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In this work, we study compactifications of 6d (1, 0) SCFTs, in
particular those of conformal matter type, on Kähler 4-manifolds.
We show how this can be realized via wrapping M5 branes on 4-
cycles of non-compact Calabi-Yau fourfolds with ADE singularity
in the fiber. Such compactifications lead to domain walls in 3d
N = 2 theories which flow to 2d N = (0, 2) SCFTs. We compute
the central charges of such 2d CFTs via 6d anomaly polynomials
by employing a particular topological twist along the 4-manifold.
Moreover, we study compactifications on non-compact 4-manifolds
leading to coupled 3d-2d systems. We show how these can be glued
together consistently to reproduce the central charge and anomaly
polynomial obtained in the compact case. Lastly, we study concrete
CFT proposals for some special cases.
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1. Introduction

The existence of six-dimensional superconformal field theories (SCFTs) has
initiated a classification program for constructions of lower d-dimensional
quantum field theories in terms of geometries of (6− d)-dimensional man-
ifolds on which the 6d theories are compactified [1–37], Within this setup,
compactifications of 6d (2,0) SCFTs, realized byN parallel M5-branes, along
various 4-manifolds have been a very fruitful approach to construct two-
dimensional CFTs with chiral supersymmetries [10, 38–41], The amount of
supersymmetry of the resulting two-dimensional theories depends on the
choice of different topological twists of the underlying 6d SCFT along the
4-manifolds. This way, different supersymmetry algebras, namely N = (0, 2)
or N = (0, 4), can be realized when the M5 branes are wrapping a 4-cycle
inside a G2 manifold or a Calabi-Yau threefold, respectively [34]. A direct
but intriguing generalization of the above is to consider compactifications
of 6d (1, 0) SCFTs. Due to a much richer classification of 6d (1, 0) theo-
ries [42–53], it is expected that their compactification on various manifolds
will lead to a far vaster landscape of lower dimensional quantum field the-
ories. Recently, the investigation of compactifications of such theories on 4-
manifolds has been initiated [33, 34], Again, there are two different choices
for the topological twist upon compactification which result in 2d N = (0, 1)
or (0, 2) theories, respectively. The latter choice is only possible for Kähler
4-manifolds.

In this work we will continue the investigation of the compactifications of
6d (1, 0) SCFTs on 4-manifolds where we will be mainly focusing on the class
of conformal matter theories [51] and the twist which leads to N = (0, 2)
supersymmetry in two dimensions. We will argue that this twist is natu-
rally realized in fivebrane worldvolumes which wrap 4-cycles in Calabi-Yau
fourfolds with ADE singularities in their fiber. This is analogous to the ap-
proach of Maldacena, Strominger and Witten (MSW) [38] who wrapped the
(2, 0) theory of M5 branes on 4-cycles of Calabi-yau threefolds. Fivebranes
wrapped on Kähler 4-cycles of Calabi-Yau fourfolds give rise to domain walls
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in three dimensions [54] and the goal is to study their physics. The reduction
of the M-theory effective action along the non-compact Calabi-Yau fourfold
with appropriate G-flux turned on then leads to a 3d N = 2 theory which in
the case of A-type singularities specializes to SU(k) Chern-Simons theory.
One can then proceed to count vacua on both sides of the 2d domain wall to
obtain the degrees of freedom at the interface. Moreover, we will compute
anomaly polynomials and central charges of the resulting 2d theories by
alternatively reducing the corresponding 6d anomaly polynomials along 4-
manifolds. We then proceed to decompose the 4-manifold into non-compact
4-manifolds which are glued together to obtain a compact space along the
lines discussed in [41, 55] for the 6d (2, 0) theory. We find that central charge
expressions for 6d (1, 0) theories compactified on the non-compact patches
can be obtained by a regularization procedure and add correctly together
to reproduce the central charges of the compact 4-manifold. Moreover, we
interpret the compactification on the non-compact space as a coupled 3d-2d
system where the 2d N = (0, 2) theory is viewed as the boundary of a 3d
supersymmetric TQFT such that the combined system is free of anomalies.
When two non-compact manifolds are glued together, their 2d boundary
theories fuse to a new 2d theory and compactification on the compact 4-
manifold can be viewed as a 3d theory on a slab. Finally, we study a series
of specific compactifications of 6d (2, 0) theories by setting the regulariza-
tion parameters we investigated before to certain discrete rational values.
We find that the resulting central charges from anomaly polynomials pre-
cisely match with those of WN (m,n) minimal models and thus interpret
them as boundary CFTs of 3d TQFTs with anyons corresponding to the
primary fields of the 2d boundary theories. In addition, we consider some
generic features of the compactifications of N M5-branes probing C2/Zk

singularities, namely the N = (1, 0) class Sk theories, on Kähler manifolds,
as a generalization of the (2, 0) setups. We study the scaling behaviour of
the central charges of the mysterious 2d theories when taking both N and k
to be large. We find that the scaling matches with the one of the kth para-
Toda CFT of type SU(Nk). Although the matching is only asymptotic, the
correct scaling behaviour may be a hint that a particular modification of
the kth para-Toda theory turns out to be the correct 2d CFT description
for such compactifications.

The organization of this paper is as follows. In Section 2, we describe
the Calabi-Yau fourfold backgrounds in M-theory which are relevant for this
work and deduce the corresponding 3d theories for fourfolds with A-type
singularities. This allows to perform a counting on the degrees of freedom of
the domain walls in such theories. In Section 3, we describe the MSW twist of
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6d (2, 0) and (1, 0) theories when compactified on Kähler 4-manifolds. Using
anomaly polynomials of the 6d theories and geometric data, we compute the
central charges of the corresponding 2d theories. In Section 4, we study the
compactifications along non-compact 4-manifolds and the resulting coupled
3d-2d systems. We further show how to reproduce the 2d central charges for
a compact manifold obtained by gluing several such non-compact patches
together. In Section 5, we give concrete proposals for 2d CFTs obtained
from compactifications. Finally, in Section 6, we present our conclusions.

2. CY4 background for M5 branes
probing ADE singularities

M5 branes wrapping fourmanifolds can give rise to 2d theories in various
different scenarios. Given an M-theory background where the fourmanifold
is a co-associative cycle in a manifold with G2 holonomy, the resulting 2d
theory has N = (0, 2) supersymmetry [10], This can be seen by noting that
the G2 background preserves 4 supercharges in the orthogonal four space-
time dimensions. Since the M5 brane forms a half BPS string which is of
co-dimension two there, the corresponding 2d worldvolume theory preserves
2 supercharges. Now, there is exactly one topological twist on the fivebrane
worldvolume which preserves these supercharges, namely the one which em-
beds an SU(2) subgroup of the SO(4) holonomy of the fourmanifold in
question into an SU(2) subgroup of the R-symmetry. In the case that the
fourmanifold is Kähler, we have another choice for the topological twist. In
that case the holonomy group is U(2) and we can embed the U(1) factor of
it into a U(1) subgroup of the SO(5) R-symmetry, see Section 3, This twist
will give rise to N = (0, 4) supersymmetry on the remaining two orthogonal
spacetime dimensions of the fivebrane. We will call this twist the MSW twist
since it is naturally realized in an M-theory background where the M5 brane
wraps a Kähler four-cycle P inside a Calabi-Yau three-fold [38], In order to
decouple gravity, one takes the Calabi-Yau to be the anti-canonical bundle
of P ,

(1) CY3 ≡ O(−KP ) −→ P ,

preserving 8 supercharges in the remaining five orthogonal directions. The
fivebrane forms a half-BPS string there and thus its worldvolume will pre-
serve 4 supercharges [56–58].

A similar two-fold choice is possible for 6d N = (1, 0) SCFTs when
wrapped on fourmanifolds. There will be one twist which preserves just one
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supercharge in the remaining two orthogonal directions, while in the case of
Kähler manifolds, there will be another twist preserving two supercharges,
see the discussion in Section 3, We again call it, in analogy to the N = (2, 0)
case of M5 branes, an MSW-type twist. For the purposes of this paper, the
relevant (1, 0) theories will be M5 probing ADE singularities, known as con-
formal matter theories [51], and M5 branes on top of an M9 wall arising
from M-theory on S1/Z2 [59], In both cases, the MSW-type twist can be
naturally realized by embedding the four-cycle into a Calabi-Yau fourfold.
The relevant fourfold can be constructed in two steps. As a first step, one
mods out C2 by a discrete subgroup ΓG of SU(2) where G is of ADE type.
The resulting space C2/ΓG has zero first Chern class and an ADE singular-
ity at the origin. One then fibers this space over the Kähler manifold P in
such a way that the first Chern class of the normal bundle cancels the one
of the tangent bundle of P . Practically, this can be achieved by an elliptic
fibration with discriminant locus equal to P [60], For example, in the case
of P = P2, one first forms a compact base P̃n that is a P1 bundle over P2

by projectivization of the line bundle O(−nH), where H is the hyperplane
class of P2. One then fibers an elliptic curve E over P̃n in such a way that
the total space is Calabi-Yau,

(2) CY4 ≡
E →֒ X

↓
P̃n

.

In order to obtain, for example, a D4 singularity, one has to choose n = 6
(see [60] for details) and successively send the volumes of the elliptic fiber E
and the P1 fiber of P̃n to infinity.

The so constructed Calabi-Yau background preserves four supercharges
in M-theory and an M5 brane wrapping P will break two of those, thus
preserving two supercharges in the orthogonal two spacetime dimensions.
On the worldvolume level, these are realized by the MSW-type twist giving
rise to N = (0, 2) supersymmetry in 2d. This 2d theory is realized as a
domain-wall inside a 3d N = 2 theory. These domain-walls fractionate in
the case of D- and E-type singularities [51],

2.1. Counting Domain Walls

In the following, we want to count the degrees of freedom associated to
the M5 brane BPS domain wall in the 3d N = 2 theory obtained by com-
pactifying M-theory on the Calabi-Yau fourfold as described above. To this
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end, we first need to identify the corresponding 3d theory. The bosonic ac-
tion of eleven dimensional M-theory in the supergravity limit contains the
Chern-Simons interaction

(3) S11d ∼
∫

M11

C ∧G ∧G,

where C is the M-theory 3-form and G its field strength, G ∼ dC. Next, we
want to compactify this action along the fourfold. Since we are looking for
domain wall solutions arising from M5 branes wrapped on the 4-cycle P ,
we must pick a 4-form flux for G which jumps when crossing the domain
wall [54], Flux quantization in M-theory requires that the cohomology class
of G/2π is a characteristic class given by [61]

(4)

[
G

2π

]
= ξ ∈ H4(X,Z) + c2(X)/2,

where in our case, since X is non-compact, we get

(5) c2(X) = c2(T
∗P ) = −c1(P )2 + 2c2(P ).

In the case of P = P2, for example, one thus gets c2(X) = 3H ∧H, where
H is the hyperplane class of P2. Now, when N M5 branes are wrapping P ,
on one side of the domain wall we will have the characteristic class

(6) ξ1 = N [P ] + c2(X)/2,

with N being the number of fivebranes, while on the other side the condition
is

(7) ξ2 = c2(X)/2,

which together guarantee that ξ1 − ξ2 = N [P ]. Next, we are ready to per-
form the compactification on the fourfold. In order to get a sensible result, we
can first blow up the ADE singularity along the fiber direction and expand

(8) C =
∑

i

ai ∧Bi + bi ∧Hi, Bi, Hi ∈ H2(X,Z),

where Bi are two-forms which are Poincare dual to blow-up cycles of the
resolved singularity and the Hi span the second cohomology of P . Moreover,
the ai and bi are one-forms with support on the remaining R3 perpendicular
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to the Calabi-Yau. For the 4-forms Gi (i = 1, 2) on the two sides of the
domain wall we then obtain the condition

G1 =
∑

i

dai ∧Bi + dbi ∧Hi +N [P ] + c2(X)/2,(9)

G2 =
∑

i

dai ∧Bi + dbi ∧Hi + c2(X)/2.(10)

From now on, for the sake of simplicity, we will specialize to the case of
N = 1 and transverse C2/Zk singularity in the Calabi-Yau. Plugging the
above expansions for C and G into equation (3), we compute the following
effective 3d actions on the two sides of the domain wall,

S1
3d ∼ 1

2

∑

i,j

Kijai ∧ daj +
∑

i,j

Qijbi ∧ dbj ,(11)

S2
3d ∼ 1

2

∑

i,j

Kijai ∧ daj ,(12)

where Kij denotes the intersection form of the transverse singularity while
Qij is the intersection form of the second cohomology on P ,

(13) Kij ≡ Bi ·Bj , Qij ≡ Hi ·Hj .

In our 3d N = 2 supersymmetric theory, the terms
∑

i,j Kijaidaj can be
viewed as arising from the Coulomb branch of an SU(k) Chern-Simons the-
ory at level 1. In fact, this is the expected result in the singular limit of
the Calabi-Yau fiber. The number of vacua of such a theory, both on the
Coulomb branch and in the non-Abelian phase, is known to be k. This can
be seen for example as follows [10], Upon compactification on a circle, the
3d theory becomes a 2d N = (2, 2) theory with twisted superpotential given
by

(14) W̃ =
∑

i,j

Kij

2
log xi · log xj ,

and dynamical fields σi = log xi. Extremizing this superpotential with re-
spect to the dynamical fields σi gives the equations for supersymmetric
vacua

(15) exp

(
∂W̃

∂ log xi

)
= 1.
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For Kij being the Cartan matrix of SU(k), there are exactly k solutions to
these equations. On the other side of the domain wall we have two Chern-
Simons theories, one with again k vacua and the other, with level matrix Qij ,
giving rise to σ ≡ sign(Q) degrees of freedom1, Here we understand sign(Q)
to be the signature of a matrix Q. We thus see that the total number of
domain walls is

(16) #(Domain Walls) = k2σ.

If we assume that each domain wall contributes 1/82 to the total left-moving
central charge, this result matches the value for cL obtained from the reduc-
tion of the 6d anomaly polynomial along the fourmanifold, see Table 3, For
the SU(k) theory, that central charge is

(17) cL =
1

4
(χ− σ) +

k2σ

8
,

where we will later argue that the term 1
4(χ− σ) comes from the reduction

of the degrees of freedom associated to the 6d tensor multiplet.

3. N = (1, 0) theory on Kähler manifold
with MSW twist

In this section, we will compute the dimensional reduction of the anomaly
polynomials of 6d SCFTs over Kähler 4-manifolds without boundary. This
will give the anomaly polynomials of 2d SCFTs obtained from such a com-
pactification. Among the information we extract the central charges of the
resulting 2d conformal field theories 3.

1In case the intersection form has both positive and negative eigenvalues, the
number of vacua is determined by the gravitational anomaly which is equal to the
signature ofQij , see for example [62], This can be seen by noting that positive values
contribute to the left central charge of the boundary CFT and negative values to
the right-moving degrees of freedom and only the difference is effective.

2Note that the topological central charge σ is only well-defined mod 8.
3For compactification of 4-manifolds with b1 ̸= 0, R-symmetry of the resulting 2d

SCFT sometimes is not from R-symmetry of 6d SCFTs, that may lead to different
central charge [94, 95].
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3.1. Anomaly polynomials in 6D

We will review how to compute the anomaly polynomials of various 6d
SCFTs. There are two types of SCFTs in six dimension, the N = (2, 0)
theories and the more extended class of N = (1, 0) theories [50], We will
consider the anomaly polynomials for both of these in the following.

3.1.1. Anomaly polynomials of N = (2, 0) SCFTs. The N = (2, 0)
SCFTs in 6d have an ADE classification which enables a concise expression
of the corresponding anomaly polynomials for all such theories. Let G =
An, Dn, En denote the ADE type of the theory. Then, the anomaly eight-
form [63] is

(18) I8[G] = rGI8(1) + dGhG
p2(NW )

24
,

In the above expression,

I8(1) =
1

48

[
p2(NW )− p2(TW ) +

1

4

(
p1(TW )− p1(NW )

)2
]
,

is the anomaly polynomial for one M5-brane, NW and TW are the normal
and tangent bundles of the worldvolume denoted by W , respectively, and
rG, dG and hG are the rank, the dimension, and the dual Coxeter number
of the Lie algebra of type G.

3.1.2. Anomaly polynomials of N = (1, 0) SCFTs. Compared with
the N = (2, 0) case, the classification of 6d N = (1, 0) theories is much more
involved. When it comes to anomaly polynomials, there does not exist a gen-
eral formula for all such theories and one needs to work out the corresponding
expressions on a case by case basis. Here, we will follow [63] to review the
basic steps to compute the anomaly polynomials for 6d N = (1, 0) SCFTs.

The 6d SCFTs are strongly coupled theories in the UV, and thus a direct
computation of the anomaly polynomial is not possible. To begin with, one
needs to consider the tensor branch of this theory where there exists a La-
grangian description. There are three types of N = (1, 0) multiplets, tensor,
vector and hyper multiplets. For tensor branch theories without gauge fields,
for example E-string theories, one can obtain the anomaly polynomial from
the anomaly inflow [64] of M5 branes in M-theory or from the Chern-Simons
terms [63] of the corresponding 5D theories after the compactification on a
circle.
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The tensor branch theory for the more general N = (1, 0) theories con-
tains the contributions of the vector multiplets. For theories describing N
full M5-branes on the ALE singularity C2/Γ, the tensor branch theories in-
clude N − 1 free tensor multiplets, describing the relative positions of the
M5-branes and a linear quiver gauge theory [G0]×G1 × · · · ×GN−1 × [GN ]
with (N − 1) gauge factors G1,...,N−1 and flavor symmetry G0 ×GN . The bi-
fundamental matter charged under Gi ×Gi+1 describing a single M5 brane
probing Γ singularity is called “conformal matter”. Depending on the details
of the particular 6d theory, the one-loop anomaly polynomial Ione−loop can
be expressed in terms of the anomaly polynomial of each such multiplet. We
collect the results for the individual multiplets in the Appendix A and for
conformal matter see below. The one-loop anomaly is given by

(19) Ione-loop =

N−1∑

i=0

IbifG,G(Fi, Fi+1) +

N−1∑

i=1

IvecG (Fi) +NItensor.

Here, we include the center of mass tensor multiplet for convenience.
The resulting expression for the one-loop anomaly polynomial contains

contributions of gauge anomalies, mixed gauge and R-symmetry anomalies,
mixed gauge and flavor anomalies, as well as mixed gauge and gravitational
anomalies. Let nT be the total number of tensor multiplets and Ωij be the
associated charge lattice. One can modify the Bianchi identity of the self-
dual two-forms in each of these nT tensor multiplets by

(20) dHi = Ii =
1

4
TrF2

i −
1

4
TrF2

i+1 +
1

2
(2i−N+ 1)|Γ|c2(R),

with i = 1, 2, . . . , nT such that the Green-Schwarz contribution

IGS =
1

2

N−1∑

i=0

IiIi

can exactly cancel the above mentioned pure and mixed gauge anomalies in
Ione−loop.

To obtain the anomaly polynomial of the SCFT, one needs to subtract
the contribution from the center of mass tensor multiplet, which is given by

(21) Icenter−of−mass
8 = Iten8 − 1

2N

(
1

4
TrF2

0 −
1

4
TrF2

N

)2

,
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where the last term accounts for the subtraction of the center of mass term.
The final result [34] is

ISCFT
8 = Ione−loop

8 + IGS
8 − Icenter−of−mass

8

= αc2(R)
2 + βc2(R)p1(T ) + γp1(T )

2 + δp2(T )

+

nF∑

i

(ϵic2(R) + ζip1(T )) trF
2
i + I8(F

4),(22)

where nF is the number of the flavor symmetries, α, β, γ, δ, ϵi, ζi with i =
1, 2, . . . , nF are rational numbers depending on the quiver structure and
I8(F

4) denotes the terms quartic in the field strength of the background
flavor fields. This approach can calculate the anomaly polynomials of any
N = (1, 0) theories containing vector multiplets. We will see an example in
the following.

3.1.3. Simple conformal matter. For a single M5-brane probing an
ADE singularity, we will get ADE-type conformal matter theories, whose
anomaly polynomials have been computed in [63], We sum up their results
below [63, 65]:

IG,G(FL, FR) =
a

24
c2(R)

2 − b

48
c2(R)p1(T ) + c

7p1(T )
2 − 4p2(T )

5760

+
(
−x
8
c2(R) +

y

96
p1(T )

) (
TrF2

L +TrF2
R

)

+
t

768

(
TrF4

L +TrF4
R

)
+

z

32

(
(TrF2

L)
2 + (TrF2

R)
2
)

+
w

16
TrF2

LTrF
2
R,(23)

where G spedifies the ADE-type of the singularity, FL and FR are the field
strengths of the flavor symmetries of the conformal matters, and the coef-
ficients of a, b, c, x, y, t, z and w are group theoretical data summarized
in Table 1, Notice that when G is of A type, the “conformal matter” is a
Lagrangian hypermultiplet bifundamental in SU(k)× SU(k). To obtain the
anomaly polynomial of a single M5 brane probing a Zk singularity, one needs
to add the contribution of a tensor multiplet. Thus, the anomaly polynomial
is

I8 =
c22(R)

24
+
c2(R)p1(T )

48
+

7k2 + 23

5760
p21(T )−

k2 + 29

1440
p2(T )

+
k(TrF2

L +TrF2
R)

96
p1(T ) +

k(TrF4
L +TrF4

R)

768
+

TrF2
LTrF

2
R

16
,(24)
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G SU(k) SO(2k) E6 E7 E8

a 0 10k2 − 57k + 81 319 1670 12489

b 0 2k2 − 3k − 9 89 250 831

c k2 2k2 − k + 1 79 134 249

x 0 2k − 6 12 30 90

y k 2k − 2 12 18 30

t k k − 4 0 0 0

z 0 1 2 3 5

w 1 1 1 1 1

Table 1. Parametrization for anomaly polynomials of 6d conformal matter
theories of ADE type.

3.1.4. Class Sk. Consider the N = (1, 0) theories of N > 1 M5 branes
probing a C2/Zk singularity. The tensor branch is described by a linear
quiver diagram depicted in Figure 1, One can find the following N = (1, 0)
multiplets on the tensor branch:

• nT = N − 1 tensor multiplets,

• nV = N − 1 (nF = 2) vector multiplets with gauge (flavor) group SU(k),

• nH = N hyper multiplets in bi-fundamental representation of

[SU(k)× SU(k)] .

SU(k) SU(k)

. . . . . .

SU(k) SU(k)

N−1

Figure 1. The Sk class in tensor branch

Let Fi be the field strength associated with the gauge nodes i = 1, . . . , N−
1 and flavor node (i = 0 and i = N) in Figure 1, The one-loop anomaly poly-
nomial is

Ione−loop =

N−1∑

i=0

Ihyper8 (Fi, Fi+1) +

N−1∑

i=1

Ivector8 (Fi) + (N − 1)Itensor8 (F ).

(25)
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Now, let’s focus on the part containing the gauge anomalies,

Ione−loop ⊃ − 1

16

N−1∑

i=1

(TrF2
i )

2 +
1

16

N−1∑

i=0

TrF2
i TrF

2
i+1

− k

4
c2(R)

N−1∑

i=1

TrF2
i .(26)

Let Hi be the field strength of the two-form in the ith tensor multiplet.
One can modify the Bianchi identity to be dHi = Ii in such a way that all the
gauge dependent anomalies in equation (26) are canceled. In this example,
the Ii are determined to be

Ii = ΩijIj =
1

4
(2TrF2

i − TrF2
i−1 − TrF2

i+1) + kc2(R),(27)

where Ωij is the intersection form on the charge lattice

(28) Ωij =




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



,

Taking into account the Green-Schwarz contribution specified in equation
(27), one then arrives at the final result,

Iscft8 =
c2(R)

2

24

[
k2N3 − 2(k2 − 1)N +K2 − 2

]

− 1

48
(N − 1)(k2 − 2)c2(R)p1(T ) +

k

24
(TrF4

0 +TrF4
N)

+
30N + 7k2 − 30

5760
p1(T )

2 − 30N + k2 − 30

1440
p2(T )

− k(N − 1)

8
c2(R)(TrF

2
0 +TrF2

N) +
k

96
p1(T)(TrF

2
0 +TrF2

N)

+
1

32
((TrF2

0)
2 + (TrF2

N)
2)− 1

32N
(TrF2

0 +TrF2
N)

2.(29)

3.2. Anomaly polynomial reduction on Kähler surfaces with
MSW twist

We will study the dimensional reduction of anomaly polynomials in the com-
pactification of 6d SCFTs over Kähler 4-manifoldsM4. We will consider both
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the N = (2, 0) and N = (1, 0) SCFTs. The 6d theories are put on the geom-
etry Σ×M4 where Σ is a Riemann surface and M4 is a Kähler 4-manifold.
Moreover, we assume that both Σ andM4 are Euclidean. To preserve super-
symmetry in the effective theory, one needs to perform a topological twist.
The anomaly polynomial in the 2d effective theory is a 4-form I4. It can be
obtained by integrating the degree-8 anomaly polynomial I8 of the 6d the-
ory over M4. As we will see later in this section, one can obtain the central
charge of the effective theory from the anomaly polynomial I4.

3.2.1. Reduction of anomaly polynomials for N = (2, 0) SCFTs.
First, let’s consider an N = (2, 0) SCFT on Σ×M4. The supercharges of
the theory transform as (4+,4) under SO(6)× SO(5)R. SinceM4 is Kähler,
the holonomy group is reduced to U(2). The Lorentz group and R-symmetry
group decompose as

SO(6) → SU(2)l × SU(2)r × U(1)Σ → SU(2)l × U(1)r × U(1)Σ,

4+ → (2,1)
1
+ (1,2)−1

→ 20,1 + 1±1,−1 ,

and

SO(5)R → SU(2)R × U(1)t,

4 → 2±1,

Then, after performing the twist U(1)tw = U(1)r × U(1)t, the representa-
tions transform as

SO(6)× SO(5)R → SU(2)R × SU(2)l × U(1)tw × U(1)Σ,

(4+,4) → (2,2)±1,1 + (2,1)±2,−1
+ (2,1)

0,−1
+ (2,1)

0,−1
,(30)

The two (2,1)
0,−1

occurrences are singlets under SU(2)l × U(1)tw and dou-
blets under the R-symmetry SU(2)R. Thus, after compactification, one shou-
ld have a 2d effective theory with supersymmetry N = (0, 4) which is the
expected amount of supersymmetry for M5 branes wrapping a Kähler 4-
cycle in a Calabi-Yau threefold, giving rise to the MSW CFT. Equiva-
lently, the above result can be also obtained by first performing a Vafa-
Witten twist along a general M4 by SU(2)tw = Diag[SU(2)r × SU(2)R] and
then considering the following decomposition SU(2)tw → U(1)tw when M4

is Kähler [33, 34],
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Let’s consider the dimensional reduction of the anomaly polynomial for
the MSW twist. In the compactification, the Pontryagin classes for the tan-
gent bundle TW and the normal bundle NW decompose as

p1(TW ) = p1(TΣ) + p1(TM4), p1(NW ) = p1(R) + p1(t),

p2(TW ) = p1(TM4)p1(TΣ), p2(NW ) = p1(R)p1(t),

where TΣ and TM4 denote the tangent bundles of Σ and M4, respectively,
and R and t denote the bundle corresponding to the SU(2)R-symmetries and
U(1)t-symmetries. Here, the 6d R-symmetry is SO(5)R ⊂ SU(2)R × U(1)t.
The topological twist is realized by substituting c1(t) → c1(t) + c1(M4), whe-
re we refer to [33] for more details. Using the fact that p1(t) = c1(t)

2 and∫
M4

c21(M4) = 2χ+ 3σ, we perform the integral of the anomaly polynomial
I8 over M4, giving

∫

M4

I8 =
rG
48

[−(χ+ 3σ)p1(TΣ) + 3(χ+ σ)p1(R)]

+ dGhG
2χ+ 3σ

24
p1(R).(31)

The anomaly polynomial of general 2d N = (0, 4) theories has the fol-
lowing form [66],

(32) I4 =
cL − cR

24
p1(TΣ) +

cR
24
p1(R),

where p1(R) is the first Pontryagian class of the SU(2)R bundle. Comparing
with (31), we find

cR =
3

2
(χ+ σ)rG + (2χ+ 3σ)dGhG,

cL = χrG + (2χ+ 3σ)dGhG,(33)

which are the same as the central charges obtained by the Vafa-Witten twist
in [67], In particular, for a single M5 brane, the 2d central charges are

(34) cL = χ, cR =
3

2
(χ+ σ),

which reproduce the well-known central charges of the MSW CFT.

3.2.2. MSW CFT. Consider the configuration of a single M5 brane wrap-
ping a Kähler four-cycle P inside a Calabi-Yau threefold. The IR limit of the
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2d effective theory is believed to be an N = (0, 4) SCFT. Here, the right-
moving chiral algebra is the “small” N = 4 superconformal algebra with
R-symmetry SU(2)R. By dimensional reduction of a free 6d N = (2, 0) ten-
sor multiplet and counting of possible 2d massless fields, one can obtain the
following central charges [38]

cL = 2h2,0 + h1,1 + 2 + 2h0,1 = χ,

cR =
3

2
(4h2,0 + 4) =

3

2
(χ+ σ),(35)

where we have used the fact that b+2 = 2h2,0 + 1 and b−2 = h1,1 − 1 for Kähler
surfaces. Here, we also assume that b1(P ) = 0. The above result derived by
counting massless fields matches the anomaly inflow computation [66], In
addition, the number of the right-moving bosonic degrees of freedom is a
multiple of four as for a non-linear sigma model with N = 4 supersymme-
try, the bosons should span a hyperkähler manifold whose real dimension
is divisible by four. The R-symmetry of the small N = 4 superconformal
algebra is affine SU(2)k with the central charge cR = 6k. From the result
above, one can read off the level to be k = (χ+ σ)/4 = h2,0 + 1, which is
an integer as expected. However, for b1(P ) ̸= 0, there is a mismatch due to
some of the massless fields becoming massive along the RG flow.

Central charge from the reduction of a single M5 brane. The
worldvolume theory of a single M5 brane is a 6d Abelian (2, 0) SCFT. There
are 16 supercharges organized as 4 symplectic Majorana-Weyl spinors trans-
forming as 4 under the R-symmetry SO(5)R. The field content of this theory
is just a free 6d (2, 0) tensor multiplet made up of one N = (1, 0) tensor
multiplet and one N = (1, 0) hypermultiplet. It contains a self-dual 2-form
B+

MN , two complex chirality + spinors ψ+ and 5 scalar tI with I = 0, 1, . . . , 4
transforming as 1, 4 and 5 under SO(5)R.

After the MSW twist along the Kähler manifoldM4, the twisted 6d fields
transform as

SO(6)× SO(5)R → SU(2)R × SU(2)l × U(1)tw × U(1)Σ,

B+
MN = (15+,1) → (1,1)

0,0 + (1,2)±1,±2
+ (1,3)

0,0 + (1,1)
0,0

+ (1,1)±2,0

H+
MNL = (10+,1) → (1,2)±1,0 + (1,3)

0,2 + (1,1)
0,−2

+ (1,1)±2,−2

ti = (1,5) → (1,1)±2,0 + (3,1)
0,0

ψ+ = (4+,4) → (2,2)±1,1 + (2,1)
0,−1

+ (2,1)
0,−1

+ (2,1)±2,−1
.
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After reduction along M4, we thus obtain the following field content in two
dimensions:

• The contribution of the self-dual two-form BMN is counted in terms
of the three-form H+

MNL. After the dimensional reduction, (1,3)
0,2

contributes b−2 left-moving scalars, (1,1)
0,−2

contributes one right-

moving scalar and (1,1)±2,−2
contributes 2h2,0 right-moving scalars.

Since b+2 = 2h2,0 + 1 for Kähler surfaces, there are in total b−2 left-
moving and b+2 right-moving scalars.

• Dimensional reduction of the twisted fields contribute 3 scalars from
(3,1)0,0, which correspond to the 3 transverse directions of the M5

branes inside R5 after compactification on the CY3 manifold. There
are also 2h2,0 scalars from (1,1)±2,0 corresponding to the holomorphic
moduli of the Kähler cycle inside the CY3 manifold. In total, we have
2 + b+2 scalars.

• Dimensional reduction of the 2 complex spinor ψ+ after the topolog-
ical twist contribute 4 right-moving spinors from (2,1)

0,−1
and 4h2,0

right-moving spinors from (2,1)±2,−1
. In total, there are 2 + 2b+2 right-

moving spinors.

6d fields Left Right

B+
MN b−2 compact bosons b+2 compact bosons

tI b+2 + 2 non-compact bosons b+2 + 2 non-compact bosons

ψ+ 2(b+2 + 1) real fermion

Table 2. Reduction of the 6d (2, 0) tensor multiplet along a Kähler 4-
manifold.

The field content after the compactification is summarised in the table
above. Taking all these fields into account, the left and right moving central
charges are

cL = (2b0 + b+2 ) + b−2 = χ,

cR = (2b0 + b+2 ) + b+2 +
1

2
(2b0 + 2b+2 ) =

3

2
(χ+ σ),

which agrees with the result obtained from the dimensional reduction of the
anomaly polynomial.
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3.2.3. Reduction of anomaly polynomials for N = (1, 0) SCFTs.
Let us now consider the N = (1, 0) theories on Σ×M4. Similarly to the
N= (2, 0) theories, the 2d effective theory after an MSW twist hasN = (0, 2)
supersymmetry [34], Considering the twist U(1)tw = U(1)r × U(1)t where
U(1)t is a subgroup of SU(2), the supercharges transform as

SO(6)× SU(2)R → SU(2)l × U(1)tw × U(1)Σ

(4+,2) → 10,−1 + 10,−1 + 1±2,−1 + 2±1,1.(36)

Both of the two supercharges in the 10,−1 representation can be made co-
variantly constant along M4 and the effective 2d theory will have (0, 2) su-
persymmetry. Analogous to the 6d N = (2, 0) case, the same result can be
derived by first performing a Vafa-Witten twist SU(2)tw = Diag[SU(2)r ×
SU(2)R] for a general 4-manifold M4 and subsequently decomposing under
SU(2)tw ⊃ U(1)tw when M4 is Kähler [33, 34].

The anomaly polynomial of the effective 2d theory can be derived by
integrating the 8-form I8 defined in equation (22) over a 4-manifold. Simi-
lar to the discussion of N = (2, 0) theories, to perform this integration, we
first implement the following decomposition for the tangent bundle on the
worldvolume of the M5 brane, denoted as TW ,

p1(TW ) = p1(TΣ) + p1(TM4), p2(TW ) = p1(TM4)p1(TΣ).

We will identify the Cartan subalgebra U(1)r ⊂ SU(2)R as the R-symmetry
for the 2d N = (0, 2) theories. Let c1(r) be the Chern root of the U(1)r
bundle. After the topological twist, it is shifted to be

c1(r) → c1(r) +
c1(TM4)

2
.

The second Chern class thus decomposes as

c2(R) = −(c1(r) + c1(TM4)/2)
2.

After the integration of the anomaly polynomial for the general 6d N=
(1, 0) theories from equation (22), we get

∫

M4

I8 =

[
(2γ + δ)3σ − 1

4
(2χ+ 3σ)β

]
p1(TΣ) +

[
3

2
α(2χ+ 3σ)− 3σβ

]
c21(r)

+

nF∑

i

(
−ϵi
2
χ+ 3(ζi −

ϵi
4
)σ
)
trF 2

i ,
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where α, β, γ, δ, ϵi, ζi with i = 1, 2, . . . , nF are the coefficients in the anomaly
polynomial and χ and σ denote Euler characteristic and signature of M4.

The anomaly polynomial of a 2d N = (0, 2) theory has the form

(37) I4 =
cL − cR

24
p1(TΣ) +

cR
6
c1(r)

2 + I4(F
2),

where I4(F
2) denotes terms quartic in the field strength of the flavor symme-

tries. Comparing with equation (37), one can read off both central charges

cR = 9 · (3α− 2β)σ + 18αχ,

cL = 9 · (3α− 4β + 16γ + 8δ)σ + 6 · (3α− 2β)χ.

In the following we will present several examples.

3.2.4. Simple conformal matter on Kähler surfaces.. Consider the
worldvolume theory of a single M5 brane probing an ADE singularity. The
anomaly polynomial after the dimensional reduction is given by

(38) I4 =
cL − cR

24
P1(TΣ) +

cR
6
C2
1 (R) + (

ef
16
χ+

sf
32
σ)(trF 2

L + trF 2
R),

where the central charge of the infrared N = (0, 2) SCFTs are given by

(39) cL =
el
2
χ+

sl
8
σ, cR =

3er
4
χ+

3sr
4
σ.

Here, the parameters el, sl, er, sr, ef , sf only depend on the conformal matter
type and are organized in Table 3,

G SU(k) SO(2k) E6 E7 E8

el 1 16k2 − 87k + 117 523 2630 19149

sl k2 − 4 103k2 − 531k + 675 3484 8332 117636

er 1 (k − 3)(16k − 39) 638 1670 12489

sr 1 (k − 3)(10k − 27) 1046 2630 19149

ef 0 2k − 6 12 18 90

sf k 8k − 20 48 57 300

Table 3. Parametrization of central charges obtained by reducing conformal
matter theories of ADE type along 4-manifolds.
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3.2.5. Sk class.. We perform the dimensional reduction of the 6d anomaly
polynomial (29) on general Kähler 4-manifolds. Comparing the result with
the equation (37), we can extract the left/right moving central charge

cL =
(
k2
(
3N3 − 5N + 2

)
+ 4(N − 1)

) χ
4

+
(
k2
(
9N3 − 12N + 4

)
− 1
) σ
8
,

cR =
3

4
(N − 1)

×
((
k2
(
N2 +N − 1

)
+ 2
)
χ+

(
k2
(
3N2 + 3N − 2

)
+ 4
) σ
2

)
,(40)

and the flavor dependent term

(41) I4(F
2) =

(
(N − 1)k

16
χ+

(3N − 2)k

32
σ

)
(TrF2

0 +TrF2
N).

Notice that the 2d anomaly polynomial of the dimensional reduction of
class Sk can also be rewritten in the form of equation (38). It seems that the
χ and σ dependence in the 2d anomaly polynomial has the same structure
for all N = (1, 0) theories.

Central charge from the dimensional reduction of N = (1, 0) ten-
sor multiplet. The 6d N = (1, 0) theories have eight supercharges with
R-symmetry SU(2)R. There are three supermultiplets: the the tensor mul-
tiplet, vector multiplet and hypermultiplet. In specific, the tensor multiplet
includes a self-dual 2-form B+

MN , a real scalar t0 and a complex Weyl spinor
ψ+ transforming as 2 under the SU(2)R symmetry.

After the MSW twist, the fields in the N = (1, 0) tensor multiplet trans-
form as

SO(6)× SU(2)R → SU(2)l × U(1)tw × U(1)Σ,

B+
MN = (15+,1) → 10,0 + 2±1,±2 + 30,0 + 10,0 + 1±2,0,

H+
MNL = (10+,1) → 2±1,0 + 30,2 + 10,−2 + 1±2,−2,

t0 = (1,1) → 10,0,

ψ+ = (4+,2) → 2±1,1 + 10,−1 + 10,−1 + 1±2,−1,(42)

Reduction along M4 then leads to the following field content in two
dimensions:
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• The three-form H+
MNL gives rise to b−2 left-moving real scalars from

30,2, 1 right-moving real scalar from 10,−2 and 2h2,0 right-moving real
scalars from 1±2,−2. Thus, in total, there are b+2 right-moving scalars.

• The scalar t0 will give 1 scalar field in 2d effective theory, which cor-
responds to the transverse direction of the string inside R3 after the
compactification of M-theory on CY4. Notice that we consider Kähler
4-cycles in CY4 which are rigid and without holomorphic deforma-
tion. Indeed, for example, if we take M4 = P2, then h2,0 = 0. The only
non-vanishing Hodge number is h0,0 = h1,1 = 1. In general, one can
consider the Kähler surfaces with definite negative lattice, i.e. b+2 = 1
or b+2 = 0 and b−2 = h1,1 − 1 > 1.

• The complex fermions after topological twists will give rise to 2 right-
moving spinors from 10,−1 and 2h2,0 right-moving spinors from 1±2,−1.
Thus, in total, there are b0 + b+2 right-moving spinors.

6d fields Left Right

B+
MN b−2 compact bosons b+2 compact bosons

tI 1 non-compact bosons 1 non-compact bosons

ψ+ b+2 + 1 real fermion

Table 4. Fields obtained from the reduction of the (1, 0) tensor multiplet
along the 4-manifold.

The results are summarized in the Table 4, From it, the central charges
are

cL = b0 + b−2 =
1

2
(χ− σ),

cR = (b0 + b+2 ) +
1

2
(b0 + b+2 ) =

3

4
(χ+ σ).

This is the same as the central charges obtained by the dimensional reduction
of the anomaly polynomial for a N = (1, 0) tensor multiplet

(43) I
(tensor)
8 =

c2(R)
2

24
+
c2(R)p1(T )

48
+

23p1(T )
2 − 116p2(T )

5760
.

We also studied the dimensional reduction of the free vector-multiplet
and hypermultiplets. However, here the central charges obtained by counting
the 2d zero modes do not reproduce the central charges obtained by reducing
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the anomaly polynomial. We leave the investigation of this phenomenon for
future work.

4. Compactification on non-compact 4-manifolds
and gluing

In this section, we consider compactifications on non-compact 4-manifolds
leading to a coupled 3d-2d system. First, we derive the relevant topological
twist to arrive at the relevant 3d theories with a 2d boundaries. Then, we
consider gluing such 3d-2d systems together by gluing the relevant non-
compact four-manifolds along their common boundaries.

4.1. Compactification on non-compact 4-manifolds and a 3d
perspective

We begin with compactifications on 4-manifolds bounded by a compact 3-
manifold,

(44) ∂M4 =M3,

where we consider the most general situation such thatM3 has SO(3) holon-
omy. As we will see below, a suitable topological twist along such 3-manifolds
upon compactification leads to a 3d N = 1 theory in the remaining space-
time dimensions. Now such theories have a mass gap [68] and are expected to
flow to TQFTs at low energies. Since we are compactifying on non-compact
4-manifolds, the corresponding 3d TQFT lives on a manifold with bound-
ary and is coupled to a 2d CFT. We propose that this 2d CFT arises from
a 2d N = (0, 2) SCFT with a topological twist on the right-moving sec-
tor. This coupled 3d-2d system is schematically shown in Figure 2, If the
difference cL − cR (modulo 24) does not vanish, the 3d TQFT requires to
choose a well-defined framing on the 3-manifold and is anomalous with the
anomaly corresponding to multiplying the amplitudes by integer powers of
exp (2πi(cL − cR)) under a change of framing. This is then in turn canceled
by a T -transformation of the boundary CFT.

6d SCFTs on M3 under Vafa-Witten twist. Consider the 6d N =
(1, 0) theory onM3 × R3. To perform an MSW-like twist, one needs to pick a
U(1) subgroup of the holonomy group of M3. There are two situations we’d
like to study in detail, namely generic 3-manifolds with SO(3) holonomy
and product manifolds of the form Σ× R where Σ is a Riemann surface.
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M3M4
  3d 
T[M3]

2d T[M
4 ]

Figure 2. Compactification on a 4-manifold with compact boundary leads
to a coupled 3d-2d system.

The latter case contains a reduced holonomy group U(1) coming from local
rotations along the two dimentional subspace Σ. Let us start by performing
the topological twist for general M3 via identifying

SU(2)tw = diag [SU(2)M3
× SU(2)R] .

The results are

• For N = (2, 0) theory, the R-symmetry group is SO(5)R = SU(2)R ×
U(1)3dR . After twisting, the supercharges transform as

SO(6)× SO(5)R → SU(2)tw × SU(2)R3 × U(1)3dR ,

(4,4) → (1,2)±1
+ (3,2)±1

.(45)

There are four supercharges which leads to a 3d N = 2 theory with a
U(1)R R-symmetry.

• For N = (1, 0) theory, the R-symmetry group is SU(2)R. After twist-
ing, the supercharges transform as

SO(6)× SU(2)R → SU(2)tw × SU(2)R3 ,

(4,2) → (1,2) + (3,2).(46)

There are two supercharges resulting in a 3d N = 1 theory.

6d SCFTs on Σ × R under MSW twist. If the metric on Σ is chosen to
be independent of S1, the holonomy group reduces from SO(3) to U(1)Σ [29],
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All included, the SO(6) honolomy of the general six manifolds reduce as
follows,

SO(6) → SU(2)R3 × SU(2)M3
→ SU(2)R3 × U(1)Σ,

4 → (2,2) → 2±1 .

Performing the MSW twist by

U(1)tw = U(1)Σ × U(1)t

where U(1)t is part of the 6d R-symmetry, one gets

• For N = (2, 0) theory, the R-symmetry group is SO(5)R ⊃ SU(2)R ×
U(1)t. After twisting, the supercharges transform as

SO(6)× SO(5)R → SU(2)R × SU(2)R3 × U(1)tw,

(4+,4) → (2,2)
0
+ (2,2)

0
+ (2,2)±2

.
(47)

There are eight supercharges leading to a 3d N = 4 theory with SU(2)
R-symmetry.

• For the N = (1, 0) theory, the R-symmetry group is SU(2)R ⊃ U(1)t.
After twisting, the supercharges transform as

SO(6)× SU(2)R → SU(2)R3 × U(1)tw,

(4+,2) → 20 + 20 + 2±2.
(48)

There are four supercharges leading to a 3d N = 2 theory.

In the rest of this section, we will study the compactifications of 6d
N = (1, 0) theories on non-compact 4-manifolds, which bring forth various
3d-2d coupled systems, and their gluing to compact ones. In the case of MSW
twist on Kähler 4-manifolds with boundaries, the 2d theories turn out to
admit N = (0, 2) supersymmetry. In comparison with the usual setup of 3d
N = 2 theories with (0, 2) boundaries, there are some curious observations
here based on our previous analysis that the 3d TQFTs, which are reached
via RG flow from 3d N = 1 theories upon compactification, are bounded by
2d N = (0, 2) theories with a half-twist on the right-moving sector. It would
be interesting to have a better understanding of this phenomenon. However,
we will not pursue this goal in the current work.
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4.2. Gluing at the level of geometry

The compactification on non-compact 4-manifolds in general leads to a cou-
pled 3d-2d system. Although we can study the 2d theory T [M4] and 3d
theory T [M3] individually, how to couple them together into a consistent
system is complicated. The known examples include 6d abelian theories and
a few others. In this section, we will study the gluing of the non-compact
4-manifolds along their common boundaries. Two non-compact 4-manifolds
can be glued together in such a way that a new coupled 3d-2d system arises
which defines a fusion at the level of the 2d SCFTs. Similarly, two non-
compact 4-manifolds with the same 3-manifold boundary M3 of opposite
orientation can be glued to a compact manifold, and the coupled 2d-3d
systems fuse together to a pure 2d SCFT. This procedure is shown schemat-
ically in Figure 3, We will study how this gluing of theories works at least
at the level of the chiral algebra using anomaly polynomials.

The general principle is that the total anomaly polynomial of the theo-
ries before and after the gluing should be the same. The anomaly polynomial
or central charges for the non-compact spaces are usually computed equiv-
ariantly with parameters ϵ1,2 in their expression, while for compact spaces,
the computation of the anomaly polynomials are straightforward and the
results are independent of these parameters 4, Thus, if we are doing the glu-
ing properly, the glued anomaly polynomial should be independent of ϵ1,2
and equal to the anomaly polynomial of the corresponding compact one. We
will see more of these in examples below.

The gluing rule for toric 4-manifoldsM4 has been studied in [41, 55, 69–
83], The idea is that toric 4-manifolds have a U(1)2 torus action, which
descends to the U(1)2 action on local C2 patches. If we treat M4 as a gluing
of its local patches, then from the toric data, one can identify the relations
between equivariant parameters ϵ1,2 on each patch such that they glue to
M4. We summarize this procedure in Appendex C.1, With this gluing rule
in hand, one can for example compute the instanton partition functions Z
of 4D gauge theories on both non-compact [55, 69–83] and compact space
[81–83] by first evaluating Z on each patch C2 and then glue the results
together using the gluing rule for M4.

4Note that introducing equivariant parameters regularize the geometry and the
boundaries do not directly contribute to dimensional reduction of the anomaly
polynomial. The central charge and anomaly polynomials are still given by the
ones for compact 4-manifolds with χ and σ replaced by their equivariant version.
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In the spirit of the AGT correspondence, one can also study the gluing
of the chiral algebra via the central charges and anomaly polynomials [41,
55, 84], For the toric 4-manifolds, the basic building block is C2, the chiral
algebra in the 2d SCFT is in general the direct sum of W algebras. Besides
that, one can study the gluing of two 4-manifolds if and only if they share
the same boundary. We will not restrict to toric 4-manifolds, but study
the general gluing rule for a large class of 4-manifolds constructed from
plumbing. We expect more diverse realizations of the chiral algebra apart
from sums of W-algebras.

Gluing of toric 4-manifolds from local patches.

4.2.1. Example: R4.
The first non-compact 4-manifold that we will consider is R4. Equivariantly,
it is treated as a 4-ball B4

ϵ1,2 where ϵ1 and ϵ2 are equivariant parameters

associated with the isometry U(1)2. As a toric manifold, it can be represented
by two complex lines R2

ϵi
∼= Cϵi fixed by the U(1) factors. The boundary is

just ∂B4 = S3.
The compactification of the 6d theories on the non-compact 4-manifold

Rϵ1,2 leads to a 3d-2d coupled system with T [S3] in the bulk and T [R4
ϵ1,2 ] on

the boundary. Most of the time, it is difficult to determine the theory T [S3].
But, with the help of anomaly polynomial reductions, we know the central
charge of T [R4

ϵ1,2 ] and thus the gravitational anomaly of T [S3].
The equivariant Euler number and signature can be calculated using the

localization formula (C.11). For R4, there is only one fixed point. Thus, the
results are

(49) χ̃(R4) = 1, σ̃(R4) =
1

3

ϵ21 + ϵ22
ϵ1ϵ2

=
1

3
(α+

1

α
) =

1

3
((b+

1

b
)2 − 2).

Here, we introduce the parameter α = b2 = ϵ2/ϵ1 to encode the equivariant
parameters. This will be one of the building blocks to construct more general
4-manifolds by gluing.

4.2.2. Example: P2.
Let’s consider P2 as an example of a compact toric 4-manifold. The toric
data is given in terms of vertices of the toric fan,

v0 = (1, 0), v1 = (0, 1), v2 = (−1,−1).
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Using the equation (C.10), one finds the relation of equivariant parameters
between different patches

(50) α1 =
α

α− 1
, α2 = 1− α, α3 = α.

Notice that these parameters satisfy the monodromy free condition α1 +
α−1
2 = 1. Plugging this into the equivariant geometric data of R4 in (49), we

find that

(51) χ(P2) = 3, σ(P2) =
1

3
(α1 +

1

α1
+ α2 +

1

α2
+ α3 +

1

α3
) = 1,

which agree with the Euler number and signature of P2.

4.2.3. Example: OP1(−p).
As an example of a non-compact toric 4-manifold, we consider the line bun-
dle OP1(−p) which is the resolution of the singular C2/Zp surface while Zp

acting as

(z1, z2) → ω(z1, z2), ω = exp (2πi/p).

By Hirzebruch-Jung resolution discussed in appendix C.1, one can show that

(52) α1 =
pα

1− α
, α2 =

α− 1

p
.

Thus, the equivariant Euler number and signature are given by

(53) χ̃(OP1(−p)) = 2, σ̃(OP1(−p)) = 1

3p

(
α+

1

α
− (p2 + 2)

)
.

  3d 
T[M+

3]

2d T[M
4 ]

  3d 
T[M-

3]

2d T[M
‘4 ]

M+
3M4

M-
3 M’4

Figure 3. Two non-compact 4-manifolds are glued along their common
boundary to a compact 3-manifold. At the field theory level, the coupled
3d-2d system are fused to a pure two-dimensional SCFT.
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Gluing along a common boundary. We have seen how the toric 4-
manifolds are glued together from local patches utilizing the toric datas.
Next, we’d like to show how different non-compact toric 4-manifolds can
be further glued together along their common boundary. We will consider
4-manifolds M4 constructed by plumbing disk bundles [10], For simply con-
nected 4-manifolds without 1-cycles, they can be expressed in terms of
plumbing graphs. As reviewed in the appendix C.2, the boundary M3 of
plumbing 4-manifolds can be calculated from the plumbing graph.

The simplest plumbing 4-manifold is M4 = OP1(−p). It is just one disk
bundle with Euler number p. The plumbing graph is Υ =

(
−p
•

)
. Using the

method in appendix C.2, one can find that its boundary is the lens space
L(p, 1). Recall that the lens spaces L(p, q) are quotients of S3 ⊂ C2 by a free
acting Zp determined by two coprime integers p and q as

(z1, z2) → (e2πi/pz1, e
2πiq/pz2).

To glue OP1(−p), one needs to find some other 4-manifold also bounded by
L(p, 1). We will study the different gluings of OP1(−p) in the following.

For non-compact toric 4-manifolds M+
4 and M−

4 , their Euler character-
istic and signature depend on the equivariant parameters α+ and α−. If we
demand that the 4-manifold after gluing, M4 =M+

4 ∪M−
4 , does not have

non-trivial monodromy, then these parameters should satisfy α+ + α−1
− = a

with a ∈ Z [41], For plumbing manifolds, this integer is the Euler number
of the disk bundles used in the construction. For example, OP1(−p) can
be understood as the gluing of two R4 with equivariant parameters given in
(53). As one can easily check, α1 + α−1

2 = −p. For more general non-compact
plumbing manifolds, we refer to the appendix C.2.

For the case of a simple gluing of two 4-manifolds along their common
boundary, since there are no twists involved in this process, the equivariant
parameters should satisfy α+ + α−1

− = 0. Besides this condition, one needs to
make sure thatM+

4 andM−
4 have opposite orientations on their boundaries.

Given a 4-manifold M4, we can reverse its orientation simply by switching
the roles of b2+ ↔ b2− of the lattice [10], We denote the reversed manifold
as M4. Due to this switch, the signature should be modified as σ(M4) =
−σ(M4). This condition can be also realized for the equivariant signature
for non-compact spaces 5.

5For a local patch R
4

ϵ1,2
, the equivariant signature is σ̃(R4) = (α+ α−1)/3. Re-

versing the orientation of R4 just amounts to changing the equivariant parameters
from α to −α such that σ̃(R4

ϵ1,2
) = −σ̃(R4).



✐

✐

“5-Cui” — 2024/7/1 — 16:15 — page 1885 — #29
✐

✐

✐

✐

✐

✐

MSW-type compactifications of 6d (1, 0) SCFTs on 4-manifolds 1885

4.2.4. Example: OP1(−1) ∪ R4.
When p = q = 1, the action is trivial and the lens space reduces to S3. In
equivariant sense, this is just the boundary of R4. It implies that we can
glue OP1(−1) ∪ R4 along their boundary leading to a compact 4-manifold.
Taking p = 1 in equation (53), we get

χ̃(O(−1)) = 2, σ̃(O(−1)) =
1

3

(
α+

1

α

)
− 1.

Now, adding them to χ̃(R4) and σ̃(R4) in (49), we get exactly the Eu-
ler characteristic and signature of P2. Thus, the central charge becomes
cL(O(1)) + cL(R

4) = cL(P2).
Similarly, for p = −1, we can glue O(1) with a R4 along the common

boundary to obtain P2. In fact, O(1) is just P2/{pt}, i.e. P2 with one punc-
ture [41], and the gluing with R4 is exactly the operation of closing puncture.

4.2.5. Example: OP1(−p) ∪ OP1(−p).
As discussed above, by the relation between the Euler characteristic and
signature χ̃(OP1(−p)) = χ̃(OP1(−p)) and σ̃(OP1(−p)) = −σ̃(OP1(−p)), the
compact 4-manifold after the gluing, denoted by M4, has the Euler charac-

teristic χ(M4) = 4 and σ(M4) = 0 with plumbing diagram Υ =
(
−p•−−−p•

)
. In

terms of the 2d effective fields, it implies that the there are b2 = b+2 + b−2 left-
/right-moving chiral bosons and can be understood as b2 non-chiral bosons
in T [M4].

4.2.6. Example: OP1(−p) ∪ Ap−1.
Besides OP1(−p), as shown in [10], by Kirby moves, one can show that the
boundary of Ap−1 is L(p,−1), which is exact the same boundary as the one
of OP1(−p) with opposite orientation. Thus, we don’t need to reverse the
orientation when gluing.

The equivariant Euler characteristic and signature of the Ap−1-manifold
are

(54) χ̃(Ap−1) = p, σ̃(Ap−1) =
1

3p
(α+

1

α
+ 2− 2p2).

Adding these to χ̃(OP1(−p)) and σ̃(OP1(−p)) given in equation (53) and
taking α+ + α−

−1 = 0, we get that

(55) χ̃((P2)#
p

) = p+ 2, σ̃((P2)#
p

) = −p,



✐

✐

“5-Cui” — 2024/7/1 — 16:15 — page 1886 — #30
✐

✐

✐

✐

✐

✐

1886 J. Chen, Z. Chen, W. Cui, and B. Haghighat

which is exactly the same the result as predicted by the Kirby calculus. Here,
the connected sum of two compact 4-manifolds means removing a small 4-
ball B4 from both manifolds and then gluing them along their common
boundary S3.

4.3. Gluing for 6D N = (1, 0) SCFTs

For 6D N = (1, 0) SCFTs, the anomaly polynomial I4 after the dimensional
reduction contains besides the term from the gravitational anomaly and
R-current, the terms depending on flavor symmetries. For simple conformal
matters and class Sk theories, there are two flavor symmetries GL and GR. In
the compactification, these flavor symmetries descends to the 2D CFT, which
is reflected in the anomaly polynomial I4, as one can see from equation (38)
for conformal matter and equation (41) for class Sk by terms propositional to
TrF2

L and TrF2
R, where FL and FR are the field strengths of the background

gauge fields. Notice that if there is no flux, the 2D field strength F does not
depend on the internal manifold and is the same for any Kähler 4-manifold.

Consider the gluing of two non-compact 4-manifoldsM+
4 andM−

4 into a
manifold M4. The anomaly polynomial should be the same before and after
the gluing

I4(M4) = I4(M
+
4 ) + I4(M

−
4 ),

for 6D N = (1, 0) SCFTs, which is equivalent to requiring that both the
central charges and flavor dependent terms respect the gluing. The correct
addition of the central charges should be clear as they only appear through
linear terms in the topological invariants of M4 in the anomaly polynomial.
We now show that the field strength dependent terms also respect the gluing.
To this end, notice that for a 4-manifoldM+

4 with 3-manifold boundaryM3,
the integral of the field strength contributions becomes

(56) Ia(M
+
4 ) ≡ 1

8π

∫

M+
4

TrF 2
a ,

which for topologically trivial a can be rewritten as6

(57) Ia(M
+
4 ) =

1

8π

∫

M+
4

dωa =
1

2π

∫

M3

ωa,

6For topologically non-trivial gauge field a, the formula (56) has to be used.
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where ωa is the Chern-Simons form,

(58) ωa = Tr

(
2

3
a3 + a ∧ da

)
,

giving the Chern-Simons invariant over M3. If now M ′+
4 is another 4-

manifold with the same boundary M3, then we have

1

8π

(∫

M+
4

TrF 2
a −

∫

M ′+
4

TrF 2
a

)

=
1

8π

(∫

M+
4

TrF 2
a +

∫

M−

4

TrF 2
a

)
=

1

8π

∫

M4

TrF 2
a .(59)

Now since the cohomology calss [Fa/2π] is integral, we get

(60)
1

8π

∫

M4

TrF 2
a ∈ 2π · Z,

which simultaneously shows that the fluxes are integrally quantized and
that, for given M3, Ia(M

+
4 ) does not depend on the choice of M+

4 modulo
2πZ.

For example, consider the worldvolume theory of a single M5 brane prob-
ing Zk singularities. From the anomaly polynomial I4 in (38), and Table 3,
one has that

(61) I4(M4) = −χ+ 5σ

96
P1(TΣ) +

χ+ σ

8
C2
1 (R) +

k

32
σ(trF 2

L + trF 2
R),

where FL and FR are field strengths of background gauge fields SU(k)2. The
left-moving central charge is

(62) cL(M4) =
1

2
χ+

k2 − 4

8
σ.

Note that I4(M4) depends linearly on the Euler characteristic χ and signa-
ture σ and we have

(63) χ(M4) = χ̃(M+
4 ) + χ̃(M−

4 ), σ(M4) = σ̃(M+
4 ) + σ̃(M−

4 ),

in the gluing of M4 =M+
4 ∪M−

4 . Thus, the full anomaly polynomial I4
should respect the gluing. We will check this using the 6D N = (1, 0) theory
of a single M5 brane probing Zk singularities for several different gluing
examples in subsection 4.2.
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Example: R4. Consider the simplest non-compact 4-manifolds R4. The
equivariant Euler number and signature are given in equation (49). The
anomaly polynomial is

Ĩ4(R
4
α) =

12C2
1 (R)− P1(TΣ)

96

+

(
α+

1

α

)
12C2

1 (R) + 3k(trF 2
L + trF 2

R)− 5P1(TΣ)

288
,(64)

where α = ϵ2/ϵ1 is the equivariant parameters. As before, Ĩ4(R
4
α) is to em-

phasis that the Euler characteristic and signature used in the expression is
the equivariant ones. The left-moving central charge from I4 is

(65) cL =
1

2
+
k2 − 4

24
(α+

1

α
) =

10− k2

12
+
k2 − 4

24
(b+

1

b
)2.

It is not clear which chiral algebra it is. In the Sec. 5, we will see that the
central charge has the same large k behavior with the k-th para-Toda theory
of type SU(k).

Example: P2. Let’s consider an example of compact toric 4-manifold P2.
Since χ(P2) = 3 and σ(P2) = 1, using the equation (61), we can compute
the anomaly polynomial

(66) I4(P
2) = − 1

12
P1(TΣ) +

1

2
C2
1 (R) +

k

32
(trF 2

L + trF 2
R).

As we discussed in subsection above, P2 can be understood as the gluing of
three copies of R4. By direct calculation, one can show that

I4(P
2) = Ĩ

(1)
4 (R4

α1
) + Ĩ

(2)
4 (R4

α2
) + Ĩ

(3)
4 (R4

α3
),

with the equivariant parameters from the equation (50), In particular, the
left-moving central charge on P2 is

(67) cL(P
2) =

3

2
+
k2 − 4

8
,

and clearly it also respect the gluing of the geometry.

Example: OP1(−p). Let’s consider an example of non-compact toric 4-
manifold OP1(−p). Plug the equivariant Euler characteristic and signature
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of OP1(−p) from (53) into the equation (61). We have the 2d anomaly poly-
nomial

I4(OP1(−p))α =

(
α+

1

α
− 2− p2

)
12C2

1 (R) + 3k(trF 2
L + trF 2

R)− 5P1(TΣ)

288p

+
12C2

1 (R)− P1(TΣ)

48
.(68)

Since OP1(−p) can be obtained from two patches of the R4, we can show that
the same anomaly polynomial can be derived by summing up two copies of
the Ĩ4(R

4
α) with

I4(OP1(−p)) = Ĩ
(1)
4 (R4

α1
) + Ĩ

(2)
4 (R4

α2
),

where α1 and α2 are the equivariant parameters on the corresponding patches (52).
Then, the left-moving central charge is

cL(OP1(−p)) = 1 +
k2 − 4

24p
(α+

1

α
− 2− p2)

= 1− (p2 + 4)(k2 − 4)

24p
+
k2 − 4

24p

(
b+

1

b

)2

.(69)

Example: OP1(−p) ∪ Ap−1. As an example of the gluing two 4-manifolds
along the common boundary, we would like to study the case OP1(−p) ∪
Ap−1 = (P2)#

p

which have already shown that the gluing works at the level
of geometry in the last section. We will check that the gluing also works at
the level of anomaly polynomials. With equivariant geometry data of Ap−1

in (54), the anomaly polynomial is given by

I4(A(p−1),α1
)

=

(
α1 +

1

α1
+ 2− 2p2

)
12C2

1 (R) + 3k(trF 2
L + trF 2

R)− 5P1(TΣ)

288p

+
12C2

1 (R)− P1(TΣ)

96
p.

Add it with I4(OP1(−p)α2
) in equation (68) and take into account the mon-

odromy free condition α1 + α−1
2 = 0. The final result is

I4(A(p−1),α1
) + I4(OP1(−p)α2

) =
5P1(TΣ)− 12C2

1 (R)− 3k(trF 2
L + trF 2

R)

96
p

+
12C2

1 (R)− P1(TΣ)

96
(p+ 2) ,(70)
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which is exactly the anomaly polynomial for (P2)#
p

.
The left-moving central charge of Ap−1 space is

cL(A(p−1),α1
) =

p

2
+
k2 − 4

24p
(α1 +

1

α1
+ 2− 2p2)

=
p(10− k2)

12
+
k2 − 4

24p

(
b+

1

b

)2

.(71)

Adding it with the left-moving central charge of OP1(−p) in (69), we get

(72) cL((P2)#
p

) =
p+ 2

2
− k2 − 4

8p
,

which is the correct left-moving central charge for (P2)#
p

.
Although we have only checked that the anomaly polynomial respect the

gluing of geometry using the simplest N = (1, 0) theories, since the linear
dependent with χ and σ in the expression, this gluing formalism of anomaly
polynomials should work for other N = (1, 0) theories.

5. Concrete CFT proposals

Based on the results from previous sections, we would like to explore how
specific chiral algebras arise from compactifications of 6d (2, 0) theories and
6d (1, 0) theories. Following [85], we will identify the resulting conformal
field theories with series of minimal models and Toda theories.

5.1. AN−1 theory on Kähler surface

Let’s start by reviewing the case of compactification of the 6d (2, 0) A1-
type theory on R4 with equivariant parameters ϵ1,2 [85, 86], According to
the AGT correspondence, the corresponding 2d CFT is the Liouville theory
with the following action,

S =

∫
d2z
[ 1

8π
∂ϕ∂ϕ+QRϕ+ µ exp(2bϕ)

]
.

The central charge of this theory is giving by

c(A1) = 1 + 6(b+
1

b
)2 .
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In Liouville theory, there is a special set of fields called degenerate fields
given by operators Φr,s with momentum

α = (r − 1)b+ (s− 1)
1

b
,

for 1 ≤ r < n, 1 ≤ s < m. So, there are totally mn degenerate fields, which
will be the anyons in the corresponding 3d bulk theory. The OPE of these
degenerate fields realize the operator algebra for the minimal model, i.e.

Φr1,s1 × Φr2,s2 =

k=r1+r2−1
l=s1+s2−1∑

k=1+|r1−r2|,k+r1+r2+1=0 mod 2
l=1+|s1−s2|,l+s1+s2+1=0 mod 2

Φk,l.

As a non-compact CFT, there are infinitely many operators in the theory.
However, when we set the parameter b to specific values, the theory will
truncate into certain rational CFTs. As shown in [85], when taking

(73) b2 = −m
n
,

with m,n being coprime positive integers ensures that the resulting theory
is a minimal model. The central charge now becomes

(74) c = 1− 6
(n−m)2

mn
,

which is identified with the central charge of the 2d minimal model (n,m).
The corresponding 3d TQFT can then be specified by extracting braiding
matrix, as well as S and T matrices from the (n,m) minimal model, resulting
in a complete description in terms of an MTC.

Besides the 6d (2, 0)-theory of A1-type, we can also consider more general
models such as the compactification of general 6d (2, 0) theories of type
G = A,D,E. From the central charge, we expect the effective IR theory to
be related to Toda theory with WG algebra. The action of Toda theory is

∫

Σ
d2z
[ 1

8π
∂ϕ⃗ · ∂ϕ⃗+ iQρ⃗ · ϕ⃗R+

rG∑

j=1

exp(b e⃗j · ϕ⃗)
]
,

where ϕ⃗ is an rG-dimensional vector parameterizing the Cartan of G, ej are
the simple roots, Q = b+ 1

b , ρ⃗ is half the sum of positive roots of G. The
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central charge is given by

c(G) = rG + 12ρ⃗ · ρ⃗(b+ 1

b
)2.

When compactifying the 6d AN−1 on deformed R4, the left-moving part
of the effective IR theory is expected to be the AN−1 Toda theory with the
following central charge,

c(AN−1) = (N − 1) +N(N2 − 1)(b+
1

b
)2,

where Q = b+ 1
b and b2 = ϵ2

ϵ1
. Taking b2 to be the same value of (73), the

central charge becomes

(75) cL = (N − 1)−N(N2 − 1)
(m− n)2

mn
,

which is the central charge for the minimal model WN (m,n) [87], Similar
to the Virasoro minimal models, the WN (m,n) minimal models are param-
eterised by two coprime integers m,n > N and are unitary if and only if
|m− n| = 1. As in the minimal model case, the corresponding MTC data
are determined by the WN (m,n) models.

AN−1 theory on OP1(−p). From the results of central charges (33),
we obtain two copies of Liouville theories with the parameters given in the
equation (52). Now take the parameters to be negative rational numbers as
follows,

(76) b2 = −m
n

b20 = −m+ n

np
, b21 = − pm

n+m
,

where m,n are coprime positive integers. The central charges become,

cL =

[
1 + 6(b0 +

1

b0
)2
]
+

[
1 + 6(b1 +

1

b1
)2
]

=

[
1− 6

(n(p− 1)−m)2

np(m+ n)

]
+

[
1− 6

(n−m(p− 1))2

mp(m+ n)

]
.(77)

This coincides with the central charge of the direct sum of minimal model
(np,m+ n) and (mp,m+ n). As in the case of compactification on R4, the
anyons are realized as the degenerate fields for each copy of Liouville theory,
and the corresponding MTC data should be the same as the direct sum of
minimal models (np,m+ n) and (mp,m+ n).
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It is easy to generaize the result to the compactification of the AN−1

theory. We take the same parameters as in (76), the central charges become

cL =

[
(N − 1) +N(N2 − 1)(b0 +

1

b0
)2
]

+

[
(N − 1) +N(N2 − 1)(b1 +

1

b1
)2
]

=

[
(N − 1)−N(N2 − 1)

(n(p− 1)−m)2

np(m+ n)

]

+

[
(N − 1)−N(N2 − 1)

(n−m(p− 1))2

mp(m+ n)

]
.

The central charge is the same as the central charge of the direct sum of
WN (np,m+ n) and WN (mp,m+ n) minimal models.

AN−1 theory on Ap−1 ALE space. Similarly, one can consider the
compactification of the N = (2, 0) theory of A1 type on a Ap−1 ALE space.
Taking ϵ1 and ϵ2 to be coprime numbers m and −n in order to obtain
minimal models, now the parameters are

b2 = −m
n
, b20 = −m+ (p− 1)n

pn
,

b21 = −2m+ (p− 2)n

(p− 1)n+m
, · · · , b2p−1 = − pm

n+ (p− 1)m
.

With the parameters as above, the central charges can be rewritten as

cL =

[
1 + 6(b0 +

1

b0
)2
]
+

[
1 + 6(b1 +

1

b1
)2
]

+ . . .+

[
1 + 6(bp−1 +

1

bp−1
)2
]

=

[
1− 6

(m− n)2

np(m− n+ np))

]

+

[
1− 6

(m− n)2

(m− n+ np)(2m− 2n+ np)

]

+ · · ·+
[
1− 6

(m− n)2

mp(n−m+mp)

]
,(78)

which is the same as the central charge of the sum of minimal models (m−
n+ np, np), (2m− 2n+ np,m− n+ np), . . ., (mp, n−m+mp).
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Repeating the same procedure for the AN−1 theory, the central charge
becomes

cL =

[
(N − 1)−N(N2 − 1)

(m− n)2

np(m− n+ np))

]

+

[
(N − 1)−N(N2 − 1)

(m− n)2

(m− n+ np)(2m− 2n+ np)

]

+ . . .+

[
(N − 1)−N(N2 − 1)

(m− n)2

mp(n−m+mp)

]
.

This central charge is identified as the direct sum of WN minimal models
of types (np,m− n+ np), (m− n+ np, 2m− 2n+ np), . . ., (mp, n−m+
mp).

AN−1 theory on P2. From the discussion in previous section, we know
that P2 can be understood as the gluing of three copies of R4

αℓ
with ℓ = 1, 2, 3.

The equivariant parameters {αℓ} for P2 are worked out in (50). For P2, we
will reverse the orientation on each patch by {αℓ} → {−αℓ}. Take the special
values for these equivariant parameters, we have

b20 =
m

n
b21 = −m+ n

n
, b22 = − m

m+ n
.

where m,n are coprime positive integers. The central charge now becomes,

cL(P2) =

[
1 + 6(b0 +

1

b0
)2
]
+

[
1 + 6(b1 +

1

b1
)2
]
+

[
1 + 6(b2 +

1

b2
)2
]

=

[
1 + 6

(m+ n)2

mn

]
+

[
1− 6

n2

m(m+ n)

]
+

[
1− 6

m2

n(m+ n)

]
= 21

which reproduce the left-moving central charges for A1 theory on P2 using
the equation (33). From the relationship between the central charges, it
seems that the 2d theory TA1

[P2] could be the extension of minimal models
(np,m+ n) and (mp,m+ n) with another rational CFT with central charge

1 + 6 (m+n)2

mn
7, Due to P2 = OP1(−1) ∪ R4, these two minimal models can

also be obtained by the analysis for OP1(−1) case by simply taking p = 1.

5.2. Class Sk on Kähler surfaces

The second example is to consider the compactification of class Sk wrap-
ping four-dimensional Kähler manifolds [34], The corresponding 2d effective

7Notice that this construction of TA1 [P
2] is independent of parameters m,n.
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theory has N = (0, 2) supersymmetry since the internal space is Kähler. Al-
though there is no 2d-4d correspondence for the compactification of N =
(1, 0) theories, it is possible that there is a similar correspondence, after all
the structure of the 2d effective theory has N = (0, 2) supersymmetry. In-
deed, as shown in [88], the spectral curves of the 4d SU(N) gauge theories
of class Sk can be reproduced from the 2d CFT weighted current correlation
functions of theWNk algebra. Here,WNk stands for the SU(Nk) W-algebra.
It is also known that the chiral algebra of a SU(N) Toda field theory is
WN . Therefore, it seems that the 2d theory corresponding to Sk class might
be a mild modification of Toda field theory by changing the algebra from
WN →WNk. We will check this by comparing the central charge.

Consider the 2d CFT obtained from the class Sk theory on R4. Plugging
the geometric data from (49) into the equation (40), the central charge is

(79) cL =
(2− 3N)k2 + 12N − 11

12
+

(
9N3 − 12N + 4

)
k2 − 1

24

(
b+

1

b

)2

.

Unfortunately, cL has a complicated dependence on N and k. For simplicity,
we will focus on its asymptotic behavior. For large N and k, it scales as

(80) cL ∼ 3

8
N3k2

(
b+

1

b

)2

.

Clearly, it does not match with the central charge of an SU(Nk) W-algebra.
By the equation (75), it scales as cL ∼ N3K3 for large N and k. Thus, the
2d CFT cannot be a simply SU(Nk) Toda theory.

To match the asymptotic behavior of the central charge cL ∼ N3k2, we
conjecture that the 2d CFT obtained from the compactification of class Sk
theory is related to the kth-para Toda theory with type SU(Nk), 8 coupled
to some other coset models. The m-th para-Toda model of type G is defined
as [89]

(81) S = S

(
Ĝk

Û(1)rG

)
+

∫
d2x

[
∂µΦ∂µΦ+

rG∑

i=1

ΨiΨ̄i exp

(
b√
m
αi · Φ

)]
.

Here, Ĝm/Û(1)rG describes the generalized parafermions Ψi of type G, αi

are simple roots of G, Φ are rG free bosons with background charge

(b+ 1/b)ρ/
√
m

8It is conjectured in [89] that them-th para-Toda model of typeG can be obtained
from the compactification of N = (2, 0) of type G on R

4/Zm.
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with the Weyl vector ρ. The central charge is given by

(82) c = c

(
Ĝm

Û(1)rG

)
+ rG +

hGdG
m

(
b+

1

b

)2

.

For m = 1 this is the usual affine Toda theory. From the equation (82), for
G = SU(Nk), the corresponding central charge is

(83) c =
N3k2

N + 1
+ (N3k2 −N)

(
b+

1

b

)2

.

In this model, one can reproduce the correct asymptotic behavior c ∼ N3k2

for large k and N . More work needs to be done to find a 2d CFT that
matches the exact cL.

6. Conclusion and outlook

In this paper we have examined compactifications of 6d N = (1, 0) SCFTs
on Kähler manifolds while we have focused on the conformal matter class.
We have shown that a suitable twist can be employed which preserves two
supercharges of same chirality in the remaining two spacetime dimensions.
These theories flow to SCFTs in 2d whose central charges we computed by
reducing anomaly 8-forms of the corresponding 6d theories. The results from
a single M5 brane probing an ADE singularity are summarized in Table 3
and equation (39), One can see the left-moving central charge scales as
∼ k2 for theories arising from Ak−1 and Dk singularities. We explain this
behaviour by realizing the corresponding compactifications in M-theory on
Calabi-Yau fourfolds. The fourfolds have ADE singularities in their fiber
and their base is given by the Kähler surface in question. Turning on G-
flux leads to a setup with M5 branes wrapping the Kähler surface giving
rise to domain walls in the remaining 3d N = 2 supersymmetric theory.
Counting vacua on the left and right sides, one finds that the number of
domain walls connecting them scales as k2 in accordance with the result
from the anomaly polynomial reduction. In the future, it would be desirable
to have a concrete CFT description for the 2d theories thus obtained. We
make some progress towards this direction in Section 5.2 where we observe
that the scaling behaviour of 2d central charges obtained by compactifying
6d class Sk theory on Kähler surfaces is identical to the scaling of k-th para-
Toda theories of type SU(Nk). More investigation needs to be done to pin
down the CFT more precisely here and to identify the relevant CFTs for
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D and E type conformal matter theories. A novelty of the 6d conformal
matter compactifications as compared to 6d non-Higgsable clusters (or 6d
(2, 0) theories) is that the anomaly polynomial depends on flavor symmetry
field strenghts which can be given flux along the 4-manifold. This will lead
to U(1) symmetries in the effective 2d theory and one would need to employ
c-extremization to compute the correct central charge. In this paper we have
chosen to set all such fluxes to zero and leave the c-extremization problem
for future study.

The second part of the paper dealt with compactifications along non-
compact Kähler manifolds with 3-manifold boundaries and we employed a
regularization scheme to compute Euler number and signature of such man-
ifolds equivariantly. The resulting central charges then depend on the equiv-
ariant parameters. We then showed how two non-compact 4-manifolds can
be glued together using either gluing along toric fans, or alternatively gluing
along common 3-manifold boundaries with opposite orientation. In the sec-
ond case, the resulting 4-manifold is always compact and we show that the
central charges add correctly together to reproduce the central of the com-
pact manifold which is independent of equivariant parameters. An important
question is about the effective field theory description after compactification
on such non-compact 4-manifolds. We have proposed, in analogy to previous
work on 6d (2, 0) compactifications, that the resulting theory is a coupled
3d-2d system where the 3d theory is the one obtained from compactification
on the boundary M3. We have shown that the corresponding 3d theory has
N = 1 supersymmetry and have proposed that it flows to a topological field
theory in the IR. The details of these 3d theories, however, remain unclear
and it would be desirable to obtain Lagrangian descriptions of such theories.
A concrete path to such a description is available for Seifert manifolds which
admit a circle fiber, where one could first reduce along the circle to obtain
a 5d supergravity description along the lines of [26, 90],
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Appendix A. 6D anomaly polynomials

The anomaly 8-froms for all three multiplets are given by [63]

• A hypermultiplet in representation ρ:

Ihyper8 =
1

24
TrρF

4 +
1

48
TrρF

2 p1(T) +
dρ

5760

(
7p21(T)− 4p2(T)

)
,(A.1)

• A vector multiplet of gauge group G:

Ivector8 = − 1

24

(
TradjF

4 + 6c2(R)TradjF
2 + dGc2(R)

2
)

− 1

48

(
TradjF

2 + dGc2(R)
)
p1(T )−

dG
5760

(
7p21(T )− 4p2(T )

)
,(A.2)

• A tensor multiplet:

Itensor8 =
1

24
c22(R) +

1

48
c2(R)p1(T ) +

1

5760

(
23p21(T )− 116p2(T )

)
.(A.3)

Here, dρ is the dimension of the representation ρ, dG is the dimension of G,
and the subscripts ρ, f, adj in the trace indicate that it is performed in the
representation of ρ, adjoint, or fundamental.

Appendix B. Reduction of anomaly polynomial
for E-string theories

The E-string theory has flavor symmetry E8 for rank one and SU(2)× E8

for rank higher than one. We will use the notation SU(2)R for R-symmetry
and SU(2)L for the flavor symmetry. The anomaly polynomial of the rank
N E-string theory is given by [64]

I8 =
N(4N2 + 6N + 3)

24
C2
2 (R) +

(N − 1)(4N2 − 2N + 1)

24
C2
2 (L)

− N(N2 − 1)

3
C2(R)C2(L) +

(N − 1)(6N + 1)

48
C2(L)p1(T )

− N(6N + 5)

48
C2(R)p1(T ) +

N(N − 1)

120
C2(L)C2(E8)248

− N(N + 1)

120
C2(R)C2(E8)248 +

N

240
p1(T )C2(E8)248
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+
N

7200
C2
2 (E8)248 + (30N − 1)

7p1(T )− 4p2(T )

5760
,(B.4)

where p1(T ), p2(T ) are the first and second Pontryagin classes, C2(R), C2(L)
are the second Chern classes in the fundamental representation of the SU(2)R
and SU(2)L symmetries, and C2(E8)248 is the second Chern class of the E8

flavor symmetry, evaluated in the adjoint representation.
The dimensional reduction of this anomaly polynomial over a Kähler

surface is studied in Section 3.2, The 2d anomaly polynomial has the form
of (37), where the central charges are

cL =
(
36N3 + 90N2 + 87N − 1

) σ
8
+N

(
6N2 + 12N + 7

) χ
2
,

cR =
3N

4

[(
6N2 + 12N + 7

)
σ +

(
4N2 + 6N + 3

)
χ
]
.(B.5)

and the flavor dependent terms are

I4(F
2) =

(
N(N + 1)

240
C2(E8) +

N(N2 − 1)

6
C2(L)

)
χ

+

(
(N + 3)N

160
C2(E8) +

(4N2 + 10N + 1)(N − 1)

16
C2(L)

)
σ.(B.6)

Next, consider 2d CFT obtained from the rank N E-strings theory on
R4. With the geometric data (49), the central charge is

(B.7) cL =
1− 45N − 18N2

12
+

36N3 + 90N2 + 87N − 1

24

(
b+

1

b

)2

.

Appendix C. Four-manifold with boundary

In this work, we consider compactifications of the 6d SCFTs over 4-manifolds.
To be specific, we are interested in 4-manifolds with boundaries where we will
have a 3d/2d coupled system after compactification. Let’s review here the
constructions and some basic facts about these 4-manifolds with boundaries
following [10], The basic topological invariants of a (compact) 4-manifold
M4 are the Betti numbers bi(M4). The manifolds that we will be using
are simply-connected ones, i.e. b0(M4) = 1. They come with a boundary
M3 = ∂M4, so that we have b4 = 0. We also require M3 to be closed which
implies that b3 = 1 and we require that b1(M4) = 0. Thus, for the simply-
connected 4-manifold with boundary that we will be interested in, the only
non-trivial Betti number of M4 is b2 ̸= 0.



✐

✐

“5-Cui” — 2024/7/1 — 16:15 — page 1900 — #44
✐

✐

✐

✐

✐

✐

1900 J. Chen, Z. Chen, W. Cui, and B. Haghighat

On the second homology lattice Γ = H2(M4;Z)/Tors, one can define a
nondegenerate symmetric bilinear integer-valued form by

(C.8) QM4
: Γ⊗ Γ → Z,

which is called the intersection form Q for M4. Obviously, the rank of Q is
b2. Let b

+
2 (b−2 ) be the number of positive(negative) eigenvalues of Q, i.e.

b2 = b+2 + b−2 . The Euler characteristic and the signature of M4 are given by

(C.9) χ = 2 + b+2 + b−2 , σ = b+2 − b−2 .

These are the two topological invariants that will play an important role in
determining the central charge of T [M4].

C.1. Toric 4-manifolds

A toric 4-manifold M4 can be described by a set of vectors {vℓ} with ℓ =
1, 2, . . . , n in the lattice N = Z2. The vectors vℓ satisfy the relations

vℓ−1 + vℓ+1 − hℓ vℓ = 0, ℓ = 1, . . . , n.

Notice that only n− 2 of these relations are independent. Each vector vℓ
is associated with a divisor Dℓ ∈ H2(M4,Z). The intersection form QM4

is
determined by

Dℓ ·Dℓ = −hℓ , Dℓ ·Dℓ+1 = Dℓ+1 ·Dℓ = 1.

The adjacent vectors (vℓ, vℓ+1) generate a cone σℓ in NR = N ⊗ R. Each
such cone corresponds to a local patch of M4 denoted by Uσl

. Let N∗ be the
dual lattice of N with natural paring ⟨w, u⟩ ∈ Z. The functions on Uσl

are
determined by the dual cone

σ∗ℓ = {w ∈ N∗
R
|⟨w, u⟩ ≥ 0, ∀u ∈ σℓ},

where N∗
R
= N∗ ⊗ R. Let v∗ℓ and v∗ℓ+1 be the generator of the dual cone σ∗ℓ .

The local coordinates on Uσℓ
are given by is

zℓ1 = z
v∗

l,1

1 z
v∗

l,2

2 , zℓ2 = z
v∗

l+1,1

1 z
v∗

l+1,2

2 .

Consider a torus action (z1, z2) → (eiϵ1z1, e
iϵ2z2), which descends to the

action on the patch Uσℓ
by

ϵℓ1 = v∗l · ϵ, ϵℓ2 = v∗l+1 · ϵ.
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For a vector vℓ = (v1ℓ , v
2
ℓ )

T , one can find the dual vector to be v∗ℓ = (v2ℓ ,−v1ℓ )T .
With this relation, the equivariant parameters can be written as

(C.10) ϵℓ1 = − det(vℓ+1, ϵ), ϵℓ2 = det(vℓ, ϵ) .

Thus, given the toric data vℓ of M4, one can derive the equivariant param-
eters on each patch Uσℓ

.
For toric 4-manifolds M4, if there are only isolated fixed points under

the isometry group U(1)2, then the integral of cohomology classes over M4

can be calculated by the localization formula. For example, the Euler char-
acteristic and the signature used extensively in this paper can be calculated
by 9

χ̃(M4) =

n−1∑

ℓ=0

1 = n,

σ̃(M4) =
1

3

n−1∑

ℓ=0

(ϵℓ1)
2 + (ϵℓ2)

2

ϵℓ1ϵ
ℓ
2

=
1

3

n−1∑

ℓ=0

(
αℓ +

1

αℓ

)
,(C.11)

where n is the number of the fixed points of the torus action C2 and
αℓ = ϵℓ2/ϵ

ℓ
1. Here the tilde is to distinguish that the Euler characteristic and

signature are calculated using the equivariant cohomology, which is the same
as the usual χ(M4) and σ(M4) when the space is compact.

C.1.1. Example: Hirzebruch surface. The toric data of Hirzebruch
surface Fn is given in Figure C1a with

v1 = (1, 0), v2 = (0, 1), v3 = (−1, n), v4 = (0,−1).

Using the equation (C.10), the equivariant parameters are related by

α1 = α, α2 = − 1

n+ α
, α3 = n+ α, α4 = −α.

After equivariant integration using (C.11), the Euler characteristic and sig-
nature are

χ(Fn) =

4∑

i=1

χ̃(R4
αi
) = 4 , σ(Fn) =

4∑

i=1

σ̃(R4
αi
) = 0.

9For the derivation of this expression and more general discussion on the appli-
cation of localization formula, we refer to [84, 91–93],
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v1

v2v3

(−1, n)

v4

(a) Fn

v1

v2

v3

v4 v5

(b) dP2

v1

v2
v3

v4

v5 v6

(c) dP3

Figure C1. Toric diagrams for Hirzebruch surface Fn and Del Pezzo surfaces
dP2 and dP3.

C.1.2. Example: Del Pezzo surfaces. The Del Pezzo dPn are the blow-
up of CP2 at n generic points. Note that dP0 is just a P2 and dP1 is the
Hirzebruch surface F1 studied above. We will start from dP2. The toric data
of dP2 is given in Figure C1b with,

v1 = (1, 0), v2 = (0, 1), v3 = (−1, 0), v4 = (−1,−1). v5 = (0,−1).

Using the equation (C.10), the equivariant parameters are related by

α1 = α, α2 = − 1

α
, α3 =

α

1− α
, α4 = α− 1, α5 = − 1

α
.

After equivariant integration using (C.11), the Euler characteristic and sig-
nature are

χ(dP2) =

5∑

i=1

χ̃(R4
αi
) = 5, σ(dP2) =

5∑

i=1

σ̃(R4
αi
) = −1.

The next non-trivial example is the dP3. Its toric data is plotted in
Figure C1c with

v1 = (1, 0), v2 = (1, 1), v3 = (0, 1), v4 = (−1, 0),

v5 = (−1,−1), v6 = (0,−1).
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Using the equation (C.10), the equivariant parameters are related by

α1 =
α

1− α
, α2 = α− 1, α3 = − 1

α
,

α4 =
α

1− α
, α5 = α− 1, α6 = − 1

α
.

After equivariant integration using (C.11), the Euler characteristic and sig-
nature are

χ(dP3) =

6∑

i=1

χ̃(R4
αi
) = 6, σ(dP3) =

6∑

i=1

σ̃(R4
αi
) = −2.

To the authors’ knowledge, there are no purely toric descriptions for del
Pezzo surfaces dPn with n > 3.

Hirzebruch-Jung resolution. Consider a class of non-compact 4-manifolds
realized as the resolution of the quotient space C2/Zp. The action of it de-
pending on two coprime integers (p, q) with q < p is given by

(C.12) (z1, z2) → (e2πi/pz1, e
2πiq/pz2),

where z1, z2 are local coordinates of C2. Obviously, this orbifold action has
a singularity at the origin of C2.

One can resolve the singularities by the Hirzebruch-Jung resolution. The
resolved space Xp,q contains n exceptional divisors at the origin. The inter-
section numbers of these divisors are given by

(C.13) Q =




e1 1 0 · · · 0

1 e2 1
...

0 1
. . . 0

...
. . .

. . . 1
0 · · · 0 1 en




,

where {eℓ} are determined by the ratio p/q in the continuous fraction as

p

q
= [e1, . . . , en] = e1 −

1

e2 −
1

. . . en−1 −
1

en

.
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The fan of Xp,q can be generated by the set of vectors vℓ ∈ N with ℓ =
0, 1, . . . , n. Here v0 = (0, 1) and vL = (p,−q). The others can be calculated
recursively from the relation vℓ+1 + vℓ−1 = eℓvℓ.

Consider a torus action on Xp,q with (z1, z2) → (eiϵ1z1, e
iϵ2z2). In terms

of the invariant variables w1 = zp1 and w2 = z2/z
q
1, the weights are shifted

to

ϵ→Mϵ , M =

(
p 0
−q 1

)
.

By the equation (C.10), the corresponding weights on each patch are

(C.14) ϵℓ1 = − det(vℓ+1,Mϵ), ϵℓ2 = det(vℓ,Mϵ) .

C.1.3. Example: OP1(−p). This is the non-compact 4-manifold Xp,1

obtained from the resolution of toric singularities C2/Zp with the action

(z1, z2) → e
2πi

p (z1, z2).

The set of vectors of Xp,1 are

v0 = (0, 1), v1 = (1, 0), v2 = (p,−1),

which implies that there is one exceptional divisor at the origin with self-
intersection e1 = p.

Given a torus action on C2 with weights ϵ1,2, by the equation (C.14),
the corresponding weights on the patches are

α1 =
pα

1− α
, α2 =

α− 1

p
,

where α = ϵ2/ϵ1. Using the localization formula (C.11), the equivariant Euler
characteristic and signature are

χ̃(OP1(−p)) = 2, σ̃(OP1(−p)) = 1

3p

(
α+

1

α
− (p2 + 2)

)
.

C.1.4. Example: Ap−1 space. This is the non-compact 4-manifoldXp,p−1

obtained from the resolution of toric singularities C2/Zp with the action

(z1, z2) → (e2πi/pz1, e
−2πi/pz2) .

The set of vectors of Xp,p−1 are {vℓ = (ℓ, 1− ℓ)} ℓ = 0, 1, . . . , p, which im-
plies that there are (p− 1) exceptional divisors after the resolution with self
intersection eℓ = 2.
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Given a torus action on C2 with weights ϵ1,2, by the equation (C.14),
the corresponding weights on the p patches are

α0 =
α− (p− 1)

p
, α1 =

2α− (p− 2)

(p− 1)− α
, . . . . . . , αp−1 =

pα

1− (p− 1)α
,

where α = ϵ2/ϵ1. The origin of each patch contributes one fixed point under
the torus action. Using the localization formula (C.11), the equivariant Euler
characteristic and signature are

χ̃(Ap−1) = p, σ̃(Ap−1) =
1

3p
(α+

1

α
+ 2− 2p2).

C.2. Plumbing 4-manifolds

A large class of non-compact 4-manifolds can be constructed by gluing n disk
bundles, D2

i → S2
i , with Euler characteristic ai ∈ Z over the two-sphere. By

switching the role of the base and the fiber, one can build a simply connected
4-manifold [10], This process can be conveniently described with a plumbing
graph Υ in a way that each vertex represents a disk bundle, the Euler number
of the bundle assigns to the weight of the vertices, and an edge between
two vertices indicates that the corresponding bundles are glued together. In
particular, for 4-manifolds without 1-cycles, we will avoid plumbing graphs
that have loops. Therefore, in what follows we typically assume that Υ is a
tree.

a1 a2 a3
. . .

an

Figure C2. The plumbing graph of the An manifold.

Given a plumbing tree Υ, the intersection form of the 4-manifold can be
easily read from it by

(C.15) Qij =





ai, if i = j

1, if i is connected to j by an edge

0, otherwise

,
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For example, the plumbing tree in Figure C2 corresponds to

(C.16) Q =




a1 1 0 · · · 0

1 a2 1
...

0 1
. . . 0

...
. . .

. . . 1
0 · · · 0 1 an




.

A further specialization to (a1, a2, . . . , an) = (−2,−2, . . . ,−2) for obvious
reasons is usually referred to as An, whereas that in Figure C3 is called E8.

−2 −2 −2 −2 −2 −2 −2

−2

Figure C3. The plumbing graph of the E8 manifold.

The plumbing graph are not unique. There are certain moves which
relate different presentations of the same 4-manifold. One of the important
moves is the 2-handle slide defined by the operation of sliding a 2-handle i
over a 2-handle j [10]

(C.17) aj 7→ ai + aj ± 2Qij , ai 7→ ai

where the ± sign is fixed by the choice of orientation (“+” for handle addi-
tion and “−” for handle subtraction) and Qij are the intersection number
between different handles.

A plumbing graph Υ of a non-compact 4-manifold M4 also defines the
boundary ∂M4 =M3. For the most general plumbing tree Υ defined in Fig-
ure C4, the corresponding boundary 3-manifold is a Seifert fibered homol-
ogy 3-sphereM3(b; (p1, q1), . . . , (pk, qk)) with singular fibers of orders pi ≥ 1
where −pi

qi
= [ai1, . . . , aini

] are given by the following continued fractions

(C.18) −pi
qi

= ai1 −
1

ai2 −
1

. . . − 1

aini

.

For example, the plumbing on An has the Lens space boundary M3 =
L(n+ 1, n), while the plumbing on E8 has the Poincaré sphere boundary
M3 = Σ(2, 3, 5). Notice that the representation of the boundary M3 using Υ
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is not unique. There exists some moves on plumbing diagram called Kirby
moves that do not change the boundary of the 4-manifolds. More detailed
discussion on these moves can be found in [10, 41].

b

ak1
ak2

. . .

aknk

..
.

a21
a22

. . .

a2n2

a11
a12

. . .

a1n1

Figure C4. A general plumbing tree.
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