then mean that there is a one-to-one correspon-
dence between the gradings of HP∗(M3) and HFLagr

∗ . Moreover, the gener-
ators of HP∗ and HFLagr

∗ both originate from the intersection points of L0

and L1 in Xirr(C). Hence, we can identify HP∗ with (the dual of) HFLagr
∗ ,

i.e.,

(111) HP∗(M3) ∼= HFLagr
∗

(

Xirr(C), L0, L1, τ
)

This agrees with [10, Remark 6.15].

6.3.2. A physical proof of the Abouzaid-Manolescu conjecture.
Notice from the Morse functional (96) and the gradient flow equation (97)
that the definition of HFVW

∗ coincides with the definition of the instanton
Floer homology in [16], albeit for a complex gauge group GC. This means
that we can also express the LHS of (109) as HFInst

∗

(

M3, GC, τ
)

, the instan-
ton Floer homology of GC assigned to M3.

Also, recall that the Lagrangian branes L0 and L1 on the RHS of (109)
are (A,B,A)-branes, i.e., they can also be interpreted as Lagrangian branes
in MG

H(C) in complex structure K, or equivalently, MGC

flat(C), the moduli
space of irreducible flat GC-connections on C.

These two points then mean that we can also write (109) as

(112) HFinst
∗ (M3, GC, τ) ∼= HFLagr

∗

(

MGC

flat(C), L0, L1, τ
)

In other words, the VW Atiyah-Floer correspondence in (109) can also be
interpreted as an Atiyah-Floer correspondence for GC-instantons.

It is now clear from (112) and (111), that for GC = SL(2,C), we have

(113) HP∗(M3) ∼= HFinst
∗ (M3, SL(2,C), τ)

for complex constant τ . This is exactly the conjecture by Abouzaid-Manolescu
about HP∗(M3) in [2]!

This agrees with their expectations in [2, sect. 9.2] that HP∗(M3) ought
to be part of 3+1 dimensional TQFT based on the VW equations.

6.3.3. A generalization of the Abouzaid-Manolescu conjecture. It
was argued in [2, sect. 9.1] that the construction of HP∗(M3) can be gen-
eralized to SL(N,C). The question therefore, is whether a corresponding
generalization of (113) exists. Our answer is ‘yes’, and to complex gauge
groups GC that are not limited to SL(N,C).
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Indeed, notice that (112) implies that there ought to be a GC general-
ization of the Abouzaid-Manolescu conjecture in (113) to

(114) HP∗(M3, GC) ∼= HFinst
∗ (M3, GC, τ)

where the hypercohomology HP∗(M3, GC) of the perverse sheaf of vanishing
cycles inMGC

flat(M3) is such that

(115) HP∗(M3, GC) ∼= HFLagr
∗

(

MGC

flat(C), L0, L1, τ
)

which again agrees with [10, Remark 6.15].

7. Langlands duality of Vafa-Witten invariants,
Gromov-Witten invariants, Floer homologies

and the Abouzaid-Manolescu hypercohomology

In this section, we will demonstrate a Langlands duality of the invariants,
Floer homologies and Abouzaid-Manolescu hypercohomology that we have
physically derived hitherto, from the S-duality of VW theory.

7.1. Langlands duality of Vafa-Witten invariants

It is known that N = 4 supersymmetric Yang-Mills theories has a SL(2,Z)
symmetry, with S- and T -duality, as mentioned in Section 3. In particular,
the theory with complex coupling τ and gauge group G, is S-dual to a theory
with complex coupling − 1

ngτ
and Langlands dual gauge group LG, i.e., we

have, up to a possible phase factor of modular weights that is just a constant,
a duality of VW partition functions

(116) ZVW,M4
(τ,G)←→ ZVW,M4

(

− 1

ngτ
, LG

)

.

In other words, we have a Langlands duality of VW invariants of M4, given
by (116).

7.2. Langlands duality of Gromov-Witten invariants

Note that if M4 = Σ× C, from (116) and (74), 4d S-duality would mean
that we have the 2d duality

(117) ZGW,Σ

(

τ,MG
Higgs(C)

)

←→ ZGW,Σ

(

− 1

ngτ
,MLG

Higgs(C)
)

,
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whereMG
Higgs andM

LG
Higgs are mirror manifolds.

In other words, we have a Langlands duality of GW invariants that can
be interpreted as a mirror symmetry of Higgs bundles, given by (117).

7.3. Langlands duality of Vafa-Witten Floer homology

If M4 =M3 × R+, from (99) and (116), we have the duality

(118) ZFloer
VW,M3

(τ,G)←→ ZFloer
VW,M3

(

− 1

ngτ
, LG

)

.

In turn, from (99), this means that we have the duality

(119) HFVW
∗ (M3, G, τ)←→ HFVW

∗ (M3,
LG,−1/ngτ).

In other words, we have a Langlands duality of VW Floer homologies
assigned to M3, given by (119).

7.4. Langlands duality of Lagrangian Floer homology

From (118) and (107), we have the duality

(120) ZA,L

(

τ,MG
Higgs(C)

)

←→ ZA,L

(

− 1

ngτ
, LG

)

.

Then, from the RHS of the VW Atiyah-Floer correspondence in (109), which
defines the state spectrum of ZA,L, we have the duality

HFLagr
∗

(

MG
Higgs(C), L0, L1, τ

)

←→ HFLagr
∗

(

MLG
Higgs(C), L0, L1,−1/ngτ

)(121)

In other words, we have a Langlands duality of Lagrangian Floer ho-
mologies of Higgs bundles, given by (121).

7.5. Langlands duality of the Abouzaid-Manolescu
hypercohomology

From (114), the fact that its RHS can be identified with HFVW
∗ (M3, G, τ),

and the relation (119), we have the duality

(122) HP∗(M3, GC, τ)←→ HP∗(M3,
LGC,−1/ngτ)
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In other words, we have a Langlands duality of the Abouzaid-Manolescu
hypercohomologies of a perverse sheaf of vanishing cycles in the moduli space
of irreducible flat complex connections on M3, given by (122).

8. A geometric Langlands correspondence
with purely imaginary parameter

In this section, we will first derive a quantum geometric Langlands cor-
respondence with purely imaginary parameter from the S-duality of VW
theory, and then show that it specializes to the classical correspondence in
the zero-coupling limit.

8.1. An open A-model and a category of A-branes

Consider VW theory on M4 = Σopen × C = I × R+ × C. Upon dimensional
reduction where C → 0, we get an open A-model (that starts at t = 0) with
targetMG

Higgs(C). This furnishes us with a (derived) category of A-branes in

MG
Higgs(C). Since we have an A-model in complex structure I, we can only

have branes that are of type (A, ∗, ∗) in MG
Higgs(C). Because the A-model

in complex structure I will map to itself under 4d S-duality, it will mean
that ‘S-dual’ branes are also of type (A, ∗, ∗) inMLG

Higgs(C). Some examples
of these A-branes are given in [25].

8.2. From A-branes in MG

Higgs(C) to twisted D-modules on
BunGC

(C)

Looking back to the action of the A-model in (66), we see that the topological
term is of the form

(123) iτ

∫

Σopen

Φ∗(ωI) =

∫

Σopen

Φ∗(ω − iB).

Here, ω is the Kähler form, and B is the B-field onMG
Higgs(C). The expres-

sion on the RHS of (123) is the usual expression for the topological term in

We actually need to “pull down” interaction terms from the action on Σopen

to absorb fermion zero modes in the path integral. That said, they play no role in
our proceeding discussions, just as they played no role in the parallel discussions
of [27].

See footnote .
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an A-model involving the complexified Kähler class, ω − iB. In relation to
the 4d theory, B is the θ-angle in the topological term of (37).

Figure 5. Merging of string worldsheets along a common boundary Bd.c.,
representing the operation HBd.c.,Bd.c.

⊗HBd.c.,BL
→ HBd.c.,BL

.

It was shown in [25] that ifB = 0, we can have a d.c.-brane (distinguished
coisotropic) of type (A,A,B) that is space-filling. Furthermore, it was also
argued in [25] that in this case, the category of A-branes inMG

Higgs(C) can
be identified with a category of twisted D-modules on BunGC

(C), the moduli
space of principal GC bundles on C, where GC is the complexified version
of G. This latter claim can be understood as follows.

The A-model will have boundary conditions on both sides of the I × R+

worldsheet, say boundary conditions 1 and 2, giving us B1 and B2 branes
in MG

Higgs(C). The strings suspended between these branes define a vector
space HB1,B2

of (B1,B2)-strings. For arbitrary branes B1, B2 and B3,
we can have (B1,B2) and (B2, B3)-strings, where the operation HB1,B2

⊗
HB2,B3

→ HB1,B3
is physically equivalent to merging (B1,B2) and (B2,

B3)-strings along their common boundary B2 to produce (B1, B3)-strings.
In particular, if B1 = B2 = Bd.c., where Bd.c. is the d.c.-brane, and B3 =
BL , where BL is any Lagrangian brane, the operation can be understood
physically as in Fig. 5. In this way, one can see that a (Bd.c.,BL )-string is a
module for a (Bd.c., Bd.c)-string. In turn, this means that the category of A-
branes (spanned by the BL ’s) can be identified with the category of modules
of (Bd.c., Bd.c)-strings. All that is left to explain is why (Bd.c., Bd.c)-strings
can be identified with twisted differential operators on BunGC

(C).
To this end, note that at the classical level, the (Bd.c., Bd.c)-strings

correspond to holomorphic functions on Hitchin moduli space in complex
structure J . This space can be identified with the moduli space of flat GC-
connections on C, MGC

flat(C), which is isomorphic to the twisted cotangent
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bundle T ⋆BunGC
(C) [5, 15]. In other words, classical (Bd.c., Bd.c)-strings

can be interpreted as holomorphic functions on T ⋆BunGC
(C). The quan-

tization of the (Bd.c., Bd.c)-strings then leads to their identification with
(the sheaf of) holomorphic differential operators on the line bundle L−h∨+q

over BunGC
(C), where L−h∨

= K1/2, and K is the canonical line bundle on
BunGC

(C). Here, h∨ is the dual Coxeter number of G, and the parameter
q = τ is purely imaginary because B = 0.

This is how the τ -dependent category CatA-branes

(

τ,MG
Higgs(C)

)

of A-

branes inMG
Higgs(C), can be identified with a category Dc

−h∨-mod
(

q,BunGC

)

of twisted D-modules on BunGC
(C) with parameter q, where ‘D’ refers to

the differential operator we just described.

8.3. A quantum geometric Langlands correspondence with
purely imaginary parameter

Note that from (116) and (73), 4d S-duality would mean that we have the
2d duality

(124) ZA,B

(

τ,MG
Higgs(C)

)

←→ ZA,B

(

− 1

ngτ
,MLG

Higgs(C)
)

,

where ZA,B is the partition function of the open A-model with branes B.
In turn, this implies a homological mirror symmetry of the τ -dependent

category of A-branes:

(125) CatA-branes

(

τ,MG
Higgs(C)

)

←→ CatA-branes

(

− 1

ngτ
,MLG

Higgs(C)
)

whereMG
Higgs andM

LG
Higgs are mirror manifolds.

As explained above, for θ = B = 0, the category of τ -dependent A-branes
can be identified with a category of twisted D-modules on BunGC

(C) with
parameter q. Thus, this mirror symmetry would mean that we have

(126) Dc
−h∨-mod

(

q,BunGC

)

←→ Dc
−Lh∨-mod

(

− 1

ngq
, BunLGC

)

This is a quantum geometric Langlands correspondence for GC with complex
curve C and purely imaginary parameter q [18, eqn. (6.4)].
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8.4. A classical geometric Langlands correspondence

In the zero-coupling, ‘classical’ limit of the 4d theory inG where Im(τ)→∞,
we have q →∞. In this limit, the LHS of (126) can be identified with the
category Catcoh

(

MGC

flat(C)
)

of coherent sheaves onMGC

flat(C) [18].
This ‘classical’ limit corresponds to the ‘ultra-quantum’ limit of the S-

dual 4d theory in LG, where Lq = − 1
ngq
→ 0. In this limit, the RHS of (126)

can be identified with the category Dc
−Lh∨-mod

(

0,BunLGC

)

of critically-
twisted D-modules on BunLGC

(C).
In short, we have

(127) Catcoh
(

MGC

flat(C)
)

←→ Dc
−Lh∨-mod

(

0, BunLGC

)

This is a classical geometric Langlands correspondence for GC with complex
curve C [18, eqn. (6.4)].

9. A novel web of mathematical relations,
and categorification

In this final section, we will show how the dualities, correspondences and
identifications between the various mathematical objects we physically de-
rived in Section 3–8 starting from VW theory, will lead us to a novel web of
mathematical relations. We will then explain how the VW invariant will be
systematically categorified in our framework.

9.1. A novel web of mathematical relations from Vafa-Witten
theory

Essentially, from the duality relations (116), (117), (119), (121), the corre-
spondences (125), (126), (127), and the identifications (73), (95), (109), we
will get Fig. 6 below.
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Figure 6. A novel web of mathematical relations stemming from Vafa-
Witten theory.

9.2. Categorifying the Vafa-Witten invariant

Categorification is a mathematical procedure that turns a number into a
vector space, a vector space into a category, a category into a 2-category,
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and so on:

number
categorification−−−−−−−−−→ vector space

categorification−−−−−−−−−→ category

categorification−−−−−−−−−→ 2-category
categorification−−−−−−−−−→ · · ·

(128)

From Fig. 6, one can see that this mathematical procedure is actually
realized in our physical framework. Specifically, via the arrows b and c, and
the fact that the VW invariant is a number, the VW Floer homology is a
vector (space), and the A-branes span a category of objects, we find that

(129)

VW theory on M4 ❀ number ZVW

VW theory on R
+ ×M3 ❀ vector HFVW

∗

VW theory on R
+ × I × C ❀ 1-category CatA-branes .

In other words, we have

(130) ZVW
categorification−−−−−−−−−→ HFVW

∗
categorification−−−−−−−−−→ CatA-branes

a categorification of ZVW, the VW invariant of M4.
From (129), it is clear that categorification can be physically understood

as flattening a direction and then ending it on a boundary or boundaries.
Explicitly in our case, the first step of categorification involves flattening
a direction in M4 and then ending it on an M3 boundary, while the sec-
ond step involves flattening a direction in M3 and then ending it on two C
boundaries. Therefore, one can also understand the procedure of categori-
fying as computing relative invariants – computing the relative invariant of
ZVW give us HFVW

∗ , and further computing the relative invariant of HFVW
∗

gives us CatA-branes.
All this is also consistent with the fact pointed out in [1] that an n-

dimensional TQFT assigns a k-category to a closed n− k − 1-manifold M .
Here in our case, we have n = 4, and when k = 0 and 1, we have the 0-
category HFVW

∗ assigned to a closed 3-manifold M3 and the 1-category
CatA-branes assigned to a closed 2-manifold C, respectively.

This perspective of categorifying topological invariants by successively intro-
ducing boundaries to the manifold was first pointed out in [19].

A relative invariant is an invariant of an open manifold which was originally
defined for a closed manifold.
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9.3. Higher categories from Vafa-Witten theory

9.3.1. A 2-category from Vafa-Witten theory. One could continue
to further categorify the VW invariant of M4 by flattening a direction along
C and ending it on S1 boundaries, i.e., let C = I ′ × S1. This should give us
a 2-category, 2-Cat, consisting of objects, morphisms between these objects,
and 2-morphisms between these morphisms. Thus, we have an extension of
(129) to

(131)

VW theory on M4 ❀ number ZVW

VW theory on R
+ ×M3 ❀ vector HFVW

∗

VW theory on R
+ × I × C ❀ 1-category CatA-branes

VW theory on R
+ × I × I ′ × S1

❀ 2-category 2-Cat.

Let us now determine what this 2-category ought to be.
First, note that now, we have VW theory on R+ × I × I ′ × S1 – in other

words, we have VW theory compactified on S1 to a 3d TQFT on a semi-
infinite block starting at t = 0 with R+ × I boundaries. The sought-after
2-category is then the 2-category of boundary conditions of this 3d TQFT.

Second, notice that the aforementioned boundary conditions can be re-
alized by surface defects in VW theory that lie along the R+ × I (I ′) bound-
aries of the 3d TQFT. In other words, the 2-category we seek is the 2-
category of these surface defects in VW theory. From this viewpoint, the
surface defects can be interpreted as objects; loop defects on the surface
running around I × I ′ can be interpreted as morphisms between these ob-
jects; while opposing pairs of point defects on the loops can be interpreted
as 2-morphisms between these morphisms.

Third, note that the 3d TQFT in question is a 3d gauged A-model
described in [26, sect. 7], and for abelian G and Re(τ) = 0, the 2-category
of surface defects have been explicitly determined in loc. cit . to be the 2-
category 2-Catmod-cat

(

FF-cat(T 2)
)

of module categories over the Fukaya-
Floer category of T 2. Therefore, we have, for abelian G and Re(τ) = 0, an

Just as the 1-category discussed in the previous subsection is the 1-category of
boundary conditions of the 2d A-model.

In [26, sect. 7], the GL theory at t = 0 was considered, but it was shown in
[34, sect. 5.2-5.3] that this theory compactified on S1 is the same as VW theory
compactified on S1. Hence, their results are applicable to us.

The 3d gauged A-model has a gauge and matter sector, where each sector can
either have Dirichlet (D) or Neumann (N) boundary conditions. We have stated
the result for the DD case, as this choice of boundary conditions allows us to
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extension of (130) to

ZVW
categorification−−−−−−−−−→ HFVW

∗
categorification−−−−−−−−−→ CatA-branes

categorification−−−−−−−−−→ 2-Catmod-cat

(

FF-cat(T 2)
)

(132)

Notice that in this case, we have n = 4 and k = 2 in our discussion at
the end of the previous subsection, whence we ought to have a 2-category
assigned to the closed 1-manifold S1. Indeed, as is clear from (131) we have
a 2-category of surface defects that are assigned to a closed 1-manifold S1.

9.3.2. Langlands duality of a 2-category. Observe from (131) and
Fig. 6 that from 4d S-duality, we have a Langlands duality of the 0-category
HFVW

∗ , and a Langlands duality (mirror symmetry) of the 1-category
CatA-branes. Do we then also have a Langlands duality of the 2-category
2-Cat from 4d S-duality? The answer is ‘yes’.

According to [26, sect. 7.4.1], 4d S-duality, which maps abelian G to its
Langlands dual that is itself, will transform the symplectic area A of T 2 as

(133) A → LA =
4π2

A ,

where LA is the symplectic area of a torus LT 2 that can be obtained from
T 2 by inverting the radii of its two circles from R→ α′/R for some constant
α′. In other words, LT 2 is the T -dual torus to T 2, and FF-cat(T 2), which
is realized by a 2d open A-model with target T 2, will be invariant under
T -duality of the target, i.e., FF-cat(T 2) ∼= FF-cat(LT 2). Thus, we have

(134) 2-Catmod-cat

(

FF-cat(T 2)
)

←→ 2-Catmod-cat

(

FF-cat(LT 2)
)

Hence, Fig. 6 will be enhanced to Fig. 7.

describe the situation where line defects lie along the surface defects, which is the
one relevant to us.
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Figure 7. A novel web of mathematical relations stemming from Vafa-
Witten theory that also involves higher categories.

9.3.3. A 3-category from Vafa-Witten theory?. We could take one
last step to further categorify the VW invariant of M4 by flattening S1 and
ending it on point boundaries, i.e., let S1 = [0, 1]. This should give us a
3-category, 3-Cat, consisting of objects, morphisms between these objects,
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2-morphisms between these morphisms, and 3-morphisms between these 2-
morphisms. Thus, we have yet another extension of (129) to

(135)

VW theory on M4 ❀ number ZVW

VW theory on R
+ ×M3 ❀ vector HFVW

∗

VW theory on R
+ × I × C ❀ 1-category CatA-branes

VW theory on R
+ × I × I ′ × S1

❀ 2-category 2-Cat

VW theory on R
+ × I × I ′ × [0, 1] ❀ 3-category 3-Cat.

That is, we have a 3-category of 3d boundary conditions of VW theory along
R+ × I × I ′ which is assigned to a point.

These 3d boundary conditions can be realized by domain walls. So, the
sought-after 3-category has domain walls along R+ × I × I ′ as objects; sur-
face defects within the domain walls along I × I ′ as morphisms between
these objects; line defects on the surfaces in the I or I ′ direction as 2-
morphisms of these morphisms; and point defects on the lines as 3-morphisms
of these 2-morphisms.

Determining the classification of such domain walls in VW theory is
beyond the scope of this paper, and we shall leave it for future work. In short,
we can summarize how ZVW, the VW invariant of M4, can be completely
categorified as

ZVW
categorify−−−−−−→ HFVW

∗
categorify−−−−−−→ CatA-branes

categorify−−−−−−→ 2-Catmod-cat

(

FF-cat(T 2)
) categorify−−−−−−→ 3-Cat (?)

(136)

where 2-Cat remains to be determined for non-abelian G, while 3-Cat has
yet to be determined for any G.
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