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We consider the normalized Ricci flow evolving from an initial met-
ric which is conformally compactifiable and asymptotically hyper-
bolic. We show that there is a unique evolving metric which re-
mains in this class, and that the flow exists up to the time where
the norm of the Riemann tensor diverges. Restricting to initial
metrics which belong to this class and are rotationally symmetric,
we prove that if the sectional curvature in planes tangent to the
orbits of symmetry is initially nonpositive, the flow starting from
such an initial metric exists for all time. Moreover, if the sectional
curvature in planes tangent to these orbits is initially negative,
the flow converges at an exponential rate to standard hyperbolic
space. This restriction on sectional curvature automatically rules
out initial data admitting a minimal hypersphere.
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1010 E. Bahuaud and E. Woolgar

1. Introduction

Conformal compactification techniques have proved to be very helpful in
general relativity, where they were pioneered by Roger Penrose [18]. Subse-
quently they were also found to facilitate the study of Riemannian manifolds
with asymptotic ends, especially asymptotically hyperbolic manifolds, on
which the sectional curvatures approach −1 at infinity. The most important
case is that of complete Poincaré-Einstein manifolds. A Poincaré-Einstein
manifold is one whose metric is conformally compactifiable and Einstein.
These manifolds were studied in a seminal paper of Fefferman and Graham
[7] and play an important role in the AdS/CFT correspondence of string-
theoretic physics. This line of enquiry has led to important advances in
conformal geometry, yielding hitherto unknown invariants for the confor-
mal metric carried on the boundary-at-infinity associated to the conformal
compactification.

There are many unanswered and tantalizing questions about Poincaré-
Einstein (PE) manifolds and the related but more general class of asymp-
totically Poincaré-Einstein (APE) manifolds [3]. For example, can one con-
struct a non-constant curvature PE manifold whose conformal infinity is a
connected, compact hyperbolic space? Of particular interest for physics, can
one construct an APE metric with this conformal infinity which obeys the
so-called static Einstein equations with non-constant lapse function? The ex-
istence of such metrics is not even confirmed, and an analytic construction
would likely be difficult.

It is thus conceivable that the detailed study of these metrics will proceed
mostly by numerical techniques.1 Figueras and Wiseman [8] have pursued
the numerical construction of Poincaré-Einstein metrics using a relaxation
method based on the Ricci flow (see [21] for an overview), suitably nor-
malized to account for sectional curvatures which asymptote to −1. These
numerical results have already had significant impact in the physics of the
Randall-Sundrum model. Yet the rigorous analytical analysis of the under-
lying flow technique is not well-developed. While the relevant physics may
be too complicated to study effectively without numerics, the successful use
of the flow technique in this numerical approach and the important physics
conclusions which follow from it provide compelling reasons for mathemati-
cians to study the long-time existence and convergence behaviour of the flow
in those settings which are simple enough to address analytically.

1A similar situation arises for Calabi-Yau 3-folds; see [6] for a discussion.
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Normalized Ricci flow and rotational symmetry 1011

The flow in question is the normalized Ricci flow (NRF) on an n-
manifold (M, g), given by the evolution equation

(1.1)
∂g

∂t
= −2 (Ric(g) + (n− 1)g) =: −2E(g).

The analysis of this flow was initiated in [2], wherein the short-time existence
in the asymptotically hyperbolic category was proved. Qing, Shi, and Wu [19]
independently studied this flow, and in addition to the short-time existence
also obtained long-time existence if the initial curvature was sufficiently
pinched.

This raises the question of long-time existence for “large data”; i.e., when
the curvature pinching is removed. Obviously this is a very difficult question
in general, but ought to be tractable under conditions of high symmetry
at least. Apart from its mathematical interest, there is already much to be
explained in the numerical work discussed above, which rigorous convergence
results could address. In the present paper we study long-time existence (and
convergence) of this flow for the simplest nontrivial case of a complete metric
evolving according to equation (1.1), namely that which starts from initial
data that are rotationally symmetric and asymptotically hyperbolic.

Our approach is to study the long-time existence of the flow (1.1) for ro-
tationally symmetric metrics that asymptotically hyperbolic in a weak sense.
These metrics have curvatures approaching −1 near infinity but require no
additional smoothness of a conformal compactification.

We begin by considering the general short-time existence of solutions
of the normalized Ricci flow within the asymptotically hyperbolic category,
without any symmetry assumptions. It has been known since the work of
WX Shi [20] that for given smooth initial data on a complete manifold
there is a unique Ricci flow evolution of this data for an interval of time
0 ≤ t < T (for some T ∈ (0,∞]) such that the curvature is bounded (by a
T -dependent bound), a result that also applies to normalized Ricci flow. In
Section 2 we collect a number of facts that imply, if the initial data are
conformally compact and asymptotically hyperbolic, that there is a unique
asymptotically hyperbolic evolution g(t) under normalized Ricci flow on this
time interval. We show that the asymptotically hyperbolic evolution can be
continued to t = T and beyond unless the norm of the Riemann curvature
diverges as t↗ T . Let K be the type-(0, 4) algebraic curvature tensor

(1.2) Kijkl = gilgjk − gikgjl.

We prove
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1012 E. Bahuaud and E. Woolgar

Theorem 1.1 (AH existence and unique continuation). Suppose that
g0 is smoothly conformally compact and asymptotically hyperbolic. Then the
normalized Ricci flow has a unique solution which remains conformally com-
pact and asymptotically hyperbolic in [0, TM ). If TM <∞, then

(1.3) lim sup
t↗TM

sup
p∈M
|Rm +K|g =∞.

The important point here is that conformally compact asymptotically
hyperbolic metrics have a certain asymptotic expansion near infinity. One
must show first that initial data which have such an expansion will always
yield a unique flow with bounded curvature, at least for a finite interval of
time, and next that the form of the expansion is preserved for as long as
the flow exists. The existence and uniqueness of a bounded curvature flow
follows from earlier work [2, 4, 20], and indeed the ingredients for the unique
continuation are already in the literature. We thus take this opportunity to
explicitly state the unique continuation result.

Beginning in Section 3, we specialize to rotational symmetry. We con-
sider a related, gauge-fixed flow for rotationally symmetric metrics in which
the metric is expressed at all times in area-radius coordinates. This flow re-
duces to a single parabolic equation for a function f . This function describes
the norm of the radial coordinate vector field for an evolving, rotationally
symmetric metric. This metric can be pulled back to a normalized Ricci flow,
which for the given initial data is the unique Ricci flow of Shi. Certain com-
binations of f and its first radial derivative can be shown to be uniformly
bounded along the gauge-fixed flow and these combinations pull back to the
sectional curvatures of the evolving Ricci flow metric. Let λ denote the sec-
tional curvature in 2-planes tangentialto the orbits of rotational symmetry.
We prove the following result.

Theorem 1.2 (Long-time existence). Let g(t) be the unique normalized
Ricci flow of bounded curvature on [0, Tmax)× Rn developing from an ini-
tial metric g(0) = g0 such that g0 is complete asymptotically hyperbolic, and
rotationally symmetric. Let Tmax be the maximal time of existence. Then

(a) g(t) is complete, rotationally symmetric and asymptotically hyperbolic
for all t ∈ [0, Tmax) and

(b) if the initial sectional curvature in 2-planes tangentialto the orbits of
rotational symmetry is λ(g0) ≤ 0, then
(i) Tmax =∞,

(ii) λ(g(t)) ≤ 0 for all t > 0, and
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Normalized Ricci flow and rotational symmetry 1013

(iii) if λ(g0) < 0, there are constants C, c > 0 depending only on n and
g0 such that |Rm +K| < Ce−ct.

Remark 1.3. Assumption (b) above implies that the initial data contain
no closed minimal hypersurfaces.

Proof of Remark. Consider first a minimal hypersphere that is an orbit of
the rotational symmetry group. But in rotational symmetry the Gauss-
Codazzi equations for the orbits give that

(1.4)
1

r2
= λ+

H2

(n− 1)2
,

where r is the intrinsic radius of curvature of an orbit and H is its mean
curvature. When λ ≤ 0, then

(1.5)
1

r2
≤ H2

(n− 1)2
,

so H > 0, and then no orbit can be a minimal hypersphere.
The general result now follows from the standard barrier argument. A

closed minimal hypersurface Σ has a point p which maximizes the distance
from the origin of rotational symmetry. At p, Σ is tangent to a distance
sphere from the origin (and thus an orbit of rotational symmetry) bounding
a closed ball B. By the above paragraph, this distance sphere is mean convex
(indeed, by symmetry, convex). But by the maximum principle for minimal
surfaces, any minimal hypersurface tangent to a mean convex surface at p
cannot lie entirely within B, contradicting that p maximizes distance from
the origin. �

This leaves open the possibility that for initial data containing no mini-
mal hypersphere but having λ somewhere positive, a neckpinch could form
during the flow. This intriguing possibility cannot happen for rotationally
symmetric, asymptotically flat Ricci flow [17], and would be worthy of fur-
ther study (possibly numerically).

By Theorem 1.2, provided that the sectional curvatures in planes tangent
to the orbits of symmetry are initially λ < 0, the norm of the Riemann
tensor is not only uniformly bounded but all sectional curvatures decay to
−1 exponentially along the flow. We are then able to show that the flow
converges in the infinite-time limit to hyperbolic space.
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1014 E. Bahuaud and E. Woolgar

Theorem 1.4 (Convergence). Let g(t), g0 be as in Theorem 1.2. Choose
any increasing, unbounded sequence tn. Let O ∈M denote the origin of
rotational symmetry. Then (M, g(tn), O) converges in the pointed Cheeger-
Gromov sense to standard hyperbolic space.

This paper is organized as follows. Section 2 contains background on con-
formally compactifiable and asymptotically hyperbolic manifolds. We also
present certain standard Ricci flow results, which we adapt to the normalized
Ricci flow 1.1 for use in the proof of Theorem 1.1 given at the end of that
section. In Section 3, we specialize to rotational symmetry. We outline our
strategy, which involves introducing a gauge-fixed, rotationally symmetric
flow which pulls back to normalized Ricci flow but which has the virtue of
reducing to a single parabolic flow equation, a strategy also used in earlier
work on Ricci flow in asymptotically flat manifolds [10, 17]. We discuss re-
lated work of Ma and Xu [15] in this section. We also list certain basic results
that we will need later. Section 4 contains a parabolic maximum principle
adapted to the singular PDEs which arise, based on the strong maximum
principle of Hopf. We apply this principle to prove that no neckpinches can
form under our rotationally symmetric flow if no minimal hypersphere is
present in the initial data. In Section 5, we find bounds on the sectional
curvature λ in 2-planes tangent to the orbits of the rotational symmetry.
In Section 6, we find that the difference between λ and the sectional curva-
ture κ in planes containing the radial direction decays exponentially to zero,
provided λ < 0. Combining these results with the continuation principle of
Theorem 1.1, the proofs of Theorems 1.2 and 1.4 follow easily. These are
given in Section 7.

1.1. Conventions

Our conventions generally follow those of the book [5]. However, we lower
the index of the Riemann tensor Riem = Rkli

j into the fourth position, so
g(·,Riem) = gjpRkli

p = Rklij . We sometimes denote this object (i.e., the Rie-
mann tensor with four lower indices) by Rm.

1.2. Acknowledgements
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Banff International Research Station workshop 15w5148, Geometric Flows:
Recent Developments and Applications, where this work was completed.

2. Flow of conformally compact asymptotically
hyperbolic metrics

2.1. Definitions

A manifold (M, g) with an asymptotic end is said to be (smoothly) confor-
mally compactifiable if there is a (smooth) manifold-with-boundary (M, g̃),
an embedding i :M ↪→M that mapsM onto the interior of M , and a func-
tion Ω : M → [0,∞) such that g = i∗

(
Ω−2g̃

)
where Ω vanishes to first order

precisely on ∂M . Then (M, g) is conformally compact asymptotically hyper-
bolic if there is a smooth boundary defining function Ω, such that |dΩ|2Ω2g = 1

on ∂M and Ω2g extends to a smooth metric on ∂M . For any representative
metric g(0) of the induced conformal class on the boundary, we may solve
for a new special defining function x so that |dx|2x2g ≡ 1 on a collar of the
boundary. In this neighborhood, the metric may be decomposed as

(2.1) g =
dx2 + gx

x2
,

with gx a smooth family of metrics on ∂M and gx|x=0 = g(0).
Let K denote the +1 constant curvature 4-tensor

(2.2) Kijkl = gilgjk − gikgjl.

A computation shows that asymptotically hyperbolic metrics are complete
and of bounded curvature; moreover

(2.3) |Rm +K|g = O(x).

2.2. Normalized Ricci flow: Unique continuation

We consider the NRF given by (1.1) in two related settings, that of complete
metrics of bounded curvature, and that of conformally compact asymptoti-
cally hyperbolic metrics.

The following result allows us to apply certain standard Ricci flow results
to the normalized Ricci flow.
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Lemma 2.1. Define

u(t) :=
e2(n−1)t − 1

2(n− 1)
,

ĝ ◦ u := e2(n−1)tg = (1 + 2(n− 1)u) g.

(2.4)

Then g(t) is a normalized Ricci flow for t ∈ [0, T ] with initial metric g(0) =
g0 if and only if ĝ(u) is a Ricci flow for u ∈ [0, U ] with initial metric ĝ = g0,
where U = e2(n−1)T−1

2(n−1) .

Proof. Compute ∂
∂t ĝ ◦ u = ∂

∂t

(
e2(n−1)tg

)
and use (1.1). �

We recall the fundamental existence result for the Ricci flow on non-
compact manifolds:

Theorem 2.2 (WX Shi [20]). Let (M, gij(x)) be an n-dimensional com-
plete noncompact Riemannian manifold with Riemann curvature Rm sat-
isfying |Rijkl|2 ≤ k0 on M for some k0 ∈ R. Then there exists a constant
T (n, k0) > 0 such that the evolution equation

∂tg = −2Rc,

g(0) = g0,
(2.5)

has a smooth solution gij(t, x) > 0 for a short time 0 ≤ t ≤ T (n, k0). Fur-
thermore, for any integer m ≥ 0, there exist constants cm = cm(n,m, k0)
such that

(2.6) sup
x∈M

|∇mRijkl(t, x)|2 ≤ Cm
tm

, 0 ≤ t ≤ T (n, k0).

Regarding uniqueness, we have the following:

Theorem 2.3 (Chen and Zhu [4]). Let (Mn, gij(x)) be a complete non-
compact Riemannian manifold of dimension n with bounded curvature. Let
gij(t, x) and gij(t, x) be two solutions to the Ricci flow on [0, T ]×M with
the same gij(x) as initial data and with bounded curvatures. Then gij(t, x) =
gij(t, x) for all (t, x) ∈ [0, T ]×Mn.

As a consequence, we immediately obtain the following
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Corollary 2.4. Theorems 2.2 and 2.3 apply with the flow (2.5) replaced by
(1.1), and the estimates (2.6) become

(2.7) sup
x∈M
|∇mg Rijkl(t, x)|2 = sup

x∈M
|e−2(n−1)t∇mĝ R̂ijkl(t, x)|2 ≤ Cme

−2(n−1)t

tm
.

Proof. Simply substitute g = e−2(n−1)tĝ in (1.1). The decay estimate (2.7)
follows from an elementary Riemann curvature scaling argument, which
yields that Rm(g) = e−2(n−1)tRm(ĝ). �

As an AH metric g0 is complete and of bounded curvature, the results
above imply that there is a solution to the NRF starting at g0 for a short
time. We call this Shi’s flow. Here is the basic long-time existence criterion
for this flow [see [5], page 118].

Theorem 2.5. If g0 is a smooth metric on a noncompact complete manifold
with bounded curvature, the normalized Ricci flow has a unique solution g(t)
with g(0) = g0 on a maximum time interval 0 ≤ t < TM ≤ ∞. If TM <∞,
then

(2.8) lim sup
t→TM

sup
p
|Rm +K|g =∞.

Theorem 1.1 concerns the NRF starting at a conformally compact asymp-
totically hyperbolic metric. The results above alone do not imply that the
short time solution to the NRF remains within this class. However, by earlier
work of the first author, the unique solution to the NRF remains conformally
compact AH for a short time. One could worry that g(t) ceases to be con-
formally AH at time earlier than the maximal time of existence as a Shi
flow. Theorem 1.1 guarantees that this does not happen. We now prove that
theorem.

Proof of Theorem 1.1. In the statement of the theorem, the time TM rep-
resents the maximal interval of existence of the NRF as a Shi flow. Let
T1 > 0 denote the maximal interval of existence within the class of smoothly
conformally compact asymptotically hyperbolic metrics. Suppose by way of
contradiction that T1 < TM .

On [0, T1], g(t) is a complete metric with uniformly bounded curvature,
and so by the work of Chen-Zhu [4] (see in particular Theorem 2.1 and
observe that the estimates allow us to continue a solution to [0, T1]), there
exists a solution to the harmonic map heat flow coupled with the Ricci flow
on [0, T1] that produces a solution g̃(t) to the normalized Ricci DeTurck flow
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on [0, T1] with uniform control of curvature and all covariant derivatives. But
now since g̃(0) = g0 is conformally compact asymptotically hyperbolic the
regularity results in [2, Section 5] give that g̃(t) is smoothly conformally com-
pact AH on [0, T1]. Pullback by the DeTurck diffeomorphism now extends
the conformally compact AH solution of the NRF on [0, T1], contradicting
the maximality of T1. So T1 = TM .

The conformally compact flow now coincides with the Shi flow, and so
the previous extension theorem applies. �

Note that this theorem says nothing about the regularity of conformal
compactification of a limiting Poincaré-Einstein metric. Should the flow con-
verge to a limit, nothing here requires the limit metric to be smoothly con-
formally compact.

3. Rotational symmetry

3.1. Introduction

There are a number of approaches to rotationally symmetric Ricci flow, see
for example [1, 12, 15, 17]. A time-dependent rotationally symmetric metric
can be parametrized as

(3.1) g = φ2(t, ρ)dρ2 + ψ2(t, ρ)g(Sn−1, can).

The Ricci flow of this metric leads to a system of two equations for φ and
ψ which, as usual, is not strictly parabolic. One can use the DeTurck trick,
but for long-time existence this is inconvenient since it leads to a parabolic
system with two unknown functions. Instead, other methods are available
which effectively reduce the problem to a single parabolic equation for a
single function.

One such method is to fix a coordinate gauge, and modify the Ricci
flow by a diffeomorphism term to preserve the gauge during the flow. The
two obvious choices are area-radius coordinates (in which ψ(t, ρ) = ρ for
all t ≥ 0) and normal coordinates about the origin of rotational symmetry
(in which φ(t, ρ) = 1 for all t ≥ 0). The former leads to a single parabolic
equation for ψ, while the latter leads to a considerably more complicated
coupled system which we will not consider further. However, a variant on the
normal coordinate strategy leads to a common approach in the literature,
in which the coordinate vector field ∂

∂ρ is replaced by ∂
∂s := 1

ϕ
∂
∂ρ . Then ∂

∂s

and ∂
∂t form a non-commuting set of vector fields on [0, T )×M (the partial
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derivative notation notwithstanding). This approach decouples φ from the
ψ equation, leaving a single parabolic equation for ψ; the solution for φ can
be found after the ψ equation is solved.

While both the area-radius gauge approach and the non-commuting vec-
tor fields approach lead to a single parabolic differential equation, in each
case the resulting equation has a singular point at ρ = 0, as one expects
when employing polar coordinates. However, this may be more than just a
coordinate artifact since, if sectional curvatures were to become unbounded,
symmetry would suggest that this will occur at the origin. This issue does
not arise, or at least is not central, in treatments of short-time existence or
in attempts to find exact, rotationally symmetric solutions, but for us it will
consume the bulk of the effort in what follows.

In the sequel, we have chosen the area-radius approach. This approach
at first glance seems to have a disadvantage. Area-radius coordinates break
down at minimal hyperspheres, so this approach is valid only when there
are none. We will, however, show that if the initial data contain no minimal
hyperspheres then none form during the evolution. Hence, this is a restriction
on the initial data, and as noted by Remark 1.3 it is a consequence of a
restriction that we already impose on the sectional curvature.

Were we to employ the alternative approach of non-commuting vector
fields, it would be unlikely that we could remove this restriction and thereby
allow minimal hyperspheres in the initial data,2 even though the issue of
coordinate breakdown at minimal hyperspheres would no longer arise. To
see this, consider the following gedankenexperiment, posed in the n = 3 case
for simplicity. Consider R× S2 with an asymptotically hyperbolic (at both
ends) rotationally symmetric metric; a time-symmetric slice of a Kottler (i.e.,
AdS-Schwarzschild) metric will do. This contains a topologically essential
minimal sphere, a neck. Under normalized Ricci flow, the neck may at first
expand, but a standard argument from the analysis of the Ricci flow of closed
3-manifolds with nontrivial second homotopy can be adapted to this setting
and shows that the neck eventually will contract and will form a neckpinch
in finite time (see, e.g., [16, pp 420–429, especially Lemma 18.11]). Allow
the contraction to proceed almost to the singular time, but stop the flow
before singularity formation. The neck will now have area of order ε2 for a
small positive ε.

2Perhaps we could relax the restriction without removing it entirely. However,
we are able to study the λ(0) ≤ 0 (as opposed to λ(0) < 0) case with our current
methods, and cannot find evidence for convergence for data with λ(0) not strictly
negative. This may be (weak) evidence that λ < 0 may be necessary for convergence.
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Now consider a 2-sphere of radius much larger than 1/ε2, lying in one of
the two asymptotic regions. Perform a surgery that removes the asymptotic
region beyond that sphere, and smoothly attach in its place a sufficiently
large (and thus nearly flat) 3-sphere with a disk removed. This will require
some smoothing near the surgery region. The result is R3 with a very small
minimal surface, and the geometry for quite some distance around that
minimal surface is insensitive to the surgery.

Now restart the normalized Ricci flow. Pseudo-locality considerations,
if they can be applied here, would suggest that the evolution near the neck
will be nearly unaffected by the surgery, and since a singularity would have
formed immediately had the flow not been stopped, the same will happen
now.

It therefore seems plausible that the restrictions inherent in the area-
radius approach may not be as onerous as they may at first seem — perhaps
greater generality is possible, but plausibly some form of restriction will
always be necessary if the flow is to exist for all t > 0 and converge. The
current form of these restrictions accommodates our approach in which the
analysis becomes relatively straightforward (though not entirely so, since
the singular point at the origin must be carefully dealt with).

We take this opportunity to mention related work by Ma and Xu [15].
These authors study the behavior of the un-normalized Ricci flow within a
class of rotationally symmetric metrics of asymptotically hyperbolic type,
using the non-commuting vector fields approach. Nonetheless, they require
all sectional curvatures to be negative, whereas we have no need to restrict
the sectional curvature in radial 2-planes. It is thus implicit in their as-
sumptions, as in ours, that there are no initial minimal hyperspheres. Their
flow can be transformed to a flow of our type, but then the asymptotic sec-
tional curvatures would vary in time (according to a simple scaling law).
In this transformed picture, their work amounts to the study of the same
flow equation and initial conditions, but with a different boundary (rather,
asymptotic) condition. They find long-time existence and convergence. Their
arguments appear to require a maximum principle for singular differential
equations, but the precise nature of this principle is not made explicit in
[15] (cf our Propositions 4.1 and Corollary 4.2, which perhaps can be used
to close this apparent gap).
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3.2. Rotational symmetry in area-radius coordinates

Our strategy here is similar to that of [17, Section 4.1], but the smoothly
conformally compactifiable setting means that differences arise in the treat-
ment of the asymptotics.

By Theorem 1.1 and using that Ricci flow (including normalized Ricci
flow) preserves isometries, if we start from a rotationally symmetric metric
g0 = g(0), then we may write the solution to (1.1) in the form of (3.1) on
some time interval t ∈ [0, TM ) (possibly TM =∞). A computation shows
that the normalized Ricci flow (1.1) for the ansatz of (3.1) devolves to

∂φ

∂t
=

(n− 1)

ψφ

∂2ψ

∂ρ2
− (n− 1)

ψφ2

∂φ

∂ρ

∂ψ

∂ρ
− (n− 1)φ,

∂ψ

∂t
=

1

φ2

∂2ψ

∂ρ2
− 1

φ3

∂ψ

∂ρ

∂φ

∂ρ
+

(n− 2)

φ2ψ

(
∂ψ

∂ρ

)2

− n− 2

ψ
− (n− 1)ψ.

(3.2)

As an initial condition, we may choose ρ to be the distance from the centre
of symmetry with respect to the g0 metric, so φ(0, ρ) ≡ 1. Since the flow
is smooth, φ remains bounded and even as a function of ρ near ρ = 0, and
φ(t, 0) = 1 (all of these statements hold at least for a short time). Similarly,
ψ(t, ρ) ∼ ρ remains an odd function of ρ near ρ = 0. Since g0 is conformally
compact AH, then ψ(0, ρ) ∼ eρ, as ρ→∞. By Theorem 1.1, g(t) remains
conformally compact AH. This ensures that ψ(t, ρ) ∼ eρ as ρ→∞ at least
for a short time as well. From these bounds, it follows that distance with
respect to g(t) is comparable to distance with respect to g0 so that Ω = e−ρ

is a boundary defining function for the conformal infinity.
In view of the discussion of the last subsection, we prefer the ansatz

(3.3) ĝ(t) = f2(t, r)dr2 + r2g
(
Sn−1, can

)
for the evolving metric on (Rn, g). We now derive the equation that f
must satisfy. By the change-of-variables formula, using the notation φt(r) :=
φ(t, ρ), ψt(r) := ψ(t, ρ), we have

(3.4) f(t, r) =
φt ◦ ψ−1

t (r)

(∂ρψt) ◦ ψ−1
t (r)

.
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This change of variables arises from a diffeomorphism ofM. The next lemma
discusses this, after which a subsequent lemma extends the diffeomorphism
to M such that the asymptotic structure is preserved. 3

Lemma 3.1. Let g(t) = φ2
t (ρ)dρ2 + ψ2

t (ρ)g(Sn−1, can) be the smooth, rota-
tionally symmetric, conformally compactifiable and asymptotically hyperbolic
flow of metrics obeying (1.1) on Rn developing from an initial metric g0 =
g(0) that has no minimal hypersphere. Let Ft :M→M be the map with
components (r, θA) = Ft(ρ, θ

A) such that ĝ =
(
F−1
t

)∗
g(t) = f2(t, r)dr2 +

r2g(Sn−1, can). Then Ft is a smooth diffeomorphism and ĝ is smooth.

Proof. Since we are working in polar coordinates, strictly speaking, the map
Ft defined above is defined on M punctured at the pole. Since Ft is the
identity in the angular components, we must check that the radial map
ψt : (0,∞)ρ → (0,∞)r is invertible and has odd parity in r as r → 0. For
convenience we extend ψt by continuity to zero; i.e., we regard ψt : [0,∞)ρ →
[0,∞)r, however we only use that ψt and its inverse are smooth on (0,∞),
and we use their asymptotic behaviour.

Now it is elementary that the mean curvature of constant-ρ hypersur-
faces

(3.5) H =
(n− 1)∂ρψt

φtψt
=
n− 1

rf

tends to infinity at a fixed point of rotational symmetry (i.e., the origin) and
tends to n− 1 on an asymptotically hyperbolic end. Furthermore, if g0 has no
minimal hypersphere, then either the mean curvature H(0, ρ) = (n−1)∂ρψ0

ψ0
of

the constant-ρ hypersurfaces is greater than n− 1 or it achieves a minimum
Hmin > 0 at some finite ρ; in either case, it is bounded away from zero.
Then so are both H(t, ·) and ∂ρψt

ψt
for some interval t ∈ [0, T ). Likewise,

taking a smaller T if necessary, we have 0 < C ≤ φt (using that φ0 = 1).

Since H(t, ρ) := (n−1)∂ρψt
φtψt

> 0 we may conclude that ∂ρψt
ψt

> 0 for t ∈ [0, T ).
Then ψt is monotonic in ρ. Hence ψt is injective.

Surjectivity follows because ψt(0) = 0 (SO(n) fixes an origin in Rn),
ψt(ρ)→∞ as ρ→∞ (there are SO(n) orbits of arbitrarily large area in a
conformally compactifiable, rotationally symmetric manifold), and ψt(·) is
continuous. Thus ψt is invertible, and hence so is Ft,

Smoothness of ψ−1
t (r) on the open interval (0,∞) follows from the same

simple inverse function theorem argument by differentiating the composition

3Equation (3.4) corresponds to [17, equation (4.13)], except that the latter has a
minor error in its denominator: ∂r should be ∂ρ.
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ψ−1
t (ψt(ρ)) = ρ that will be used to prove Lemma 3.4 below. Moreover, since
ψt is an odd function of ρ as ρ→ 0, one may check that ψ−1

t (r) will be odd
as r → 0.

The explicit expression for f(t, r) given in equation (3.4) and the parity
conditions for φt and ψt and its inverse now show that f is an even function
of r. It is easy to check that the leading coefficient is 1.

Finally, although the diffeomorphism Ft is not defined at the pole, the
resulting pullback metric will still be smooth. Since r is just the area-radius
coordinate for g(t), the condition that g(t) is smooth at r = 0 is precisely
the condition that there is a coordinate system in which the metric at r = 0
becomes the flat metric in polar coordinates ĝ = dr2 + r2g(Sn−1, can) plus
corrections given by even powers of r. Thus since f has leading coefficient 1
and is even in r, ĝ(t) is smooth across r = 0. �

Thus the flow (3.3) arises from (3.1) by pullback along the inverse
of the time-dependent diffeomorphism (r, θA) = Ft(ρ, θ

A) = (ψt(ρ), θA). Let
the generator of the inverse diffeomorphism flow be denoted by Xt ≡ X(t, ·).
This is not a DeTurck type vector field defined by the difference between
the connection of the flowing metric and a fixed background connection.
Since Ft is constant in time in the angular variables, Xt will have vanishing
angular components and

(3.6) Xt = −
(
∂ψt
∂t
◦ ψ−1

t (r)

)
∂

∂r
.

From this and equations (3.2) it follows that

(3.7) Xt =

[
1

f3(r)

∂f

∂r
+

(n− 2)

r

(
1− 1

f2(r)

)
+ (n− 1)r

]
∂

∂r
.

While individual terms in Xt are singular at r = 0, from the proof of
Lemma 3.1, we have that f ∼ 1 + c(t)r2 + . . . as r → 0, and so Xt is not sin-
gular. Rather, it vanishes at the origin, as it must. Moreover, if the flow (3.1)
solves (1.1), then the metric ĝ = (F−1

t )∗g of (3.3) solves

(3.8)
∂ĝ

∂t
= −2 (Rc(ĝ) + (n− 1)ĝ) + £Xt ĝ.

The angular components are constant in time, thus preserving ansatz (3.3)
(providing another derivation of (3.7)). The evolution of the rr-component
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of the metric is given by

∂f

∂t
=

1

f2

∂2f

∂r2
− 2

f3

(
∂f

∂r

)2

+

(
n− 2

r
− 1

rf2
+ (n− 1)r

)
∂f

∂r
(3.9)

− (n− 2)

r2f

(
f2 − 1

)
,

We may write (3.9) as

∂f

∂t
= ∆f − 1

f
|df |2 + Y (f)− (n− 2)

r2f

(
f2 − 1

)
Y :=

(
n− 2

r
− n

rf2
+ (n− 1)r

)
∂

∂r
.

(3.10)

where, for any sufficiently differentiable function u of r alone (and possibly
t), ∆ denotes the scalar Laplacian ∆ := ∇i∇i for the ansatz (3.3), and so
obeys

(3.11) ∆u(r) =
1

rn−1f

∂

∂r

(
rn−1

f

∂u

∂r

)
=

1

f2

∂2u

∂r2
+

(n− 1)

rf2

∂u

∂r
− 1

f3

∂f

∂r

∂u

∂r
.

We also employ the notation |ω| ≡ |ω|g :=
√
g−1(ω, ω) for ω a one-form, so

that for the radial one-form df we have |ω|2 =
(

1
f
∂f
∂r

)2
.

Along the flow (3.3), define two functions

κ :=
1

rf3

∂f

∂r
,(3.12)

λ :=
1

r2

(
1− 1

f2

)
.(3.13)

These are the sectional curvatures of ĝ, with κ being the sectional curvature
in 2-planes containing ∂

∂r and λ being the sectional curvature in 2-planes
orthogonal to ∂

∂r . They pull back to the sectional curvatures along the nor-
malized Ricci flow (3.1). By asymptotic hyperbolicity the latter tend to −1
as ρ→∞. Thus so do κ and λ as r →∞. Observe that then f ∼ 1/r for
large r. Also, κ and λ are related to each other by the Bianchi identity,
which in this case can be read off from (3.12) and (3.13):

(3.14) r
∂λ

∂r
= 2(κ− λ).

We summarize:
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Lemma 3.2. Given a rotationally symmetric, smoothly conformally com-
pactifiable, asymptotically hyperbolic metric g0 with no closed minimal hy-
persurfaces, there is a T > 0 such that the flow (3.1) exists for 0 ≤ t < T ,
and is the pullback along F−1

t of the flow (3.3). For each t ∈ [0, T ), the fam-
ily of diffeomorphisms Ft is smooth in t and preserves sec→ −1, f ∼ 1/r,
as r →∞. For each t ∈ [0, T ), the function f defined by (3.4) is smooth in
t and r and obeys equation (3.9).

3.3. Extended diffeomorphism

As stated above Ft and its inverse are only diffeomorphisms ofM. However
we will show that this diffeomorphism extends to a diffeomorphism of M .
We prove this for thoroughness, but is not used in the sequel.

We first state a condition that allows us to check the preservation of
conformal compactness.

Lemma 3.3. Consider a rotationally symmetric metric g(t), t ∈ [0, T ), of
the form (3.1), with g(0) = g0 and with ρ the g0-distance from the centre
of symmetry. Then, for any t ∈ [0, T ), g(t) is conformally compact if and
only if any number of applications of the operator eρ∂ρ to both φ2

t (ρ) and
e−2ρψ2

t (ρ) remain bounded as ρ→∞ with t fixed.

Proof. Recall that Ω = e−ρ is a boundary defining function for M the com-
pact manifold with boundary that contains M. The condition that g is
conformally compact means that Ω2g extends to a smooth metric on M .
Thus, replacing the ρ coordinate by Ω and multiplying by Ω2, we obtain

(3.15) Ω2g(t) = φ2
t (− log Ω)dΩ2 + Ω2ψ2

t (− log Ω)g
(
Sn−1, can

)
.

Then φ2
t (− log Ω) and Ω2ψ2

t (− log Ω) are smooth on M ; i.e., any number of
Ω-derivatives of these functions remains bounded as Ω→ 0. Converting to
ρ we find ∂Ω = −eρ∂ρ, so that if g is conformally compact, then for any k ∈
N, (−eρ∂ρ)k(φ2

t (ρ)) and (−eρ∂ρ)k(e−2ρψ2
t (ρ)) remain bounded as ρ→∞.

Conversely, if this condition holds for any k as ρ→∞, then we see that any
Ω-derivative of φ2

t (− log Ω) and Ω2ψ2
t (− log Ω) remains bounded as Ω→ 0.

But then each Ω-derivative of the compactified metric component satisfies a
Lipschitz condition which allows us to extend each derivative to the manifold
with boundary. So g is conformally compact. �
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Lemma 3.4. The diffeomorphism Ft :M→M : Ft(ρ, θ
A) 7→ (r, θA) de-

fined above extends to a diffeomorphism Ft : M →M of manifolds with
boundary. Consequently ĝ =

(
F−1
t

)∗
g remains conformally compact.

Proof. The diffeomorphism Ft is the identity in the angular directions and
so we need only consider the radial direction. In the interior, the diffeomor-
phism (0,∞)ρ to (0,∞)r is given by r = ψt(ρ). Rescaling, we set Ω = e−ρ

as before and let s = 1
r . We will be interested in the composition s = s(Ω),

initially defined for Ω > 0 (and obviously r > 0) by

(3.16) s =
1

r
=

1

ψt(ρ)
=

1

ψt(− log Ω)
,

and its inverse Ω = Ω(s), defined for s > 0 by

(3.17) Ω = e−ψ
−1
t (1/s).

To show that these diffeomophisms extend to Ω = 0 and s = 0, we convert
the requisite Ω and s derivatives to ρ and then argue that the control on φt
and ψt coming from conformal compactness via Lemma 3.3 gives a bound on
the Ω and s derivatives down to zero. Then these derivatives are Lipschitz
and extend to the boundary, proving that Ft is a diffeomorphism of manifolds
with boundary.

Let E denote the algebra of functions such that any number of eρ∂ρ
derivatives remain bounded as ρ→∞. Obviously, e−ρ ∈ E and, by Lemma
3.3, e−ρψ(ρ) ∈ E . Further, ∂ρψt − ψt = eρ∂ρ(e

−ρψt) ∈ E , so that e−ρ∂ρψt ∈ E
as well. Consider the function s = 1

ψ(− log Ω) . We find

(3.18)
ds

dΩ
=

1

Ω

∂ρψt(− log Ω)

ψ2
t (− log Ω)

=
∂ρψt(ρ)

e−ρψ2
t (ρ)

=
e−ρ∂ρψt(ρ)

e−2ρψ2
t (ρ)

∈ E

and so ds
dΩ is bounded as ρ→∞ (equivalently Ω→ 0). Noting that ∂

∂Ω =
−eρ ∂∂ρ : E → E , we conclude that the forward map extends to the boundary.

We now consider the inverse map. We may differentiate the equation
ψ−1
t (ψt(ρ)) = ρ, to obtain (ψ−1

t )′(r) = 1
∂ρψt(ρ) .4 Further, ∂

∂s = − ψ2
t (ρ)

∂ρψt(ρ)
∂
∂ρ .

4Because of the absence of closed minimal hyperspheres, cf. Remark 1.3, this
derivative exists everywhere (excluding the origin, since r is a polar coordinate),
but here we only need it to exist on a collar neighbourhood of infinity.
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Differentiating (3.17), we obtain

dΩ

ds
=

1

s2
e−ψ

−1
t (1/s)

(
ψ−1
t

)′
(1/s) =

e−ρψ2
t (ρ)

∂ρψt(ρ)
(3.19)

= (e−ρψt(ρ))

(
e−ρψt(ρ)

e−ρ∂ρψt(ρ)

)
,

so that dΩ
ds ∈ E , which in turn shows that the s-derivative of Ω remains

bounded as ρ→∞ (s→ 0). This same argument shows that

∂

∂s
= − e−2ρψ2

t (ρ)

e−ρ∂ρψt(ρ)
eρ
∂

∂ρ
,

so that in fact d
ds : E → E . So Ft extends to a diffeomorphism of manifolds

with boundary.
Finally, since s and Ω pull back to each other under the rescaled diffeo-

morphism, a short computation shows that ĝ is conformally compact. �

4. Uniform C0 Control of f

4.1. Maximum principle

As discussed above, the main issue we have to deal with is the possibility
that the metric and curvature quantities that we wish to study become
unbounded at the singular point at the origin of symmetry. We therefore
would like a version of the usual maximum principle which is adapted to
this situation.

We denote ΩT = (0, T )× (0,∞), Ω̄T := [0, T ]× [0,∞), and Ω̂T :=
(0, T ]× (0,∞). Then

Proposition 4.1. Let u ∈ C0,0(Ω̄T ) ∩ C1,2(ΩT ) satisfy

(4.1) 0 ≤ L(u) := a(t, r)
∂2u

∂r2
+ b(t, r)

∂u

∂r
+ c(t, r)u− ∂u

∂t

with 0 < C1 ≤ a(t, r) ≤ C2, on ΩT , with a, b ∈ C(0,0)(ΩT ) and c ∈ C0,0(Ω̂T ).
Furthermore, assume that u(t, 0) = u0, that u(t, r)→ u∞ ∈ R as r →∞,
and that max{u0, u∞} ≥ 0. Either

1) supΩ̄T u = max{u0, u∞}, or

2) supΩ̄T u is a maximum realized at (0, r∗) for some r∗ ∈ (0,∞), or
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3) supΩ̄T u is a maximum realized at some point (t∗, r∗) ∈ (0, T ]× (0,∞),
and c(t∗, r∗) ≥ 0.

We have extended the continuity condition on c to include t = T even
though (4.1) holds only in ΩT since otherwise the third alternative in the
theorem could fail to hold as stated. This condition will always hold in our
applications.

Proof. If neither possibility 1 nor possibility 2 above applies, then u achieves
a positive maximum at some point (t∗, r∗) ∈ (0, T ]× (0,∞). Then v(t, r) =
u(t, r)− u(t∗, r∗) has maximum v(t∗, r∗) = 0 in (0, T ]× (0,∞) and obeys
L(v) ≥ −c(t, r)u(t∗, r∗). Consider a small rectangle R = [t∗ − ε, t∗]× [r∗ −
ε, r∗ + ε] ⊂ (0, T ]× (0,∞) about (t∗, r∗), such that u(t, r) > 0 in R. If v(t, r)
is not identically zero in R, it is necessary that c(t, r) > 0 somewhere in R so
as not to contradict the strong maximum principle [14, Theorem 2.7], and
by repeating the argument as we take ε→ 0, we obtain a sequence of points
(ti, ri) converging to (t∗, r∗) such that c(ti, ri) > 0. Thus c(t∗, r∗) ≥ 0. Alter-
natively, if v(t, r) ≡ 0 in R, then u(t, r) ≡ u(t∗, r∗) and therefore u(t, r) > 0
in R, and also L(v) = L(0) = 0 in R. But since L(v) ≥ −c(t, r)u(t∗, r∗), then
c(t, r) ≥ 0 throughout R, and so again c(t∗, r∗) ≥ 0. �

Though the inequality (4.1) applies when right-hand side is linear in u,
we will apply the proposition when the right side of the equation is only
quasi-linear. Thus the coefficients a, b, and c may arise from compositions
of continuous functions; e.g., b(t, r) = β(t, r; p, q) with p = u(t, r) and q =
∂u
∂r (t, r). Alternatively, in the proof one instead could appeal to the strong
maximum principle for quasi-linear equations [13, Theorem 2]. We conclude
this subsection with the corresponding parabolic minimum principle.

Corollary 4.2. Let u ∈ C0,0(Ω̄T ) ∩ C1,2(ΩT ) satisfy

(4.2) 0 ≥ L(u) := a(t, r)
∂2u

∂r2
+ b(t, r)

∂u

∂r
+ c(t, r)u− ∂u

∂t

with 0 < C1 ≤ a(t, r) ≤ C2, on ΩT , with a, b ∈ C(0,0)(ΩT ) and c ∈ C0,0(Ω̂T ).
Furthermore, assume that u(t, 0) = u0, that u(t, r)→ u∞ ∈ R as r →∞,
and that min{u0, u∞} ≤ 0. Either

1) infΩ̄T u = min{u0, u∞}, or

2) infΩ̄T u is a minimum realized at (0, r∗) for some r∗ ∈ (0,∞), or

3) infΩ̄T u is a minimum realized at some point (t∗, r∗) ∈ (0, T ]× (0,∞),
and c(t∗, r∗) ≥ 0.
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Proof. Replace u by −u in the proof of Proposition 4.1. Note that the sign
condition on c(t∗, r∗) in the third alternative above is not reversed. �

4.2. No neckpinches form

Letting w = f2, we obtain from (3.9) the evolution equation

(4.3)
∂w

∂t
= ∆w − 1

w
|dw|2 + Y (w)− 2(n− 2)

r2
(w − 1) .

By expanding terms and dropping certain terms of definite sign, we obtain

(4.4)
∂w

∂t
≤ 1

w

∂2w

∂r2
+

(
n− 2

r
− n

rw
+ (n− 1)r

)
∂w

∂r
− 2(n− 2)

r2
(w − 1) .

There is a singular point at r = 0 but the divisions by w cause no problem
since, by long-time existence, w does not become zero for t ≤ T (though it
tends to zero as r →∞). We may now apply the maximum principle.

Lemma 4.3. Suppose that the flow (3.1) obeys (1.1) for t ∈ [0, Tmax) where
Tmax ∈ (0,∞] is the maximal time of existence. Furthermore suppose that the
initial metric g0 = g(0, ·) does not admit a minimal hypersphere.5 Then f is
uniformly bounded for t ∈ [0, Tmax], no minimal hypersphere forms, and the
coordinate transformation (3.4) exists (and is invertible) for t ∈ [0, Tmax).

Proof. By (3.4) and the condition that no minimal hypersphere is present ini-
tially, we then have that supr f(0, r) ≤ C for some C ≥ 1 (since by smooth-
ness at t = 0, we have f(0, 0) = 1). Now let T0 > 0 be the first time at
which a minimal hypersphere forms along the flow (3.1), and let T1 :=
min{T0, Tmax}. Consider expression (4.4) on (0, T1]× (0,∞), so as to avoid
the singularity at r = 0. This expression has the same form as (4.1) with

u = w − 1, a = 1
w , b = n−2

r −
1
rw + (n− 1)r, and c = −2(n−2)

r2 . As well, w =
1 at r = 0 and w → 0 as r →∞, so Proposition 4.1 applies and asserts
that w(t, r) is bounded above by C2. Thus f is uniformly bounded on
(0, T1]× (0,∞). But by (3.5), a compact minimal hypersurface cannot form
unless f diverges, and so T1 = Tmax. �

5We remind the reader that the absence of initial minimal hyperspheres follows
from our assumption λ(0) ≤ 0, as explained in Remark 1.3. As well, from an ele-
mentary argument presented as part of the proof of Remark 1.3, we see that the
absence of minimal hyperspheres at any time t precludes the existence of any closed
minimal hypersurface at time t.
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We note in passing that this does not forbid compact minimal hyper-
surfaces from forming if some are already present initially, since then the
assumption supx∈M f(0, x) = C does not hold and our coordinate system
fails to cover the initial manifold.

Corollary 4.4 (Preservation of nonpositive λ). If supλ(0, r) ≤ 0 for
r ∈ [0,∞), then supr λ(t, r) ≤ 0 for (t, r) ∈ [0, Tmax]× [0,∞).

Proof. We first observe that if supλ(0, r) ≤ 0, then sup f(0, r) ≤ 1 by equa-
tion (3.13), and then in fact we have max f(0, r) = 1 since f(0, 0) = 1 by
smoothness. But by Lemma 4.3, if max f(0, r) = 1, then max f(t, r) = 1 for
all (t, r) ∈ [0, Tmax]× [0,∞), and then it follows from equation (3.13) that
supλ(t, r) ≤ 0 all along the flow. �

In the next section we will prove decay estimates for λ.

5. Evolution of λ

5.1. Evolution equation for λ

From (4.3), we can write

∂

∂t

(
1− 1

f2

)
= ∆

(
1− 1

f2

)
+ f2

∣∣∣∣d(1− 1

f2

)∣∣∣∣2 + Y

(
1− 1

f2

)
(5.1)

+
2(n− 2)

r2

(
1− 1

f2

)2

− 2(n− 2)

r2

(
1− 1

f2

)
.

We also need several identities, the first of which is

∆r =
1

rn−1f

∂

∂r

(
rn−1

f

)
=
n− 1

rf2
− 1

f3

∂f

∂r
(5.2)

= −(n− 1)
1

r

(
1− 1

f2

)
+
n− 1

r
− rκ

= −nrλ− r (κ− λ) +
n− 1

r

= −nrλ− 1

2
r2∂λ

∂r
+
n− 1

r
.
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By straightforward manipulations, some of which use (3.13), we then further
obtain the identities

1

r2
d

(
1− 1

f2

)
= dλ+ 2λ

dr

r
,(5.3)

1

r2
f2

∣∣∣∣d(1− 1

f2

)∣∣∣∣2 = r2f2|dλ|2 + 4rλf2dr · dλ+ 4λ2,(5.4)

1

r2
∆

(
1− 1

f2

)
= ∆λ+

(
4− r2f2λ

) dr
r
· dλ− 2(n+ 1)λ2 +

2n

r2
λ(5.5)

1

r2
Y

(
1− 1

f2

)
=

(
nrλ− 2

r
+ (n− 1)r

)
f2dr · dλ(5.6)

+ 2nλ2 + 2

(
n− 1− 2

r2

)
λ,

where dr · dλ := g−1(dr, dλ) ≡ 1
f2

∂λ
dr . Multiplying (5.1) by 1/r2 and using

the above equations, we obtain the desired evolution equation

(5.7)
∂λ

∂t
= ∆λ+ Z · dλ+ r2f2 |dλ|2 + 2(n− 1)λ(λ+ 1),

where we define

Z :=

[
(n+ 1)

r
− (n− 1)

rf2
+ (n− 1)r

]
f2dr(5.8)

=

[
2

r
+ (n− 1)r(λ+ 1)

]
f2dr.

5.2. Decay of λ

It is convenient to define Λ(t, r) by

(5.9) λ(t, r) =: −1 + Λ(t, r)e−2(n−1)δ2t,

where δ will be assigned values δ = 0 and δ = 1 when needed below. Then

(5.10)
∂Λ

∂t
= ∆Λ + Z · dΛ + e−2(n−1)δ2tr2f2 |dΛ|2 + 2(n− 1)

(
λ+ δ2

)
Λ.

The idea now is to show that Λ is bounded uniformly (and, even better,
converging) in t. A lower bound seems obvious from inspection of (5.10).
However, the norm of Z diverges at r = 0 so when (5.10) is expressed in any
coordinate system that covers the origin, the result is a singular PDE. This



i
i

“1-Woolgar” — 2018/12/7 — 0:17 — page 1032 — #24 i
i

i
i

i
i

1032 E. Bahuaud and E. Woolgar

was also the case with Y in (4.3), and there the strategy was to work on the
domain [0, T ]× [ε, 1/ε], T < Tmax, and then take ε↘ 0, using that w → 1 as
r ↘ 0. We will follow the same strategy here, but this alone is insufficient
because we have no uniform control of Λ at the origin. Instead, we borrow
a trick from [17] and study the functions

(5.11) Λα :=
rα

(rα + α)
Λ, α ∈ (0, 1),

subsequently taking α↘ 0. The factor rα

rα+α is chosen because we will have
Λα(t, 0) = 0, while maintaining Λα(t, r) ∼ Λ→ 0 as r →∞, and we will have
limα Λα = Λ (non-uniformly).

We again need some identities. First,

(5.12) Λ =
(

1 +
α

rα

)
Λα,

so

(5.13) dΛ =
(

1 +
α

rα

)
dΛα −

α2

rα+1
Λαdr.

Omitting the exponential factor for brevity, this allows us to write out the
term in (5.10) that is quadratic in dΛ as

r2f2|dΛ|2 = r2f2
(

1 +
α

rα

)2
|dΛα|2(5.14)

− 2α2r1−αf2Λα

(
1 +

α

rα

)
dr · dΛα +

α4

r2α
Λ2
α

= r2f2
(

1 +
α

rα

)2
|dΛα|2

− 2α2r1−αf2Λα

(
1 +

α

rα

)
dr · dΛα

+
α4e2(n−1)δ2t

rα(rα + α)
(λ+ 1)Λα,

using f2|dr|2 = 1. In the last line, we have rewritten the quadratic com-
bination Λ2

α in terms of (λ+ 1)Λα. This is for convenience in what fol-
lows (though the Λ2

α form also plays a role below), where by imposing sign
conditions on λ we will convert the differential equation for Λα into an
inequality with linear nonderivative terms (cf. the nonderivative term in
equation (5.10)).
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The Z · dΛ term is

Z · dΛ =
(

1 +
α

rα

)
Z · dΛα −

α2

rα+1
Λα

(
2

r
+ (n− 1)r(λ+ 1)

)
(5.15)

=
(

1 +
α

rα

)
Z · dΛα −

2α2

rα+2
Λα −

α2(n− 1)

rα
(λ+ 1) Λα.

Next we have to work out the relationship between ∆Λ and ∆Λα. Taking
the divergence of (5.13), we have

∆Λ =
(

1 +
α

rα

)
∆Λα −

2α2

rα+1f2

∂Λα
∂r

(5.16)

+
α2(α+ 1)

rα+2f2
Λα −

α2

rα+1
Λα∆r

=
(

1 +
α

rα

)
∆Λα −

2α2

rα+1f2

∂Λα
∂r

+
α2(α+ 1)

rα+2
Λα

− α2(α+ 1)

rα
Λαλ+

α2

rα+1
Λα

[
nrλ+

1

2
r2∂λ

∂r
− n− 1

r

]
,

where we replaced factors of 1
r2f2 using 1

r2f2 = 1
r2 − λ and we used (5.2) to

replace ∆r by

(5.17) ∆r = −nrλ− 1

2
r2∂λ

∂r
+
n− 1

r
.

Next, we need to replace ∂λ
∂r in favour of ∂Λα

∂r , using (5.9) and (5.13). After
considerable manipulation, the result can be written as

∆Λ =
(

1 +
α

rα

)
∆Λα +

α2

rα

[
1

2
r (λ+ 1)− 2

rf2

]
∂Λα
∂r

(5.18)

− α2

rα

[
n− α− 2

r2
+

α2

2(rα + α)

]
Λα

+
α2

rα

[
n− α− 1− α2

2(rα + α)

]
λΛα.

Plugging all this into (5.10) and organizing terms, we get the evolution
equation for Λα:
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∂Λα
∂t

= ∆Λα + Z · dΛα + e−2(n−1)δ2tr2
(

1 +
α

rα

)(∂Λα
∂r

)2

(5.19)

− α2

(rα + α)

[
3

2
r (λ+ 1) +

2

rf2

]
∂Λα
∂r

+ 2(n− 1)
(
δ2 + λ

)
Λα

− α2

(rα + α)

[
n− 1− α2

2(rα + α)
+

(n− α)

r2

]
Λα

+
α3

(rα + α)

[
α

2(rα + α)
− 1

]
λΛα.

Comparing to (4.2), we have

c(t, r) = 2(n− 1)
(
δ2 + λ

)
(5.20)

− α2

(rα + α)

[
n− 1− α2

2(rα + α)
+

(n− α)

r2

]
+

α3

(rα + α)

[
α

2(rα + α)
− 1

]
λ.

Proposition 5.1. λ(t, r) ≥ −1 + e−2(n−1)t infr∈[0,∞) (λ(0, r) + 1) for all
(t, r) ∈ [0, Tmax)× [0,∞).

Proof. Choose some T < Tmax. If Λα ≥ 0 for all (t, r) ∈ [0, T ]× [0,∞) then
λ+ 1 ≥ 0 and then infr∈[0,∞) (λ(0, r) + 1) = limr→∞ (λ(0, r) + 1) = 0, so the
proposition is true.

Otherwise, Λα has a negative minimum on [0, T ]× [0,∞). In this case,
consider equations (5.19, 5.20) but set δ = 1 so that

(5.21) λ = −1 + e−2(n−1)t
(

1 +
α

rα

)
Λα.

Now replace the λ factors in (5.20) using (5.21) and of course set δ = 1. This
yields

c(t, r) = − α2

(rα + α)

[
n− 1− α+

(n− α)

r2

]
(5.22)

+ e−2(n−1)t

[
2(n− 1) +

α
(
2(n− 1)− α2

)
rα

+
α4

2rα(rα + α)

]
Λα.



i
i

“1-Woolgar” — 2018/12/7 — 0:17 — page 1035 — #27 i
i

i
i

i
i

Normalized Ricci flow and rotational symmetry 1035

Take α > 0 small enough; indeed, α ∈ (0, 1) will do. Now, if Λα achieves a
negative minimum at (t∗, r∗) in (0, T ]× (0,∞), then from the right-hand
side of (5.22) we obtain

(5.23) c(t∗, r∗) < 0.

But then Corollary 4.2 would imply that t∗ = 0.
Thus in either case we may write

Λα(t, r) ≥ inf
r∈[0,∞)

Λα(0, r) = inf
r∈[0,∞)

rα

rα + α
Λ(0, r) ≥ inf

r∈[0,∞)
Λ(0, r),

where the last inequality holds because the infimum is not positive. This
yields Λα(t, r) ≥ infr∈[0,∞) (λ(0, r) + 1) and since this bound is independent
of α, we may take α↘ 0, yielding Λ(t, r) ≥ infr∈[0,∞) (λ(0, r) + 1). Then the
proposition follows from (5.21) and from the fact that the bound does not
depend on T so we can take T ↗ Tmax. �

On the other hand, by selecting other values of δ we can bound λ from
above. For example, setting δ = 0 in (5.19, 5.20) yields

c(t, r) = 2(n− 1)λ− α2

(rα + α)

[
n− 1− α2

2(rα + α)
+

(n− α)

r2

]
(5.24)

+
α3

(rα + α)

[
α

2(rα + α)
− 1

]
λ,

with

(5.25) λ = −1 +
(

1 +
α

rα

)
Λα.

Then we obtain

Proposition 5.2. Assume that supr∈[0,∞) λ(0, r) ≤ −1. Then λ(t, r) ≤ −1
for all (t, r) ∈ [0, Tmax)× [0,∞).

Proof. Assume to the contrary that supr λ(0, r) ≤ −1 but λ(t, r) > −1 for
some (t, r) with t > 0. Then there is some T < Tmax such that λ < 0 for
all t ∈ [0, T ] but λ is somewhere greater than −1. Since λ+ 1 and Λα
have the same sign, then Λα > 0 somewhere. But Λα(0, r) ≤ 0, Λα(t, 0) = 0,
and Λα(t, r)→ 0 as r →∞, so by Proposition 4.1 we must conclude that
c(t∗, r∗) > 0 at some (t∗, r∗) ∈ (0, T ]× (0,∞).
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Nonetheless, λ < 0 on [0, T ]× [0,∞) and so, for α > 0 chosen to be small
enough, then from (5.24) we see that c(t, r) is strictly negative in (0, T ]×
(0,∞), a contradiction. Thus we conclude that λ(t, r) ≤ −1 for all (t, r) ∈
[0, T ]× (0,∞). �

We may in fact weaken our assumptions to allow λ(0, r) < 0. We have
seen that the bound from below is exponential and decays to −1 as e−2(n−1)t.
The decay from above is also exponential, but potentially slower.

Proposition 5.3. Assume that λ(0, r) < 0 for all r ∈ [0,∞). Then there
is a constant β > 0 depending only on the initial metric g(0, ·) = g0 and n
such that λ(t, r) < −1 + e−βt for all (t, r) ∈ [0, Tmax)× [0,∞).

Proof. Since Proposition 5.1 deals with the bound from below, we restrict
attention to bounding λ(t, r) from above. Thus assume that λ(0, r) > −1
for some r ∈ [0,∞). Since λ(0, r) < 0 for all r ∈ [0,∞) and tends to −1 as
r →∞, then maxr λ(0, r) exists and lies in the interval (−1, 0).

Choose any δ ∈ (0, 1) such that maxr λ(0, r) < −δ2. Let Tδ ∈ (0,∞] be
the first time such that δ2 + λ(Tδ, r) = 0 for some r ∈ [0,∞); if there is no
such time then Tδ := Tmax (possibly infinite). But by (5.20) and for 0 < α < ε
with ε small enough, we have

(5.26) c(t, r) < 2(n− 1)
(
δ2 + λ

)
≤ 0

for t ∈ [0, Tδ]. Thus, by Proposition 4.1, for each α ∈ (0, ε), the maximum
of Λα on [0, Tδ]× [0,∞) occurs at t = 0. Then for 0 ≤ t ≤ Tδ and each
α ∈ (0, ε) we have Λα(t, r) ≤ supr∈[0,∞) Λα(0, r) = supr∈[0,∞)

rα

α+rαΛ(0, r) ≤
supr∈[0,∞) Λ(0, r) = supr∈[0,∞) (1 + λ(0, r)) < 1− δ2. Since this last bound
is independent of α, we may take α→ 0 (first for r 6= 0, then extending to
r = 0 by continuity), yielding

(5.27) λ(t, r) ≤ −1 +
(
1− δ2

)
e−2(n−1)δ2t

on [0, Tδ]× [0,∞), and thus Tδ = Tmax. �



i
i

“1-Woolgar” — 2018/12/7 — 0:17 — page 1037 — #29 i
i

i
i

i
i

Normalized Ricci flow and rotational symmetry 1037

6. Evolution of κ

6.1. Evolution equation for κ

Lemma 6.1. The evolution equation for the sectional curvature κ is

(6.1)
∂κ

∂t
= ∆κ+ [n− 1 + κ+ (n− 2)λ]

(
r
∂κ

∂r
+ 2κ

)
+

2(n− 2)

r2f2
(λ− κ) .

Proof. Starting from (4.3), we obtain

∂

∂t

(
− 1

f2

)
= ∆

(
− 1

f2

)
+

(
∂

∂r

(
− 1

f2

))2

(6.2)

+

[
(n− 2)

r
− n

rf2
+ (n− 1)r

]
∂

∂r

(
− 1

f2

)
+

2(n− 2)

r2

[(
− 1

f2

)
+

(
− 1

f2

)2
]
.

Differentiating both sides of (6.2) with respect to r, multiplying by 1
2r , and

using that 1
2r

∂
∂r

(
− 1
f2

)
= 1

rf3

∂f
∂r = κ, then we get that

∂κ

∂t
=

1

2r

∂

∂r

(
∆

(
− 1

f2

))
+ 4rκ

∂κ

∂r
+ 4κ2(6.3)

+

[
(n− 2)

r
− n

rf2
+ (n− 1)r

]
∂κ

∂r
+ 2 [n− 1 + nκ]κ

+
2(n− 2)

r4f2

(
1− 1

f2

)
+

2(n− 2)

r2

(
1− 2

f2

)
κ.

On the other hand, we have that

(6.4)
1

2r

∂

∂r

(
∆

(
− 1

f2

))
=

1

2r

∂

∂r

[
1

rn−1f

∂

∂r

(
rn−1

f

∂

∂r

(
− 1

f2

))
,

]
whose right-hand side can be re-expressed to yield

(6.5)
1

2r

∂

∂r

(
∆

(
− 1

f2

))
= ∆κ+

2

rf2

∂κ

∂r
− 3rκ

∂κ

∂r
− 2(n+ 1)κ2.
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Substituting this into (6.3) yields

∂κ

∂r
= ∆κ+ rκ

∂κ

∂r
+

[
(n− 2)

r

(
1− 1

f2

)
+ (n− 1)r

]
∂κ

∂r
(6.6)

+ 2

[
κ+ n− 1 +

(n− 2)

r2

(
1− 2

f2

)]
κ+

2(n− 2)

r4f2

(
1− 1

f2

)
.

Simplifying and using (3.13) (the definition of λ), we obtain (6.1). �

6.2. The difference of sectional curvatures

Lemma 6.2. The difference of sectional curvatures obeys the evolution
equation

∂

∂t
(κ− λ) = ∆(κ− λ) + [n− 1 + κ+ (n− 2)λ] r

∂

∂r
(κ− λ)(6.7)

+ 2
[
2(n− 1)λ− n

r2
+ n− 1

]
(κ− λ).

Proof. Subtract (5.7) from (6.1) and write the resulting equation in terms of
the difference κ− λ. The Bianchi identity (3.14) is then used to convert some
of the r ∂λ∂r factors into 2(κ− λ). After some manipulation, (6.7) follows. �

Now define

(6.8) µ := e4a(n−1)t(κ− λ)2

for a ∈ R. Then Lemma 6.2 yields

∂µ

∂t
= ∆µ− e4a(n−1)t |∇(κ− λ)|2 + [n− 1 + κ+ (n− 2)λ] r

∂µ

∂r
(6.9)

+ 4
[
2(n− 1)λ− n

r2
+ (n− 1)(1 + a)

]
µ

≤ ∆µ+ [n− 1 + κ+ (n− 2)λ] r
∂µ

∂r
+ 4(n− 1)(1 + a+ 2λ)µ,

where the inequality follows since by definition we have µ ≥ 0. Writing out
the Laplacian in coordinates, we obtain

∂µ

∂t
≤ 1

f2

∂2µ

∂r2
+

(
(n− 1)r +

(n− 1)

r
− rλ

)
∂µ

∂r
(6.10)

+ 4(n− 1)(1 + a+ 2λ)µ.

The 1/r multiplying the first derivative produces a singularity, but only
of the mild sort expected from our choice of polar coordinate system.
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Nonetheless, we will have to handle it, and since we do not have a pri-
ori uniform control over µ at r = 0, we follow the technique used in the last
section and define

(6.11) µα :=
rα

(rα + α)
µ, α ∈ (0, 1),

so that µα(t, 0) = 0. Using the straightforward expressions

(6.12)
∂µ

∂r
=
(

1 +
α

rα

) ∂µα
∂r
− α2

rα+1
µα

and

(6.13)
∂2µ

∂r2
=
(

1 +
α

rα

) ∂2µα
∂r2

− 2α2

rα+1

∂µα
∂r

+
α2(α+ 1)

rα+2
µα,

and simplifying a term using the definition of λ (3.13), we obtain an inequal-
ity for the evolution of µα:

∂µα
∂t
≤ 1

f2

∂2µα
∂r2

+

[
(n− 1)r +

(n− 1)

r
− rλ− 2α2

r(rα + α)f2

]
∂µα
∂r

(6.14)

+

[
4(n− 1)(1 + a+ 2λ)

− α2

(rα + α)

(
(n− 2− α)

r2
+ αλ+ n− 1

)]
µα.

Using n ≥ 3, taking α ∈ (0, 1), and using that µα ≥ 0 by its definition, this
simplifies to

∂µα
∂t
≤ 1

f2

∂2µα
∂r2

+

[
(n− 1)r +

(n− 1)

r
− rλ− 2α2

r(rα + α)f2

]
∂µα
∂r

(6.15)

+ ĉ(t, r)µα,

where

(6.16) ĉ(t, r) := 4(n− 1)(1 + a+ 2λ)− α3λ

(rα + α)
.

6.3. Evolution and convergence of µ

We can now prove that µ(t)→ 0 as t→∞, provided that λ(0) < 0. As
before, when λ(0) ≤ −1 we will find rapid convergence, whereas in the more
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general case the convergence may be slower. Even more generally, if we allow
that λ(0) ≤ 0, we will see that µ remains bounded at any finite time, but
we will be unable to show convergence unless λ(0) < 0.

Proposition 6.3. Given λ(t, r) ≤ −1 for all (t, r) ∈ [0, Tmax)× [0,∞), then

(6.17) |κ(t, r)− λ(t, r)| ≤ e−2b(n−1)t max
r∈[0,∞)

|κ(0, r)− λ(0, r)|

for any b < 1.

Proof. Choose any 0<T <Tmax. As we have that µα(t, 0)=0 and µα(t, r)→0
as r →∞, Proposition 4.1 implies that either µα is identically zero (and
then µ is identically zero, and the Bianchi identity implies the manifold is
hyperbolic space), or the maximum of µα(t, r) on [0, T ]× [0,∞) is positive
and occurs at t = 0, or the maximum of µα(t, r) is positive and occurs at
a point (t∗, r∗) ∈ (0, T ]× (0,∞) where ĉ(t∗, r∗) ≥ 0. Since λ(t, r) ≤ −1 we
find 0 ≤ −α3λ

rα+α ≤ −α
2λ, and then (6.16) yields

ĉ(t, r) ≤ 4(n− 1)

[
1 + a+

(
2− α2

4(n− 1)

)
λ

]
(6.18)

≤ 4(n− 1)

[
a+

(
1− α2

4(n− 1)

)
λ

]
.

Pick α sufficiently small, say 0 < α < 1. Since λ ≤ −1, the right-hand side
of (6.18) is strictly negative if a < 1− α2

4(n−1) . As we can choose α > 0 as
close to zero as we wish, any a < 1 suffices to make ĉ < 0. Therefore, for
sufficiently small α, the minimum of µα occurs at t = 0. Now take α↘ 0
and then take T ↗ Tmax. Finally, to express the decay in the form of (6.17),
take a square root. �

We now weaken the condition λ(0) ≤ −1. We begin with the following
time-dependent bound which implies a long-time existence result.

Proposition 6.4. Given λ(0, ·) ≤ 0 for all (t, r) ∈ [0,∞)× [0,∞), then
κ(t, ·) + 1 is bounded on [0, T ] for any T > 0.

Proof. First, from Propositions 5.1 and 5.2, λ(t, r) is bounded above by 0 and
bounded below by a function that decays to −1 exponentially. Thus we can
find some K > 0 which depends only on the initial sectional curvature λ(0, ·)
such that 0 ≥ λ(t, r) ≥ −4(n− 1)K. Then estimating (6.16) with α ∈ (0, 1)



i
i

“1-Woolgar” — 2018/12/7 — 0:17 — page 1041 — #33 i
i

i
i

i
i

Normalized Ricci flow and rotational symmetry 1041

we have

ĉ(t, r) ≤ 4(n− 1)

[
1 + a+

(
2− α2

4(n− 1)

)
λ

]
(6.19)

≤ 4(n− 1)(1 + a) + 4(n− 1)K,

Choose a = −K − 2. Then ĉ(t, r) ≤ −4(n− 1) < 0, and thus each µα gov-
erned by (6.15) is bounded above by an α-independent bound which depends
only on µ(0, ·). As before, we can therefore take α↘ 0, thereby obtaining a
bound for µ(t, r). Call the bound C2. Then from (6.8) we have

(6.20) |κ− λ| := e−2a(n−1)t√µ ≤ Ce2(n−1)(K+2)t.

Since λ+ 1 is bounded on [0, T ] for any T > 0 and since |κ− λ| is also
bounded on [0, T ] for any T > 0, then so is κ+ 1. �

Now we are able to show that if λ(0, ·) < 0, then κ(t) decays to −1. The
idea is that Proposition 6.4 would have yielded the requisite decay of κ if we
could have chosen a positive value for a in (6.19). Since (6.19) is obtained
from (6.16) by estimating λ, we return to (6.16) and observe that when λ is
sufficiently close to −1 and α is sufficiently small, there are positive choices
for a which will make c < 0. If λ is not initially close enough to −1, we can
invoke Propositions 6.4 and 5.3, which tell us that eventually λ(t, ·) will be
close enough to −1.

Proposition 6.5. Assume that λ(0, r) < 0 for all r ∈ [0,∞). Then there
are constants γ > 0 and C > 0 depending only on g(0, ·) and n such that
|κ(t, r) + 1| < Ce−γt for all (t, r) ∈ [0,∞)× [0,∞).

Proof. Take λ(0, r) ≤ −M < 0 for some M > 0 (since λ(0, r) < 0 and
λ(0, r)→ −1 as r →∞). As in the preamble, by Proposition 6.4 the flow
will exist for all t > 0. By Proposition 5.3 there will be a time T (M, ε) ≥ 0
after which |λ(t) + 1| < ε, where we take ε to be small enough for our pur-
poses, say ε = 1/10. During the interval [0, T (M, ε)], the magnitude of κ+ 1
may have increased, but is bounded by the estimate in Proposition 6.4.

Then equation (6.16) yields

ĉ(t, r) ≤ 4(n− 1)

[
1 + a+

(
2− α2

4(n− 1)

)
λ

]
(6.21)

< 4(n− 1)

(
a− 4

5
+

9α2

40(n− 1)

)
,
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and once more choosing α near 0 allows us to make a positive choice for a
yielding ĉ(t, r) < 0. The rest of the argument is as before, yielding that on
the domain [T (M, 1/10),∞) µ decays as

(6.22) µ ≤ Ce−2a(n−1)t,

for some constant C which depends on µ(T (M, 1/10)) and n, and thus only
on M and n. Finally, because both µ and λ+ 1 decay exponentially, so does
κ+ 1. �

7. Proofs of the main theorems

Since Theorem 1.1 was proved in Section 2, it remains to prove Theorems 1.2
and 1.4. In what follows, it will help to recall that

(7.1) |Rm +K|2 = 4(n− 1)

[
(κ+ 1)2 +

1

2
(n− 2)(λ+ 1)2

]
in rotational symmetry. For the purposes of Theorem 1.1, we interpret the
left-hand side as being evaluated at F−1

t (r, . . . ); i.e., we evaluate the left-
hand side along the normalized Ricci flow obtained by pulling back our
diffeomorphism-modified flow (3.9) by the diffeomorphisms Ft of the pre-
ceding section.

7.1. Proof of Theorem 1.2

Proof. Statement (a) follows from Theorem 1.1. By Propositions 4.4 and
5.1, the combination λ+ 1 as defined in terms of equation (3.13) remains
bounded on any finite interval of time. Then by Proposition 6.4, so does
the combination κ+ 1 with κ given by (3.12). But by equation (7.1) and
the unique evolution posited by Theorem 1.1 then the solution g(t) of the
corresponding normalized Ricci flow exists for all time, so statement (b.i) is
proved. Moreover, the conclusion of Corollary 4.4 holds under pullback to
the normalized Ricci flow, so (b.ii) is also proved. The decay estimate (b.iii)
similarly follows from Propositions 5.3 and 6.5. �

7.2. Proof of Theorem 1.4

Proof. Pick any increasing, divergent sequence of times {tk
∣∣k = 1, 2, . . . , t1 >

0} along the flow, and set gk = g(tk). By Propositions 5.3 and 6.5 the
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sectional curvatures are uniformly bounded along any such sequence. By
Corollary 2.4, all covariant derivatives of the curvatures are also uniformly
bounded.

Since (Rn, gk) is rotationally symmetric, choose the origin of symmetry
and call it Ok. There can be no geodesic loops through Ok since geodesics
through the origin of a rotationally symmetric manifold are necessarily ra-
dial, and radial geodesics for a rotationally symmetric metric on Rn do not
close. Then injOk = conjOk for each k. But conjOk =∞, for if a point p at
distance R > 0 from Ok were conjugate to Ok, then by rotational symmetry
the sphere of radius R about Ok would consist entirely of points conju-
gate to Ok, and no geodesic through Ok could minimize beyond this sphere,
contradicting the Hopf-Rinow theorem on Rn.

Thus by [11, Theorem 2.3], we can find a convergent subsequence. Fur-
thermore, by Propositions 5.3 and 6.5 the limit metric must have constant
sectional curvature −1. �
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Poincaré: Analyse Non Linéaire 28 (2011), 813–835.

[3] E. Bahuaud, R. Mazzeo, and E. Woolgar, Renormalized volume and the
evolution of APEs, J. Geom. Flows. 1 (2015), 126–138.

[4] B.-L. Chen and X.-P. Zhu, Uniqueness of the Ricci flow on complete
noncompact manifolds, J. Differ. Geom. 74 (2006), 119–154.

[5] B. Chow, P. Lu, and L. Nei, Hamilton’s Ricci Flow, Graduate Studies
in Mathematics 77 (2006), AMS Science Press.

[6] M. R. Douglas, Calabi-Yau metrics and string compactification, Nuc.
Phys. B. 898 (2015), 667–674.

[7] C. Fefferman and C. R. Graham, Conformal invariants, in: Élie Car-
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