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We show that if a hyperbolic 3-manifold M with a single torus
boundary admits two Dehn fillings at distance 5, each of which
contains an essential torus, then M is a rational homology solid
torus, which is not large in the sense of Wu. Moreover, one of
the surgered manifolds contains an essential torus which meets
the core of the attached solid torus minimally in at most two
points. This completes the determination of best possible upper
bounds for the distance between two exceptional Dehn fillings
yielding essential small surfaces in all ten cases for large hyperbolic
3-manifolds.
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1. Introduction.

Let M be a compact orientable 3-manifold with a torus boundary component
T0. A slope on T0 is the isotopy class of an essential unoriented simple closed
curve on T0. For two slopes γ1, γ2, the distance Δ(γ1, γ2) between them is
their minimal geometric intersection number. For a slope γ on T0, the man-
ifold obtained by γ-Dehn filling on M is M(γ) = M ∪ V , where V is a solid
torus glued to M along T0 in such a way that γ bounds a meridian disk in V .
If M is hyperbolic, in the sense that M with its boundary tori removed ad-
mits a complete hyperbolic structure with totally geodesic boundary, then a
slope γ, or the filling, is said to be exceptional if M(γ) is not hyperbolic. In
particular, if M(γ) contains an essential torus, then γ, or the filling, is said
to be toroidal. We are interested in obtaining the upper bounds for the dis-
tance between exceptional slopes, and focus on toroidal slopes in this paper.

1Partially supported by Japan Society for the Promotion of Science, Grant-in-
Aid for Scientific Research (C), 16540071.
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Following Wu [19], let us say that M is large if H2(M,∂M − T0) �= 0.
Note that M is not large if and only if M is a Q-homology solid torus or a
Q-homology cobordism between two tori. Hence, M is large if ∂M contains
at least three tori or a component of genus at least two. Wu [19] showed
that the upper bound for the distance between exceptional fillings can be
often improved when we restrict ourselves to large hyperbolic 3-manifolds.
For example, the distance between toroidal Dehn fillings on a hyperbolic
3-manifold with a torus boundary component is at most 8, but it is at most
5 for large hyperbolic 3-manifolds [7], because the only hyperbolic manifolds
with a pair of toroidal Dehn fillings at distance greater than 5 are obtained by
Dehn fillings on the Whitehead link exterior, so that they are all Q-homology
solid tori. In [8, Question 4.2], Gordon asks if there is a large hyperbolic
manifold with toroidal Dehn fillings at distance 5. In this direction, [2,
Theorem 3.1] shows that if ∂M is a single torus and the first betti number
β1(M) ≥ 3, then the distance between two toroidal Dehn fillings is at most
4. As stated in [2, Remark 3.15], their argument also works for M whose
boundary consists of at least 4 tori. In [6], we showed that if M admits two
toroidal Dehn filling at distance 5, then ∂M consists of either a single torus
or two tori. Furthermore, Lee [14] proved that the Whitehead sister link
(the (−2, 3, 8)-pretzel link) exterior, which is not large, is the only manifold
whose boundary consists of two tori and which admits two toroidal Dehn
fillings at distance 5.

In this paper, we analyze the case where M has a single torus boundary
and show the following.

Theorem 1.1. Let M be a hyperbolic 3-manifold whose boundary is a single
torus T0. If there are two toroidal slopes α and β on T0 with Δ(α, β) =
5, then M is a Q-homology solid torus. Moreover, either M(α) or M(β)
contains an essential torus which meets the core of the attached solid torus
minimally in at most two points.

There are infinitely many examples of manifolds as in Theorem 1.1. In
particular, the exteriors of Eudave–Muñoz knots k(2,−1, n, 0) (n �= 1) [4]
give all knot exteriors in S3 that satisfy the condition of Theorem 1.1 [17]. In
these examples, each of the surgered toroidal manifolds contains an essential
torus which meets the core of the attached solid torus in two points.

As a corollary, we can answer to Gordon’s question [8, Question 4.2].

Corollary 1.2. Let M be a large hyperbolic 3-manifold with a torus bound-
ary component T0. If M admits two toroidal Dehn fillings α and β on T0,
then Δ(α, β) ≤ 4.



Toroidal Dehn Filling on Large Hyperbolic 3-Manifolds 567

As mentioned in [8], this upper bound is sharp. For example, the White-
head link exterior is large, and admits toroidal slopes 0 and 4 on one bound-
ary torus. Corollary 1.2 completes the determination of best possible upper
bounds for the distance between two exceptional Dehn fillings yielding es-
sential small surfaces in all ten cases for large hyperbolic 3-manifolds. These
are shown in Table 1, where S, D, A and T indicate that the manifold M(α)
or M(β) contains an essential sphere, disk, annulus or torus, respectively.
For these bounds, refer to [5, 8].

Δ S D A T

S 0 0 1 1

D 1 2 1

A 4 4

T 4

Table 1: Upper bounds on Δ(α, β) for large hyperbolic 3-manifolds

Combining with known facts from [7, 14], we have:

Corollary 1.3. If a hyperbolic 3-manifold M with a torus boundary compo-
nent T0 admits two toroidal slopes on T0 at distance greater than four, then
either surgered manifold contains an essential torus which meets the core of
the attached solid torus minimally in at most two points.

The proof of Theorem 1.1 goes as follows. Assume that M admits two
toroidal Dehn fillings at distance 5. First, we deal with the case where both
fillings yield manifolds containing no Klein bottles. As shown in [6, Propo-
sition 2.3], we may assume that at least one essential torus is separating.
By following the arguments of [6], we will see that this torus meets the
core of the attached solid torus only twice. The argument is divided into
three cases, according to how many times the other essential torus meets
the core of the attached solid torus. Secondly, we consider the case where
either surgered manifold contains a Klein bottle. The proof of Theorem
1.1 will be completed in Section 9, where the proofs of Corollaries 1.2 and
1.3 are also given. The proof of Theorem 1.1 implicitly gives the collection
of 3-manifolds that includes all hyperbolic 3-manifolds with a single torus
boundary such that there are two toroidal Dehn fillings at distance 5.

We use integer coefficients for homology groups.
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2. Preliminaries.

Let M be a hyperbolic 3-manifold whose boundary is a torus T0. Suppose
that M admits two toroidal slopes α and β on T0 with Δ(α, β) = 5. Then,
M(α) and M(β) are irreducible by [15, 18].

Let Ŝ be an essential torus in M(α). By [6, Proposition 2.3], we may
assume that Ŝ is separating. We may assume that Ŝ meets the attached solid
torus Vα in s disjoint meridian disks u1, u2, . . . , us, numbered successively
along Vα and that s is minimal over all choices of Ŝ. Let S = Ŝ ∩ M .
By the minimality of s, S is incompressible and boundary-incompressible
in M . Similarly, we choose an essential torus T̂ in M(β) which meets the
attached solid torus Vβ in t disjoint meridian disks v1, v2, . . . , vt, numbered
successively along Vβ, where t is minimal as above. Thus, we have another
incompressible and boundary-incompressible torus T = T̂ ∩ M . We may
assume that S and T intersect transversely. Then, S ∩ T consists of arcs
and circles. Since both surfaces are incompressible, we can assume that S∩T
contains no circle component bounding a disk in S or T . Moreover, we can
assume that ∂ui meets ∂vj in 5 points for any pair of i and j. Orient all
boundary components ∂ui of S coherently on T0. Similarly, orient all ∂vj of
T coherently on T0. We can choose an oriented meridian-longitude pair m
and l on T0, so that [∂ui] = [m] and [∂vj ] = d[m]+5[l] for some d in H1(T0).
Furthermore, we can assume that d = 1 or 2 by reversing the orientations
of all ∂vj and l if necessary [7]. This number d is called the jumping number
of α and β.

Lemma 2.1. Let a1, a2, a3, a4, a5 be the points of ∂ui ∩ ∂vj , numbered so
that they appear successively on ∂ui along its orientation. Then, these points
appear in the order of ad, a2d, a3d, a4d, a5d on ∂vj along its orientation. In
particular, if d = 1, then two points of ∂ui∩∂vj are successive on ∂ui if and
only if they are successive on ∂vj , and if d = 2, then two points of ∂ui ∩ ∂vj

are successive on ∂ui if and only if they are not successive on ∂vj .

Proof. This immediately follows from the definition of the jumping number.
See [13, Lemma 2.10]. �

This simple lemma is important, and will be used repeatedly in the
paper. For example, let ∂ui ∩ ∂vk = {a1, a2, a3, a4, a5} and ∂uj ∩ ∂vk =
{b1, b2, b3, b4, b5} as shown in Figure 1. If the jumping number is one, then
these points appear in the order a1,b1,a2,b2,a3,b3,a4,b4,a5,b5 on ∂vk along its
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orientation. If the jumping number is two, then they appear in the order
a1,b1,a3,b3,a5,b5,a2,b2,a4,b4 on ∂vk along its orientation.

Let GS be the graph on Ŝ consisting of the ui as (fat) vertices and the
arcs of S ∩ T as edges. The orientation on ∂ui induces that of ui. Thus
each vertex is assigned a sign. Define GT on T̂ similarly. Two graphs on
a surface are considered to be equivalent if there is a homeomorphism of
the surface carrying one graph to the other. Note that both graphs have no
trivial loops, since S and T are boundary-incompressible.

For an edge e of GS incident to ui, the endpoint of e is labelled j if it is
in ∂ui ∩ ∂vj . Similarly, label the endpoints of each edge of GT . Thus, the
labels 1, 2, . . . , t (resp. 1, 2, . . . , s) appear in order around each vertex of GS

(resp. GT ) repeated 5 times. Since S is orientable, we can distinguish the
signs of ui’s, according as the labels 1, 2, . . . , t appear counterclockwise or
clockwise, if t > 2. The situation for GT is similar. Each vertex ui of GS

has degree 5t, and each vj of GT has degree 5s. If an edge e has labels j1, j2

at its endpoints, then e is called a {j1, j2}-edge.
Let G = GS or GT . An edge of G is a positive edge if it connects vertices

of the same sign. Otherwise it is a negative edge. Possibly, a positive edge
is a loop.

A cycle in G consisting of positive edges is a Scharlemann cycle if it
bounds a disk face of G and all edges in the cycle are {i, i + 1}-edges for
some label i. The number of edges in a Scharlemann cycle is called the
length of the Scharlemann cycle, and the set {i, i+ 1} is called its label pair.
A Scharlemann cycle of length two is called an S-cycle for short.

Lemma 2.2.

(1) (The parity rule) An edge is positive in a graph if and only if it is
negative in the other graph.
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(2) There are no two edges which are parallel in both graphs.

(3) The edges of a Scharlemann cycle of GS (resp. GT ) cannot lie in a
disk on T̂ (resp. Ŝ).

Proof. (1) See [3, p.279]. (2) is [7, Lemma 2.1]. For (3), see [1, Lemma 2.8]
and [13, Lemma 2.2(5)]. �

Let e1, e2, . . . , et be t mutually parallel negative edges in GS numbered
successively, each connecting vertex ui to uj . Suppose that ek has label
k at ui for 1 ≤ k ≤ t. Then, this family defines a permutation σ of the
set {1, 2, . . . , t} such that ek has label σ(k) at uj . In fact, σ(k) ≡ k + h
(mod t) for some h. We call σ the associated permutation to the family. It
is well-defined up to inversion.

Lemma 2.3. GS satisfies the following.

(1) If GS contains a Scharlemann cycle, then T̂ is separating.

(2) Let t ≥ 3. If a family of mutually parallel positive edges contains more
than t/2 edges, then it contains an S-cycle.

(3) Let t ≥ 3. If a family of mutually parallel negative edges contains more
than t edges, then all the vertices of GT have the same sign, and the
associated permutation to this family has a single orbit.

(4) If t ≥ 4, then any family of mutually parallel edges contains at most
2t edges.

Proof. For (1), see [1, Lemma 2.2(1)] or [13, Lemma 2.2(4)]. (2) is [3,
Corollary 2.6.7]. (3) is [13, Lemma 2.3(1)]. (4) is [7, Corollary 5.5]. �

The next lemma will be used repeatedly throughout the paper.

Lemma 2.4. If H1(M(α)) (or H1(M(β))) is finite, then M is a Q-
homology solid torus.

Proof. If H1(M(α)) is finite, then β1(M) = 1 by Poincaré duality and the
Mayer–Vietoris sequence. �
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3. No Klein bottle.

Until the end of Section 5, we assume that neither M(α) nor M(β) contains
a Klein bottle.

Lemma 3.1. s = 2.

Proof. Assume s ≥ 4. By [6, Proposition 4.1], t ≥ 2. Moreover, Section 5
of [6] shows t �= 2. Thus t ≥ 3. Then Section 3 of [6] eliminates the case
t ≥ 3. �

Thus, the non-loop edges of GS are divided into at most four classes λ,
μ, ν and π, called edge classes, of mutually parallel edges. See Figure 2.
The orientation of each vertex is indicated by an arrow inside the vertex
throughout the paper. Also, the graph GS can be described more schemati-
cally as in Figure 3, where loops and circle components are disregarded. An
edge e of GT is labelled by the class of the corresponding edge of GS , which
is referred to as the edge class label of e.

Two of edge classes are said to be adjacent if the endpoints at u1 (hence
at u2 as well) of those edge classes are successive. Otherwise, they are non-
adjacent. Thus if all edge classes are not empty, then the pair {λ, ν} and
the pair {μ, π} are non-adjacent.
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Let ε, δ be two elements of {λ, μ, ν, π}. A face f of GT is called an (ε, δ)-
face if any edge on ∂f has an edge class label ε or δ. Since such f is bounded
by a Scharlemann cycle, each label appears at least once by Lemma 2.2(3).
An (ε, δ)-face f is good if either label ε or δ does not repeat consecutively
along ∂f . We remark that any bigons and 3-gons bounded by positive edges
in GT are good (see [11, Lemma 3.7] for 3-gons).

We collect some results here which will be used in the following sections.
Let α1, α2, α3, α4 be the number of edges in the edge classes λ, μ, ν, π,

respectively. Also, let α0 be the number of loops at each vertex of GS .
(Clearly, the two vertices are incident to the same number of loops.) Then,
GS is determined by a quintuple (α0, α1, α2, α3, α4). We say then GS

∼=
G(α0, α1, α2, α3, α4). If α0 = 0, then we abbreviate it to G(α1, α2, α3, α4).
Note that

G(α0, α1, α2, α3, α4) ∼= G(α0, α2, α1, α4, α3) ∼= G(α0, α3, α4, α1, α2)
∼= G(α0, α4, α3, α2, α1),

and that G(α1, α2, α3, α4) ∼= G(α2, α3, α4, α1) (see [7]).
When t = 2, each edge class of GS corresponds to either loops in GT ,

or non-loop edges in GT . Define εi to be 0 or 1 according as the edge class
with αi edges is of the first or second kind.

Lemma 3.2. Suppose t = 2. If εi = 0, then αi ≤ 2, and if εi = 1, then
αi ≤ 4. Moreover, αi + εi ≡ αj + εj (mod 2) for i, j ∈ {1, 2, 3, 4}.

Proof. This is [7, Lemma 5.3]. �

Since Ŝ is separating, it divides M(α) into a black side B and a white side
W. Also, the faces of GT are divided into black and white faces, according
as they lie in B or W.

Lemma 3.3. Suppose that all the vertices of GT have the same sign. Then,
GT satisfies the following.

(1) Two bigons with the same color have the same pair of edge class labels.

(2) At most three edges can be mutually parallel.

(3) A black bigon and a white bigon cannot have the same pair of edge
class labels. Also, if their pairs are disjoint, then each pair consists of
non-adjacent edge class labels.
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(4) If a bigon has non-adjacent edge class labels, then there is no 3-gon
with the same color as the bigon. If a bigon has adjacent edge class
labels, {λ, μ} say, then any 3-gon with the same color as the bigon has
edge class labels {ν, π}.

(5) If there are a black bigon and a white bigon with disjoint edge class
labels, then there is no 3-gon.

(6) There cannot be good (ε, δ)-faces for both colors.

Proof. (1) This is [10, Lemma 5.2]. (Recall that M(α) does not contain a
Klein bottle.)

(2) Assume that GT contains mutually parallel four edges. Then, there
are two bigons with the same color among these edges. But (1) and Lemma
2.2(2) give a contradiction.

(3) Let f be a black bigon and g be a white bigon. Let H = Vα ∩ B.
Then shrinking H to its core in H ∪ f gives a Möbius band B in B whose
boundary lies on Ŝ. The same procedure gives another Möbius band B′ in
W. If f and g have the same edge class label pair, or if each pair consists of
adjacent edge class labels and the two pairs are disjoint, then ∂B is isotopic
to ∂B′ on Ŝ, and hence, M(α) contains a Klein bottle.

(4) We may assume that a black bigon f has the edge class label pair
{λ, ν}. If there is a black 3-gon g, then its edge class labels are {λ, ν} by
[12, Lemma 3.7], then there is an essential annulus A in Ŝ which contains all
edges of f and g. Let F be a torus obtained by attaching disks to ∂A and
surgering the resulting 2-sphere using the 1-handle Vα ∩ B. On F , ∂f and
∂g give disjoint essential loops which represent different homology classes,
a contradiction. If f has {λ, μ}, then g has {λ, μ} or {ν, π} by [12, Lemma
3.7]. However, the former is impossible as above.

(5) follows from (3) and (4).
(6) Let f be a good black (ε, δ)-face and g a good white (ε, δ)-face. Then,

there is an essential annulus A in Ŝ which contains all edges of f and g. Let
X = N(A∪H∪f) ⊂ B, where H = Vα∩B. Then, X is a solid torus, in which
the core of A is homotopic to at least twice the core of X by [12, Lemma
4.4]. Let us write B = X ∪ X ′. Then, X ′ is also a solid torus (see the proof
of [12, Theorem 4.1]). Let Y = N(A ∪ H ′ ∪ g) ⊂ W, where H ′ = Vα ∩W,
and let us write W = Y ∪Y ′. Similarly, Y and Y ′ are solid tori. Thus, X∪Y
is a Seifert fibered manifold over the disk with two exceptional fibers, and
a regular fiber is given by the core of ∂A. Also, X ′ ∪ Y ′ also admits such a
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Seifert fibration. Thus, ∂(X ∪ Y ) gives an essential torus in M(α) which is
disjoint from Vα. This contradicts the fact that M is hyperbolic. �

4. The case where t ≤ 2.

First, we assume t = 1.

Proposition 4.1. If t = 1, then M is a Q-homology solid torus.

Proof. There are only two possible graph pairs as shown in Figures 4 and 5
by [6, Section 4]. The jumping number is one and two, respectively.

We show that Figure 4 is impossible. Let f1 be the bigon bounded by
{a, d} and f2 be the 3-gon bounded by {b, c, e} in GT . They lie on the same
side of Ŝ. We see that f1 has edge class labels {λ, ν}, and f2 has edge class
labels {μ, ν}. These two sets are distinct and not disjoint. This is impossible
by Lemma 3.3(4).
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We calculate H1(M(α)) when the jumping number is two. Let f1 and
g1 be the bigons bounded by {a, d} and {d, b}, respectively. Also, let f2

and g2 be the 3-gons bounded by {b, c, e} and {a, c, e}, respectively. Then,
f1 and f2 lie on the same side of Ŝ. We may assume that this side is B.
Let H = Vα ∩ B. Then, B = N(Ŝ ∪ H ∪ f1 ∪ f2) ∪ (a 3-ball). For, ∂f1 is
non-separating on the genus two surface F obtained from Ŝ by tubing along
H, and ∂f2 is non-separating on the torus obtained from F by compressing
along f1. Since M(α) is irreducible, the 2-sphere obtained by compression
along f2 bounds a ball in B. The situation in W is similar (use g1, g2 instead
of f1, f2).

Take a generator �,m, x, y of H1(Ŝ ∪ Vα) as in Figure 6, where x is
represented by the union of the core of the upper half part H of Vα and the
edge a, and y is similar. Then, we have [∂f1] = 2x+m, [∂f2] = 3x+3�+m,
[∂g1] = 2y−2m−� and [∂g2] = 3y−2�. Thus, H1(M(α)) has a presentation

〈�,m, x, y | 2x + m = 0, 3x + 3� + m = 0, 2y − 2m − � = 0, 3y − 2� = 0〉.

It is easy to show that H1(M(α)) = Z35. Thus, M is a Q-homology solid
torus by Lemma 2.4. �

Now, we assume t = 2. Then, GT is determined by a quintuple
(β0, β1, β2, β3, β4) as well as GS , and we can write GT

∼= G(β0, β1, β2, β3, β4).

Lemma 4.2. If the two vertices of GT have distinct signs, then M is a
Q-homology solid torus.
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Proof. Assume that the two vertices of GT have distinct signs. Then, there
is only one possible graph pair as shown in Figure 7 by [6, Lemmas 7.3
and 7.4]. Note that the jumping number is two. We remark that GS can be
either graph of Figure 7 and T̂ is separating as well as Ŝ under this situation
by Lemma 2.3(1).

Without loss of generality, we can assume that GS is the first graph in
Figure 7. As in the proof of Proposition 4.1, we calculate H1(M(α)). Let f1

be the bigon bounded by {a, c} in GT . We may assume that f is black. Let
H = Vα ∩B. There is an essential annulus A on Ŝ which contains the edges
a, c. Let X = N(A ∪ H ∪ f1). Then, X is a solid torus, where the core of
A runs twice along the core of X [9, Lemma 3.7]. Let us write B = X ∪X ′.
Then, X ′ is also a solid torus by the minimality of Ŝ, and moreover the
core of the annulus Ŝ − A runs at least twice along the core of X ′. (See
the proof of [9, Theorem 3.2].) For the other side W of Ŝ, let g1 be the
bigon bounded by {c, g} and g2 the 3-gon bounded by {a, f, i} in GT . Then,
W = N(Ŝ ∪ H ′ ∪ g1 ∪ g2) ∪ (a 3-ball), where H ′ = Vα ∩W, as in the proof
of Proposition 4.1.

By using the generators x, y, �,m of H1(Ŝ ∪ Vα) as shown in Figure 6,
[∂f1] = 2x+m, [∂g1] = 2y−m−�, and [∂g2] = 2m+y. Notice that �+x and
m generate H1(∂X ′). Thus, if a meridian of X ′ represents p(� + x) + qm,
then |p| ≥ 2. Hence, H1(M(α)) has a presentation

〈�,m, x, y | 2x + m = 0, p(� + x) + qm = 0, 2y − m − � = 0, 2m + y = 0〉,

which is equivalent to 〈x | (11p − 2q)x = 0〉. Hence, if p/q �= 2/11, then, M
is a Q-homology solid torus by Lemma 2.4.
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Suppose, p/q = 2/11. There is a Möbius band B properly embedded in
X whose boundary is homotopic to the core of A as in the proof of Lemma
3.3(3). Since p = ±2, the curve m, which is parallel to the core of A, runs
twice along the core of X ′. This implies that it bounds a Möbius band B′ in
X ′. Then, M(α) contains a Klein bottle obtained from B∪B′, contradicting
our assumption. �

Thus, we consider the case where the two vertices of GT have the same
sign. Then, GT contains only positive edges, so GS contains only negative
edges by the parity rule. Hence, the edges of GS are divided into at most
four edge classes, and so GS

∼= G(α1, α2, α3, α4). Since
∑4

i=1 αi = 10,
the possibilities for (α1, α2, α3, α4) allowed by Lemma 3.2 are (4, 4, 2, 0),
(4, 4, 1, 1), (4, 1, 4, 1), (4, 2, 2, 2), (3, 3, 3, 1), (3, 3, 2, 2) and (3, 2, 3, 2), up to
equivalence. (We remark that G(4, 2, 4, 0) ∼= G(4, 2, 0, 4) ∼= G(4, 4, 2, 0).)

Lemma 4.3. (4, 4, 2, 0) is impossible.

Proof. By Lemma 3.2, ε1 = ε2 = ε3 = 1. Thus GT contains no loops, so
the edges of GT are also divided into at most four edge classes. The edges
of the class λ of GS belong to mutually distinct edge classes by Lemma
2.2(2). This also holds for the edges of μ and ν. Hence, GT

∼= G(0, 3, 3, 2, 2)
or G(0, 3, 2, 3, 2). However, there is no correct labeling for either of the
configurations. �

Lemma 4.4. (4, 4, 1, 1) and (4, 1, 4, 1) are impossible.

Proof. Consider the case (4, 4, 1, 1). By Lemma 3.2, ε1 = ε2 = 1 and ε3 =
ε4 = 0. Then, GT

∼= G(1, 2, 2, 2, 2). Thus, GT contains a black bigon and
a white bigon with the same pair of edge class labels {λ, μ}, contradicting
Lemma 3.3(3). (4, 1, 4, 1) is ruled out in the same way. �

Lemma 4.5. (4, 2, 2, 2) is impossible.

Proof. All εi’s are 1 by Lemma 3.2. By Lemma 3.3(2), GT
∼= G(0, 3, 3, 3, 1),

G(0, 3, 3, 2, 2) or G(0, 3, 2, 3, 2).
If GT

∼= G(0, 3, 3, 3, 1), then there are three bigons with the same color.
By Lemma 3.3(1), they have the same pair of edge class labels. This means
that αi ≥ 3 for at least two i’s, a contradiction.

For the remaining two cases, there is no correct labeling in GT . �
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Lemma 4.6. If (α1, α2, α3, α4) = (3, 3, 3, 1), then M is a Q-homology solid
torus.

Proof. All εi’s are 1 again. As in the proof of the previous lemma,
G(0, 3, 3, 3, 1) is the only possibility of GT . Then, we can determine the
correspondence between the edges of GS and GT as in Figure 8, where the
jumping number is two.

We calculate H1(M(α)) as in the proof of Proposition 4.1. Let f1 be
the bigon bounded by {c, f} and f2 the 4-gon bounded by {g, h, i, j} in GT .
They lie on the same side B, say, of Ŝ. Then, we see that B = N(Ŝ ∪
H ∪ f1 ∪ f2) ∪ (a 3-ball), where H = Vα ∩ B. Also, let g1 be the white
bigon bounded by {f, i} and g2 the white 4-gon bounded by {a, b, c, j} in
GT . Again, W = N(Ŝ ∪ H ′ ∪ g1 ∪ g2) ∪ (a 3-ball), where H ′ = Vα ∩ W.
Take the same generators �,m, x, y of H1(Ŝ ∪ Vα) as in Figure 6. Then
[∂f1] = 2x+m, [∂f2] = 4x+4�+3m, [∂g1] = 2y−�−2m and [∂g2] = 4y−�.
Hence, H1(M(α)) has a presentation

〈�,m, x, y | 2x + m = 0, 4x + 4� + 3m = 0, 2y − � − 2m = 0, 4y − � = 0〉.

This shows H1(M(α)) = Z2 ⊕ Z30. Hence, M is a Q-homology solid
torus. �

Lemma 4.7. (3, 3, 2, 2) and (3, 2, 3, 2) are impossible.

Proof. Assume GS
∼= G(3, 3, 2, 2). Then, ε1 = ε2 = 1 and ε3 = ε4 = 0.

Thus each vertex of GT is incident to exactly two loops which are paral-
lel. By Lemma 3.3(2), GT

∼= G(2, 3, 3, 0, 0), G(2, 3, 1, 2, 0), G(2, 3, 1, 1, 1),
G(2, 2, 2, 2, 0) or G(2, 2, 2, 1, 1). For G(2, 3, 3, 0, 0), G(2, 3, 1, 2, 0) and
G(2, 3, 1, 1, 1), GT contains a black bigon and a white bigon with the
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same pair of edge class labels {λ, μ}, contradicting Lemma 3.3(3). For
G(2, 2, 2, 2, 0) and G(2, 2, 2, 1, 1), GT contains at least four bigons with the
same color. But their pairs of edge class labels are distinct, contradicting
Lemma 3.3(1).

(3, 2, 3, 2) is ruled out in exactly the same way. �

Proposition 4.8. If t = 2, then M is a Q-homology solid torus.

Proof. If the two vertices of GT have distinct signs, then M is a Q-homology
solid torus by Lemma 4.2. Otherwise, Lemmas 4.3-4.7 show that GS

∼=
GT

∼= G(0, 3, 3, 3, 1) and M is a Q-homology solid torus. �

5. The case where t ≥ 3.

In this section, we consider the case where t ≥ 3, which will be ruled out.
If T̂ is separating, then t ≥ 4. Then the argument of [6, Section 5], after
exchanging the roles of S and T , eliminates this case. Hence, we may assume
that T̂ is non-separating.

Lemma 5.1. GS contains no loops.

Proof. Assume α0 > 0. Then, GT contains a negative edge, and hence not
all the vertices of GT have the same sign. Thus, αi ≤ t for i = 1, 2, 3, 4 by
Lemma 2.3(3). Since T̂ is non-separating, α0 ≤ t/2 by Lemma 2.3(1) and
(2). Hence,

∑4
i=1 αi ≥ 4t, and so GS

∼= G(t/2, t, t, t, t). But [6, Lemma 5.2]
(with an exchange of GS and GT ) eliminates this configuration. �

Lemma 5.2. All the vertices of GT have the same sign.

Proof. By the previous lemma,
∑4

i=1 αi = 5t. Hence some αi > t, and so all
the vertices of GT have the same sign by Lemma 2.3(3). �

Thus, every edge of GT is a positive {1, 2}-edge, and every disk face of
GT is a Scharlemann cycle with label pair {1, 2}. Let D2 and D3 be the
number of bigons and 3-gons of GT , respectively.

Lemma 5.3. GT has only disk faces, and if D is the number of disk faces
of GT , then D = 4t, D2 ≥ 2t and 2D2 + D3 ≥ 6t. Moreover, if D2 = 2t,
then GT has only bigons and 3-gons, and D3 = 2t.
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Proof. We may assume α1 > t. By Lemma 2.3(3), the associated permuta-
tion σ to the class λ has a single orbit. The first and (t + 1)-th edges of λ
have the same label pair at its endpoints. These two edges are not parallel
in GT by Lemma 2.2(2), and hence cutting T̂ along the first t + 1 edges of
λ gives a disk. Hence, GT has only disk faces.

Then, Euler’s formula t − 5t + D = 0 gives D = 4t. Also, 2D2 + 3(D −
D2) ≤ 10t gives D2 ≥ 2t. Similarly, 2D2 + 3D3 + 4(D − D2 − D3) ≤ 10t
gives 2D2 + D3 ≥ 6t.

If D2 = 2t, then D3 ≥ 2t. Thus D ≥ D2 + D3 ≥ 4t. Since D = 4t, we
have D = D2 + D3 and D3 = 2t. In particular, GT has only bigons and
3-gons. �

The next lemma is the key result in this section.

Lemma 5.4. GT contains a black bigon and a white bigon.

Proof. By Lemma 5.3, D2 ≥ 2t. We divide the proof into two cases.
(1) D2 = 2t.
Without loss of generality, we suppose that all bigons of GT are black.

Then, all white faces are 3-gons by Lemma 5.3.
If black bigons have non-adjacent edge class labels, then all black faces

are bigons by Lemma 3.3(4). This means that any edge of GT belong to
a bigon, and hence there are only 2D2 = 4t edges in GT , a contradiction.
Hence, we can assume that black bigons have the pair {λ, μ} of adjacent
edge class labels.

We claim that there is a black 3-gon. For, if not, any 3-gon is white.
Thus there are 2t white 3-gons. This implies that GT has at least 6t edge,
a contradiction. In fact, any black 3-gon has edge class labels {ν, π} by
Lemma 3.3(4). Hence, α1 = α2 = 2t and α3 + α4 = t.

Let x and y be the number of black 3-gons with edge class labels (ν, ν, π)
and (ν, π, π), respectively. Counting ν- and π-edges, (2x+ y)+ (x+2y) = t,
giving x + y = t/3. Thus, there are D3 − t/3 = 5t/3 white 3-gons.

On the other hand, if a white 3-gon has non-adjacent edge class labels,
then all white faces (3-gons) have such labels. (If not, the white side would
admit two different Seifert fibrations. See [12, Theorem 4.1].) Hence, there
are only two edge class labels in GT , a contradiction. Thus, any white 3-gon
has adjacent edge class labels, so it is either {λ, π} or {μ, ν} by Lemma
3.3(6). Let a, b, c, d be the number of white 3-gons with edge class labels
(λ, λ, π), (λ, π, π), (μ, μ, ν) and (μ, ν, ν), respectively. Counting ν- and π-



Toroidal Dehn Filling on Large Hyperbolic 3-Manifolds 581

edges, (c + 2d) + (a + 2b) = t. Since, a + b + c + d = 5t/3, we have
b + d = −2t/3 < 0, a contradiction.

(2) D2 > 2t.
We may assume that all bigons are black. Let {ε, δ} be the pair of edge

class labels of black bigons. Then, the edge class ε (and δ) of GS contains
more than 2t edges. Hence, t = 3 by Lemma 2.3(4), and so D2 > 6. Since
GT has just 5t = 15 edges and any two bigons do not share an edge, D2 ≤ 7.
Therefore, D2 = 7. This means that two of αi’s are at least 7. Since∑4

i=1 αi = 15, there are only two possibilities for (α1, α2, α3, α4): (7, 7, 1, 0)
and (7, 8, 0, 0), up to equivalence.

Let ν(vi, vj) denote the number of mutually non-parallel edges in GT

that join vi and vj .
Suppose that (α1, α2, α3, α4) = (7, 7, 1, 0). We may choose the labels

around vertex u1 as in Figure 9. Then, there are three possibilities for the
labeling at u2.

For (1), GT contains a loop at v3. Then, ν(v1, v2) ≤ 2 by [7, Lemma
7.4(i)]. However, the class λ contains three {1, 2}-edges. Since, they are not
mutually parallel in GT by Lemma 2.2(2), ν(v1, v2) ≥ 3, a contradiction.
Similar arguments rule out (2) and (3).

Next, consider the case (7, 8, 0, 0) as shown in Figure 10.
For (1), ν(v1, v2) ≥ 3 by considering the edges of μ. Let A,B,C be the

three {1, 3}-edges in λ, and let D be one of {1, 3}-edges in μ. Then, we can
see that D is not parallel in GT to either A, B or C by [7, Lemma 2.5(i)].
(See also the proof of [7, Lemma 7.8].) Thus ν(v3, v1) ≥ 4, contradicting
[7, Lemma 7.4(ii)]. A similar argument rules out (3). For (2), each vertex
of GT is incident to a loop. The class λ contains three {1, 1}-edges, and
then these give three mutually parallel loops at v1. This contradicts Lemma
2.2(2). (See also [7, Lemma 7.6(i)].) �

Lemma 5.5. The pair of edge class labels of black bigons in GT has exactly
one common label with the pair of edge class labels of white bigons. In
particular, at least one pair consists of adjacent edge class labels.

Proof. By Lemma 3.3(3), black bigons and white bigons cannot have the
same pair of edge class labels. Also, if black bigons and white bigons have
disjoint pairs, then both pairs consist of non-adjacent edge class labels.
Then, there is no 3-gon by Lemma 3.3(5). Hence, D2 ≥ 3t by Lemma
5.3. Since any two bigons do not share an edge, this implies that GT con-
tains at least 6t edges, a contradiction. Thus, black bigons and white bigons
have a single common edge class label. �
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Proposition 5.6. The case t ≥ 3 is impossible.

Proof. By Lemma 5.5, we may assume that black bigons have the pair of
adjacent edge class labels {λ, μ}. There are two cases.

(1) White bigons have the pair of adjacent edge class labels.
Then, we can assume that they have the pair {λ, π}. Thus, λ is the

common label of black and white bigons. Since D2 ≥ 2t, α1 ≥ 2t, and
α2 + α4 ≥ 2t. Hence α3 ≤ t.

First, assume D2 = 2t. Then D3 = 2t by Lemma 5.3. By Lemma 3.3(4),
any black 3-gon has edge class labels {ν, π} and any white 3-gon has edge
class labels {μ, ν}. Thus α1 = 2t, since there are only bigons and 3-gons by
Lemma 5.3. Let a and b be the number of black 3-gons and white 3-gons,
respectively. Then, D3 = a + b. Notice that any black 3-gon contains at
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least one edge with label ν. Since, two black 3-gons do not share an edge,
a ≤ α3 ≤ t. Similarly, we have b ≤ t. Thus a = b = t, and in fact, any
black 3-gon has edge class labels (ν, π, π) and any white 3-gon has edge class
labels (μ, μ, ν). Then any edge of GT with edge class label π belongs to a
black 3-gon. Hence α4 = 2a = 2t. Similarly, any edge with edge class label
μ belongs to a white 3-gon, and hence α2 = 2b = 2t. Then α2 + α4 = 4t, a
contradiction.

Next, assume D2 > 2t. Then α1 > 2t. Hence, t = 3 by Lemma 2.3(4).
Thus D2 > 6. If D2 ≥ 8, then α1 ≥ 8 and α2 + α4 ≥ 8. This is impossible,
since

∑4
i=1 αi = 15. Hence D2 = 7, and so α1 ≥ 7, α2 + α4 ≥ 7 and α3 ≤ 1.

Again, any black 3-gon has edge class labels {ν, π} and any white 3-gon has
edge class labels {μ, ν}. Since, any black (and white) 3-gon contains at least
one edge with edge class label ν, there is at least one 3-gon for each color.
Hence, D3 ≤ 2. But D3 ≥ 18 − 2D2 = 4 by Lemma 5.3, a contradiction.

(2) White bigons have the pair of non-adjacent edge class labels.
We may assume that they have the pair {λ, ν}. Then α1 ≥ 2t, α2 +α3 ≥

2t and hence α4 ≤ t.
If D2 = 2t, then GT contains only bigons and 3-gons by Lemma 5.3. But

there is no white 3-gon by Lemma 3.3(4). Hence all white faces are bigons.
This means that any edge of GT belongs to a white bigon, and hence any
edge has label λ or ν, a contradiction. Thus D2 > 2t, so t = 3 as in (1).
Then D2 = 7, and hence α1 ≥ 7, α2 + α3 ≥ 7 and α4 ≤ 1. Since, any 3-gon
is black and has edge class labels {ν, π}, D3 ≤ 1. This contradicts Lemma
5.3 again. �

6. Klein bottle case.

From this section, we deal with the case where M(α) or M(β) contains a
Klein bottle. Without loss of generality, we may assume that M(α) contains
a Klein bottle.

Lemma 6.1. If M(β) contains a Klein bottle, then M = W (−4), where
W is the Whitehead link exterior. In particular, M is a Q-homology solid
torus. Moreover, one of M(α) and M(β) contains a Klein bottle meeting the
core of the attached solid torus once, and the other contains a Klein bottle
meeting the core of the attached solid torus twice.

Proof. This is [14, Theorem 1.4]. See also [14, 4.4]. �
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Let P̂ be a Klein bottle in M(α). We may assume that P̂ ∩ Vα consists
of p meridian disks u1, u2, . . . , up, numbered successively, of Vα, and that p

is minimal among all Klein bottles in M(α). Let P = P̂ ∩ M . We orient
the boundary components of P coherently on T0. Then Lemma 2.1 holds,
because it is irrelevant to the orientability of the surfaces P and T .

As in [6, Section 8], we can define two graphs GP on P̂ and GP
T on T̂ from

the arcs in P ∩ T . We abbreviate GP
T to GT . Although P̂ is non-orientable,

we can assign an orientation to each vertex of GP from the orientation of
∂ui. Let e be an edge of GP . If e is a loop based at u, then e is positive if
a regular neighborhood N(u ∪ e) on P̂ is an annulus, negative otherwise.
Assume that e connects distinct vertices ui and uj. Then N(ui ∪ e ∪ uj)
is a disk. Then, e is positive if we can give an orientation to the disk
N(ui ∪ e ∪ uj) so that the induced orientations on ui and uj are compatible
with the original orientations of ui and uj simultaneously. Otherwise, e is
negative. Then, the parity rule (Lemma 2.2(1)) still holds without change.
Also, Lemma 2.2(2) is true.

Lemma 6.2. GP satisfies the following.

(1) If t ≥ 4, then any family of parallel edges contains at most 2t edges.

(2) If t ≥ 3, then any family of mutually parallel positive edges contains at
most t/2 + 2 edges. Moreover, if it contains t/2 + 2 edges, then t ≡ 0
(mod 4), and M(β) contains a Klein bottle.

(3) If t ≥ 2 and there is a positive edge, then any family of mutually
parallel negative edges contains at most t edges.

Proof. (1) is the same as Lemma 2.3(4). For (2), see [1, Lemma 2.11], [18,
Lemma 1.4] and [6, Lemma 2.4(1)]. (3) is [6, Lemma 8.2(2)]. �

When p = 1, as in [6, Section 8], GP
∼= H(p0, p1, p2) or H ′(p0, p1, p2),

which are shown in Figure 11. Each pi denotes the number of edges in the
family of mutually parallel edges.

7. The case where t ≤ 2.

Proposition 7.1. If t = 1, then M is a Q-homology solid torus.

Proof. Suppose t = 1. In the proof of [6, Proposition 8.5], we showed that
p = 2 and the pair {GP , GT } is uniquely determined as shown in Figure 12.
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In fact, there is the unique edge correspondence between the edges of GP

and GT , and the jumping number is one.
We calculate H1(M(α)). Let �, m, x and y be the generators of H1(P̂ ∪

Vα) as shown in Figure 13, where x is represented by the union of the
core of half of Vα and the edge a, and y is similar. Then, H1(P̂ ∪ Vα) =
〈�,m, x, y | 2m = 0〉. Let f be one of the bigons and g1, g2 be the 3-gons
in GT . It is easy to see that M(α) = N(P̂ ∪ Vα ∪ f ∪ g1 ∪ g2) ∪ (a 3-ball).
Hence, H1(M(α)) has a presentation

〈�,m, x, y | 2m = 0, x + y + 2� + m = 0, x + 2y = 2� + m, 2x + y = 2� + m〉

We see that H1(M(α)) = Z20. Thus, M is a Q-homology solid torus. �

Next, we assume t = 2. Recall that two vertices of GT have opposite
signs [6, Lemma 9.1].

Lemma 7.2. p ≤ 2.
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Proof. This follows from [6, Lemmas 9.6, 9.8 and 9.11]. �

Lemma 7.3. If p = 1, then M is a Q-homology solid torus.

Proof. By [6, Proposition 8.7], there are only two possibilities for GP :
H(3, 1, 1) and H ′(3, 2, 0). If GP = H(3, 1, 1), then GT = G(1, 1, 1, 1, 0).
The edge correspondence is shown in Figure 14. We see that the jumping
number is one. Let f1 and f2 be the 3-gons in GT . Then, we see that
M(α) = N(P̂ ∪ Vα ∪ f1 ∪ f2) ∪ (a 3-ball), and H1(M(α)) = Z4. Hence, M
is a Q-homology solid torus. We omit the detail.

If GP = H ′(3, 2, 0), then GT = G(1, 1, 1, 1, 0) again. By looking at the
endpoints of a loop at v1, the jumping number is two. The correspondence
between the edges of GP and GT is shown in Figure 15.

We will calculate H1(M(β)). Let f1 be the bigon bounded by {c, d} in
GP . We call the side of T̂ containing f1, B, the other side W. Let g1 and g2

be the bigon bounded by {d, e} and the 3-gon bounded by {a, b, c} in GP . If
we use the generators �,m, x, y of H1(T̂ ∪Vβ) as in Figure 6, [∂f1] = 2x+m,
[∂g1] = 2y − �, and [∂g2] = −y + 3m. Let X = N(T̂ ∪ Vβ ∪ f1 ∪ g1 ∪ g2).
Then, ∂X has a 2-sphere component in W and a torus component in B.
Since M(β) is irreducible, the 2-sphere component bounds a 3-ball in W.
The torus component also bounds a solid torus J , because M is hyperbolic.
Notice that H1(∂J) = 〈m, �+x〉. Thus, if the meridian of J is r(�+x)+ sm
for some r, s, then H1(M(β)) has a presentation

〈�,m, x, y | 2x + m = 0, 2y − � = 0,−y + 3m = 0, r(� + x) + sm = 0〉,
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which gives 〈x | (11r + 2s)x = 0〉. Unless 11r + 2s = 0, H1(M(β)) is a
finite group, and M is a Q-homology solid torus. If 11r + 2s = 0, then
(r, s) = (±2,∓11). As it is well known ([12, Theorem 4.1]), B admits a
Seifert fibration over the disk with two exceptional fibers, one of which
has index two. Moreover, a regular fiber represents m on T̂ . Hence, if
(r, s) = (±2,∓11), then the regular fiber intersects the meridian of J just
twice. This implies that another exceptional fiber of B, which is a core of
J , has index two, and hence, B contains a Klein bottle as in the proof of
Lemma 4.2. Thus, M is a Q-homology solid torus by Lemma 6.1. �

Lemma 7.4. If p = 2, then M is a Q-homology solid torus.

Proof. By [6, 9.1 and 9.2], there are only two possibilities for GT :
G(1, 2, 2, 2, 2) and G(2, 2, 1, 2, 1).
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Suppose GT = G(1, 2, 2, 2, 2). Then, the associated permutation to each
pair of parallel negative edges is (12) by [6, Lemma 9.3]. Two edges in each
pair form an essential orientation-preserving cycle on P̂ [7, Lemma 2.3].
Hence, GP has four mutually parallel positive edges. Among them, there
are two bigons lying in the same side of T̂ . If M(β) does not contain a Klein
bottle, then these bigons have the same edge class labels by Lemma 3.3(1).
This contradicts Lemma 2.2(2). If M(β) contains a Klein bottle, then M is
a Q-homology solid torus by Lemma 6.1.

Suppose GT = G(2, 2, 1, 2, 1). Then, the associated permutation to two
pairs of parallel negative edges is (12) by [6, Lemma 9.9]. Hence, each vertex
of GP is incident to one positive loop and two negative loops, and there are
four positive edges between u1 and u2. We see that the jumping number is
two, and GP is uniquely determined as shown in Figure 16.

Let f1 and f2 be the bigons bounded by {a, b} and {d, e}, respectively
in GT . Let g be the 3-gon bounded by {b, c, i}. We use the generators of
H1(P̂ ∪Vα) as in Figure 13. (We remark that u2 has the opposite orientation
to that of Figure 13.) Then [∂f1] = x − y − 2�, [∂f2] = x + y + m, and
[∂g] = −x + 5� + m. Thus, H1(M(α)) has a presentation

〈�,m, x, y | 2m = 0, x − y − 2� = 0, x + y + m = 0,−x + 5� + m = 0〉,

giving H1(M(α)) = Z16. Thus, M is a Q-homology solid torus. �

8. The case where t ≥ 3.

Finally, we assume t ≥ 3.

Lemma 8.1. p = 1.

Proof. The possibility p ≥ 3 was ruled out in Subsection 11.1 of [6]. Also,
Subsection 11.2 of [6] eliminates the possibility p = 2, but we will give a
detail of the remark after [6, Lemma 11.20].

Now, GP has no positive edges. Each vertex is incident to a family of n
mutually parallel negative loops, where n ≥ 2t.

First, assume t ≥ 4. Then, n = 2t by Lemma 6.2(1). Hence, GP contains
just t non-loop negative edges. Let σ be the associated permutation to the
family of negative loops at u1. Then, σ has a single orbit as in Lemma
2.3(3). If the edge endpoints of non-loop edges are successive around u1,
then σ would be the identity. Hence, the edge endpoints of non-loop edges
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Figure 17.

are not successive around u1 (and so u2). Then, the reduced graph of GP

has the form as shown in Figure 17.
Let A1, . . . , At, B1, . . . , Bt, C1, . . . , Ct be the edges of GP incident to u1

as in Figure 18. Here, σ(i) ≡ i + a (mod t). By symmetry, we may assume
that 1 ≤ a ≤ t/2. If a = t/2, then σ2 would be the identity. This contradicts
the fact that σ has a single orbit, since t ≥ 4. Hence, 2a + 1 ≤ t.

Let S be the cycle formed by the edges A1, . . . , At on T̂ . It is an essential
orientation-preserving cycle there.

Claim 8.2. The jumping number is not one.

Proof of Claim 8.2. Assume that the jumping number is one. Then, S ∪
B1 ∪ Ba+1 is as shown in Figure 19(i).

If Ca+1 goes to v2a+1, then it is parallel to Aa+1. Then there is no
edge incident to the edge endpoint with label 2 at va+1 between Aa+1 and
Ca+1. By a similar argument, Ca+1 cannot go to v1. Thus, Ca+1 goes
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to va+1. Then, we see that all Ci’s have the same label at its endpoints.
Moreover, the family of mutually parallel negative edges at u2 has the same
permutation σ.

Let e be the edge which is incident to va+1 between B1 and Ca+1 (see
Figure 19(i)). Then it goes to v1. Let p and q be the edge endpoints
of Ca+1 and e at va+1 with label 2, respectively. Then, p and q are not
successive among five points of ∂va+1 ∩ ∂u2. In fact, they appear in the
order p, ∗, q, ∗, ∗ on ∂va+1 along its orientation. Hence, we see that e goes
to v2a+1 by examining the five occurrences of labels a + 1 around u2, a
contradiction. �

Claim 8.3. The jumping number is not two.

Proof of Claim 8.3. Assume that the jumping number is two. The arrange-
ments of S, B1, Ba+1 are shown in Figure 19(ii). If t = 4, then a = 1, and
we cannot locate B3. Otherwise, B2a+1 should be as in Figure 19(ii). Then,
we cannot locate Bσ−1(1) there. �

Thus, we have eliminated the case t ≥ 4.
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Next, assume t = 3. Let k be the number of non-loop edges in GP . Since
k + 2n = 5t = 15 and n ≥ 2t = 6, k ≤ 3. In fact, k = 1 or 3, because k is
odd.

Claim 8.4. k �= 1.

Proof of Claim 8.4. Let k = 1. Then n = 7. Let A1, A2, A3, B1, B2, B3,
C1 be the negative loops at u1 numbered successively. We may assume
that A1, B1, C1 have label 1 at one end of the family. Thus the associated
permutation to the family is (123). The edges A1, A2, A3 form an essential
cycle S on T̂ . The arrangements of B1 and C1 are shown in Figure 20(i)
and (ii), according to the jumping number. In any case, B2 cannot be
constructed. �

Claim 8.5. k �= 3.
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Proof of Claim 8.5. Let k = 3. Then n = 2t = 6. Hence, the edge endpoints
of non-loop negative edges are not successive as before. The proof of Claim
8.2 works here without any change, hence the jumping number is not one.
Let A1, A2, A3, B1, B2, B3 be the negative loops at u1 numbered successively
and let C1, C2, C3 be the non-loop negative edges as in Figure 21.

Consider C2. If it goes to v3, then it is parallel to B2. However, B2 has
label 1 at both endpoints, C2 has label 1 at v2 but label 2 at v3. Clearly,
this is impossible. Hence, C2 goes to v1, so it is parallel to A1. This is also
impossible by the same reason. �

This completes the proof of Lemma 8.1 �

Since, the vertex of GP has degree 5t, t is even. Thus t ≥ 4. We
distinguish two cases.

8.1. GP has no positive loops.

In this case, GP = H(0, p1, p2) where p1 + p2 = 5t/2. Let U and V be
the families of mutually parallel negative loops with p1 and p2 edges, re-
spectively. Without loss of generality, we may assume p1 > t. Then the
associated permutation σ to U has a single orbit. Thus all vertices of GT

have the same sign. Moreover, we see that p1 = t+h for some odd number h
with gcd(t, h) = 1. Hence, p1 or p2 > t+1, unless t = 4 and p1 = p2 = t+1.

Lemma 8.6. The case where t = 4 and p1 = p2 = t + 1 is impossible.
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Proof. We may assume that the labels of GP are as shown in Figure 22.
Then ν(v1, v2) ≥ 2 and ν(v3, v4) ≥ 2, since U contains two {1, 2}-edges,

and V contains two {3, 4}-edges. (Recall that ν(vi, vj) denotes the number
of mutually non-parallel edges between vi and vj in GT .) Thus, ν(v1, v2) = 2
by [7, Lemma 5.4(ii)]. Let e be the {1, 2}-edge in V . Then, e is parallel to
either of {1, 2}-edges in U . In any case, this contradicts [7, Lemma 2.4]. �

Thus, p1 = t + h with 3 ≤ h ≤ t − 1 by Lemma 6.2(1) and gcd(t, h) =
1. We may assume that GP has the labels as shown in Figure 23. Let
A1, A2, . . . , At, B1, . . . , Bh be the edges of U numbered successively such
that Ai and Bi have label i and σ(i), where σ(i) ≡ i + h (mod t). Since σ
has a single orbit, the edges A1, A2, . . . , At form an essential cycle S on T̂ .

Lemma 8.7. h ≤ t/2 − 1.
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Proof. Suppose not. Then, h ≥ t/2+1, since gcd(h, t) = 1. Hence, the label
1 appears exactly four times at the endpoints of the edges of U . Consider
S ∪ B1 ∪ Bσ−1(1).

If the jumping number is one, then the situation is as in Figure 24.
Then the edge between A1 and Bσ−1(1) at v1 cannot go to any vertex. Thus,
the jumping number is two. The situation around each vertex vi is as in
Figure 25, where (i) corresponds to i = 1, 2, . . . , h, and (ii) corresponds to
i = h + 1, . . . , t. Also, Figure 25 shows S ∪B1 ∪Bσ−1(1). Since, h ≥ 3, there
is a vertex vj between vh+1 and vσ−1(1) along S for 1 < j ≤ h. For such j,
Bj lies in the region R. Hence, Bj is parallel to Aj , a contradiction. �

Lemma 8.8. GP contains a positive loop.
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Proof. First, suppose that the jumping number is one. The family V of GP

contains a (t/2 + h, t)-edge. Hence, no vertex on S between vt/2+h and vt is
incident to some Bi. See Figure 26.

However, this means that (t/2 + h) + kh = t for some k > 0, since
σ(i) ≡ i + h (mod t). Thus t is a multiple of h, contradicting gcd(h, t) = 1.

When the jumping number is two, a similar argument works. �

8.2. GP has a positive loop.

Recall that GP
∼= H(p0, p1, p2) or H ′(p0, p1, p2) where p0 + p1 + p2 = 5t/2.

Lemma 8.9. p0 = t/2, t/2 + 1 or t/2 + 2.

Proof. Since p0 �= 0, pi ≤ t for i = 1, 2 by Lemma 6.2(3). Thus, t/2 ≤ p0 ≤
t/2 + 2 by Lemma 6.2(2). �

If p0 = t/2 + 2, then M(β) contains a Klein bottle by Lemma 6.2(2),
hence M is a Q-homology solid torus by Lemma 6.1. We consider two
remaining cases.

Case (1). p0 = t/2.
By Lemma 6.2(3), GP = H(t/2, t, t) or H ′(t/2, t, t).
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Lemma 8.10. If GP
∼= H(t/2, t, t), then t = 4 and M is a Q-homology

solid torus.

Proof. We may assume that t positive loops have labels 1, 2, . . . , t/2 at their
endpoints successively. First, we claim that t/2 is even. If t/2 is odd,
then the middle edge of the positive loops is a ((t + 2)/4, (3t + 2)/4)-edge.
But a family of t mutually parallel negative loops contains a negative ((t +
2)/4, (3t + 2)/4)-edge, a contradiction.

Let A and B be the families of t mutually parallel negative loops. Then,
the associated permutation to A (and B) has t/2 orbits of length two. Let
H be the subgraph of GT spanned by v1, vt/2, vt/2+1 and vt. If t > 4, then
H has an annulus support as in Figure 27. A jumping number argument
easily rules out this configuration.

Thus t = 4. In fact, GT has a torus support, and we see that the jumping
number is one. Figure 28 shows the correspondence between the edges of
GP and GT .
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Letf1bethebigonboundedby{e, f}andf2the6-gonboundedby{a, c, f, g, j}
in GT . Then, we see that M(α) = N(P̂ ∪ Vα ∪ f1 ∪ f2) ∪ (a 3-ball). It is easy
to show H1(M(α)) = Z4 ⊕ Z4. Thus, M is a Q-homology solid torus. �

Lemma 8.11. GP
∼= H ′(t/2, t, t) is impossible.

Proof. Each family of t mutually parallel negative loops contains an (i, i)-
edge for i = 1, 2, . . . , t. Thus each vertex of GT is incident to two loops.
Then GT has t/2 components, each of which has an annulus support. A
jumping number argument easily rules out this. �

Case (2). p0 = t/2 + 1.

Lemma 8.12. p0 = t/2 + 1 is impossible.
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Proof. We see GP
∼= H(t/2+1, t, t−1) or H ′(t/2+1, t, t−1). For the former,

GP contains a positive edge with the same label at its ends, a contradiction.
For the latter, we may assume that GP has labels as in Figure 29. Then,
GP contains a positive (t/2− 1, t/2)-edge and a negative (t/2− 1, t/2)-edge,
a contradiction. �

9. Proofs of main results.

Proof of Theorem 1.1. Suppose that neither M(α) nor M(β) contains a
Klein bottle. By Lemma 3.1, s = 2. If t ≤ 2, then Propositions 4.1 and 4.8
show that M is a Q-homology solid torus. Proposition 5.6 rules out the case
t ≥ 3.

Suppose that M(α) or M(β) contains a Klein bottle. If both contain
a Klein bottle, then M = W (−4), which is a Q-homology solid torus by
Lemma 6.1. For t = 1, 2, Proposition 7.1, Lemmas 7.3 and 7.4 give the
conclusion. If t ≥ 3, then p = 1 by Lemma 8.1. By Lemma 8.8, GP contains
a positive loop, and there are only three remaining cases after Lemma 8.9.
Then the remark after the proof of Lemma 8.9, Lemmas 8.10, 8.11 and 8.12
lead us to the desired result. We remark that if p = 1 then ∂N(P̂ ) gives an
essential torus in M(α) which meets the core of Vα in two points. �

The proof of Theorem 1.1 implicitly enables us to construct the collection
of 3-manifolds which includes all hyperbolic 3-manifolds with a single torus
boundary T0 such that there are two toroidal slopes on T0 with distance
5. For example, consider the graph pair of Figure 5. The manifold X =
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N(S ∪ T0 ∪ T ) has two 2-spheres and T0 as its boundary. After capping the
sphere components off with 3-balls, we obtain a 3-manifold M with a single
torus boundary T0. In this sense, we say that M is uniquely determined
from the graph pair. But we do not know whether M is hyperbolic or not.
The graph pairs of Figures 8, 12, 14, 16, and 28 also determine the manifolds
uniquely. For the graph pairs of Figures 7 and 15, the situation is different.
The manifold constructed as the above X has other torus component T1

than T0, after capping 2-sphere components off with 3-balls. To obtain M
with a single torus boundary T0, we need to perform Dehn filling on T1. Of
course, there are infinitely many Dehn fillings.

If we set A to be the collection of 3-manifolds obtained from these 8
graph pairs, added W (−4), where W is the Whitehead link exterior, then A
includes all hyperbolic 3-manifolds with a single torus boundary T0 such that
there are two toroidal slopes on T0 with distance 5. Clearly, this collection
consists of infinitely many manifolds. For example, it contains the exteriors
of Eudave-Muñoz knots k(2,−1, n, 0) with n �= 1. (They correspond to the
pair of Figure 7 [17].)

Proof of Corollary 1.2. If not, Δ(α, β) = 5 [7]. By [6], ∂M is a single
torus or two tori. However, the latter case does not happen by [14]. For the
former, Theorem 1.1 gives a contradiction. �

Proof of Corollary 1.3. Let α and β be two toroidal slopes on T0. Then
Δ(α, β) ≤ 8 by [7]. Furthermore, if Δ(α, β) = 6 or 8, then each of M(α) and
M(β) contains an essential torus which meets the core of the attached solid
torus in exactly two points. When Δ(α, β) = 7, one contains an essential
torus meeting the core of the attached solid torus in a single point, and the
other contains one meeting the core of the attached solid torus in two points.

Suppose Δ(α, β) = 5. Then, we showed that ∂M is a single torus or
two tori [6]. By [14], the latter case happens only when M is the Whitehead
sister link exterior. In this case, it is well known that each surgered manifold
contains an essential torus meeting the core of the attached solid torus just
twice [13]. Since the two components of the Whitehead sister link has non-
zero linking number, M cannot have a properly embedded once-punctured
torus. If ∂M is a single torus, Theorem 1.1 gives the conclusion. �
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