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1. Introduction.

An important problem in differential geometry is to construct conformal
metrics on S? whose Gauss curvature equals a given positive function f.
This problem is equivalent to finding a solution of the equation

—Ao’w = fe2w - 1,

where Ag denotes the Laplace operator associated with the standard metric
go on S2. J. Moser [22] proved that this equation has a solution if the
function f satisfies the condition f(x) = f(—=x) for all 2 € S?. The general
case was studied by S.-Y. A. Chang, M. Gursky, and P. Yang [10, 11, 14].

A. Bahri and J. M. Coron [4, 5] and R. Schoen and D. Zhang [24] con-
structed metrics with prescribed scalar curvature on S2. J. F. Escobar and
R. Schoen [18] studied the prescribed scalar curvature problem on manifolds
which are not necessarily conformally equivalent to the standard sphere.

Our aim is to generalize these results to higher dimensions. Let g be a
conformal metric on S*. We denote by R the scalar curvature of ¢ and by
Ric the Ricci tensor of g. Moreover, we denote by A the Laplace operator
with respect to the metric g. A natural conformal invariant in dimension
four is

1
Q=-¢ (AR — R? + 3|Ric|%).

The quantity @ plays an important role in conformal geometry, see [7, 12, 15].
Indeed, the quantity () enjoys similar properties as the Gauss curvature in
dimension two. For a given positive function f on S*, we want to construct
a conformal metric g on S* such that

Q = 6.

If we denote by gg the standard metric on S*, then this problem is equivalent
to the equation
Adw — 200w = 6 (fe*™ —1).
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If the function f satisfies the condition f(x) = f(—z) for all z € S*, then
this equation has a solution. The solution can be constructed by means of
an evolution equation, see [9].

More generally, we can consider the standard sphere S™, where n is
even. By the work of C. Fefferman and R. Graham [19, 20], there exists a
conformally invariant self-adjoint operator with leading term (—AO)%. On
the standard sphere S™, this operator is given by

Py=]](=A0+ (k—1)(n—k)),

o

k=1

see [8, 12]. We consider the equation
Pow=(n—-1!(fe™ —1)

for some positive function f on S™. This is a semilinear elliptic equation of
order n involving the critical Sobolev exponent. We assume that the function
f satisfies the non-degeneracy condition

Vof(p) = Aof(p) #0.

Moreover, we identify the group of conformal transformations on S™ with
the unit ball in R™*!. Moreover, we consider the map

H:B""W SR o ( foawidVO>
g» 1<i<n+1

Then we have the following result:
Theorem 1.1. Suppose that f satisfies the non-degeneracy condition and
deg(H,0) # 0.

Then the equation
Pow=(n—-1)!(fe™ —1)

has a solution.

As a consequence, we obtain:

Corollary 1.2. Suppose that f satisfies the non-degeneracy condition and

Z (—1)mdFp) £ 1,

Vof(p)=0,2A0f(p)<0
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Then the equation
Pow=(n—-D!(fe"™ —1)
has a solution.
An index criterion similar to that in Corollary 1.2 was introduced by A.
Bahri and J. M. Coron [5] in their work on the prescribed scalar curvature
problem. Related results were established by Z. Djadli, A. Malchiodi and

M. Ahmedou [16, 17].
In Section 2, we consider solutions of the equation

Pow = (n— 1)l (fe™ —1)

satisfying the normalization condition

/ e x;dVy=0

for 1 < j < n+ 1. Using the estimates for the Paneitz operator from [12],
we can show that the function w is bounded in H™. If the function f is close
to 1, we establish an estimate of the form

[wl[gn < CIf = 1|z

for some constant C'.

In Section 3, we show that the a-priori estimates remain valid even if the
normalization condition is dropped. The proof relies on the Kazdan-Warner
identity (see [12]) and the non-degeneracy condition for f.

In Section 4, we use a topological degree argument to show that the
equation

Pow=(n—-1!(fe™ —1)

has a solution.

2. A-priori estimates for solutions satisfying a normalization
condition.

Let f be a positive function on S™, and let w be a function which satisfies

the equation
Pow=(n—-1!(fe™ —1)

and the normalization condition
/ e x;dVy =0

for 1 <j <mn+1. We begin with a simple estimate.
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Lemma 2.1. The function w satisfies

lw — ]| <C

WP
for all p < 2.
Proof. The function Pyw satisfies

|Pow| < Pow +2(n — 1)!,

hence
][ | Pyw| dVy < 2(n — 1)L.
S’I’L

Using Green’s formula, we obtain

[w — ]| <C

W%»P

for all p < 2.

Using the normalization condition, it is possible to derive an improved
Sobolev inequality for the function w. The proof follows ideas of T. Aubin
[2, 3] and is included here for completeness.

Proposition 2.2. The function w satisfies the inequality

n(w—w) n
log</ne dV0>§][n74(n_1)!wP0deo—l—C.

Proof. We use the inequality

nu n no\2
—I-][ nudVp+C

(see [1, 6, 12]). Without loss of generality, we may assume that

/ e"™dVy < C e™ dVj.
" {@ny1>26}

We first consider the case

/ ((=Ag) T w)? dVy < / ((—20) 5 w)? V.
{Zn4120} {zn+1<6}
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This implies

[ (ot as [0 (a0tn .
Tpy12 n

We choose a cut-off function n such that n =1 for z,41 > 2 and n = 0 for
Tpt1 < 0. For u =1 (w — w) we obtain

nn(w—w) _on n 2
10g</ne n dVo> S][n 2(n_1)!(( A0)4(77(w w))) dVy
+][ nn(w—w)dVy+ C.
From this it follows that

lo / en(w—ﬁ)dv>§][ _n 9 _AN Y w 2dV—|—C.
¢ < {#n41226} 0 n2(n—1)! K (( 0) ) 0

Therefore, we obtain

n(w—w n n 2

We now consider the case

/{rané} ((_AO)%w)deO < / ((—Ao)%w)2 dvp.

{Zn4120}

This implies

/{ , (Cantuya < [ 5 (a0u) v,
Tpn1S n

We choose a cut-off function 1 such that n = 1 for z,11 <0 and n = 0 for
ZTpt1 > 0. For u =n (w — w) we obtain

log ( / ) dVo> < ][ ) ﬁ (—20)% (0 (w —)))" dVp
—I-][nnn(w—w)dVo—l—C.

From this it follows that

lo / en(w—ﬁ)dv>§][ 2 ((_A 202 dve 4+ C.
g< {#n+1<0} 0 n2(n—1)'77 (( 0) ) 0
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Using the inequality

/ en(w—ﬁ) dVp < C en(w—ﬁ) dVo
" {zn41>26}

<C ") gy AV
{zn412>26}

=-C eMw—o) Tna1 dVp
{(En+1 §25}

< —C ") gy dVy
{zn4+1<0}

<C ") gy,
{zn+1<0}

we obtain

n(w—w n no\2

This proves the assertion.
On the other hand, S.-Y. A. Chang and P. Yang [12] established the
following estimate:

Proposition 2.3. Assume that
O<m< f<M.

Then the function w satisfies

_n _ n(w—w) <
][nQ(n—l)!wPOdeO log</ne dVO>_C.

Combining these statements, we obtain:
Corollary 2.4. Assume that
O<m< f<M.

Then the function w satisfies
/ w PywdVy < C.

As a consequence, we obtain:
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Proposition 2.5. If the function f satisfies
0<m< f< M,
then the function w satisfies the estimate ||w||gn» < C.
Proof. It follows from Corollary 2.4 that
Jw -],y <C.

Using an inequality of N. Trudinger, we obtain

/ M=) gy < C.

Since
Pow=(n—-1!(fe"™ —-1),
we obtain
fe™dvy = 1.
S’I’L

This implies

1 1

— < " AVy < —.

M - Sn € 0 - m
From this it follows that

-C<w<(C.

Thus, we conclude that [Jw[| ;5 < C, hence
/ 2™ qvy < C
by Trudinger’s inequality. From this it follows that
/H(Pow)z dVy < C.

Since w is bounded, the assertion follows.
In the remaining part of this section, we assume that the function f is
close to 1.

Lemma 2.6. For every ¢ > 0, there exists a real number § > 0 with the
following property: If the function f satisfies
O<m< f<M

and
||f - 1||L2 S 57

then the function w satisfies the estimate ||w| gn < e.
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Proof. We consider a sequence of functions w;, satisfying
Pywi, = (n— D! (fre™™* —1)
and
/ etz dVy =0
for 1 < j <n+4 1. We assume that

O<m< fr<M

and
| fr = 1lg2 — 0.

By Proposition 2.5, the function satisfies the estimate ||wg|| g~ < C. Hence,
by passing to a subsequence, we may assume that

|wg — w|lLe — 0
for some function w. Then the function w satisfies
Pyw=(n—1)!(e"™—1).

From this it follows that w is smooth. Moreover, it follows from the results in
[13] that the metric e>* g agrees with the standard metric gg up to conformal
transformations. Using the normalization condition

/ e x;dVy =0
for 1 <j <n+ 1, we conclude that w = 0. This implies
Jwk | Lee — 0.

Since
Powg = (n — ! (free™* = 1),

it follows that
||P0wk||L2 — 0.

Therefore, we obtain
|w | m — 0.

This proves the assertion.



Prescribing a Higher Order Conformal Invariant on S™ 845

Proposition 2.7. Assume that the function f satisfies
O<m< f<M

and
[f = 1g2 <6

Then the function w satisfies an estimate of the form
Jwllgr < CIf = 1|2
Proof. The function w satisfies
Pow—-—nlw=n-1)(f-1)e""+(n—1)! (" —nw—-1)
and )
/ wxjdVy = —/ — (" —nw — 1) z;dVj

n Sn n
for 1 < j <n+ 1. Using the Sobolev embedding theorem, we obtain
From this it follows that

[Pow —nlwllpz < C|f = 1|2 + Ce[lw| L2

and

/ wa; dVy| < Ce [luwl|2
Sn

for 1 < j <n+ 1. Thus, we conclude that

[wl[zn < CNf =12 + Ce||w] 2,

hence
|wllgn < ClIf =12

This proves the assertion.

Proposition 2.8. Let f be a function with
|f = 1fz2 < 0.

Then there exists a unique pair (w,A) € H™ x R"! such that

A= (=1t ((1 _zwj> e - 1)
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and
/ e x;dVy =0
S’I’L
for1<j<n+1 and ||(w, )] gnxrr+1 <e.

Proof. Let
S:{wEH”:/ e"x;dVy =0 forlgjgn—l—l}.

We define a map
:S xR L2

by
n+1

O(w,A\)=e"" Pow+ (n—1)le ™ + Z(n —1)!Ajz;.
j=1

We denote by
TS x R" — L2

the differential of ® at the point (0,0). We have
TS:{wEH”:/ wxjdVy =0 forlgjgn—l—l}

and
n+1

&' (w,A) = Pyw — nlw + n— 1A z;.
iy
j:l

Therefore, the map @ is bijective. The implicite function theorem implies
that ® is a bijective map from a neighbourhood of (0,0) in S x R"*! to a
neighbourhood of (n —1)!in L2. Since

||f - 1||L2 < 57
there exists a pair (w, A) € S x R""! such that
O(w,A)=(n-1)f

and
[ (w, A)[ grnygntr < €.

From this the assertion follows.
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3. A-priori estimates for solutions in the absence of a
normalization condition.

Let f be a fixed positive function on S™. In this section, we establish the
following result:

Proposition 3.1. Let w be a solution of the equation
Pow=n—-1((sf+1—5)e™ —1)
for some 0 < s < 1. Then the function w satisfies the estimate ||w| gn < C.
Proof. Assume that there exists a sequence of functions w; satisfying
Powg = (n—1)! ((s f+1— s) " — 1)

for some 0 < s <1 and
|wg|| gn — oo.

We choose conformal transformations o, such that
/ "k xjdVo =0

for 1 <j<n+1, where

e2lf)k e2wk

g0 = o ( 90)-
Then the functions w;, satisfy the equation
Pyg = (n—1)! ((si f +1—sp) ooy, ek 1).
Since f is a fixed positive function on S™, we have
O<m< (spf+1—sg) oo <M.
Hence, it follows from Proposition 2.5 that ||wg||g» < C. Since
|[wg|| rn — o0,
we conclude that the sequence oy tends to infinity. This implies
[(s f +1—sp) ook —e™™*| 12 = o(1)

for a suitable constant 7. Using Lemma 2.6, we obtain

[0k = k|l Hn = o(1).
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Moreover, the Kazdan-Warner identity (see [12]) implies that
/ (d(f o o), day) ) qvy = 0

for 1 < j < n+ 1. If we identify S™ with R™ U {oo} via the stereographic
projection, then we may assume that the conformal transformation oy is
given by

1
Uk(y) = a Y

for a suitable sequence t; — oco. The pull-back of the standard metric on S™
under the stereographic projection is given by

4
= 5 0jj
) = TPy
Moreover, we have
Qyj
T =
T 1+ [y
for 1 <j<nand
1—y?
KT
This implies
2 Ay
dr: = dy; 7de.
R ; (1 +y[2)2

for 1 <j<nand

n

dy;
dnp1 =) | s dyi
2 [T+ |yP)

Using the formula

f( ) +Zazyz+ Zﬁzgyzy]+0(|y|)

1,j=1
we obtain
BN ly[?
(foak)(y):f(o)"i'azaiyz t2 Zﬁzgyzy]"FO( >,
i=1 i,j=1
hence

d(fo Uk)(y) = %Zaid% Z ﬁm Yj dy; +0<|y|>
i=1

kz,] 1 k
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From this it follows that
0:/ <d(f o Uk), d:L']> en(ﬁ)k_rk) dV()

:/n<d(fo k), drj) dVo + O(i)

1 2n 1043 / 2n a;YiYj 1
NI s g0 1)
tk/n(1+|y| Z)n=t Z n(1+ JyH)r Lo tr
1 2"ty 1/ 2"agy; 1
=— | —J  _dy---dy, — — — 7 dyy---d _|_0<_>
tk/ (L By T T Je (e T,

1 2"ty 1 27|y |? 1
=— | — J  _dy---dy, — — = IV dyn - d _|_O<_>
tk/ (L Py T T T S m( e T,
1 2 lo. (n+ (n—2 2 1
i Jrn n(1+ |y[?) tr

for 1 < j < n. Thus, we conclude that a; = o(1) for 1 < j < n. From this
it follows that

1
(s f +1=si) oo — e |12 < o =),
k
where ek = s;, f(0) + 1 — si. This implies
- 1
lwg — 7|l gn < o(—).
tx
Using this estimate, we obtain
- / (d(f 0 0k), dansr) ") dVy

:/ (d(f o op), dmn+1>d%+o(tiz>

k

2" ﬁzgyzy]
dyy---d —|—o<
/n (T+ [y

7)
2
kzgl tk

2n ﬁzz|y| 1
—dy, - -d —|—o<—>.
t2Z/R4n 1+ [y|2)n YL 2

Thus, we conclude that
n

Zﬁm’ =0.

=1
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Therefore, the concentration point p satisfies

Vof(p) =0

and
Ao f(p) = 0.

This contradicts the non-degeneracy condition.
4. Existence results.

Let
Ms:{wEH”:][ (sf—l—l—s)em”dVO:l}.

We define a map
U, : M, — H"

by
Uy(w)=w—(n—INP 7 ((sf+1—s)e™ —1).

We first show that the degree of W is independent of s.

Proposition 4.1. We have
deg(\ylv 0) = deg(\Psv 0)

for all0 < s < 1.

Proof. It follows from Proposition 3.1 that the set
{(s,w):0<s<1,we M and Uy(w) =0}

is bounded in R x H™. The assertion is now a consequence of the homotopy
invariance of the degree (see [23]).

We now choose 0 < s < 1 sufficiently small. By Proposition 2.8, for
every conformal transformation o, there exists a unique function @, which
satisfies

n+1
Py, = (’I’L — 1)! <<(8f +1-— 8) oo — ZAUJ 5L'j> Mo _ 1>
j=1

and
/ ", dVy = 0
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for1<j<n+1and
[(Wos Ao) || nxmn+r < €.
Using Proposition 2.7, we obtain || @y ||g» < Cs. We now define functions

wy by

62'[[)0— ez'wo'

go = o*(e*" go).

Then the function w, satisfies the equation

n+1
Pog = =11 (67419 = S Ao~ ) emer 1))
j=1

In the first step, we show that the zeroes of U, are in one-to-one correspon-
dence with the zeroes of A.

Proposition 4.2. A function w satisfies Vs(w) = 0 if and only if there
erists a conformal transformation o such that w = w, and Ay = 0.

Proof. Suppose that w € M, satisfies Us(w) = 0. Then the function w
satisfies the equation

Pow=mn-D((sf+1-s)e™ —1).

We choose a conformal transformation o such that

/ e xjdVo =0

for 1 <j <mn+1, where

e*g0 = o* (> o).
Then the function w satisfies the equation

Pyv=n—-1)!((sf+1-s)ooe™ —1).

If s is sufficiently small, then we have

(s f—s)oollz <0
Using Proposition 2.6, we obtain

@] zm < e.
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Hence, it follows from the uniqueness statement in Proposition 2.8 that

w = Wy and A, = 0. Conversely, if ¢ is a conformal transformation satisfying

A, = 0, then the function w, belongs to the space My and ¥4(w,) = 0.
Let o be a conformal transformation satisfying A, = 0, and let A’ be the

differential of A at o. Furthermore, we denote by W’ the differential of Wy

at w,. We want to compare the number of negative eigenvalues of A’ and
To this end, we differentiate the identity

n+1
Pyw; = (n—1)! <<(sf +1-—3s)— ZATJ:Ej 07'_1> e 1>
=1

with respect to 7. This gives a collection of functions u; such that

n+1
Pou;=nl(sf+1—s)e"™ u;—(n—1)! ZA;J zjoo L
j=1

for 1 <i <n+ 1. By definition of w,, we have
/ e g0t dVy = / ", dVy = 0

for 1 <j <n+ 1. Let v; be the solution of the linear equation
—1 enwg .

Po’Uj = —Xjo0

Then we obtain the identity

n+1
Pou;=nl(sf+1—s)e"™ u;+ (n—1)! ZA;J zjoo e,
j=1

Thus, we conclude that u; € T M, and

n+1
U (ui) = (n— 1)1 A} ;.
j=1
We now establish precise estimates for the functions u; and v;.
Lemma 4.3. The function u; satisfies the estimate

||’LLZ +x; OU_1||Hn < (Cs.
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Proof. Since
l(sf+1—=8)or—(sf+1—=5)oo]| 2 < Csdist(r,o),
it follows from the proof of Proposition 2.8 that
| — Wy || gn < Csdist(r, o).

This implies
|y 077t — iy 0 07| g < Csdist(r, o).

Using the relations
~ -1 1 -1
Wy 00 ~ =ws+ —logdetdo oo
n

and
1

WroT ~=w, + %logdet dror™ !,
we obtain
lw; —wy + %log detdror™! — %log det do o 07| gn < Csdist(r, o),
hence
lwr —wy — %log detd(t7 o o) oo |gn < Csdist(r, o).
From this it follows that
|ui + 2500 ||gn < Cs.

This proves the assertion.
Lemma 4.4. The function v; satisfies the estimate

Inlvj +zj00 | gn < Cs.

Proof. Since —Agx; = nx;, we obtain

-

Poxj=|l(n+(k-1(n—-k)z;j= || kin—k+1)z; =nlx;.

bl
Il : SE
—

k=1

Using the conformal invariance of the Paneitz operator, we conclude that

Py(zjoo ) detdooot =nlzjoo !,
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hence

ngoo 1 -1 Mo

Py(zjoo e =nlzjoo

This implies
A
n! Pyvj = —Py(zjoot) e .

Using the estimate
[ || zn < Cs,

we obtain
Intvj +aj00 g < O Po(nlv; +x;00 )2 < Cs.
This proves the assertion.

Proposition 4.5. If s is sufficiently small, then the degree of V4 coincides
with the degree of A.

Proof. By Lemma 4.3 and Lemma 4.4, the finite-dimensional approxima-

tions of W/ are of the form
NE NF\'
X Y ’

|E—1]| <Cs

where

and
|F| < Cs.

Using the identity

NE NF\ A 0 E F
X Yy ) \XE! Y-XE'F 0 1
we obtain

NE ANF A 0 E F
det( X v > = det (XE—1 Y—XE—1F> det (0 1>
= det A’ det(Y — XE7'F) det E.

NE NF

Hence, if s is sufficiently small, then det ( b v

> and det A’ have the

same sign. Thus, we conclude that

deg(¥s,0) = deg(A,0)
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if s is sufficiently small.
We now identify the the group of conformal transformations on S™ with
the unit ball in R"*!. We consider the map

H:B""W SR 5 ( foawidVO>
sn 1<i<n+1

Then we have the following result:

Proposition 4.6. If s is sufficiently small, then the degree of A coincides
with the degree of H.

Proof. Using the Kazdan-Warner identity, we obtain

n+1
/ < ((sf+1—s)oo0) ZAU]d:E],d:EZ>e”ﬁ’f’dVO:O.
This implies
n+1 3
/ (d(f 0 0),das) e dVy = Ay / (dxj, dz;) " V).
n ] 1 S

Therefore, the degree of A coincides with the degree of the map

G:B"" SR 5 (/ (d(f o 0),dx;) e dVO>

1<i<n+1

On the other hand,

n+1
|G(o)—nH(o |<Z/ d(foo),dr;)e™ dVy—n | foox;dVy
STL
n+1 3
<Z/ d(f o o), das) (€ — 1) dVy
< (Cs.

If s is sufficiently small, then G and H are homotopic, and therefore the
degree of GG agrees with the degree of H.
Combining these statements, we obtain

deg(¥1,0) = deg(H, 0).
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By assumption, we have deg(H,0) # 0, hence deg(¥y,0) # 0. Therefore,
there exists a function w € My such that ¥y (w) = 0. This implies

and

fe"dvy =1
S’I’L

w—(n— 1) Py(fe™ —1)=0.

Thus, we conclude that

1]

2]

3]

[4]

[5]

[6]

7]

Pow=(n—-1!(fe"™ —1).
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