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Nonexistence and nonuniqueness results

for solutions to the vacuum Einstein

conformal constraint equations

The-Cang Nguyen

In this article, we give nonexistence and nonuniqueness results for
the vacuum Einstein conformal constraint equations in the far from
CMC case and also show that in some cases the equations of the
conformal method for positive Yamabe metrics and with TT-tensor
σ ≡ 0 have a non-trivial solution, and thus answer a question by
D. Maxwell [18].

1. Introduction

1.1. Background

In general relativity, a space-time is a (n+ 1)−dimensional Lorentzian man-
ifold (M, h) (i.e, h has signature − + + · · · +), with n ≥ 3 which satisfies
The Einstein equations

(1) Richµν −
Rh
2
hµν =

8πG
c4

Tµν ,

where Rich and Rh are respectively the Ricci and the scalar curvatures of
h, G is Newton’s constant, c is the speed of light and T is the stress-energy
tensor of non-gravitational fields (i.e. matter fields, electromagnetic field ...).

Einstein’s equations are roughly speaking hyperbolic of order 2. Hence
all solutions can be obtained from their initial values at some “time t=0”,
the metric ĝ induced on a Cauchy hypersurface M ⊂M, and its initial
velocity, the second fundamental form K̂ of the embedding M ⊂M. By the
Gauss and Codazzi equations, the choice of (M, ĝ, K̂) from (1) must satisfy
the so-called Einstein constraint equations. In the vacuum case, i.e. when
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T ≡ 0, these equations are

(2)
Rĝ − |K̂|2ĝ +

(
trĝK̂

)2
= 0,

K̂ − dĝ trĝK̂ = 0.

Constructing and classifying solutions of this system is an important
issue. For a deeper discussion of (2), we refer the reader to the excellent
review article [2]. One of most efficient methods to find initial data satis-
fying (2) is the conformal method developed by Lichnerowicz [15] and Y.
Choquet-Bruhat-Jr. York [4]. The idea of this method is to effectively pa-
rameterize the solutions to (2) by some reasonable parts and then solve for
the rest of the data. More precisely, we assume given some initial data: a Rie-
mannian manifold (M, g) which we will assume compact, a mean curvature
τ (a function), a transverse-traceless tensor σ (i.e. a symmetric, trace-free,
divergence-free (0, 2)-tensor). Then we look for a positive function ϕ and a
1−form W such that

ĝ = ϕN−2g, K̂ =
τ

n
ϕN−2g + ϕ−2(σ + LW )

is a solution to the vacuum Einstein constraint equations (2). Here N = 2n
n−2

and L is the conformal Killing operator defined by

LWij = ∇iWj +∇jWi −
2

n
∇kWkgij ,

where ∇ is the Levi-Civita connection associated with the metric g.

Equations (2) can be reformulated in terms of ϕ and W as follows:

4(n− 1)

n− 2
∆gϕ+Rgϕ(3a)

= −n− 1

n
τ2ϕN−1 + |σ + LW |2gϕ−N−1 [Lichnerowicz equation],

− 1

2
L∗LW =

n− 1

n
ϕNdτ [vector equation],(3b)

where ∆g is the nonnegative Laplace operator and L∗ is the formal L2-
adjoint of L.

These coupled equations are called the conformal constraint equations.
During the past decades, many existence and uniqueness results for (3) were
proven. They depend on the Yamabe invariant Yg of the metric g defined
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by

Yg = inf
f∈C∞(M)

f 6≡0

4(n−1)
n−2

∫
M |∇f |

2dv +
∫
M Rf2

||f ||2LN (M)

.

When τ is constant, the system (3) becomes uncoupled (since dτ ≡ 0 in
the vector equation) and a complete description of the situation was achieved
by J. Isenberg [13]. The near CMC case (i.e. when dτ is small) was addressed
soon after. Most results can be found in [2]. For arbitrary τ however, the
situation appears much harder and only two methods exist to tackle this
case. The first one, obtained by Holst-Nagy-Tsogtgerel [12] and Maxwell
[18], shows that the system (3) admits a solution, provided g has positive
Yamabe invariant and σ 6≡ 0 is small enough. The second one, introduced
by Dahl-Gicquaud-Humbert [5], states that if τ has constant sign and if the
limit equation

(4) − 1

2
L∗LV = α

√
n− 1

n
|LV |dτ

τ

has no non-zero solution V for all values of the parameter α ∈ [0, 1], then the
set of solutions (ϕ,W ) to (3) is not empty and compact. This criterion holds
true e.g. when (M, g) has Ric ≤ −(n− 1)g, with

∥∥dτ
τ

∥∥
L∞

<
√
n (see also [9]

for an extension of this result to asymptotically hyperbolic manifolds). An
unifying point of view of these results is given in [8] and [20].

Conversely, nonexistence and nonuniqueness results for (3) are fairly
rare. We refer to arguments of Rendall, as presented in [14], Holst-Meier
[11], and Dahl-Gicquaud-Humbert [6] for attempts to obtain such results.
In the vacuum case, the only model of nonuniqueness of solutions is con-
structed on the n−torus by D. Maxwell [19] while the only nonexistence
result, achieved by J. Isenberg-Murchadha [14] and later strengthened in [5]
and [8], states that the system (3) with σ ≡ 0 has no solution when Yg ≥ 0
and dτ/τ is small enough. This assertion together with experimentations on
the torus led D. Maxwell to post a question concerning whether the non-
zero assumption of σ is a necessary condition for existence of solutions to
the conformal equations (3) with positive Yamabe invariant (see [19]).

In this article, based on an idea from [8], we give another version of the
main theorem in [5] and [20], which allows α in the limit equation (4) to be
set to 1. Next we give seed data in the far from CMC case for which the
system (3) has no solution. As a direct consequence of this result, we exhibit
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cases of nonuniqueness of solutions and give an answer to D. Maxwell’s
question stated above.

1.2. Statement of results

Let M be a compact manifold of dimension n ≥ 3. Our goal is to study
solutions to the vacuum Einstein equations using the conformal method.
The given data on M consist in

(5)

• a Riemannian metric g ∈ C2,

• a function τ ∈W 1,p,

• a symmetric, trace- and divergence-free (0, 2)−tensor σ ∈W 1,p,

with p > n. One is required to find

• a positive function ϕ ∈W 2,p,

• a 1−form W ∈W 2,p,

which satisfy the conformal constraint equations (3). We also assume that

(6)

• τ2 > 0,

• (M, g) has no conformal Killing vector field,

• σ 6≡ 0.

We use standard notations for function spaces, such as Lp, Ck, and
Sobolev spaces W k,p. It will be clear from the context if the notation refers
to a space of functions on M , or a space of sections of some bundle over M .
For spaces of functions which embed into L∞, the subscript + is used to
indicate the cone of positive functions.

We will sometimes write, for instance, C(α1, α2) to indicate that a con-
stant C depends only on α1 and α2.

After briefly sketching basic facts on the conformal constraint equations
(3), in Section 3 we use the Leray-Schauder fixed point theorem introduced
in [20] to obtain the main result of this article, which is another version of
[5, Theorem 1.1] and of [20, Theorem 3.3]:

Theorem 1.1. Let data be given on M as specified in (5) and assume that
conditions (6) hold. Then at least one of the following assertions is true
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(i) The conformal constraint equations (3) admit a solution (ϕ,W ) with
ϕ > 0. Furthermore, the set of solutions (ϕ,W ) ∈W 2,p

+ ×W 2,p is com-
pact.

(ii) There exists a nontrivial solution V ∈W 2,p to the limit equation

(7) − 1

2
L∗LV =

√
n− 1

n
|LV |dτ

τ
.

(iii) For any continuous function f > 0 or f ≡ R if Yg > 0, the (modified)
conformal constraint equations

4(n− 1)

n− 2
∆ϕ+ fϕ = −n− 1

n
τ2ϕN−1 + |LW |2ϕ−N−1(8a)

−1

2
L∗LW =

n− 1

n
ϕNdτ(8b)

have a (non-trivial) solution (ϕ,W ) ∈W 2,p
+ ×W 2,p. Moreover if Yg >

0, there exists a sequence {ti} converging to 0 s.t. the conformal con-
straint equations (3) associated with the seed data (g, tiτ, σ) have at
least two solutions.

Comparing with the original version of Dahl-Gicquaud-Humbert, the
price to pay to control the parameter (α = 1) is the addition of (iii). How-
ever, we will see that this assertion is necessary (see Theorem 1.2 below).

In Section 4 we present several applications of Theorem 1.1. The basic
idea of these applications is to seek seed data such that neither (i) nor (ii)
in Theorem 1.1 holds. It follows then that (iii) is satisfied. In this approach,
one of our main result is the following:

Theorem 1.2. (Nonexistence of solution) Let data be given on M as
specified in (5) and assume that conditions (6) hold. Furthermore, assume

that there exists c > 0 s.t.
∣∣L (dττ )∣∣ ≤ c ∣∣dττ ∣∣2. Let V be a given open neigh-

borhood of the critical set of τ . If σ 6≡ 0 and supp{σ} (M \ V , then both of
the conformal constraint equations (3) and the limit equation (7) associated
with the seed data (g, τa, kσ) have no (nontrivial) solution, provided a and
k are large enough.

We point out that [5, Proposition 1.6] provides the existence of seed
data satisfying such assumptions. In fact, our proof for Theorem 1.2 is an
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extension of arguments in [5, Proposition 1.6]. It is worth noting that∣∣∣∣dτaτa
∣∣∣∣ = a

∣∣∣∣dττ
∣∣∣∣ .

Therefore given non-constant |τ | > 0, provided that a is large enough, τa

is a far-from-CMC. Moreover, as we will see later in the proof, the role of
(a, k) in Theorem 1.2 is as follows. We need the largeness assumption of a
to ensure that the limit equation (7) associated with (g, τa) has no solution.
It follows that given a large enough depending on (g, τ, c), the set

Sa =
{

(ϕ,W ) | ∃k ∈ R+ : (ϕ,W ) is a solution

to (3) associated with (g, τa, kσ)
}

is bounded in W 2,p
+ ×W 2,p. That means that the system (3) associated with

(g, τa, kσ) has no solution for all k large enough depending on (g, τ, σ, a) as
claimed.

As direct consequences of Theorems 1.1 and 1.2, we also obtain the
following results.

Corollary 1.3. (An answer to Maxwell’s question) Let (M, g, τ) be
given as in Theorem 1.2. If Yg > 0, then the conformal constraint equations
(3) associated with (g, τa, 0) have a (nontrivial) solution for all a > 0 large
enough.

Corollary 1.4. (Nonuniqueness of solutions) Assume that (M, g, τ,
σ, a, k) is given as in Theorem 1.2. If Yg > 0, then there exists a sequence
{ti} converging to 0 s.t. the conformal constraint equations (3) associated
with seed data (g, tiτ

a, kσ) have at least two solutions.
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2. Preliminaries

In this section, we review some standard facts about the Lichnerowicz equa-
tion on a compact n−manifold M :

(9)
4(n− 1)

n− 2
∆u+Ru+

n− 1

n
τ2uN−1 =

w2

uN+1
.

Given a function w and p > n, we say that u+ ∈W 2,p
+ is a supersolution

to (9) if

4(n− 1)

n− 2
∆u+ +Ru+ +

n− 1

n
τ2uN−1+ ≥ w2

uN+1
+

.

A subsolution is defined similarly with the reverse inequality.

Proposition 2.1. (see [17]) Assume g ∈ C2 and w, τ ∈ L2p for some p >
n. If u−, u+ ∈W 2,p

+ are respectively a subsolution and a supersolution to (9)
associated with a fixed w such that u− ≤ u+, then there exists a solution
u ∈W 2,p

+ to (9) such that u− ≤ u ≤ u+.

Theorem 2.2. (see [13] and [17]) Assume w, τ ∈ L2p and g ∈ C2 for some
p > n. Then there exists a positive solution u ∈W 2,p

+ to (9) if and only if
one of the following assertions is true.

1. Yg > 0 and w 6≡ 0,

2. Yg = 0 and w 6≡ 0, τ 6≡ 0,

3. Yg < 0 and there exists ĝ in the conformal class of g such that Rĝ =
−n−1

n τ2,

4. Yg = 0 and w ≡ 0, τ ≡ 0.

In Cases 1− 3 the solution is unique. In Case 4 any two solutions are related
by a scaling by a positive constant multiple. Moreover, Case 3 holds if Yg < 0
and the set of zero-points of τ has zero Lebesgue measure (see [21] or [1,
Theorem 6.12]). In particular, existence and uniqueness are guaranteed if
|τ | > 0 and w 6≡ 0 independently of Yg.

The main technique used to prove the theorem above is the conformal
covariance of (9).
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Lemma 2.3. (see [18, Lemma 1]) Assume g ∈ C2 and w, τ ∈ L2p for some
p > n. Assume also that φ ∈W 2,p

+ . Define

ĝ = φ
4

n−2 g, ŵ = φ−Nw, τ̂ = τ.

Then u is a supersolution (resp. subsolution) to (9) if and only if û = φ−1u is
a supersolution (resp. subsolution) to the conformally transformed equation

(10)
4(n− 1)

n− 2
∆ĝû+Rĝû+

n− 1

n
τ̂2ûN−1 =

ŵ2

ûN+1
.

In particular, u is a solution to (9) if and only if û is a solution to (10).

From the techniques in [8], we get the following remark.

Remark 2.4. Theorem 2.2 guarantees that given any w ∈ C0 \ {0}, there
exists a unique corresponding solution u ∈W 2,p

+ to (9). Let (ĝ, ŵ, τ̂ , û) be
given as in Lemma 2.3. For any k ≥ N + 1, multiplying (10) by ûk and
integrating over M , we obtain

4(n− 1)

n− 2

∫
M
ûk∆ĝû, dvĝ +

∫
M
Rĝû

k+1dvĝ

+
n− 1

n

∫
M
τ̂2ûk+N−1dvĝ =

∫
M
ŵ2ûk−N−1dvĝ.

Integration by parts tells us that the first integral is nonnegative, then we
get that

(minRĝ)

∫
M
ûk+1dvĝ ≤

∫
M
ŵ2ûk−N−1dvĝ

≤
(∫

M
ûk+1dvĝ

) k−N−1

k+1
(∫

M
|ŵ|

2(k+1)

N+2 dvĝ

)N+2

k+1

(by Hölder inequality).

It follows that

(minRĝ)

(∫
M
ûk+1dvĝ

)N+2

k+1

≤
(∫

M
|ŵ|

2(k+1)

N+2 dvĝ

)N+2

k+1

.

Taking k →∞, we obtain that

(minRĝ) (max û)N+2 ≤ max |ŵ|2.
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Since û = φ−1u and ŵ = φ−Nw, we get from this inequality that

(11) (minRĝ) (minφ)2N (maxφ)−(N+2) (maxu)N+2 ≤ max |w|2.

The following lemma will be used all along the paper.

Lemma 2.5. (see [20, Lemma 2.6]) Assume that v, u are respectively a
supersolution (resp. subsolution) and a positive solution to (9) associated
with a fixed w, then

v ≥ u (resp. ≤).

In particular, assume u0 (resp. u1) is a positive solution to (9) associated
with w = w0 (resp. w1). Assume moreover |w0| ≤ |w1|, then u0 ≤ u1.

Proof. We will prove the supersolution case, the remaining cases are similar.
Assume that v, u are a supersolution and a positive solution respectively of
(9) associated with a fixed w. Since u is a solution, u is also a subsolution, and
hence, as is easily checked, so is tu for all constant t ∈ (0, 1]. Since min v > 0,
we now take t small enough s.t. tu ≤ v. By Proposition 2.1, we then conclude
that there exists a solution u′ ∈W 2,p of (9) satisfying tu ≤ u′ ≤ v. On the
other hand, by uniqueness of positive solution of (9) given by Theorem 2.2,
we obtain that u = u′, and hence get the desired conclusion. �

Remark 2.6. In the next section, we will study a modified version of (9):

(12)
4(n− 1)

n− 2
∆u+ (tR+ (1− t)f)u+

n− 1

n
τ2uN−1 =

w2

uN+1
,

where t ∈ [0, 1] is a parameter and f > 0 is a given continuous function.
We assume further that min τ2 > 0. In this situation, Theorem 2.2 and
Lemma 2.5 are still valid for the equation (12). For instance, we will see
that existence and uniqueness of solutions given in Theorem 2.2 are still
true here. In fact, suppose that w ∈ L2p \ {0}. Let ψf > 0 be the unique
positive solution to

(13)
4(n− 1)

n− 2
∆u+Rfu+

n− 1

n
τ2uN−1 =

w2

uN+1

with Rf = supt (max{tR+ (1− t)f}) > 0 (here existence and uniqueness of
ψf are proven similarly to Case 1 of Theorem 2.2). It is easy to see that ψf
is a subsolution to (12). On the other hand, since min τ2 > 0, provided that
k > 0 is large enough, k is a supersolution to (12), and then the (modified)
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Lichnerowicz equation (12) admits a solution by the method of sub-and
super-solution (note that k is also a supersolution to (13), then k ≥ ψf by

Lemma 2.5). For any φ ∈W 2,p
+ , we now observe that similarly to the proof

of Lemma 2.3, u is a solution to (12) if and only if û = φ−1u is a solution to
the following equation

4(n− 1)

n− 2
∆ĝû+

[
Rĝ + (1− t)

(
f̂ − R̂

)]
û+

n− 1

n
τ̂2ûN−1 =

ŵ2

ûN+1
,

where f̂ = φ−N+2f , R̂ = φ−N+2R and (ĝ, ŵ, τ̂) is given as in Lemma 2.3.
By using this fact, uniqueness of solution to (12) follows in much the same
way as in [17, Proposition 4.4]. Similarly, it is not difficult to show that
Lemma 2.5 remains valid for the (modified) Lichnerowicz equation by the
same argument.

3. Proof of Theorem 1.1

In this section, we introduce the Leray-Schauder fixed point theorem used
in [20] and obtain another version of the main theorem in [5] and [20]. We
first recall the Leray-Schauder fixed point theorem (see e.g. [10, Theorem
11.6]).

Theorem 3.1. (Leray-Schauder fixed point) Let X be a Banach space
and assume that

T : X × [0, 1]→ X

is a continuous compact operator, satisfying T (x, 0) = 0 for all x ∈ X. If the
set

K = {x ∈ X| ∃t ∈ [0, 1] such that x = T (x, t)}

is bounded, then T (., 1) has a fixed point.

Before going further, we make the following remark:

Remark 3.2. (ϕ,W ) is a solution to the conformal constraint equations

w.r.t. the initial data (g, τ, σ) if and only if
(
C−1ϕ,C−

N+2

2 W
)

is a solution to

the conformal constraint equation w.r.t. the initial data
(
g, C

N−2

2 τ, C−
N+2

2 σ
)

for any constant C > 0.

Proof of Theorem 1.1. We divide the proof into three steps
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Step 1. Construction of a continuous compact operator: For any con-
tinuous function f > 0 or f ≡ R if Yg > 0, we define the map Tf : L∞ ×
[0, 1]→ L∞ as follows. For each (ϕ, t) ∈ L∞ × [0, 1], there exists a unique
Wϕ ∈W 2,p such that

(14) − 1

2
L∗LWϕ =

n− 1

n
ϕNdτ,

and, by Remark 2.6, there is a unique ψϕ,t ∈W 2,p
+ satisfying

4(n− 1)

n− 2
∆ψϕ,t + [tR+ (1− t)f ]ψϕ,t

= −n− 1

n
t2Nτ2ψN−1ϕ,t + |σ + LWϕ|2ψ−N−1ϕ,t .

We define

Tf (ϕ, t) := tψϕ,t.

Following [18] and [5], the mapping G : L∞ → C1 defined by G(ϕ) =
Wϕ, with Wϕ uniquely determined by (14) is continuous and compact. Thus,
to prove that Tf is compact and continuous, it suffices to prove the continuity

of T̂f : C1 × [0, 1]→W 2,p
+ defined by T̂f (W, t) = ψ, where

4(n− 1)

n− 2
∆ψ + [tR+ (1− t)f ]ψ(15)

= −n− 1

n
t2Nτ2ψ(N−1) + |σ + LW |2ψ−N−1.

We combine the techniques from [5, Lemma 2.3] and [20, Proposition 3.6]
to prove that T̂f is continuous. Set u = ln T̂f (W, t). We have from the defi-

nition of T̂f that

4(n− 1)

n− 2

(
∆u− |du|2

)
+ [tR+ (1− t)f ]

= −n− 1

n
t2Nτ2e(N−2)u + |σ + LW |2e−(N+2)u.

Next, we prove that ln ◦T̂f is a C1−map through the implicit function
theorem. In fact, define F : C1 × [0, 1]×W 2,p → Lp by

F (W, t, u) =
4(n− 1)

n− 2

(
∆u− |du|2

)
+ [tR+ (1− t)f ]

+
n− 1

n
t2Nτ2e(N−2)u − |σ + LW |2e−(N+2)u.
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It is clear that F is C1 and, under our assumptions u = ln
(
T̂f (W, t)

)
is the

unique solution to F (W, t, u) = 0. A standard computation shows that the
Fréchet derivative of F w.r.t. u is given by

Fu(W, t)(v) =
4(n− 1)

n− 2
(∆v − 〈du, dv〉) +

(n− 1)(N − 2)

n
t2Nτ2e(N−2)uv

+ (N + 2)|σ + LW |2e−(N+2)uv.

We first note that Fu ∈ C
(
C1 × [0, 1], L(W 2,p, L2p)

)
, where L(W 2,p, L2p) de-

notes the Banach space of all linear continuous maps from W 2,p into L2p. In

particular, setting u0 = ln
(
T̂f (W, t)

)
we have

Fu0
(W, t)(v) =

4(n− 1)

n− 2
(∆v − 〈du0, dv〉)

+

(
(n− 1)(N − 2)

n
t2Nτ2e(N−2)u0

+ (N + 2)|σ + LW |2e−(N+2)u0

)
v.

Since ∫
M
|σ + LW |2e−(N+2)u0dv ≥ e−(N+2)max |u0|

∫
M
|σ + LW |2dv

= e−(N+2)max |u0|
(∫

M
|σ|2dv +

∫
M
|LW |2dv

)
> 0,

the non-negative term(
(n− 1)(N − 2)

n
t2Nτ2e(N−2)u0 + (N + 2)|σ + LW |2e−(N+2)u0

)
is not identically 0. Then we can conclude by the maximum principle that
Fu0

(W, t) : W 2,p → L2p is an isomorphism (see [10, Theorem 8.14]). The
implicit function theorem then implies that ln ◦T̂f is a C1−function in a
neighborhood of (W, t), which proves our claim.

Step 2. Application of the Leray-Schauder fixed point theorem: We now
set

K = {ϕ ∈ L∞| ∃t ∈ [0, 1] such that ϕ = Tf (ϕ, t)} .
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By the Leray-Schauder fixed point theorem, ifK is bounded, then the system
(3) associated with (g, τ, σ) admits a solution, which is our first assertion.

Assume from now on that K is unbounded. So there exists a sequence
(ϕi,Wi, ti) satisfying

4(n− 1)

n− 2
∆ϕi + [tiR+ (1− ti)f ]ϕi(16a)

= −n− 1

n
t2Ni τ2ϕN−1i + |σ + LWi|2ϕ−N−1i ,

− 1

2
L∗LWi =

n− 1

n
tNi ϕ

N
i dτ,(16b)

with ||ϕi||L∞ → +∞ (see [20, Theorem 3.3 or Proposition 3.6]). We need to
discuss the following four possibilities.

• Case 1. (after passing to a subsequence) ti → t0 > 0: We argue simi-
larly to [5, Theorem 1.1] or [20, Theorem 3.3] to obtain existence of a
nontrivial solution V ∈W 2,p to the limit equation

−1

2
L∗LV =

√
n− 1

n
|LV |dτ

τ
,

which is our second assertion. In fact, we set γi = ||ϕi||∞ and rescale
ϕi, Wi and σ as follows:

ϕ̃i = γ−1i ϕi, W̃i = γ−Ni Wi, σ̃i = γ−Ni σ.

Note that by the assumption γi = ||ϕi||∞ →∞ as i→∞. The system
(16) may be rewritten as

1

γN−2i

[
4(n− 1)

n− 2
∆ϕ̃i + (tiR+ (1− ti)f) ϕ̃i

]
(17a)

= −n− 1

n
t2Ni τ2ϕ̃N−1i + |σ̃ + LW̃i|2ϕ̃−N−1i ,

− 1

2
L∗LW̃i =

n− 1

n
tNi ϕ̃

N
i dτ.(17b)

Since ||ϕ̃i||∞ = 1, we conclude from the vector equation that
(
W̃i

)
i

is

bounded in W 2,p and then by the Rellich theorem, (after passing to

a subsequence) W̃i converges in the C1-norm to some W̃∞. We now
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prove that

(18) ϕ̃i → ϕ̃∞ :=

(√
n

n− 1

|LW̃∞|
tN0 τ

) 1

N

in L∞.

Note that if such a statement is proven, passing to the limit in the
vector equation, we see that W̃∞ is a solution to the limit equation
(7). On the other hand, since ||ϕ̃i||∞ = 1 for all i, we have ||ϕ̃∞||∞ = 1

and, in particular, W̃∞ 6≡ 0 from (18). Therefore, the non-triviality of
W∞ is obtained, and the second assertion follows.

Given ε > 0, since |LW̃∞|τ ∈ C0, we can choose ω̃ ∈ C2
+ s.t.

(19)

∣∣∣∣ω̃ −
(√

n

n− 1

|LW̃∞|
tN0 τ

) 1

N
∣∣∣∣ < ε

2
.

To prove (18), it suffices to prove that

|ϕ̃i − ω̃| ≤
ε

2

for all i large enough. We argue by contradiction. Assume that it is not
true. We first consider the case when (after passing to a subsequence)
there exists a sequence (mi) ∈M s.t.

(20) ϕ̃i(mi) > ω̃(mi) +
ε

2
.

By Lemma 2.5 and Inequality (20), ω̃ + ε
2 is not a supersolution to

the rescaled Lichnerowicz equation. As a consequence, there exists a
sequence (pi) ∈M satisfying{
1

γN−2i

(
4(n− 1)

n− 2
∆
(
ω̃ +

ε

2

)
+ (tiR+ (1− ti)f)

(
ω̃ +

ε

2

))

+
n− 1

n
t2Ni τ2

(
ω̃ +

ε

2

)N−1}
(pi) <

{
|σ̃i + LW̃i|2

(
ω̃ +

ε

2

)−N−1}
(pi).

By compactness of M , we can assume that (pi) converges to some
p∞ ∈M . Since

(
ω̃ + ε

2

)
and τ are positive, the previous inequality can
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be rewritten as follows{
n
(
ω̃ + ε

2

)N+1

(n− 1)t2Ni τ2γN−2i

(
4(n− 1)

n− 2
∆
(
ω̃ +

ε

2

)
+ (tiR+ (1− ti)f)

(
ω̃ +

ε

2

))

+
(
ω̃ +

ε

2

)2N}
(pi) <

{
n

n− 1
|σ̃i + LW̃i|2t−2Ni τ−2

}
(pi).

Taking i→∞, due to the facts that ω̃ ∈ C2
+, min |τ | > 0, ti → t0 > 0,

γi →∞ and W̃i → W̃∞ in C1−norm, we obtain that{
n
(
ω̃ + ε

2

)N+1

(n− 1)t2Ni τ2γN−2i

(
4(n− 1)

n− 2
∆
(
ω̃ +

ε

2

)
+ (tiR+ (1− ti)f)

(
ω̃ +

ε

2

))}
(pi)→ 0,(

ω̃ +
ε

2

)2N
(pi)→

(
ω̃ +

ε

2

)2N
(p∞)

and

n

n− 1

(
|σ̃i + LW̃i|

tNi τ

)2

(pi)→
n

n− 1

(
|LW̃∞|
tN0 τ

)2

(p∞),

This proves that

ω̃(p∞) +
ε

2
≤

(√
n

n− 1

|LW̃∞|
tN0 τ

) 1

N

(p∞),

which contradicts (19).

The argument is similar if there exists a sequence (mi) ∈M s.t.
ω̃(mi)− ε

2 > ϕ̃i(mi).

• Case 2. (after passing to a subsequence) ti → 0: Note that Equations
(16) say that the (modified) conformal constraint equations associated
with the seed data (g, tNi τ, σ) have a solution (ϕi,Wi). To derive the
last two assertions, we need to free τ of ti in the seed data. Then, rather
than considering (g, tNi τ, σ), by Remark 3.2, we can equivalently work
on another one more suitable, allowing to remove ti from the mean
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curvature τ , and hence by straightforward calculations as seen below
the sequence {tni ϕi}i∈N will naturally appear and play an important
role in characterizing our case. In this context, there are three situ-
ations arising depending on whether (after passing to subsequence)
tni ||ϕi||L∞ converges to +∞, 0 or a positive constant. We will address
each of them.

In the first situation, i.e. tni ||ϕi||L∞ → +∞, by Remark 3.2, the system
(16) may be rewritten as

4(n− 1)

n− 2
∆ϕi + [tiR+ (1− ti)f ]ϕi(21a)

= −n− 1

n
τ2ϕN−1i +

∣∣∣∣tn(N+2)

2

i σ + LW i

∣∣∣∣2 ϕ−N−1i ,

− 1

2
L∗LW i =

n− 1

n
ϕNi dτ,(21b)

where (ϕi,W i) =

(
tni ϕi, t

n(N+2)

2

i Wi

)
and ||ϕi||L∞ = tni ||ϕi||L∞ →∞.

Again, taking i→∞ we argue similarly to Case 1 and obtain that
there exists a nontrivial solution W∞ ∈W 2,p to the limit equation (7)
as stated in (ii).

The next situation, i.e. tni ||ϕi||L∞ → 0, cannot happen. In fact, also
by Remark 3.2 the system (16) may be rewritten as

4(n− 1)

n− 2
∆ϕ̂i + [tiR+ (1− ti)f ] ϕ̂i(22a)

= −n− 1

n
t2Ni γN−2i τ2ϕ̂N−1i +

∣∣∣γ−N+2

2

i σ + LŴi

∣∣∣2 ϕ̂−N−1i ,

− 1

2
L∗LŴi =

n− 1

n
tNi γ

N−2

2

i ϕ̂Ni dτ,(22b)

where γi = ||ϕi||L∞ and (ϕ̂i, Ŵi) = (γ−1i ϕi, γ
−N+2

2

i Wi). If f > 0, for any
k ≥ N + 1, multiplying (22a) by ϕ̂ki and integrating over M , we obtain
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4(n− 1)

n− 2

∫
M
ϕ̂ki ∆ϕ̂idv +

∫
M

[tiR+ (1− ti)f ] ϕ̂k+1
i dv(23)

+
n− 1

n

∫
M
t2Ni γN−2i τ2ϕ̂k+N−1i dv

=

∫
M

∣∣∣γ−N+2

2

i σ + LŴi

∣∣∣2 ϕ̂k−N−1i dv.

Integration by parts tells us that the first integral is nonnegative, then
we get that

(min {tiR+ (1− ti)f})
∫
M
ϕ̂k+1
i dv

≤
∫
M

∣∣∣γ−N+2

2

i σ + LŴi

∣∣∣2 ϕ̂k−N−1i dv

≤
(∫

M
ϕ̂k+1
i dv

) k−N−1

k+1

(∫
M

∣∣∣γ−N+2

2

i σ + LŴi

∣∣∣ 2(k+1)

N+2

dv

)N+2

k+1

(by Hölder inequality).

It follows that

(min {tiR+ (1− ti)f})
(∫

M
ϕ̂k+1
i dv

)N+2

k+1

≤

(∫
M

∣∣∣γ−N+2

2

i σ + LŴi

∣∣∣ 2(k+1)

N+2

dv

)N+2

k+1

.

Taking k →∞, we obtain that

(24) (min {tiR+ (1− ti)f}) (max ϕ̂i)
N+2 ≤ max

{∣∣∣γ−N+2

2

i σ + LŴi

∣∣∣2} .
However, since ||ϕ̂i||L∞ = 1 and tni γi → 0, we obtain from the vec-

tor equation (22b) that ||LŴi||L∞ → 0, and then by the fact that
ti → 0 and γi → +∞, taking i→ +∞ we conclude from (24) that
0 < min f ≤ 0, which is a contradiction.

Now if Yg > 0 and f ≡ R, we let ĝ be a conformal metric φN−2g where
a positive function φ ∈W 2,p

+ is chosen in such a way that Rĝ > 0. Note
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that max ϕ̂i = 1 and that

tiR+ (1− ti)f ≡ R if f ≡ R.

Arguing as to get (11) in Remark 2.4, we then have from (22a) that

(25) (minRĝ) (minφ)2N (maxφ)−(N+2) ≤ max

{∣∣∣γ−N+2

2

i σ + LŴi

∣∣∣2} .
Taking i→ +∞, since γi → +∞ and

∥∥∥LŴi

∥∥∥
L∞
→ 0, it follows from

(25) that

0 < (minRĝ) (minφ)2N (maxφ)−(N+2) ≤ 0,

which is also a contradiction, and hence the situation where tni ||ϕi||L∞
→ 0 cannot happen as claimed.

For the last one, i.e. tni ||ϕi||L∞ → c for some c > 0, by Remark 3.2,
we again obtain the system (21) where the condition ||ϕi||L∞ → +∞
is replaced by ||ϕi||L∞ → c. It follows from (21b) that (after passing
to a subsequence) W i converges to W 0 in C1. If LW 0 ≡ 0, arguing as
to get (24) and (25) in the previous situation, we have from (21a) that



if f > 0:

(min {tiR+ (1− ti)f}) (maxϕi)
N+2

≤ max

{∣∣∣∣tn(N+2)

2

i σ + LW i

∣∣∣∣2
}
→ 0,

if Yg > 0 and if f ≡ R:

(minRĝ) (minφ)2N (maxφ)−(N+2) (maxϕi)
N+2

≤ max

{∣∣∣∣tn(N+2)

2

i σ + LW i

∣∣∣∣2
}
→ 0,

where ĝ is given as above, i.e., ĝ = φN−2g with φ ∈W 2,p
+ and Rĝ > 0.

This is a contradiction since



i
i

“6-Nguyen” — 2019/1/3 — 22:33 — page 1187 — #19 i
i

i
i

i
i

Nonexistence and nonuniqueness for the conformal equations 1187



if f > 0:

(min {tiR+ (1− ti)f}) (maxϕi)
N+2 → (min f) cN+2 > 0,

if Yg > 0 and if f ≡ R:

(minRĝ) (minφ)2N (maxφ)−(N+2) (maxϕi)
N+2

→ (minRĝ) (minφ)2N (maxφ)−(N+2) cN+2 > 0.

Thus, we obtain LW 0 6≡ 0. Now we can let ϕ0 be the unique positive
solution to the equation

4(n− 1)

n− 2
∆ϕ+ fϕ = −n− 1

n
τ2ϕN−1 + |LW 0|2ϕ−N−1.

(Here if f > 0, existence and uniqueness of ϕ0 are proven similarly
to Case 1 of Theorem 2.2). To show that (ϕ0,W 0) is a (nontrivial)
solution to system (8), which is the first statement of our last assertion,
it suffices to show that ϕi → ϕ0 in L∞. In fact, since LW 0 6≡ 0, arguing
similarly to the continuity of T̂f in Step 1, we obtain that the map

T̃f : UW 0
× [0, 1]→W 2,p

+ defined by T̃f (w, t) = ϕ is continuous, where

UW 0
is any given open neighborhood small enough of |LW 0| in L∞ and

ϕ is the unique positive solution to the equation

4(n− 1)

n− 2
∆ϕ+ [tR+ (1− t)f ]ϕ = −n− 1

n
τ2ϕN−1 + w2ϕ−N−1.

Combining this and the fact that

(
ti,

∣∣∣∣tn(N+2)

2

i σ + LW i

∣∣∣∣)→ (
0, |LW 0|

)
we obtain ϕi → ϕ0 as claimed.

To complete our proof, the remaining work is to treat nonuniqueness re-
sults for the conformal constraint equations with positive Yamabe invariants.

Step 3. Nonuniqueness of solutions: Assume that Yg > 0. If neither (i)
nor (ii) is true, taking f ≡ R, arguments above then tell us that there exists
a sequence {ti} converging to 0 s.t. the system (3) associated with (g, tNi τ, σ)
has a solution (ϕi,Wi) satisfying ||ϕi||L∞ →∞. On the other hand, we know
that provided δ > 0 is small enough, the system (3) associated with (g, δτ, σ)
admits a solution (ϕδ,Wδ) such that ||ϕδ||L∞ ≤ c1 for some constant c1 > 0
independent of δ (see [20, Theorem 4.8 and Remark 4.9] or [8, Theorem
2.1]). This completes the proof of Theorem 1.1. �



i
i

“6-Nguyen” — 2019/1/3 — 22:33 — page 1188 — #20 i
i

i
i

i
i

1188 The-Cang Nguyen

Remark 3.3. If Yg < 0, we can omit the assumption σ 6≡ 0 in Theorem 1.1.
In fact, let {σi} be a sequence of non-zero transverse-traceless tensors con-
verging to 0. Suppose that neither assertion (ii) nor (iii) holds. By The-
orem 1.1, the system (3) associated with σ = σi has a solution (ϕi,Wi).
Moreover, these solutions must be uniformly bounded since we assumed that
the assertion (ii) is not satisfied. Note that by Case 3 of Theorem 2.2 and
Lemma 2.5 we have that ϕi ≥ minϕ0 > 0, where ϕ0 is the unique positive
solution to the Yamabe equation.

4(n− 1)

n− 2
∆ϕ+Rϕ = −n− 1

n
τ2ϕN−1.

Thus, taking i→∞, we obtain our claim.

4. Applications of Theorem 1.1

In this section, we show nonexistence and nonuniqueness results and answer
a question raised in [18] (see the middle paragraph but one of page 630)
as stated in the beginning of this article. For convenience, we will repeat
their statements and give the corresponding proofs. We first construct a
class of seed data such that the corresponding equations (3) and (7) have
no (non-trivial) solution.

Theorem 4.1. (Nonexistence of solution) Let data be given on M as
specified in (5) and assume that conditions (6) hold. Furthermore, assume

that there exists c > 0 s.t.
∣∣L (dττ )∣∣ ≤ 2c

∣∣dτ
τ

∣∣2. Let V be a given open neigh-
borhood of the critical set of τ . If σ 6≡ 0 and supp{σ} (M \ V , then both of
the conformal constraint equations (3) and the limit equation (7) associated
with the seed data (g, τa, σεa) have no solution, provided a−1, εa > 0 are small
enough.

Examples where the assumptions of this theorem hold are given in [5].
Let us sketch briefly their construction. Let M be the unit sphere Sn lying
inside Rn+1. Choose τ = exp(x1) so that (dτ/τ)] is a conformal Killing vec-
tor field for the round metric Ω on Sn. The critical set of τ then consists of
the points (±1, 0, . . . , 0). Let V be an arbitrary neighborhood of these points
such that Sn \ V has non-empty interior. By a result of [3], we can deform
the metric Ω on Sn \ V to a new metric g so that g has no conformal Killing

vector. The condition
∣∣L (dττ )∣∣ ≤ 2c

∣∣dτ
τ

∣∣2 is then readily checked. Non-trivial
TT-tensors with arbitrarily small support were constructed in [7]. His con-
struction shows that there exists σ 6≡ 0 whose support is contained in Sn \ V .
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Proof of Theorem 4.1. We argue by contradiction. Assume that for each
(a, ε) s.t. a−1, εa > 0 are small enough, there exists (ϕε,a,Wε,a) satisfying
the conformal constraint equations

4(n− 1)

n− 2
∆ϕε,a +Rϕε,a = −n− 1

n
τ2aϕN−1ε,a +

∣∣∣ σ
εa

+ LWε,a

∣∣∣2 ϕ−N−1ε,a ,(26a)

−1

2
L∗LWε,a =

n− 1

n
ϕNε,adτ

a.(26b)

We will use the rescaling idea of Dahl-Gicquaud-Humbert [5] to show that
such existence yields a contradiction. In fact, we rescale ϕε,a, Wε,a as follows

ϕ̃ε,a = ε
1

N ϕε,a, W̃ε,a = εWε,a.

The system (26) may be written as

ε
2

n ϕ̃N+1
ε,a

(
4(n− 1)

n− 2
∆ϕ̃ε,a +Rϕ̃ε,a

)
(27a)

= −n− 1

n
τ2aϕ̃2N

ε,a +
∣∣∣σ
a

+ LW̃ε,a

∣∣∣2 ,
− 1

2
L∗LW̃ε,a =

n− 1

n
ϕ̃Nε,adτ

a.(27b)

We divide our proof into two cases.

Case 1. limε→0 ‖ϕ̃ε,a‖L∞ <∞: Arguing as in the proof of Theorem 1.1,
taking ε→ 0 we obtain that there exists Wa ∈W 2,p satisfying

−1

2
L∗LWa =

√
n− 1

n

∣∣∣σ
a

+ LWa

∣∣∣ dτa
τa

(28)

=

√
n− 1

n
|σ + aLWa|

dτ

τ
.

However, (28) cannot happen for all a > 0 large enough by [5, Proposi-
tion 1.6]. In fact, take the scalar product of this equation with dτ/τ and
integrate. It follows that√

n− 1

n

∫
M
|σ + aLWa|

∣∣∣∣dττ
∣∣∣∣2 dv = −1

2

∫
M
〈LWa, L(dτ/τ)〉dv(29)

≤ c
∫
M

∣∣∣∣dττ
∣∣∣∣2 |LWa|dv (by our assumption).
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Combining this with the fact that |σ + aLWa| ≥ a|LWa| − |σ|, we conclude

that for c1 =
√

n
n−1c

(a− c1)
∫
M

∣∣∣∣dττ
∣∣∣∣2 |LWa|dv ≤

∫
M
|σ|
∣∣∣∣dττ

∣∣∣∣2dv.
Since the right-hand side of the inequality above is bounded, we must have

(30) lim
a→∞

∫
M

∣∣∣∣dττ
∣∣∣∣2 |LWa|dv = 0.

It then follows from (29) that

lim
a→∞

∫
M
|σ + aLWa|

∣∣∣∣dττ
∣∣∣∣2 dv = 0.

Since
∣∣dτ
τ

∣∣ ≥ δ on M \ V for some δ > 0 independent of a, we then have by
the previous inequality that

(31) lim
a→∞

∫
M\V

|σ + aLWa|dv = 0.

On the other hand, since supp{σ} (M \ V , we get that∣∣∣∣∫
M
〈σ, σ + aLWa〉dv

∣∣∣∣ ≤ ||σ||L∞ ∫
M\V

|σ + aLWa|dv.

Together with (31), this shows that

(32) lim
a→∞

∫
M
〈σ, aLWa〉dv = −

∫
M
|σ|2dv.

However, since σ is divergence-free, we must have∫
M
〈σ, aLWa〉dv = 0

for all a > 0, which contradicts with (32).
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Case 2. limε→0 ‖ϕ̃ε,a‖L∞ = +∞: Set γε,a = ‖ϕ̃ε,a‖L∞ , we rescale ϕ̃ε,a,

W̃ε,a, σ̃ε,a again

ϕ̂ε,a = γ−1ε,a ϕ̃ε,a, Ŵε,a = γ−Nε,a W̃ε,a, and σ̂ε,a = γ−Nε,a σ.

The system (27) may be rewritten as

ε
2

nγ−(N−2)ε,a ϕ̂N+1
ε,a

(
4(n− 1)

n− 2
∆ϕ̂ε,a +Rϕ̂ε,a

)
(33a)

= −n− 1

n
τ2aϕ̂2N

ε,a +

∣∣∣∣ σ̂a + LŴε,a

∣∣∣∣2 ,
− 1

2
L∗LŴε,a =

n− 1

n
ϕ̂Nε,adτ

a.(33b)

Arguing as in the proof of Theorem 1.1, and taking ε→ 0 we again
obtain that there exists a nontrivial solution Wa ∈W 2,p satisfying the limit
equation

(34) − 1

2
L∗LWa =

√
n− 1

n
|LWa|

dτa

τa
= a

√
n− 1

n
|LWa|

dτ

τ
.

Our treatment for such limit equation is also similar to the previous case.
In fact, take the scalar product of this equation with dτ/τ and integrate. It
follows that

a

√
n− 1

n

∫
M
|LWa|

∣∣∣∣dττ
∣∣∣∣2 dv = −1

2

∫
M
〈LWa, L(dτ/τ)〉dv(35)

≤ c
∫
M
|LWa|

∣∣∣∣dττ
∣∣∣∣2 dv (by our assumption).

Then assuming a >
√

n
n−1c, we obtain that

∫
M |LWa|

∣∣dτ
τ

∣∣2 dv = 0, and hence

|LWa|
∣∣dτ
τ

∣∣ ≡ 0. Thus, we obtain from (34) thatWa ≡ 0, provided that (M, g)
has no conformal Killing vector field. This is a contradiction with the fact
that Wa is nontrivial.

Since Case 2 coincides with the situation of nonexistence of a solution to
the limit equation (7), the proof is completed. �

As direct consequences of Theorems 1.1 and 4.1, we have the following re-
sults.
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Corollary 4.2. (An answer to Maxwell’s question) Let (M, g, τ) be
given as in Theorem 4.1. If Yg > 0, then the conformal constraint equations
(3) associated with (g, τa, 0) have a (nontrivial) solution for all a > 0 large
enough.

Proof. We have by Theorem 4.1 that for all a−1, εa > 0 small enough, seed
data (g, τa, σεa) satisfies neither (i) nor (ii) in Theorem 1.1, provided σ is
given as in Theorem 4.1. Thus, our corollary is proven by the first statement
in the assertion (iii) of Theorem 1.1 with f ≡ R. The proof is completed. �

Corollary 4.3. (Nonuniqueness of solutions) Assume that (M, g, τ,
σ, a, ε) is given as in Theorem 4.1. If Yg > 0, then there exists a sequence
{ti} converging to 0 s.t. the conformal constraint equations (3) associated
with (g, tiτ

a, σεa) have at least two solutions.

Proof. The same arguments as in Corollary 4.2 works here. More precisely,
the only difference from the previous corollary is that we will use the second
conclusion in the assertion (iii) of Theorem 1.1 with f ≡ R instead of the
first, and then the corollary follows. �
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