Intrinsic chirality of graphs in 3-manifolds

Erica Flapan and Hugh Howards

Abstract

The main result of this paper is that for every closed, connected, orientable, irreducible 3 -manifold M, there is an integer n_{M} such that if γ is a graph with no involution and a 3 -connected minor λ with $\operatorname{genus}(\lambda)>n_{M}$, then every embedding of γ in M is chiral. By contrast, the paper also proves that for every graph γ, there are infinitely many closed, connected, orientable, irreducible 3-manifolds M such that some embedding of γ in M is pointwise fixed by an orientation reversing involution of M.

1 Introduction 1223
2 Achiral embeddings 1225
3 Intrinsic chirality 1229
4 Proof of Proposition 2 1232
References 1249

1. Introduction

We say that a graph Γ embedded in a 3 -manifold M is achiral, if there is an orientation reversing homeomorphism h of M leaving Γ setwise invariant. If such an h exists, we say that it is a homeomorphism of the pair (M, Γ). If no such homeomorphism exists, we say that the embedded graph Γ is chiral.

We can think of a knot as an embedding of a circular graph with some number of vertices in S^{3}. Independent of the number of vertices on the graph, some embeddings of it are chiral while others are achiral. By contrast, there exist graphs which have the property that all of their embeddings in S^{3} are chiral. Such a graph is said to be intrinsically chiral in S^{3} because its

The first author was supported in part by NSF Grant DMS-1607744.
chirality depends only on the intrinsic structure of the graph and not on the extrinsic topology of an embedding of the graph in S^{3}. The following theorem provides a method of constructing graphs that are intrinsically chiral in S^{3}.

Theorem 1. [2] Every non-planar graph γ with no order 2 automorphism is intrinsically chiral in S^{3}.

Since chirality is defined for graphs embedded in any 3 -manifold, it is natural to ask whether a graph which is intrinsically chiral in S^{3} would necessarily be intrinsically chiral in other 3 -manifolds. Our first result shows that no graph can be intrinsically chiral in every 3-manifold, or even in every "nice" 3-manifold.

Theorem 2. For every graph γ, there are infinitely many closed, connected, orientable, irreducible 3-manifolds M such that some embedding of γ in M is pointwise fixed by an orientation reversing involution of M.

Theorem 2 can be thought of as a generalization of the fact that every planar graph has an embedding in S^{3} which is pointwise fixed by a reflection of S^{3}.

On the other hand, our main result is a generalization of Theorem 1, which shows that for any given "nice" 3 -manifold M, there are infinitely many graphs with no automorphism of order 2 which are intrinsically chiral in M. In particular, let M be a closed, connected, orientable, irreducible 3manifold. Then by Kneser-Haken finiteness [12], M contains at most finitely many non-parallel disjoint incompressible tori. Let N_{M} denote either the maximal possible number of non-parallel disjoint incompressible tori in M or 2 , whichever is larger. Now we define $n_{M}=\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)+N_{M}$. We will refer to the constants n_{M} and N_{M} in the statements and proofs of Theorem 3 and Proposition 2 .

Finally, we make use of the following definitions from graph theory. A graph γ is said to be 3-connected, if at least three vertices together with the edges containing them must be removed to disconnect γ or reduce γ to a single vertex. A graph γ_{1} is said to be a minor of a graph γ_{2}, if γ_{1} can be obtained from γ_{2} by deleting and/or contracting some number of edges. Our main result is as follows.

Theorem 3. For every closed, connected, orientable, irreducible 3-manifold M, any graph with no order 2 automorphism which has a 3-connected minor λ with $\operatorname{genus}(\lambda)>n_{M}$ is intrinsically chiral in M.

For example, let M be a closed, connected, orientable, irreducible Seifert fibered space whose base surface S has genus $g \geq 2$. Then by using a standard pants decomposition argument (see for example [5]), it can be shown that the closed surface S contains at most $3 g-3$ disjoint, non-parallel essential circles. This implies that M contains at most $3 g-3$ disjoint, nonparallel incompressible vertical tori. Since M is Seifert fibered and $g \geq 2$, all incompressible tori in M are vertical. Hence M has at most $3 g-3$ disjoint, non-parallel incompressible tori. Now let $n_{M}=\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)+3 g-3$. Then by Theorem 3, any graph with no order 2 automorphism which has a 3 -connected minor λ with genus $(\lambda)>n_{M}$ is intrinsically chiral in M.

Note that by contrast with Theorem 3 which is for 3-manifolds without boundary, Ikeda [8] has shown in the theorem below that for "nice" 3 -manifolds with aspherical boundary, any graph with large enough genus which has a certain type of automorphism of order 2 has an achiral hyperbolic embedding in the double of the manifold.

Ikeda's Theorem. [8] Let M be a compact, connected, orientable, 3-manifold with non-empty aspherical boundary. Then there is an integer n_{M} such that for any abstract graph λ with genus $(\lambda)>n_{M}$ and no vertices of valence 1 , any automorphism of order 2 of λ that does not restrict to an orientation preserving automorphism of a cycle in λ can be induced by an orientation reversing involution of some hyperbolic embedding of λ in the double of M.

Since the word "graph" is used in different ways by different authors, we note here that in the current paper as well as in [2] a graph is defined to be a connected 1 -complex consisting of a finite number of vertices and edges such that every edge has two distinct vertices and there is at most one edge with a given pair of vertices.

In Section 2, we prove Theorem 2, In Section 3, we prove Theorem 3 making use of a proposition, which we then prove in Section 4. Throughout the paper we work in the smooth category.

2. Achiral embeddings

The goal of this section is to prove Theorem 2. To that end, we prove the following proposition. Note that we use $\operatorname{dim}_{\mathbb{Z}}\left(H_{1}(M, \mathbb{Z})\right)$ to denote the rank of the first \mathbb{Z}-homology group of M and we use $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)$ to denote the rank of the first \mathbb{Z}_{2}-homology group of M.

Proposition 1. Let S be a closed, orientable surface. Then for infinitely many closed, connected, orientable, irreducible 3-manifolds Q such that
$\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(Q, \mathbb{Z}_{2}\right)\right)=\operatorname{genus}(S)$, there is an embedding of S in Q which is pointwise fixed by an orientation reversing involution of Q.

The proof of Proposition 1 will make use of the idea of a disk-busting curve, which is a simple closed curve in a handlebody that intersects every essential, properly embedded disk in the handlebody. For example, a core of a solid torus is disk busting in the solid torus. For a genus 2 handlebody whose fundamental group is generated by a and b, an example of a disk-busting curve is one that includes into the fundamental group of the handlebody as $a b a b^{-1}$ (see Figure 11). All handlebodies have disk-busting curves and Richard Stong [17] gives an algorithm to recognize them. For more on diskbusting curves see [7] and [17].

Figure 1: A disk-busting curve in a genus 2 handlebody.

Proof. Let g be the genus of a closed orientable surface S. Let M be the manifold obtained by gluing genus g handlebodies V_{1} and V_{2} together along S in such a way that there is an orientation reversing involution h interchanging V_{1} and V_{2} which pointwise fixes the surface S. Then M is a closed, connected, orientable 3-manifold M such that $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)=\operatorname{genus}(S)$. However, M is reducible.

In order to create an irreducible 3 -manifold from M, we first remove neighborhoods N_{1} and N_{2} of identical disk busting curves C_{1} and C_{2} in the interiors of the handlebodies V_{1} and V_{2} such that N_{1} and N_{2} are interchanged by the involution h. Note that since $\operatorname{cl}\left(M-\left(S \cup N_{1} \cup N_{2}\right)\right)$ consists of two identical handlebodies from which neighborhoods of disk busting curves have been removed, the inclusion of S into each component of $\operatorname{cl}\left(M-\left(S \cup N_{1} \cup\right.\right.$ $\left.N_{2}\right)$) is incompressible.

We prove by contradiction that $\operatorname{cl}\left(V_{i}-N_{i}\right) \subset \operatorname{cl}\left(M-\left(S \cup N_{1} \cup N_{2}\right)\right)$ is irreducible. Assume $\operatorname{cl}\left(V_{i}-N_{i}\right)$ is reducible. Let F be a sphere in $\operatorname{cl}\left(V_{i}-N_{i}\right)$ that doesn't bound a ball. F must separate S from ∂N_{i} since every sphere in the handlebody V_{i} bounds a ball in V_{i}. Now take any compressing disk D for $S=\partial V_{i}$ in the handlebody V_{i} chosen so that it intersects F minimally. Since
F is a sphere, an innermost loop argument implies $D \cap F=\emptyset$. This, however, implies that D is disjoint from ∂N_{i} and therefore that S is compressible in $\operatorname{cl}\left(V_{i}-N_{i}\right)$. This contradicts the conclusion above, so F must not exist and $\operatorname{cl}\left(V_{i}-N_{i}\right)$ is irreducible.

Now we sew in identical non-trivial knot complements Q_{1} and Q_{2} to $\operatorname{cl}\left(M-\left(N_{1} \cup N_{2}\right)\right)$ along ∂N_{1} and ∂N_{2} respectively so that the Seifert surfaces of the Q_{i} are glued in where the meridians of the N_{i} were.

Let Q denote the 3-manifold obtained in this way. Then the restriction $h \mid \mathrm{cl}\left(M-\left(N_{1} \cup N_{2}\right)\right)$ can be extended to an orientation reversing involution of Q that pointwise fixes S. Note that the components of $\operatorname{cl}\left(Q-\left(S \cup \partial Q_{1} \cup\right.\right.$ $\left.\partial Q_{2}\right)$) that contain S are homeomorphic to the corresponding components of $\operatorname{cl}\left(M-\left(S \cup \partial N_{1} \cup \partial N_{2}\right)\right)$ that contain S.

Claim 1. The surfaces $S, \partial Q_{1}$, and ∂Q_{2} are each incompressible in Q.
Proof of Claim 1. Assume one of $S, \partial Q_{1}$, or ∂Q_{2} is compressible in Q. Then there is a compressing disk D for one of these surfaces whose interior meets $S \cup \partial Q_{1} \cup \partial Q_{2}$ transversally in a minimal number of components. If the interior of D intersects one of the surfaces $S, \partial Q_{1}$, or ∂Q_{2}, then an innermost loop on D bounds a compressing disk Δ for that surface whose interior is disjoint from the other surfaces. Now since each Q_{i} is a knot complement, Δ cannot be contained in Q_{i}. Thus Δ must be contained in some component of $\operatorname{cl}\left(Q-\left(S \cup Q_{1} \cup Q_{2}\right)\right)$. Also, since the C_{i} are disk busting for the $V_{i}, \partial \Delta$ cannot be contained in S. So Δ is a compressing disk for one of the ∂N_{i} in $\operatorname{cl}\left(V_{i}-N_{i}\right)$. By compressing along Δ we obtain a sphere F in $\operatorname{cl}\left(V_{i}-\right.$ $\left.N_{i}\right)$ separating S from ∂N_{i}. Then F is a reducing sphere for $\operatorname{cl}\left(V_{i}-N_{i}\right)$, contradicting the fact proven above that $\operatorname{cl}\left(V_{i}-N_{i}\right)$ is irreducible.

Claim 2. Q is irreducible.
Proof of Claim 2. Let F be a sphere in Q and assume without loss of generality that F intersects $S \cup \partial Q_{1} \cup \partial Q_{2}$ transversally in a minimal number of components. If F intersects any of $\partial Q_{1}, \partial Q_{2}$, or S, then there is an innermost loop on F bounding a disk D that is a compressing disk for ∂Q_{1}, ∂Q_{2}, or S in $\operatorname{cl}\left(Q-\left(S \cup \partial Q_{1} \cup \partial Q_{2}\right)\right)$. But this violates Claim 1. Thus F is contained in some Q_{i} or $\operatorname{cl}\left(V_{i}-Q_{i}\right)$. However, since each Q_{i} is a knot complement it is irreducible, and we saw above that $\operatorname{cl}\left(V_{i}-N_{i}\right)=\operatorname{cl}\left(V_{i}-Q_{i}\right)$ is irreducible. Therefore F bounds a ball in Q.

Now, recall that $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)=\operatorname{genus}(S)$. Also, it can be seen using a Mayer-Vietoris sequence that replacing the handlebodies N_{1} and N_{2} by the knot complements Q_{1} and Q_{2} does not change the first homology,
since a meridional disk of N_{i} is replaced by a Seifert surface in Q_{i}. Thus $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(Q, \mathbb{Z}_{2}\right)\right)=\operatorname{genus}(S)$, and hence Q has the properties required by the proposition.

In order to prove that we can find infinitely many such 3-manifolds Q, we begin by letting $X_{1}=Q$. Now it follows from Kneser-Haken finiteness, that since X_{1} is compact and orientable, there is a finite constant t_{1} such that X_{1} cannot contain more than t_{1} disjoint closed, non-parallel, incompressible surfaces (for example, see Proposition 1.7 in [4] or see [12]).

Now let $n>t_{1}$, let K_{1}, \ldots, K_{n} be distinct non-trivial knots, and let D denote a disk with n holes. Then $D \times S^{1}$ has $n+1$ torus boundary components which we denote by $S_{1}, S_{2}, \ldots, S_{n}$, and T_{1}. Now for each $j=$ $1, \ldots n$, we glue the knot complement $R_{j}=\operatorname{cl}\left(S^{3}-N\left(K_{j}\right)\right)$ to the torus S_{j} so that the boundary of a Seifert surface for R_{j} is attached to $S_{j} \cap D$. Then $Y_{1}=\left(D \times S^{1}\right) \cup R_{1} \cdots \cup R_{n}$ is the complement of the connected sum $K_{1} \# K_{2} \# \ldots \# K_{n}$, the S_{j} are pairwise disjoint, non-parallel, incompressible tori in Y_{1}, and $\partial Y_{1}=T_{1}$. Let Y_{1}^{\prime} denote a copy of Y_{1}. Now we replace Q_{1} by Y_{1} and Q_{2} by Y_{1}^{\prime} glued in such a way that the closed manifold X_{2} obtained in this way has an orientation reversing involution which interchanges Y_{1} and Y_{1}^{\prime} pointwise fixing S.

Thus X_{2} contains two copies of the tori $S_{1}, S_{2}, \ldots, S_{n}$. To see that these $2 n$ tori are incompressible in X_{2}, suppose there is a compressing disk for one of the tori that intersects $\partial Y_{1} \cup \partial Y_{1}^{\prime} \cup S$ transversally in a minimal number of components. An innermost loop on the disk would be a compressing disk for $\partial Y_{1}, \partial Y_{1}^{\prime}$, or S, again contradicting Claim 1. Thus the torus would have to be compressible in Y_{1} or Y_{1}^{\prime}. But this is impossible by our construction of Y_{1}. Thus the $2 n$ tori together with ∂Y_{1} and ∂Y_{1}^{\prime} must all be incompressible in X_{2}.

It follows that X_{2} contains at least $2 n+2>t_{1}$ disjoint, non-parallel, incompressible tori, and thus X_{2} is distinct from X_{1}. By repeating this process, we can create an infinite sequence of such manifolds each containing more disjoint, non-parallel, incompressible tori than the previous manifold did.

Remark 1. One of the referees observed that an alternate proof of Proposition 1 can be obtained using techniques of hyperbolic Dehn surgery together with results from [15]. We prefer the above proof because our construction is explicit.

Since every graph embeds in a closed orientable surface, the following theorem is an immediate consequence of Proposition 1.

Theorem 2. For every graph γ, there are infinitely many closed, connected, orientable, irreducible 3-manifolds M such that some embedding of γ in M is pointwise fixed by an orientation reversing involution of M.

3. Intrinsic chirality

The goal of this section is to prove our main result. We begin with the following definition.

Definition 3. We define the genus of a closed surface S by

$$
\frac{2-\chi(S)}{2}=\frac{\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(S, \mathbb{Z}_{2}\right)\right)}{2}
$$

Then the genus of a graph is defined as the minimum genus of any closed (orientable or non-orientable) surface in which the graph embeds.

It is worth pointing out that the genus of a non-orientable surface is not consistently defined in the literature. Some papers use our definition, while others define the projective plane as having genus 1 instead of $\frac{1}{2}$.

Proposition 2. Let γ be a 3 -connected graph with genus at least 2, and let Γ be an embedding of γ in a closed, connected, orientable, irreducible 3manifold M such that (M, Γ) has an orientation reversing homeomorphism fixing every vertex of Γ.

Then there is an embedding Γ^{\prime} of γ in a closed, connected, orientable 3 -manifold M^{\prime} such that $\left(M^{\prime}, \Gamma^{\prime}\right)$ has an orientation reversing involution pointwise fixing Γ^{\prime} and $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right) \leq n_{M}$.

The point of this proposition is that if we have an embedding Γ of a graph γ in a manifold M such that (M, Γ) has an orientation reversing homeomorphism, then we can find a (possibly different) manifold M^{\prime} and an embedding Γ^{\prime} of γ in M^{\prime} such that $\left(M^{\prime}, \Gamma^{\prime}\right)$ has an orientation reversing involution. Furthermore, even though M^{\prime} might be homologically more complicated than M, there is a bound on $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right)$ which depends only on M and not on the graph γ or the particular embedding of γ in M.

Note that the orientation reversing homeomorphism in the hypothesis of Proposition 2, leaves each edge of Γ setwise invariant since, according to our definition of a graph, there is at most one edge between any pair of vertices. While this homeomorphism does not necessarily pointwise fix Γ, it is isotopic to a homeomorphism which does fix Γ pointwise.

Proposition 2 will be proved in the next section. We now prove Theorem 3 (restated below) by making use of Proposition 2 together with the following result of Kobayashi.

Kobayashi's Theorem. [13] Let X be a closed, orientable, 3-manifold admitting an orientation reversing involution h. Then

$$
\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(\operatorname{fix}(h), \mathbb{Z}_{2}\right)\right) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(X, \mathbb{Z}_{2}\right)\right)+\operatorname{dim}_{\mathbb{Z}}\left(H_{1}(X, \mathbb{Z})\right)
$$

Theorem 3. For every closed, connected, orientable, irreducible 3-manifold M, there is an integer n_{M} such that any abstract graph with no order 2 automorphism which has a 3-connected minor λ with genus $(\lambda)>n_{M}$ is intrinsically chiral in M.

Proof. Let γ be a graph with no order 2 automorphism. Suppose for the sake of contradiction that γ has an achiral embedding Γ in the manifold M. Let n_{M} and N_{M} be the constants associated with M that were defined in Section 1. Let λ be a 3 -connected minor of γ. We will now show that λ satisfies the inequality

$$
\operatorname{genus}(\lambda) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)+N_{M}=n_{M}
$$

First observe that if genus $(\lambda)<2$, then the above inequality is immediate since $N_{M} \geq 2$. Thus we assume that $\operatorname{genus}(\lambda) \geq 2$.

Since Γ is an achiral embedding of γ in M, there is an orientation reversing homeomorphism f of the pair (M, Γ). Let φ denote the automorphism that f induces on the graph Γ. Note that even though f does not necessarily have finite order, φ has finite order because Γ has a finite number of vertices. Hence we can express the order of φ as $2^{r} q$, where $r \geq 0$ and q is odd. Now since f is orientation reversing and q is odd, $g=f^{q}$ is an orientation reversing homeomorphism of (M, Γ). Also, g induces the automorphism φ^{q} on Γ and $\operatorname{order}\left(\varphi^{q}\right)=2^{r}$. In particular, $g^{2^{r}}$ fixes every vertex of Γ.

If $r \geq 1$, then $g^{2^{r-1}}$ would induce an order two automorphism on Γ. As we assumed that no such automorphism exists, we must have $r=0$. Thus $g=g^{2^{r}}$ is an orientation reversing homeomorphism of (M, Γ) which fixes every vertex of Γ.

Since λ is a minor of the abstract graph γ, by deleting and/or contracting some edges of the embedding Γ of γ in M, we obtain an embedding Λ of λ in M. Furthermore, by composing the homeomorphism g with an isotopy in a neighborhood of each edge that was contracted, we obtain an orientation reversing homeomorphism of (M, Λ) which fixes every vertex of Λ.

Since λ is a 3 -connected graph with genus $(\lambda) \geq 2$, we can now apply Proposition 2 to get an embedding Λ^{\prime} of λ in a closed, connected, orientable, 3 -manifold M^{\prime} such that $\left(M^{\prime}, \Lambda^{\prime}\right)$ has an orientation reversing involution h pointwise fixing Λ^{\prime} and

$$
\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right) \leq n_{M}=\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)+N_{M}
$$

Let F be the component of the fixed point set fix (h) containing Λ^{\prime}, and let $x \in \Lambda^{\prime}$. Since h is a smooth involution, we can now pick a neighborhood $N(x)$ which is homeomorphic to a ball and is invariant under h (see for example, Theorem 2.2 in [1]). Then by Smith Theory [16], since $h \mid N(x)$ is an orientation reversing involution of the ball $N(x)$, the fixed point set of $h \mid N(x)$ is either a single point or a properly embedded disk. Since $N(x) \cap \Lambda$ contains more than one point, $\operatorname{fix}(h \mid N(x))$ is a properly embedded disk, and hence F is a closed surface. Thus

$$
\begin{aligned}
\operatorname{genus}(\lambda) & \leq \operatorname{genus}(F)=\frac{2-\chi(F)}{2} \\
& =\frac{\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(F, \mathbb{Z}_{2}\right)\right)}{2} \leq \frac{\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(\operatorname{fix}(h), \mathbb{Z}_{2}\right)\right)}{2} .
\end{aligned}
$$

Hence we have the inequality

$$
2 \operatorname{genus}(\lambda) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(\operatorname{fix}(h), \mathbb{Z}_{2}\right)\right)
$$

Also, since h is an orientation reversing involution and M^{\prime} is a closed orientable manifold, we can apply Kobayashi's Theorem [13] to obtain the inequality

$$
\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(\operatorname{fix}(h), \mathbb{Z}_{2}\right)\right) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right)+\operatorname{dim}_{\mathbb{Z}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}\right)\right)
$$

It follows that

$$
\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(\operatorname{fix}(h), \mathbb{Z}_{2}\right)\right) \leq 2 \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right)
$$

Combining the above inequalities, we now have

$$
\operatorname{genus}(\lambda) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right)
$$

But M^{\prime} was given by Proposition 2 such that

$$
\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)+N_{M}
$$

Hence we obtain the required inequality

$$
\operatorname{genus}(\lambda) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)+N_{M}=n_{M}
$$

It now follows that if γ has a 3-connected minor whose genus is greater than n_{M}, then γ must be intrinsically chiral in M.

4. Proof of Proposition 2

In the course of the proof of Proposition 2, we will use the well known "Half Lives, Half Dies" Theorem, which we state below. See [6] or 4] for a proof of this theorem.

Theorem 4. (Half Lives, Half Dies) Let M be a compact orientable 3manifold. Then the following equation holds with any field coefficients

$$
\operatorname{dim}\left(\operatorname{Kernel}\left(H_{1}(\partial M) \rightarrow H_{1}(M)\right)\right)=\frac{1}{2} \operatorname{dim} H_{1}(\partial M)
$$

Corollary 1. Let M be a manifold which has a torus boundary component T. Then for any pair of generators a and b of $H_{1}\left(T, \mathbb{Z}_{2}\right)$, at least one of a or b is non-trivial in $H_{1}\left(M, \mathbb{Z}_{2}\right)$.

Proof. Suppose for the sake of contradiction that the generators a and b are both trivial in $H_{1}\left(M, \mathbb{Z}_{2}\right)$. Attach handlebodies to all boundary components of M except T to form a new manifold J with a single boundary component. Then a and b are both trivial in $H_{1}\left(J, \mathbb{Z}_{2}\right)$. Since a and b generate the homology of the only boundary component of J, we see that $\operatorname{dim}\left(\operatorname{Kernel}\left(H_{1}\left(\partial J, \mathbb{Z}_{2}\right)\right) \rightarrow H_{1}\left(J, \mathbb{Z}_{2}\right)\right)=\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(\partial J, \mathbb{Z}_{2}\right)\right)=2$. But this contradicts the Half Lives, Half Dies Theorem. Thus at least one of the generators of $H_{1}\left(T, \mathbb{Z}_{2}\right)$ must have been non-trivial in M.

Note that it is tempting to assume that the Half Lives, Half Dies Theorem implies that one of a or b must be trivial in J. But this is not always true. In particular, if M is the product of a torus and an interval, then no non-trivial curve in the boundary of M is in the kernel.

The proof of Proposition 2 will make use of the Characteristic Decomposition Theorem for Pared Manifolds. For readers who may not be familiar with pared manifolds, we include the following definitions and results.

Definition 5. Let M be an orientable 3-manifold and let P be a set of disjoint incompressible annuli and tori in ∂M. Then we say (M, P) is a pared 3-manifold.

Note that a pared manifold is a special type of 3-manifold with boundary pattern in the sense of Johannson [11] as well as a 3-manifold pair in the sense of Jaco-Shalen [9]. The following definitions are consistent with those of [11] and [9.

Definition 6. A pared manifold (M, P) is simple if it satisfies the following conditions:

1) M is irreducible and $\partial M-P$ is incompressible.
2) Every incompressible torus in M is parallel to a torus component of P.
3) Every annulus A in M such that $\partial A \subseteq \partial M-P$ is either compressible or parallel to an annulus A^{\prime} in ∂M with $\partial A^{\prime}=\partial A$ such that $A^{\prime} \cap P$ consists of zero or one annular component of P.

Definition 7. A pared manifold (M, P) is Seifert fibered if there is a Seifert fibration of M for which P is a union of fibers. A pared manifold (M, P) is I-fibered if there is an I-bundle map of M over a surface B such that P is the preimage of ∂B.

Characteristic Decomposition Theorem for Pared Manifolds. 9], [11] Let (X, P) be a pared manifold where X is irreducible and $\partial X-P$ is incompressible. Then, up to an isotopy of (X, P), there is a unique set Ω of disjoint incompressible tori and annuli with $\partial \Omega \subseteq \partial X-P$ such that the following conditions hold:

1) If W is the closure of a component of $X-\Omega$, then the pared manifold $(W, W \cap(P \cup \Omega))$ is either simple, Seifert fibered, or I-fibered.
2) There is no set Ω^{\prime} with fewer elements than Ω which satisfies the above.

Thurston's Theorem for Pared Manifolds. [18] Suppose that a pared manifold (M, P) is simple, M is connected, and ∂M is non-empty. Then either $M-P$ admits a finite volume complete hyperbolic metric with totally geodesic boundary, (M, P) is Seifert fibered, or (M, P) is I-fibered.

We are now ready to prove Proposition 2. Recall that the definition of the constant n_{M} is given in Section 1.

Proposition 2. Let γ be a 3-connected graph with genus at least 2, and let Γ be an embedding of γ in a closed, connected, orientable, irreducible 3manifold M such that (M, Γ) has an orientation reversing homeomorphism g fixing every vertex of Γ.

Then there is an embedding Γ^{\prime} of γ in a closed, connected, orientable 3-manifold M^{\prime} such that $\left(M^{\prime}, \Gamma^{\prime}\right)$ has an orientation reversing involution pointwise fixing Γ^{\prime} and $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right) \leq n_{M}$.

Proof. Let Λ denote either Γ or Γ with one edge deleted, and suppose that Λ is contained in a ball B in M. Since $g(B)$ is isotopic to B in M, we can assume that g leaves B setwise invariant. Also, since g fixes every vertex of Λ and Λ has at most one edge between any pair of vertices, g takes each edge to itself. Thus $g \mid B$ is isotopic to a homeomorphism which pointwise fixes Λ. So we assume that g leaves B setwise invariant and pointwise fixes Λ. Let f be an embedding of (B, Λ) in S^{3}. Then $f \circ g \circ f^{-1}$ is an orientation reversing homeomorphism of $f(B)$ pointwise fixing $f(\Lambda)$. Now, $f \circ g \circ f^{-1}$ can be extended to an orientation reversing homeomorphism of S^{3} pointwise fixing $f(\Lambda)$.

However, Jiang and Wang [10] showed that no graph containing $K_{3,3}$ or K_{5} has an embedding in S^{3} which is pointwise fixed by an orientation reversing homeomorphism of S^{3}. Thus Λ cannot contain $K_{3,3}$ or K_{5}, and hence is abstractly planar. But this implies that $\operatorname{genus}(\Gamma) \leq 1$, which is contrary to our hypothesis. Thus neither Γ nor Γ with an edge deleted can be contained in a ball in M. We will use this result later in the proof.

Since the remainder of the proof is quite lengthy, we break it into steps.

Step 1: We define a neighborhood $N(\Gamma)$.

Let V and E be the sets of vertices and edges of Γ respectively. For each vertex $v \in V$, define $N(v)$ to be a ball around v in M (i.e., a 0 -handle containing v), and let $N(V)$ denote the union of the balls around the vertices. Also, for each edge $e \in E$, let $N(e)=D \times I$ be a solid tube around $\operatorname{cl}(e-N(V))$ in M (i.e., a 1-handle containing the portion of e outside of the 0 -handles). Then the intersection $N(V) \cap N(e)$ follows the standard convention for attaching 1-handles to 0-handles. In other words, in $N(e)$ this intersection consists of the disks $D \times\{0\}$ and $D \times\{1\}$ in $\partial N(V)$. Let $N(E)$ denote the union of the tubes around the edges. Then $N(\Gamma)=N(E) \cup N(V)$ is a neighborhood of Γ.

For convenience we introduce the following terminology. For each vertex v, we let $\partial^{\prime} N(v)$ denote the sphere with holes $\partial N(v) \cap \partial N(\Gamma)$, and for each edge e we let $\partial^{\prime} N(e)$ denote the annulus $\partial N(e) \cap \partial N(\Gamma)$. Thus $\partial N(\Gamma)=$ $\partial^{\prime} N(E) \cup \partial^{\prime} N(V)$.

Now since $g(\Gamma)=\Gamma$ fixing each vertex of Γ, we know that $g(N(\Gamma))$ is isotopic to $N(\Gamma)$ setwise fixing Γ and fixing each vertex. Thus we can modify
g by an isotopy (and by an abuse of notation, still refer to the map as g) so that $g(\Gamma)=\Gamma$, and for each vertex v and edge e we have $g(N(v))=N(v)$ and $g(N(e))=N(e)$. Because this modification was by an isotopy, our new g is still orientation reversing.

Step 2: We split $\operatorname{cl}(M-N(\Gamma))$ along a family τ of JSJ tori and choose an invariant component X.

Since M is irreducible and we have assumed that Γ is not contained in a ball, $\operatorname{cl}(M-N(\Gamma))$ is irreducible. Thus we can apply the Characteristic Decomposition Theorem of Jaco-Shalen [9] and Johannson [11] to get a minimal family of incompressible tori τ for $\operatorname{cl}(M-N(\Gamma))$ such that each closed up component of $M-(N(\Gamma) \cup \tau)$ is either Seifert fibered or atoroidal. Since the characteristic family τ is unique up to isotopy, we can again modify g by an isotopy (and again by an abuse of notation still refer to the map as g) so that $g(\tau)=\tau$ and still have $g(\Gamma)=\Gamma, g(N(v))=N(v)$ and $g(N(e))=$ $N(e)$ for each vertex v and edge e. Let X be the closed up component of $M-(N(\Gamma) \cup \tau)$ containing $\partial N(\Gamma)$ (see for example Figure 2), then $g(X)=$ X.

Figure 2: X is the closed up component of $M-(N(\Gamma) \cup \tau)$ between the grey incompressible torus and the black $\partial N(\Gamma)$.

Also, since Γ is 3 -connected, genus $(\partial N(\Gamma))>1$. Thus the component X is not Seifert fibered, and hence is atoroidal. Let P denote the set of torus boundary components of X together with the annuli that make up the components of $\partial^{\prime} N(E)$. Since Γ is 3-connected, $\partial X-P=\partial N(\Gamma)-\partial^{\prime} N(E)=$ $\partial^{\prime} N(V)$ is incompressible in $\operatorname{cl}(M-N(\Gamma))$. It follows that $\partial X-P$ is incompressible in X. Furthermore, X is irreducible since $\operatorname{cl}(M-N(\Gamma))$ is irreducible and X is a component of the JSJ decomposition of $\operatorname{cl}(M-N(\Gamma))$.

In the next step, we consider the pared manifold (X, P).

Step 3: We show that any sphere obtained by capping off an annulus A in the JSJ decomposition of (X, P) bounds a ball $B \subseteq M$ such that if the components of ∂A are in distinct components of $\partial N(V)$, then B meets $\Gamma-N(V)$ in a single edge, and if the components of ∂A are in the same component of $\partial N(V)$, then B is disjoint from $\Gamma-N(V)$.

We now apply the Characteristic Decomposition Theorem for Pared Manifolds [9, 11] to the pared manifold (X, P). Since X is atoroidal, this gives us a characteristic family σ of incompressible annuli in X with boundaries in $\partial X-P$ such that if W is the closure of any component of $X-\sigma$, then the pared manifold $(W, W \cap(P \cup \sigma)$) is either simple, Seifert fibered, or I - fibered. Once again, since the characteristic family σ is unique up to isotopy, we can modify g by an isotopy (and again by an abuse of notation, still refer to the map as g) so that $g(\sigma)=\sigma$.

Let A be an annulus component of $P \cup \sigma$, and let S denote the sphere obtained by capping off A by a pair of disjoint disks D_{1} and D_{2} in $\partial N\left(v_{1}\right)$ and $\partial N\left(v_{2}\right)$, where v_{1} and v_{2} may or may not be distinct vertices. Suppose that each component of $M-S$ intersects more than one edge of $\Gamma-N(V)$. Then by removing the vertices v_{1} and v_{2} and the edges that contain them we would obtain two non-empty subgraphs (see Figure 3). But this contradicts our hypothesis that Γ is 3 -connected. Thus one of the components of $M-S$ meets $\Gamma-N(V)$ in at most one edge of Γ.

Figure 3: In this figure, there is more than one edge on each side of this capped off annulus, and hence Γ is not 3 -connected.

Now, since M is irreducible, one of the closed up components of $M-S$ is a ball B. However, we showed at the beginning of our proof that neither Γ nor Γ with an edge removed can be contained in a ball in M. Thus B must be the closed up component of $M-S$ intersecting at most one edge of $\Gamma-N(V)$. Furthermore, since the annulus A is incompressible in X, if

Figure 4: The component B of $M-S$ is disjoint from $\Gamma-N(V)$.
$v_{1} \neq v_{2}$ then there is some edge e with vertices v_{1} and v_{2} such that B contains $\operatorname{cl}\left(e-\left(N\left(v_{1}\right) \cup N\left(v_{2}\right)\right)\right)$. On the other hand, suppose that $v_{1}=v_{2}$. Then by our definition of a graph, every edge in Γ has two distinct vertices. Thus the component of $M-S$ which meets $\Gamma-N(V)$ in at most one edge, is actually disjoint from $\Gamma-N(V)$. In this case, B must be disjoint from $\Gamma-N(V)$ as illustrated in Figure 4.

Note that since a ball cannot contain an incompressible torus, no torus boundary component of X can occur inside of B. It follows that every torus boundary component of X must also be a boundary component of $X-B$.

Step 4: We define a collection of balls $U_{e_{1}}, \ldots, U_{e_{n}}, V_{F_{1}}, \ldots, V_{F_{m}}$ in M such that the manifold $W=\operatorname{cl}\left(X-\left(U_{e_{1}} \cup \cdots \cup U_{e_{n}} \cup V_{F_{1}} \cup \cdots \cup V_{F_{m}}\right)\right)$ is the closure of a single component of $X-(\sigma \cup P)$.

Let A be an annulus in $P \cup \sigma$ with one boundary in $\partial N\left(v_{1}\right)$ and the other boundary in $\partial N\left(v_{2}\right)$ where $v_{1} \neq v_{2}$. By capping off A with disks in $\partial N\left(v_{1}\right)$ and $\partial N\left(v_{2}\right)$ we obtain a sphere which (as we saw in Step 3) bounds a ball B that meets Γ in $\operatorname{cl}\left(e-\left(N\left(v_{1}\right) \cup N\left(v_{2}\right)\right)\right)$ for some edge e.

Note that by our definition of a graph, e is the only edge of Γ whose vertices are v_{1} and v_{2}. Thus we can let \mathcal{C}_{e} denote the collection of all annuli in $P \cup \sigma$ with one boundary in $\partial N\left(v_{1}\right)$ and the other boundary in $\partial N\left(v_{2}\right)$. Now we cap off the annuli in \mathcal{C}_{e} with disks in $\partial N\left(v_{1}\right)$ and $\partial N\left(v_{2}\right)$ to obtain a collection of spheres which bound nested balls containing $\operatorname{cl}\left(e-\left(N\left(v_{1}\right) \cup\right.\right.$ $\left.N\left(v_{2}\right)\right)$). Let A_{e} denote the annulus in \mathcal{C}_{e} which, when capped off in this way, is outermost with respect to the nested balls.

Observe that the boundaries of A_{e} bound disks $D_{1} \subseteq \partial N\left(v_{1}\right)$ and $D_{2} \subseteq$ $\partial N\left(v_{2}\right)$ which each meet Γ in a single point of e, and the sphere $A_{e} \cup D_{1} \cup D_{2}$
bounds a ball U_{e} which contains $\operatorname{cl}\left(e-\left(N\left(v_{1}\right) \cup N\left(v_{2}\right)\right)\right)$ and all of the other annuli in \mathcal{C}_{e}. Furthermore, as we saw at the end of Step 3, no torus boundary component of X can be contained in U_{e}.

We see as follows that $X-U_{e}$ has a single component. If $A_{e}=\partial^{\prime} N(e)$, then $U_{e}=N(e)$ and hence $\operatorname{cl}\left(X-U_{e}\right)=X$. Thus we assume that $A_{e} \neq$ $\partial^{\prime} N(e)$. In this case, $U_{e} \cap X$ is obtained by removing the interior of $N(e)$ from the ball U_{e}. Thus $\partial\left(X-U_{e}\right) \cap U_{e}=A_{e}$ is an annulus. Now let p and q be points in $X-U_{e}$. Since X is path connected, there are paths P and Q in $X-U_{e}$ from p and q respectively to $\partial\left(X-U_{e}\right) \cap U_{e}$. Now since $\partial(X-$ $\left.U_{e}\right) \cap U_{e}$ is an annulus, there is a path in $\partial\left(X-U_{e}\right) \cap U_{e}$ joining P and Q. Thus there is a path from p to q in $X-U_{e}$. We will use this at the end of this step.

We repeat the above construction for each annulus in $P \cup \sigma$ with boundaries in distinct components of $\partial N(V)$. This gives us a collection of pairwise disjoint balls $U_{e_{1}}, \ldots, U_{e_{n}}$. Observe that for every edge e_{j}, the annulus $\partial^{\prime} N\left(e_{j}\right)$ is in P and its boundaries are in distinct components of $\partial N(V)$. Thus every edge e_{j} in Γ is contained in some $U_{e_{j}}$. It follows that $U_{e_{1}} \cup \cdots \cup U_{e_{n}}$ contains $\operatorname{cl}(\Gamma-N(V))$ and contains every annulus in $P \cup \sigma$ with boundaries in distinct components of $\partial N(V)$.

Next we consider an annulus F in σ both of whose boundaries are in a single $\partial N(v)$. We saw in Step 3 that if we cap off F by a pair of disjoint disks in $N(v)$, we obtain a sphere which bounds a ball that is disjoint from $\Gamma-N(v)$. Thus the components of ∂F are parallel in $\partial^{\prime} N(v)$. We now cap off every such annulus to obtain a collection of spheres which bound balls that are either nested or disjoint. Thus we can choose an annulus $F \in \sigma$ which, when capped off with disks in $N(v)$, bounds an outermost ball V_{F} with respect to this nesting (see Figure 5).

Figure 5: V_{F} is an outermost ball.
As we saw above for U_{e}, the ball V_{F} cannot contain any torus boundary components of X. In this case, $V_{F} \cap X$ is obtained by removing the interior
of $V_{F} \cap N(v)$ from the ball V_{F}. Thus $\partial\left(X-V_{F}\right) \cap V_{F}=F$ is an annulus. Now by an argument analogous to the argument for $X-U_{e}$ we see that for any pair of points p and q in $X-V_{F}$ there is a path from p to q in $X-V_{F}$. Thus $X-V_{F}$ also has a single component.

Now for each annulus $F \in \sigma$ with both components of ∂F in a single $\partial N(v)$ such that F is not contained in one of the balls $U_{e_{j}}$, we use the above argument to define a ball V_{F}. In this way, we obtain a collection of pairwise disjoint balls $U_{e_{1}}, \ldots, U_{e_{n}}, V_{F_{1}}, \ldots, V_{F_{m}}$. Furthermore, each of the sets $X-U_{e_{j}}$ and $X-V_{F_{i}}$ has a single component, and each $\partial U_{e_{j}}-\partial X$ and $\partial V_{F_{i}}-\partial X$ is an annulus in $\sigma \cup P$. Now it follows that the manifold

$$
W=\operatorname{cl}\left(X-\left(U_{e_{1}} \cup \cdots \cup U_{e_{n}} \cup V_{F_{1}} \cup \cdots \cup V_{F_{m}}\right)\right)
$$

is the closure of a single component of $X-(\sigma \cup P)$ (see Figure 6).

Figure 6: W is the closure of a single component of $X-\sigma$.

Step 5: We show that $g(W)=W$ and the pared manifold ($W, W \cap$ $(P \cup \sigma))$ is simple.

Recall that g fixes each vertex and leaves each edge setwise invariant. Also, $g(N(\Gamma))=N(\Gamma), g(P)=P$, and $g(\sigma)=\sigma$. Now, since the sets of balls $\left\{U_{e_{1}}, \ldots, U_{e_{n}}\right\}$ and $\left\{V_{F_{1}}, \ldots, V_{F_{m}}\right\}$ were chosen to be outermost, each of these sets is also invariant under g. Furthermore, we know from Step 4 that each $U_{e_{j}}$ intersects $\Gamma-N(V)$ only in e_{j}. Now since g leaves each e_{j} setwise invariant, g must also leave each $U_{e_{j}}$ setwise invariant. It follows that each $A_{e_{j}}$ must also be setwise invariant under g; and since each vertex is fixed by g, each boundary component of $A_{e_{j}}$ is also setwise invariant under g.

Now let v be a vertex such that some F_{i} has both its boundary components in $\partial N(v)$. Since F_{i} is incompressible in X, the components of ∂F_{i} bound disjoint disks in $\partial N(v)$ which each intersect at least one edge of Γ. Since every vertex and edge of Γ is invariant under g, it follows that F_{i} and its boundary components are also setwise invariant under g. Thus $V_{F_{i}}$ is setwise invariant under g. Finally, since all of the $U_{e_{j}}$ and $V_{F_{i}}$ are setwise invariant under g, we know that W must be setwise invariant under g as well.

To show that the pared manifold ($W, W \cap(P \cup \sigma)$) is simple, first recall that W is the closure of a single component of $X-\sigma$. Hence by JSJ for pared manifolds [9, 11], $(W, W \cap(P \cup \sigma))$ is either I-fibered, Seifert fibered, or simple as a pared manifold. We see as follows that $(W, W \cap(P \cup \sigma))$ cannot be Seifert fibered or I-fibered.

First observe that for every vertex v, there is some edge e such that the ball U_{e} meets $\partial N(v)$. It follows that ∂W meets every component of $\partial N(V)$. Furthermore, since every vertex v has valence at least three, $\partial^{\prime} N(v)$ is a sphere with at least three holes. Also, each $U_{e_{j}}$ contains at most one boundary component of $\partial^{\prime} N(v)$, and each $V_{F_{i}}$ contains no boundary components of $\partial^{\prime} N(v)$. Note that if F_{i} has its boundaries in $\partial N(v)$, then $V_{F_{i}}$ separates $\partial^{\prime}(N(v))$ into two components.

This means that for each vertex $v, W \cap \partial N(v)$ is obtained from $\partial^{\prime} N(v)$ by deleting some (possibly zero) number of annuli. Since $\partial^{\prime} N(v)$ is a sphere with at least three holes, deleting a collection of annuli may create new components, but some component must still be a sphere with at least three holes. It follows that the component of ∂W meeting $\partial N(\Gamma)$ has genus more than one, and thus the pared manifold $(W, W \cap(P \cup \sigma))$ cannot be Seifert fibered.

Next, suppose for the sake of contradiction that the pared manifold ($W, W \cap(P \cup \sigma)$) is I-fibered. By definition of I-fibered for pared manifolds, this means that there is an I-bundle map of W over a base surface Y such that $W \cap(P \cup \sigma)$ is in the pre-image of ∂Y. It follows that Y must be homeomorphic to a component of $\partial^{\prime} N(V) \cap W$, and hence must be a sphere with holes. In particular, the base surface Y is orientable.

Now since W is an orientable 3-manifold which is I-fibered over an orientable surface, it follows that W must actually be a product $Y \times I$. Thus $W \cap(P \cup \sigma)=\partial Y \times I$, and $Y_{0}=Y \times\{0\}$ and $Y_{1}=Y \times\{1\}$ are the only components of $\partial^{\prime} N(V) \cap W$. However, since ∂W meets every component of $\partial N(V)$, this means that Γ contains at most two vertices. But this contradicts our hypothesis that Γ is 3 -connected. Therefore, the pared $(W, W \cap(P \cup \sigma))$ is not I-fibered. Since it is also not Seifert fibered, it must be simple.

Step 6: We prove that $g \mid W$ is isotopic to an orientation reversing involution h of $(W, W \cap(P \cup \sigma))$.

Now it follows from Thurston's Hyperbolization Theorem for Pared Manifolds [18] applied to the simple pared manifold ($W, W \cap(P \cup \sigma)$) that $W-(W \cap(P \cup \sigma))$ admits a finite volume complete hyperbolic metric with totally geodesic boundary. Let D denote the double of $W-(W \cap(P \cup \sigma))$ along its boundary. Then D is a finite volume hyperbolic manifold, and $g \mid W$ can be doubled to obtain an orientation reversing homeomorphism of D (which we still call g) taking each copy of $W-(W \cap(P \cup \sigma))$ to itself. Now by Mostow's Rigidity Theorem [14] applied to D, the homeomorphism $g: D \rightarrow D$ is homotopic to an orientation reversing finite order isometry $h: D \rightarrow D$ that restricts to an isometry of $W-(W \cap(P \cup \sigma))$. By removing horocyclic neighborhoods of the cusps of $W-(W \cap(P \cup \sigma))$, we obtain a copy of the pair $(W, W \cap(P \cup \sigma))$ which is contained in $W-(W \cap(P \cup \sigma))$ and is setwise invariant under h. We abuse notation and now consider h to be an orientation reversing finite order isometry of $(W, W \cap(P \cup \sigma))$ instead of a copy of $(W, W \cap(P \cup \sigma))$. Furthermore, h induces isometries on the collection of tori and annuli in $W \cap(P \cup \sigma)$ with respect to a flat metric. Furthermore, the sets $\partial^{\prime} N(V) \cap W, \partial^{\prime} N(E) \cap W$, and $\tau \cap W$ are each setwise invariant under h. Finally, it follows from Waldhausen's Isotopy Theorem [20] that h is actually isotopic to $g \mid W$ by an isotopy leaving $W \cap(P \cup \sigma)$ setwise invariant.

Now, recall that the boundary components of W consist of tori in τ, and the union of spheres with holes in $\partial^{\prime} N(V) \cap W$ together with annuli in $P \cup \sigma$. Recall from the first paragraph in Step 5 that g setwise fixes each annulus $A_{e_{j}} \subseteq \partial U_{e_{j}}$ with boundaries in distinct components of $\partial N(V)$, each annulus $F_{i} \subseteq \partial V_{F_{i}}$ with both boundaries in a single component of $\partial N(V)$, each component of $\partial A_{e_{j}}$, and each component of ∂F_{i}. Since h is isotopic to $g \mid W$ by an isotopy leaving $W \cap(P \cup \sigma)$ setwise invariant, h leaves invariant the same sets as g. It follows that for each vertex v, we have $h\left(\partial^{\prime} N(v)\right) \cap$ $W)=\partial^{\prime} N(v) \cap W$, and h takes each component of $W \cap \partial N(v)$ to itself, leaving each boundary component setwise invariant.

Since h has finite order, h restricts to a finite order homeomorphism of every component of $W \cap \partial N(V)$. We saw in Step 5 that for every vertex v, at least one component C_{v} of $W \cap \partial N(v)$ is a sphere with at least three holes. Since h restricts to a finite order homeomorphism of C_{v} taking each boundary component of C_{v} to itself, h must be a reflection of C_{v} which also reflects each component of ∂C_{v}. Now h^{2} is a finite order, orientation preserving isometry of W that pointwise fixes the surface C_{v}. It follows that h^{2} is the identity, and hence h is an involution of W.

Step 7: We extend h to an orientation reversing involution of $X \cup$ $N(\Gamma)$ which pointwise fixes an embedding Γ^{\prime} of γ.

Observe that since every annulus in $P \cup \sigma$ is incompressible in W, no component of $W \cap \partial N(V)$ can be a disk. Thus every component of $W \cap$ $\partial N(V)$ is a sphere with two or more holes.

As we saw in Step 6, for each vertex v, h reflects some component C_{v} of $W \cap \partial N(v)$ which is a sphere with at least three holes, and h reflects every component of ∂C_{v}. Let b_{0} denote some boundary component of C_{v}. Then b_{0} is also a boundary component of either an annulus $A_{e_{j}}$ or an annulus F_{i}. Since h reflects b_{0}, we know that h must also reflect the annulus $A_{e_{j}}$ or F_{i}, whichever contains b_{0} in its boundary. Since the boundaries of the annulus are not interchanged, h must also reflect each boundary component of $A_{e_{j}}$ or F_{i}. Below we extend h to $U_{e_{j}}$ or $V_{F_{i}}$.

First we consider the case where b_{0} is in the boundary of an annulus $A_{e_{j}} \subseteq \partial U_{e_{j}}$. Let D_{j} and D_{j}^{\prime} denote the disks whose union is in $\operatorname{cl}\left(\partial U_{e_{j}}-A_{e_{j}}\right)$. Then D_{j} and D_{j}^{\prime} each meet Γ in a single point of e_{j}. Since h reflects the annulus $A_{e_{j}}$ together with each boundary component of $A_{e_{j}}$, we can extend h radially to the disks D_{j} and D_{j}^{\prime} to get a reflection of the sphere $A_{e_{j}} \cup D_{j} \cup D_{j}^{\prime}$ pointwise fixing a circle containing the points $D_{j} \cap e_{j}$ and $D_{j}^{\prime} \cap e_{j}$. Recall that the sphere $A_{e_{j}} \cup D_{j} \cup D_{j}^{\prime}$ bounds the ball $U_{e_{j}}$ in M. Now, we express $U_{e_{j}}$ as a product $D_{j} \times I$ whose core $\overline{e_{j}}$ has endpoints $D_{j} \cap e_{j}$ and $D_{j}^{\prime} \cap e_{j}$ (see Figure 77. Then we extend h from a reflection of the sphere $A_{e_{j}} \cup D_{j} \cup D_{j}^{\prime}$ to a reflection of the product $D_{j} \times I$ which pointwise fixes the core $\overline{e_{j}}$.

Figure 7: We can think of $U_{e_{j}}$ as a product $D_{j} \times I$ with core $\overline{e_{j}}$.
Next we consider the case where b_{0} is a boundary component of an annulus $F_{i} \subseteq \partial V_{F_{i}}$ which has both boundaries in a single $\partial N(v)$. Recall that $\operatorname{cl}\left(\partial V_{F_{i}}-F_{i}\right)$ consists of disks D_{i} and D_{i}^{\prime} properly embedded in $N(v)$. Without loss of generality, D_{i} and D_{i}^{\prime} each meet Γ at a single point on an edge. Since h reflects the annulus F_{i} together with each of its boundary components, we can extend h radially to the disks D_{i} and D_{i}^{\prime} to get a reflection of the sphere $F_{i} \cup D_{i} \cup D_{i}^{\prime}$ pointwise fixing a circle containing the points $\Gamma \cap D_{i}$ and $\Gamma \cap D_{i}^{\prime}$. Thus we can extend h to a reflection of the ball $V_{F_{i}}$ which pointwise fixes a disk containing the segment $V_{F_{i}} \cap \Gamma$ (see Figure 8).

Figure 8: We extend h to a reflection of the ball $V_{F_{i}}$ which pointwise fixes $\Gamma \cap V_{F_{i}}$.

In either case, the extension of h reflects the sphere with holes C_{v}, and one of the balls $U_{e_{j}}$ or $V_{F_{i}}$ depending on whether b_{0} is a boundary component of $A_{e_{j}}$ or F_{i}, respectively. Next we let S_{1} denote the union of C_{v} together with the annulus $A_{e_{j}}$ or F_{i} glued along b_{0}. Now h reflects S_{1} taking every boundary component of S_{1} to itself, and hence reflecting every boundary component of S_{1}. Let b_{1} be a boundary component of S_{1}. If b_{1} is not the other boundary of the annulus $A_{e_{j}}$ or F_{i}, then we repeat the above argument with b_{1} in place of b_{0}.

Figure 9: In this illustration, we have three choices for a boundary component b_{2} of $S_{2}=C_{v} \cup A_{e_{j}} \cup S_{1}^{\prime}$.

If b_{1} is the other boundary of the annulus $A_{e_{j}}$ or F_{i}, then b_{1} is also a boundary of some other component S_{1}^{\prime} of $W \cap \partial N(V)$, as illustrated in Figure 9 . In this case, since b_{1} is reflected by h and every boundary component of S_{1}^{\prime} is setwise invariant under h, we know that h must reflect $S_{2}=S_{1} \cup S_{1}^{\prime}$. Now let b_{2} denote a boundary component of S_{2}, and repeat the above argument with b_{2} in place of b_{0}.

In general, for a given surface S_{n} obtained in this way, the surface S_{n+1} is the union of S_{n} together with either an annulus of the form $A_{e_{j}}$ or F_{i},
or a sphere with at least two holes contained in $W \cap \partial N(V)$. Furthermore, S_{n+1} is reflected by h. This process will only stop when the surface that we obtain has no boundary components. Since ∂W has only one component which intersects $\partial N(V)$, the closed surface that we obtain in this way must be this component. Thus we have extended h to an orientation reversing involution of each of the balls $U_{e_{1}}, \ldots, U_{e_{n}}, V_{F_{1}}, \ldots, V_{F_{m}}$.

Since $N(E) \cup(X-W) \subseteq U_{e_{1}} \cup \ldots U_{e_{n}}$, at this point we have defined h on X, and the only part of $N(\Gamma)$ on which we have not defined h is $N=N(V)-\left(V_{F_{1}} \cup \cdots \cup V_{F_{m}}\right)$. Then N is a collection of disjoint balls (for example in Figure 8, $N(v)-V_{F_{i}}$ is two balls one of which contains v). Also, h is a reflection of each component of ∂N that fixes each point in $\partial N \cap \Gamma$. Now we extend h radially to a reflection of each ball of N in such a way that h pointwise fixes each component of $N \cap \Gamma$. Thus h is a reflection of each component of $N(V)$ which pointwise fixes $N(V) \cap \Gamma$.

We have now extended h to an orientation reversing involution of the manifold

$$
Y=W \cup V_{F_{1}} \cup \cdots \cup V_{F_{m}} \cup U_{e_{1}} \cup \cdots \cup U_{e_{n}} \cup N
$$

Recall from the end of Step 4 that ∂X and ∂W have the same collection of tori in their boundary components. Furthermore, we have filled in the boundary component of W meeting $\partial N(\Gamma)$ with a collection of balls in $X \cup N(\Gamma)$. Thus in fact $Y=X \cup N(\Gamma)$ and ∂Y is the collection of tori in ∂X.

Finally, we define a new embedding Γ^{\prime} of γ in $X \cup N(\Gamma)$ as follows. Let $\Gamma^{\prime} \cap N(V)=\Gamma \cap N(V)$. Then for each edge e_{j} define an embedding of $e_{j}-N(V)$ in Γ^{\prime} as the core $\overline{e_{j}}$ of $U_{e_{j}}=D_{j} \times I$, which we know is pointwise fixed by h according to the way we extended h to $U_{e_{j}}$ (recall Figure 7).

Step 8: We prove that if an essential curve in a component of $\partial(X \cup N(\Gamma))$ compresses in M, then it compresses in $X \cup N(\Gamma)$.

Let T_{1}, \ldots, T_{r} be the components of $\partial(X \cup N(\Gamma))$. Then each T_{i} is contained in the characteristic family τ, and hence is incompressible in $\operatorname{cl}(M-N(\Gamma))$.

Suppose that an essential curve λ_{i} on some T_{i} compresses in M. Let D_{i} be a compressing disk for λ_{i} whose intersection with the set of tori $\left\{T_{1}, \ldots, T_{r}\right\}$ is minimal. Let $D=D_{i}$ if the interior of D_{i} is disjoint from T_{i}. Otherwise, there exists some D in the interior of D_{i} such that D is a compressing disk for T_{i} whose interior is disjoint from T_{i}. In either case, the intersection of D with $\left\{T_{1}, \ldots, T_{r}\right\}$ is minimal.

Suppose that D contains at least one curve of intersection in its interior. Hence there is an innermost disk Δ on D which is a compressing disk for some T_{j} with $j \neq i$. Since T_{j} compresses in M but is incompressible in $\operatorname{cl}(M-N(\Gamma))$, we know that Δ intersects Γ.

Since M is irreducible, any compressible torus is separating in M. Thus we can let X_{j} denote the closed up component of $M-T_{j}$ containing X and let V_{j} denote the closed up component of $M-T_{j}$ whose interior is disjoint from X. Now let S denote the region of D which is adjacent to the innermost disk Δ. Then $S \subseteq V_{j}$, since $\Delta \subseteq X_{j}$. Also, $\partial D \subseteq T_{i} \subseteq X \subseteq X_{j}$ implies that S is adjacent to another region of D which is contained in X_{j}. In particular, there must be another circle of intersection α of $D \cap T_{j}$ which bounds a disk $\bar{D} \subseteq D$ such that \bar{D} contains $\Delta \cup S$. We illustrate the abstract disk D and its intersections with T_{j} in Figure 10. The white regions in the figure are contained in V_{j}, and the grey regions are contained in X_{j}. Note we do not illustrate any circles of intersection of D with any T_{k} with $k \neq j$.

Figure 10: A picture of the abstract disk D and its circles of intersection with T_{j}.

Now, since the intersection of D with the tori T_{1}, \ldots, T_{r} is minimal, all of the curves of intersection of $D \cap T_{j}$ must be essential on T_{j}. In particular, $\partial \Delta$ and α must both be essential on T_{j}. Since there cannot be two essential, disjoint, non-parallel curves on a torus, this means that α is parallel to $\partial \Delta$ on T_{j}. It follows that α must bound a disk $\bar{\Delta}$ which is parallel to Δ in M. In particular, since the interior of Δ is disjoint from T_{1}, \ldots, T_{r}, the interior of $\bar{\Delta}$ is as well. But now by replacing the disk \bar{D} with the disk $\bar{\Delta}$ in the compressing disk D we obtain a new compressing disk D^{\prime} for T_{i} which has fewer curves of intersection with T_{1}, \ldots, T_{r} than D has. From this contradiction we conclude that the interior of D must be disjoint from $T_{1} \cup \cdots \cup T_{r}$, and hence $D \subseteq X \cup N(\Gamma)$.

If $\partial D=\lambda_{i}$, then λ_{i} compresses in $X \cup N(\Gamma)$ as required. Otherwise, the compression disk D was contained in the interior of the original disk D_{i}
and $\partial D \subseteq T_{i}$. In this case, since the intersection of D_{i} with the set of tori $\left\{T_{1}, \ldots, T_{r}\right\}$ was minimal, ∂D is essential in T_{i}. But now ∂D and λ_{i} are disjoint essential curves on T_{i}. Hence as we saw above, the disks D and D_{i} must be parallel in M. Now, since $D \subseteq X \cup N(\Gamma)$, it follows that λ_{i} must compress in $X \cup N(\Gamma)$ as well.

Step 9: We fill each component T_{i} of $\partial(X \cup N(\Gamma))$ with a solid torus such that h extends to an involution of the resulting manifold M^{\prime}, and M^{\prime} satisfies the condition below.

Condition. If T_{i} is compressible in M, then every element of $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ is trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$, and if T_{i} is incompressible in M then at least one non-trivial element of $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ is trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$.

Let T_{i} be a component of $\partial(X \cup N(\Gamma))$. By Corollary 1 at the beginning of Section 4 there is a curve μ_{i} on T_{i} which is non-trivial in $H_{1}(X \cup$ $N(\Gamma), \mathbb{Z}_{2}$). Also, we know from Step 8 that if some essential curve λ_{i} on T_{i} compresses in M, then λ_{i} also compresses in $X \cup N(\Gamma)$. In particular, λ_{i} is not homologous in T_{i} to μ_{i}.

Now suppose that for some $j \neq i$, the involution h interchanges T_{i} and T_{j}. Since $h: X \cup N(\Gamma) \rightarrow X \cup N(\Gamma)$ is a homeomorphism and μ_{i} is a curve on T_{i} which is non-trivial in $H_{1}\left(X \cup N(\Gamma), \mathbb{Z}_{2}\right)$, we know that $h\left(\mu_{i}\right)$ is a curve on T_{j} which is also non-trivial in $H_{1}\left(X \cup N(\Gamma), \mathbb{Z}_{2}\right)$. Now we fill $X \cup N(\Gamma)$ along T_{i} by adding a solid torus V_{i} with its meridian attached to the nontrivial curve μ_{i}, and we fill along T_{j} by adding a solid torus V_{j} with its meridian attached to $h\left(\mu_{i}\right)$. Then we extend the involution h radially in $V_{i} \cup V_{j}$ (abusing notation and still calling the involution h). We repeat this process for every boundary component of $X \cup N(\Gamma)$ which is not setwise invariant under h.

Thus for every T_{i} along which we have glued a solid torus V_{i}, the curve μ_{i} on T_{i} is now trivial in $H_{1}\left(X \cup N(\Gamma) \cup V_{i}, \mathbb{Z}_{2}\right)$. Furthermore, if T_{i} is compressible in M, then there is an essential curve λ_{i} on T_{i} which compresses in $X \cup N(\Gamma)$. Hence, λ_{i} is not homologous to μ_{i} in $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$, and together λ_{i} and μ_{i} generate $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$. Furthermore, both λ_{i} and μ_{i} are trivial in $H_{1}\left(X \cup N(\Gamma) \cup V_{i}, \mathbb{Z}_{2}\right)$.

Let Z be the manifold that we have obtained by filling all of the boundary components of $X \cup N(\Gamma)$ which are not setwise fixed by h, and let T_{i} be a component of ∂Z. Recall from Step 7 that Γ^{\prime} is an embedding of γ in $X \cup N(\Gamma)$ which is pointwise fixed by h. Now $h: Z \rightarrow Z$ is an orientation reversing involution pointwise fixing Γ^{\prime}, and T_{i} is setwise invariant under h. Furthermore, by the proof of Step $6, h \mid T_{i}$ is an isometry with respect to a
flat metric. Since h is an orientation reversing involution of Z and T_{i} is a boundary component of $Z, h \mid T_{i}$ is also an orientation reversing involution. Thus $h \mid T_{i}$ is either a reflection pointwise fixing two parallel circles on T_{i}, or a composition of a reflection and an order 2 rotation of T_{i}. In either case, for any non-trivial element $a_{i} \in H_{1}\left(T_{i}, \mathbb{Z}\right)$, there is a non-trivial curve $b_{i} \in H_{1}\left(T_{i}, \mathbb{Z}\right)$ such that a_{i} and b_{i} meet transversely in a single point and $h\left(b_{i}\right)$ is homologous to $\pm b_{i}$ in $H_{1}\left(T_{i}, \mathbb{Z}\right)$.

Now suppose that some essential curve λ_{i} on T_{i} compresses in M. Then by Step $8, \lambda_{i}$ also compresses in $X \cup N(\Gamma)$, and hence in Z. Pick a nontrivial curve b_{i} on T_{i} that intersects λ_{i} in a single point such that $h\left(b_{i}\right)$ is homologous to $\pm b_{i}$ in $H_{1}\left(T_{i}, \mathbb{Z}\right)$. Then $\left\langle\lambda_{i}, b_{i}\right\rangle=H_{1}\left(T_{i}, \mathbb{Z}\right)$. Also, since λ_{i} is null homologous in $H_{1}\left(Z, \mathbb{Z}_{2}\right)$, by Corollary $1, b_{i}$ is non-trivial in $H_{1}\left(Z, \mathbb{Z}_{2}\right)$. Now we fill Z along T_{i} by adding a solid torus V_{i} with its meridian attached to the non-trivial curve b_{i}. Since $h\left(b_{i}\right)$ is homologous to $\pm b_{i}$ in $H_{1}\left(T_{i}, \mathbb{Z}\right)$, we can extend h radially to an orientation reversing involution of the solid torus V_{i}. Then $h: Z \cup V_{i} \rightarrow Z \cup V_{i}$ is an orientation reversing involution, and both λ_{i} and b_{i} are trivial in $H_{1}\left(Z \cup V_{i}, \mathbb{Z}_{2}\right)$.

On the other hand, suppose that some T_{i} is incompressible in M. By Corollary 1 , there is some curve b_{i} on T_{i} which is non-trivial in $H_{1}\left(Z, \mathbb{Z}_{2}\right)$, and b_{i} is homologous to $\pm h\left(b_{i}\right)$ in $H_{1}\left(T_{i}, \mathbb{Z}\right)$. Now we fill T_{i} by adding a solid torus V_{i} with its meridian attached to the curve b_{i}, and then extend h to V_{i}. Then $h: Z \cup V_{i} \rightarrow Z \cup V_{i}$ is again an orientation reversing involution, and b_{i} is trivial in $H_{1}\left(Z \cup V_{i}, \mathbb{Z}_{2}\right)$.

In this way, we glue a solid torus to each of the T_{i} in $\partial(X \cup N(\Gamma))$ to obtain a closed manifold M^{\prime} satisfying the required condition. Since $\Gamma^{\prime} \subseteq$ $X \cup N(\Gamma)$, this gives us an embedding Γ^{\prime} of γ in M^{\prime}. Furthermore, we have extended h to an orientation reversing involution of $\left(M^{\prime}, \Gamma^{\prime}\right)$ which pointwise fixes Γ^{\prime}.

To prove the proposition it remains to show that $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right) \leq$ n_{M}. We do this in steps 10 and 11 .

Step 10: We prove that at most N_{M} of the tori in $\partial(X \cup N(\Gamma))$ are incompressible in M.

Recall that N_{M} is either the number of non-parallel disjoint incompressible tori in M or 2 , whichever is larger. If no pair of distinct tori of $\partial(X \cup N(\Gamma))$ are parallel in M, then at most N_{M} of the components of $\partial(X \cup N(\Gamma))$ are incompressible in M.

Thus we assume that some pair of distinct tori T_{i} and T_{j} of $\partial(X \cup$ $N(\Gamma))$ are parallel in M. Then T_{i} and T_{j} co-bound a region R in M which
is homeomorphic to a product of a torus and an interval. However, since T_{i} and T_{j} are in the characteristic family for $\operatorname{cl}(M-N(\Gamma))$, they cannot be parallel in $\operatorname{cl}(M-N(\Gamma))$. Thus R intersects Γ. But since $\partial R=T_{i} \cup T_{j}$ and Γ is disjoint from $T_{i} \cup T_{j}$, this implies that $\Gamma \subseteq R$. It now follows that $X \cup N(\Gamma) \subseteq R$.

Now suppose that some component T_{k} of $\partial(X \cup N(\Gamma))$ is incompressible in M and distinct from T_{i} and T_{j}. Then $T_{k} \subseteq R$. But since $R \cong T_{j} \times I$, either T_{k} is parallel in R to both T_{i} and T_{j}, or T_{k} is compressible in R. However, since $R \subseteq M$, the latter would imply that T_{k} is compressible in M.

Thus T_{k} must be parallel to both T_{i} and T_{j} in $R \subseteq M$. Since T_{k} does not intersect Γ, this means that T_{k} is parallel to one of T_{i} or T_{j} in $\operatorname{cl}(M-N(\Gamma))$. But this is impossible since T_{i}, T_{j}, and T_{k} are all in the characteristic family for $\operatorname{cl}(M-N(\Gamma))$. Thus the only components of $\partial(X \cup N(\Gamma))$ which could be incompressible in M are T_{i} and T_{j}. Hence $\partial(X \cup N(\Gamma))$ has at most $2 \leq N_{M}$ components which are incompressible in M.

Step 11: We prove the inequality $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right) \leq n_{M}$.
Recall that M^{\prime} is obtained from $X \cup N(\Gamma)$ by adding a collection of solid tori V_{1}, \ldots, V_{r} along the components T_{1}, \ldots, T_{r} of $\partial(X \cup N(\Gamma))$. Also, by the condition in Step 9, we know that if T_{i} is compressible in M, then every element of $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ is trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$; and if T_{i} is incompressible in M then there exists some curve β_{i} on T_{i} such that β_{i} is non-trivial in $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ but trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$. It follows that for every T_{i} which is incompressible in M, there is at most one element of $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ which is non-trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$. Let α_{i} be a representative of this homology class in $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$. Thus every curve in $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ is either trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$ or homologous to α_{i} in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$.

Now let α be a curve in M^{\prime} which is non-trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$, and for each solid torus V_{i}, let C_{i} denote its core. Then by general position, we can choose α to be disjoint from $C_{1} \cup \cdots \cup C_{r}$, and hence disjoint from $V_{1} \cup \cdots \cup$ V_{r}. Now since $\alpha \subseteq X \cup N(\Gamma) \subseteq M$, we can also consider α in $H_{1}\left(M, \mathbb{Z}_{2}\right)$.

Suppose that α is trivial in $H_{1}\left(M, \mathbb{Z}_{2}\right)$. It follows that α is homologous in $X \cup N(\Gamma)$ to a collection of curves on $T_{1} \cup \cdots \cup T_{r}$ which are trivial in $H_{1}\left(M, \mathbb{Z}_{2}\right)$ but non-trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$. Since for any T_{i} which is compressible in M every element of $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ is trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$, α must be homologous in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$ to a collection of curves on only those T_{i} which are incompressible in M. It now follows that α is homologous in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$ to a sum of α_{i} 's on T_{i} 's that are incompressible in M. But by Step 10, there are at most N_{M} such tori T_{i}. Hence there are at most N_{M} distinct α_{i} which are non-trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$. It follows that these N_{M} curves generate every
non-trivial element of $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$ which is trivial in $H_{1}\left(M, \mathbb{Z}_{2}\right)$. This gives us the required inequality:

$$
\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)+N_{M}=n_{M}
$$

Hence the proposition follows.

References

[1] G. Bredon, Introduction to Compact Transformation Groups, Academic Press (1972).
[2] E. Flapan, Rigidity of graph symmetries in the 3-sphere, Journal of Knot Theory and Its Ramifications 4 (1995), 373-388.
[3] A. Hatcher, The classification of 3-manifolds - a brief overview, http: //www.math.cornell.edu/~hatcher/3M/3Mdownloads.html.
[4] A. Hatcher, Notes on basic 3-manifold topology, http://www.math. cornell.edu/~hatcher/3M/3Mdownloads.html.
[5] A. Hatcher, P. Lochak, and L. Schneps, On the Teichmüller tower of mapping class groups, J. Reine Angew. Math. 521 (2000), 1-24.
[6] H. Howards, Generating disjoint incompressible surfaces, Topology and Its Applications 58 (2011), 325-343.
[7] H. Howards, Surfaces and 3-manifolds, Dissertation University of California San Diego, Mathematics (1997).
[8] T. Ikeda, Rigidly achiral hyperbolic spatial graphs in 3-manifolds, Journal of Knot Theory and Its Ramifications 22 (2013), 12 pages.
[9] W. Jaco and P. Shalen, Seifert fibred spaces in 3-manifolds, Memoirs Amer. Math. Soc. 220, Amer. Math. Soc., Providence (1979).
[10] B. Jiang and S. Wang, Achirality and planarity, Communications in Contemporary Mathematics 2 (2000), 299-305.
[11] K. Johannson, Homotopy Equivalences of 3-Manifolds with Boundaries, Lecture Notes in Mathematics 761, Springer-Verlag, New York, Berlin, Heidelberg (1979).
[12] Helmuth Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresbericht der Deutschen Mathematiker-Vereinigung 38 (1929), 248-259.
[13] M. Kobayashi, Fixed point sets of orientation reversing involutions on 3-manifolds, Osaka J. Math. 25 (1988), 877-879.
[14] G. Mostow, Strong Rigidity of Locally Symmetric Spaces, Annals of Mathematics Studies 78, Princeton University Press, Princeton, NJ, (1973).
[15] R. Qiu and S. Wang, Simple, small knots in handlebodies, Topology Appl. 144 (2004), 211-227.
[16] P. A. Smith, Transformations of finite period. II, Ann. of Math. 40 (1939), 690-711.
[17] Richard Stong, Diskbusting elements of the free group, Mathematical Research Letters 4 (1997), 201-210.
[18] W. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.
[19] F. Waldhausen, Eine Klasse von 3-dimensionaler Mannigfaltigkeiten I, Inventiones 3 (1967), 308-333.
[20] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. Math. 87 (1968), 56-88.

Department of Mathematics, Pomona College
Claremont, CA 91711, USA
E-mail address: ELF04747@pomona.edu

Department of Mathematics, Wake Forest University
Winston-Salem, NC 27109, USA
E-mail address: howards@wfu.edu
Received December 14, 2015

