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Interface currents and corner states in

magnetic quarter-plane systems

DaNiLo Poro OJIiTo

We study the propagation of currents along the interface of two
2-d magnetic systems, where one of them occupies the first quad-
rant of the plane. By considering the tight-binding approximation
model and K-theory, we prove that, for an integer number that is
given by the difference of two bulk topological invariants of each
system, such interface currents are quantized. We further state the
necessary conditions to produce corner states for these kinds of
underlying systems, and we show that they have topologically pro-
tected asymptotic invariants.
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A magnetic quarter-plane system is composed of two 2-d materials subjected
to constant magnetic fields so that one material occupies the first quadrant
of the plane and the other material the remaining part of the plane; see
Fig. [1] and [2l When the magnetic fields are orthogonal and of distinct in-
tensity, there may exist extended states near the interface between the two
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materials carrying currents{ﬂ Furthermore, under suitable time-dependent
perturbation of the system could appear localized states at the corner of the
interface. This work deals with the study of topological invariants associated
with interface currents and corner states in magnetic quarter-plane systems
for which the interactions between particles are neglected. These new results
are a physical manifestation of the K-theory and index theory of certain
C*-algebras.
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Figure 1: A picture of the magnetic quarter-plane. The interface is the thin
region that separates the two materials. The magnetic effects in the full
system are modeled by a magnetic field oriented orthogonally to the plane
with strength function B: Z? — R such that has the value b_ in the first
quadrant and b, otherwise.

1.1. Interface currents

There are prior rigorous works about interface currents by considering the
Twatsuka magnetic system [23], i. e. each material occupies a half-plane and
the Iwatsuka magnetic field is a y-independent magnetic field oriented or-
thogonally to the plane with a strength function By: R? — R so that

lim B =by.
L, Br(e) = bs
An interesting property is that in the Iwatsuka case, the interface currents
are quantized by the difference of two Chern numbers of the two systems. A
rigorous mathematical justification for the latter fact was obtained in [I5] for

!Similar to the edge currents in the quantum Hall effect
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continuous systems and in [27] for discrete systems. Using K-theory applied
to the Iwatsuka Toeplitz extension, De Nittis and Gutierrez [11] also obtained
the same result for discrete systems. It is important to point out that the
work [I1] also set a mathematical framework for analyzing general magnetic
systems with interfaces.

In the tight-binding approximation, we prove that there may exist two
topological currents flowing along the faces of the interface in the magnetic
quarter-plane systems and that such currents are quantized by an integer
number given by the difference of two bulk invariants of each material (The-
orem . Following the previous work [11], the main ingredient to get the
latter result is to construct a suitable quarter-plane exact sequence (sequence
which relates the states localized near the interface with the bulk states
of the two subsystems. Then the interface and bulk Conductancesﬂ are en-
coded in elements of some K-groups associated to the quarter-plane exact
sequence. Consequently, we show the bulk-interface correspondence of these
conductances based on the ideas of [4I]. It is worth noting that the proofs
also cover the case of the classical quarter-plane obtained in [4I] when one
of the two materials is chosen to be the vacuum. Furthermore, we also prove
that this result is robust against localized geometrical imperfection of the
materials and even disorder effects can be handled, however, we prefer not
to discuss this issue.

1.2. Corner states

One important result in the study of the quarter-plane algebras and its K-
theory is the following exact sequence

(1) 0 X AL §B 0,

where TP is the quarter-plane Toeplitz algebra, X is the algebra of com-
pact operators, and 87 is the pullback C*-algebra of two suitable Toeplitz
algebras. The latter sequence was proved by Douglas and Howe [I6] in a
restricted context, and after that, Park obtained the general case |31, 32].
In 2018, Hayashi [21] defines two topological invariants associated with the
sequence [I} one is defined by counting corner states of the system and its

2The conductance associated to the interface and bulk currents of the system.
We interpret the bulk conductance as the two bulk topological invariants of each
material since it provides the value of the Hall conductance in the bulk of a quantum
Hall system [4, 5 29, [42].



1816 Danilo Polo Ojito

non-triviality implies that the corner Hamiltonianlﬂ is gapless. The other in-
variant is defined in terms of the spectral gap of the bulk Hamiltonianﬂ
Both invariants are elements of some K-groups associated with the sequence
and there is a topological correspondence between these two invariants [21]
Theorem 3.7].

In the same vein as Hayashi, we construct a Toeplitz extension for the
magnetic quarter-plane algebra (Theorem , and we define two topolog-
ical invariants associated with such a sequence: the corner invariant that
describes the existence of states localized near the point (0,0), and the gap-
less invariant related with the asymptotic behavior of the system. Afterward,
using the six-term exact sequence on the sequence [5.3] we show that these
invariants are in correspondence (Theorem , and a necessary condition
for to obtain non-trivial corner states is that the time-dependent magnetic
Hamiltonian is gapless (Corollary .

Structure of the paper. Section 2 is devoted to the construction of the
magnetic quarter-plane algebra and its magnetic hull. In more detail, we give
an explicit presentation of the magnetic hull which allows us to describe the
magnetic quarter-plane algebra in terms of crossed products. In section 3
we calculate the K-groups of the magnetic quarter-plane algebra, the bulk
algebra, and the interface algebra. Moreover, a description of the interface al-
gebra in terms of suitable projections is provided. In section 4, we present the
bulk-interface correspondence. We begin this section by introducing the bulk
and interface conductances. Afterward, we state the necessary assumptions
needed to obtain the bulk-edge correspondence. This section finishes with the
proof of the quantization of the interface currents. Section 5 is devoted to the
study of the corner states. Indeed, we construct a suitable Toeplitz extension
for the magnetic quarter-plane algebra and after that, we give a characteri-
zation of the Fredholm operators in this C*-algebra. Finally, we define two
topological invariants associated with the quarter-plane Toeplitz extension
and we prove that there is a correspondence between these invariants.

Acknowledgments. [ would like to cordially thank G. De Nittis for sug-
gesting me this problem, and for his guidance and support throughout this
work. I also would like to express my gratitude to N. J. Buitrago for reading
the preliminary version of this paper and for helpful remarks. I have spe-
cial thanks to E. Gutierrez, J. Gomez, M. Moscolari and S. Teufel for many
stimulating discussions. In particular, I am indebted to M. Moscolari for his

3Periodic family of selfadjoint elements in T
4Periodic family of selfadjoint elements in §*2
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2. Magnetic quarter-plane algebra

This section is devoted to the detailed study of magnetic quarter-plane alge-
bra and its magnetic hull. For an introduction to the construction of magnetic
C*-algebras, we refer to [11].

2.1. Magnetic fields and vector potentials

In the tight-binding approximation for two-dimensional magnetic systems,
the position space is Z? and an orthogonal magnetic field is nothing more
than a function B: Z? — R. For our case of interest let us consider the
quarter-plane magnetic field given by

] bs if ny<0orng <0,
(2) B(n) = { b, otherwise ,

where b_,b, € R so that b_ — by ¢ 27rZE| and n = (n1,ng) € Z%. For every
magnetic field defined in Z? one can find infinite vector potentials Ag: Z? x
72 — R whose circulation is exactly B, namely such that B(n) = Cir[Ag](n),
for all n € Z?, where

Cir[Ag](n) :=Ap(n,n —e1) + Ap(n —e1,n —e; — e3)
+ Ap(n —e1 —ea,n—e2) + Ap(n — ez, n).
Here e1 := (1,0) and ey := (0, 1) denote the canonical basis of Z2. A standard

choice for the vector potential associated with the magnetic field B is given
by

[na|—1

(3) Ap(n,n—e¢;) :==06j1 | 6ny>0 Y B(ni,m) = 6n,c0 »_ Blny,—m) |
m=1 m=0

where n = (n1,n2) € Z2. The check that the circulation of this vector poten-
tial provides B is a matter of a straightforward calculation.

>This condition is necessary to get non-trivial topological effects. Otherwise, the
flux operator (see 5) is constant.
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Remark 2.1. Since the magnetic field 15 not invariant under translation
in some direction, it follows that there are not Landau-type vector potentials
(cf. [T]], Section 2.2]) for the magnetic field B.

We can introduce the magnetic translations s; and s associated to the
given magnetic potential Ag as

) (o)) i= Ao y(n ), =12
where 1 € (%(Z?). Let fp: Z* — U(1) be the function
(5) fa(n) = e'B™ n € 7?

which provides the exponential of the magnetic flux through the unit cell
sited in n, and define the associated flux operator as

(6) (fpv)(n) = fe(m)v(n), ¢ e (2.

A straightforward computation shows that the magnetic translations satisfy
the condition

(7) 51 62 5] 55 =fB.

Once the magnetic translations have been defined, let us introduce the
magnetic algebra associated with them.

Definition 2.2. The magnetic quarter-plane algebra g (in the gauge Ap
fized by ([3)) is the C*-algebra inside the bounded operators B((*(Z*)) gen-
erated by the magnetic translations s; defined by , ie.

Q[B = C*(Sl,ﬁg) .
From its definition, it turns out that 2l is an unital C*-algebra.

Remark 2.3. Since there are infinite magnetic potentials whose circulation
is exactly B, one could be worried about the loss of generality in the definition
of the magnetic algebra Ap. This is however not the case, since every pair
of magnetic potentials, let us say Ap and Ay, with equal circulation, are
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connected by a gauge function Gp : Z?> — R according to
AB(n>m) = AlB(n7m)+GB(n)_GB(m)v |n—m|:1

Therefore, if the magnetic translations associated with the magnetic poten-
tials Ap and A%y are s; and s); respectively, then it holds that

sh=e 105 ¢ j=1,2.
As a consequence, the associated magnetic algebras are unitarily equivalent.

2.2. Magnetic hull

Let m: £°°(Z?%) — B((*(Z?)) be the injective x-morphism which associates to
each g € £°°(Z?*) the multiplication operator m, defined by

(mg)(n) == g(n)ip(n), ¥ € £*(Z7).

An example of this type of operator is given by the flux operator fp = my,,.
Consider the Z2-action defined over £>°(Z?) by

(8) 7(g)(n) =g(n—v),  nyeZ?,
for every g € £°°(Z?). It holds that
(9) Ty (mg) 1= me gy = (81)™" (52)7* my (s2)77 (81)7 7"
with v = (71,72). In view of and @ one gets that

(fg) =m. (s, € Az, VyeZ’.
Therefore, the C*-algebra

(10) S5 = C*(v.{ry(fg) |y € Z°}) C Up

is a sub C*-algebra of g that is commutative and with unit. Moreover, by
construction, it is invariant under the Z?-action implemented by the trans-
lations 7. It follows from Gelfand-Naimark isomorphism that there exists a
compact Hausdorff space Qp such that §p ~ C(Qp). Such space Qp will be
called the magnetic hull of the algebra 2. In the following, we will focus
on the description of the space 5.

Given a subset 0 C Z? let xg be the characteristic function of 0 and m,,
the associate multiplication operator. Evidently m,,  is a projection.
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Proposition 2.4. Given n € Z? define the sets

Rp:={n+jei|j € Ny},

U, :={n+jea|j € No},

Q, = {n—i—jel—I—keg\j,keNo},
QS :=7%\ Qn,

(11)

where No := NU{0}. Then, for every n € Z2, the projections t, := my,
Up 1= My, , qp =My, and qfl i=m,, are elements of §p.
Proof. For any m = (my, ms) € Z? one has that

eibl _ oib.

if m; >0 and =0
fB(m+€1+€2)—fB(m—|—el) — { 0 1t mp; 20 and mg ,

otherwise .

Furthermore, eibe _ gib. # 0 in view of b_ — b, ¢ 27Z and this with the
above yield

vo=(e'™ — e ) N1 e,—en)(FB) — T(—en)(fB)) € T
and t, = 7,,(vtg) € §p for every n € Z2. Similarly, one has that
ib, ib

_ e — e if my=0and mo >0,
fa(m+e1+e) — fp(m + e2) = { 0 otherwise ,

and in turn
_ ib_ ib, \—1
up = (e'™ — e )" (7(—e,—e,) (FB) = T(—er)(fB)) € B
As a consequence u,, = 7,(ug) € §p. Finally

b 0 if my <0 or mp <0,
i el = . 1 4
fe(m+e1 +e2) { elbe _ gibs otherwise,

which implies that
qo = (eibL - eib* )_1(7—(—61—62)(fB) - eib* 1) € S8,

and in turn q,, = 7,(qo) € Fp for every n € Z2. To conclude the proof it is
sufficient to observe that g = 1 — qp. O
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Remark 2.5. Let us say a few words about the notation introduced above.
The symbols Ry, and Uy, stand for the “right half-line” and the “up half-line”
at the point n, respectively. In the same vein, the symbol Q,, stands for the
“quarter-plane” at the point n.

Let Cy(Z*) be the C*-algebra of continuous functions that vanish at
infinity and Cy(Z?) = Co(Z?) + C1 its unitization, i. . , the set of continuous
functions with a limit at infinity. Due to the discreteness of Z2, every function
on Z? is automatically continuous. This provides the identification £>°(Z?) =
Cy(Z?), where Cy(Z?) denotes the set of bounded continuous functions. Let
us define

Moo :={my | g € COO(ZZ)} , M= {my | g € KOO(Z2)} :

Both M, and M> are unital sub-C*-algebras of B(¢?(Z?)) invariant under
the Z2-action implemented by the translations 7. It holds that

The second inclusion in follows from the observation that fp € 9. For
the first inclusion let us observe that 3, := t,u, is the projection on the site
n, 1. e., the multiplication operator for the characteristic function xy,, for
every n € Z2. Therefore, since 3, € M., N Fp and the 3, generates Mo, one
deduces the first inclusion of . In view of the Gelfand-Naimark isomor-
phism, one gets that M, ~ C(Z2,) and M> ~ C(BZ?) where Z2, and 37>
are the one-point compactification and the Stone-Cech compactification of
7.2, respectively [19, Section 1.3]. Therefore g represents a compactification
of Z? which is between the one-point compactification and the Stone-Cech
compactification. It is worth noticing that the setting we are considering
has been studied in a certain generality in [I7, [I8]. In the following, we will
provide a concrete model for Qp.
Let ooy, 0o, oog, oo be given points with j, k € Z, and define

Qp :=7% U {o0,} U {00} U Us U Reo.

where

Uy = U {o0f}, Roo 1= U {ocR}.

JEZL keZ



1822 Danilo Polo Ojito

In order to introduce a convenient topology on Qg we will first provide a
basis for it. Let us introduce some convenient notation:

R,:=R, U {oo%2 ,
U, :=U, U {ocoy },

(13) Q=0 U {oo} [ {oof} [ {0,

Jj=na j=na
@ =05 U {oo.} [ {odf} | {oof},
j<ni Jj<n

where n = (ny,n2) € Z2. It is straightforward to check that the collection
Q = {{n}7mamam7@ } n & ZQ} s

meets the conditions to be the basis of a topology for 25. We shall denote
with Top, to the topology on 2p generated by 2.

Proposition 2.6. The topological space (g, Top y) is compact and 72 sits
inside Qg as an open dense subset.

Proof. Tt is easy to see that Z? is an open dense subset of Qg by the definition
of Top 4, hence let us prove the compactness. Let {A4 }aeg be an open cover of
Qp. Note that there exist a., a, € J such that oo, € A,, and co_ € A, . This
implies that Q,, C A,, and Q%, € A,, for some m = (my, mg) and n = (n1,n2)
in Z?2, in view of the fact that A,, and A,_ are open. Observe that there are at
most a finite number of elements oo;-J and oo} in the complement of Q,, UQS,.
Therefore there is a finite number of elements of the cover such that oo;J €
Ujs,) C Ao, and 00} € Ry, ) C Ag, With s;, 7, € Z suitable coordinates. As
a result, the complement of the union of the finite collection of open sets A4,
Aq,; Aq, and A,, is at most a finite set of points of 7Z2. As a consequence,
Qp can be covered by a finite number of elements of {A,}ae7 showing that
(Qp, Topy ) is a compact topological space. O

Let X be a discrete topological space. A filter on X is a nonempty family F
of subsets of X, which is closed under finite intersections, does not contain
the empty set, and for any A € F such that if AC B C X, then B € F. If
F and G are filters on X, then we said that G is finer than F if F C §. An
ultrafilter on X is a filter that is not properly contained in any other filter on
X. The space SX of all ultrafilters on X is a compact space, actually, 53X is
the Stone-Cech compactification of X (see [22, 38] and references therein).
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Let D be a topological space and f: X — D any function. For a filter
F on X we say that limg f =y or F-limit of f is y if and only if for any
open neighborhood U of y we have f~1(U) € F. It is worth pointing out that
F-limits coincide with the general concept of limit in a topological space for
functions defined on X [22] Theorem 3.46]. Note also that if limg f =y,
then it is easy to see that for any filter G finer than J it holds that limg f = y.

Recall that Z? C Qp C BZ2, hence we can describe the elements of

oNp = Qp \ Z*

as suitable class of ultrafilters on Z? [I8, Lemma 2.1]. For that, let us define
the following collections

— {Acz2|U( C A, for some ny € Z}

u] N j,nl)

R; = {ACZ? R(n, ;) C A, for some ny € Z}
Q := {AcCZ*| q,C A, for somen € Z*}

Q, := {ACZ* Q C A, forsomen € Z*}.

One can see that the foregoing collections are filters of Z2. Furthermore, the
continuity of each g € C'(2p) and the definition of Top, imply that

. . U . . R .
lgjng—g(ooj), léglg—g(ooj), JETL,
(14) limg = g(co.), limg = g(o0.).

Actually, if f: Z?> — C and all the limits in [14|exist for f, then f has unique
continuous extension on Q5. Indeed, let f be the extension of f on Qp given
by
f(w) if weZ?
limy, f  if w=o00
fw):=1q limg, f if w= oo]F-t
limg, f @f w=o00_
limg* f ’Lf W = OQOx

From the dgﬁnition Qf the limit, we have that for any € > 0 there is A € U;
such that |f(oo}) — f(x)| < ¢ for all z € A. In particular, since U, C A for
some n €72, :chen for all z € U, it is true that |f(0032 — f(x)| < €, which
implies that f is continuous in oo?. The continuity of f in t}}e other points
of 00 p follows with the same argument. It turns out that f € C(Qp) and
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this extension is unique due to that Z? is a dense subset of Q. Thus, one
concludes that the elements of 9€2p can be identify as follows

oY = {GepZ*|U; C G}, of = {GepZ*|R;CG},

oo, = {Gepz?|Q cG}, 00, = {G€pZ*|2. CG}.

Proposition 2.7. It holds that §g ~ C(2p) as C*-algebras.

(15)

Proof. Firstly, recall that we can identify the elements of §p with functions
over Z2. In particular, fp is the multiplication by the function fg over Z2. For
any vy € Z2, we see that 7y(fB) is constant in the sets Q, and QS, therefore the
extension of 7,(fr) to Qg is a well defined continuous function because the
limits in (14| exist for 7,(fg). Moreover, these limits are linear and multiplica-
tive [22], hence any polynomial p in the variables 7, (fB),..., 7y, (fB) have
a continuous extension to 2z for any k € N. Now let m, € §p be a generic
element in Fp defined by the multiplication by the function g € £°°(Z?) and
define the map §p 3 my — g € C(Qp), where § is constructed as follows.
For such ¢ there is a sequence (gn)n N of polynomials g, in the variables
7y, (fB), .., 7, (fB) so that g, — g in Fp. Note that the sequence (@n)neN
defined by the extension of each g, on Qp is a Cauchy sequence in C(Qp).
Namely, for every ¢ > 0 there is N € N such that ||g, — gm|lg, < € for all
n,m > N. Therefore,

Hgn - gm”C(QB) = sup |gn(x) _gm(x” = Hgn _gmH?{B < €.
TEZ?

The latter follows from the fact that Z? is dense in the compact set Q. Thus,
we define g as the limit in C'(£2p) of the sequence (Qn)n cn» Which provides
a continuous extension of g on Qp. Using again the fact that Z? is an open
dense subset of {25, then any such g has a unique continuous extension on
g, that is, the map §p 3> my — § € C(Qp) is injective. In order to show
the surjectivity, we claim that the image of §p separates the points of 2p.
Indeed, let wy and ws be two points in Qp, then there is n € Z? such that
either wy € Q,, and wy € Q,,° or wy € Q,° and wo € Q,,. Thus one obtains that
Xaq, (w1) # Xq, (w2) and the claim follows, where xq, is the extension of the
indicator function xg, on Z2, which belong to §p by Proposition Fi-
nally, one can verify that this map is also linear, multiplicative and preserve
the *-involution. Consequently, g 2 my — g € C(Qp) is a *-isomorphism
between §Fp and C(Qp). O

As expected Qpg is the Gelfand spectrum of §Fp, that is, the set of *-
homomorp-hism w: §p — C. The action of Qg over §p can be regarded as
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an evaluation map. Namely, the inclusion Z? 3 n — w,, € Qp is given by the
evaluation at a finite distance:

wn(g) == g(n), g=my € §p

and the remaining limit points are identified in the following way

woor () == 1;1119, Weo, (9) 1= ling,
(16) - .
Woo! (9) == 1hmg, Woo, (g) :=limg.

J L

Furthermore, we can endow Qp with a Z2-action: For each v € Z? consider

7 (w(9)) = w(T—(0)),

where w € Qp and g € §p. Therefore, it follows that

*

7—: (Wn) = Wity s Ty (woog) = Wool, | Ty (woo§) = Wook, s
(W) = w., 73 (Weo, ) = Woo, -

for every v = (71,72) € Z2. As a consequence Z? is an invariant subset under
the action 7%, and the boundary

(17) 00p = Qp\ Z? = {cox} U {00 } U Uy U Reo
is the disjoint union of four invariant subsets.

Proposition 2.8. (Qp,7*,Z?) is a dynamical system and its set Erg(Qp)
of the ergodic probability measures is given by Erg(Qp) = {Poo,, Poo, }, where
the measures are specified by

Py, (c0) =1, Py, (00s) = 1.

Proof. From the definition of 7%, the minimal invariant subsets of 2p are
72, Uso, Roo, {00} and {oo.}. Moreover, the sets Z?, Uy, and Ry, are made
of wandering points under 7*, hence the only possible invariant measures on
Qp are the Dirac measures supported in {oo_} or {oo.}, that is, Erg(Qp) =
{Pec., Poc.}. O

The ergodic measures of (Qp,7*,7Z?) play a crucial role in the construction
of the integration theory of magnetic algebra. Indeed, for each P € Erg(Qp)
there is a Z?-invariant trace-per-unit-volume Tp on 2p [L1, Section 2.6].
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3. Magnetic interfaces and K-theory

In this section, we calculate the K-groups of the magnetic algebra 2Ap. More
information about K-theory can be found in the books [6] 37, 44], and for
preliminary results related to the K-theory of magnetic algebras see [11 [36].
Along the way, in some computations, we use the Iwatsuka magnetic algebra
27 and its magnetic hull Q;, so we refer to [I1, Section 4 and Appendix B|
for the detailed description of Iy and ;.

3.1. Interface and bulk algebra

Let Ap, and Ap, be two vector potentials such that their circulation is
the magnetic fields B; and Ba, respectively. Consider the magnetic alge-
bras 24, and QlABQH associated to the vector potentials. According to [11]
Definition 3.1], an evaluation homomorphism, when it exists, is a surjective
*-homomorphism ev: 24, —%4, which fulfills

ev(sABlvl) L= 5,43271

ev(sa,, 2) =54, 2

Moreover, any evaluation homomorphism satisfies the following equality

(18) ev(u(fBl)) =7(fB,), Vv e 72,

Here 7., denotes Z2-action by translation defined in @

Since the full system is composed of two different materials with constant
magnetic fields b_ and b, then according to [36, Definition 3.1.1], it is natural
to define the bulk algebra as Apyk := Ap, B Ap,, where 2, and 2, are the
magnetic C*-algebras associated to the constant magnetic fields of strength
b_ and by, respectively [I1, Example 2.10|. In other words, the bulk algebra
contains the information deep in the interior of both materials.

For the sake of notational simplicity, from now on we write 2 instead of
Ap. In view of [11l Proposition 3.11], the map ev: 2 — 2,k defined as

ev(s1) : = (8.1, 5p.,1)
(19) ev(se) : = (sp, 2, 5. 2)
ev(fp) : = ('’ 1, et 1)

SIn the sense of [I1, Definition 2.9
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is an evaluation homomorphism. We denote by J to the kernel of ev and
we call this ideal the interface algebra. It is important to point out that the
interface coincides with the subalgebra of 2 generated by the elements agb
with a,b € 2 and g € Ker(ev|z,) [1I, Section 3.1], namely

(20) J =Span{agh|a,b e, ge Ker(ev|z,)}.
In the following, we will obtain an explicit description of J in terms of the
projections tg and ug, which implies that J describes the behavior of the

system near the interface.

Proposition 3.1. The projections t,, and w, belong to J for every n € Z2.
Moreover, it holds that for n € 7>

(21)

Proof. Thanks to the proposition [2.4] we know that t,, u, and ¢, can be
written as

Ty (eibL — efbs )_1 (T(n—€1_€2)(fB) n T("_el)(fB)) ’
n (elbL — efb )71 (T(n*€1762)(fB) N T(n7€2)(fB)) ’
dn (elbL - elb* )71 (T(nfelfez)(fB) - elb* l) ’

=
I

for n = (n1,n2) € Z2. Using [18| and the fact that ev(fp) is invariant under
the action 7 (constant magnetic field), then the above equations show that
ev(t,) = 0 =ev(u,). The other equalities follow with the same argument.

O

Proposition 3.2. The interface algebra is the closed two-sided ideal gener-
ated by vy and ug.

Proof. We write (tg, 1) for the closed two-sided ideal generated by v and
ug in 2. Firstly, the Proposition implies that 2(tg,up) C J so we just
have to show the reverse inclusion. Indeed, for every n = (ni,ns) € Z? we
have the following decomposition

m(fB) = fB + (T (fB) — T(0,0,) FB)) + (T(0,n,) (FB) — B)

ny n2

_ fB + (eib* _ eibL ) Z Umnat1) + (eib* _ eibL ) Z T(1m)

m=1 m=1
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and since u,, and v, belong to (g, 1) for any n € Z? we obtain that 7,(fp)
is equal to fp modulo 2A(tg,up). Moreover, the spectrum of fp is the set
{elt eib- ) and it yields

33/2[(t0,u0) ~ C*(fB) ~ C2.
Thereby if g € §p then g = A1qo + )\gqoL modulo A(tp, ug) for some Ay, Ay €
C. Hence we conclude by Proposition that ev(g) = (0,0) if and only if

A1 =2Xo=0, that is, g € A(rp,up). The latter with [20[ show the reverse inclu-
sion. ]

3.2. K-theory of the magnetic hull
Let Q5 be the magnetic hull and consider the following exact sequence
(22) 00— Co(Z2) —> C(Qp) —= C(005) —= 0

where Co(Z?) is the C*-algebra of sequences vanishing at infinity, 4 is the
inclusion homomorphism and e is the evaluation homomorphism at the limit
points. Notice that 9€2p is homeomorphic to the Iwatsuka magnetic hull Q;
[11, Example 2.24| with the identifications oogI — 2541, OOJR — 27, 0o >
400 and oo, — —o0, for j € Z. Therefore, the exact sequence [22] turns out
to be

(23) 00— Co(Z?) — C(Qp) — C(Q) —=0 .

The K-theory of the Iwatsuka magnetic hull is given by Ky (C’(QI)) =7% g
Z? and K1 (C(€)) = 0 [1I, Appendix B]. Furthermore,

Ko(Co(Z?)) = K%(7?) = 2%%
and K (CO(ZQ)) = 0. Thus, the six-term exact sequence implies that

7O KO(C(QB)) — 70l 72

0

K1 (C(Qp)) ~<—0
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is exact. Since the groups in the latter sequence are free Z-modules, then
the extensions are trivial and one has that

Ko(C(2)) = i (Ko(Co(22)) ) @ e (Ko (C(21))
= Dzl © DZlros) © DZluo] © Zlag] © Zlao

and K1 (C(Qp)) = 0, where recall that (3;1)(n) := d;nth(n) are the genera-
tors of Ko(Co(Z?)) and e; ! is a splitting homomorphism.

3.3. K-theory of the magnetic quarter-plane algebra

It is well known that the magnetic algebra 2l has a crossed-product structure
given by

(24) A= (Fp Xay, Z) Na, Z

where the automorphism «; is defined by «;(g) :=s1gs] for g € §p and
the automorphism as is given by ao(gs]) := s2gs]s5 for every g € §p and
r € Np. A discussion of the above result can be found in [I1, Appendix A],
and for more information about the crossed product of C*-algebras we refer
to [6, 10, 33, 45).

From the Pimsner-Voiculescu exact sequence [35], one can relate the K-
theory of Y1 = §p X4, Z with the K-groups of §p as

(25) Ko(35) 2= Ko(§5) — Ko(Y1)

3 |a

K1 (%) K (3B) o Ki(3B)

Here the vertical maps Jy and 0; are the index and exponential maps of a
suitable six-term exact sequence [6, Chapter V], and 1 := 1 — «;. Therefore,
replacing the known K-groups in [25|it turns out that

787 @ 292 @ 72 —— 79" @ 797 © 72 —— Ko (Y1)

|

Ki(Y%1) 0 0

The remaining K-groups can be computed through the following proposition.
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Proposition 3.3. The image and the kernel of the map Pi« Ko(FB) —
Ko(FB) are given by

m(f1.) = EP Zlzi] © EP Zlui o)) Ker(f81.) = Z[1].

1€22 =Y/
Therefore,
Y1) = P Zlvps) @ Zlaol @ Zlag],  EKi(Yr) = Zsi] .
1EL

Proof. Using the relations between the elements of §p one gets

3(i,5) —513(',3')5?] = [3(1',]')} - [3(i+1,j)]

i) = |
B1+([a0]) = a0 — 519081] = [u(0,0)]
Bix([a7]) = [a — s190°57] = —[u(0,0)]
B ([t0,]) = [t0,) — 51%0,057] = [30,0)]
B ([ugi,0)]) = [wg,0) — s1u6,0)51) = [U6,0)] — [Wi41,0)]

Hence the image of (1, is

@ Z3i] @ @ Zlug )

1€2?2 1€Z

The above relations also imply that the kernel of B, is Z[qo + q5] = Z[1].
Notice that the sequence [25| yields that Ker(d;) = Im(i,) = 0, then

Kl(yl) = Im(@l) = Ker(ﬁl*) ~ Z[l] .
By using the isometry v; :=s; ® v defined in the proof of |11, Proposi-

tion 4.9], one obtains that 0;([s1]) = —[1] and therefore K;(Y1) = Z[s;]. The
remaining K-group is given by

Ko(Y) = Ko(§p)/Tm(Br) = @D Zlr(0,5) ® Zlao] © Zlag ]

€L
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In order to obtain the K-theory of 2 we use again the Pimsner-Voiculescu
exact sequence. Namely,

(26) Ko(Y1) &>KO(H1) LK@(QL)

o] |a
(

Ky () <TK1(91) <BTK1(H 1)

where (5 := 1 — as. Replacing the known K-groups it follows that

79t 72 —= 7 § 17 — Ko (%) .

| |

K () v/

Now we are ready to calculate the K-groups of the magnetic quarter-plane
algebra 2.

Proposition 3.4. The image and the kernel of the map Pay: Ko(Y1) —
Ky(Y1) are given by

52* @Z O i)l Ker(ﬁQ*) = Z[l] .

€L

Therefore,
Ko(%) = Zlao] © Zlag| ® Zlc],  K1(A) = Zls1] & Zso] ,
where ¢ is a projection in A @ Maty(C) for some N € N.
Proof. Using again the relations between the elements of §Fp we have

Ba«([a0]) = [g0 — 520085] = [t(0,0]
Bo([a0]) = [0 — 529553] = —[t(0,0)]
ﬁ2*([t(o,z‘)]) = [t(O,i) - 52‘7(0,1')53] = [t(O,i)] - [t(O,iJrl)]
It follows that

ﬁ?* @Z O i)l Ker(ﬁ?*) = Z[l] )

€L
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and
(27) K1 (2A)/Im(iy) ~ Im(01) ~ Ker(f2.) = Z[1].

Notice that Ba.([s1]) = [s1] — [5.8.5%] = [s1] — [fps1] = [0], where we have

used that [fg] = [1] with the homotopy t +— e~ 1%-fqq + e~ 1<t qd. Hence

Bax: Z[s1] — Z[s1] is the zero map and consequently Im(i)~ Z[s1]. More-
over, using again the same argument in the proof of [I1} Proposition 4.9]
with the isometry vy = 9 ® v, it holds that 0;([s2]) = —[1] and so one con-
cludes that K1 () = Z[s1] @ Z][s2] by

Now let us calculate Ko(2). In light of the sequence one has

(28) Ko(2A)/Im(iy) ~ Im(dy) ~ Ker(fas) = Z[s1],
where recall that Ba.: Z[s1] — Z[s1] is the zero map. Since

Ker(iy) = Im(fB24) = @Z['c(oﬂ’)] )

1E€EZ
where fo.: Ko(Y1) — Ko(Y1), then

i (D Zlr 0] @ Zlaol © Zlan]) = i (Zlao] © Zlag]) = Zlao] & Zlag ]

Finally, for some N € N there is a projection ¢ € 2 ® Maty(C) such that
9o([¢])=—]s1] and by [28|it holds that

Ko(A) = Z[qo] & Z[qy] & Z[c] -

3.4. K-theory of the interface algebra

As a direct consequence of the definition of the interface algebra J, we obtain
the quarter-plane exact sequence:

(29) 0 T A% Ap — 0,
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where recall that J and 20y, are defined in section Applying the six-term
exact sequence to [29)it turns out

eV

(30) Ko(3) —— Ko(2) —% Ko (Apuan,)

Ky (Apuir) 55— K1(A) K1(3)

*

Observe that the bulk algebra 2,k is isomorphic to the direct sum of two
noncommutative tori [I1, Example 2.10|, and its K-theory is well-known
[6, B4, Namely, Ko(@Aut) = ZI(1,0)] & Z[(0, 1)] & Z[(ps_ 0)] & Z[(0, po. ]
K1 (™Apu) = Z[(sp,1,1)] @ Z[(sp, 2,1)] © Z[(1,8p. 1)] S Z[(1, 5, 2)] , Where pg_
and py, are the Powers-Rieffel projections of 2y and 2Ap_, respectively. Thus,
the sequence [30] turns out to be

T

Ko(3J) 73— 7t
indT lexP
L' <~ I < Ki(J)

The following Theorem provides the K-theory of J.

Theorem 3.5. The K-groups of the interface algebra J are given by
Ko(j) = Z[to] ) Z[Llo] R Kl(j) = Z[m] ,
where 1o 1= (51 — 1)tg + (55 — L)ug(1 — o) + 1.

Proof. Let us denote by 2(tg) and (up) to the closed two-sided ideals in
generated by vy and ug, respectively. Adapting step by step the proof of [41]
Lemma 3,4, we obtain that K = 2(tg) N A(ug), where X is the algebra of
compact operators on £2(Z?). The latter allows to see that

Ky (Ql(to) N Ql(uo)) = Z[gg] , K (Q[(tg) N Ql(uo)) =0.
In order to calculate the K-theory of J, we claim that
A(ug)/A(ro) NA(ug) ~ A(ro)/A(ro) NA(uy) ~ C(T) ® XK.

where T is the one-dimensional torus and, with a little abuse of notation,
X is the algebra of compact operators on ¢2(Z). In fact, consider the closed
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invariant subset U, U {oo, } U {00} C 9Qp, which is homeomorphic to the
magnetic hull of the Iwatsuka magnetic algebra Q; with the identification
ooljJ — j, 0o_ > 400, and oo, — —o00. Let us write Ay for the magnetic al-
gebra with associated magnetic hull Uy U {oo,} U {oo,} in the sense of [I1,
Proposition 3.11|. Therefore, the associate evaluation map evy : A — 2y is a
surjective x-homomorphism and fulfills

U
1>

evU(sl) =5 eVU(52) = 537 evU(fB) = flf‘

Since 7(g,n,)(ev(fB)) = ev(fp) for any na € Z, then the kernel of evy is (to).
Namely, the decomposition given in the proof of the proposition [3.2]together
with the equality evy(7y(fB)) = 7(y,,0)(f7) for each v = (y1,72) € Z* show
that 2(vg) = Ker(evy). On the other hand, we know that evy(ug) = pj, where
pg is the projection which generates the Iwatsuka interface [11, Proposition
4,6]. Thus, the image of 2A(up) under evy is *-isomorphic to the Iwatsuka
interface, and from [I1, Proposition 4.2|, one has

Uevy(A(u))U ! = O(T) @ K
where U is the Bloch-Floquet transform [28]. Therefore,

Ql(uO)/Ql(to) N Ql(uo) = Ql(uo)/Ker(evU\gl(uU)) >~ eVU(Ql(uo))
~ O(T)®X.

Using now the closed invariant subset Roo U {00, _} U {00.} C 0Qp, then the
same argument yields

RU(to)/2A(ro) N™_A(wg) ~ C(T) @ X,

and the claim follows. By Proposition J=2A(vp) + A(up) and hence the
claim yields the following exact sequence

(31) 0——=A(ro) NA(wy) —>T—">C(T) @K@ C(T) @ K —>0.
The six-term exact sequence associated with [3I] implies

(32) Z— s Ko(0) - Z o7

indT exp
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Therefore, from [32] one has
Ko(9)/Im(i.) = Ko(3)/Kex(r.) ~ Im(r.) = Ker(exp) = Z & 7.
Moreover, the relations
[30] + [t0,1)] = [rouo + v(0,1)] = [vo] = [r(0,1)]
[30] + [w0,1)] = [w(1,0)]
show that i.([30]) = [0o] and K (J) = Z @ Z. Explicitly, Ko(J) = Z[vo] ® Z]uo]

because

me([vo]) = [(1 ®30,0)], i ([uo]) = [(0,1® 30)]
where [(1® 30,0)] and [(0,1® 30)] are the generators of
Ko(C(T)® K& C(T) @ K).
The sequence [30] implies that
(33) K1(3) ~ Im(m,) = Ker(ind).
By stability, we have
Ki(C(T)@X e C(T)®K) = K1 (C(T)) & K1 (C(T)) .

Thereby we can identified the generators of Ki(C(T)® X & C(T)®X)
with [(sY,1)] and [(1, s3)], where we have considered the isomorphism C/(T) ~
C*(sY) for i = 1, 2. By stability again and for the sake of notational simplicity
let us remove the “compact part" of the elements of C(T) ® X & C(T) @ X
in the following computations. Notice that (s; — 1)tg + 1 and (s2 — 1)ug + 1
are partial isometries lifts of (s7,1) and (1,59), respectively. Indeed, a calcu-
lation provides

7((s1 — 1)vo +1) = (Uevy((s1 — 1)ro + 1)U_1, Uevy((s1 — 1)t + 1)U_1)
= (s1,1) = (0,1) = (s}, 1)
and
(vo(sT — 1) +1)((s1 — 1)vo + 1)
=to(s] —1)(s1 —1)ro+ro(s] — 1)+ (51 —1)rp+1

= —T8)To — TSIt + 51T + ToS] + 1
= 1.
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The latter equality is consequence of that vps1tg = s1tg. It follows that

ind([(s}, 1)])
= [1— (vo(s7 — 1) +1)((s1 — 1)vo + 1)]
—[1—=((s1 —1)vo+1)(ro(s] — 1) + 1)]
= [o] - [3(0,0)] = *[21(0,0)] .

The same argument also holds for (1, 3) and in turn ind ([(1,3)]) = —[3(0,0)]-

Hence the kernel of ind is equal to Z[(sY, 55" )]. Let to be the unitary operator

in 3" given by o := (1 — 1)to + (85 — 1)ug(1 —vo) + 1|ﬂ Since
m() = 7( (51 — 1)tg + (55 — Dug(x —tg) + 1) = (s¥,55 ),

where 7 is given in BT} then by [33] one concludes

K1(3) =Z][(s1 — 1)ro + (85 — 1)up(1 — vo) + 1] = Z[t].

4. Bulk-interface correspondence
In this section, we study the quantization of the interface currents and derive

bulk-interface correspondence by using tools from [T} [41] and the K-groups
associated with 2, J and 2Ayk.

4.1. Bulk topological invariants

For any 6 = (61,62) € [0,27)? let us consider the unitary operator vy which
acts on ¢ € (*(Z?) as

(34) (091h) (n1,mo) := e~ HOmtbn) 4y ).

These unitary operators define a continuous group action [0,27)? > 6 — ay
on the bulk algebra given by

(35) ag(a) = U@GU; s a € Apulk -

"A calculation provides that tv is a unitary element in J*, which in fact acts on
(?(Z?) translating anti-clockwise along the interface
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Thereby, we can introduce the infinitesimal generators Vi and Vo on puik
defined as

@, 0)(0) —a e (@) —a
Vi(a) == 91111_{10 % ) Va(a) := 91211_)110 %

for some suitable elements a € Ay k.

Remark 4.1. In general Vi and Vo can be introduced for any magnetic
algebra [11), Section 3.5]. Thus without loss of generality, we will use the
same notation for these derivations in Ay and Ay, .

Let ngulk C Apu be the dense subalgebra of non-commutative poly-
nomials in the variables (sp 1,0), (sp 2,0), (0,85.,1) and (0,5p, 2). Let us
introduce the spaces

—— %
CF (Apui) := A

where the norm || - || is given by

k
lalle ==Y > [ViVial.

=0 a+b=i

Since for a constant magnetic field B of strength b, there is a unique ergodic

measure with the associated trace per unit volume [II, Proposition 2.2§],
then we shall denote as T_ and T, for these unique traces in 2 and 23,
respectively. Given a differentiable projection p = (p_,ps) € C'(Apui), the
transverse Hall conductance associated with p is defined by

(36) obuk(p) := (o6, (p), 05, (p)) -
where
o2
Ob, (p) L= 27Tiﬁr‘TL(pL[v1pL7 VQPL])
o2

op.(p) 1 = 2mi-T «(P«[V1ps, Vaps]),

e > 0 is the magnitude of the electron charge and h is Planck’s constant.
Bulk gap condition (BGC). Let h be the full magnetic Hamiltonian,

~

i.e., a selfadjoint element in A. Let h = (b, bs) := ev(h) € Apyk be the bulk
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magnetic Hamiltonian and assume that there is a compact set A such that
mino(h) < min A < maxA < maxo(h).
As a consequence of BGC, for any p € A the Fermi projection

Pu = (puupu*) = (X(foo,u](hL)7 X(foo,u](h*))

is an element of bulk algebra. Furthermore, it follows that oy (p,) and
op. (p,) are quantized. For instance, one has the equality oy (p,) = %Ch(pm),
where Ch(p,, ) is the Chern number of the projector p,_ and it takes inte-
ger values [9) 36]. We will call the integers oy (p,) and o (p,) as the bulk
magnetic invariants of the system
In view of BGC, there is a nondecreasing smooth function g: R — [0, 1]
such that g = 0 below A and g = 1 above A. Then

ev(1—g(h)) =1 - glev(h)) =1 — (1 = pu) = by

Observe that the Fermi projector p, defines a class [p,] in Ko(2puk) and
the unitary operator ua := e?719(9) defines a class in K;(J). From the fact
that 1 — g(h) is a self-adjoint lift of p,, one gets the following Proposition.

Proposition 4.2. Assume BGC and let p € A. There exist a smooth func-
tion g: R — [0,1] such that the unitary operator up = €>19(0) ¢ 3+ fulfills

exp([p,]) = —[ual.
4.2. Interface currents

Recall that the natural trace on C(T) is given by

(/) = /T fydk,  feo(m).

Here dk is the normalized Haar measure on the one-dimensional torus T.
Since J = A(tg) + A(up), we obtain a trace T; on J pulling back the induced
trace 79 ® Tryz(z) through the isomorphism

A(to)/A(ug) NA(rg) ~ C(T) R XK.
The same argument also provides the trace T on J by using the isomorphism

A(ug)/A(up) NA(ry) ~ C(T) R XK.
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We will write Dy ; C J for the set of trace-class elements of J with respect
to T;. One can endow J with the unbounded derivations Vj ; given by

Vjﬂ 1:[111', -], i:1,2

where
nip(ng, ng) == nip(ny, na), ¥ € (2.

We can extend such a derivations on the unitization of J with the prescrip-
tion V3 ;(1) = 0. For k € N let us introduce the spaces

eg,i::{a€j¢ Vg,i(a)GDJ,i}, i=1,2.

For any unitary operator u € J such that u — 1 € G% ;» we define the wind-
ing numbers of u as

(37) Wgﬂ-(u) = i{.Ti(Ll*Vj’Ku)) s = 1, 2.

Note that the derivation V3 ; is, in principle, only defined on suitable

elements of the interface algebra. In order to make sense to Vj ;(h) for the
Hamiltonian §, we introduce the following assumption.

Existence of the current operator (ECO). Assume that the derivations
V3, can be extended to class of sufficiently regular elements of A for i = 1, 2.
Moreover, we assume that iji(f)) exists as element of 2 for the full magnetic
Hamiltonian 6

There are different ways to perform such an extension. For instance, by
adapting the argument used in [8, [I5], one can define V5 ; = [x;1, -| where
Xi are the switch functions given by x;(n) = n; when n = (n1,n2) lies in
the interfaceﬂ and x;(n) = 0 otherwise. Other example, by combining the
derivations V1 and Vj of 2, is described in [41].

Remark 4.3. [t is important to point out that h_Iiji(rA)) can be physically
interpreted as the velocity operator along the faces of the interface. Here h
1s the reduced Planck’s constant.

8i.e. the set {(n1,0) : ny >0} U{(0,n2) : ng > 0}



1840 Danilo Polo Ojito

Let us suppose ECO, then

(38) J3i(8) = 2 Ti(g (0)Vai(h),  i=1.2

represents the two current densities along J. Therefore, by Kubo’s Formula
[5, 12], the terms oy ; := eJ5; provide the interface conductances, where re-
call that e > 0 is the magnitude of electron charge. Furthermore, if we assume
the assumptions BGC and ECO one obtains

Tio (B)V3:(5) = —p-Walua),  i=1,2.

The latter equality can be obtained by adapting the proof of [36, Proposi-
tion 7.1.2]. As a result, the interface conductances associated with the inter-
face states in A are given by

62

03:(A) = EW’J,i(uA) i=1,2.

Notice that in agreement with the above, one can define for general unitary
operators u € J7 such that u —1 € G%i the interface conductance by

62

(39) 03,1 (U.) : A Wj,i (u) .

Remark 4.4. The term o5 1(u) is the proportionality coefficient of the cur-
rent flowing along the interface in the x-axis when the system is in the con-
figuration w [11, [36]. For i = 2 it provides the other current in the y-axis of
the interface.

4.3. Proof of the Bulk-interface correspondence

We are in the position to state our main result of this section. Let us begin
with some previous technical results.

Lemma 4.5. Let p = (p_,p«) be a projection in Apyk. Then

exp([p]) = (Ch(p.) — Ch(p.))[w],

where Ch(p, ) and Ch(p.) are the Chern numbers of p_ and p., respectively.



Interface currents and corner states in magnetic systems 1841

Proof. In light of the proposition the elements (1,0) and (0,1) in Apyk
lift in the projections qg and qé-, respectively. Therefore, using |37, Proposi-
tion 12.2.2] one finds

(40) exp([(1,0)]) = exp([(0,1)]) = [1].

On the other hand, the class [p] can be written as

(41)  [pl = M_[(x, 0)] + M.[(0, 1)] + Ch(p.)[(ps_, 0)] + Ch(p.)[(0, po.)] ,

where pp_ and py, are the Powers-Rieffel projections of A and 2, , respec-
tively. We know that

po. = 55, 1f (5, 2) +g(sp_2) + f(S6_2)86 1,
po. = sp, 1.f(56.2) + 9(sp, 2) + f(sb. 2)5..1

for some suitable continuous real functions f and g on T [19, Proposition
12.,4]. Consider now the self-adjoint lift of (pg,_, ps,) given by

[=s7/f(s2) + g(s2) + f(s2)s1 -

From the construction of f and g it follows that [ is a projection in 2| and
for this reason we have

exp([(pg_. 0)] + [(0,p0.)]) = exp([(ps_. po.)]) = [¢*"''] = [1]

Thus, it follows that exp([(pg,_,0)]) = —exp([(0,ps,)]). The latter with
and [IT] imply that

exp([p]) = (Ch(p.) — Ch(p.))q[w],

for some ¢ € Z. In order to show that ¢ = £1, notice that ev,: K;(2)—
K1 (pu) in the exact sequence [30|is injective and thanks to |30 again, exp
is a surjective map and so it holds that ¢ = £1. Finally, since Ko(pux) =
Ko(Ap, ) & Ko(Ap,) then it is easy to be convinced that

1 (exp([(pa_, 0)])) = d([po.]) = [(s1,1)],

where 71, K1(J) — K1(C(T)) is the projection on the first component of
the image of 7 in the sequence |31} and §: Ky(2, ) — K1(C(T)) is the expo-
nential map in [35, Proposition A]. Thus, one concludes that exp([(pg,_,0)])=

[rw] and exp([p]) = (Ch(p.) — Ch(p.))[w] . O
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Lemma 4.6. It holds that
W3 () = (—1)" i=1,2.

Proof. We know that

V(o —1) = [0, (51 — 1)rg + (85 — 1)ug(1 — t)] = 8170

The same computation provides Vy2(to — 1) = —s3up(1 — t9). On the other
hand, since T; (A(ro) N A(up)) = 0 then one obtains

Wg,l(m) =T ((m* — 1)V3,1(m — l))
= 71 ((rols = 1) + (1 — ro)uo(s2 — 1)) (s1%0)
= 71 (t(] — tgﬁlto) = 1,

and similarly

W (tw) = T ((m* — 1)Vsa(t0 — 1)) - ‘.TQ( —ug+ u051u0> — 1.

Now we present the main result of this section.

Theorem 4.7. Assume BGC and ECO holds for the full magnetic Hamil-
tonian 6 Let p € A and assume that the bulk Hamiltonian b lies in C* (Apuic)
for some k>1. Then, the interface conductance associated with the unitary
operator ua defined in the Proposition[{.9 can be expressed as the difference
of the bulk magnetic invariants of the system, i.e.

(42)  oaiua) = (-0 (o (b) — o0 (). =12,

Proof. The Lemmas and together the Proposition [.2] yield

62 62
03,i(ua) = —Wsi(ua) = ZWH,i(eXP(_[pMD)

h
62
— (-1 (Ch(p.) - Ch(p.)
(=1 (o, () = . () -
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The next Proposition states that the Theorem [£.7] holds even if some geo-
metrical imperfections are introduced into the interface.

Proposition 4.8. For any b € Cy(Z?) it holds that Ap.y, and Ap are iso-
morphic as C*-algebras. Consequently, the interface currents persist when
there are geometric imperfections that vanish at infinity.

Proof. First of all, let us identify the perturbed flux operator fpi; with
the function fgyy(n) = 1B 1) on 72, Since Cy(Z?) € C(Qp), then it
follows that the function Z2 3 n + e*™ lies in C'(Qp). Therefore, fp4y €
$p and by duality this yields a surjective continuous map ¢: Qp — Qp4p.
Moreover, notice that fpy; has the same asymptotic behavior of fp, hence
the map ¢ must be injective by [I5] Actually, ¢ is a homeomorphism since Qp
and Qp4p are compact Hausdorff spaces. Thus, we conclude that Ap,p ~ Ap
as ('*-algebras, and the remaining part follows from the fact that the K-
theory is an algebraic invariant. O

We finish this section with an example where the Theorem [£.7] assures the
existence of non-trivial interface currents.

Example 4.9. Let b, = 2arm and b, =287 so that a and B are rational
numbers and o — B ¢ Z. Consider the full magnetic Hamiltonian

h:=61+s]+52+565+0

where v is a selfadjoint element in the interface algebra J such that v is in the
domain of Vg ; with i = 1,2. In view of the P'roposition the components
of the corresponding bulk Hamiltonian b = (b, b.) = ev(h) fulfills

* *
b =8p 1+ 8, 1+ 5p 2+ 5 o

bx =8p,1+ 5,1+ 5.2+ 5, 0
According to [11, Section 2.1/, in the Landau gaugfﬂ b reads

(hoy)(n1,n2) =¥(n1 — 1,m2) +¥(n1 + 1,m2) + ™™ 2h(ng, ny — 1)
+ e—27ran1 ¢(n17n2 + 1)

for all ) € (2(Z2). This is a Harper-like operator [20] and the spectrum of b_
is given by the union of q energy bands when o = p/q, where p and q relative

9The gauge given by A(n,n — ej) := 0;.9n1b_ whose circulation is the constant
magnetic field B(n) = b, .
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prime integers [5, Section 2.6]. Moreover, all the energy bands are separated
except the central one [3,[7]. Since the same arguments also work for b, then
for suitable values of o and B one can choose i in a common spectral gap A

of b and b, so that b meets BGC and Ch(p,, ) # Ch(pu*)

) On the other hand, one has that [n;,s;] = 0; j5; € A and this implies that
h meets ECO. Finally, Theorem shows that o3 ;(ua) # 0.

5. Corner states

In this section, we use an adaptation of [21] to define corner states associated
with the magnetic quarter-plane algebra. We will prove that these corner
states have topological properties which depend on the asymptotic behavior
of the system.

5.1. Toeplitz extensions for the magnetic quarter-plane algebra

Recall that Uss U {004} U {oo_} and Ree U {004} U {00, } are invariant clos-
ed subsets of 2p and thanks to [II, Proposition 3.11], there are magnetic
algebras %Ay and 2y associated to these sets, which are in fact isomorphic
to the Iwatsuka magnetic algebra so that the evaluation maps evy: 2 — 2y
and evg: A — Ay are well defined surjective x-homomorphisms. Explicitly,
these maps satisfy

) eVR(EQ) = 5% ) eVR(fB) = f?)

43
) Cewle) =i, evsli) = .
Proposition 5.1. It holds true that Ker(evg) = A(up) and Ker(evy) = 2A(tp).

Proof. First of all, note that 7, o)(f7) = ff for every n; € Z. The latter with
the expression of ug given in the proof of Proposition [2.4] imply that

A(ug) C Ker(evy).
On the other hand, one knows the decomposition
Tn(f8) = (T(n1n2) FB) — T(0.00)FB)) + Toma)(FB) . 1= (n1,m2) € Z°

then evy (7, (fB)) = eVR(T(o,nQ)(fB)) = T(0,n,)(f7) . Therefore, if g € §p and
evg(g) = 0 in turns g € A(up). Thereby, the reverse inclusion holds by

10The Hofstadter butterflies [2, 3] provides specific values for a and £3.
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Finally, notice also that ’7’(07”2)(1:[[]) = f¥ and hence the same argument shows
that Ker(evy) = (o). O

Using again [I1 Proposition 3.11], there are two evaluations homomor-
phisms evg: ™Ag — Ay, D ™Ap, and evyy: Ay — ™A, D Ay, , which satisfy that

evmb(s}D = (ﬁbL,h Sp, 1 ) ) GVUJ,(s?) = (5bL71’ 5b“1) :
evn,b(ﬁ%) = (sbL,Q, ﬁb*,2) ) eVU,b(sg) = (5bL’27 5b*72) 7
eVRﬂb(fl}) = ( 't el l) ) eVU,b(f[IJ) = ( elbo 1 elb- l) )

Let us consider the asymptotic algebra 2dyg, which is the pullback of the
two latter x-homomorphisms. Namely, Ayg := {(u,v) € Ay & Ag | evyp(u) =
evgp(t)}. Observe also that by definition of pullback, the diagram

TR

(44) Ay r g

lm, \Levk,b

Ay —, 2o, DAy,

is commutative, where 7y and 7wy are the projections on the first and second
coordinate of 2y g, respectively.

Remark 5.2. [t is important to point out that the following diagram is
commutative

evy

(45) 2 Ag

ev
evy €Vg b

Q[U ?‘Lb Q[bL @ le*

where ev: A — A, DAy, s the evaluation map given in .
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From the universal property of the pullback C*-algebra and remark
there is a *-homomorphism ~: 2 — %y g so that the diagram

(46) 2

TR

Ap

lm, levﬁ,b

QlU T> leL S le*

Vu,b
is commutative. Explicitly, it holds that v(a) = (evy(a), eva(a)) for any ac 2A.

Theorem 5.3. The sequence

(47) 0 K —Ls A — T Ay 0

is ezact, where K ~ A(ro) NA(ug) is the set of compact operators on ?(Z?).

Proof. Let (¢/,v") € Ayr and consider two arbitrary elements g,y € 2 such
that evy(r) =1’ and evg(n) = v'. Since by definition evy (1) = evgp(y’), then
from the diagram [46] one has

eVyp (eVU(F - \))) = eVU,b(I/) — €Vup (eVU(U)) = eVU,b(P/) — CVRb (eVR(U))
= evyy(t') — evap(y') = (0,0).
Therefore, evy(r — 1) € Ker(evyy) = Ay(evy(up)), where Ay(evy(ug)) denotes
the two-sided ideal generated by evy(up) in 20y. The same argument provides

that evg(r — 9) € Ker(evg) = QLR(eVR(to))B In light to the Propositions
and for some v/ € A(rp) and v’ € A(up) one has

r—y+d eAu), r—n+u €Axo).

Hence there is a € A(rg) NA(up) such that r+v =1y —u' 4+ a. Choosing
3 =1+ t/ one obtains that

v(3) = (eVU(ﬁ)a eVR(Zﬁ)) = (eVU(F +v'), eva(p —u' + 0))
= (evy(x), eva(n)) = (¢',v').

"The equalities Ker(evyp) = y(evy(ug)) and Ker(evy ) = Ag(eva(ty)) follow
from [T}, Proposition 4.6].
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This verifies that - is a surjective x-homomorphism. As a consequence of that
Ker(v) = Ker(evy) N Ker(evg) = A(up) NA(rg) ~ K, it follows that Ker(v)
= Im(4) and this concludes the proof. O

As an immediate consequence of Theorem [5.3] one can deduce that the
asymptotic algebra contains the information of the system that is far from
the corner. Moreover, by Atkinson’s Theorem, we obtain the following Propo-
sition.

Proposition 5.4. An element t € A is Fredholm if and only if evg(t) and
evy(t) are invertible elements in Ag and Ay, respectively.

Corollary 5.5. It holds true that Ko(2yr) ~ Ko(2() and K1 (yr)~ K1 ()@
Ko(X) as abelian groups.

Proof. The Theorem implies the following exact sequence

(48) Ko(X) = Z[30) —— Ko() —> Ko(Ayp)
K1(Ayr) K () <— 0

Ve

Notice that i.([30]) = [30] = [0 — s1v08]] = [t0] — [s1t0s]] = 0, and conseque-
ntly i.: Zzo] — Ko(2) is the zero map. Therefore, v, : Ko(A) = Ko(Ayr) is
an isomorphism of groups and as a result Ko(yr) ~ Ko(2) = Z3. Further-
more, the same argument provides Ki(yr) ~ K1 (A) & Ko(X) = Z3. O

5.2. Corner Invariants

Thanks to the Theorem we have the short exact sequence

(49) 0—KC(T) —A® C(T) —Ayr ® C(T) —0,

Let 6: T — %A be the time-dependent magnetic Hamiltonian, that is, a self-
adjoint element of 2 ® C(T) so that h(0) is the full magnetic Hamiltonian
h. We will also consider the asymptotic Hamiltonian defined by

ba(t) = (0°(2),H7(¢)) := 7 (B(1)) -

Let .Z3¢ C B((*(Z?)) be the set of all self-adjoint Fredholm operators
such that its essential spectrum is not contained in either (—oo, 0) or (0, +00).
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Let us consider the subspace of .7 % given by
Fri={aec F|a|]| =1, o(a) is finite, and oegs(a) = {£1} }.

It is true that the inclusion i: #F° — %5 is an homotopy equivalence
(1, [34].

Asymptotic gap condition (AGC): Assume that the Fermi level p is not
contained in either o (h’(¢)) or o (h®(¢)) for any ¢ in T. We further assume
that the spectrum of h4(t) is not contained in either Ry or Ro.

Without loss of generality, in what follows let us assume that the Fermi
level p is equal to 0. From AGC, there is a smooth function f: R — [0, 1]
such that f(ha(t)) = X(—o0,0/(ha(t)), which is in fact a time-dependent pro-
jection in RAyr and we will denote it by p,. Note also that p, defines an
element [p,] in the K-group Ko(2yr ® C(T)) and we shall call this class as
the magnetic asymptotic invariant of the system.

Using AGC again and Proposition [5.4} we obtain that the continuous
family () lies in .Z2° for any t € T. Thereby the class [h] in [T, .| defines
an element in K (C(T)) under the identification K (C(T)) ~ [T, .#5] given

by the spectral ﬂo of the family (h(¢))ter (see [I, B4]). We will call the

class [h] as the magnetic corner invariant of the system.

5.3. Proof of the correspondence

Let us consider the map dp: Ko(Ryr @ C(T)) — K1(C(T)) defined as

Ko(Ayr ® C(T)) 2> K (K @ C(T))
\ l
K1(C(T))
where the stabilization gives the vertical arrow and the exponential map

comes from the sequence [49] Observe that dy is a surjective homomorphism,
since in view of the [44], Exercise 8.B], the six-term exact sequence associated

12The net numbers of eigenvalues crossing 0 (counting multiplicity) in the positive
direction as ¢ goes from 0 to 1 [34]
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to [49] is equivalent to

1Dl

<DV
Ko(X) ® K{(X) Ko(2) @ K1 (%) 222 Ko(Ayg) & K1 (Aur)
ind@expT lexp@ind

Ky (Q{UJ{) D KO(QlU,R) m Kl(Ql) D Ko(m) Kl(ﬂc) D Ko(x)

T D
Now by Corollary one knows that
Ko(mu,pb) D K1(QLU7R) = Ko(2) & K1 () & Ko(X)

Thus, for some N € N choosing the unitary ue Maty (2yg) such that ind([u])
= [30] in the sequence [48|it follows from its very definition that do(0([u])) is
the Z-generator of K1(C(T)), where 6: K (2yr) — Ko(Co((0,1)) @ Ayg) is
the map given in [44] Theorem 7.2.5].

The next Theorem concerns the correspondence between the corner and
asymptotic magnetic invariants defined in the quarter-plane system under
the map dg, which is the main result of this section.

Theorem 5.6. If AGC holds, then it is true that 6y([pa]) = [b].

Proof. Let [ be a selfadjoint lift of q4 := 1 — pg. In light of the Proposition [5.1
and Theorem it holds that gess([(t)) = 0(qa(t)) = {0,1}. Consequently,
for 0 < e <1 one has that I(t) — e1 € Z5 for any t, so let I(t) € .F>° be
the element given by the image of [(¢) — €1 under the homotopy equivalence
F50 o F2°. Tt follows that

exp([pa]) =[] = [¥"11] = [21 - 1],

where the last step comes from the homotopy equivalence given in [34], Propo-
sition 5]. On the other hand, observe that for all ¢ € T the elements

X (o0 (0(£)B(1) — 1

and [(t) — 2 have essential spectrum contained in (—o0,0), and the elements
(1— X(_m,o](ﬁ(t)))ﬁ(t) + 1 and [(¢) + 1 have essential spectrum contained in
(0, +00). Since ['is a lift of gq, then |34}, Proposition 1] and Theorem 5.3]imply
that 6 ~p 2l — 10y 20— 1, where recall that the symbol ~; means homotopy
equivalence of loops. Thus, one concludes that do([pa]) = []. O
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The following Corollary provides a criterion for the triviality of the corner
states. The proof is an immediate consequence of the Theorem [5.6]

Corollary 5.7. A necessary condition for non-trivial corner states is that
the time-dependent magnetic Hamiltonian is gapless.

Remark 5.8. When b_ = 0 and b, ¢ 277, one can consider time-dependent
Hamiltonians of the form h(t) = q5 + qoh(t)qo where b(t) is a selfadjoint
element in 2. Since qob(t)qo can be regarded as a operator acting on £*(N x
N) and moreover sf((ﬁ(t))tg[r | =0) = sf((qob(t)qo)eer | 1 = 0) then the
constructions introduced in [21, Section 4] provides examples of corner states.
However, in order to adapt the constructions of [21)] the Hamiltonians must
belong to Mata(2A), but by the stability of the K-theory, the Theorem also

applies for these cases.
Let us describe two examples where the Theorem [5.6] applies.

Example 5.9. Consider the selfadjoint element 6 =19 — té‘ i A. First of

all, notice that o(h) = {—1,1} and moreover

(% 1
s1hs7 = t(10) — 30 — 17 -

Then for t € [0,1], define

b(t) = (1) <t(1,o) + (1 —O 2t)30 — vy i) u(t) € Mat(2)

where u(t) is a continuous unitary path so that

0-(3). (2 3

It turns out that §(0) = h(1), that is, h(-) € Mato(A) @ C(T). Furthermore,
for all t one has o(B(t)) = {—1,t,1} and cess(h(t)) = {—1,1}. As a result,
this Hamiltonian meets AGC and hence Theorem guarantee non-trivial
topological corner states since one can see that Sf(b(t))te[o,l] | p=0)=-1.

Example 5.10. For piezoelectric materials, if we add a suitable periodic
perturbation along the positive side of the y-am‘ﬂ the corner states are in

13 Along this work the notation sf((h(t))ier | 1 = 0) stands for the spectral flow
at p =0 of the family (h(t))ser

14 As a consequence of that u,, and t, are in 2 for all n € Z2, we can choose any
other semi-axis given by the range of these projectors.
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correspondence with the polarization in the edge of such a semi-axis. In or-
der to see the latter, let us first say a few words about the piezoelectric effect.

It is well known that deformations in piezoelectric materials lead to the
accumulation of charge in the edge of the sample, which are due to two con-
tributions: the relative displacements of the ionic cores, and electrical conduc-
tion which is the so-called orbital polarization. Here we will be dealing only
with the latter contribution in dimension 1 for a discrete non-random system
where the interaction between particles is neglected. In this case, the Hilbert
space and the observable algebra turn out to be (*(Z) and C*(S) ~ C(T), re-
spectively, where S stands for the usual shift operator on (*(Z) (cf. [13,(36]).
At fixed Fermi level p =0, the periodic deformation of the system is mod-
eled by a differentiable path of selfadjoint elements [0,1] > ¢t — H(t) € C*(S)
so that H(0) = H(1), 0 ¢ o(H(t)) for all t, and there are states above and
below of 0 during the deformation, i.e., the instantaneous Fermi projection
P(t) = X(—o0,0](H(t)) is different to the zero or identity operator for all t.
Then one knows from [13, 25, [30, [40] that, up to arbitrarily small correc-
tions in the adiabatic limit, the orbital polarization AP accumulated during
one adiabatic cycle is given by

(50) AP =i /1 dt 7 (P(t)[8,P(t), VP(t)])
0

where I denotes the trace per unit volume on C*(S) and V = i[N, -] is
the commutator with the position operator. It is important to point out that
equation states that, for periodic deformation, the orbital polarization is
a bulk effect of topological nature taking values in 2nZ [13, Corollary 1], as
noted by Thouless [{3] in a more restricted context. Now, let us consider the
path

[0,1] 5 ¢t — H(t) € C*(S)

given by the truncation of H(t) on the Hilbert space ¢*(N). From the bulk-
boundary correspondence [36, Theorem 5.5.8 and Section 7.7], it follows that

(51) AP = —2m st (H(1))sepp, | 1= 0)

Now let us connect the latter result with the corner states. For that, we know
that there exists a continuous path [0,1] € t — h1(t) € A of selfadjoint ele-
ments such that woh1(t)ug = H(t) as operators acting on (%(N). The above
is a consequence of that ugs;ug = 527]-5' acting on (*(N) for j =1,2. Here S
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denotes the truncation of the shift operator S on (*(N). Define

~ A~

b(t) := uoh1 (H)ug +ughoug €A, ¢t €]0,1]

for some suitable selfadjoint element 62 € A such that H&GQUé 1s invertible as
operator acting on (*(Z*\ ({0} x N)). By using the decomposition (*(Z?) =
2(N) @ €2(Z* \ ({0} x N)) one gets for all t

A~

o(h(t) = o (uoh1(tuo) Ua(ughouy) = o(H (1)) U o (ughoug).

Therefore, the gap assumption on the deformation verifies that 6(2&) meets

AGC. Furthermore,

Sf(ﬁ(t))te[o,l] | p=0)= Sf(uoﬁl(t)uo)te[o,l] | p=0)
= sf(H(t)tep1] | 1 =0)

1
= —%AQZ
Thus, the Theorem|5. 6 implies that 5o([pa]) = —5= AP and the claim follows.
Let us observe that these types of perturbations on the system depend
implicitly on the geometry of the quarter plane. Namely, as we proved in
Proposition[2.4], the projector ugy lies in the algebra A as consequence of that
b. — b ¢ 277 and the definition of the quarter-plane magnetic field B.
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