COMMUNICATIONS IN ANALYSIS AND GEOMETRY Volume 11, Number 5, 837-858, 2003

Prescribing a Higher Order Conformal Invariant on S^n

SIMON BRENDLE

1. Introduction.

An important problem in differential geometry is to construct conformal metrics on S^2 whose Gauss curvature equals a given positive function f. This problem is equivalent to finding a solution of the equation

$$-\Delta_0 w = f e^{2w} - 1,$$

where Δ_0 denotes the Laplace operator associated with the standard metric g_0 on S^2 . J. Moser [22] proved that this equation has a solution if the function f satisfies the condition f(x) = f(-x) for all $x \in S^2$. The general case was studied by S.-Y. A. Chang, M. Gursky, and P. Yang [10, 11, 14].

A. Bahri and J. M. Coron [4, 5] and R. Schoen and D. Zhang [24] constructed metrics with prescribed scalar curvature on S^3 . J. F. Escobar and R. Schoen [18] studied the prescribed scalar curvature problem on manifolds which are not necessarily conformally equivalent to the standard sphere.

Our aim is to generalize these results to higher dimensions. Let g be a conformal metric on S^4 . We denote by R the scalar curvature of g and by Ric the Ricci tensor of g. Moreover, we denote by Δ the Laplace operator with respect to the metric g. A natural conformal invariant in dimension four is

$$Q = -\frac{1}{6} \left(\Delta R - R^2 + 3 \, |Ric|^2 \right).$$

The quantity Q plays an important role in conformal geometry, see [7, 12, 15]. Indeed, the quantity Q enjoys similar properties as the Gauss curvature in dimension two. For a given positive function f on S^4 , we want to construct a conformal metric g on S^4 such that

$$Q = 6f.$$

If we denote by g_0 the standard metric on S^4 , then this problem is equivalent to the equation

$$\Delta_0^2 w - 2\Delta_0 w = 6 \, (f e^{4w} - 1).$$

If the function f satisfies the condition f(x) = f(-x) for all $x \in S^4$, then this equation has a solution. The solution can be constructed by means of an evolution equation, see [9].

More generally, we can consider the standard sphere S^n , where *n* is even. By the work of C. Fefferman and R. Graham [19, 20], there exists a conformally invariant self-adjoint operator with leading term $(-\Delta_0)^{\frac{n}{2}}$. On the standard sphere S^n , this operator is given by

$$P_0 = \prod_{k=1}^{\frac{n}{2}} (-\Delta_0 + (k-1)(n-k)),$$

see [8, 12]. We consider the equation

$$P_0w = (n-1)! (f e^{nw} - 1)$$

for some positive function f on S^n . This is a semilinear elliptic equation of order n involving the critical Sobolev exponent. We assume that the function f satisfies the non-degeneracy condition

$$\nabla_0 f(p) \implies \Delta_0 f(p) \neq 0.$$

Moreover, we identify the group of conformal transformations on S^n with the unit ball in \mathbb{R}^{n+1} . Moreover, we consider the map

$$H: B^{n+1} \to \mathbb{R}^{n+1}, \quad \sigma \mapsto \left(\int_{S^n} f \circ \sigma \, x_i \, dV_0\right)_{1 \le i \le n+1}$$

Then we have the following result:

Theorem 1.1. Suppose that f satisfies the non-degeneracy condition and

$$\deg(H,0) \neq 0.$$

Then the equation

$$P_0w = (n-1)! (f e^{nw} - 1)$$

has a solution.

As a consequence, we obtain:

Corollary 1.2. Suppose that f satisfies the non-degeneracy condition and

$$\sum_{\nabla_0 f(p)=0, \, \Delta_0 f(p) < 0} (-1)^{\text{ind}(f,p)} \neq 1$$

Then the equation

$$P_0w = (n-1)! (f e^{nw} - 1)$$

has a solution.

An index criterion similar to that in Corollary 1.2 was introduced by A. Bahri and J. M. Coron [5] in their work on the prescribed scalar curvature problem. Related results were established by Z. Djadli, A. Malchiodi and M. Ahmedou [16, 17].

In Section 2, we consider solutions of the equation

$$P_0w = (n-1)! (f e^{nw} - 1)$$

satisfying the normalization condition

$$\int_{S^n} e^{nw} \, x_j \, dV_0 = 0$$

for $1 \leq j \leq n+1$. Using the estimates for the Paneitz operator from [12], we can show that the function w is bounded in H^n . If the function f is close to 1, we establish an estimate of the form

$$\|w\|_{H^n} \le C \, \|f - 1\|_{L^2}$$

for some constant C.

In Section 3, we show that the a-priori estimates remain valid even if the normalization condition is dropped. The proof relies on the Kazdan-Warner identity (see [12]) and the non-degeneracy condition for f.

In Section 4, we use a topological degree argument to show that the equation

$$P_0w = (n-1)! (f e^{nw} - 1)$$

has a solution.

2. A-priori estimates for solutions satisfying a normalization condition.

Let f be a positive function on S^n , and let w be a function which satisfies the equation

$$P_0 w = (n-1)! (f e^{nw} - 1)$$

and the normalization condition

$$\int_{S^n} e^{nw} \, x_j \, dV_0 = 0$$

for $1 \le j \le n+1$. We begin with a simple estimate.

Lemma 2.1. The function w satisfies

$$\|w - \overline{w}\|_{W^{\frac{n}{2},p}} \le C$$

for all p < 2.

Proof. The function $P_0 w$ satisfies

$$|P_0w| \le P_0w + 2(n-1)!,$$

hence

$$\oint_{S^n} |P_0w| \, dV_0 \le 2(n-1)!.$$

Using Green's formula, we obtain

$$\|w - \overline{w}\|_{W^{\frac{n}{2},p}} \le C$$

for all p < 2.

Using the normalization condition, it is possible to derive an improved Sobolev inequality for the function w. The proof follows ideas of T. Aubin [2, 3] and is included here for completeness.

Proposition 2.2. The function w satisfies the inequality

$$\log\left(\int_{S^n} e^{n(w-\overline{w})} \, dV_0\right) \le \int_{S^n} \frac{n}{4(n-1)!} \, w \, P_0 w \, dV_0 + C.$$

Proof. We use the inequality

$$\log\left(\int_{S^n} e^{nu} dV_0\right) \le \int_{S^n} \frac{n}{2(n-1)!} \left((-\Delta_0)^{\frac{n}{4}} u\right)^2 dV_0$$
$$+ \int_{S^n} nu \, dV_0 + C$$

(see [1, 6, 12]). Without loss of generality, we may assume that

$$\int_{S^n} e^{nw} \, dV_0 \le C \int_{\{x_{n+1} \ge 2\delta\}} e^{nw} \, dV_0.$$

We first consider the case

$$\int_{\{x_{n+1} \ge \delta\}} \left((-\Delta_0)^{\frac{n}{4}} w \right)^2 dV_0 \le \int_{\{x_{n+1} \le \delta\}} \left((-\Delta_0)^{\frac{n}{4}} w \right)^2 dV_0.$$

This implies

$$\int_{\{x_{n+1} \ge \delta\}} \left((-\Delta_0)^{\frac{n}{4}} w \right)^2 dV_0 \le \int_{S^n} \frac{1}{2} \left((-\Delta_0)^{\frac{n}{4}} w \right)^2 dV_0.$$

We choose a cut-off function η such that $\eta = 1$ for $x_{n+1} \ge 2\delta$ and $\eta = 0$ for $x_{n+1} \le \delta$. For $u = \eta (w - \overline{w})$ we obtain

$$\log\left(\int_{S^n} e^{n\eta(w-\overline{w})} dV_0\right) \le \int_{S^n} \frac{n}{2(n-1)!} \left((-\Delta_0)^{\frac{n}{4}} (\eta(w-\overline{w}))\right)^2 dV_0 + \int_{S^n} n \eta(w-\overline{w}) dV_0 + C.$$

From this it follows that

$$\log\left(\int_{\{x_{n+1}\geq 2\delta\}} e^{n(w-\overline{w})} \, dV_0\right) \leq \int_{S^n} \frac{n}{2(n-1)!} \, \eta^2 \left((-\Delta_0)^{\frac{n}{4}} w\right)^2 \, dV_0 + C.$$

Therefore, we obtain

$$\log\left(\int_{S^n} e^{n(w-\overline{w})} \, dV_0\right) \le \int_{S^n} \frac{n}{4(n-1)!} \left((-\Delta_0)^{\frac{n}{4}} w\right)^2 dV_0 + C.$$

We now consider the case

$$\int_{\{x_{n+1} \le \delta\}} \left((-\Delta_0)^{\frac{n}{4}} w \right)^2 dV_0 \le \int_{\{x_{n+1} \ge \delta\}} \left((-\Delta_0)^{\frac{n}{4}} w \right)^2 dV_0.$$

This implies

$$\int_{\{x_{n+1} \le \delta\}} \left((-\Delta_0)^{\frac{n}{4}} w \right)^2 dV_0 \le \int_{S^n} \frac{1}{2} \left((-\Delta_0)^{\frac{n}{4}} w \right)^2 dV_0.$$

We choose a cut-off function η such that $\eta = 1$ for $x_{n+1} \leq 0$ and $\eta = 0$ for $x_{n+1} \geq \delta$. For $u = \eta (w - \overline{w})$ we obtain

$$\log\left(\int_{S^n} e^{n\eta(w-\overline{w})} dV_0\right) \le \int_{S^n} \frac{n}{2(n-1)!} \left((-\Delta_0)^{\frac{n}{4}} (\eta(w-\overline{w}))\right)^2 dV_0 + \int_{S^n} n \eta(w-\overline{w}) dV_0 + C.$$

From this it follows that

$$\log\left(\int_{\{x_{n+1}\leq 0\}} e^{n(w-\overline{w})} \, dV_0\right) \leq \int_{S^n} \frac{n}{2(n-1)!} \, \eta^2 \left((-\Delta_0)^{\frac{n}{4}} w\right)^2 \, dV_0 + C.$$

Using the inequality

$$\int_{S^n} e^{n(w-\overline{w})} dV_0 \leq C \int_{\{x_{n+1} \geq 2\delta\}} e^{n(w-\overline{w})} dV_0$$
$$\leq C \int_{\{x_{n+1} \geq 2\delta\}} e^{n(w-\overline{w})} x_{n+1} dV_0$$
$$= -C \int_{\{x_{n+1} \leq 2\delta\}} e^{n(w-\overline{w})} x_{n+1} dV_0$$
$$\leq -C \int_{\{x_{n+1} \leq 0\}} e^{n(w-\overline{w})} x_{n+1} dV_0$$
$$\leq C \int_{\{x_{n+1} \leq 0\}} e^{n(w-\overline{w})} dV_0,$$

we obtain

$$\log\left(\int_{S^n} e^{n(w-\overline{w})} \, dV_0\right) \le \int_{S^n} \frac{n}{4(n-1)!} \left((-\Delta_0)^{\frac{n}{4}} w\right)^2 dV_0 + C.$$

This proves the assertion.

On the other hand, S.-Y. A. Chang and P. Yang [12] established the following estimate:

Proposition 2.3. Assume that

$$0 < m \le f \le M.$$

Then the function w satisfies

$$\int_{S^n} \frac{n}{2(n-1)!} w P_0 w \, dV_0 - \log\left(\int_{S^n} e^{n(w-\overline{w})} \, dV_0\right) \le C.$$

Combining these statements, we obtain:

Corollary 2.4. Assume that

$$0 < m \le f \le M.$$

Then the function w satisfies

$$\int_{S^n} w P_0 w \, dV_0 \le C.$$

As a consequence, we obtain:

Proposition 2.5. If the function f satisfies

$$0 < m \le f \le M,$$

then the function w satisfies the estimate $||w||_{H^n} \leq C$.

Proof. It follows from Corollary 2.4 that

$$\|w - \overline{w}\|_{H^{\frac{n}{2}}} \le C.$$

Using an inequality of N. Trudinger, we obtain

$$\int_{S^n} e^{n(w-\overline{w})} \, dV_0 \le C.$$

Since

$$P_0w = (n-1)! (f e^{nw} - 1),$$

we obtain

$$\int_{S^n} f \, e^{nw} \, dV_0 = 1.$$

This implies

$$\frac{1}{M} \le \int_{S^n} e^{nw} \, dV_0 \le \frac{1}{m}$$

From this it follows that

$$C \le \overline{w} \le C$$

Thus, we conclude that $\|w\|_{H^{\frac{n}{2}}} \leq C$, hence

$$\int_{S^n} e^{2nw} \, dV_0 \le C$$

by Trudinger's inequality. From this it follows that

$$\int_{S^n} (P_0 w)^2 \, dV_0 \le C.$$

Since \overline{w} is bounded, the assertion follows.

In the remaining part of this section, we assume that the function f is close to 1.

Lemma 2.6. For every $\varepsilon > 0$, there exists a real number $\delta > 0$ with the following property: If the function f satisfies

$$0 < m \le f \le M$$

and

$$\|f-1\|_{L^2} \le \delta,$$

then the function w satisfies the estimate $||w||_{H^n} \leq \varepsilon$.

Proof. We consider a sequence of functions w_k satisfying

$$P_0 w_k = (n-1)! \left(f_k e^{nw_k} - 1 \right)$$

and

$$\int_{S^n} e^{nw_k} x_j \, dV_0 = 0$$

for $1 \leq j \leq n+1$. We assume that

$$0 < m \le f_k \le M$$

and

$$||f_k - 1||_{L^2} \to 0.$$

By Proposition 2.5, the function satisfies the estimate $||w_k||_{H^n} \leq C$. Hence, by passing to a subsequence, we may assume that

$$||w_k - w||_{L^{\infty}} \to 0$$

for some function w. Then the function w satisfies

$$P_0w = (n-1)! (e^{nw} - 1).$$

From this it follows that w is smooth. Moreover, it follows from the results in [13] that the metric $e^{2w}g_0$ agrees with the standard metric g_0 up to conformal transformations. Using the normalization condition

$$\int_{S^n} e^{nw} \, x_j \, dV_0 = 0$$

for $1 \leq j \leq n+1$, we conclude that w = 0. This implies

$$||w_k||_{L^{\infty}} \to 0.$$

Since

$$P_0 w_k = (n-1)! (f_k e^{nw_k} - 1),$$

it follows that

 $||P_0w_k||_{L^2} \to 0.$

Therefore, we obtain

$$\|w_k\|_{H^n} \to 0.$$

This proves the assertion.

Proposition 2.7. Assume that the function f satisfies

$$0 < m \le f \le M$$

and

$$\|f-1\|_{L^2} \le \delta.$$

Then the function w satisfies an estimate of the form

$$||w||_{H^n} \le C ||f - 1||_{L^2}.$$

Proof. The function w satisfies

$$P_0w - n! w = (n-1)! (f-1) e^{nw} + (n-1)! (e^{nw} - nw - 1)$$

and

$$\int_{S^n} w \, x_j \, dV_0 = -\int_{S^n} \frac{1}{n} \left(e^{nw} - nw - 1 \right) x_j \, dV_0$$

for $1 \leq j \leq n+1$. Using the Sobolev embedding theorem, we obtain

$$\|w\|_{L^{\infty}} \le C \, \|w\|_{H^n} \le C \, \varepsilon.$$

From this it follows that

$$\|P_0w - n! w\|_{L^2} \le C \|f - 1\|_{L^2} + C \varepsilon \|w\|_{L^2}$$

and

$$\left| \int_{S^n} w \, x_j \, dV_0 \right| \le C \, \varepsilon \, \|w\|_{L^2}$$

for $1 \leq j \leq n+1$. Thus, we conclude that

$$\|w\|_{H^n} \le C \, \|f - 1\|_{L^2} + C \, \varepsilon \, \|w\|_{L^2},$$

hence

$$||w||_{H^n} \le C ||f-1||_{L^2}.$$

This proves the assertion.

Proposition 2.8. Let f be a function with

$$\|f-1\|_{L^2} \le \delta.$$

Then there exists a unique pair $(w, \Lambda) \in H^n \times \mathbb{R}^{n+1}$ such that

$$P_0 w = (n-1)! \left(\left(f - \sum_{j=1}^{n+1} \Lambda_j x_j \right) e^{nw} - 1 \right)$$

and

$$\int_{S^n} e^{nw} \, x_j \, dV_0 = 0$$

for $1 \leq j \leq n+1$ and $\|(w, \Lambda)\|_{H^n \times \mathbb{R}^{n+1}} \leq \varepsilon$.

Proof. Let

$$\mathcal{S} = \bigg\{ w \in H^n : \int_{S^n} e^{nw} x_j \, dV_0 = 0 \quad \text{for } 1 \le j \le n+1 \bigg\}.$$

We define a map

$$\Phi: \mathcal{S} \times \mathbb{R}^{n+1} \to L^2$$

by

$$\Phi(w,\Lambda) = e^{-nw} P_0 w + (n-1)! e^{-nw} + \sum_{j=1}^{n+1} (n-1)! \Lambda_j x_j.$$

We denote by

$$\Phi': T\mathcal{S} \times \mathbb{R}^{n+1} \to L^2$$

the differential of Φ at the point (0,0). We have

$$T\mathcal{S} = \left\{ w \in H^n : \int_{S^n} w \, x_j \, dV_0 = 0 \quad \text{for } 1 \le j \le n+1 \right\}$$

and

$$\Phi'(w,\Lambda) = P_0 w - n! w + \sum_{j=1}^{n+1} (n-1)! \Lambda_j x_j.$$

Therefore, the map Φ' is bijective. The implicite function theorem implies that Φ is a bijective map from a neighbourhood of (0,0) in $\mathcal{S} \times \mathbb{R}^{n+1}$ to a neighbourhood of (n-1)! in L^2 . Since

$$\|f-1\|_{L^2} \le \delta,$$

there exists a pair $(w, \Lambda) \in \mathcal{S} \times \mathbb{R}^{n+1}$ such that

$$\Phi(w,\Lambda) = (n-1)!f$$

and

$$\|(w,\Lambda)\|_{H^n\times\mathbb{R}^{n+1}}\leq\varepsilon.$$

From this the assertion follows.

3. A-priori estimates for solutions in the absence of a normalization condition.

Let f be a fixed positive function on S^n . In this section, we establish the following result:

Proposition 3.1. Let w be a solution of the equation

$$P_0w = (n-1)! \left((s f + 1 - s) e^{nw} - 1 \right)$$

for some $0 < s \le 1$. Then the function w satisfies the estimate $||w||_{H^n} \le C$.

Proof. Assume that there exists a sequence of functions w_k satisfying

$$P_0 w_k = (n-1)! \left((s_k f + 1 - s_k) e^{nw_k} - 1 \right)$$

for some $0 < s_k \leq 1$ and

$$||w_k||_{H^n} \to \infty.$$

We choose conformal transformations σ_k such that

$$\int_{S^n} e^{n\tilde{w}_k} x_j \, dV_0 = 0$$

for $1 \leq j \leq n+1$, where

$$e^{2\tilde{w}_k}g_0 = \sigma_k^*(e^{2w_k}g_0).$$

Then the functions \tilde{w}_k satisfy the equation

$$P_0 \tilde{w}_k = (n-1)! \left((s_k f + 1 - s_k) \circ \sigma_k e^{n \tilde{w}_k} - 1 \right).$$

Since f is a fixed positive function on S^n , we have

$$0 < m \le (s_k f + 1 - s_k) \circ \sigma_k \le M.$$

Hence, it follows from Proposition 2.5 that $\|\tilde{w}_k\|_{H^n} \leq C$. Since

$$||w_k||_{H^n} \to \infty,$$

we conclude that the sequence σ_k tends to infinity. This implies

$$\|(s_k f + 1 - s_k) \circ \sigma_k - e^{-nr_k}\|_{L^2} = o(1)$$

for a suitable constant r_k . Using Lemma 2.6, we obtain

$$\|\tilde{w}_k - r_k\|_{H^n} = o(1).$$

Moreover, the Kazdan-Warner identity (see [12]) implies that

$$\int_{S^n} \langle d(f \circ \sigma_k), dx_j \rangle \, e^{n(\tilde{w}_k - r)} \, dV_0 = 0$$

for $1 \leq j \leq n+1$. If we identify S^n with $\mathbb{R}^n \cup \{\infty\}$ via the stereographic projection, then we may assume that the conformal transformation σ_k is given by

$$\sigma_k(y) = \frac{1}{t_k} y$$

for a suitable sequence $t_k \to \infty$. The pull-back of the standard metric on S^n under the stereographic projection is given by

$$(g_0)_{ij} = \frac{4}{(1+|y|^2)^2} \,\delta_{ij}.$$

Moreover, we have

$$x_j = \frac{2y_j}{1+|y|^2}$$

for $1 \leq j \leq n$ and

$$x_{n+1} = -\frac{1-|y|^2}{1+|y|^2}.$$

This implies

$$dx_j = \frac{2}{1+|y|^2} \, dy_j - \sum_{i=1}^n \frac{4y_i y_j}{(1+|y|^2)^2} \, dy_i$$

for $1 \leq j \leq n$ and

$$dx_{n+1} = \sum_{i=1}^{n} \frac{4y_i}{(1+|y|^2)^2} \, dy_i.$$

Using the formula

$$f(y) = f(0) + \sum_{i=1}^{n} \alpha_i y_i + \frac{1}{2} \sum_{i,j=1}^{n} \beta_{ij} y_i y_j + o(|y|^2),$$

we obtain

$$(f \circ \sigma_k)(y) = f(0) + \frac{1}{t_k} \sum_{i=1}^n \alpha_i y_i + \frac{1}{2t_k^2} \sum_{i,j=1}^n \beta_{ij} y_i y_j + o\left(\frac{|y|^2}{t_k^2}\right),$$

hence

$$d(f \circ \sigma_k)(y) = \frac{1}{t_k} \sum_{i=1}^n \alpha_i \, dy_i + \frac{1}{t_k^2} \sum_{i,j=1}^n \beta_{ij} \, y_j \, dy_i + o\left(\frac{|y|}{t_k^2}\right).$$

From this it follows that

$$\begin{split} 0 &= \int_{S^n} \langle d(f \circ \sigma_k), dx_j \rangle \, e^{n(\tilde{w}_k - r_k)} \, dV_0 \\ &= \int_{S^n} \langle d(f \circ \sigma_k), dx_j \rangle \, dV_0 + o\left(\frac{1}{t_k}\right) \\ &= \frac{1}{t_k} \int_{\mathbb{R}^n} \frac{2^{n-1} \alpha_j}{(1+|y|^2)^{n-1}} \, dy_1 \cdots dy_n - \frac{1}{t_k} \sum_{i=1}^n \int_{\mathbb{R}^n} \frac{2^n \alpha_i y_i y_j}{(1+|y|^2)^n} \, dy_1 \cdots dy_n + o\left(\frac{1}{t_k}\right) \\ &= \frac{1}{t_k} \int_{\mathbb{R}^n} \frac{2^{n-1} \alpha_j}{(1+|y|^2)^{n-1}} \, dy_1 \cdots dy_n - \frac{1}{t_k} \int_{\mathbb{R}^n} \frac{2^n \alpha_j y_j^2}{(1+|y|^2)^n} \, dy_1 \cdots dy_n + o\left(\frac{1}{t_k}\right) \\ &= \frac{1}{t_k} \int_{\mathbb{R}^n} \frac{2^{n-1} \alpha_j}{(1+|y|^2)^{n-1}} \, dy_1 \cdots dy_n - \frac{1}{t_k} \int_{\mathbb{R}^n} \frac{2^n \alpha_j |y|^2}{n(1+|y|^2)^n} \, dy_1 \cdots dy_n + o\left(\frac{1}{t_k}\right) \\ &= \frac{1}{t_k} \int_{\mathbb{R}^n} \frac{2^{n-1} \alpha_j \left(n + (n-2) |y|^2\right)}{n(1+|y|^2)^n} \, dy_1 \cdots dy_n + o\left(\frac{1}{t_k}\right) \end{split}$$

for $1 \leq j \leq n$. Thus, we conclude that $\alpha_j = o(1)$ for $1 \leq j \leq n$. From this it follows that

$$\|(s_k f + 1 - s_k) \circ \sigma_k - e^{-nr_k}\|_{L^2} \le o\left(\frac{1}{t_k}\right),$$

where $e^{-nr_k} = s_k f(0) + 1 - s_k$. This implies

$$\|\tilde{w}_k - r_k\|_{H^n} \le o\left(\frac{1}{t_k}\right).$$

Using this estimate, we obtain

$$0 = \int_{S^n} \langle d(f \circ \sigma_k), dx_{n+1} \rangle e^{n(\tilde{w}_k - r_k)} dV_0$$

= $\int_{S^n} \langle d(f \circ \sigma_k), dx_{n+1} \rangle dV_0 + o\left(\frac{1}{t_k^2}\right)$
= $\frac{1}{t_k^2} \sum_{i,j=1}^n \int_{\mathbb{R}^n} \frac{2^n \beta_{ij} y_i y_j}{(1+|y|^2)^n} dy_1 \cdots dy_n + o\left(\frac{1}{t_k^2}\right)$
= $\frac{1}{t_k^2} \sum_{i=1}^n \int_{\mathbb{R}^4} \frac{2^n \beta_{ii} |y|^2}{n(1+|y|^2)^n} dy_1 \cdots dy_n + o\left(\frac{1}{t_k^2}\right).$

Thus, we conclude that

$$\sum_{i=1}^{n} \beta_{ii} = 0.$$

Therefore, the concentration point p satisfies

$$\nabla_0 f(p) = 0$$

and

$$\Delta_0 f(p) = 0.$$

This contradicts the non-degeneracy condition.

4. Existence results.

Let

$$\mathcal{M}_s = \left\{ w \in H^n : \oint_{S^n} \left(s f + 1 - s \right) e^{nw} dV_0 = 1 \right\}.$$

We define a map

$$\Psi_s: \mathcal{M}_s \to H^n$$

by

$$\Psi_s(w) = w - (n-1)! P_0^{-1} ((s f + 1 - s) e^{nw} - 1)$$

We first show that the degree of Ψ_s is independent of s.

Proposition 4.1. We have

$$\deg(\Psi_1, 0) = \deg(\Psi_s, 0)$$

for all $0 < s \leq 1$.

Proof. It follows from Proposition 3.1 that the set

$$\{(s, w) : 0 < s \le 1, w \in \mathcal{M}_s \text{ and } \Psi_s(w) = 0\}$$

is bounded in $\mathbb{R} \times H^n$. The assertion is now a consequence of the homotopy invariance of the degree (see [23]).

We now choose $0 < s \leq 1$ sufficiently small. By Proposition 2.8, for every conformal transformation σ , there exists a unique function \tilde{w}_{σ} which satisfies

$$P_0\tilde{w}_{\sigma} = (n-1)! \left(\left((sf+1-s) \circ \sigma - \sum_{j=1}^{n+1} \Lambda_{\sigma,j} x_j \right) e^{n\tilde{w}_{\sigma}} - 1 \right)$$

and

$$\int_{S^n} e^{n\tilde{w}_\sigma} x_j \, dV_0 = 0$$

851

for $1 \le j \le n+1$ and

$$\|(\tilde{w}_{\sigma}, \Lambda_{\sigma})\|_{H^n \times \mathbb{R}^{n+1}} \le \varepsilon.$$

Using Proposition 2.7, we obtain $\|\tilde{w}_{\sigma}\|_{H^n} \leq Cs$. We now define functions w_{σ} by

$$e^{2\tilde{w}_{\sigma}}g_0 = \sigma^*(e^{2w_{\sigma}}g_0).$$

Then the function w_{σ} satisfies the equation

$$P_0 w_{\sigma} = (n-1)! \left(\left((s f + 1 - s) - \sum_{j=1}^{n+1} \Lambda_{\sigma,j} x_j \circ \sigma^{-1} \right) e^{nw_{\sigma}} - 1 \right).$$

In the first step, we show that the zeroes of Ψ_s are in one-to-one correspondence with the zeroes of Λ .

Proposition 4.2. A function w satisfies $\Psi_s(w) = 0$ if and only if there exists a conformal transformation σ such that $w = w_{\sigma}$ and $\Lambda_{\sigma} = 0$.

Proof. Suppose that $w \in \mathcal{M}_s$ satisfies $\Psi_s(w) = 0$. Then the function w satisfies the equation

$$P_0w = (n-1)! ((s f + 1 - s) e^{nw} - 1).$$

We choose a conformal transformation σ such that

$$\int_{S^n} e^{n\tilde{w}} x_j \, dV_0 = 0$$

for $1 \leq j \leq n+1$, where

$$e^{2\tilde{w}}g_0 = \sigma^*(e^{2w}g_0).$$

Then the function \tilde{w} satisfies the equation

$$P_0 \tilde{w} = (n-1)! \left((s f + 1 - s) \circ \sigma e^{n\tilde{w}} - 1 \right).$$

If s is sufficiently small, then we have

$$\|(sf-s)\circ\sigma\|_{L^2}\leq\delta.$$

Using Proposition 2.6, we obtain

$$\|\tilde{w}\|_{H^n} \le \varepsilon.$$

Hence, it follows from the uniqueness statement in Proposition 2.8 that $\tilde{w} = \tilde{w}_{\sigma}$ and $\Lambda_{\sigma} = 0$. Conversely, if σ is a conformal transformation satisfying $\Lambda_{\sigma} = 0$, then the function w_{σ} belongs to the space \mathcal{M}_s and $\Psi_s(w_{\sigma}) = 0$.

Let σ be a conformal transformation satisfying $\Lambda_{\sigma} = 0$, and let Λ' be the differential of Λ at σ . Furthermore, we denote by Ψ'_s the differential of Ψ_s at w_{σ} . We want to compare the number of negative eigenvalues of Λ' and Ψ'_s .

To this end, we differentiate the identity

$$P_0 w_\tau = (n-1)! \left(\left((s f + 1 - s) - \sum_{j=1}^{n+1} \Lambda_{\tau,j} x_j \circ \tau^{-1} \right) e^{nw_\tau} - 1 \right)$$

with respect to τ . This gives a collection of functions u_i such that

$$P_0 u_i = n! (s f + 1 - s) e^{nw_\sigma} u_i - (n - 1)! \sum_{j=1}^{n+1} \Lambda'_{i,j} x_j \circ \sigma^{-1} e^{nw_\sigma}$$

for $1 \leq i \leq n+1$. By definition of w_{σ} , we have

$$\int_{S^n} e^{nw_\sigma} x_j \circ \sigma^{-1} dV_0 = \int_{S^n} e^{n\tilde{w}_\sigma} x_j dV_0 = 0$$

for $1 \leq j \leq n+1$. Let v_j be the solution of the linear equation

$$P_0 v_j = -x_j \circ \sigma^{-1} e^{nw_\sigma}.$$

Then we obtain the identity

$$P_0 u_i = n! (s f + 1 - s) e^{nw_\sigma} u_i + (n - 1)! \sum_{j=1}^{n+1} \Lambda'_{i,j} x_j \circ \sigma^{-1} e^{nw_\sigma}.$$

Thus, we conclude that $u_i \in T\mathcal{M}_s$ and

$$\Psi'_{s}(u_{i}) = (n-1)! \sum_{j=1}^{n+1} \Lambda'_{i,j} v_{j}.$$

We now establish precise estimates for the functions u_i and v_j .

Lemma 4.3. The function u_i satisfies the estimate

$$\|u_i + x_i \circ \sigma^{-1}\|_{H^n} \le Cs.$$

Proof. Since

$$\|(sf+1-s)\circ\tau-(sf+1-s)\circ\sigma\|_{L^2} \le Cs\operatorname{dist}(\tau,\sigma),$$

it follows from the proof of Proposition 2.8 that

$$\|\tilde{w}_{\tau} - \tilde{w}_{\sigma}\|_{H^n} \le Cs \operatorname{dist}(\tau, \sigma).$$

This implies

$$\|\tilde{w}_{\tau}\circ\tau^{-1}-\tilde{w}_{\sigma}\circ\sigma^{-1}\|_{H^n}\leq Cs\operatorname{dist}(\tau,\sigma).$$

Using the relations

$$\tilde{w}_{\sigma} \circ \sigma^{-1} = w_{\sigma} + \frac{1}{n} \log \det d\sigma \circ \sigma^{-1}$$

and

$$\tilde{w}_{\tau} \circ \tau^{-1} = w_{\tau} + \frac{1}{n} \log \det d\tau \circ \tau^{-1},$$

we obtain

$$\|w_{\tau} - w_{\sigma} + \frac{1}{n}\log\det d\tau \circ \tau^{-1} - \frac{1}{n}\log\det d\sigma \circ \sigma^{-1}\|_{H^n} \le Cs\operatorname{dist}(\tau, \sigma),$$

hence

$$\|w_{\tau} - w_{\sigma} - \frac{1}{n} \log \det d(\tau^{-1} \circ \sigma) \circ \sigma^{-1}\|_{H^n} \le Cs \operatorname{dist}(\tau, \sigma).$$

From this it follows that

$$||u_i + x_i \circ \sigma^{-1}||_{H^n} \le Cs.$$

This proves the assertion.

Lemma 4.4. The function v_j satisfies the estimate

$$||n! v_j + x_j \circ \sigma^{-1}||_{H^n} \le Cs.$$

Proof. Since $-\Delta_0 x_j = n x_j$, we obtain

$$P_0 x_j = \prod_{k=1}^{\frac{n}{2}} (n + (k-1)(n-k)) x_j = \prod_{k=1}^{\frac{n}{2}} k(n-k+1) x_j = n! x_j.$$

Using the conformal invariance of the Paneitz operator, we conclude that

$$P_0(x_j \circ \sigma^{-1}) \det d\sigma \circ \sigma^{-1} = n! x_j \circ \sigma^{-1},$$

hence

$$P_0(x_j \circ \sigma^{-1}) e^{n\tilde{w}_{\sigma} \circ \sigma^{-1}} = n! x_j \circ \sigma^{-1} e^{nw_{\sigma}}.$$

This implies

$$n! P_0 v_j = -P_0(x_j \circ \sigma^{-1}) e^{n\tilde{w}_\sigma \circ \sigma^{-1}}.$$

Using the estimate

$$\|\tilde{w}_{\sigma}\|_{H^n} \le Cs,$$

we obtain

$$||n! v_j + x_j \circ \sigma^{-1}||_{H^n} \le C ||P_0(n! v_j + x_j \circ \sigma^{-1})||_{L^2} \le Cs.$$

This proves the assertion.

Proposition 4.5. If s is sufficiently small, then the degree of Ψ_s coincides with the degree of Λ .

Proof. By Lemma 4.3 and Lemma 4.4, the finite-dimensional approximations of Ψ'_s are of the form

$$\begin{pmatrix} \Lambda' E & \Lambda' F \\ X & Y \end{pmatrix}^T,$$

where

 $||E - 1|| \le Cs$

and

$$||F|| \le Cs.$$

Using the identity

$$\begin{pmatrix} \Lambda' E & \Lambda' F \\ X & Y \end{pmatrix} = \begin{pmatrix} \Lambda' & 0 \\ XE^{-1} & Y - XE^{-1}F \end{pmatrix} \begin{pmatrix} E & F \\ 0 & 1 \end{pmatrix}$$

we obtain

$$\det \begin{pmatrix} \Lambda' E & \Lambda' F \\ X & Y \end{pmatrix} = \det \begin{pmatrix} \Lambda' & 0 \\ XE^{-1} & Y - XE^{-1}F \end{pmatrix} \det \begin{pmatrix} E & F \\ 0 & 1 \end{pmatrix}$$
$$= \det \Lambda' \det(Y - XE^{-1}F) \det E.$$

Hence, if s is sufficiently small, then det $\begin{pmatrix} \Lambda' E & \Lambda' F \\ X & Y \end{pmatrix}$ and det Λ' have the same sign. Thus, we conclude that

$$\deg(\Psi_s, 0) = \deg(\Lambda, 0)$$

if s is sufficiently small.

We now identify the the group of conformal transformations on S^n with the unit ball in \mathbb{R}^{n+1} . We consider the map

$$H: B^{n+1} \to \mathbb{R}^{n+1}, \quad \sigma \mapsto \left(\int_{S^n} f \circ \sigma \, x_i \, dV_0\right)_{1 \le i \le n+1}.$$

Then we have the following result:

Proposition 4.6. If s is sufficiently small, then the degree of Λ coincides with the degree of H.

Proof. Using the Kazdan-Warner identity, we obtain

$$\int_{S^n} \left\langle d((s\,f+1-s)\circ\sigma) - \sum_{j=1}^{n+1} \Lambda_{\sigma,j}\,dx_j, dx_i \right\rangle e^{n\tilde{w}_{\sigma}}\,dV_0 = 0.$$

This implies

$$s \int_{S^n} \langle d(f \circ \sigma), dx_i \rangle e^{n\tilde{w}_{\sigma}} dV_0 = \sum_{j=1}^{n+1} \Lambda_{\sigma,j} \int_{S^n} \langle dx_j, dx_i \rangle e^{n\tilde{w}_{\sigma}} dV_0.$$

Therefore, the degree of Λ coincides with the degree of the map

$$G: B^{n+1} \to \mathbb{R}^{n+1}, \quad \sigma \mapsto \left(\int_{S^n} \langle d(f \circ \sigma), dx_i \rangle e^{n\tilde{w}_\sigma} dV_0 \right)_{1 \le i \le n+1}.$$

On the other hand,

$$|G(\sigma) - n H(\sigma)| \leq \sum_{i=1}^{n+1} \left| \int_{S^n} \langle d(f \circ \sigma), dx_i \rangle e^{n\tilde{w}_{\sigma}} dV_0 - n \int_{S^n} f \circ \sigma x_i dV_0 \right|$$

$$\leq \sum_{i=1}^{n+1} \left| \int_{S^n} \langle d(f \circ \sigma), dx_i \rangle (e^{n\tilde{w}_{\sigma}} - 1) dV_0 \right|$$

$$\leq Cs.$$

If s is sufficiently small, then G and H are homotopic, and therefore the degree of G agrees with the degree of H.

Combining these statements, we obtain

$$\deg(\Psi_1, 0) = \deg(H, 0).$$

By assumption, we have $\deg(H, 0) \neq 0$, hence $\deg(\Psi_1, 0) \neq 0$. Therefore, there exists a function $w \in \mathcal{M}_1$ such that $\Psi_1(w) = 0$. This implies

$$\int_{S^n} f \, e^{nw} \, dV_0 = 1$$

and

$$w - (n-1)! P_0^{-1}(f e^{nw} - 1) = 0.$$

Thus, we conclude that

$$P_0w = (n-1)! (f e^{nw} - 1).$$

References.

- D. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128, 385-398 (1988)
- [2] T. Aubin, Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32, 148-174 (1979)
- [3] T. Aubin, Nonlinear Analysis on Manifolds, Monge-Ampère Equations, Springer-Verlag, New York (1982)
- [4] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math. 41, 253-290 (1988)
- [5] A. Bahri and J. M. Coron, The scalar curvature on the standard threedimensional sphere, J. Funct. Anal. 95, 106-172 (1991)
- [6] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. 138, 213-242 (1993)
- [7] T. Branson, S.-Y. A. Chang and P. Yang, Estimates and extremal problems for the log-determinant on 4-manifolds, Comm. Math. Phys. 149, 241-262 (1992)
- [8] T. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc. 347, 3671-3742 (1995)
- [9] S. Brendle, Global existence and convergence for a higher order flow in conformal geometry, to appear in Ann. of Math.

- [10] S.-Y. A. Chang and P. Yang, Prescribing Gauss curvature on S², Acta Math. 159, 215-259 (1987)
- [11] S.-Y. A. Chang and P. Yang, A perturbation result in prescribing scalar curvature on Sⁿ, Duke Math. J. 64, 27-69 (1991)
- [12] S.-Y. A. Chang and P. Yang, Extremal metrics of zeta functional determinants on 4-manifolds, Ann. of Math. 142, 171-212 (1995)
- [13] S.-Y. A. Chang and P. Yang, On uniqueness of solutions of n-th order differential equations in conformal geometry, Math. Res. Lett. 4, 91-102 (1997)
- [14] S.-Y. A. Chang, M. Gursky and P. Yang, The scalar curvature on 2and 3-spheres, Comm. PDE 1, 205-229 (1993)
- [15] S.-Y. A. Chang, M. Gursky and P. Yang, An Equation of Monge-Ampere type in conformal geometry and four-manifolds of positive Ricci curvature, to appear in Ann. of Math.
- [16] Z. Djadli, A. Malchiodi and M. Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere, Part I: a perturbation result, preprint (2000)
- [17] Z. Djadli, A. Malchiodi and M. Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere, Part II: blow-up analysis and applications, preprint (2000)
- [18] J. F. Escobar and R. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math. 86, 243-254 (1986)
- [19] C. Fefferman and R. Graham, Conformal invariants, Astérisque, 95-116 (1985)
- [20] C. Fefferman and R. Graham, Q-curvature and Poincaré metrics, prepint (2001)
- [21] C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in \mathbb{R}^n , Comm. Math. Helv. 73, 206-231 (1998)
- [22] J. Moser, On a non-linear problem in differential geometry, in Dynamical Systems, ed. M. Peixoto, Academic Press, New York (1973)
- [23] L. Nirenberg, Topics in Nonlinear Functional Analysis, Lectures, Courant Institute, New-York (1974)

[24] R. Schoen and D. Zhang, Prescribed scalar curvature on the n-sphere, Calc. Var. PDE 4, 1-25 (1996)

Received June 26, 2002.