Prescribing a Higher Order Conformal Invariant on S^{n}

Simon Brendle

1. Introduction.

An important problem in differential geometry is to construct conformal metrics on S^{2} whose Gauss curvature equals a given positive function f. This problem is equivalent to finding a solution of the equation

$$
-\Delta_{0} w=f e^{2 w}-1
$$

where Δ_{0} denotes the Laplace operator associated with the standard metric g_{0} on S^{2}. J. Moser [22] proved that this equation has a solution if the function f satisfies the condition $f(x)=f(-x)$ for all $x \in S^{2}$. The general case was studied by S.-Y. A. Chang, M. Gursky, and P. Yang [10, 11, 14].
A. Bahri and J. M. Coron $[4,5]$ and R. Schoen and D. Zhang [24] constructed metrics with prescribed scalar curvature on S^{3}. J. F. Escobar and R. Schoen [18] studied the prescribed scalar curvature problem on manifolds which are not necessarily conformally equivalent to the standard sphere.

Our aim is to generalize these results to higher dimensions. Let g be a conformal metric on S^{4}. We denote by R the scalar curvature of g and by Ric the Ricci tensor of g. Moreover, we denote by Δ the Laplace operator with respect to the metric g. A natural conformal invariant in dimension four is

$$
Q=-\frac{1}{6}\left(\Delta R-R^{2}+3|R i c|^{2}\right) .
$$

The quantity Q plays an important role in conformal geometry, see [7, 12, 15]. Indeed, the quantity Q enjoys similar properties as the Gauss curvature in dimension two. For a given positive function f on S^{4}, we want to construct a conformal metric g on S^{4} such that

$$
Q=6 f .
$$

If we denote by g_{0} the standard metric on S^{4}, then this problem is equivalent to the equation

$$
\Delta_{0}^{2} w-2 \Delta_{0} w=6\left(f e^{4 w}-1\right) .
$$

If the function f satisfies the condition $f(x)=f(-x)$ for all $x \in S^{4}$, then this equation has a solution. The solution can be constructed by means of an evolution equation, see [9].

More generally, we can consider the standard sphere S^{n}, where n is even. By the work of C. Fefferman and R. Graham [19, 20], there exists a conformally invariant self-adjoint operator with leading term $\left(-\Delta_{0}\right)^{\frac{n}{2}}$. On the standard sphere S^{n}, this operator is given by

$$
P_{0}=\prod_{k=1}^{\frac{n}{2}}\left(-\Delta_{0}+(k-1)(n-k)\right),
$$

see $[8,12]$. We consider the equation

$$
P_{0} w=(n-1)!\left(f e^{n w}-1\right)
$$

for some positive function f on S^{n}. This is a semilinear elliptic equation of order n involving the critical Sobolev exponent. We assume that the function f satisfies the non-degeneracy condition

$$
\nabla_{0} f(p) \quad \Longrightarrow \quad \Delta_{0} f(p) \neq 0
$$

Moreover, we identify the group of conformal transformations on S^{n} with the unit ball in \mathbb{R}^{n+1}. Moreover, we consider the map

$$
H: B^{n+1} \rightarrow \mathbb{R}^{n+1}, \quad \sigma \mapsto\left(\int_{S^{n}} f \circ \sigma x_{i} d V_{0}\right)_{1 \leq i \leq n+1}
$$

Then we have the following result:
Theorem 1.1. Suppose that f satisfies the non-degeneracy condition and

$$
\operatorname{deg}(H, 0) \neq 0
$$

Then the equation

$$
P_{0} w=(n-1)!\left(f e^{n w}-1\right)
$$

has a solution.
As a consequence, we obtain:
Corollary 1.2. Suppose that f satisfies the non-degeneracy condition and

$$
\sum_{\nabla_{0} f(p)=0, \Delta_{0} f(p)<0}(-1)^{\operatorname{ind}(f, p)} \neq 1 .
$$

Then the equation

$$
P_{0} w=(n-1)!\left(f e^{n w}-1\right)
$$

has a solution.
An index criterion similar to that in Corollary 1.2 was introduced by A. Bahri and J. M. Coron [5] in their work on the prescribed scalar curvature problem. Related results were established by Z. Djadli, A. Malchiodi and M. Ahmedou [16, 17].

In Section 2, we consider solutions of the equation

$$
P_{0} w=(n-1)!\left(f e^{n w}-1\right)
$$

satisfying the normalization condition

$$
\int_{S^{n}} e^{n w} x_{j} d V_{0}=0
$$

for $1 \leq j \leq n+1$. Using the estimates for the Paneitz operator from [12], we can show that the function w is bounded in H^{n}. If the function f is close to 1 , we establish an estimate of the form

$$
\|w\|_{H^{n}} \leq C\|f-1\|_{L^{2}}
$$

for some constant C.
In Section 3, we show that the a-priori estimates remain valid even if the normalization condition is dropped. The proof relies on the Kazdan-Warner identity (see [12]) and the non-degeneracy condition for f.

In Section 4, we use a topological degree argument to show that the equation

$$
P_{0} w=(n-1)!\left(f e^{n w}-1\right)
$$

has a solution.

2. A-priori estimates for solutions satisfying a normalization condition.

Let f be a positive function on S^{n}, and let w be a function which satisfies the equation

$$
P_{0} w=(n-1)!\left(f e^{n w}-1\right)
$$

and the normalization condition

$$
\int_{S^{n}} e^{n w} x_{j} d V_{0}=0
$$

for $1 \leq j \leq n+1$. We begin with a simple estimate.

Lemma 2.1. The function w satisfies

$$
\|w-\bar{w}\|_{W^{\frac{n}{2}, p}} \leq C
$$

for all $p<2$.
Proof. The function $P_{0} w$ satisfies

$$
\left|P_{0} w\right| \leq P_{0} w+2(n-1)!,
$$

hence

$$
f_{S^{n}}\left|P_{0} w\right| d V_{0} \leq 2(n-1)!
$$

Using Green's formula, we obtain

$$
\|w-\bar{w}\|_{W} \frac{n}{2}, p, c
$$

for all $p<2$.
Using the normalization condition, it is possible to derive an improved Sobolev inequality for the function w. The proof follows ideas of T. Aubin $[2,3]$ and is included here for completeness.

Proposition 2.2. The function w satisfies the inequality

$$
\log \left(\int_{S^{n}} e^{n(w-\bar{w})} d V_{0}\right) \leq f_{S^{n}} \frac{n}{4(n-1)!} w P_{0} w d V_{0}+C .
$$

Proof. We use the inequality

$$
\begin{aligned}
\log \left(\int_{S^{n}} e^{n u} d V_{0}\right) & \leq f_{S^{n}} \frac{n}{2(n-1)!}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}} u\right)^{2} d V_{0} \\
& +f_{S^{n}} n u d V_{0}+C
\end{aligned}
$$

(see $[1,6,12]$). Without loss of generality, we may assume that

$$
\int_{S^{n}} e^{n w} d V_{0} \leq C \int_{\left\{x_{n+1} \geq 2 \delta\right\}} e^{n w} d V_{0}
$$

We first consider the case

$$
\int_{\left\{x_{n+1} \geq \delta\right\}}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}} w\right)^{2} d V_{0} \leq \int_{\left\{x_{n+1} \leq \delta\right\}}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}} w\right)^{2} d V_{0} .
$$

This implies

$$
\int_{\left\{x_{n+1} \geq \delta\right\}}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}} w\right)^{2} d V_{0} \leq \int_{S^{n}} \frac{1}{2}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}} w\right)^{2} d V_{0} .
$$

We choose a cut-off function η such that $\eta=1$ for $x_{n+1} \geq 2 \delta$ and $\eta=0$ for $x_{n+1} \leq \delta$. For $u=\eta(w-\bar{w})$ we obtain

$$
\begin{aligned}
\log \left(\int_{S^{n}} e^{n \eta(w-\bar{w})} d V_{0}\right) & \leq f_{S^{n}} \frac{n}{2(n-1)!}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}}(\eta(w-\bar{w}))\right)^{2} d V_{0} \\
& +\int_{S^{n}} n \eta(w-\bar{w}) d V_{0}+C
\end{aligned}
$$

From this it follows that

$$
\log \left(\int_{\left\{x_{n+1} \geq 2 \delta\right\}} e^{n(w-\bar{w})} d V_{0}\right) \leq f_{S^{n}} \frac{n}{2(n-1)!} \eta^{2}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}} w\right)^{2} d V_{0}+C
$$

Therefore, we obtain

$$
\log \left(\int_{S^{n}} e^{n(w-\bar{w})} d V_{0}\right) \leq f_{S^{n}} \frac{n}{4(n-1)!}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}} w\right)^{2} d V_{0}+C .
$$

We now consider the case

$$
\int_{\left\{x_{n+1} \leq \delta\right\}}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}} w\right)^{2} d V_{0} \leq \int_{\left\{x_{n+1} \geq \delta\right\}}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}} w\right)^{2} d V_{0} .
$$

This implies

$$
\int_{\left\{x_{n+1} \leq \delta\right\}}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}} w\right)^{2} d V_{0} \leq \int_{S^{n}} \frac{1}{2}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}} w\right)^{2} d V_{0} .
$$

We choose a cut-off function η such that $\eta=1$ for $x_{n+1} \leq 0$ and $\eta=0$ for $x_{n+1} \geq \delta$. For $u=\eta(w-\bar{w})$ we obtain

$$
\begin{aligned}
\log \left(\int_{S^{n}} e^{n \eta(w-\bar{w})} d V_{0}\right) & \leq f_{S^{n}} \frac{n}{2(n-1)!}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}}(\eta(w-\bar{w}))\right)^{2} d V_{0} \\
& +f_{S^{n}} n \eta(w-\bar{w}) d V_{0}+C
\end{aligned}
$$

From this it follows that

$$
\log \left(\int_{\left\{x_{n+1} \leq 0\right\}} e^{n(w-\bar{w})} d V_{0}\right) \leq f_{S^{n}} \frac{n}{2(n-1)!} \eta^{2}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}} w\right)^{2} d V_{0}+C
$$

Using the inequality

$$
\begin{aligned}
\int_{S^{n}} e^{n(w-\bar{w})} d V_{0} & \leq C \int_{\left\{x_{n+1} \geq 2 \delta\right\}} e^{n(w-\bar{w})} d V_{0} \\
& \leq C \int_{\left\{x_{n+1} \geq 2 \delta\right\}} e^{n(w-\bar{w})} x_{n+1} d V_{0} \\
& =-C \int_{\left\{x_{n+1} \leq 2 \delta\right\}} e^{n(w-\bar{w})} x_{n+1} d V_{0} \\
& \leq-C \int_{\left\{x_{n+1} \leq 0\right\}} e^{n(w-\bar{w})} x_{n+1} d V_{0} \\
& \leq C \int_{\left\{x_{n+1} \leq 0\right\}} e^{n(w-\bar{w})} d V_{0},
\end{aligned}
$$

we obtain

$$
\log \left(\int_{S^{n}} e^{n(w-\bar{w})} d V_{0}\right) \leq f_{S^{n}} \frac{n}{4(n-1)!}\left(\left(-\Delta_{0}\right)^{\frac{n}{4}} w\right)^{2} d V_{0}+C
$$

This proves the assertion.
On the other hand, S.-Y. A. Chang and P. Yang [12] established the following estimate:

Proposition 2.3. Assume that

$$
0<m \leq f \leq M .
$$

Then the function w satisfies

$$
f_{S^{n}} \frac{n}{2(n-1)!} w P_{0} w d V_{0}-\log \left(\int_{S^{n}} e^{n(w-\bar{w})} d V_{0}\right) \leq C .
$$

Combining these statements, we obtain:
Corollary 2.4. Assume that

$$
0<m \leq f \leq M .
$$

Then the function w satisfies

$$
\int_{S^{n}} w P_{0} w d V_{0} \leq C
$$

As a consequence, we obtain:

Proposition 2.5. If the function f satisfies

$$
0<m \leq f \leq M
$$

then the function w satisfies the estimate $\|w\|_{H^{n}} \leq C$.
Proof. It follows from Corollary 2.4 that

$$
\|w-\bar{w}\|_{H^{\frac{n}{2}}} \leq C .
$$

Using an inequality of N . Trudinger, we obtain

$$
\int_{S^{n}} e^{n(w-\bar{w})} d V_{0} \leq C .
$$

Since

$$
P_{0} w=(n-1)!\left(f e^{n w}-1\right),
$$

we obtain

$$
f_{S^{n}} f e^{n w} d V_{0}=1
$$

This implies

$$
\frac{1}{M} \leq f_{S^{n}} e^{n w} d V_{0} \leq \frac{1}{m}
$$

From this it follows that

$$
-C \leq \bar{w} \leq C .
$$

Thus, we conclude that $\|w\|_{H^{\frac{n}{2}}} \leq C$, hence

$$
\int_{S^{n}} e^{2 n w} d V_{0} \leq C
$$

by Trudinger's inequality. From this it follows that

$$
\int_{S^{n}}\left(P_{0} w\right)^{2} d V_{0} \leq C .
$$

Since \bar{w} is bounded, the assertion follows.
In the remaining part of this section, we assume that the function f is close to 1 .

Lemma 2.6. For every $\varepsilon>0$, there exists a real number $\delta>0$ with the following property: If the function f satisfies

$$
0<m \leq f \leq M
$$

and

$$
\|f-1\|_{L^{2}} \leq \delta
$$

then the function w satisfies the estimate $\|w\|_{H^{n}} \leq \varepsilon$.

Proof. We consider a sequence of functions w_{k} satisfying

$$
P_{0} w_{k}=(n-1)!\left(f_{k} e^{n w_{k}}-1\right)
$$

and

$$
\int_{S^{n}} e^{n w_{k}} x_{j} d V_{0}=0
$$

for $1 \leq j \leq n+1$. We assume that

$$
0<m \leq f_{k} \leq M
$$

and

$$
\left\|f_{k}-1\right\|_{L^{2}} \rightarrow 0
$$

By Proposition 2.5, the function satisfies the estimate $\left\|w_{k}\right\|_{H^{n}} \leq C$. Hence, by passing to a subsequence, we may assume that

$$
\left\|w_{k}-w\right\|_{L^{\infty}} \rightarrow 0
$$

for some function w. Then the function w satisfies

$$
P_{0} w=(n-1)!\left(e^{n w}-1\right)
$$

From this it follows that w is smooth. Moreover, it follows from the results in [13] that the metric $e^{2 w} g_{0}$ agrees with the standard metric g_{0} up to conformal transformations. Using the normalization condition

$$
\int_{S^{n}} e^{n w} x_{j} d V_{0}=0
$$

for $1 \leq j \leq n+1$, we conclude that $w=0$. This implies

$$
\left\|w_{k}\right\|_{L^{\infty}} \rightarrow 0
$$

Since

$$
P_{0} w_{k}=(n-1)!\left(f_{k} e^{n w_{k}}-1\right)
$$

it follows that

$$
\left\|P_{0} w_{k}\right\|_{L^{2}} \rightarrow 0
$$

Therefore, we obtain

$$
\left\|w_{k}\right\|_{H^{n}} \rightarrow 0
$$

This proves the assertion.

Proposition 2.7. Assume that the function f satisfies

$$
0<m \leq f \leq M
$$

and

$$
\|f-1\|_{L^{2}} \leq \delta
$$

Then the function w satisfies an estimate of the form

$$
\|w\|_{H^{n}} \leq C\|f-1\|_{L^{2}}
$$

Proof. The function w satisfies

$$
P_{0} w-n!w=(n-1)!(f-1) e^{n w}+(n-1)!\left(e^{n w}-n w-1\right)
$$

and

$$
\int_{S^{n}} w x_{j} d V_{0}=-\int_{S^{n}} \frac{1}{n}\left(e^{n w}-n w-1\right) x_{j} d V_{0}
$$

for $1 \leq j \leq n+1$. Using the Sobolev embedding theorem, we obtain

$$
\|w\|_{L^{\infty}} \leq C\|w\|_{H^{n}} \leq C \varepsilon
$$

From this it follows that

$$
\left\|P_{0} w-n!w\right\|_{L^{2}} \leq C\|f-1\|_{L^{2}}+C \varepsilon\|w\|_{L^{2}}
$$

and

$$
\left|\int_{S^{n}} w x_{j} d V_{0}\right| \leq C \varepsilon\|w\|_{L^{2}}
$$

for $1 \leq j \leq n+1$. Thus, we conclude that

$$
\|w\|_{H^{n}} \leq C\|f-1\|_{L^{2}}+C \varepsilon\|w\|_{L^{2}}
$$

hence

$$
\|w\|_{H^{n}} \leq C\|f-1\|_{L^{2}}
$$

This proves the assertion.
Proposition 2.8. Let f be a function with

$$
\|f-1\|_{L^{2}} \leq \delta
$$

Then there exists a unique pair $(w, \Lambda) \in H^{n} \times \mathbb{R}^{n+1}$ such that

$$
P_{0} w=(n-1)!\left(\left(f-\sum_{j=1}^{n+1} \Lambda_{j} x_{j}\right) e^{n w}-1\right)
$$

and

$$
\int_{S^{n}} e^{n w} x_{j} d V_{0}=0
$$

for $1 \leq j \leq n+1$ and $\|(w, \Lambda)\|_{H^{n} \times \mathbb{R}^{n+1}} \leq \varepsilon$.
Proof. Let

$$
\mathcal{S}=\left\{w \in H^{n}: \int_{S^{n}} e^{n w} x_{j} d V_{0}=0 \quad \text { for } 1 \leq j \leq n+1\right\} .
$$

We define a map

$$
\Phi: \mathcal{S} \times \mathbb{R}^{n+1} \rightarrow L^{2}
$$

by

$$
\Phi(w, \Lambda)=e^{-n w} P_{0} w+(n-1)!e^{-n w}+\sum_{j=1}^{n+1}(n-1)!\Lambda_{j} x_{j} .
$$

We denote by

$$
\Phi^{\prime}: T \mathcal{S} \times \mathbb{R}^{n+1} \rightarrow L^{2}
$$

the differential of Φ at the point $(0,0)$. We have

$$
T \mathcal{S}=\left\{w \in H^{n}: \int_{S^{n}} w x_{j} d V_{0}=0 \quad \text { for } 1 \leq j \leq n+1\right\}
$$

and

$$
\Phi^{\prime}(w, \Lambda)=P_{0} w-n!w+\sum_{j=1}^{n+1}(n-1)!\Lambda_{j} x_{j} .
$$

Therefore, the map Φ^{\prime} is bijective. The implicite function theorem implies that Φ is a bijective map from a neighbourhood of $(0,0)$ in $\mathcal{S} \times \mathbb{R}^{n+1}$ to a neighbourhood of $(n-1)$! in L^{2}. Since

$$
\|f-1\|_{L^{2}} \leq \delta,
$$

there exists a pair $(w, \Lambda) \in \mathcal{S} \times \mathbb{R}^{n+1}$ such that

$$
\Phi(w, \Lambda)=(n-1)!f
$$

and

$$
\|(w, \Lambda)\|_{H^{n} \times \mathbb{R}^{n+1}} \leq \varepsilon
$$

From this the assertion follows.

3. A-priori estimates for solutions in the absence of a normalization condition.

Let f be a fixed positive function on S^{n}. In this section, we establish the following result:

Proposition 3.1. Let w be a solution of the equation

$$
P_{0} w=(n-1)!\left((s f+1-s) e^{n w}-1\right)
$$

for some $0<s \leq 1$. Then the function w satisfies the estimate $\|w\|_{H^{n}} \leq C$.
Proof. Assume that there exists a sequence of functions w_{k} satisfying

$$
P_{0} w_{k}=(n-1)!\left(\left(s_{k} f+1-s_{k}\right) e^{n w_{k}}-1\right)
$$

for some $0<s_{k} \leq 1$ and

$$
\left\|w_{k}\right\|_{H^{n}} \rightarrow \infty
$$

We choose conformal transformations σ_{k} such that

$$
\int_{S^{n}} e^{n \tilde{w}_{k}} x_{j} d V_{0}=0
$$

for $1 \leq j \leq n+1$, where

$$
e^{2 \tilde{w}_{k}} g_{0}=\sigma_{k}^{*}\left(e^{2 w_{k}} g_{0}\right)
$$

Then the functions \tilde{w}_{k} satisfy the equation

$$
P_{0} \tilde{w}_{k}=(n-1)!\left(\left(s_{k} f+1-s_{k}\right) \circ \sigma_{k} e^{n \tilde{w}_{k}}-1\right) .
$$

Since f is a fixed positive function on S^{n}, we have

$$
0<m \leq\left(s_{k} f+1-s_{k}\right) \circ \sigma_{k} \leq M .
$$

Hence, it follows from Proposition 2.5 that $\left\|\tilde{w}_{k}\right\|_{H^{n}} \leq C$. Since

$$
\left\|w_{k}\right\|_{H^{n}} \rightarrow \infty
$$

we conclude that the sequence σ_{k} tends to infinity. This implies

$$
\left\|\left(s_{k} f+1-s_{k}\right) \circ \sigma_{k}-e^{-n r_{k}}\right\|_{L^{2}}=o(1)
$$

for a suitable constant r_{k}. Using Lemma 2.6, we obtain

$$
\left\|\tilde{w}_{k}-r_{k}\right\|_{H^{n}}=o(1) .
$$

Moreover, the Kazdan-Warner identity (see [12]) implies that

$$
\int_{S^{n}}\left\langle d\left(f \circ \sigma_{k}\right), d x_{j}\right\rangle e^{n\left(\tilde{w}_{k}-r\right)} d V_{0}=0
$$

for $1 \leq j \leq n+1$. If we identify S^{n} with $\mathbb{R}^{n} \cup\{\infty\}$ via the stereographic projection, then we may assume that the conformal transformation σ_{k} is given by

$$
\sigma_{k}(y)=\frac{1}{t_{k}} y
$$

for a suitable sequence $t_{k} \rightarrow \infty$. The pull-back of the standard metric on S^{n} under the stereographic projection is given by

$$
\left(g_{0}\right)_{i j}=\frac{4}{\left(1+|y|^{2}\right)^{2}} \delta_{i j} .
$$

Moreover, we have

$$
x_{j}=\frac{2 y_{j}}{1+|y|^{2}}
$$

for $1 \leq j \leq n$ and

$$
x_{n+1}=-\frac{1-|y|^{2}}{1+|y|^{2}} .
$$

This implies

$$
d x_{j}=\frac{2}{1+|y|^{2}} d y_{j}-\sum_{i=1}^{n} \frac{4 y_{i} y_{j}}{\left(1+|y|^{2}\right)^{2}} d y_{i}
$$

for $1 \leq j \leq n$ and

$$
d x_{n+1}=\sum_{i=1}^{n} \frac{4 y_{i}}{\left(1+|y|^{2}\right)^{2}} d y_{i} .
$$

Using the formula

$$
f(y)=f(0)+\sum_{i=1}^{n} \alpha_{i} y_{i}+\frac{1}{2} \sum_{i, j=1}^{n} \beta_{i j} y_{i} y_{j}+o\left(|y|^{2}\right)
$$

we obtain

$$
\left(f \circ \sigma_{k}\right)(y)=f(0)+\frac{1}{t_{k}} \sum_{i=1}^{n} \alpha_{i} y_{i}+\frac{1}{2 t_{k}^{2}} \sum_{i, j=1}^{n} \beta_{i j} y_{i} y_{j}+o\left(\frac{|y|^{2}}{t_{k}^{2}}\right),
$$

hence

$$
d\left(f \circ \sigma_{k}\right)(y)=\frac{1}{t_{k}} \sum_{i=1}^{n} \alpha_{i} d y_{i}+\frac{1}{t_{k}^{2}} \sum_{i, j=1}^{n} \beta_{i j} y_{j} d y_{i}+o\left(\frac{|y|}{t_{k}^{2}}\right) .
$$

From this it follows that

$$
\begin{aligned}
0 & =\int_{S^{n}}\left\langle d\left(f \circ \sigma_{k}\right), d x_{j}\right\rangle e^{n\left(\tilde{w}_{k}-r_{k}\right)} d V_{0} \\
& =\int_{S^{n}}\left\langle d\left(f \circ \sigma_{k}\right), d x_{j}\right\rangle d V_{0}+o\left(\frac{1}{t_{k}}\right) \\
& =\frac{1}{t_{k}} \int_{\mathbb{R}^{n}} \frac{2^{n-1} \alpha_{j}}{\left(1+|y|^{2}\right)^{n-1}} d y_{1} \cdots d y_{n}-\frac{1}{t_{k}} \sum_{i=1}^{n} \int_{\mathbb{R}^{n}} \frac{2^{n} \alpha_{i} y_{i} y_{j}}{\left(1+|y|^{2}\right)^{n}} d y_{1} \cdots d y_{n}+o\left(\frac{1}{t_{k}}\right) \\
& =\frac{1}{t_{k}} \int_{\mathbb{R}^{n}} \frac{2^{n-1} \alpha_{j}}{\left(1+|y|^{2}\right)^{n-1}} d y_{1} \cdots d y_{n}-\frac{1}{t_{k}} \int_{\mathbb{R}^{n}} \frac{2^{n} \alpha_{j} y_{j}^{2}}{\left(1+|y|^{2}\right)^{n}} d y_{1} \cdots d y_{n}+o\left(\frac{1}{t_{k}}\right) \\
& =\frac{1}{t_{k}} \int_{\mathbb{R}^{n}} \frac{2^{n-1} \alpha_{j}}{\left(1+|y|^{2}\right)^{n-1}} d y_{1} \cdots d y_{n}-\frac{1}{t_{k}} \int_{\mathbb{R}^{n}} \frac{2^{n} \alpha_{j}|y|^{2}}{n\left(1+|y|^{2}\right)^{n}} d y_{1} \cdots d y_{n}+o\left(\frac{1}{t_{k}}\right) \\
& =\frac{1}{t_{k}} \int_{\mathbb{R}^{n}} \frac{2^{n-1} \alpha_{j}\left(n+(n-2)|y|^{2}\right)}{n\left(1+|y|^{2}\right)^{n}} d y_{1} \cdots d y_{n}+o\left(\frac{1}{t_{k}}\right)
\end{aligned}
$$

for $1 \leq j \leq n$. Thus, we conclude that $\alpha_{j}=o(1)$ for $1 \leq j \leq n$. From this it follows that

$$
\left\|\left(s_{k} f+1-s_{k}\right) \circ \sigma_{k}-e^{-n r_{k}}\right\|_{L^{2}} \leq o\left(\frac{1}{t_{k}}\right),
$$

where $e^{-n r_{k}}=s_{k} f(0)+1-s_{k}$. This implies

$$
\left\|\tilde{w}_{k}-r_{k}\right\|_{H^{n}} \leq o\left(\frac{1}{t_{k}}\right)
$$

Using this estimate, we obtain

$$
\begin{aligned}
0 & =\int_{S^{n}}\left\langle d\left(f \circ \sigma_{k}\right), d x_{n+1}\right\rangle e^{n\left(\tilde{w}_{k}-r_{k}\right)} d V_{0} \\
& =\int_{S^{n}}\left\langle d\left(f \circ \sigma_{k}\right), d x_{n+1}\right\rangle d V_{0}+o\left(\frac{1}{t_{k}^{2}}\right) \\
& =\frac{1}{t_{k}^{2}} \sum_{i, j=1}^{n} \int_{\mathbb{R}^{n}} \frac{2^{n} \beta_{i j} y_{i} y_{j}}{\left(1+|y|^{2}\right)^{n}} d y_{1} \cdots d y_{n}+o\left(\frac{1}{t_{k}^{2}}\right) \\
& =\frac{1}{t_{k}^{2}} \sum_{i=1}^{n} \int_{\mathbb{R}^{4}} \frac{2^{n} \beta_{i i}|y|^{2}}{n\left(1+|y|^{2}\right)^{n}} d y_{1} \cdots d y_{n}+o\left(\frac{1}{t_{k}^{2}}\right) .
\end{aligned}
$$

Thus, we conclude that

$$
\sum_{i=1}^{n} \beta_{i i}=0
$$

Therefore, the concentration point p satisfies

$$
\nabla_{0} f(p)=0
$$

and

$$
\Delta_{0} f(p)=0
$$

This contradicts the non-degeneracy condition.

4. Existence results.

Let

$$
\mathcal{M}_{s}=\left\{w \in H^{n}: f_{S^{n}}(s f+1-s) e^{n w} d V_{0}=1\right\} .
$$

We define a map

$$
\Psi_{s}: \mathcal{M}_{s} \rightarrow H^{n}
$$

by

$$
\Psi_{s}(w)=w-(n-1)!P_{0}^{-1}\left((s f+1-s) e^{n w}-1\right) .
$$

We first show that the degree of Ψ_{s} is independent of s.
Proposition 4.1. We have

$$
\operatorname{deg}\left(\Psi_{1}, 0\right)=\operatorname{deg}\left(\Psi_{s}, 0\right)
$$

for all $0<s \leq 1$.
Proof. It follows from Proposition 3.1 that the set

$$
\left\{(s, w): 0<s \leq 1, w \in \mathcal{M}_{s} \text { and } \Psi_{s}(w)=0\right\}
$$

is bounded in $\mathbb{R} \times H^{n}$. The assertion is now a consequence of the homotopy invariance of the degree (see [23]).

We now choose $0<s \leq 1$ sufficiently small. By Proposition 2.8, for every conformal transformation σ, there exists a unique function \tilde{w}_{σ} which satisfies

$$
P_{0} \tilde{w}_{\sigma}=(n-1)!\left(\left((s f+1-s) \circ \sigma-\sum_{j=1}^{n+1} \Lambda_{\sigma, j} x_{j}\right) e^{n \tilde{w}_{\sigma}}-1\right)
$$

and

$$
\int_{S^{n}} e^{n \tilde{w}_{\sigma}} x_{j} d V_{0}=0
$$

for $1 \leq j \leq n+1$ and

$$
\left\|\left(\tilde{w}_{\sigma}, \Lambda_{\sigma}\right)\right\|_{H^{n} \times \mathbb{R}^{n+1}} \leq \varepsilon
$$

Using Proposition 2.7, we obtain $\left\|\tilde{w}_{\sigma}\right\|_{H^{n}} \leq C s$. We now define functions w_{σ} by

$$
e^{2 \tilde{w}_{\sigma}} g_{0}=\sigma^{*}\left(e^{2 w_{\sigma}} g_{0}\right) .
$$

Then the function w_{σ} satisfies the equation

$$
P_{0} w_{\sigma}=(n-1)!\left(\left((s f+1-s)-\sum_{j=1}^{n+1} \Lambda_{\sigma, j} x_{j} \circ \sigma^{-1}\right) e^{n w_{\sigma}}-1\right) .
$$

In the first step, we show that the zeroes of Ψ_{s} are in one-to-one correspondence with the zeroes of Λ.

Proposition 4.2. A function w satisfies $\Psi_{s}(w)=0$ if and only if there exists a conformal transformation σ such that $w=w_{\sigma}$ and $\Lambda_{\sigma}=0$.

Proof. Suppose that $w \in \mathcal{M}_{s}$ satisfies $\Psi_{s}(w)=0$. Then the function w satisfies the equation

$$
P_{0} w=(n-1)!\left((s f+1-s) e^{n w}-1\right) .
$$

We choose a conformal transformation σ such that

$$
\int_{S^{n}} e^{n \tilde{w}} x_{j} d V_{0}=0
$$

for $1 \leq j \leq n+1$, where

$$
e^{2 \tilde{w}} g_{0}=\sigma^{*}\left(e^{2 w} g_{0}\right) .
$$

Then the function \tilde{w} satisfies the equation

$$
P_{0} \tilde{w}=(n-1)!\left((s f+1-s) \circ \sigma e^{n \tilde{w}}-1\right) .
$$

If s is sufficiently small, then we have

$$
\|(s f-s) \circ \sigma\|_{L^{2}} \leq \delta
$$

Using Proposition 2.6, we obtain

$$
\|\tilde{w}\|_{H^{n}} \leq \varepsilon
$$

Hence, it follows from the uniqueness statement in Proposition 2.8 that $\tilde{w}=\tilde{w}_{\sigma}$ and $\Lambda_{\sigma}=0$. Conversely, if σ is a conformal transformation satisfying $\Lambda_{\sigma}=0$, then the function w_{σ} belongs to the space \mathcal{M}_{s} and $\Psi_{s}\left(w_{\sigma}\right)=0$.

Let σ be a conformal transformation satisfying $\Lambda_{\sigma}=0$, and let Λ^{\prime} be the differential of Λ at σ. Furthermore, we denote by Ψ_{s}^{\prime} the differential of Ψ_{s} at w_{σ}. We want to compare the number of negative eigenvalues of Λ^{\prime} and Ψ_{s}^{\prime}.

To this end, we differentiate the identity

$$
P_{0} w_{\tau}=(n-1)!\left(\left((s f+1-s)-\sum_{j=1}^{n+1} \Lambda_{\tau, j} x_{j} \circ \tau^{-1}\right) e^{n w_{\tau}}-1\right)
$$

with respect to τ. This gives a collection of functions u_{i} such that

$$
P_{0} u_{i}=n!(s f+1-s) e^{n w_{\sigma}} u_{i}-(n-1)!\sum_{j=1}^{n+1} \Lambda_{i, j}^{\prime} x_{j} \circ \sigma^{-1} e^{n w_{\sigma}}
$$

for $1 \leq i \leq n+1$. By definition of w_{σ}, we have

$$
\int_{S^{n}} e^{n w_{\sigma}} x_{j} \circ \sigma^{-1} d V_{0}=\int_{S^{n}} e^{n \tilde{w}_{\sigma}} x_{j} d V_{0}=0
$$

for $1 \leq j \leq n+1$. Let v_{j} be the solution of the linear equation

$$
P_{0} v_{j}=-x_{j} \circ \sigma^{-1} e^{n w_{\sigma}} .
$$

Then we obtain the identity

$$
P_{0} u_{i}=n!(s f+1-s) e^{n w_{\sigma}} u_{i}+(n-1)!\sum_{j=1}^{n+1} \Lambda_{i, j}^{\prime} x_{j} \circ \sigma^{-1} e^{n w_{\sigma}} .
$$

Thus, we conclude that $u_{i} \in T \mathcal{M}_{s}$ and

$$
\Psi_{s}^{\prime}\left(u_{i}\right)=(n-1)!\sum_{j=1}^{n+1} \Lambda_{i, j}^{\prime} v_{j} .
$$

We now establish precise estimates for the functions u_{i} and v_{j}.
Lemma 4.3. The function u_{i} satisfies the estimate

$$
\left\|u_{i}+x_{i} \circ \sigma^{-1}\right\|_{H^{n}} \leq C s
$$

Proof. Since

$$
\|(s f+1-s) \circ \tau-(s f+1-s) \circ \sigma\|_{L^{2}} \leq C s \operatorname{dist}(\tau, \sigma),
$$

it follows from the proof of Proposition 2.8 that

$$
\left\|\tilde{w}_{\tau}-\tilde{w}_{\sigma}\right\|_{H^{n}} \leq C s \operatorname{dist}(\tau, \sigma) .
$$

This implies

$$
\left\|\tilde{w}_{\tau} \circ \tau^{-1}-\tilde{w}_{\sigma} \circ \sigma^{-1}\right\|_{H^{n}} \leq C s \operatorname{dist}(\tau, \sigma) .
$$

Using the relations

$$
\tilde{w}_{\sigma} \circ \sigma^{-1}=w_{\sigma}+\frac{1}{n} \log \operatorname{det} d \sigma \circ \sigma^{-1}
$$

and

$$
\tilde{w}_{\tau} \circ \tau^{-1}=w_{\tau}+\frac{1}{n} \log \operatorname{det} d \tau \circ \tau^{-1}
$$

we obtain

$$
\left\|w_{\tau}-w_{\sigma}+\frac{1}{n} \log \operatorname{det} d \tau \circ \tau^{-1}-\frac{1}{n} \log \operatorname{det} d \sigma \circ \sigma^{-1}\right\|_{H^{n}} \leq C s \operatorname{dist}(\tau, \sigma),
$$

hence

$$
\left\|w_{\tau}-w_{\sigma}-\frac{1}{n} \log \operatorname{det} d\left(\tau^{-1} \circ \sigma\right) \circ \sigma^{-1}\right\|_{H^{n}} \leq C s \operatorname{dist}(\tau, \sigma) .
$$

From this it follows that

$$
\left\|u_{i}+x_{i} \circ \sigma^{-1}\right\|_{H^{n}} \leq C s
$$

This proves the assertion.
Lemma 4.4. The function v_{j} satisfies the estimate

$$
\left\|n!v_{j}+x_{j} \circ \sigma^{-1}\right\|_{H^{n}} \leq C s
$$

Proof. Since $-\Delta_{0} x_{j}=n x_{j}$, we obtain

$$
P_{0} x_{j}=\prod_{k=1}^{\frac{n}{2}}(n+(k-1)(n-k)) x_{j}=\prod_{k=1}^{\frac{n}{2}} k(n-k+1) x_{j}=n!x_{j} .
$$

Using the conformal invariance of the Paneitz operator, we conclude that

$$
P_{0}\left(x_{j} \circ \sigma^{-1}\right) \operatorname{det} d \sigma \circ \sigma^{-1}=n!x_{j} \circ \sigma^{-1},
$$

hence

$$
P_{0}\left(x_{j} \circ \sigma^{-1}\right) e^{n \tilde{w}_{\sigma} \circ \sigma^{-1}}=n!x_{j} \circ \sigma^{-1} e^{n w_{\sigma}} .
$$

This implies

$$
n!P_{0} v_{j}=-P_{0}\left(x_{j} \circ \sigma^{-1}\right) e^{n \tilde{w}_{\sigma} \circ \sigma^{-1}} .
$$

Using the estimate

$$
\left\|\tilde{w}_{\sigma}\right\|_{H^{n}} \leq C s
$$

we obtain

$$
\left\|n!v_{j}+x_{j} \circ \sigma^{-1}\right\|_{H^{n}} \leq C\left\|P_{0}\left(n!v_{j}+x_{j} \circ \sigma^{-1}\right)\right\|_{L^{2}} \leq C s
$$

This proves the assertion.
Proposition 4.5. If s is sufficiently small, then the degree of Ψ_{s} coincides with the degree of Λ.

Proof. By Lemma 4.3 and Lemma 4.4, the finite-dimensional approximations of Ψ_{s}^{\prime} are of the form

$$
\left(\begin{array}{cc}
\Lambda^{\prime} E & \Lambda^{\prime} F \\
X & Y
\end{array}\right)^{T}
$$

where

$$
\|E-1\| \leq C s
$$

and

$$
\|F\| \leq C s
$$

Using the identity

$$
\left(\begin{array}{cc}
\Lambda^{\prime} E & \Lambda^{\prime} F \\
X & Y
\end{array}\right)=\left(\begin{array}{cc}
\Lambda^{\prime} & 0 \\
X E^{-1} & Y-X E^{-1} F
\end{array}\right)\left(\begin{array}{cc}
E & F \\
0 & 1
\end{array}\right)
$$

we obtain

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
\Lambda^{\prime} E & \Lambda^{\prime} F \\
X & Y
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cc}
\Lambda^{\prime} & 0 \\
X E^{-1} & Y-X E^{-1} F
\end{array}\right) \operatorname{det}\left(\begin{array}{cc}
E & F \\
0 & 1
\end{array}\right) \\
& =\operatorname{det} \Lambda^{\prime} \operatorname{det}\left(Y-X E^{-1} F\right) \operatorname{det} E .
\end{aligned}
$$

Hence, if s is sufficiently small, then $\operatorname{det}\left(\begin{array}{cc}\Lambda^{\prime} E & \Lambda^{\prime} F \\ X & Y\end{array}\right)$ and $\operatorname{det} \Lambda^{\prime}$ have the same sign. Thus, we conclude that

$$
\operatorname{deg}\left(\Psi_{s}, 0\right)=\operatorname{deg}(\Lambda, 0)
$$

if s is sufficiently small.
We now identify the the group of conformal transformations on S^{n} with the unit ball in \mathbb{R}^{n+1}. We consider the map

$$
H: B^{n+1} \rightarrow \mathbb{R}^{n+1}, \quad \sigma \mapsto\left(\int_{S^{n}} f \circ \sigma x_{i} d V_{0}\right)_{1 \leq i \leq n+1}
$$

Then we have the following result:
Proposition 4.6. If s is sufficiently small, then the degree of Λ coincides with the degree of H.

Proof. Using the Kazdan-Warner identity, we obtain

$$
\int_{S^{n}}\left\langle d((s f+1-s) \circ \sigma)-\sum_{j=1}^{n+1} \Lambda_{\sigma, j} d x_{j}, d x_{i}\right\rangle e^{n \tilde{w}_{\sigma}} d V_{0}=0
$$

This implies

$$
s \int_{S^{n}}\left\langle d(f \circ \sigma), d x_{i}\right\rangle e^{n \tilde{w}_{\sigma}} d V_{0}=\sum_{j=1}^{n+1} \Lambda_{\sigma, j} \int_{S^{n}}\left\langle d x_{j}, d x_{i}\right\rangle e^{n \tilde{w}_{\sigma}} d V_{0}
$$

Therefore, the degree of Λ coincides with the degree of the map

$$
G: B^{n+1} \rightarrow \mathbb{R}^{n+1}, \quad \sigma \mapsto\left(\int_{S^{n}}\left\langle d(f \circ \sigma), d x_{i}\right\rangle e^{n \tilde{w}_{\sigma}} d V_{0}\right)_{1 \leq i \leq n+1}
$$

On the other hand,

$$
\begin{aligned}
|G(\sigma)-n H(\sigma)| & \leq \sum_{i=1}^{n+1}\left|\int_{S^{n}}\left\langle d(f \circ \sigma), d x_{i}\right\rangle e^{n \tilde{w}_{\sigma}} d V_{0}-n \int_{S^{n}} f \circ \sigma x_{i} d V_{0}\right| \\
& \leq \sum_{i=1}^{n+1}\left|\int_{S^{n}}\left\langle d(f \circ \sigma), d x_{i}\right\rangle\left(e^{n \tilde{w}_{\sigma}}-1\right) d V_{0}\right| \\
& \leq C s .
\end{aligned}
$$

If s is sufficiently small, then G and H are homotopic, and therefore the degree of G agrees with the degree of H.

Combining these statements, we obtain

$$
\operatorname{deg}\left(\Psi_{1}, 0\right)=\operatorname{deg}(H, 0)
$$

By assumption, we have $\operatorname{deg}(H, 0) \neq 0$, hence $\operatorname{deg}\left(\Psi_{1}, 0\right) \neq 0$. Therefore, there exists a function $w \in \mathcal{M}_{1}$ such that $\Psi_{1}(w)=0$. This implies

$$
f_{S^{n}} f e^{n w} d V_{0}=1
$$

and

$$
w-(n-1)!P_{0}^{-1}\left(f e^{n w}-1\right)=0
$$

Thus, we conclude that

$$
P_{0} w=(n-1)!\left(f e^{n w}-1\right)
$$

References.

[1] D. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128, 385-398 (1988)
[2] T. Aubin, Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32, 148-174 (1979)
[3] T. Aubin, Nonlinear Analysis on Manifolds, Monge-Ampère Equations, Springer-Verlag, New York (1982)
[4] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math. 41, 253-290 (1988)
[5] A. Bahri and J. M. Coron, The scalar curvature on the standard threedimensional sphere, J. Funct. Anal. 95, 106-172 (1991)
[6] W. Beckner, Sharp Sobolev inequalities on the sphere and the MoserTrudinger inequality, Ann. of Math. 138, 213-242 (1993)
[7] T. Branson, S.-Y. A. Chang and P. Yang, Estimates and extremal problems for the log-determinant on 4-manifolds, Comm. Math. Phys. 149, 241-262 (1992)
[8] T. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc. 347, 3671-3742 (1995)
[9] S. Brendle, Global existence and convergence for a higher order flow in conformal geometry, to appear in Ann. of Math.
[10] S.-Y. A. Chang and P. Yang, Prescribing Gauss curvature on S^{2}, Acta Math. 159, 215-259 (1987)
[11] S.-Y. A. Chang and P. Yang, A perturbation result in prescribing scalar curvature on S^{n}, Duke Math. J. 64, 27-69 (1991)
[12] S.-Y. A. Chang and P. Yang, Extremal metrics of zeta functional determinants on 4-manifolds, Ann. of Math. 142, 171-212 (1995)
[13] S.-Y. A. Chang and P. Yang, On uniqueness of solutions of n-th order differential equations in conformal geometry, Math. Res. Lett. 4, 91-102 (1997)
[14] S.-Y. A. Chang, M. Gursky and P. Yang, The scalar curvature on 2and 3 -spheres, Comm. PDE 1, 205-229 (1993)
[15] S.-Y. A. Chang, M. Gursky and P. Yang, An Equation of Monge-Ampere type in conformal geometry and four-manifolds of positive Ricci curvature, to appear in Ann. of Math.
[16] Z. Djadli, A. Malchiodi and M. Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere, Part I: a perturbation result, preprint (2000)
[17] Z. Djadli, A. Malchiodi and M. Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere, Part II: blow-up analysis and applications, preprint (2000)
[18] J. F. Escobar and R. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math. 86, 243-254 (1986)
[19] C. Fefferman and R. Graham, Conformal invariants, Astérisque, 95-116 (1985)
[20] C. Fefferman and R. Graham, Q-curvature and Poincaré metrics, prepint (2001)
[21] C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in \mathbb{R}^{n}, Comm. Math. Helv. 73, 206-231 (1998)
[22] J. Moser, On a non-linear problem in differential geometry, in Dynamical Systems, ed. M. Peixoto, Academic Press, New York (1973)
[23] L. Nirenberg, Topics in Nonlinear Functional Analysis, Lectures, Courant Institute, New-York (1974)
[24] R. Schoen and D. Zhang, Prescribed scalar curvature on the n-sphere, Calc. Var. PDE 4, 1-25 (1996)

Received June 26, 2002.

