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Interface currents and corner states in

magnetic quarter-plane systems
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We study the propagation of currents along the interface of two
2-d magnetic systems, where one of them occupies the first quad-
rant of the plane. By considering the tight-binding approximation
model and K-theory, we prove that, for an integer number that is
given by the difference of two bulk topological invariants of each
system, such interface currents are quantized. We further state the
necessary conditions to produce corner states for these kinds of
underlying systems, and we show that they have topologically pro-
tected asymptotic invariants.
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1. Introduction

A magnetic quarter-plane system is composed of two 2-d materials subjected
to constant magnetic őelds so that one material occupies the őrst quadrant
of the plane and the other material the remaining part of the plane; see
Fig. 1 and 2. When the magnetic őelds are orthogonal and of distinct in-
tensity, there may exist extended states near the interface between the two

1813



✐

✐

ł4-Ojitož Ð 2024/7/1 Ð 13:38 Ð page 1814 Ð #2
✐

✐

✐

✐

✐

✐

1814 Danilo Polo Ojito

materials carrying currents1. Furthermore, under suitable time-dependent
perturbation of the system could appear localized states at the corner of the
interface. This work deals with the study of topological invariants associated
with interface currents and corner states in magnetic quarter-plane systems
for which the interactions between particles are neglected. These new results
are a physical manifestation of the K-theory and index theory of certain
C∗-algebras.

Figure 1: A picture of the magnetic quarter-plane. The interface is the thin
region that separates the two materials. The magnetic effects in the full
system are modeled by a magnetic őeld oriented orthogonally to the plane
with strength function B : Z2 → R such that has the value b⌞ in the őrst
quadrant and b∗ otherwise.

1.1. Interface currents

There are prior rigorous works about interface currents by considering the
Iwatsuka magnetic system [23], i. e. each material occupies a half-plane and
the Iwatsuka magnetic őeld is a y-independent magnetic őeld oriented or-
thogonally to the plane with a strength function BI : R

2 → R so that

lim
x→±∞

BI(x) = b±.

An interesting property is that in the Iwatsuka case, the interface currents
are quantized by the difference of two Chern numbers of the two systems. A
rigorous mathematical justiőcation for the latter fact was obtained in [15] for

1Similar to the edge currents in the quantum Hall effect
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continuous systems and in [27] for discrete systems. Using K-theory applied
to the Iwatsuka Toeplitz extension, De Nittis and Gutierrez [11] also obtained
the same result for discrete systems. It is important to point out that the
work [11] also set a mathematical framework for analyzing general magnetic
systems with interfaces.

In the tight-binding approximation, we prove that there may exist two
topological currents ŕowing along the faces of the interface in the magnetic
quarter-plane systems and that such currents are quantized by an integer
number given by the difference of two bulk invariants of each material (The-
orem 4.7). Following the previous work [11], the main ingredient to get the
latter result is to construct a suitable quarter-plane exact sequence (sequence
29) which relates the states localized near the interface with the bulk states
of the two subsystems. Then the interface and bulk conductances2 are en-
coded in elements of some K-groups associated to the quarter-plane exact
sequence. Consequently, we show the bulk-interface correspondence of these
conductances based on the ideas of [41]. It is worth noting that the proofs
also cover the case of the classical quarter-plane obtained in [41] when one
of the two materials is chosen to be the vacuum. Furthermore, we also prove
that this result is robust against localized geometrical imperfection of the
materials and even disorder effects can be handled, however, we prefer not
to discuss this issue.

1.2. Corner states

One important result in the study of the quarter-plane algebras and its K-
theory is the following exact sequence

(1) 0 // K // Tα,β // Sα,β // 0 ,

where Tα,β is the quarter-plane Toeplitz algebra, K is the algebra of com-
pact operators, and Sα,β is the pullback C∗-algebra of two suitable Toeplitz
algebras. The latter sequence was proved by Douglas and Howe [16] in a
restricted context, and after that, Park obtained the general case [31, 32].
In 2018, Hayashi [21] deőnes two topological invariants associated with the
sequence 1: one is deőned by counting corner states of the system and its

2The conductance associated to the interface and bulk currents of the system.
We interpret the bulk conductance as the two bulk topological invariants of each
material since it provides the value of the Hall conductance in the bulk of a quantum
Hall system [4, 5, 29, 42].
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non-triviality implies that the corner Hamiltonian3 is gapless. The other in-
variant is deőned in terms of the spectral gap of the bulk Hamiltonian4.
Both invariants are elements of some K-groups associated with the sequence
1 and there is a topological correspondence between these two invariants [21,
Theorem 3.7].

In the same vein as Hayashi, we construct a Toeplitz extension for the
magnetic quarter-plane algebra (Theorem 5.3), and we deőne two topolog-
ical invariants associated with such a sequence: the corner invariant that
describes the existence of states localized near the point (0, 0), and the gap-
less invariant related with the asymptotic behavior of the system. Afterward,
using the six-term exact sequence on the sequence 5.3, we show that these
invariants are in correspondence (Theorem 5.6), and a necessary condition
for to obtain non-trivial corner states is that the time-dependent magnetic
Hamiltonian is gapless (Corollary 5.7).

Structure of the paper. Section 2 is devoted to the construction of the
magnetic quarter-plane algebra and its magnetic hull. In more detail, we give
an explicit presentation of the magnetic hull which allows us to describe the
magnetic quarter-plane algebra in terms of crossed products. In section 3
we calculate the K-groups of the magnetic quarter-plane algebra, the bulk
algebra, and the interface algebra. Moreover, a description of the interface al-
gebra in terms of suitable projections is provided. In section 4, we present the
bulk-interface correspondence. We begin this section by introducing the bulk
and interface conductances. Afterward, we state the necessary assumptions
needed to obtain the bulk-edge correspondence. This section őnishes with the
proof of the quantization of the interface currents. Section 5 is devoted to the
study of the corner states. Indeed, we construct a suitable Toeplitz extension
for the magnetic quarter-plane algebra and after that, we give a characteri-
zation of the Fredholm operators in this C∗-algebra. Finally, we deőne two
topological invariants associated with the quarter-plane Toeplitz extension
and we prove that there is a correspondence between these invariants.

Acknowledgments. I would like to cordially thank G. De Nittis for sug-
gesting me this problem, and for his guidance and support throughout this
work. I also would like to express my gratitude to N. J. Buitrago for reading
the preliminary version of this paper and for helpful remarks. I have spe-
cial thanks to E. Gutierrez, J. Gomez, M. Moscolari and S. Teufel for many
stimulating discussions. In particular, I am indebted to M. Moscolari for his

3Periodic family of selfadjoint elements in Tα,β

4Periodic family of selfadjoint elements in Sα,β
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2. Magnetic quarter-plane algebra

This section is devoted to the detailed study of magnetic quarter-plane alge-
bra and its magnetic hull. For an introduction to the construction of magnetic
C∗-algebras, we refer to [11].

2.1. Magnetic fields and vector potentials

In the tight-binding approximation for two-dimensional magnetic systems,
the position space is Z2 and an orthogonal magnetic őeld is nothing more
than a function B : Z2 → R. For our case of interest let us consider the
quarter-plane magnetic őeld given by

(2) B(n) :=

{

b∗ if n1 ≤ 0 or n2 ≤ 0 ,
b⌞ otherwise ,

where b⌞, b∗ ∈ R so that b⌞ − b∗ /∈ 2πZ5 and n = (n1, n2) ∈ Z2. For every
magnetic őeld deőned in Z2 one can őnd inőnite vector potentials AB : Z2 ×
Z2 → R whose circulation is exactlyB, namely such thatB(n) = Cir[AB](n),
for all n ∈ Z2, where

Cir[AB](n) :=AB(n, n− e1) +AB(n− e1, n− e1 − e2)

+AB(n− e1 − e2, n− e2) +AB(n− e2, n) .

Here e1 := (1, 0) and e2 := (0, 1) denote the canonical basis of Z2. A standard
choice for the vector potential associated with the magnetic őeld B is given
by

(3) AB(n, n− ej) := δj,1



δn2>0

n2
∑

m=1

B(n1,m)− δn2<0

|n2|−1
∑

m=0

B(n1,−m)



 ,

where n = (n1, n2) ∈ Z2. The check that the circulation of this vector poten-
tial provides B is a matter of a straightforward calculation.

5This condition is necessary to get non-trivial topological effects. Otherwise, the
flux operator (see 5) is constant.
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Remark 2.1. Since the magnetic őeld (2) is not invariant under translation
in some direction, it follows that there are not Landau-type vector potentials
(cf. [14, Section 2.2]) for the magnetic őeld B.

We can introduce the magnetic translations s1 and s2 associated to the
given magnetic potential AB as

(4) (sjψ)(n) := e iAB(n,n−ej) ψ(n− ej) , j = 1, 2

where ψ ∈ ℓ2(Z2). Let fB : Z2 → U(1) be the function

(5) fB(n) := e iB(n) , n ∈ Z
2

which provides the exponential of the magnetic ŕux through the unit cell
sited in n, and deőne the associated ŕux operator as

(6) (fBψ)(n) := fB(n)ψ(n) , ψ ∈ ℓ2(Z2) .

A straightforward computation shows that the magnetic translations satisfy
the condition

(7) s1 s2 s
∗
1 s

∗
2 = fB .

Once the magnetic translations have been deőned, let us introduce the
magnetic algebra associated with them.

Definition 2.2. The magnetic quarter-plane algebra AB (in the gauge AB

őxed by (3)) is the C∗-algebra inside the bounded operators B(ℓ2(Z2)) gen-
erated by the magnetic translations sj deőned by (4), i. e.

AB := C∗(s1, s2) .

From its deőnition, it turns out that AB is an unital C∗-algebra.

Remark 2.3. Since there are inőnite magnetic potentials whose circulation
is exactly B, one could be worried about the loss of generality in the deőnition
of the magnetic algebra AB. This is however not the case, since every pair
of magnetic potentials, let us say AB and A′

B, with equal circulation, are
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connected by a gauge function GB : Z2 → R according to

AB(n,m) = A′
B(n,m) +GB(n)−GB(m) , |n−m| = 1 .

Therefore, if the magnetic translations associated with the magnetic poten-
tials AB and A′

B are sj and s′j respectively, then it holds that

s′j = e− iG sj e iG , j = 1, 2 .

As a consequence, the associated magnetic algebras are unitarily equivalent.

2.2. Magnetic hull

Let m : ℓ∞(Z2) → B(ℓ2(Z2)) be the injective ∗-morphism which associates to
each g ∈ ℓ∞(Z2) the multiplication operator mg deőned by

(mgψ)(n) := g(n)ψ(n) , ψ ∈ ℓ2(Z2) .

An example of this type of operator is given by the ŕux operator fB = mfB .
Consider the Z2-action deőned over ℓ∞(Z2) by

(8) τγ(g)(n) := g(n− γ) , n, γ ∈ Z
2 ,

for every g ∈ ℓ∞(Z2). It holds that

(9) τγ (mg) := mτγ(g) = (s1)
γ1 (s2)

γ2 mg (s2)
−γ2 (s1)

−γ1

with γ = (γ1, γ2). In view of (7) and (9) one gets that

τγ(fB) = mτγ(fB) ∈ AB , ∀ γ ∈ Z
2 .

Therefore, the C∗-algebra

(10) FB := C∗
(

1, {τγ(fB) | γ ∈ Z
2}
)

⊂ AB

is a sub C∗-algebra of AB that is commutative and with unit. Moreover, by
construction, it is invariant under the Z2-action implemented by the trans-
lations τ . It follows from Gelfand-Naímark isomorphism that there exists a
compact Hausdorff space ΩB such that FB ≃ C(ΩB). Such space ΩB will be
called the magnetic hull of the algebra AB. In the following, we will focus
on the description of the space ΩB.

Given a subset O ⊆ Z2 let χO be the characteristic function of O and mχO

the associate multiplication operator. Evidently mχO
is a projection.
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Proposition 2.4. Given n ∈ Z2 deőne the sets

Rn := {n+ je1 | j ∈ N0} ,

Un := {n+ je2 | j ∈ N0} ,

Qn := {n+ je1 + ke2 | j, k ∈ N0} ,

Qcn := Z
2 \ Qn ,

(11)

where N0 := N ∪ {0}. Then, for every n ∈ Z2, the projections rn := mχRn
,

un := mχUn
, qn := mχQn

and q⊥n := mχQcn
are elements of FB.

Proof. For any m = (m1,m2) ∈ Z2 one has that

fB(m+ e1 + e2)− fB(m+ e1) =

{

e i b⌞ − e i b∗ if m1 ≥ 0 and m2 = 0 ,
0 otherwise .

Furthermore, e i b⌞ − e i b∗ ̸= 0 in view of b⌞ − b∗ /∈ 2πZ and this with the
above yield

r0 = ( e i b⌞ − e i b∗ )−1
(

τ(−e1−e2)(fB)− τ(−e1)(fB)
)

∈ FB

and rn = τn(r0) ∈ FB for every n ∈ Z2. Similarly, one has that

fB(m+ e1 + e2)− fB(m+ e2) =

{

e i b⌞ − e i b∗ if m1 = 0 and m2 ≥ 0 ,
0 otherwise ,

and in turn

u0 = ( e i b⌞ − e i b∗ )−1
(

τ(−e1−e2)(fB)− τ(−e2)(fB)
)

∈ FB .

As a consequence un = τn(u0) ∈ FB. Finally

fB(m+ e1 + e2)− e i b∗ =

{

0 if m1 ≤ 0 or m2 ≤ 0 ,
e i b⌞ − e i b∗ otherwise ,

which implies that

q0 = ( e i b⌞ − e i b∗ )−1
(

τ(−e1−e2)(fB)− e i b∗ 1
)

∈ FB ,

and in turn qn = τn(q0) ∈ FB for every n ∈ Z2. To conclude the proof it is
sufficient to observe that q⊥n = 1− qn. □
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Remark 2.5. Let us say a few words about the notation introduced above.
The symbols Rn and Un stand for the łright half-linež and the łup half-linež
at the point n, respectively. In the same vein, the symbol Qn stands for the
łquarter-planež at the point n.

Let C0(Z
2) be the C∗-algebra of continuous functions that vanish at

inőnity and C∞(Z2) = C0(Z
2) + C1 its unitization, i. e. , the set of continuous

functions with a limit at inőnity. Due to the discreteness of Z2, every function
on Z2 is automatically continuous. This provides the identiőcation ℓ∞(Z2) ≡
Cb(Z

2), where Cb(Z
2) denotes the set of bounded continuous functions. Let

us deőne

M∞ :=
{

mg | g ∈ C∞(Z2)
}

, M∞ :=
{

mg | g ∈ ℓ∞(Z2)
}

.

Both M∞ and M∞ are unital sub-C∗-algebras of B(ℓ2(Z2)) invariant under
the Z2-action implemented by the translations τ . It holds that

(12) M∞ ⊂ FB ⊂ M∞ .

The second inclusion in (12) follows from the observation that fB ∈ M∞. For
the őrst inclusion let us observe that zn := rnun is the projection on the site
n, i. e. , the multiplication operator for the characteristic function χ{n}, for
every n ∈ Z2. Therefore, since zn ∈ M∞ ∩ FB and the zn generates M∞, one
deduces the őrst inclusion of (12). In view of the Gelfand-Naímark isomor-
phism, one gets that M∞ ≃ C(Z2

∞) and M∞ ≃ C(βZ2) where Z2
∞ and βZ2

are the one-point compactiőcation and the Stone-Čech compactiőcation of
Z2, respectively [19, Section 1.3]. Therefore ΩB represents a compactiőcation
of Z2 which is between the one-point compactiőcation and the Stone-Čech
compactiőcation. It is worth noticing that the setting we are considering
has been studied in a certain generality in [17, 18]. In the following, we will
provide a concrete model for ΩB.

Let ∞∗,∞⌞,∞
U
j ,∞

R
k be given points with j, k ∈ Z, and deőne

ΩB := Z
2 ∪ {∞∗} ∪ {∞⌞} ∪ U∞ ∪ R∞ .

where

U∞ :=
⋃

j∈Z

{∞U
j} , R∞ :=

⋃

k∈Z

{∞R
k} .
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In order to introduce a convenient topology on ΩB we will őrst provide a
basis for it. Let us introduce some convenient notation:

Rn := Rn ∪ {∞R
n2
} ,

Un := Un ∪ {∞U
n1
} ,

Qn := Qn ∪ {∞⌞}
⋃

j≥n1

{∞U
j}

⋃

j≥n2

{∞R
j} ,

Qcn := Qcn ∪ {∞∗}
⋃

j<n1

{∞U
j}

⋃

j<n2

{∞R
j} ,

(13)

where n = (n1, n2) ∈ Z2. It is straightforward to check that the collection

Q :=
{

{n}, Rn, Un, Qn, Qcn
∣

∣ n ∈ Z
2
}

,

meets the conditions to be the basis of a topology for ΩB. We shall denote
with TopQ to the topology on ΩB generated by Q.

Proposition 2.6. The topological space (ΩB, TopQ) is compact and Z2 sits
inside ΩB as an open dense subset.

Proof. It is easy to see that Z2 is an open dense subset of ΩB by the deőnition
of TopQ, hence let us prove the compactness. Let {Aα}α∈I be an open cover of
ΩB. Note that there exist α∗, α⌞ ∈ I such that ∞∗ ∈ Aα∗

and ∞⌞ ∈ Aα⌞
. This

implies that Qn ⊂ Aα⌞
and Qcm ∈ Aα∗

for some m = (m1,m2) and n = (n1, n2)
in Z2, in view of the fact that Aα∗

and Aα⌞
are open. Observe that there are at

most a őnite number of elements ∞U
j and ∞R

k in the complement of Qn ∪ Qcm.
Therefore there is a őnite number of elements of the cover such that ∞U

j ∈
U(j,sj) ⊂ Aαj

and ∞R
k ∈ R(rk,k) ⊂ Aαk

with sj , rk ∈ Z suitable coordinates. As
a result, the complement of the union of the őnite collection of open sets Aα⌞

,
Aα∗

, Aαj
and Aαk

is at most a őnite set of points of Z2. As a consequence,
ΩB can be covered by a őnite number of elements of {Aα}α∈I showing that
(ΩB, TopB) is a compact topological space. □

Let X be a discrete topological space. A őlter on X is a nonempty family F

of subsets of X, which is closed under őnite intersections, does not contain
the empty set, and for any A ∈ F such that if A ⊂ B ⊂ X, then B ∈ F. If
F and G are őlters on X, then we said that G is őner than F if F ⊂ G. An
ultraőlter on X is a őlter that is not properly contained in any other őlter on
X. The space βX of all ultraőlters on X is a compact space, actually, βX is
the Stone-Čech compactiőcation of X (see [22, 38] and references therein).



✐

✐

ł4-Ojitož Ð 2024/7/1 Ð 13:38 Ð page 1823 Ð #11
✐

✐

✐

✐

✐

✐

Interface currents and corner states in magnetic systems 1823

Let D be a topological space and f : X → D any function. For a őlter
F on X we say that limF f = y or F-limit of f is y if and only if for any
open neighborhood U of y we have f−1(U) ∈ F. It is worth pointing out that
F-limits coincide with the general concept of limit in a topological space for
functions deőned on βX [22, Theorem 3.46]. Note also that if limF f = y,
then it is easy to see that for any őlter G őner than F it holds that limG f = y.

Recall that Z2 ⊂ ΩB ⊂ βZ2, hence we can describe the elements of

∂ΩB := ΩB \ Z2

as suitable class of ultraőlters on Z2 [18, Lemma 2.1]. For that, let us deőne
the following collections

Uj := {A ⊂ Z
2 | U(j,n1) ⊂ A, for some n1 ∈ Z}

Rj := {A ⊂ Z
2 | R(n1,j) ⊂ A, for some n1 ∈ Z}

Q⌞ := {A ⊂ Z
2 | Qn ⊂ A, for some n ∈ Z

2}

Q∗ := {A ⊂ Z
2 | Qcn ⊂ A, for some n ∈ Z

2} .

One can see that the foregoing collections are őlters of Z2. Furthermore, the
continuity of each g ∈ C(ΩB) and the deőnition of TopQ imply that

lim
Uj

g = g(∞U
j ) , lim

Rj

g = g(∞R
j ) , j ∈ Z ,

lim
Q⌞

g = g(∞⌞) , lim
Q∗

g = g(∞∗) .(14)

Actually, if f : Z2 → C and all the limits in 14 exist for f , then f has unique
continuous extension on ΩB. Indeed, let f̂ be the extension of f on ΩB given
by

f̂(ω) :=























f(ω) if ω ∈ Z2

limUj
f if ω = ∞U

j

limRj
f if ω = ∞R

j

limQ⌞
f if ω = ∞⌞

limQ∗
f if ω = ∞∗

From the deőnition of the limit, we have that for any ϵ > 0 there is A ∈ Uj

such that |f̂(∞U
j )− f̂(x)| < ϵ for all x ∈ A. In particular, since Un ⊂ A for

some n∈Z2, then for all x ∈ Un it is true that |f̂(∞U
j )− f̂(x)| < ϵ, which

implies that f̂ is continuous in ∞U
j . The continuity of f̂ in the other points

of ∂ΩB follows with the same argument. It turns out that f̂ ∈ C(ΩB) and



✐

✐

ł4-Ojitož Ð 2024/7/1 Ð 13:38 Ð page 1824 Ð #12
✐

✐

✐

✐

✐

✐

1824 Danilo Polo Ojito

this extension is unique due to that Z2 is a dense subset of ΩB. Thus, one
concludes that the elements of ∂ΩB can be identify as follows

∞U
j ≡ {G ∈ βZ2 | Uj ⊂ G} , ∞R

j ≡ {G ∈ βZ2 | Rj ⊂ G} ,

∞⌞ ≡ {G ∈ βZ2 | Q⌞ ⊂ G} , ∞∗ ≡ {G ∈ βZ2 | Q∗ ⊂ G} .
(15)

Proposition 2.7. It holds that FB ≃ C(ΩB) as C∗-algebras.

Proof. Firstly, recall that we can identify the elements of FB with functions
over Z2. In particular, fB is the multiplication by the function fB over Z2. For
any γ ∈ Z2, we see that τγ(fB) is constant in the sets Qγ and Qcγ , therefore the
extension of τγ(fB) to ΩB is a well deőned continuous function because the
limits in 14 exist for τγ(fB). Moreover, these limits are linear and multiplica-
tive [22], hence any polynomial p in the variables τγ1

(fB), . . . , τγk
(fB) have

a continuous extension to ΩB for any k ∈ N. Now let mg ∈ FB be a generic
element in FB deőned by the multiplication by the function g ∈ ℓ∞(Z2) and
deőne the map FB ∋ mg 7→ ĝ ∈ C(ΩB), where ĝ is constructed as follows.
For such g there is a sequence

(

gn
)

n∈N
of polynomials gn in the variables

τγ1
(fB), . . . , τγn

(fB) so that gn → g in FB. Note that the sequence
(

ĝn
)

n∈N
deőned by the extension of each gn on ΩB is a Cauchy sequence in C(ΩB).
Namely, for every ϵ > 0 there is N ∈ N such that ∥gn − gm∥FB

< ϵ for all
n,m > N. Therefore,

∥ĝn − ĝm∥C(ΩB) = sup
x∈Z2

|ĝn(x)− ĝm(x)| = ∥gn − gm∥FB
< ϵ .

The latter follows from the fact that Z2 is dense in the compact set ΩB. Thus,
we deőne ĝ as the limit in C(ΩB) of the sequence

(

ĝn
)

n∈N
, which provides

a continuous extension of g on ΩB. Using again the fact that Z2 is an open
dense subset of ΩB, then any such g has a unique continuous extension on
ΩB, that is, the map FB ∋ mg 7→ ĝ ∈ C(ΩB) is injective. In order to show
the surjectivity, we claim that the image of FB separates the points of ΩB.
Indeed, let ω1 and ω2 be two points in ΩB, then there is n ∈ Z2 such that
either ω1 ∈ Qn and ω2 ∈ Qn

c or ω1 ∈ Qn
c and ω2 ∈ Qn. Thus one obtains that

χ̂Qn
(ω1) ̸= χ̂Qn

(ω2) and the claim follows, where χ̂Qn
is the extension of the

indicator function χQn
on Z2, which belong to FB by Proposition 2.4. Fi-

nally, one can verify that this map is also linear, multiplicative and preserve
the ∗-involution. Consequently, FB ∋ mg 7→ ĝ ∈ C(ΩB) is a ∗-isomorphism
between FB and C(ΩB). □

As expected ΩB is the Gelfand spectrum of FB, that is, the set of ∗-
homomorp-hism ω : FB → C. The action of ΩB over FB can be regarded as
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an evaluation map. Namely, the inclusion Z2 ∋ n 7→ ωn ∈ ΩB is given by the
evaluation at a őnite distance:

ωn(g) := g(n) , g = mg ∈ FB

and the remaining limit points are identiőed in the following way

ω∞R
j
(g) := lim

Rj

g , ω∞∗
(g) := lim

Q∗

g ,

ω∞U
j
(g) := lim

Uj

g , ω∞⌞
(g) := lim

Q⌞

g .
(16)

Furthermore, we can endow ΩB with a Z2-action: For each γ ∈ Z2 consider

τ∗γ (ω(g)) := ω(τ−γ(g)),

where ω ∈ ΩB and g ∈ FB. Therefore, it follows that

τ∗γ (ωn) = ωn+γ , τ∗γ (ω∞U
j
) = ω∞U

j+γ1
, τ∗γ (ω∞R

j
) = ω∞R

j+γ2
,

τ∗γ (ω⌞) = ω⌞ , τ∗γ (ω∞∗
) = ω∞∗

.

for every γ = (γ1, γ2) ∈ Z2. As a consequence Z2 is an invariant subset under
the action τ∗, and the boundary

(17) ∂ΩB = ΩB \ Z2 = {∞∗} ∪ {∞⌞} ∪ U∞ ∪ R∞

is the disjoint union of four invariant subsets.

Proposition 2.8. (ΩB, τ
∗,Z2) is a dynamical system and its set Erg(ΩB)

of the ergodic probability measures is given by Erg(ΩB) = {P∞⌞
, P∞∗

}, where
the measures are speciőed by

P∞⌞
(∞⌞) = 1 , P∞∗

(∞∗) = 1 .

Proof. From the deőnition of τ∗, the minimal invariant subsets of ΩB are
Z2, U∞, R∞, {∞⌞} and {∞∗}. Moreover, the sets Z2, U∞ and R∞ are made
of wandering points under τ∗, hence the only possible invariant measures on
ΩB are the Dirac measures supported in {∞⌞} or {∞∗}, that is, Erg(ΩB) =
{P∞⌞

, P∞∗
}. □

The ergodic measures of (ΩB, τ
∗,Z2) play a crucial role in the construction

of the integration theory of magnetic algebra. Indeed, for each P ∈ Erg(ΩB)
there is a Z2-invariant trace-per-unit-volume TP on AB [11, Section 2.6].
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3. Magnetic interfaces and K-theory

In this section, we calculate the K-groups of the magnetic algebra AB. More
information about K-theory can be found in the books [6, 37, 44], and for
preliminary results related to the K-theory of magnetic algebras see [11, 36].
Along the way, in some computations, we use the Iwatsuka magnetic algebra
AI and its magnetic hull ΩI , so we refer to [11, Section 4 and Appendix B]
for the detailed description of AI and ΩI .

3.1. Interface and bulk algebra

Let AB1
and AB2

be two vector potentials such that their circulation is
the magnetic őelds B1 and B2, respectively. Consider the magnetic alge-
bras AAB1

and AAB2

6 associated to the vector potentials. According to [11,
Deőnition 3.1], an evaluation homomorphism, when it exists, is a surjective
∗-homomorphism ev : AAB1

→AAB2
which fulőlls

ev(sAB1
,1) : = sAB2

,1

ev(sAB1
,2) : = sAB2

,2

Moreover, any evaluation homomorphism satisőes the following equality

(18) ev
(

τγ(fB1
)
)

= τγ(fB2
) , ∀ γ ∈ Z

2.

Here τγ denotes Z2-action by translation deőned in 9.

Since the full system is composed of two different materials with constant
magnetic őelds b⌞ and b∗, then according to [36, Deőnition 3.1.1], it is natural
to deőne the bulk algebra as Abulk := Ab⌞ ⊕ Ab∗ , where Ab⌞ and Ab∗ are the
magnetic C∗-algebras associated to the constant magnetic őelds of strength
b⌞ and b∗, respectively [11, Example 2.10]. In other words, the bulk algebra
contains the information deep in the interior of both materials.

For the sake of notational simplicity, from now on we write A instead of
AB. In view of [11, Proposition 3.11], the map ev : A → Abulk deőned as

ev(s1) : = (sb⌞,1, sb∗,1)

ev(s2) : = (sb⌞,2, sb∗,2)(19)

ev(fB) : =
(

e i b⌞ 1, e i b∗ 1
)

6In the sense of [11, Definition 2.9]
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is an evaluation homomorphism. We denote by I to the kernel of ev and
we call this ideal the interface algebra. It is important to point out that the
interface coincides with the subalgebra of A generated by the elements agb

with a, b ∈ A and g ∈ Ker(ev|FB
) [11, Section 3.1], namely

(20) I = Span {agb | a, b ∈ A, g ∈ Ker(ev|FB
)} .

In the following, we will obtain an explicit description of I in terms of the
projections r0 and u0, which implies that I describes the behavior of the
system near the interface.

Proposition 3.1. The projections rn and un belong to I for every n ∈ Z2.
Moreover, it holds that for n ∈ Z2

ev(qn) = (1, 0)

ev(q⊥n ) = (0, 1)
(21)

Proof. Thanks to the proposition 2.4, we know that rn, un and qn can be
written as

rn = ( e i b⌞ − e i b∗ )−1
(

τ(n−e1−e2)(fB)− τ(n−e1)(fB)
)

,

un = ( e i b⌞ − e i b∗ )−1
(

τ(n−e1−e2)(fB)− τ(n−e2)(fB)
)

,

qn = ( e i b⌞ − e i b∗ )−1
(

τ(n−e1−e2)(fB)− e i b∗ 1
)

,

for n = (n1, n2) ∈ Z2. Using 18 and the fact that ev(fB) is invariant under
the action τ (constant magnetic őeld), then the above equations show that
ev(rn) = 0 = ev(un). The other equalities follow with the same argument.

□

Proposition 3.2. The interface algebra is the closed two-sided ideal gener-
ated by r0 and u0.

Proof. We write A(r0, u0) for the closed two-sided ideal generated by r0 and
u0 in A. Firstly, the Proposition 3.1 implies that A(r0, u0) ⊂ I so we just
have to show the reverse inclusion. Indeed, for every n = (n1, n2) ∈ Z2 we
have the following decomposition

τn(fB) = fB +
(

τn(fB)− τ(0,n2)(fB)
)

+
(

τ(0,n2)(fB)− fB
)

= fB + ( e i b∗ − e i b⌞ )

n1
∑

m=1

u(m,n2+1) + ( e i b∗ − e i b⌞ )

n2
∑

m=1

r(1,m) ,
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and since un and rn belong to A(r0, u0) for any n ∈ Z2 we obtain that τn(fB)
is equal to fB modulo A(r0, u0). Moreover, the spectrum of fB is the set
{ e i b∗ , e i b⌞ } and it yields

FB/A(r0, u0) ≃ C∗(fB) ≃ C
2.

Thereby if g ∈ FB then g = λ1q0 + λ2q
⊥
0 modulo A(r0, u0) for some λ1, λ2 ∈

C. Hence we conclude by Proposition 3.1 that ev(g) = (0, 0) if and only if
λ1=λ2=0, that is, g ∈ A(r0, u0). The latter with 20 show the reverse inclu-
sion. □

3.2. K-theory of the magnetic hull

Let ΩB be the magnetic hull and consider the following exact sequence

(22) 0 // C0(Z
2)

i // C(ΩB)
e // C(∂ΩB) // 0

where C0(Z
2) is the C∗-algebra of sequences vanishing at inőnity, i is the

inclusion homomorphism and e is the evaluation homomorphism at the limit
points. Notice that ∂ΩB is homeomorphic to the Iwatsuka magnetic hull ΩI

[11, Example 2.24] with the identiőcations ∞U
j 7→ 2j + 1, ∞R

j 7→ 2j, ∞⌞ 7→
+∞ and ∞∗ 7→ −∞, for j ∈ Z. Therefore, the exact sequence 22 turns out
to be

(23) 0 // C0(Z
2) // C(ΩB) // C(ΩI) // 0 .

The K-theory of the Iwatsuka magnetic hull is given by K0

(

C(ΩI)
)

= Z⊕Z ⊕
Z2 and K1

(

C(ΩI)
)

= 0 [11, Appendix B]. Furthermore,

K0

(

C0(Z
2)
)

= K0(Z2) = Z
⊕Z

2

and K1

(

C0(Z
2)
)

= 0. Thus, the six-term exact sequence implies that

Z⊕Z
2 // K0

(

C(ΩB)
)

// Z⊕Z ⊕ Z2

��
0

OO

K1

(

C(ΩB)
)

oo 0oo
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is exact. Since the groups in the latter sequence are free Z-modules, then
the extensions are trivial and one has that

K0

(

C(ΩB)
)

= i∗

(

K0

(

C0(Z
2)
)

)

⊕ e−1
∗

(

K0

(

C(ΩI)
)

)

=
⊕

i∈Z2

Z[zi]⊕
⊕

i∈Z

Z[r(0,i)]⊕
⊕

i∈Z

Z[u(i,0)]⊕ Z[q⊥0 ]⊕ Z[q0]

and K1

(

C(ΩB)
)

= 0, where recall that (ziψ)(n) := δj,nψ(n) are the genera-
tors of K0

(

C0(Z
2)
)

and e−1
∗ is a splitting homomorphism.

3.3. K-theory of the magnetic quarter-plane algebra

It is well known that the magnetic algebra A has a crossed-product structure
given by

(24) A =
(

FB ⋊α1
Z
)

⋊α2
Z

where the automorphism α1 is deőned by α1(g) := s1gs
∗
1 for g ∈ FB and

the automorphism α2 is given by α2(gs
r
1) := s2gs

r
1s

∗
2 for every g ∈ FB and

r ∈ N0. A discussion of the above result can be found in [11, Appendix A],
and for more information about the crossed product of C∗-algebras we refer
to [6, 10, 33, 45].

From the Pimsner-Voiculescu exact sequence [35], one can relate the K-
theory of Y1 = FB ⋊α1

Z with the K-groups of FB as

(25) K0

(

FB

) β1∗ // K0

(

FB

) i∗ // K0

(

Y1

)

∂0

��
K1

(

Y1

)

∂1

OO

K1

(

FB

)

i∗
oo K1

(

FB

)

β1∗

oo

Here the vertical maps ∂0 and ∂1 are the index and exponential maps of a
suitable six-term exact sequence [6, Chapter V], and β1 := 1− α1. Therefore,
replacing the known K-groups in 25 it turns out that

Z⊕Z
2

⊕ Z⊕Z ⊕ Z2 // Z⊕Z ⊕ Z⊕Z ⊕ Z2 // K0

(

Y1

)

��
K1

(

Y1

)

OO

0oo 0oo

The remaining K-groups can be computed through the following proposition.
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Proposition 3.3. The image and the kernel of the map β1∗:K0(FB) →
K0(FB) are given by

Im(β1∗) =
⊕

i∈Z2

Z[zi]⊕
⊕

i∈Z

Z[u(i,0)] , Ker(β1∗) = Z[1] .

Therefore,

K0(Y1) =
⊕

i∈Z

Z[r(0,i)]⊕ Z[q0]⊕ Z[q⊥0 ] , K1(Y1) = Z[s1] .

Proof. Using the relations between the elements of FB one gets

β1∗
(

[z(i,j)]
)

= [z(i,j) − s1z(i,j)s
∗
1] = [z(i,j)]− [z(i+1,j)]

β1∗
(

[q0]
)

= [q0 − s1q0s
∗
1] = [u(0,0)]

β1∗
(

[q⊥0 ]
)

= [q⊥0 − s1q
⊥
0 s

∗
1] = −[u(0,0)]

β1∗
(

[r(0,i)]
)

= [r(0,i) − s1r(0,i)s
∗
1] = [z(0,i)]

β1∗
(

[u(i,0)]
)

= [u(i,0) − s1u(i,0)s
∗
1] = [u(i,0)]− [u(i+1,0)]

Hence the image of β1∗ is

⊕

i∈Z2

Z[zi]⊕
⊕

i∈Z

Z[u(i,0)] .

The above relations also imply that the kernel of β1∗ is Z[q0 + q⊥0 ] = Z[1].
Notice that the sequence 25 yields that Ker(∂1) = Im(i∗) = 0, then

K1(Y1) = Im(∂1) = Ker(β1∗) ≃ Z[1] .

By using the isometry v1 := s1 ⊗ v deőned in the proof of [11, Proposi-
tion 4.9], one obtains that ∂1([s1]) = −[1] and therefore K1(Y1) = Z[s1]. The
remaining K-group is given by

K0(Y1) = K0(FB)/Im(β1∗) =
⊕

i∈Z

Z[r(0,i)]⊕ Z[q0]⊕ Z[q⊥0 ]

□
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In order to obtain the K-theory of A we use again the Pimsner-Voiculescu
exact sequence. Namely,

(26) K0

(

Y1

) β2∗ // K0

(

Y1

) i∗ // K0

(

A
)

∂0

��
K1

(

A
)

∂1

OO

K1

(

Y1

)

i∗
oo K1

(

Y1

)

β2∗

oo

where β2 := 1− α2. Replacing the known K-groups it follows that

Z⊕Z ⊕ Z2 // Z⊕Z ⊕ Z2 // K0

(

A
)

��
K1

(

A
)

OO

Zoo Zoo

.

Now we are ready to calculate the K-groups of the magnetic quarter-plane
algebra A.

Proposition 3.4. The image and the kernel of the map β2∗ : K0(Y1) →
K0(Y1) are given by

Im(β2∗) =
⊕

i∈Z

Z[r(0,i)] , Ker(β2∗) = Z[1] .

Therefore,

K0(A) = Z[q0]⊕ Z[q⊥0 ]⊕ Z[c] , K1(A) = Z[s1]⊕ Z[s2] ,

where c is a projection in A⊗MatN (C) for some N ∈ N.

Proof. Using again the relations between the elements of FB we have

β2∗
(

[q0]
)

= [q0 − s2q0s
∗
2] = [r(0,0)]

β2∗
(

[q⊥0 ]
)

= [q⊥0 − s2q
⊥
0 s

∗
2] = −[r(0,0)]

β2∗
(

[r(0,i)]
)

= [r(0,i) − s2r(0,i)s
∗
2] = [r(0,i)]− [r(0,i+1)]

It follows that

Im(β2∗) =
⊕

i∈Z

Z[r(0,i)] , Ker(β2∗) = Z[1] ,
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and

K1(A)/Im(i∗) ≃ Im(∂1) ≃ Ker(β2∗) = Z[1] .(27)

Notice that β2∗
(

[s1]
)

= [s1]− [s2s1s
∗
2] = [s1]− [fBs1] = [0] , where we have

used that [fB] = [1] with the homotopy t 7→ e− i b⌞t q0 + e− i b∗t q⊥0 . Hence
β2∗ : Z[s1] → Z[s1] is the zero map and consequently Im(i∗)≃ Z[s1]. More-
over, using again the same argument in the proof of [11, Proposition 4.9]
with the isometry v2 = s2 ⊗ v, it holds that ∂1([s2]) = −[1] and so one con-
cludes that K1(A) = Z[s1]⊕ Z[s2] by 27.
Now let us calculate K0(A). In light of the sequence 26, one has

(28) K0(A)/Im(i∗) ≃ Im(∂0) ≃ Ker(β2∗) = Z[s1] ,

where recall that β2∗ : Z[s1] → Z[s1] is the zero map. Since

Ker(i∗) = Im(β2∗) =
⊕

i∈Z

Z[r(0,i)] ,

where β2∗ : K0(Y1) → K0(Y1), then

i∗
(

⊕

i∈Z

Z[r(0,i)]⊕ Z[q0]⊕ Z[q⊥0 ]
)

= i∗
(

Z[q0]⊕ Z[q⊥0 ]
)

≃ Z[q0]⊕ Z[q⊥0 ] .

Finally, for some N ∈ N there is a projection c ∈ A⊗MatN (C) such that
∂0([c])=−[s1] and by 28 it holds that

K0(A) = Z[q0]⊕ Z[q⊥0 ]⊕ Z[c] .

□

3.4. K-theory of the interface algebra

As a direct consequence of the deőnition of the interface algebra I, we obtain
the quarter-plane exact sequence:

(29) 0 // I
i // A

ev // Abulk
// 0 ,
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where recall that I and Abulk are deőned in section 3.1. Applying the six-term
exact sequence to 29 it turns out

(30) K0(I)
i∗ // K0(A)

ev∗ // K0(Abulk)

exp

��
K1(Abulk)

ind

OO

K1(A)ev∗

oo K1(I)
i∗

oo

Observe that the bulk algebra Abulk is isomorphic to the direct sum of two
noncommutative tori [11, Example 2.10], and its K-theory is well-known
[6, 44]. Namely, K0(Abulk) = Z[(1, 0)]⊕ Z[(0, 1)]⊕ Z[(pθ⌞ , 0)]⊕ Z[(0, pθ∗)] ,
K1(Abulk) = Z[(sb⌞,1, 1)]⊕ Z[(sb⌞,2, 1)]⊕ Z[(1, sb∗,1)]⊕ Z[(1, sb∗,2)] , where pθ⌞
and pθ∗ are the Powers-Rieffel projections of Ab⌞ and Ab∗ , respectively. Thus,
the sequence 30 turns out to be

K0(I)
i∗ // Z3 ev∗ // Z4

exp

��
Z4

ind

OO

Z2
ev∗

oo K1(I)
i∗

oo

The following Theorem provides the K-theory of I.

Theorem 3.5. The K-groups of the interface algebra I are given by

K0(I) = Z[r0]⊕ Z[u0] , K1(I) = Z[w] ,

where w := (s1 − 1)r0 + (s∗2 − 1)u0(1− r0) + 1 .

Proof. Let us denote by A(r0) and A(u0) to the closed two-sided ideals in A

generated by r0 and u0, respectively. Adapting step by step the proof of [41,
Lemma 3,4], we obtain that K = A(r0) ∩ A(u0), where K is the algebra of
compact operators on ℓ2(Z2). The latter allows to see that

K0

(

A(r0) ∩ A(u0)
)

= Z[z0] , K1

(

A(r0) ∩ A(u0)
)

= 0 .

In order to calculate the K-theory of I, we claim that

A(u0)/A(r0) ∩ A(u0) ≃ A(r0)/A(r0) ∩ A(u0) ≃ C(T)⊗K.

where T is the one-dimensional torus and, with a little abuse of notation,
K is the algebra of compact operators on ℓ2(Z). In fact, consider the closed
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invariant subset U∞ ∪ {∞⌞} ∪ {∞∗} ⊂ ∂ΩB, which is homeomorphic to the
magnetic hull of the Iwatsuka magnetic algebra ΩI with the identiőcation
∞U

j 7→ j, ∞⌞ 7→ +∞, and ∞∗ 7→ −∞. Let us write AU for the magnetic al-
gebra with associated magnetic hull U∞ ∪ {∞⌞} ∪ {∞∗} in the sense of [11,
Proposition 3.11]. Therefore, the associate evaluation map evU : A → AU is a
surjective ∗-homomorphism and fulőlls

evU(s1) = sU1 , evU(s2) = sU2 , evU(fB) = fUI .

Since τ(0,n2)(ev(fB)) = ev(fB) for any n2 ∈ Z, then the kernel of evU is A(r0).
Namely, the decomposition given in the proof of the proposition 3.2 together
with the equality evU

(

τγ(fB)
)

= τ(γ1,0)(f
U
I) for each γ = (γ1, γ2) ∈ Z2 show

that A(r0) = Ker(evU).On the other hand, we know that evU
(

u0
)

= pU0, where
pU0 is the projection which generates the Iwatsuka interface [11, Proposition
4,6]. Thus, the image of A(u0) under evU is ∗-isomorphic to the Iwatsuka
interface, and from [11, Proposition 4.2], one has

UevU(A(u0))U
−1 = C(T)⊗K

where U is the Bloch-Floquet transform [28]. Therefore,

A(u0)/A(r0) ∩ A(u0) = A(u0)/Ker(evU|A(u0)) ≃ evU(A(u0))

≃ C(T)⊗K .

Using now the closed invariant subset R∞ ∪ {∞⌞} ∪ {∞∗} ⊂ ∂ΩB, then the
same argument yields

A(r0)/A(r0) ∩ A(u0) ≃ C(T)⊗K ,

and the claim follows. By Proposition 3.2, I = A(r0) + A(u0) and hence the
claim yields the following exact sequence

(31) 0 // A(r0) ∩ A(u0)
i // I

π // C(T)⊗K⊕ C(T)⊗K // 0 .

The six-term exact sequence associated with 31 implies

(32) Z
i∗ // K0(I)

π∗ // Z⊕ Z

exp

��
Z⊕ Z

ind

OO

K1(I)π∗

oo 0
i∗

oo
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Therefore, from 32 one has

K0(I)/Im(i∗) = K0(I)/Ker(π∗) ≃ Im(π∗) = Ker(exp) = Z⊕ Z .

Moreover, the relations

[z0] + [r(0,1)] = [r0u0 + r(0,1)] = [r0] = [r(0,1)]

[z0] + [u(0,1)] = [u(1,0)]

show that i∗([z0]) = [0] andK0(I) = Z⊕ Z. Explicitly,K0(I) = Z[r0]⊕ Z[u0]
because

π∗
(

[r0]
)

=
[

(1⊗ z0, 0)
]

, π∗
(

[u0]
)

=
[

(0, 1⊗ z0)
]

where
[

(1⊗ z0, 0)
]

and
[

(0, 1⊗ z0)
]

are the generators of

K0

(

C(T)⊗K⊕ C(T)⊗K
)

.

The sequence 30 implies that

(33) K1(I) ≃ Im(π∗) = Ker(ind) .

By stability, we have

K1

(

C(T)⊗K⊕ C(T)⊗K
)

= K1

(

C(T)
)

⊕K1

(

C(T)
)

.

Thereby we can identiőed the generators of K1

(

C(T)⊗K⊕ C(T)⊗K
)

with [(sU1, 1)] and [(1, sU2)], where we have considered the isomorphism C(T) ≃
C∗(sUi ) for i = 1, 2. By stability again and for the sake of notational simplicity
let us remove the łcompact part" of the elements of C(T)⊗K⊕ C(T)⊗K

in the following computations. Notice that (s1 − 1)r0 + 1 and (s2 − 1)u0 + 1

are partial isometries lifts of (sU1, 1) and (1, sU2), respectively. Indeed, a calcu-
lation provides

π
(

(s1 − 1)r0 + 1
)

=
(

UevU
(

(s1 − 1)r0 + 1
)

U−1, UevU
(

(s1 − 1)r0 + 1
)

U−1
)

= (sU1, 1)− (0, 1) = (sU1, 1)

and
(

r0(s
∗
1 − 1) + 1

)(

(s1 − 1)r0 + 1
)

= r0(s
∗
1 − 1)(s1 − 1)r0 + r0(s

∗
1 − 1) + (s1 − 1)r0 + 1

= −r0s
∗
1r0 − r0s1r0 + s1r0 + r0s

∗
1 + 1

= 1.
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The latter equality is consequence of that r0s1r0 = s1r0. It follows that

ind
(

[(sU1, 1)]
)

= [1− (r0(s
∗
1 − 1) + 1)((s1 − 1)r0 + 1)]

− [1− ((s1 − 1)r0 + 1)(r0(s
∗
1 − 1) + 1)]

= [0]− [z(0,0)] = −[z(0,0)] .

The same argument also holds for (1, sU2) and in turn ind
(

[(1, sU2)]
)

= −[z(0,0)].
Hence the kernel of ind is equal to Z[(sU1, s

U
2
∗
)]. Let w be the unitary operator

in I+ given by w := (s1 − 1)r0 + (s∗2 − 1)u0(1− r0) + 17. Since

π(w) = π( (s1 − 1)r0 + (s∗2 − 1)u0(1− r0) + 1 ) = (sU1, s
U
2
∗
) ,

where π is given in 31, then by 33 one concludes

K1(I) = Z
[

(s1 − 1)r0 + (s∗2 − 1)u0(1− r0) + 1
]

= Z[w] .

□

4. Bulk-interface correspondence

In this section, we study the quantization of the interface currents and derive
bulk-interface correspondence by using tools from [11, 41] and the K-groups
associated with A, I and Abulk.

4.1. Bulk topological invariants

For any θ = (θ1, θ2) ∈ [0, 2π)2 let us consider the unitary operator vθ which
acts on ψ ∈ ℓ2(Z2) as

(34) (vθψ)(n1, n2) := e− i (θ1n1+θ2n2) ψ(n1, n2) .

These unitary operators deőne a continuous group action [0, 2π)2 ∋ θ 7→ αθ

on the bulk algebra given by

(35) αθ(a) := vθav
∗
θ , a ∈ Abulk .

7A calculation provides that w is a unitary element in I+, which in fact acts on
ℓ2(Z2) translating anti-clockwise along the interface
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Thereby, we can introduce the inőnitesimal generators ∇1 and ∇2 on Abulk

deőned as

∇1(a) := lim
θ1→0

α(θ1,0)(a)− a

θ1
, ∇2(a) := lim

θ2→0

α(0,θ2)(a)− a

θ2

for some suitable elements a ∈ Abulk.

Remark 4.1. In general ∇1 and ∇2 can be introduced for any magnetic
algebra [11, Section 3.5]. Thus without loss of generality, we will use the
same notation for these derivations in Ab⌞ and Ab∗ .

Let A0
bulk ⊂ Abulk be the dense subalgebra of non-commutative poly-

nomials in the variables (sb⌞,1, 0), (sb⌞,2, 0), (0, sb∗,1) and (0, sb∗,2). Let us
introduce the spaces

Ck(Abulk) := A0
bulk

∥·∥k

,

where the norm ∥ · ∥k is given by

∥a∥k :=

k
∑

i=0

∑

a+b=i

∥∇a
1∇

b
2a∥ .

Since for a constant magnetic őeld B of strength b, there is a unique ergodic
measure with the associated trace per unit volume [11, Proposition 2.28],
then we shall denote as T⌞ and T∗ for these unique traces in Ab⌞ and Ab∗ ,
respectively. Given a differentiable projection p = (p⌞, p∗) ∈ C1(Abulk), the
transverse Hall conductance associated with p is deőned by

(36) σbulk(p) :=
(

σb⌞(p), σb∗(p)
)

.

where

σb⌞(p) : = 2π i
e2

h
T⌞(p⌞[∇1p⌞,∇2p⌞])

σb∗(p) : = 2π i
e2

h
T∗(p∗[∇1p∗,∇2p∗]) ,

e > 0 is the magnitude of the electron charge and h is Planck’s constant.
Bulk gap condition (BGC). Let ĥ be the full magnetic Hamiltonian,
i.e., a selfadjoint element in A. Let h ≡ (h⌞, h∗) := ev(ĥ) ∈ Abulk be the bulk
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magnetic Hamiltonian and assume that there is a compact set ∆ such that

minσ(h) < min∆ < max∆ < maxσ(h) .

As a consequence of BGC, for any µ ∈ ∆ the Fermi projection

pµ :=
(

pµ⌞
, pµ∗

)

=
(

χ(−∞,µ](h⌞) , χ(−∞,µ](h∗)
)

is an element of bulk algebra. Furthermore, it follows that σb⌞(pµ) and
σb∗(pµ) are quantized. For instance, one has the equality σb⌞(pµ) =

e2

h
Ch(pµ⌞

),
where Ch(pµ⌞

) is the Chern number of the projector p⌞ and it takes inte-
ger values [9, 36]. We will call the integers σb⌞(pµ) and σb∗(pµ) as the bulk
magnetic invariants of the system

In view of BGC, there is a nondecreasing smooth function g : R → [0, 1]
such that g = 0 below ∆ and g = 1 above ∆. Then

ev(1− g(ĥ)) = 1− g(ev(ĥ)) = 1− (1− pµ) = pµ .

Observe that the Fermi projector pµ deőnes a class [pµ] in K0(Abulk) and
the unitary operator u∆ := e2π i g(ĥ) deőnes a class in K1(I). From the fact
that 1− g(ĥ) is a self-adjoint lift of pµ one gets the following Proposition.

Proposition 4.2. Assume BGC and let µ ∈ ∆. There exist a smooth func-
tion g : R → [0, 1] such that the unitary operator u∆ = e2π i g(ĥ) ∈ I+ fulőlls

exp([pµ]) = −[u∆] .

4.2. Interface currents

Recall that the natural trace on C(T) is given by

τ0(f) :=

∫

T

f(k) dk , f ∈ C(T) .

Here dk is the normalized Haar measure on the one-dimensional torus T.
Since I = A(r0) + A(u0), we obtain a trace T1 on I pulling back the induced
trace τ0 ⊗ Trℓ2(Z) through the isomorphism

A(r0)/A(u0) ∩ A(r0) ≃ C(T)⊗K .

The same argument also provides the trace T2 on I by using the isomorphism

A(u0)/A(u0) ∩ A(r0) ≃ C(T)⊗K .
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We will write DI,i ⊂ I for the set of trace-class elements of I with respect
to Ti. One can endow I with the unbounded derivations ∇I,i given by

∇I,i := [ ni, · ] , i = 1, 2

where

niψ(n1, n2) := niψ(n1, n2) , ψ ∈ ℓ2(Z2) .

We can extend such a derivations on the unitization of I with the prescrip-
tion ∇I,i(1) = 0. For k ∈ N let us introduce the spaces

Ck
I,i := { a ∈ I : ∇k

I,i(a) ∈ DI,i } , i = 1, 2 .

For any unitary operator u ∈ I+ such that u− 1 ∈ C1
I,i, we deőne the wind-

ing numbers of u as

(37) WI,i(u) := iTi(u
∗∇I,i(u)) , i = 1, 2 .

Note that the derivation ∇I,i is, in principle, only deőned on suitable
elements of the interface algebra. In order to make sense to ∇I,i(ĥ) for the
Hamiltonian ĥ, we introduce the following assumption.

Existence of the current operator (ECO). Assume that the derivations
∇I,i can be extended to class of sufficiently regular elements of A for i = 1, 2.
Moreover, we assume that ∇I,i(ĥ) exists as element of A for the full magnetic
Hamiltonian ĥ.

There are different ways to perform such an extension. For instance, by
adapting the argument used in [8, 15], one can deőne ∇I,i = [χi1, · ] where
χi are the switch functions given by χi(n) = ni when n = (n1, n2) lies in
the interface8 and χi(n) = 0 otherwise. Other example, by combining the
derivations ∇1 and ∇2 of A, is described in [41].

Remark 4.3. It is important to point out that ℏ−1∇I,i(ĥ) can be physically
interpreted as the velocity operator along the faces of the interface. Here ℏ

is the reduced Planck’s constant.

8
i. e. the set {(n1, 0) : n1 ≥ 0} ∪ {(0, n2) : n2 ≥ 0}
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Let us suppose ECO, then

(38) JI,i(∆) :=
e

ℏ
Ti

(

g′(ĥ)∇I,i(ĥ)
)

, i = 1, 2

represents the two current densities along I. Therefore, by Kubo’s Formula
[5, 12], the terms σI,i := eJI,i provide the interface conductances, where re-
call that e > 0 is the magnitude of electron charge. Furthermore, if we assume
the assumptions BGC and ECO one obtains

Ti

(

g′(ĥ)∇I,i(ĥ)
)

= −
1

2π
WI,i(u∆) , i = 1, 2 .

The latter equality can be obtained by adapting the proof of [36, Proposi-
tion 7.1.2]. As a result, the interface conductances associated with the inter-
face states in ∆ are given by

σI,i(∆) =
e2

h
WI,i(u∆) i = 1, 2 .

Notice that in agreement with the above, one can deőne for general unitary
operators u ∈ I+ such that u− 1 ∈ C1

I,i the interface conductance by

(39) σI,i(u) :=
e2

h
WI,i(u) .

Remark 4.4. The term σI,1(u) is the proportionality coefficient of the cur-
rent ŕowing along the interface in the x-axis when the system is in the con-
őguration u [11, 36]. For i = 2 it provides the other current in the y-axis of
the interface.

4.3. Proof of the Bulk-interface correspondence

We are in the position to state our main result of this section. Let us begin
with some previous technical results.

Lemma 4.5. Let p = (p⌞, p∗) be a projection in Abulk. Then

exp([p]) =
(

Ch(p⌞)− Ch(p∗)
)

[w] ,

where Ch(p⌞) and Ch(p∗) are the Chern numbers of p⌞ and p∗, respectively.
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Proof. In light of the proposition 3.1, the elements (1, 0) and (0, 1) in Abulk

lift in the projections q0 and q⊥0 , respectively. Therefore, using [37, Proposi-
tion 12.2.2] one őnds

(40) exp([(1, 0)]) = exp([(0, 1)]) = [1] .

On the other hand, the class [p] can be written as

(41) [p] =M⌞[(1, 0)] +M∗[(0, 1)] + Ch(p⌞)[(pθ⌞ , 0)] + Ch(p∗)[(0, pθ∗)] ,

where pθ⌞ and pθ∗ are the Powers-Rieffel projections of Ab⌞ and Ab∗ , respec-
tively. We know that

pθ⌞ = s∗b⌞,1f(sb⌞,2) + g(sb⌞,2) + f(sb⌞,2)sb⌞,1 ,

pθ∗ = s∗b∗,1f(sb∗,2) + g(sb∗,2) + f(sb∗,2)sb∗,1 ,

for some suitable continuous real functions f and g on T [19, Proposition
12,4]. Consider now the self-adjoint lift of (pθ⌞ , pθ∗) given by

l = s∗1f(s2) + g(s2) + f(s2)s1 .

From the construction of f and g it follows that l is a projection in A and
for this reason we have

exp
(

[(pθ⌞ , 0)] + [(0, pθ∗)]
)

= exp
(

[(pθ⌞ , pθ∗)]
)

= [ e2π i l ] = [1]

Thus, it follows that exp
(

[(pθ⌞ , 0)]
)

= −exp
(

[(0, pθ∗)]
)

. The latter with 40
and 41 imply that

exp([p]) =
(

Ch(p⌞)− Ch(p∗)
)

q[w] ,

for some q ∈ Z. In order to show that q = ±1, notice that ev∗ : K1(A)→
K1(Abulk) in the exact sequence 30 is injective and thanks to 30 again, exp
is a surjective map and so it holds that q = ±1. Finally, since K0(Abulk) =
K0(Ab⌞)⊕K0(Ab∗) then it is easy to be convinced that

π1∗
(

exp([(pθ⌞ , 0)])
)

= δ([pθ⌞ ]) = [(sU1, 1)] ,

where π1∗ : K1(I) → K1(C(T)) is the projection on the őrst component of
the image of π in the sequence 31, and δ : K0(Ab⌞) → K1(C(T)) is the expo-
nential map in [35, Proposition A]. Thus, one concludes that exp([(pθ⌞ , 0)])=
[w] and exp([p]) =

(

Ch(p⌞)− Ch(p∗)
)

[w] . □



✐

✐

ł4-Ojitož Ð 2024/7/1 Ð 13:38 Ð page 1842 Ð #30
✐

✐

✐

✐

✐

✐

1842 Danilo Polo Ojito

Lemma 4.6. It holds that

WI,i(w) = (−1)i+1 , i = 1, 2 .

Proof. We know that

∇I,1(w− 1) =
[

n1 , (s1 − 1)r0 + (s∗2 − 1)u0(1− r0)
]

= s1r0 .

The same computation provides ∇I,2(w− 1) = −s∗2u0(1− r0). On the other
hand, since Ti

(

A(r0) ∩ A(u0)
)

= 0 then one obtains

WI,1(w) = T1

(

(w∗ − 1)∇I,1(w− 1)
)

= T1

(

(

r0(s
∗
1 − 1) + (1− r0)u0(s2 − 1)

)(

s1r0
)

)

= T1

(

r0 − r0s1r0
)

= 1 ,

and similarly

WI,2(w) = T2

(

(w∗ − 1)∇I,2(w− 1)
)

= T2

(

− u0 + u0s1u0

)

= −1 .

□

Now we present the main result of this section.

Theorem 4.7. Assume BGC and ECO holds for the full magnetic Hamil-
tonian ĥ. Let µ ∈ ∆ and assume that the bulk Hamiltonian h lies in Ck(Abulk)
for some k≥1. Then, the interface conductance associated with the unitary
operator u∆ deőned in the Proposition 4.2 can be expressed as the difference
of the bulk magnetic invariants of the system, i. e.

(42) σI,i(u∆) = (−1)i+1
(

σb⌞(pµ)− σb∗(pµ)
)

, i = 1, 2 .

Proof. The Lemmas 4.6 and 4.5 together the Proposition 4.2 yield

σI,i(u∆) =
e2

h
WI,i(u∆) =

e2

h
WI,i

(

exp(−[pµ])
)

= (−1)i+1 e
2

h

(

Ch(p⌞)− Ch(p∗)
)

= (−1)i+1
(

σb⌞(pµ)− σb∗(pµ)
)

.

□
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The next Proposition states that the Theorem 4.7 holds even if some geo-
metrical imperfections are introduced into the interface.

Proposition 4.8. For any b ∈ C0(Z
2) it holds that AB+b and AB are iso-

morphic as C∗-algebras. Consequently, the interface currents persist when
there are geometric imperfections that vanish at inőnity.

Proof. First of all, let us identify the perturbed ŕux operator fB+b with
the function fB+b(n) = e iB(n) e i b(n) on Z2. Since C0(Z

2) ⊂ C(ΩB), then it
follows that the function Z2 ∋ n 7→ e i b(n) lies in C(ΩB). Therefore, fB+b ∈
FB and by duality this yields a surjective continuous map φ : ΩB → ΩB+b.
Moreover, notice that fB+b has the same asymptotic behavior of fB, hence
the map φ must be injective by 15. Actually, φ is a homeomorphism since ΩB

and ΩB+b are compact Hausdorff spaces. Thus, we conclude that AB+b ≃ AB

as C∗-algebras, and the remaining part follows from the fact that the K-
theory is an algebraic invariant. □

We őnish this section with an example where the Theorem 4.7 assures the
existence of non-trivial interface currents.

Example 4.9. Let b⌞ = 2απ and b∗ = 2βπ so that α and β are rational
numbers and α− β /∈ Z. Consider the full magnetic Hamiltonian

ĥ := s1 + s∗1 + s2 + s∗2 + v

where v is a selfadjoint element in the interface algebra I such that v is in the
domain of ∇I,i with i = 1, 2. In view of the Proposition 3.2, the components
of the corresponding bulk Hamiltonian h = (h⌞, h∗) ≡ ev(ĥ) fulőlls

h⌞ = sb⌞,1 + s∗b⌞,1 + sb⌞,2 + s∗b⌞,2

h∗ = sb∗,1 + s∗b∗,1 + sb∗,2 + s∗b∗,2

According to [11, Section 2.1], in the Landau gauge9 h⌞ reads

(h⌞ψ)(n1, n2) = ψ(n1 − 1, n2) + ψ(n1 + 1, n2) + e2παn1 ψ(n1, n2 − 1)

+ e−2παn1 ψ(n1, n2 + 1)

for all ψ ∈ ℓ2(Z2). This is a Harper-like operator [20] and the spectrum of h⌞
is given by the union of q energy bands when α = p/q, where p and q relative

9The gauge given by A(n, n− ej) := δj,2n1b⌞ whose circulation is the constant
magnetic field B(n) = b⌞.



✐

✐

ł4-Ojitož Ð 2024/7/1 Ð 13:38 Ð page 1844 Ð #32
✐

✐

✐

✐

✐

✐

1844 Danilo Polo Ojito

prime integers [5, Section 2.6]. Moreover, all the energy bands are separated
except the central one [3, 7]. Since the same arguments also work for h∗, then
for suitable values of α and β one can choose µ in a common spectral gap ∆
of h⌞ and h∗ so that ĥ meets BGC and Ch(pµ⌞

) ̸= Ch(pµ∗
).10

On the other hand, one has that [nj , si] = δi,jsi ∈ A and this implies that
ĥ meets ECO. Finally, Theorem 4.7, shows that σI,i(u∆) ̸= 0.

5. Corner states

In this section, we use an adaptation of [21] to deőne corner states associated
with the magnetic quarter-plane algebra. We will prove that these corner
states have topological properties which depend on the asymptotic behavior
of the system.

5.1. Toeplitz extensions for the magnetic quarter-plane algebra

Recall that U∞ ∪ {∞∗} ∪ {∞⌞} and R∞ ∪ {∞∗} ∪ {∞⌞} are invariant clos-
ed subsets of ΩB and thanks to [11, Proposition 3.11], there are magnetic
algebras AU and AR associated to these sets, which are in fact isomorphic
to the Iwatsuka magnetic algebra so that the evaluation maps evU : A → AU

and evR : A → AR are well deőned surjective ∗-homomorphisms. Explicitly,
these maps satisfy

evR(s1) = sR1 , evR(s2) = sR2 , evR(fB) = fRI ,

evU(s1) = sU1 , evU(s2) = sU2 , evU(fB) = fUI .
(43)

Proposition 5.1. It holds true that Ker(evR) = A(u0) and Ker(evU) = A(r0).

Proof. First of all, note that τ(n1,0)(f
R
I) = fRI for every n1 ∈ Z. The latter with

the expression of u0 given in the proof of Proposition 2.4 imply that

A(u0) ⊂ Ker(evR).

On the other hand, one knows the decomposition

τn(fB) =
(

τ(n1,n2)(fB)− τ(0,n2)(fB)
)

+ τ(0,n2)(fB) , n = (n1, n2) ∈ Z
2

then evR
(

τn(fB)
)

= evR
(

τ(0,n2)(fB)
)

= τ(0,n2)(f
R
I) . Therefore, if g ∈ FB and

evR(g) = 0 in turns g ∈ A(u0). Thereby, the reverse inclusion holds by 20.

10The Hofstadter butterflies [2, 3] provides specific values for α and β.
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Finally, notice also that τ(0,n2)(f
U
I) = fUI and hence the same argument shows

that Ker(evU) = A(r0). □

Using again [11, Proposition 3.11], there are two evaluations homomor-
phisms evR,b : AR → Ab⌞ ⊕ Ab∗ and evU,b : AU → Ab⌞ ⊕ Ab∗ , which satisfy that

evR,b(s
R
1) =

(

sb⌞,1, sb∗,1
)

, evU,b(s
U
1) =

(

sb⌞,1, sb∗,1
)

,

evR,b(s
R
2) =

(

sb⌞,2, sb∗,2
)

, evU,b(s
U
2) =

(

sb⌞,2, sb∗,2
)

,

evR,b(f
R
I) =

(

e i b⌞ 1, e i b∗ 1
)

, evU,b(f
U
I) =

(

e i b⌞ 1, e i b∗ 1
)

.

Let us consider the asymptotic algebra AU,R, which is the pullback of the
two latter ∗-homomorphisms. Namely, AU,R := {(u, r) ∈ AU ⊕ AR | evU,b(u) =
evR,b(r)}. Observe also that by deőnition of pullback, the diagram

(44) AU,R

πU

��

πR // AR

evR,b

��
AU evU,b

// Ab⌞ ⊕ Ab∗

is commutative, where πU and πR are the projections on the őrst and second
coordinate of AU,R, respectively.

Remark 5.2. It is important to point out that the following diagram is
commutative

(45) A

ev

$$

evR //

evU

��

AR

evR,b

��
AU evU,b

// Ab⌞ ⊕ Ab∗

where ev : A → Ab⌞ ⊕ Ab∗ is the evaluation map given in 19.
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From the universal property of the pullback C∗-algebra and remark 5.2,
there is a ∗-homomorphism γ : A → AU,R so that the diagram

(46) A

evU

��

evR

&&

γ

!!
AU,R

πU

��

πR // AR

evR,b

��
AU evU,b

// Ab⌞ ⊕ Ab∗

is commutative. Explicitly, it holds that γ(a) =
(

evU(a), evR(a)
)

for any a∈ A.

Theorem 5.3. The sequence

(47) 0 // K
i // A

γ // AU,R
// 0

is exact, where K ≃ A(r0) ∩ A(u0) is the set of compact operators on ℓ2(Z2).

Proof. Let (x′, y′) ∈ AU,R and consider two arbitrary elements x, y ∈ A such
that evU(x) = x′ and evR(y) = y′. Since by deőnition evU,b(x

′) = evR,b(y
′), then

from the diagram 46 one has

evU,b
(

evU(x− y)
)

= evU,b(x
′)− evU,b

(

evU(y)
)

= evU,b(x
′)− evR,b

(

evR(y)
)

= evU,b(x
′)− evR,b(y

′) = (0, 0).

Therefore, evU(x− y) ∈ Ker(evU,b) = AU(evU(u0)), where AU(evU(u0)) denotes
the two-sided ideal generated by evU(u0) in AU. The same argument provides
that evR(x− y) ∈ Ker(evR,b) = AR(evR(r0)).11 In light to the Propositions 3.2
and 5.1, for some r′ ∈ A(r0) and u′ ∈ A(u0) one has

x− y+ r′ ∈ A(u0) , x− y+ u′ ∈ A(r0) .

Hence there is a ∈ A(r0) ∩ A(u0) such that x+ r′ = y− u′ + a . Choosing
z = x+ r′ one obtains that

γ(z) =
(

evU(z), evR(z)
)

=
(

evU(x+ r′), evR(y− u′ + a)
)

=
(

evU(x), evR(y)
)

= (x′, y′) .

11The equalities Ker(evU,b) = AU(evU(u0)) and Ker(evR,b) = AR(evR(r0)) follow
from [11, Proposition 4.6].
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This veriőes that γ is a surjective ∗-homomorphism. As a consequence of that
Ker(γ) = Ker(evU) ∩Ker(evR) = A(u0) ∩ A(r0) ≃ K , it follows that Ker(γ)
= Im(i) and this concludes the proof. □

As an immediate consequence of Theorem 5.3, one can deduce that the
asymptotic algebra contains the information of the system that is far from
the corner. Moreover, by Atkinson’s Theorem, we obtain the following Propo-
sition.

Proposition 5.4. An element t ∈ A is Fredholm if and only if evR(t) and
evU(t) are invertible elements in AR and AU, respectively.

Corollary 5.5. It holds true that K0(AU,R) ≃ K0(A) and K1(AU,R)≃ K1(A)⊕
K0(K) as abelian groups.

Proof. The Theorem 5.3 implies the following exact sequence

(48) K0(K) = Z[z0]
i∗ // K0(A)

γ∗ // K0(AU,R)

exp

��
K1(AU,R)

ind

OO

K1(A)γ∗

oo 0
i∗

oo

Notice that i∗([z0]) = [z0] = [r0 − s1r0s
∗
1] = [r0]− [s1r0s

∗
1] = 0, and conseque-

ntly i∗ : Z[z0] → K0(A) is the zero map. Therefore, γ∗ : K0(A) → K0(AU,R) is
an isomorphism of groups and as a result K0(AU,R) ≃ K0(A) = Z3. Further-
more, the same argument provides K1(AU,R) ≃ K1(A)⊕K0(K) = Z3. □

5.2. Corner Invariants

Thanks to the Theorem 5.3, we have the short exact sequence

(49) 0 // K⊗ C(T) // A⊗ C(T) // AU,R ⊗ C(T) // 0,

Let ĥ : T → A be the time-dependent magnetic Hamiltonian, that is, a self-
adjoint element of A⊗ C(T) so that ĥ(0) is the full magnetic Hamiltonian
ĥ. We will also consider the asymptotic Hamiltonian deőned by

ha(t) ≡ (hU(t), hR(t)) := γ(ĥ(t)) .

Let F sa
∗ ⊂ B(ℓ2(Z2)) be the set of all self-adjoint Fredholm operators

such that its essential spectrum is not contained in either (−∞, 0) or (0,+∞).
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Let us consider the subspace of F sa
∗ given by

F
∞
∗ := {a ∈ F

sa
∗ | ∥a∥ = 1, σ(a) is őnite, and σess(a) = {±1} } .

It is true that the inclusion i : F∞
∗ → F sa

∗ is an homotopy equivalence
[1, 34].

Asymptotic gap condition (AGC): Assume that the Fermi level µ is not
contained in either σ

(

hU(t)
)

or σ
(

hR(t)
)

for any t in T. We further assume
that the spectrum of ha(t) is not contained in either R<0 or R>0.

Without loss of generality, in what follows let us assume that the Fermi
level µ is equal to 0. From AGC, there is a smooth function f : R → [0, 1]
such that f(ha(t)) = χ(−∞,0](ha(t)), which is in fact a time-dependent pro-
jection in AU,R and we will denote it by pa. Note also that pa deőnes an
element [pa] in the K-group K0

(

AU,R ⊗ C(T)
)

and we shall call this class as
the magnetic asymptotic invariant of the system.

Using AGC again and Proposition 5.4, we obtain that the continuous
family ĥ(t) lies in F sa

∗ for any t ∈ T. Thereby the class [ĥ] in [T, F sa
∗ ] deőnes

an element in K1

(

C(T)
)

under the identiőcation K1

(

C(T)
)

≃ [T, F sa
∗ ] given

by the spectral ŕow12 of the family (ĥ(t))t∈T (see [1, 34]). We will call the
class [ĥ] as the magnetic corner invariant of the system.

5.3. Proof of the correspondence

Let us consider the map δ0 : K0(AU,R ⊗ C(T)) → K1(C(T)) deőned as

K0(AU,R ⊗ C(T))

δ0

))

exp // K1(K⊗ C(T))

��
K1(C(T))

where the stabilization gives the vertical arrow and the exponential map
comes from the sequence 49. Observe that δ0 is a surjective homomorphism,
since in view of the [44, Exercise 8.B], the six-term exact sequence associated

12The net numbers of eigenvalues crossing 0 (counting multiplicity) in the positive
direction as t goes from 0 to 1 [34]
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to 49 is equivalent to

K0(K)⊕K1(K)
i∗⊕i∗ // K0(A)⊕K1(A)

γ∗⊕γ∗// K0(AU,R)⊕K1(AU,R)

exp⊕ind

��
K1(AU,R)⊕K0(AU,R)

ind⊕exp

OO

K1(A)⊕K0(A)γ∗⊕γ∗

oo K1(K)⊕K0(K)
i∗⊕i∗

oo

Now by Corollary 5.5, one knows that

K0(AU,R)⊕K1(AU,R) = K0(A)⊕K1(A)⊕K0(K)

Thus, for someN ∈ N choosing the unitary u∈ MatN (AU,R) such that ind([u])
= [z0] in the sequence 48 it follows from its very deőnition that δ0(θ([u])) is
the Z-generator of K1(C(T)), where θ : K1(AU,R) → K0

(

C0((0, 1))⊗ AU,R

)

is
the map given in [44, Theorem 7.2.5].

The next Theorem concerns the correspondence between the corner and
asymptotic magnetic invariants deőned in the quarter-plane system under
the map δ0, which is the main result of this section.

Theorem 5.6. If AGC holds, then it is true that δ0([pa]) = [ĥ].

Proof. Let l be a selfadjoint lift of qa := 1− pa. In light of the Proposition 5.1
and Theorem 5.3, it holds that σess(l(t)) = σ(qa(t)) = {0, 1}. Consequently,
for 0 < ϵ < 1 one has that l(t)− ϵ1 ∈ F sa

∗ for any t, so let l̂(t) ∈ F∞
∗ be

the element given by the image of l(t)− ϵ1 under the homotopy equivalence
F sa

∗ ≃h F∞
∗ . It follows that

exp([pa]) = [ e2π i l ] = [ e2π i l̂ ] = [2̂l− 1] ,

where the last step comes from the homotopy equivalence given in [34, Propo-
sition 5]. On the other hand, observe that for all t ∈ T the elements

χ(−∞,0](ĥ(t))ĥ(t)− 1

and l(t)− 2 have essential spectrum contained in (−∞, 0), and the elements
(

1− χ(−∞,0](ĥ(t))
)

ĥ(t) + 1 and l(t) + 1 have essential spectrum contained in
(0,+∞). Since l is a lift of qa, then [34, Proposition 1] and Theorem 5.3 imply
that ĥ ≃h 2l− 1 ≃h 2̂l− 1, where recall that the symbol ≃h means homotopy
equivalence of loops. Thus, one concludes that δ0([pa]) = [ĥ]. □
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The following Corollary provides a criterion for the triviality of the corner
states. The proof is an immediate consequence of the Theorem 5.6.

Corollary 5.7. A necessary condition for non-trivial corner states is that
the time-dependent magnetic Hamiltonian is gapless.

Remark 5.8. When b⌞ = 0 and b∗ /∈ 2πZ, one can consider time-dependent
Hamiltonians of the form ĥ(t) = q⊥0 + q0h(t)q0 where h(t) is a selfadjoint
element in A. Since q0h(t)q0 can be regarded as a operator acting on ℓ2(N×
N) and moreover sf

(

(ĥ(t))t∈T |µ = 0
)

= sf
(

(q0h(t)q0)t∈T |µ = 0
)

13, then the
constructions introduced in [21, Section 4] provides examples of corner states.
However, in order to adapt the constructions of [21] the Hamiltonians must
belong to Mat2(A), but by the stability of the K-theory, the Theorem 5.6 also
applies for these cases.

Let us describe two examples where the Theorem 5.6 applies.

Example 5.9. Consider the selfadjoint element ĥ := r0 − r⊥0 in A. First of
all, notice that σ(ĥ) = {−1, 1} and moreover

s1ĥs
∗
1 = r(1,0) − z0 − r⊥0 .

Then for t ∈ [0, 1], deőne

ĥ(t) = u∗(t)

(

r(1,0) + (1− 2t)z0 − r⊥0 0

0 1

)

u(t) ∈ Mat2(A)

where u(t) is a continuous unitary path so that

u(0) =

(

1 0

0 1

)

, u(1) =

(

s1 0

0 s∗1

)

It turns out that ĥ(0) = ĥ(1), that is, ĥ(·) ∈ Mat2(A)⊗ C(T). Furthermore,
for all t one has σ(ĥ(t)) = {−1, t, 1} and σess(ĥ(t)) = {−1, 1}. As a result,
this Hamiltonian meets AGC and hence Theorem 5.6 guarantee non-trivial
topological corner states since one can see that sf

(

ĥ(t))t∈[0,1] | µ = 0
)

= −1.

Example 5.10. For piezoelectric materials, if we add a suitable periodic
perturbation along the positive side of the y-axis14 the corner states are in

13Along this work the notation sf
(

(h(t))t∈T |µ = 0
)

stands for the spectral flow
at µ = 0 of the family (h(t))t∈T

14As a consequence of that un and rn are in A for all n ∈ Z
2, we can choose any

other semi-axis given by the range of these projectors.
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correspondence with the polarization in the edge of such a semi-axis. In or-
der to see the latter, let us őrst say a few words about the piezoelectric effect.

It is well known that deformations in piezoelectric materials lead to the
accumulation of charge in the edge of the sample, which are due to two con-
tributions: the relative displacements of the ionic cores, and electrical conduc-
tion which is the so-called orbital polarization. Here we will be dealing only
with the latter contribution in dimension 1 for a discrete non-random system
where the interaction between particles is neglected. In this case, the Hilbert
space and the observable algebra turn out to be ℓ2(Z) and C∗(S) ≃ C(T), re-
spectively, where S stands for the usual shift operator on ℓ2(Z) (cf. [13, 36]).
At őxed Fermi level µ = 0, the periodic deformation of the system is mod-
eled by a differentiable path of selfadjoint elements [0, 1] ∋ t 7→ H(t) ∈ C∗(S)
so that H(0) = H(1), 0 /∈ σ(H(t)) for all t, and there are states above and
below of 0 during the deformation, i. e. , the instantaneous Fermi projection
P (t) = χ(−∞,0](H(t)) is different to the zero or identity operator for all t.
Then one knows from [13, 25, 30, 40] that, up to arbitrarily small correc-
tions in the adiabatic limit, the orbital polarization ∆P accumulated during
one adiabatic cycle is given by

(50) ∆P = i

∫ 1

0
dtT

(

P (t)[ ∂tP (t), ∇P (t) ]
)

where T denotes the trace per unit volume on C∗(S) and ∇ = i [N, · ] is
the commutator with the position operator. It is important to point out that
equation 50 states that, for periodic deformation, the orbital polarization is
a bulk effect of topological nature taking values in 2πZ [13, Corollary 1], as
noted by Thouless [43] in a more restricted context. Now, let us consider the
path

[0, 1] ∋ t 7→ Ĥ(t) ∈ C∗(Ŝ)

given by the truncation of H(t) on the Hilbert space ℓ2(N). From the bulk-
boundary correspondence [36, Theorem 5.5.3 and Section 7.7], it follows that

(51) ∆P = −2π sf
(

Ĥ(t))t∈[0,1] | µ = 0
)

Now let us connect the latter result with the corner states. For that, we know
that there exists a continuous path [0, 1] ∈ t 7→ ĥ1(t) ∈ A of selfadjoint ele-
ments such that u0ĥ1(t)u0 = Ĥ(t) as operators acting on ℓ2(N). The above
is a consequence of that u0sju0 = δ2,jŜ acting on ℓ2(N) for j = 1, 2. Here Ŝ
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denotes the truncation of the shift operator S on ℓ2(N). Deőne

ĥ(t) := u0ĥ1(t)u0 + u⊥0 ĥ2u
⊥
0 ∈ A , t ∈ [0, 1]

for some suitable selfadjoint element ĥ2 ∈ A such that u⊥0 ĥ2u
⊥
0 is invertible as

operator acting on ℓ2
(

Z2 \ ({0} × N)
)

. By using the decomposition ℓ2(Z2) =
ℓ2(N)⊕ ℓ2

(

Z2 \ ({0} × N)
)

one gets for all t

σ(ĥ(t)) = σ(u0ĥ1(t)u0) ∪ σ(u
⊥
0 ĥ2u

⊥
0 ) = σ(Ĥ(t)) ∪ σ(u⊥0 ĥ2u

⊥
0 ).

Therefore, the gap assumption on the deformation veriőes that ĥ(t) meets
AGC. Furthermore,

sf
(

ĥ(t))t∈[0,1] | µ = 0
)

= sf
(

u0ĥ1(t)u0)t∈[0,1] | µ = 0
)

= sf
(

Ĥ(t)t∈[0,1] | µ = 0
)

= −
1

2π
∆P

Thus, the Theorem 5.6 implies that δ0([pa]) = − 1
2π∆P and the claim follows.

Let us observe that these types of perturbations on the system depend
implicitly on the geometry of the quarter plane. Namely, as we proved in
Proposition 2.4, the projector u0 lies in the algebra A as consequence of that
b⌞ − b∗ /∈ 2πZ and the deőnition of the quarter-plane magnetic őeld B.
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