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Prescribing a Higher Order Conformal Invariant

on Sn

Simon Brendle

1. Introduction.

An important problem in differential geometry is to construct conformal
metrics on S2 whose Gauss curvature equals a given positive function f .
This problem is equivalent to finding a solution of the equation

−∆0w = f e2w − 1,

where ∆0 denotes the Laplace operator associated with the standard metric
g0 on S2. J. Moser [22] proved that this equation has a solution if the
function f satisfies the condition f(x) = f(−x) for all x ∈ S2. The general
case was studied by S.-Y. A. Chang, M. Gursky, and P. Yang [10, 11, 14].

A. Bahri and J. M. Coron [4, 5] and R. Schoen and D. Zhang [24] con-
structed metrics with prescribed scalar curvature on S3. J. F. Escobar and
R. Schoen [18] studied the prescribed scalar curvature problem on manifolds
which are not necessarily conformally equivalent to the standard sphere.

Our aim is to generalize these results to higher dimensions. Let g be a
conformal metric on S4. We denote by R the scalar curvature of g and by
Ric the Ricci tensor of g. Moreover, we denote by ∆ the Laplace operator
with respect to the metric g. A natural conformal invariant in dimension
four is

Q = −1
6

(∆R−R2 + 3 |Ric|2).
The quantityQ plays an important role in conformal geometry, see [7, 12, 15].
Indeed, the quantity Q enjoys similar properties as the Gauss curvature in
dimension two. For a given positive function f on S4, we want to construct
a conformal metric g on S4 such that

Q = 6f.

If we denote by g0 the standard metric on S4, then this problem is equivalent
to the equation

∆2
0w − 2∆0w = 6 (fe4w − 1).

837



838 S. Brendle

If the function f satisfies the condition f(x) = f(−x) for all x ∈ S4, then
this equation has a solution. The solution can be constructed by means of
an evolution equation, see [9].

More generally, we can consider the standard sphere Sn, where n is
even. By the work of C. Fefferman and R. Graham [19, 20], there exists a
conformally invariant self-adjoint operator with leading term (−∆0)

n
2 . On

the standard sphere Sn, this operator is given by

P0 =

n
2∏

k=1

(−∆0 + (k − 1)(n− k)),

see [8, 12]. We consider the equation

P0w = (n− 1)! (f enw − 1)

for some positive function f on Sn. This is a semilinear elliptic equation of
order n involving the critical Sobolev exponent. We assume that the function
f satisfies the non-degeneracy condition

∇0f(p) =⇒ ∆0f(p) �= 0.

Moreover, we identify the group of conformal transformations on Sn with
the unit ball in Rn+1. Moreover, we consider the map

H : Bn+1 → R
n+1, σ �→

(∫
Sn

f ◦ σ xi dV0

)
1≤i≤n+1

.

Then we have the following result:

Theorem 1.1. Suppose that f satisfies the non-degeneracy condition and

deg(H, 0) �= 0.

Then the equation
P0w = (n− 1)! (f enw − 1)

has a solution.

As a consequence, we obtain:

Corollary 1.2. Suppose that f satisfies the non-degeneracy condition and∑
∇0f(p)=0,∆0f(p)<0

(−1)ind(f,p) �= 1.
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Then the equation
P0w = (n− 1)! (f enw − 1)

has a solution.

An index criterion similar to that in Corollary 1.2 was introduced by A.
Bahri and J. M. Coron [5] in their work on the prescribed scalar curvature
problem. Related results were established by Z. Djadli, A. Malchiodi and
M. Ahmedou [16, 17].

In Section 2, we consider solutions of the equation

P0w = (n− 1)! (f enw − 1)

satisfying the normalization condition∫
Sn
enw xj dV0 = 0

for 1 ≤ j ≤ n + 1. Using the estimates for the Paneitz operator from [12],
we can show that the function w is bounded in Hn. If the function f is close
to 1, we establish an estimate of the form

‖w‖Hn ≤ C ‖f − 1‖L2

for some constant C.
In Section 3, we show that the a-priori estimates remain valid even if the

normalization condition is dropped. The proof relies on the Kazdan-Warner
identity (see [12]) and the non-degeneracy condition for f .

In Section 4, we use a topological degree argument to show that the
equation

P0w = (n− 1)! (f enw − 1)

has a solution.

2. A-priori estimates for solutions satisfying a normalization
condition.

Let f be a positive function on Sn, and let w be a function which satisfies
the equation

P0w = (n− 1)! (f enw − 1)

and the normalization condition∫
Sn

enw xj dV0 = 0

for 1 ≤ j ≤ n + 1. We begin with a simple estimate.
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Lemma 2.1. The function w satisfies

‖w −w‖
W

n
2 ,p ≤ C

for all p < 2.

Proof. The function P0w satisfies

|P0w| ≤ P0w + 2(n− 1)!,

hence ∫
Sn

− |P0w| dV0 ≤ 2(n− 1)!.

Using Green’s formula, we obtain

‖w −w‖
W

n
2 ,p ≤ C

for all p < 2.
Using the normalization condition, it is possible to derive an improved

Sobolev inequality for the function w. The proof follows ideas of T. Aubin
[2, 3] and is included here for completeness.

Proposition 2.2. The function w satisfies the inequality

log
(∫

Sn

en(w−w) dV0

)
≤

∫
Sn

− n

4(n− 1)!
wP0w dV0 + C.

Proof. We use the inequality

log
(∫

Sn

enu dV0

)
≤

∫
Sn

− n

2(n− 1)!
(
(−∆0)

n
4 u

)2
dV0

+
∫
Sn

− nu dV0 +C

(see [1, 6, 12]). Without loss of generality, we may assume that∫
Sn

enw dV0 ≤ C

∫
{xn+1≥2δ}

enw dV0.

We first consider the case∫
{xn+1≥δ}

(
(−∆0)

n
4 w

)2
dV0 ≤

∫
{xn+1≤δ}

(
(−∆0)

n
4 w

)2
dV0.
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This implies∫
{xn+1≥δ}

(
(−∆0)

n
4w

)2
dV0 ≤

∫
Sn

1
2
(
(−∆0)

n
4 w

)2
dV0.

We choose a cut-off function η such that η = 1 for xn+1 ≥ 2δ and η = 0 for
xn+1 ≤ δ. For u = η (w −w) we obtain

log
(∫

Sn
enη(w−w) dV0

)
≤

∫
Sn
− n

2(n− 1)!
(
(−∆0)

n
4 (η (w− w))

)2
dV0

+
∫
Sn

− n η (w− w) dV0 +C.

From this it follows that

log
(∫

{xn+1≥2δ}
en(w−w) dV0

)
≤

∫
Sn

− n

2(n− 1)!
η2

(
(−∆0)

n
4w

)2
dV0 +C.

Therefore, we obtain

log
(∫

Sn

en(w−w) dV0

)
≤

∫
Sn

− n

4(n− 1)!
(
(−∆0)

n
4w

)2
dV0 + C.

We now consider the case∫
{xn+1≤δ}

(
(−∆0)

n
4w

)2
dV0 ≤

∫
{xn+1≥δ}

(
(−∆0)

n
4w

)2
dV0.

This implies∫
{xn+1≤δ}

(
(−∆0)

n
4w

)2
dV0 ≤

∫
Sn

1
2
(
(−∆0)

n
4 w

)2
dV0.

We choose a cut-off function η such that η = 1 for xn+1 ≤ 0 and η = 0 for
xn+1 ≥ δ. For u = η (w −w) we obtain

log
(∫

Sn

enη(w−w) dV0

)
≤

∫
Sn

− n

2(n− 1)!
(
(−∆0)

n
4 (η (w− w))

)2
dV0

+
∫
Sn
− n η (w− w) dV0 +C.

From this it follows that

log
(∫

{xn+1≤0}
en(w−w) dV0

)
≤

∫
Sn

− n

2(n− 1)!
η2

(
(−∆0)

n
4 w

)2
dV0 +C.
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Using the inequality∫
Sn

en(w−w) dV0 ≤ C

∫
{xn+1≥2δ}

en(w−w) dV0

≤ C

∫
{xn+1≥2δ}

en(w−w) xn+1 dV0

= −C
∫
{xn+1≤2δ}

en(w−w) xn+1 dV0

≤ −C
∫
{xn+1≤0}

en(w−w) xn+1 dV0

≤ C

∫
{xn+1≤0}

en(w−w) dV0,

we obtain

log
(∫

Sn

en(w−w) dV0

)
≤

∫
Sn

− n

4(n− 1)!
(
(−∆0)

n
4w

)2
dV0 +C.

This proves the assertion.
On the other hand, S.-Y. A. Chang and P. Yang [12] established the

following estimate:

Proposition 2.3. Assume that

0 < m ≤ f ≤M.

Then the function w satisfies∫
Sn
− n

2(n− 1)!
w P0w dV0 − log

(∫
Sn
en(w−w) dV0

)
≤ C.

Combining these statements, we obtain:

Corollary 2.4. Assume that

0 < m ≤ f ≤M.

Then the function w satisfies∫
Sn

wP0w dV0 ≤ C.

As a consequence, we obtain:
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Proposition 2.5. If the function f satisfies

0 < m ≤ f ≤M,

then the function w satisfies the estimate ‖w‖Hn ≤ C.

Proof. It follows from Corollary 2.4 that

‖w − w‖
H

n
2
≤ C.

Using an inequality of N. Trudinger, we obtain∫
Sn

en(w−w) dV0 ≤ C.

Since
P0w = (n− 1)! (f enw − 1),

we obtain ∫
Sn

− f enw dV0 = 1.

This implies
1
M

≤
∫
Sn

− enw dV0 ≤ 1
m
.

From this it follows that
−C ≤ w ≤ C.

Thus, we conclude that ‖w‖
H

n
2
≤ C, hence∫

Sn

e2nw dV0 ≤ C

by Trudinger’s inequality. From this it follows that∫
Sn

(P0w)2 dV0 ≤ C.

Since w is bounded, the assertion follows.
In the remaining part of this section, we assume that the function f is

close to 1.

Lemma 2.6. For every ε > 0, there exists a real number δ > 0 with the
following property: If the function f satisfies

0 < m ≤ f ≤M

and
‖f − 1‖L2 ≤ δ,

then the function w satisfies the estimate ‖w‖Hn ≤ ε.
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Proof. We consider a sequence of functions wk satisfying

P0wk = (n− 1)! (fk enwk − 1)

and ∫
Sn

enwk xj dV0 = 0

for 1 ≤ j ≤ n+ 1. We assume that

0 < m ≤ fk ≤M

and
‖fk − 1‖L2 → 0.

By Proposition 2.5, the function satisfies the estimate ‖wk‖Hn ≤ C. Hence,
by passing to a subsequence, we may assume that

‖wk − w‖L∞ → 0

for some function w. Then the function w satisfies

P0w = (n− 1)! (enw − 1).

From this it follows that w is smooth. Moreover, it follows from the results in
[13] that the metric e2wg0 agrees with the standard metric g0 up to conformal
transformations. Using the normalization condition∫

Sn

enw xj dV0 = 0

for 1 ≤ j ≤ n+ 1, we conclude that w = 0. This implies

‖wk‖L∞ → 0.

Since
P0wk = (n− 1)! (fk enwk − 1),

it follows that
‖P0wk‖L2 → 0.

Therefore, we obtain
‖wk‖Hn → 0.

This proves the assertion.
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Proposition 2.7. Assume that the function f satisfies

0 < m ≤ f ≤M

and
‖f − 1‖L2 ≤ δ.

Then the function w satisfies an estimate of the form

‖w‖Hn ≤ C ‖f − 1‖L2.

Proof. The function w satisfies

P0w − n!w = (n− 1)! (f − 1) enw + (n− 1)! (enw − nw − 1)

and ∫
Sn

w xj dV0 = −
∫
Sn

1
n

(enw − nw − 1) xj dV0

for 1 ≤ j ≤ n + 1. Using the Sobolev embedding theorem, we obtain

‖w‖L∞ ≤ C ‖w‖Hn ≤ C ε.

From this it follows that

‖P0w − n!w‖L2 ≤ C ‖f − 1‖L2 +C ε ‖w‖L2

and ∣∣∣∣ ∫
Sn

wxj dV0

∣∣∣∣ ≤ C ε ‖w‖L2

for 1 ≤ j ≤ n + 1. Thus, we conclude that

‖w‖Hn ≤ C ‖f − 1‖L2 + C ε ‖w‖L2,

hence
‖w‖Hn ≤ C ‖f − 1‖L2.

This proves the assertion.

Proposition 2.8. Let f be a function with

‖f − 1‖L2 ≤ δ.

Then there exists a unique pair (w,Λ) ∈ Hn × R
n+1 such that

P0w = (n− 1)!
((

f −
n+1∑
j=1

Λj xj

)
enw − 1

)
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and ∫
Sn
enw xj dV0 = 0

for 1 ≤ j ≤ n+ 1 and ‖(w,Λ)‖Hn×Rn+1 ≤ ε.

Proof. Let

S =
{
w ∈ Hn :

∫
Sn

enw xj dV0 = 0 for 1 ≤ j ≤ n + 1
}
.

We define a map
Φ : S × R

n+1 → L2

by

Φ(w,Λ) = e−nw P0w+ (n− 1)! e−nw +
n+1∑
j=1

(n− 1)! Λj xj.

We denote by
Φ′ : TS × R

n+1 → L2

the differential of Φ at the point (0, 0). We have

TS =
{
w ∈ Hn :

∫
Sn
wxj dV0 = 0 for 1 ≤ j ≤ n+ 1

}
and

Φ′(w,Λ) = P0w− n!w+
n+1∑
j=1

(n− 1)! Λj xj.

Therefore, the map Φ′ is bijective. The implicite function theorem implies
that Φ is a bijective map from a neighbourhood of (0, 0) in S × R

n+1 to a
neighbourhood of (n− 1)! in L2. Since

‖f − 1‖L2 ≤ δ,

there exists a pair (w,Λ) ∈ S × Rn+1 such that

Φ(w,Λ) = (n− 1)! f

and
‖(w,Λ)‖Hn×Rn+1 ≤ ε.

From this the assertion follows.



Prescribing a Higher Order Conformal Invariant on Sn 847

3. A-priori estimates for solutions in the absence of a
normalization condition.

Let f be a fixed positive function on Sn. In this section, we establish the
following result:

Proposition 3.1. Let w be a solution of the equation

P0w = (n− 1)!
(
(s f + 1 − s) enw − 1

)
for some 0 < s ≤ 1. Then the function w satisfies the estimate ‖w‖Hn ≤ C.

Proof. Assume that there exists a sequence of functions wk satisfying

P0wk = (n− 1)!
(
(sk f + 1 − sk) enwk − 1

)
for some 0 < sk ≤ 1 and

‖wk‖Hn → ∞.

We choose conformal transformations σk such that∫
Sn

enw̃k xj dV0 = 0

for 1 ≤ j ≤ n + 1, where

e2w̃kg0 = σ∗k(e
2wkg0).

Then the functions w̃k satisfy the equation

P0w̃k = (n− 1)!
(
(sk f + 1 − sk) ◦ σk enw̃k − 1

)
.

Since f is a fixed positive function on Sn, we have

0 < m ≤ (sk f + 1 − sk) ◦ σk ≤M.

Hence, it follows from Proposition 2.5 that ‖w̃k‖Hn ≤ C. Since

‖wk‖Hn → ∞,

we conclude that the sequence σk tends to infinity. This implies

‖(sk f + 1 − sk) ◦ σk − e−nrk‖L2 = o(1)

for a suitable constant rk. Using Lemma 2.6, we obtain

‖w̃k − rk‖Hn = o(1).
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Moreover, the Kazdan-Warner identity (see [12]) implies that∫
Sn

〈d(f ◦ σk), dxj〉 en(w̃k−r) dV0 = 0

for 1 ≤ j ≤ n + 1. If we identify Sn with R
n ∪ {∞} via the stereographic

projection, then we may assume that the conformal transformation σk is
given by

σk(y) =
1
tk
y

for a suitable sequence tk → ∞. The pull-back of the standard metric on Sn

under the stereographic projection is given by

(g0)ij =
4

(1 + |y|2)2 δij .

Moreover, we have

xj =
2yj

1 + |y|2
for 1 ≤ j ≤ n and

xn+1 = −1 − |y|2
1 + |y|2 .

This implies

dxj =
2

1 + |y|2 dyj −
n∑
i=1

4yiyj
(1 + |y|2)2 dyi

for 1 ≤ j ≤ n and

dxn+1 =
n∑
i=1

4yi
(1 + |y|2)2 dyi.

Using the formula

f(y) = f(0) +
n∑
i=1

αi yi +
1
2

n∑
i,j=1

βij yi yj + o(|y|2),

we obtain

(f ◦ σk)(y) = f(0) +
1
tk

n∑
i=1

αi yi +
1

2t2k

n∑
i,j=1

βij yi yj + o
( |y|2
t2k

)
,

hence

d(f ◦ σk)(y) =
1
tk

n∑
i=1

αi dyi +
1
t2k

n∑
i,j=1

βij yj dyi + o
( |y|
t2k

)
.
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From this it follows that

0=
∫
Sn

〈d(f ◦ σk), dxj〉 en(w̃k−rk) dV0

=
∫
Sn

〈d(f ◦ σk), dxj〉 dV0 + o
( 1
tk

)
=

1
tk

∫
Rn

2n−1αj
(1 + |y|2)n−1

dy1 · · ·dyn − 1
tk

n∑
i=1

∫
Rn

2nαiyiyj
(1 + |y|2)n dy1 · · ·dyn+o

( 1
tk

)
=

1
tk

∫
Rn

2n−1αj
(1 + |y|2)n−1

dy1 · · ·dyn − 1
tk

∫
Rn

2nαjy2
j

(1 + |y|2)n dy1 · · ·dyn + o
( 1
tk

)
=

1
tk

∫
Rn

2n−1αj
(1 + |y|2)n−1

dy1 · · ·dyn − 1
tk

∫
Rn

2nαj|y|2
n(1 + |y|2)n dy1 · · ·dyn + o

( 1
tk

)
=

1
tk

∫
Rn

2n−1 αj (n+ (n− 2) |y|2)
n(1 + |y|2)n dy1 · · ·dyn + o

( 1
tk

)
for 1 ≤ j ≤ n. Thus, we conclude that αj = o(1) for 1 ≤ j ≤ n. From this
it follows that

‖(sk f + 1− sk) ◦ σk − e−nrk‖L2 ≤ o
( 1
tk

)
,

where e−nrk = sk f(0) + 1 − sk. This implies

‖w̃k − rk‖Hn ≤ o
( 1
tk

)
.

Using this estimate, we obtain

0 =
∫
Sn

〈d(f ◦ σk), dxn+1〉 en(w̃k−rk) dV0

=
∫
Sn

〈d(f ◦ σk), dxn+1〉 dV0 + o
( 1
t2k

)
=

1
t2k

n∑
i,j=1

∫
Rn

2nβij yi yj
(1 + |y|2)n dy1 · · ·dyn + o

( 1
t2k

)
=

1
t2k

n∑
i=1

∫
R4

2nβii|y|2
n(1 + |y|2)n dy1 · · ·dyn + o

( 1
t2k

)
.

Thus, we conclude that
n∑
i=1

βii = 0.
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Therefore, the concentration point p satisfies

∇0f(p) = 0

and
∆0f(p) = 0.

This contradicts the non-degeneracy condition.

4. Existence results.

Let

Ms =
{
w ∈ Hn :

∫
Sn

− (s f + 1 − s) enw dV0 = 1
}
.

We define a map
Ψs : Ms → Hn

by
Ψs(w) = w− (n− 1)!P−1

0

(
(s f + 1 − s) enw − 1

)
.

We first show that the degree of Ψs is independent of s.

Proposition 4.1. We have

deg(Ψ1, 0) = deg(Ψs, 0)

for all 0 < s ≤ 1.

Proof. It follows from Proposition 3.1 that the set{
(s, w) : 0 < s ≤ 1, w ∈ Ms and Ψs(w) = 0

}
is bounded in R×Hn. The assertion is now a consequence of the homotopy
invariance of the degree (see [23]).

We now choose 0 < s ≤ 1 sufficiently small. By Proposition 2.8, for
every conformal transformation σ, there exists a unique function w̃σ which
satisfies

P0w̃σ = (n− 1)!
((

(s f + 1− s) ◦ σ −
n+1∑
j=1

Λσ,j xj

)
enw̃σ − 1

)
and ∫

Sn
enw̃σ xj dV0 = 0
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for 1 ≤ j ≤ n + 1 and

‖(w̃σ,Λσ)‖Hn×Rn+1 ≤ ε.

Using Proposition 2.7, we obtain ‖w̃σ‖Hn ≤ Cs. We now define functions
wσ by

e2w̃σg0 = σ∗(e2wσg0).

Then the function wσ satisfies the equation

P0wσ = (n− 1)!
((

(s f + 1 − s) −
n+1∑
j=1

Λσ,j xj ◦ σ−1

)
enwσ − 1

)
.

In the first step, we show that the zeroes of Ψs are in one-to-one correspon-
dence with the zeroes of Λ.

Proposition 4.2. A function w satisfies Ψs(w) = 0 if and only if there
exists a conformal transformation σ such that w = wσ and Λσ = 0.

Proof. Suppose that w ∈ Ms satisfies Ψs(w) = 0. Then the function w

satisfies the equation

P0w = (n− 1)!
(
(s f + 1 − s) enw − 1

)
.

We choose a conformal transformation σ such that∫
Sn

enw̃ xj dV0 = 0

for 1 ≤ j ≤ n + 1, where

e2w̃g0 = σ∗(e2wg0).

Then the function w̃ satisfies the equation

P0w̃ = (n− 1)!
(
(s f + 1− s) ◦ σ enw̃ − 1

)
.

If s is sufficiently small, then we have

‖(s f − s) ◦ σ‖L2 ≤ δ.

Using Proposition 2.6, we obtain

‖w̃‖Hn ≤ ε.
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Hence, it follows from the uniqueness statement in Proposition 2.8 that
w̃ = w̃σ and Λσ = 0. Conversely, if σ is a conformal transformation satisfying
Λσ = 0, then the function wσ belongs to the space Ms and Ψs(wσ) = 0.

Let σ be a conformal transformation satisfying Λσ = 0, and let Λ′ be the
differential of Λ at σ. Furthermore, we denote by Ψ′

s the differential of Ψs

at wσ. We want to compare the number of negative eigenvalues of Λ′ and
Ψ′
s.

To this end, we differentiate the identity

P0wτ = (n− 1)!
((

(s f + 1 − s) −
n+1∑
j=1

Λτ,j xj ◦ τ−1

)
enwτ − 1

)
with respect to τ . This gives a collection of functions ui such that

P0ui = n! (s f + 1 − s) enwσ ui − (n− 1)!
n+1∑
j=1

Λ′
i,j xj ◦ σ−1 enwσ

for 1 ≤ i ≤ n + 1. By definition of wσ, we have∫
Sn

enwσ xj ◦ σ−1 dV0 =
∫
Sn

enw̃σ xj dV0 = 0

for 1 ≤ j ≤ n+ 1. Let vj be the solution of the linear equation

P0vj = −xj ◦ σ−1 enwσ .

Then we obtain the identity

P0ui = n! (s f + 1 − s) enwσ ui + (n− 1)!
n+1∑
j=1

Λ′
i,j xj ◦ σ−1 enwσ .

Thus, we conclude that ui ∈ TMs and

Ψ′
s(ui) = (n− 1)!

n+1∑
j=1

Λ′
i,j vj.

We now establish precise estimates for the functions ui and vj .

Lemma 4.3. The function ui satisfies the estimate

‖ui + xi ◦ σ−1‖Hn ≤ Cs.
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Proof. Since

‖(s f + 1 − s) ◦ τ − (s f + 1 − s) ◦ σ‖L2 ≤ Cs dist(τ, σ),

it follows from the proof of Proposition 2.8 that

‖w̃τ − w̃σ‖Hn ≤ Cs dist(τ, σ).

This implies
‖w̃τ ◦ τ−1 − w̃σ ◦ σ−1‖Hn ≤ Cs dist(τ, σ).

Using the relations

w̃σ ◦ σ−1 = wσ +
1
n

log det dσ ◦ σ−1

and
w̃τ ◦ τ−1 = wτ +

1
n

log det dτ ◦ τ−1,

we obtain

‖wτ − wσ +
1
n

log det dτ ◦ τ−1 − 1
n

log det dσ ◦ σ−1‖Hn ≤ Cs dist(τ, σ),

hence

‖wτ − wσ − 1
n

log det d(τ−1 ◦ σ) ◦ σ−1‖Hn ≤ Cs dist(τ, σ).

From this it follows that

‖ui + xi ◦ σ−1‖Hn ≤ Cs.

This proves the assertion.

Lemma 4.4. The function vj satisfies the estimate

‖n! vj + xj ◦ σ−1‖Hn ≤ Cs.

Proof. Since −∆0xj = nxj, we obtain

P0xj =

n
2∏

k=1

(n+ (k − 1)(n− k)) xj =

n
2∏

k=1

k(n− k + 1) xj = n! xj.

Using the conformal invariance of the Paneitz operator, we conclude that

P0(xj ◦ σ−1) det dσ ◦ σ−1 = n! xj ◦ σ−1,
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hence
P0(xj ◦ σ−1) enw̃σ◦σ−1

= n! xj ◦ σ−1 enwσ .

This implies
n!P0vj = −P0(xj ◦ σ−1) enw̃σ◦σ−1

.

Using the estimate
‖w̃σ‖Hn ≤ Cs,

we obtain

‖n! vj + xj ◦ σ−1‖Hn ≤ C ‖P0(n! vj + xj ◦ σ−1)‖L2 ≤ Cs.

This proves the assertion.

Proposition 4.5. If s is sufficiently small, then the degree of Ψs coincides
with the degree of Λ.

Proof. By Lemma 4.3 and Lemma 4.4, the finite-dimensional approxima-
tions of Ψ′

s are of the form (
Λ′E Λ′ F
X Y

)T
,

where
‖E − 1‖ ≤ Cs

and
‖F‖ ≤ Cs.

Using the identity(
Λ′E Λ′ F
X Y

)
=

(
Λ′ 0

XE−1 Y −XE−1F

)(
E F
0 1

)
we obtain

det
(

Λ′E Λ′ F
X Y

)
= det

(
Λ′ 0

XE−1 Y −XE−1F

)
det

(
E F
0 1

)
= detΛ′ det(Y −XE−1F ) detE.

Hence, if s is sufficiently small, then det
(

Λ′E Λ′ F
X Y

)
and det Λ′ have the

same sign. Thus, we conclude that

deg(Ψs, 0) = deg(Λ, 0)
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if s is sufficiently small.
We now identify the the group of conformal transformations on Sn with

the unit ball in R
n+1. We consider the map

H : Bn+1 → R
n+1, σ �→

(∫
Sn
f ◦ σ xi dV0

)
1≤i≤n+1

.

Then we have the following result:

Proposition 4.6. If s is sufficiently small, then the degree of Λ coincides
with the degree of H .

Proof. Using the Kazdan-Warner identity, we obtain∫
Sn

〈
d((s f + 1 − s) ◦ σ)−

n+1∑
j=1

Λσ,j dxj, dxi

〉
enw̃σ dV0 = 0.

This implies

s

∫
Sn

〈d(f ◦ σ), dxi〉 enw̃σ dV0 =
n+1∑
j=1

Λσ,j
∫
Sn

〈dxj, dxi〉 enw̃σ dV0.

Therefore, the degree of Λ coincides with the degree of the map

G : Bn+1 → R
n+1, σ �→

(∫
Sn

〈d(f ◦ σ), dxi〉 enw̃σ dV0

)
1≤i≤n+1

.

On the other hand,

|G(σ)− nH(σ)| ≤
n+1∑
i=1

∣∣∣∣ ∫
Sn

〈d(f ◦ σ), dxi〉 enw̃σ dV0 − n

∫
Sn
f ◦ σ xi dV0

∣∣∣∣
≤

n+1∑
i=1

∣∣∣∣ ∫
Sn

〈d(f ◦ σ), dxi〉 (enw̃σ − 1) dV0

∣∣∣∣
≤ Cs.

If s is sufficiently small, then G and H are homotopic, and therefore the
degree of G agrees with the degree of H .

Combining these statements, we obtain

deg(Ψ1, 0) = deg(H, 0).
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By assumption, we have deg(H, 0) �= 0, hence deg(Ψ1, 0) �= 0. Therefore,
there exists a function w ∈ M1 such that Ψ1(w) = 0. This implies∫

Sn

− f enw dV0 = 1

and
w − (n− 1)!P−1

0 (f enw − 1) = 0.

Thus, we conclude that

P0w = (n− 1)! (f enw − 1).
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