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Surface bundles versus Heegaard splittings

David Bachman and Saul Schleimer1

This paper studies Heegaard splittings of surface bundles via the
curve complex of the fibre. The translation distance of the mon-
odromy is the smallest distance it moves any vertex of the curve
complex. We prove that the translation distance is bounded above
in terms of the genus of any strongly irreducible Heegaard splitting.
As a consequence, if a splitting surface has small genus compared
to the translation distance of the monodromy, then the splitting is
standard.

1. Introduction.

The purpose of this paper is to show a direct relationship between the action
of a surface automorphism on the curve complex and the Heegaard splittings
of the associated surface bundle.

We begin by restricting attention to automorphisms of closed orientable
surfaces with genus at least two. Let ϕ : F → F be such an automorphism.
The translation distance, dC(ϕ), is the shortest distance ϕ moves any vertex
in the curve complex. (We defer precise definitions to Section 2.) As a bit of
notation, let M(ϕ) denote the mapping torus of ϕ. The following theorem,
alluded to in [21], gives a link between translation distance and essential
surfaces in M(ϕ).

Theorem 3.1. If G ⊂ M(ϕ) is a connected, orientable, incompressible
surface, then either G is isotopic to a fibre, G is homeomorphic to a torus,
or dC(ϕ) ≤ −χ(G).

An underlying theme in the study of Heegaard splittings is that, in
many instances, strongly irreducible splitting surfaces may take the place
of incompressible surfaces. We prove:

Theorem 6.1. If H is a strongly irreducible Heegaard splitting of M(ϕ),
then

dC(ϕ) ≤ −χ(H).

1This work is in the public domain
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This result gives new information about Heegaard splittings of hyperbolic
three-manifolds. Previous work, by Moriah and Rubinstein [14], discussed
the low genus splittings of negatively-curved manifolds with very short geo-
desics. Restricting attention to surface bundles and applying Theorems 6.1
and 3.1 gives:

Corollary 3.2. Any Heegaard splitting H of the mapping torus M(ϕ) with
−χ(H) < dC(ϕ) is a stabilization of the standard splitting.

This improves results due to Rubinstein [16] and Lackenby [11] (see Re-
mark 3.5).

The two theorems indicate an interesting connection between the com-
binatorics of the curve complex and the topology of three-manifolds. This
accords with other work. Most significantly, Minsky et al. [3] have used the
curve complex to prove the Ending Lamination Conjecture. A major step
is using a path in the curve complex to give a model of the geometry of a
hyperbolic three-manifold.

Another example of this connection is found in [7] and [8]. These papers
study surface bundles where the fibre is a once punctured torus. Here, the
Farey graph takes the place of the curve complex. An analysis of ϕ-invariant
lines in the Farey graph allows a complete classification of incompressible
surfaces in such bundles.

As we shall see in the proofs of Theorems 3.1 and 6.1, essential sur-
faces and strongly irreducible splittings in the mapping torus M(ϕ) yield
ϕ-invariant lines in the curve complex of the fibre. It is intriguing to specu-
late upon axioms for such lines which would, perhaps, lead to classification
results for essential surfaces or strongly irreducible splittings. This would
be a significant step in the over-all goal of understanding the topology of
surfaces bundles of the circle.

At the heart of our proof of Theorem 6.1 lies the idea of a “graphic”,
due to Rubinstein and Scharlemann [17]. The graphic is obtained, as in
Cooper and Scharlemann’s paper [6], by comparing the bundle structure
with a given height function and applying Cerf theory. As in their work,
our situation requires a delicate analysis of behavior at the vertices of the
graphic.

The rest of the paper is organized as follows: basic definitions regarding
Heegaard splittings, surface bundles, and the curve complex are found in
Section 2. With this background, we restate the main theorem and corol-
laries in Section 3. Of main importance is the nature of simple closed curve
intersections between a fibre of the bundle and the Heegaard splitting un-



Surface bundles versus Heegaard splittings 905

der discussion. This is covered in Section 4, in addition to a preliminary
sketch of the proof of Theorem 6.1. The Rubinstein–Scharlemann graphic
is discussed in Section 5. Concluding the paper, Section 6 proves Theo-
rem 6.1 and poses a few open questions. We also discuss the possibility of
strengthening the inequality given in the main theorem to a more refined
“moduli space.” For example, translation distance in the pants complex or
in Teichmüller space does not work.

2. Background material.

This section presents the definitions used in this paper. A more complete
reference for the curve complex may be found in [13] while the paper [19] is
an excellent survey on Heegaard splittings.

2.1. The curve complex.

Fix a closed connected orientable surface F with genus g(F ) ≥ 2. If α ⊂ F
is an essential simple closed curve, then let [α] be the isotopy class of α.

Definition 2.1. The set {[α0], . . . , [αk]} determines a k-simplex if for all
i �= j the isotopy classes [αi], [αj ] are distinct and there are α′

i ∈ [αi],
α′

j ∈ [αj] with α′
i ∩ α′

j = ∅.

Definition 2.2. The curve complex of F is the simplicial complex C(F )
given by the union of all simplices, as above.

We will restrict our attention to the zero and one-skeleta, C0(F ) ⊂ C1(F ).
Giving each edge length one, the graph C1(F ) becomes a metric space. Let
dC(α, β) be the distance between the vertices [α], [β] ∈ C0(F ). When it
can cause no confusion, we will not distinguish between an essential simple
closed curve and its isotopy class.

Definition 2.3. Suppose that ϕ is a homeomorphism of F . The translation
distance of ϕ is

dC(ϕ) = min
{
dC(α,ϕ(α)) | α ∈ C0(F )

}
.

2.2. Heegaard splittings.

Recall that a compression-body is a three-manifold V obtained as follows:
choose a closed connected orientable surface H which is not a two-sphere.
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Form the product H×I. Attach two-handles to the boundary component
H×{0}. Glue three-handles to all remaining boundary components which
are two-spheres to finally obtain V . Denote H×{1} in V by ∂+V . If the
resulting compression-body has ∂V = ∂+V , then it is a handlebody.

Let M be a compact connected orientable three-manifold.

Definition 2.4. A surface H ⊂ M is a Heegaard splitting of M if H cuts
M into a pair of compression-bodies V,W and ∂+V = H = ∂+W .

Definition 2.5. A properly embedded disk D inside a compression-body
V is essential if ∂D ⊂ ∂+V is essential.

Definition 2.6. A Heegaard splitting H ⊂ M is stabilized if there are a
pair of essential disks D ⊂ V and E ⊂ W where ∂D and ∂E intersect in a
single point.

Compressing H along D gives a surface H ′; it is an easy exercise to show
that H ′ is again a Heegaard splitting of M . In this situation, we call H a
stabilization of H ′. We now have a more important notion, introduced by
Casson and Gordon [5]:

Definition 2.7. A Heegaard splitting H ⊂ M is strongly irreducible if all
pairs of essential disks D ⊂ V and E ⊂ W satisfy ∂D ∩ ∂E �= ∅.

If the splitting H is not strongly irreducible, then H is weakly reducible.
Scharlemann’s [18] “no nesting” lemma shows the strength of Casson and
Gordon’s definition:

Lemma 2.8. Suppose H ⊂ M is a strongly irreducible splitting and D ⊂ M
is an embedded disk with ∂D ⊂ H and with interior(D) transverse to H.
Then there is a disk D′ properly embedded in V or W with ∂D′ = ∂D.

We take the following bit of terminology almost directly from [20]. Let
M = F×I where F is a closed orientable surface. Let α = {pt}×I be a
properly embedded arc. Take N to be a closed regular neighborhood of
∂M ∪ α in M . Let H = ∂N�∂M . Then H is the standard type 2 splitting
of M . The standard type 1 splitting is isotopic to the surface F×{1/2}.

Scharlemann and Thompson then prove:

Theorem 2.9. Every Heegaard splitting of M = F×I is a stabilization of
the standard type 1 or 2 splitting.

Note that it is common to refer to stabilizations of a standard splitting
as being standard themselves.



Surface bundles versus Heegaard splittings 907

2.3. Surface bundles.

Fix F , a closed, orientable surface with genus g(F ) ≥ 2. Let ϕ : F → F be
a surface diffeomorphism which preserves orientation.

Definition 2.10. The surface bundle with monodromy ϕ is the manifold

M(ϕ) = (F×[0, 2π])/{(x, 2π) ≡ (ϕ(x), 0)}.

Let F (θ) be the image of F×θ. These surfaces are fibres of the bundle
M(ϕ). There is a natural smooth map πF : M(ϕ) → S1 defined by πF (x) =
θ whenever x ∈ F (θ). The map πF realizes M(ϕ) as a surface bundle over
the circle.

We now define the standard Heegaard splitting of the surface bundle
M(ϕ). Pick x, y ∈ F such that x �= y and ϕ(y) �= x. Fix A and B disjoint
closures of regular neighborhoods of x×[0, π] and y×[π, 2π] respectively. Set

V = (F×[π, 2π]�B) ∪ A

and
W = (F×[0, π]�A) ∪ B.

Then H = ∂V = ∂W is the standard Heegaard splitting of M(ϕ). Note
that the genus of the standard splitting is 2g(F ) + 1. Finally, the standard
splitting is always weakly reducible because the tubes A ∩ H and B ∩ H
admit disjoint compressing disks.

3. Main theorem and corollaries.

Let F be a closed orientable surface with genus g(F ) ≥ 2. Let ϕ : F → F
be an orientation-preserving diffeomorphism. The surface bundle M(ϕ) is
irreducible and has minimal Heegaard genus two or larger. Here is a precise
statement of our main theorem:

Theorem 6.1. If H ⊂ M(ϕ) is a strongly irreducible Heegaard splitting,
then the translation distance of ϕ is at most the negative Euler characteristic
of H. That is,

dC(ϕ) ≤ −χ(H).

This theorem is a deeper version of the following (claimed in [21]):
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Theorem 3.1. If G ⊂ M(ϕ) is a connected, orientable, incompressible sur-
face, then either

• G is isotopic to a fibre or

• G is a torus and dC(ϕ) ≤ 1 or

• dC(ϕ) ≤ −χ(G).

For completeness, we include a proof.

Proof of Theorem 3.1. Suppose that G is not isotopic to a fibre of the
surface bundle. If G is a torus, then the map ϕ is reducible. It follows that
dC(ϕ) ≤ 1. Assume, therefore, that G is not a torus.

Briefly, the rest of the proof is as follows: Isotope G into a “good posi-
tion” and examine the transverse intersections of G with the fibres. From
these, extract a sequence of curves which provide a path in the curve complex
of the fibre. This path gives the desired bound. Here are the details.

Applying a theorem of Thurston [24], isotope G until all non-transverse
intersections with the fibres occur at a finite number of saddle tangencies.
Furthermore, there is at most one tangency between G and any fibre F (θ).

It follows that every transverse curve of intersection between G and
F (θ) is essential in both surfaces. Any transverse curve failing this would,
perforce, be inessential in both. But that would lead directly to a center
tangency between G and some fibre.

Let {θi}n−1
i=0 be the critical angles where G fails to be transverse to F (θi).

Every critical angle gives a saddle for G. It follows that n = −χ(G) ≥ 2 as
G is orientable and not a torus. Pick regular angles {ri}n−1

i=0 where θi−1 <
ri < θi, with indices taken mod n. Apply a rotation to force r0 = 0 = 2π.
Let αi be any curve component of F (ri) ∩ G and recall that αi ⊂ F (ri) is
essential.

As in Figure 1, the curve αi+1 may be isotoped back through the sub-
manifold F×[ri, ri+1] to lie on the fibre F (ri), disjointly from αi. (To see
that this is correct: let Σ be the singular component of F (θi)∩G; the compo-
nent of F (θi)∩G which is not a simple closed curve. So Σ is homeomorphic
to a graph with one vertex and two edges. Let N = F×[ri, ri+1] and let P
be the component of G∩N which contains Σ. As G is orientable and P has
at least two boundary components, P is homeomorphic to a “pair-of-pants”;
a two-sphere where three open disks (with disjoint closures) have been re-
moved. Note that P is properly embedded in N with essential boundary in
∂N . Thus, P is incompressible in N . A standard argument shows that P
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F (ri) F (ri+1)

αi

αi+1
α′′

i+1

Figure 1: Isotoping αi+1 back to the curve α′′
i+1 ⊂ F (ri).

is boundary-compressible. Boundary-compressing P gives one or two annuli
properly embedded in N , at least one of which is horizontal; isotopic rel
boundary to an annulus of the form β×[ri, ri+1]. So there is either a hori-
zontal annulus giving an isotopy of αi forward into F (ri+1) or a horizontal
annulus giving an isotopy of αi+1 back into F (ri). In either case, deduce
the desired result.)

In this fashion, produce a sequence of curves {α′
i}n

i=0 (indices not taken
mod n) in F (r0) = F (0) such that

• α′
i is isotopic to αi through F×[0, ri] for i ∈ {1, 2, . . . , n − 1},

• α′
0 = α0,

• α′
n is obtained by isotoping α0 off of F (2π) back through F×[0, 2π],

• α′
i ∩ α′

i+1 = ∅ for i = 0, 1, . . . , n − 1, and

• ϕ(α′
n) is isotopic to α′

0.

Thus,
dC(ϕ) ≤ dC(α′

n, ϕ(α′
n)) ≤ n = −χ(G)

and the theorem is proven. �

Theorems 6.1 and 3.1 have direct consequences:

Corollary 3.2. Any Heegaard splitting H ⊂ M(ϕ) satisfying −χ(H) <
dC(ϕ) is a stabilization of the standard splitting.

Before proving this, a few remarks are in order.
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Remark 3.3. When the translation distance of ϕ is bigger than 4g(F ), the
standard splitting is the unique minimal genus splitting, up to isotopy.

Corollary 3.4. Suppose that ϕ is pseudo-Anosov. If n ∈ N is sufficiently
large, then the standard Heegaard splitting of M(ϕn) is the unique splitting
of minimal genus, up to isotopy.

This follows from our Corollary 3.2 and Lemma 4.6 of [13] which states
that dC(ϕn) grows linearly with n.

Remark 3.5. Rubinstein [16] has obtained Corollary 3.4 using techniques
from minimal surface theory. Lackenby [11], using similar ideas, has ob-
tained a slightly weaker result. Note also that a closed hyperbolic surface
bundle M(ϕ) is covered by the bundle M(ϕn). Thus, Corollary 3.4 may be
considered as weak evidence for a “yes” answer to a question of Boileau; see
Problem 3.88 in [9].

Proof of Corollary 3.2. Let H ⊂ M(ϕ) be a Heegaard splitting with
−χ(H) < dC(ϕ). If H is stabilized, we may destabilize to obtain a Hee-
gaard splitting with smaller −χ. So, assume that H is not stabilized. As
M(ϕ) is irreducible, it follows that H is irreducible [25].

Now, by Theorem 6.1, the splitting H cannot be strongly irreducible.
Thus, H is simultaneously weakly reducible and irreducible. Following [22]
(to be precise, the final sentence of Remark 2.3 of that paper), there are
disjoint disk systems D ⊂ V and E ⊂ W with the following property:
compressing H along D ∪ E yields a non-empty incompressible surface G.
This surface need not be connected. Also note that −χ(G) < −χ(H).

If a component of G is not isotopic to the fibre F , then apply Theorem 3.1
to find either dC(ϕ) ≤ 1 or dC(ϕ) ≤ −χ(G). The first inequality, combined
with our assumption −χ(H) < dC(ϕ), implies that the surface bundle M(ϕ)
is either the three-sphere or a lens-space. This is a contradiction as π1(M(ϕ))
contains a non-Abelian surface group. The second inequality combined with
our assumption that −χ(H) < dC(ϕ) implies −χ(H) < −χ(H), an impossi-
bility.

It follows that G is isotopic to a collection of fibres. Recall that the
surface G was obtained via compressing a separating surface. Thus, G itself
must be separating. Hence, G is the union of an even number of fibres. Thus,
the genus of H is at least that of the standard splitting. (Note that even
this much of the proof establishes, when dC(ϕ) > 4g(F ), that the standard
splitting has minimal genus.)
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Let N ∼= F×I be the closure of some component of M�G. Let A be the
compressing disks of D∪E contained in N . Now, let H ′ ⊂ N be the surface
obtained by compressing H along all disks of (D ∪ E)�A. Finally, let H ′′

be the component of H ′ contained in N .
Then H ′′ is an irreducible Heegaard splitting for N such that both

boundary components of N lie on the same side of H ′′ (see Lemma 2.4
of [22]). By Theorem 2.9, it follows that H ′′ is the standard type 2 split-
ting of N ∼= F×I. The identical argument applies to all other components
of M(ϕ)�G. We conclude that H is obtained by amalgamation of these
splittings (Proposition 2.8 of [22]).

Now, if |G| ≥ 4, a pleasant exercise shows that H was stabilized – a
contradiction. It follows that H is the standard splitting of M(ϕ) and this
completes the proof. �

4. Analyzing intersections.

Briefly, the proof of Theorem 6.1 is as follows: Isotope the splitting surface
H into a “good position” and examine the transverse intersections of H with
the fibres. From these, extract a sequence of curves which provide a path in
the curve complex of the fibre. This path gives the desired bound. As might
be expected, the details are more delicate than in the proof of Theorem 3.1.
In particular, a replacement for Thurston’s theorem is needed.

The rest of this section explores the nature of intersections between a
Heegaard splitting surface and the fibres of a surface bundle over the circle.

Fix a surface automorphism ϕ : F → F . Recall that πF : M(ϕ) → S1

is the associated map realizing M(ϕ) as a bundle over the circle. Let H ⊂
M(ϕ) be a Heegaard splitting. Pick a fibre F (θ) = π−1

F (θ) which meets H
transversely.

Definition 4.1. A simple closed curve component α ⊂ F (θ) ∩ H is non-
compressing if α is either essential in both surfaces or inessential in both. We
call the curve α mutually essential if α is essential in both surfaces. Finally,
α is mutually inessential if α is inessential in both surfaces.

Note that, as F (θ) is incompressible, no curve of intersection may be
essential in F (θ) while being inessential in the splitting surface.

Wiggle H slightly so that πF |H is Morse; i.e. has singularities of Morse
type. Let p ∈ H be a saddle critical point of πF |H. Let θ = πF (p) and let
P be the component of H ∩ π−1

F [θ − ε, θ + ε] containing p.
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Definition 4.2. If every component of ∂P is mutually essential, we call p
an essential saddle. If every component of ∂P is non-compressing, but at
least one is inessential in H, then we call p an inessential saddle.

Lemma 4.3. Fix a Heegaard splitting H ⊂ M(ϕ) so that πF |H is Morse.
If F ′ is isotopic to the fibre F (θ), the surface H ′ is isotopic to H, and F ′

is transverse to H ′, then F ′ ∩ H ′ contains at least one curve which is not a
mutually inessential curve.

Proof. Suppose that F ′∩H ′ meet only in mutually inessential curves. Then,
by an innermost disk argument, there is a further isotopy making them
disjoint. This cannot be, as handlebodies do not contain closed embedded
incompressible surfaces. �

Lemma 4.4. Fix H ⊂ M(ϕ) so that πF |H is Morse. Suppose angles θ− <
θ+ are given such that:

• The splitting H intersects F (θ±) transversely.

• For every angle θ ∈ [θ−, θ+] all simple closed curve components of
F (θ) ∩ H are non-compressing.

• Every saddle of πF |H in F×[θ−, θ+] is inessential.

Then there is a curve of F (θ−)∩H, essential in F (θ−), which is isotopic,
through F×[θ−, θ+], to a curve of F (θ+) ∩ H.

Proof. Let {θi} be the critical angles of πF |H which lie in [θ−, θ+]. Choose
ri slightly greater than the θi and let R = {ri}∪{θ− + ε} be a set of regular
angles.

For every r ∈ R surger H along every curve of F (r) ∩ H which bounds
a disk in F (r), innermost first. Let H ′ be the intersection of the surgered
surface with F×[θ−, θ+]. Note that πF |H ′ has exactly two new critical points
for every surgery curve. See Figure 2.

Claim. The surface H ′ is a union of spheres, disks, and annuli. Every
annulus component has boundary which is essential in one of the F (θ±).

Proof. Fix attention on a component H ′′ ⊂ H ′. Begin by examining the crit-
ical points of πF |H ′′ and drawing conclusions about the Euler characteristic
of H ′′.
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H H ′
F (r)F (r)

Figure 2: Constructing H ′ from H.

If πF |H ′′ has no critical points then H ′′ is a horizontal annulus. In this
case the boundary of H ′′ must be essential in its fibre, by the construction of
H ′. Note that this kind of situation is the desired conclusion of the lemma
at hand.

If πF |H ′′ has more critical points of even index than odd then H ′′ is a
disk or sphere.

Now, suppose p ∈ H ′′ is a critical point of saddle type and let πF (p) = θ.
Let P be the component of H ∩ π−1

F [θ − ε, θ + ε] meeting p.
As p is not an essential saddle at least one boundary component of P is

inessential in its fibre. If all three are inessential then H ′′ is a two-sphere.
If exactly two components of ∂P are inessential in their fibres then one of
the two surfaces F (θ ± ε) is compressible in F×[θ−, θ+], a contradiction.
Assume, therefore, that exactly one component of ∂P is inessential in the
containing fibre. Call this curve α.

Assume that πF (α) = θ − ε; that is, the inessential curve α lies to the
left of the saddle point. (The other case is handled similarly.) Let r ∈ R be
the regular value appearing just before the critical value θ = πF (p). That
is, r < θ − ε < θ. Note that πF |H has no critical values between r and θ.
See Figure 3.

Deduce that, in the surface H, there is a horizontal annulus isotopic
to α×[r, θ − ε]. Thus the surface H ′′ has a center tangency with the fibre
just before the angle r. This gives a disk capping off the curve α. Again,
see Figure 3. It follows that every saddle in H ′′ is paired with at least one
critical point of even index. Thus, if not a sphere or disk, H ′′ is an annulus.

Finally, if H ′′ is an annulus then H ′′ has two boundary components. By
construction, each of these is an essential curve in one of the surfaces F (θ±).
This finishes the claim. �



914 D. Bachman & S. Schleimer

pα

F (θ)F (θ) F (θ − ε)F (θ − ε) F (r)F (r)

Figure 3: A surgery just before α

Now to complete the proof of the lemma. Suppose that no component
of H ′ meets both boundary components of F×[θ−, θ+]. Thus, by the claim,
every component of H ′ meeting F (θ−) is boundary parallel in F×[θ−, θ+].
Isotope F (θ−) across these boundary-parallelisms to obtain a surface F ′

which intersects the splitting surface H only in mutually inessential curves.
This contradicts Lemma 4.3.

So there is a component H ′′ ⊂ H ′ which meets both F (θ−) and F (θ+).
By the claim above this H ′′ must be isotopic to a horizontal annulus with
boundary essential in the containing fibres. The lemma is proved. �

5. The graphic and its labellings.

To begin, this section discusses height functions subordinate to a Heegaard
splitting. We then compare one of these to a bundle structure to obtain a
“graphic” in the sense of Rubinstein and Scharlemann [17]. This technique
is also similar that of [6]. We also refer the reader to [10] as an informative
paper on this topic.

Fix attention now on a Heegaard splitting H of a closed, orientable,
three-manifold M . Recall that H cuts M into a pair of handlebodies V and
W .

5.1. Height functions.

Choose a diffeomorphism between the handlebody V and a regular neigh-
borhood of a connected, finite, polygonal graph Θ ⊂ R

3. For simplicity,
assume that every vertex of Θ has valence two or three. Let ΘV be the
image of Θ inside of V . Any such ΘV is a spine of V .
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Definition 5.1. A smooth map πH : M → I is a height function with
respect to the splitting H if

• the level H(t) = π−1
H (t) is isotopic to H for all t ∈ (0, 1),

• the graphs ΘV = π−1
H (0), ΘW = π−1

H (1) are spines for V and W ,

• there is a map h : H×I → M (a sweep-out) such that

– h|H×(0, 1) is a diffeomorphism,

– πH ◦ h is projection onto the second factor,

– for small ε, the image of h|H×[0, ε] gives the structure of a map-
ping cylinder to V (ε) = π−1

H [0, ε], for some deformation retraction
∂V (ε) → ΘV ,

– the previous condition also holds for the handlebody W (1− ε) =
π−1

h [1 − ε, 1].

The last two conditions on the sweep-out ensure that if an embedded
surface F ⊂ (M,H) meets ΘV (or ΘW ) transversely, then F ∩ V (ε) (or
F ∩ W (1 − ε)) is a collection of properly embedded disks.

5.2. The graphic.

Let H ⊂ M(ϕ) be a Heegaard splitting of the given surface bundle. Choose
a bundle map, πF , and a height function, πH , as above and insist that
the two functions are generic with respect to each other. Define the map
πΓ : M(ϕ) → S1×I by πΓ(x) = (πF (x), πH(x)). As a bit of terminology, we
sometimes call πΓ(F (θ)) a vertical interval and call πΓ(H(t)) a horizontal
circle. Also, let Γ(θ, t) = πΓ

−1(θ, t) = F (θ) ∩ H(t).
The graphic of the map πΓ = (πF , πH) is the set

Λ = {(θ, t) ∈ S1×(0, 1) | F (θ) is not transverse to H(t)}

where the closure is taken in S1×I. As in the papers cited above: Λ is a
graph with smooth edges meeting the boundary of the annulus transversely.

Definition 5.2. The open cells of S1×(0, 1)�Λ are called the regions of the
graphic.

If (θ, t) is a point of a region, then Γ(θ, t) = F (θ) ∩ H(t) is a collection
of simple closed curves embedded in M(ϕ).
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Remark 5.3. Suppose that (θ, t), (θ′, t′) are two points in the same region.
Then the combinatorics of Γ(θ, t) and Γ(θ′, t′) are identical, as follows:

Suppose that α is a short horizontal or vertical arc embedded in the
interior of a region R. Suppose also that (θ, t), (θ′, t′) are the endpoints of
α. Let γ be a component of Γ(θ, t). Then there is an ambient isotopy taking
γ to γ′ ⊂ Γ(θ′, t′) supported in a neighborhood of an annulus of F (θ) (if
α is vertical) or an annulus of H(t) (if α is horizontal). Furthermore, this
ambient isotopy may be chosen to take F (θ) to F (θ′) and H(t) to H(t′).

By crawling along horizontal and vertical arcs, any pair of points in R
may be joined. Thus, most properties of Γ(θ, t) depend only on the region
containing (θ, t).

As above, the edges are the one-dimensional strata of Λ.

Remark 5.4. When (θ, t) lies on an edge, there is one component, Σ(θ, t),
of Γ(θ, t) which is not a simple closed curve. This Σ is the singular compo-
nent. The name of the point (θ, t) is omitted when clear from context.

There are two kinds of edges: those representing a center tangency be-
tween a fibre and a level surface, and those representing a saddle tangency.
Crossing an edge of the graphic from region R to R′ causes the combina-
torics of the curves to change. If the edge represents a center tangency,
then a single curve of R disappears (appears). It follows that this curve is
mutually inessential; in other words, it bounds a disk in both the fibre and
the level. In this situation, Σ is a single point.

If the edge represents a saddle, then two curves of R touch as the edge
is crossed and become a single curve of R′ (or the reverse). When (θ, t) lies
on such an edge, the singular component Σ is a four-valent graph with one
vertex, embedded in both the fibre F (θ) and the level H(t).

The vertices are the zero-dimensional strata of the graphic Λ.

Remark 5.5. There are several possibilities for a vertex v = (θ, t):

1. All vertices of valence one occur at height 0 or 1.

2. A vertex with valence two in Λ is a birth–death vertex. Both edges
lie in the same quadrant with respect to the vertex. (As in [10].) See
Figure 4.

3. A vertex of valence four is a crossing vertex. Here, the four edges lie in
distinct quadrants and the tangent directions of opposite edges agree.
The edges cut a small neighborhood of the vertex into four regions.
Again, see Figure 4. There are two further subcases:
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• If there are two singular components Σ,Σ′ ⊂ Γ(θ, t), then v is a
disjoint crossing vertex.

• If there is a single singular component Σ, then v has entangled
saddles. In this case, Σ is a four-valent graph with exactly two
vertices.

θ

t

θ

t

Figure 4: A birth-death vertex and a crossing vertex.

Finally, general position implies that for every angle θ, the vertical inter-
val πΓ(F (θ)) = {θ}×I meets the graphic Λ at most once non-transversely,
either at a vertex or at a tangency with the interior of an edge. The same
holds for horizontal circles πΓ(H(t)) = S1×{t}.

5.3. Labellings.

The following labellings will play an important role in the proof of Theo-
rem 6.1. Recall that the level surface H(t) cuts M(ϕ) into a pair of handle-
bodies V (t) and W (t).

Definition 5.6. For each t ∈ (0, 1), the level H(t) is labelled V (or W) if
there is a value θ ∈ [0, 2π] and non-singular simple closed curve component
γ ⊂ Γ(θ, t) = F (θ)∩H(t) which bounds an essential disk in V (t) (or W (t)).

A slightly finer labelling is also required.

Definition 5.7. A region R is labelled with a V (or W) if there is a (θ, t) ∈ R
and a component γ ⊂ Γ(θ, t) such that γ bounds an essential disk in V (t)
(W (t)).

As we shall see in the proof below, each level and region receives at
most one label (or none at all) and these labels reveal information about the
relative positions of the fibre and level surface.
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6. Proof of the main theorem.

A sequence of claims will now prove:

Theorem 6.1. If H ⊂ M(ϕ) is a strongly irreducible Heegaard splitting,
then the translation distance of ϕ is at most the negative Euler characteristic
of H. That is,

dC(ϕ) ≤ −χ(H).

Pick a bundle map πF : M(ϕ) → S1 and a height function πH : M(ϕ) →
I which respect the given fibre and splitting. Recall that ΘV = π−1

H (0) and
ΘW = π−1

H (1) are spines for the handlebodies V and W . Also, the levels
H(t) = π−1

H (t) impose a product structure on M(ϕ)�(ΘV ∪ ΘW ).
As above, obtain a graphic Λ in the annulus S1×I. We begin by obtain-

ing a few fairly standard facts about the labellings defined in the previous
section.

6.1. Analyzing the labelling.

Claim 6.2. For all sufficiently small positive values ε, the level H(ε) is
labelled V while H(1 − ε) is labelled W.

This follows directly from the construction of the height function and
genericity.

Claim 6.3. No level or region is labelled with both a V and a W. Also, if
a region R is labelled, then every level H(t), such that πΓ(H(t)) ∩ R �= ∅,
receives the same label. Finally, if a level H(t) is labelled, then some region
meeting πΓ(H(t)) receives the same label.

This follows from strong irreducibility, the fact that the curves Γ(θ, t) =
F (θ) ∩H(t), as θ varies, form a singular foliation of H(t), and Remark 5.3.

Remark 6.4. Suppose that H(t) is labelled and γ ⊂ Γ(θ, t) is a witness
of this fact. Then there is a γ′ ⊂ Γ(θ′, t) which is also a witness, for all θ′

sufficiently close to θ.

Remark 6.5. Suppose H(t) is labelled with a V (or W). By incompressibil-
ity of F (θ), the given curve γ bounds a disk D ⊂ F (θ). By the “no nesting”
lemma, Lemma 2.8, D is isotopic rel γ to a disk properly embedded in V (t)
(or W (t)).
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From Remark 5.4, deduce:

Claim 6.6. If two regions are both adjacent to an edge representing a center
tangency, then both regions have the same label.

The next claim is not strictly required for the proof of Theorem 6.1. We
include it both to simplify our proof of the theorem and to shed light on the
general situation.

Claim 6.7. Suppose that H(t′) is labelled V. Suppose 0 < t < t′. Then
H(t) is labelled V as well. Identically, if t′ < t < 1 and H(t′) is labelled W,
then H(t) is labelled W.

Proof. Consider the case where H(t′) is labelled V. By hypothesis, we are
given an angle θ′ and a curve γ′′ ⊂ Γ(θ′, t′) bounding an essential disk in
V (t′). We may choose an angle θ close to θ′ so that firstly, by Remark 6.4,
there is a curve γ′ ⊂ Γ(θ, t′) also bounding an essential disk in V (t′) and
secondly, by general position, the point (θ, t) lies in a region of the graphic.
That is, (θ, t)/∈Λ.

By Remark 6.5, the curve γ′ bounds a disk D′ ⊂ F (θ). Furthermore,
choosing a different γ′ ⊂ Γ(θ, t′) if necessary, assume that γ′ is “innermost”
in the sense that all curves of interior(D′) ∩ H(t′) are inessential in H(t′).

Let Γ(D′, t) = D′ ∩ H(t) ⊂ Γ(θ, t). Suppose that all components of
Γ(D′, t) are inessential in H(t). Isotope D′ rel γ′ off of H(t) to a disk
E with E ∩ V (t) = ∅. Let N = V (t′)�V (t) and note that N ∼= H×I while
∂N = H(t)∪H(t′). Thus, we may further isotope E rel γ′ out of interior(N).
This pushes E to a disk E′ ⊂ W (t′). Thus, γ′ either bounds an essential
disk in W (t′) or is trivial in H(t′). The first implies that H is reducible
while the second contradicts our choice of γ′.

Thus, there is a curve, γ ⊂ Γ(D′, t), which is essential in H(t) and is the
innermost such in D′. Let D ⊂ D′ be the disk which γ bounds. Recall that
all curves of interior(D) ∩ ∂N are inessential in ∂N = ∂

(
V (t′)�V (t)

)
. So,

there is an isotopy of D rel γ to a disk lying inside of M(ϕ)�(H(t′)∪H(t)).
Now, if this disk lies in N , then γ could not be essential in H(t). It

follows that γ bounds a disk in V (t). Thus, H(t) is labelled with a V, as
claimed. �

As a bit of notation, set L(V ) = {t ∈ (0, 1) | H(t) is labelled V} and
L(W ) = {t ∈ (0, 1) | H(t) is labelled W}. Define tV = supL(V ) and tW =
inf L(W )
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Claim 6.8. The sets L(V ) and L(W ) ⊂ (0, 1) are non-empty, disjoint,
connected, and open. Also, tV ≤ tW .

Proof. The first sentence follows from Claims 6.2, 6.3, 6.7, and the fact that
if γ ⊂ Γ(θ, t) is a non-singular component. then there are γ′ ⊂ Γ(θ, t−ε) and
γ′′ ⊂ Γ(θ, t + ε) with combinatorics identical to γ. The second follows from
the fact that L(V ), L(W ) are disjoint open intervals and that inf L(V ) = 0
by Claim 6.2. �

It follows that if tV ≤ t0 ≤ tW , then H(t0) is unlabelled.

6.2. Analyzing the unlabelled level.

The unlabelled level H(t0) found above will serve as a replacement for
Thurston’s theorem used in the proof of Theorem 3.1. There are two cases
to consider: tV < tW or tV = tW .

6.3. Unlabelled interval.

Suppose that tV < tW . Pick a level H(t0) which avoids the vertices of the
graphic, which is not tangent to any edge of the graphic, and has tV <
t0 < tW . It immediately follows that for every θ and for every non-singular
γ ⊂ Γ(θ, t0), the curve γ is non-compressing — either essential in both
F (θ) and H(t0) or inessential in both. In the terminology of Rubinstein–
Scharlemann [17], the level H(t0) is compression-free with respect to every
fibre.

We now come to the heart of this case: Let {θi}n−1
i=0 be the critical angles

of πF |H(t0) corresponding to essential saddles. (As defined in Section 4, the
saddle point p is essential when all boundary components of the associated
pair of pants are mutually essential curves.) Choose the indexing so that
θi < θi+1 are adjacent.

Suppose first that n = 0. Rotate the S1 coordinate, if necessary, so that
F (0) meets H(t0) transversely. Cut M(ϕ) along F (0). Note that H(t0),
inside of F×[0, 2π], satisfies the hypotheses of Lemma 4.4. Thus, there is a
mutually essential curve of F (0) ∩ H(t0) isotopic, through F×[0, 2π], to a
curve of F (2π). Thus, dC(ϕ) ≤ 1 < 2 ≤ −χ(H), as desired.

Suppose now that n > 0. Choose ε sufficiently small and positive. So,
for each critical angle, there is an essential saddle in H(t0)∩ (F×[θi − ε, θi +
ε]). The pair of pants given by this saddle contributes −1 to the Euler
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characteristic of H(t0). Thus, n ≤ −χ(H).
By Lemma 4.4, there are also mutually essential curves αi ⊂ Γ(θi + ε, t0)

and α′
i ⊂ Γ(θi+1 − ε, t0) such that α′

i is isotopic to αi through F×[θi +
ε, θi+1 − ε]. Also, αi may be isotoped back through F×[θi − ε, θi + ε] to lie
in F (θi − ε), disjoint from α′

i−1. (This is shown by Figure 1, although the
labels will be different.)

As in the proof of Theorem 3.1, the αi give a path of length n in C1(F (0))
starting at α0 and ending at ϕ(α0). This implies dC(ϕ) ≤ −χ(H), as desired.

6.4. Only a vertex.

The more difficult situation occurs when t0 = tV = tW . By our general
position assumption, the horizontal circle πΓ(H(t0)) meets the graphic Λ at
most once non-transversely.

Claim 6.9. There are regions R and R′ labelled V and W, respectively, such
that the closures R and R′ both meet πΓ(H(t0)). Also, neither R nor R′ meet
πΓ(H(t0)). The horizontal circle πΓ(H(t0)) meets a crossing vertex (θ0, t0)
of the graphic.

Proof. As t0 = tV and by Claim 6.3, there is a region R such that R ∩
πΓ(H(t0)) is non-empty and R lies below πΓ(H(t0)) in the annulus S1×I.
Similarly, there is a region R′ above the horizontal circle πΓ(H(t0)).

Now, if πΓ(H(t0)) is transverse to the edges of Λ, then every region R′′

with closure meeting πΓ(H(t0)) also has interior meeting πΓ(H(t0)). Then,
as H(t0) is unlabelled, so are R and R′. This is a contradiction.

Suppose that πΓ(H(t0)) is only tangent to an edge of the graphic. Then
every region, but one, whose closure meets the circle πΓ(H(t0)) also meets
πΓ(H(t0)) along its interior. As above, this gives a contradiction. Thus,
πΓ(H(t0)) meets a vertex at the point (θ0, t0).

Finally, to rule out the possibility that the vertex is a birth–death vertex:
When πΓ(F (θ0)) and πΓ(H(t0)) meet in a birth–death vertex, there are only
two edges of the graphic incident on the vertex. As in Figure 4, the slopes of
the two edges have the same sign and we may assume that, as the edges leave
the vertex, both edges head “northeast.” (The other three cases are similar.)
Again, every region, but one, whose closure meets the circle πΓ(H(t0)) also
meets πΓ(H(t0)) along its interior. Again, this is a contradiction. �
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Now, focus attention on this vertex at (θ0, t0). Let Σ ⊂ Γ(θ0, t0) be the
union of the singular components. Let P be the components of H(t0) ∩
(F×[θ0 + ε, θ0− ε]) meeting Σ. We will call P a foliated regular neighborhood
of Σ, taken in H(t0). Similarly, let Q be a foliated regular neighborhood of Σ,
taken in F (θ0). Finally, let ∂±P = P ∩F (θ0± ε) while ∂±Q = Q∩H(t0± ε).

Claim 6.10. The vertex at (θ0, t0) has entangled saddles. Also, some com-
ponent β ⊂ ∂−Q bounds an essential disk in V (t0− ε) (and some component
δ ⊂ ∂+Q bounds in W (t0 + ε)).

Proof. As πΓ(F (θ0)) and πΓ(H(t0)) meet in a crossing vertex, there are
four regions adjacent with closure meeting the vertex. Call these “north”,
“east”, “south”, and “west.” See the right-hand side of Figure 4. Again,
our general position assumption ensures that πΓ(H(t0)) meets the graphic Λ
at most once non-transversely. Thus, πΓ(H(t0)) meets Λ exactly once non-
transversely. Thus, all regions whose closure meets πΓ(H(t0)), other than
the north and south, also meet πΓ(H(t0)) along their interior. It follows
from Claim 6.3 that all these regions except the south (the region R) and
north (R′) are unlabelled.

Choose a curve β ⊂ Γ(θ0, t0 − ε) which bounds an essential disk in
V (t0 − ε). Moving along a straight arc from (θ0, t0 − ε) to (θ0 + ε, t0) cannot
induce ambient isotopy on β. If it did, the east region would be labelled
with a V, an impossibility.

Thus, the south-east edge represents a saddle tangency. Also, this saddle
meets a regular neighborhood of β, taken inside of F (θ0). Symmetrically,
the same holds for the south-west edge. We conclude that both saddles
lie inside the same component of Γ(θ0, t0). An identical argument locates
δ ⊂ Γ(θ0, t0 + ε). It follows that Σ is connected, contains two saddle tan-
gencies, and has β and δ as boundary components of Q, the vertical foliated
neighborhood. �

Note that the curves β and δ may be isotoped to curves β0 and δ0 lying
inside of P , the regular neighborhood of Σ ⊂ H(t0). Since β and δ bound
disks in V (t0 − ε) and W (t0 + ε), the curves β0 and δ0 bound disks in V (t0)
and W (t0).

Remark 6.11. Recall that the Heegaard splitting H and the fibre F both
have genus at least two. The graph Σ has only two vertices and four edges.
Thus, by an Euler characteristic argument, there is an essential simple closed
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curve in H(t0) disjoint from the subsurface P (and similarly, for Q ⊂ F (θ0)).
So, if tV = tW , then the Heegaard splitting H satisfies Thompson’s disjoint
curve property, defined in [23].

We now examine the properties of the foliated neighborhoods of Σ; that
is, P ⊂ H(t0) and Q ⊂ F (θ0). Recall that Σ is a connected four-valent graph
with two vertices. Let ρ be an edge connecting the two vertices. Let X be
a small neighborhood of ρ, taken in H(t0), and let Y be an even smaller
neighborhood of Σ, also taken in H(t0). Note that Y ⊂ P and Y ∼= P . See
Figure 5 for a picture of X ∩Y . This is combinatorially a 12-gon and Y �X
is a union of rectangles in H(t0). These rectangles glue the arcs of (∂X)∩Y
together in pairs.

ρ

Figure 5: A regular neighborhood of the edge ρ intersecting a regular neigh-
borhood of Σ.

There are two restrictions on the gluings of these arcs: the orientability of
H and the co-orientation of the foliation of H(t0) by Γ(θ, t0), as θ increases.
The co-orientation is indicated in Figure 5 by the small arrows. Taking
into account symmetry, there are only four possibilities for Y , and hence P ,
as shown in the first column of Figure 6. Note that there are four ways of
resolving the two saddles of Σ; each of these corresponds to moving from the
vertex (θ0, t0) to one of the four adjacent regions. It follows that resolving
the saddles yields the curves ∂±P and ∂±Q. Recall that β ⊂ ∂−Q and
δ ⊂ ∂+Q may be isotoped to β0, δ0 ⊂ P , as shown in the second column of
Figure 6.

In the fourth row, there are two possibilities for β0; either β0 agrees with
β′ or with β′′ (the solid curves). The curve δ0 is treated similarly (see the
dashed curves). Wherever β0 and δ0 lie inside the twice-punctured torus, we
see that β0 only meets δ0 once. Thus, the splitting surface H is stabilized,
contradicting strong irreducibility. It follows that the foliated neighborhood
P is homeomorphic to a four-times punctured sphere, with Σ in various
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Σ
β0

δ0

Σ β0

δ0

Σ

β0 δ0

Σ
β′

β′
δ′

δ′

β′′

δ′′

Figure 6: Possibilities for the regular neighborhood P .

positions, as shown.

Claim 6.12. Every component of ∂P is essential in H(t0).

Proof. In each of the three cases, if any component of ∂P bounds a disk
in H(t0), then a component of ∂P bounds a disk in H(t0)�P . Isotope β0

across this disk to make β0 disjoint from δ0. This contradicts the strong
irreducibility of H. �

Claim 6.13. The components of ∂P are mutually essential curves.

Proof. All are essential in H(t0) by the above claim. If one of the curves
bounds a disk in the containing fibre, then by Lemma 2.8, that curve bounds
a disk in V (t0) or W (t0). In this case, H(t0) was labelled with a V or a W.
This contradicts Claim 6.8 and the hypothesis t0 = tV = tW . �
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Now, to carry out an analysis similar to that of the case tV < tW . Let
{θi}n−1

i=1 be the angles corresponding to the essential saddles of πF |H(t0). Let
(θ0, t0) be the vertex with entangled saddles meeting the horizontal circle
πΓ(H(t0)). Choose the indexing so that θi < θi+1 are adjacent. Choose
ε sufficiently small and positive. So, for each critical angle, i > 0, there
is an essential saddle in H(t0) ∩ (F×[θi − ε, θi + ε]) which contributes −1
to the Euler characteristic of H(t0). As the curves of ∂P are mutually
essential (Claim 6.13), the four-punctured sphere P contributes −2 to the
Euler characteristic of H(t0). Altogether, the n − 1 essential saddles and
P contribute n + 1 to the negative Euler characteristic of H(t0). That is,
n + 1 ≤ −χ(H).

By Lemma 4.4, there are also mutually essential curves αi ⊂ Γ(θi + ε, t0)
and α′

i ⊂ Γ(θi+1−ε, t0) such that α′
i is isotopic to αi through F×[θi+ε, θi+1−

ε]. Also, for i > 0, αi may be isotoped back through F×[θi − ε, θi + ε] to lie
in F (θi − ε), disjoint from α′

i−1. For i = 0, this last may not hold. Instead,
after isotoping α0 through F×[θ0 − ε, θ0 + ε] to obtain α′′

0 , both α′′
0 and

α′
n−1 may lie in a translate of Q, the vertical foliated neighborhood of Σ.

As in Remark 6.11, the subsurface Q does not fill F (θ0 − ε). In any case,
dC(α′′

0 , αn−1) ≤ 2 when considered in the curve complex of the fibre.
Thus, similar to the proof of Theorem 3.1, the αi give a path of length

n+1 in the graph C1(F (0)). Therefore, dC(ϕ) ≤ n+1 ≤ −χ(H), as desired.
This deals with the case where tV = tW and proves the theorem.

We end here with a few remarks and comments:

Question 6.14. What can be said about the higher genus Heegaard split-
tings of surface bundles with high translation distance?

Question 6.15. Suppose that M has two distinct surface bundle structures.
What can be learned from the graphic induced on S1×S1?

Remark 6.16. It seems likely that the techniques of Section 6.1 are suffi-
ciently soft to allow a taut foliation to replace the surface bundle structure.
See also Question 9.5 of Calegari’s problem list on foliations [4].

Remark 6.17. There is no inequality, as in Theorem 6.1, between the genus
of a strongly irreducible splitting of M(ϕ) and the stretch factor of the
pseudo-Anosov automorphism ϕ. Here is the required construction: Fix
H ⊂ M(ϕ) a genus two, strongly irreducible splitting. (For example, let
M(ϕ) be the longitudinal filling on D. Rolfsen’s 62 knot [15]. As the knot
is tunnel number one, let H be the resulting genus two Heegaard splitting.)
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Isotope H until all curves of F (0) ∩ H are mutually essential. Let γ ⊂
Γ = F (0) ∩ H be one component. Let N(γ) be a regular neighborhood
of γ. Let µ, λ ⊂ ∂N(γ) be a meridian, longitude pair with µ bounding a
disk in N(γ) while λ is isotopic to ∂N(γ) ∩ H (which, in turn, is isotopic
to ∂N(γ) ∩ F ). Then Mn, the 1/n Dehn surgery on M�N(γ), is still a
surface bundle, with monodromy ϕn, say. The stretch factor of ϕn grows
linearly with n (see [12]) while the Heegaard genus of Mn remains equal to
two. Thus, the minimal genus splitting remains strongly irreducible. This
completes the construction.

Remark 6.18. It has been asked whether the main theorem of this pa-
per can be improved to refer to translation distance in the pants complex.
(See [2].) It is straight-forward to provide candidate counterexamples in
genus two, somewhat similar to the above. A subtle argument, shown to
us by Canary and Minsky, then proves that the volumes increase without
bound. We hope to provide the details of this construction in a future paper.
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