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In this paper, we establish compactness for various geometric cur-
vature energies including integral Menger curvature, and tangent-
point repulsive potentials, defined a priori on the class of compact,
embedded m-dimensional Lipschitz submanifolds in Rn. It turns
out that due to a smoothing effect any sequence of submanifolds
with uniformly bounded energy contains a subsequence converging
in C1 to a limit submanifold.

This result has two applications. The first one is an isotopy
finiteness theorem: there are only finitely many isotopy types of
such submanifolds below a given energy value, and we provide ex-
plicit bounds on the number of isotopy types in terms of the re-
spective energy. The second one is the lower semicontinuity — with
respect to Hausdorff-convergence of submanifolds — of all geomet-
ric curvature energies under consideration, which can be used to
minimise each of these energies within prescribed isotopy classes.
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1. Introduction

1.1. Introduction and main results

In this paper, we prove compactness and isotopy finiteness for several func-
tionals E : C 0,1

m,n → [0,∞] — we refer to them as geometric curvature energies
— defined on the class C 0,1

m,n of all compact, m-dimensional embedded Lips-
chitz submanifolds of Rn. To reach this goal, we use previously established
uniform C1,α-a priori estimates on local graph representations to not only
prove compactness, but also to gain sufficient geometric rigidity, such that
two submanifolds of finite energy that have small Hausdorff-distance are
ambiently isotopic. As a consequence of this two-fold regularisation of these
energies, we obtain isotopy finiteness: each sub-level set

AEm,n(E, d) :=
{

Σ ∈ C 0,1
m,n : E(Σ) ≤ E, diam Σ ≤ d

}
(1)

contains only finitely many manifolds up to diffeomorphism but also up to
isotopy. We also give a crude yet explicit estimate of the number of these
isotopy classes. In addition, we prove lower semicontinuity of all geomet-
ric curvature energies with respect to Hausdorff-convergence, which can be
combined with compactness to minimise each energy in a fixed isotopy class.

The compactness and finiteness theorems for abstract (smooth) Rieman-
nian manifolds, in different guises and under several sets of assumptions, date
back at least to J. Cheeger’s paper [10]. In particular, [10, Thm. 3.1] states
that for n 6= 4 and any given constant C <∞ there are only finitely many
diffeomorphism types of Riemannian manifolds M such that∥∥ |KM |

∥∥1/2

L∞
· Vol (M)1/n +

diamM

Vol (M)1/2
< C .

The left-hand side is bounded if, for example, the sectional curvature satis-
fies |KM | ≤ 1, the diameter of M is at most d and the volume — at least v;
the lower bound on VolM can be replaced by a lower bound on the injectiv-
ity radius. Later on, M. Gromov, see [19] and [20, Thm. 8.28], generalised
Cheeger’s work and introduced the powerful concept of Gromov–Hausdorff
convergence, enabling the study of collapse of sequences of manifolds with
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bounded curvature, where in the absence of bounds on the injectivity radius
singularities can appear in the limit. For a proof of Gromov’s compactness
theorem with an improvement on the regularity of the limiting metric, we
refer to S. Peters [30]. Anderson and Cheeger [4] prove that the space of
all Riemannian manifolds with uniform lower bounds on the Ricci curva-
ture RicM and the injectivity radius, and uniform upper bounds on the
volume, is compact in the Cα topology for any α < 1 (meaning Cα con-
vergence of the Riemannian metrics). The same authors in [3] obtain a
finiteness theorem for m-dimensional Riemannian manifolds with uniform
upper bounds for the diameter and |RicM |, uniform lower bounds for the
volume, and uniform bounds for the scalar curvature in Lm/2. Newer de-
velopments include the papers by A. Petrunin and W. Tuschmann [31],
W. Tuschmann [43], and V. Kapovich, A. Petrunin and W. Tuschmann [23].
In particular, Tuschmann [43] proves that the class M(n,C,D) of simply
connected closed n-dimensional Riemannian manifolds with sectional cur-
vature |K| ≤ C and diameter ≤ D contains finitely many diffeomorphism
types provided n ≤ 6 (surprisingly, this result fails in each dimension n ≥ 7).

As Cheeger writes in his survey [11, p. 235], in a passage commenting
on one of the versions of his own finiteness theorem, Intuitively, the idea is
that these manifolds can be constructed from a definite numbers of standard
pieces. The same comment applies in the present paper, with one notable
difference: all the submanifolds we deal with are embedded in the same Rn,
but their Riemannian metrics g induced by this embedding are, typically,
only of class Cα and not better, so that there is no way to define the classic
curvature tensor of g. Instead of that, we pick up a family of geometric ‘en-
ergies’ that can be defined without relying on the C2 (or C1,1) regularity of
the underlying manifold; a bound on each of these energies, combined with
a bound on the diameter, yields a bound on the number of ambient iso-
topy types (which is stronger than bounding the number of diffeomorphism
types). Each of these energies can, in fact, be defined also for non-smooth
sets, more general than Lipschitz submanifolds. It also can be minimised in
a given isotopy class.

To state our results precisely, let us introduce the appropriate definitions
first. For an (m+ 2)-tuple (x0, x1, . . . , xm+1) of points of Rn, we denote the
(m+ 1)-dimensional simplex with vertices at the xi’s by4(x0, x1, . . . , xm+1).
The discrete Menger curvature of (x0, x1, . . . , xm+1) is defined by

K(x0, . . . , xm+1) =
Hm+1(4(x0, . . . , xm+1))

diam({x0, . . . , xm+1})m+2
.(2)
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For m = 1, n = 3 we have

K(x0, x1, x2) =
Area(4(x0, x1, x2))

max(|x0 − x1|, |x1 − x2|, |x2 − x0|)3
≤ 1

4R(x0, x1, x2)
,

where R(x0, x1, x2) stands for the circumradius1 of the triangle4(x0, x1, x2).
For a Lipschitz manifold Σ ∈ C 0,1

m,n, a number l ∈ {1, . . . ,m+ 2}, and
p > 0 we set

E lp(Σ) =

∫
Σl

sup
xl,...,xm+1∈Σ

K(x0, . . . , xm+1)p dHmlx0,...,xl−1
.(3)

The integration in (3) is performed over the product Σl = Σ× . . .× Σ of
l copies of Σ, with respect to the m-dimensional Hausdorff measure Hm
on each copy, i.e., with respect to Hml on Σl. Before that, one takes the
supremum of K(x0, . . . , xm+1) with respect to all variables xi with indices
i ≥ l. (For l = m+ 2, no supremum is being taken). Please note that formally
the integrand is undefined on the diagonal of the product. However, we
tacitly omit this issue: the choice of values of the integrand on the diagonal
does not affect the value of the integral in (3), as the diagonal is of measure
zero in the product.

In particular, the functional Em+2
p is called the integral Menger curvature

of Σ.
Besides all the E lp energies, we consider also two other functionals that

are defined via averaging the inverse powers of the radii of spheres that are
tangent to Σ at one point and pass through another point of Σ. Namely, we
write

Rtp(x, y) =
|x− y|2

2 dist(y, x+ TxΣ)
(4)

to denote the radius of the smallest sphere which passes through y ∈ Σ
and is tangent to the m-dimensional affine plane x+ TxΣ. (Note that for a
Lipschitz manifold Σ ∈ C 0,1

m,n the tangent plane TxΣ ∈ G(n,m) is indeed well-
defined for Hm-almost all x ∈ Σ due to the classic Rademacher theorem.)

1The triple integral over the inverse squared circumradius also known as total
Menger curvature was an essential tool in G. David’s proof [12] of the famous
Vitushkin conjecture on characterising the one dimensional compact subsets of
the complex plane that are removable for bounded analytic functions; see, e.g.,
[42]. The most obvious generalisation to inverse powers of circumsphere radii of
simplices turns out to be too singular for our purposes here; see the discussion in
[40, Appendix B].
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Set

Tp(Σ) =

∫
Σ

∫
Σ
Rtp(x, y)−p dHmx dHmy ,(5)

T Gp (Σ) =

∫
Σ

sup
y∈Σ

(
Rtp(x, y)−p

)
dHmx .(6)

(Again, in (5) it does not matter how 1/Rtp is defined on the diagonal in
Σ× Σ.)

For each of the energies E ∈ {E lp, Tp, T Gp }, we write p0(E) to denote the
scaling invariant exponent for E . Since K and 1/Rtp scale like the inverse of
length, it is easy to see that p0(E) equals the product of m and the number
of integrals of Σ in the definition of E . Thus,

p0(E lp) = ml, p0(Tp) = 2m, p0(T Gp ) = m.(7)

Theorem 1 (finiteness of isotopy types). Let E, d > 0 be some num-
bers. Assume that E ∈ {E lp, Tp, T Gp } and p > p0(E). There are at most K =

K(E, d,m, n, l, p) different (ambient) isotopy types in AEm,n(E, d).

Recall that two topological embedded submanifolds Σ1,Σ2 of Rn are am-
bient isotopic if and only if there exists a continuous map H : Rn × [0, 1]→
Rn such that

Ht = H(·, t) is an embedding for each t ∈ [0, 1] ,

H(x, 1) = x for all x ∈ Rn, and H(Σ2 × {0}) = Σ1 .
(8)

(Note that the inclusion mapping f2 : Σ2 → Rn yields one embedding of Σ2

in Rn, and f1 := H0 ◦ f2 : Σ2 → Rn yields another one, so that (8) agrees
with the definition of ambient isotopy H̃ : Rn×[0, 1]→ Rn×[0, 1], H̃(x, t) :=
(H(x, t), t) between the embeddings f2 and f1 as in Burde–Zieschang [9, p.2].)
However, because of the smoothing properties of all geometric curvature
energies described in more detail in Section 1.2 all Lipschitz submanifolds
with finite energy are actually of class C1, so that Theorem 1 is stronger
than diffeomorphism finiteness since it even bounds the C1-isotopy types.

Remark 1.1. We do not have an optimal estimate for the number K =
K(E, d,m, n, l, p) in the above theorem. However, a crude check of constants
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involved in the argument yields

(9) log logK ≤ c(m,n, l, p)
(
| log d|+ log

(
E1/p + 1

)
+ 1
)

with a constant c(m,n, l, p) that blows up for p↘ p0(E). (See Section 6, Re-
mark 6.2). Thus, as expected, for fixed dimensions m and n, K blows up for
E →∞ (with E and d fixed), and for p↘ p0(E) (with E and d fixed).

It is also worth noting that no lower bounds for the volume (or lower
bounds for the injectivity radius) are needed in our work. Intuitively, the
reason is that the onset of thin tubes or narrow tentacles is being penalised
by each of the energies we consider. The same penalisation effect takes care of
a quantitative embeddedness: if two roughly parallel sheets of an embedded
manifold Σ are too close to each other preventing Σ to be described locally
as one graph, then there are lots of roughly regular very small simplices with
vertices on Σ (and of small tangent spheres passing through a second point
of Σ), causing the integrands K and 1/Rtp in (2) and (4) to be very large on
a set of positive measure. We will describe the energies’ quantitative control
on local graph patches more precisely in Section 1.2.

Our next result states that for any geometric curvature energy all sub-
level sets are sequentially closed and compact with respect to Hausdorff
convergence, and that all these energies are sequentially lower semicontinu-
ous.

Theorem 2 (lower semicontinuity and compactness). For E, d ∈
(0,∞) and for a geometric curvature energy E ∈ {E lp, Tp, T Gp }, where p >
p0(E) and l ∈ {1, 2, . . . ,m+ 2}, the following holds.

(i) If Σj ∈ AEm,n(E, d) for all j ∈ N and if the Σj converge to a compact
set Σ ⊂ Rn with respect to the Hausdorff-metric as j →∞, then Σ ∈
AEm,n(E, d), and moreover,

E(Σ) ≤ lim inf
j→∞

E(Σj).

(ii) For any sequence (Σj)j ⊂ AEm,n(E, d) with 0 ∈ Σj for all j there is

a submanifold Σ ∈ AEm,n(E, d) and a subsequence (Σjk)k ⊂ (Σj)j such
that dH(Σjk ,Σ)→ 0 as k →∞.

With the energies’ quantitative control over local graph patches de-
scribed in more detail in Section 1.2 one actually obtains C1-compactness of
these graph patches, which considerably improves the Hausdorff-convergence
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to C1-convergence in both parts of Theorem 2. Since, roughly speaking, iso-
topy types stabilise under C1-convergence we can use Theorem 2 to deduce
the following existence result by means of the direct method in the calculus
of variations.

Corollary 1 (existence of minimisers in isotopy classes). Let E, p,
E and d be as in Theorem 2. For each reference manifold M0 ∈ AEm,n(E, d)

there exists Σ0 ∈ AEm,n(E, d) such that

E(Σ0) = inf
{
E(Σ) : Σ ∈ AEm,n(E, d) and Σ is ambient isotopic to M0

}
.

Remark. It is easy to see, via simple covering arguments, that Theorems 1
and 2 hold under another set of assumptions, with the diameter bounds
replaced by volume bounds, i.e. with classes AEm,n(E, d) replaced by

ÃEm,n(E,H) := {Σ ∈ C 0,1
m,n : E(Σ) ≤ E, Hm(Σ) ≤ H} .

(For Σ’s with E(Σ) ≤ E, the diameter bounds are equivalent to volume
bounds).

There are numerous papers in the literature dealing with compactness
and finiteness results for immersed manifolds, starting with J. Langer [26]
who considers immersed surfaces in R3 of class W 2,p for p > 2, with Lp

bounds on the second fundamental form; for a generalization to immersed
hypersurfaces in Rn see [13]. G. Smith [34, 35] considers compactness of
immersed complete submanifolds of class Ck,α with k ≥ 2, α ∈ (0, 1), as-
suming uniform bounds on the second fundamental forms (and their deriva-
tives). Recently, P. Breuning [8] has studied compactness for a wide class of
(r, λ)–immersions, i.e., C1 immersions that can be represented as λ-Lipschitz
graphs at a uniform length scale r.

Our work differs from all these papers in that we deal only with embed-
ded objects. The upper bounds on any of the geometric curvature energies
we consider do guarantee that the limit of a convergent sequence of subman-
ifolds — even if the convergence, a priori, takes place only in the Hausdorff
distance — is again an embedded submanifold; this is due to the penalisation
effects mentioned before. It is easy to see that under the assumptions of [26],
[34] or [8] a sequence of embedded submanifolds might converge to a limit
which is only immersed, not embedded. In our case, one might later try and
use the additional information on the structure of converging (finite energy)
submanifolds to prove that the limit is not just immersed but also embed-
ded. However, we choose a different and clearer way: first, we use Blaschke’s
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selection theorem to obtain a candidate compact set for the limit, and then,
applying a graph tilting lemma and the Arzelà—Ascoli compactness theo-
rem, we (a) prove that this limit is in fact a C1,α embedded submanifold
and (b) obtain the desired type of convergence.

The only comparable result that we are aware of is due to O. Du-
rumeric: [14, Thm. 2] ascertains that there are only finitely many diffeomor-
phism and isotopy classes of connected C1,1 manifolds with lower bounds
on a very specific functional, namely on the normal injectivity radius rni,
combined roughly speaking with bounds on volume and diameter. Our esti-
mate (9) on the number of isotopy types is similar in spirit to Durumeric’s
[14, Sec. 5] where E1/p (which controls the bending of Σ in a single co-
ordinate chart, cf. Section 1.2 below) is replaced by the inverse of the
injectivity radius. (In [28], A. Nabutovsky studies the intriguing ‘energy
landscape’ of E(Σ) = vol1/n(Σ)/rni(Σ) on the set of C1,1 topological hy-
perspheres Σ = Σn ⊂ Rn+1; in particular his energy E has infinitely many
distinct local minima.)

Let us note that for curves in R3, J. O’Hara, see [1, pp. 1340–1343],
mentions a few results that use the same analytic mechanism of proof that
we deal with: sequences of knots f : S1 → R3 that are uniformly bilipschitz
and remain bounded in a fixed C1,α space, are precompact in C1; moreover,
the knot class has to be preserved in the limit. A bound for the bilipschitz
constant of f and for its C1,α-norm translates into a bound on the number
of possible knot types parameterised by f . For m = 1, all our energies are
valid knot energies of that type: upon fixing the length, upper bounds on the
energy yield bilipschitz and C1,α bounds on the arc-length parameterisations
of knots, resulting in bounds on the number of knot classes, on the average
crossing number, stick number etc.; see [38] for more details. The results of
the present paper open several questions in higher dimensional geometric
knot theory, concerning, e.g., the possible relations between bounds on the
energies of ‘knot conformations’ and bounds on higher dimensional knot
invariants.

1.2. The strategy of proofs and more general results for
C1,α-submanifolds

Let us start by explaining why we assume integrability above scale-invariance
for each of the geometric curvature energies. A simple scaling argument
shows that if Σ ⊂ Rn = Rn−1 × R is a cone over an (m− 1)-dimensional
smooth manifold Σ0⊂Rn−1, with vertex v=(0, . . . , 0, 1) and E ∈{E lp, Tp, T Gp },
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then E(Σ) =∞ whenever p ≥ p0(E). In fact, for such p the sequence of en-
ergies of disjoint pieces of Σ,

εj := E
(
Σ ∩ {x ∈ Rn : 2−j−1 < |x− v| ≤ 2−j}

)
, j = 0, 1, 2, . . . ,

is nondecreasing (by scaling!), and we have E(Σ) ≥ ε0 + ε1 + · · · .
Intuitively, each fold or cusp of Σ should introduce even ‘more’ small

simplices (or small tangent spheres that contain another point of Σ), and
thereby should lead to an increase of energy. This strongly suggests that
for any p > p0(E) the functional E should have nice smoothing properties.
This is indeed true; if E(Σ) is finite for some p above the critical exponent
p0(E), then Σ is an embedded manifold of class C1,α. Moreover, Σ can be
assembled from a finite number of standard graph patches — corresponding
to the standard pieces in Cheeger’s words quoted in Section 1.1 above — with
the size and the graph norms (controlling how much Σ can bend at length
scales determined by the energy) explicitly controlled in terms of E(Σ). This
is the reason why we can obtain compactness and finiteness results, along
with semicontinuity of all these energies.

Here is a precise description of what we mean by standard graph patches.
For α ∈ (0, 1], let C 1,α

m,n denote the set of all compact, C1,α-smooth, m-
dimensional embedded submanifolds of Rn.

Definition 1 (C1,α-graph patches). For R > 0, L > 0, d > 0, and α ∈
(0, 1] we define C 1,α

m,n(R,L, d) to be the class of those submanifolds Σ ∈ C 1,α
m,n

that satisfy the following three conditions:

(i) diameter bounds: Σ ⊂ Bn(0, d);

(ii) size of graph patches: for each point x ∈ Σ there exists a function fx :
TxΣ→ TxΣ⊥ of class C1,α such that Σ ∩ B(x,R) = (x+ graph(fx)) ∩
B(x,R), fx(0) = 0, and Dfx(0) = 0;

(iii) controlled bending: for each x ∈ Σ, we have ‖Dfx(ξ)−Dfx(η)‖ ≤
L|ξ − η|α for all ξ, η ∈ TxΣ, and Lip(fx) ≤ 1.

We state below — in a version that is adapted for our needs in this
paper — a general regularity result which has been proved in our earlier
works, see [41] for the case of Tp, [25] for T Gp , and [24] for all the E lp-energies,
l = 1, . . . ,m+ 2. (The case of Em+2

p for m = 2, n = 3 dates back to [40]; for
curves in Rn, see also [37], [36] and [39]).
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Regularity Theorem. Fix E ∈ {E lp, Tp, T Gp } and p > p0(E). Assume that a

Lipschitz manifold Σ ∈ C 0,1
m,n satisfies E(Σ) ≤ E <∞. If Σ ⊂ Bn(0, d), then

Σ ∈ C 1,α
m,n(R,L, d) for the exponent α = 1− p0(E)/p ∈ (0, 1), with R and L

depending only on m,n, l, p, p0 and E. In fact, one can take

R = c1(m,n, l, p)E−1/(p−p0(E)) , L = c2(m,n, l, p)E1/p(10)

for some constants c1 and c2 depending only on m,n, l, and p.

Let us note here that according to Blatt and Kolasiński [6], for an m-
dimensional embedded C1-submanifold Σ ⊂ Rn and p1 = m(l − 1) < p (note
that p0(E lp) = ml > p1) the condition E lp(Σ) <∞ is equivalent to Σ being
locally a graph of a function in the fractional Sobolev space W 1+s,p with s =
1−m(l − 1)/p ∈ (0, 1). In combination with the Sobolev imbedding, this
implies that the exponent α in the Regularity Theorem (which is one of the
key technical tools for the present paper) is best possible. Moreover, there
are m-dimensional graphs in Rn with finite curvature energy E lp for which
the graph function is nowhere twice differentiable, so we definitely cannot
work with classic curvatures in our setting!

Nevertheless, the Regularity Theorem paves the way to our results on
compactness, finiteness and semicontinuity of geometric curvature energies
with respect to sequences Σj ⊂ AEm,n(E, d), but also in the more general sub-

class of C 1,α
m,n introduced in Definition 1. The key idea is the following: due to

the regularity estimates, energy and diameter bounds present in the defini-
tion of AEm,n(E, d) force all the Σj to be in the same, fixed, class C 1,α

m,n(R,L, d)
up to translations. Then, the controlled bending condition satisfied by all the
Σj enters the scene: after a technical preparation involving some graph tilt-
ing, it enables applications of the Arzelà–Ascoli compactness theorem in all
graph patches. Thus, in fact much more can be said about the convergence
of Σj , at least along a subsequence. Let us make this more precise.

Definition 2 (C1,α-convergence of graph patches). A sequence (Σj)j∈N
⊂ C 1,α

m,n is said to converge in C 1,α
m,n to the set Σ0 ⊂ Rn if

(i) dH(Σj ,Σ0)
j→∞−−−→ 0;

(ii) Σ0 is a C1,α-smooth embedded submanifold of Rn;

(iii) there is an index j0 ∈ N and a radius ρ > 0 such that for each x ∈ Σ0

and for each j ∈ N with j ≥ j0 or j = 0 there exists a function fx,j ∈
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C1,α(TxΣ0, TxΣ⊥0 ) such that

Σj ∩ B(x, ρ) = (x+ graph(fx,j)) ∩ B(x, ρ)

and

‖fx,j − fx,0‖C1,α′ (TxΣ0,TxΣ⊥0 )
j→∞−−−→ 0 for each α′ ∈ (0, α).

As suggested above and mentioned in Section 1.1, the following stronger
compactness result on C 1,α

m,n(R,L, d) holds, from which part (ii) of Theorem 2
follows directly, but which is also essential to prove the other results stated
in Section 1.1.

Theorem 3 (compactness). Let R,L, d ∈ (0,∞) and α ∈ (0, 1]. Any se-
quence of submanifolds (Σj)j∈N⊂C 1,α

m,n(R,L, d) contains a subsequence which
converges in C 1,α

m,n to some submanifold Σ0 ∈ C 1,α
m,n(R,L, d).

The convergence in C 1,α
m,n is strong enough to make all the Σj with j

large enough ambient isotopic to the limiting manifold Σ0. It also turns out
that there is a diffeomorphism of the ambient space Jj : Rn → Rn which is
close to the identity in the bilipschitz sense and maps Σj to Σ0.

Theorem 4 (isotopy and diffeomorphism of ambient space). Let
R,L, d ∈ (0,∞), α ∈ (0, 1] and let (Σj)j∈N ⊂ C 1,α

m,n(R,L, d) be a sequence of
submanifolds which converges in C 1,α

m,n to Σ0 ∈ C 1,α
m,n(R,L, d). Then there ex-

ists j0 ∈ N such that for each j ≥ j0 the manifolds Σj and Σ0 are ambient
isotopic. Moreover, for each j ≥ j0 there exists a diffeomorphism of the am-
bient space Jj : Rn → Rn such that

Jj(Σj) = Σ0 and biLip(Jj) ≤ 1 + CJdH(Σ0,Σj)
α/2 ,

where CJ = CJ(R,L, α,m, n).

Here, biLip(f) denotes the bilipschitz constant of an injective map f :
X → f(X) ⊂ Y between two metric spaces (X, dX) and (Y, dY ), i.e. when-
ever A ⊂ X,

biLip(f,A) := max{Lip(f,A),Lip(f−1, f(A))} , biLip(f) := biLip(f,X) .

As usual,

Lip(f,A) = sup
x,y∈A, x 6=y

dY (f(x), f(y))

dX(x, y)
and Lip(f) = Lip(f,X)
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denotes the Lipschitz constant of f : X → Y .
We actually establish an upper bound ρ on the Hausdorff-distance

dH(Σ1,Σ2) depending only on the parameters R,L, α,m, and n, such that
if dH(Σ1,Σ2) ≤ ρ, then Σ1 and Σ2 are ambiently isotopic, and such that
a global bilipschitz diffeomorphism J on Rn with J(Σ2) = Σ1 exists (see
Corollary 4.9 and Lemma 4.10). This uniform bound leads not only to the
proof of Theorem 4 but allows us also in the end to give a quantitative
estimate on the number of isotopy types in Theorem 1.

The rest of the paper is organised as follows. In Section 2, we gather sim-
ple preliminary material. In Section 3, after a technical preparation devoted
to graph tilting for functions of class C1,α, we prove Theorem 3. In Section 4,
we construct the isotopies between the submanifolds Σj which converge in
C 1,α
m,n, employing a C1-version of the tubular neighbourhood theorem; parts

of this material seem to be ‘folklore’ but we give the details for the sake of
completeness. This leads to the proof of Theorem 4. Section 5 contains the
proof of semicontinuity and compactness, Theorem 2, and of Corollary 1,
and the final Section 6 lays out the explicit estimate for the number of
isotopy types (stated in Theorem 1). The whole exposition is more or less
self-contained.

Remark. The letter C will denote a constant whose value may change even
in a single string of estimates. Subscripted constants (e.g. Cl, Cang etc.) have
global meaning and their value is fixed. We write C = C(α, β, γ) when C
depends only on α, β and γ.

2. Preliminaries

Most of the notation in the paper is standard. In particular, we use the usual
‖·‖C1,α norms, and

dH(E,F ) := sup{dist(y, F ) : y ∈ E}+ sup{dist(z, E) : z ∈ F}

denotes the Hausdorff distance of sets in Rn.
For a measure µ, we write f∗µ to denote its push-forward, and spt(µ) to

denote its support, cf. Federer [17, Chapter 2] or Matilla [27, Chapter 1] for
definitions.
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2.1. The Grassmannian.

Throughout the paper, G(n,m) stands for the Grassmannian of all m-
dimensional linear subspaces2 of Rn.

For an m-plane U ∈ G(n,m) we let U⊥ be the orthogonal complement
of U . The symbol U\ denotes the orthogonal projection of Rn onto U . For
U, V ∈ G(n,m) we set

(11) <)(U, V ) := ‖U\ − V\‖.

This is a metric, and G(n,m) endowed with this metric is compact.

Remark 2.1. Using [2, 8.9(3)] we have for U, V ∈ G(n,m)

<)(U, V ) = ‖U\ − V\‖ = ‖U⊥\ − V ⊥\ ‖ = ‖U⊥\ ◦ V\‖
= ‖U\ ◦ V ⊥\ ‖ = ‖V ⊥\ ◦ U\‖ = ‖V\ ◦ U⊥\ ‖ .

In particular

<)(U, V ) = sup
e∈U∩S

|V ⊥\ e| = sup
e∈V ∩S

|U⊥\ e| .

Here and later S = {x ∈ Rn : |x| = 1} denotes the unit sphere in Rn.

Lemma 2.2. Assume U, V ∈ G(n,m). If <)(U, V ) < 1, then

• U\|V : V → U is a linear isomorphism,

• U⊥ ∩ V = {0},

• setting L = (U\|V )−1 : U → V we have

‖L‖ = (1−<)(U, V )2)−1/2 .

2Formally, G(n,m) is defined as the homogeneous space

G(n,m) := O(n)/(O(m)×O(n−m)) ,

where O(n) is the orthogonal group; see e.g. A. Hatcher’s book [21, Section 4.2,
Examples 4.53–4.55]. Thus G(n,m) becomes a topological space with the quotient
topology. We work with the angular metric, cf. (11).
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Proof. If <)(U, V ) < 1, then, by Remark 2.1, for each v ∈ V , v 6= 0

|U\v|2 = |v|2(1− |U⊥\ (v/|v|)|2 > 0 .

Hence, kerU\|V = {0} and, since dimU = dimV , U\|V is a linear isomor-
phism. In particular,

kerU\ ∩ V = U⊥ ∩ V = {0}.

Observe that, by Remark 2.1,

inf
e∈V ∩S

|U\e|2 = 1− sup
e∈V ∩S

|U⊥\ e|2 = 1−<)(U, V )2 .

Set L = (U\|V )−1 and compute

‖L‖ = sup
u∈U,u 6=0

|Lu||u|−1 = sup
v∈V,v 6=0

|LU\v||U\v|−1

= sup
v∈V,v 6=0

|v||U\v|−1 =

(
inf

v∈V,v 6=0
|U\(v/|v|)|

)−1

= (1−<)(U, V )2)−1/2 .
�

Remark 2.3. Let X ∈ G(n,m) and Y ∈ G(n, n−m) be such that

<)(X⊥, Y ) < 1.

Then, by Lemma 2.2, X ∩ Y = {0} and we can define the oblique projection
P : Rn → X along Y , i.e., a linear map such that

P ◦ P = P , kerP = Y and imP = X .(12)

Note that P can also be characterised by the requirement

{Pv} = (v + Y ) ∩X .(13)

Proposition 2.4. Let θ ∈ [0, 1], λ ∈ [0, 1) and k ∈ {1, . . . , n− 1}. Let X,
Y ∈ G(n, k) and Z ∈ G(n, n− k) be such that <)(X,Y ) ≤ θ and <)(Y, Z⊥) ≤
λ. For any x ∈ X and z ∈ Z with z− x ∈ Y one has the estimate

|z| ≤ θ

1− λ
|x| .
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Figure 1: The situation in Proposition 2.4: if x, X,Z are fixed, θ → 0, and
z− x ∈ Y , then z→ 0 and |z| . θ.

Proof. Since Z⊥\ u = X⊥\ x = 0, two applications of the triangle inequality
lead to

|z| ≤ |Y\z|+ |Y ⊥\ z| ≤ |(Y\ − U⊥\ )z|+ |Y ⊥\ (z− x)|+ |(Y ⊥\ −X⊥\ )x|
≤ λ|z|+ θ|x| .

�

2.2. An elementary topological result

In a few proofs, we need to rely on the following standard topological result.
For the sake of completeness, we present a proof using degree mod 2. (There
are of course other proofs, relying on the non-existence of the retraction of a
ball onto its boundary or, equivalently, on Brouwer’s fixed point theorem.)

Proposition 2.5. Let ρ > 0, σ ∈ (0, 1) and F ∈ C0(Bm(0, ρ),Rm) be such
that

|F (x)− x| ≤ σρ for all x ∈ Bm(0, ρ) .

Then for each y ∈ Bm(0, (1− σ)ρ) there exists x ∈ Bm(0, ρ) such that
F (x) = y.
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Proof. Fix y ∈ Bm(0, (1− σ)ρ). Assume that y /∈ F (Bm(0, ρ)). Then,

G : ∂Bm(0, ρ)→ ∂Bm(0, ρ) , G(z) =
F (z)− y
|F (z)− y|

ρ for z ∈ ∂Bm(0, ρ),

is well defined and continuous. Since |F (x)− x| ≤ σρ for all x ∈ Bm(0, ρ),

| − tz + t(F (z)− y)| ≤ t|F (z)− z|+ t|y| < tσρ+ t(1− σ)ρ < ρ = |z|

for all z ∈ ∂Bm(0, ρ) and t ∈ [0, 1); hence (1− t)z + t(F (z)− y) 6= 0 for all
z ∈ ∂Bm(0, ρ) and for all t ∈ [0, 1]. Thus, the map

H : [0, 1]× ∂Bm(0, ρ)→ ∂Bm(0, ρ) , H(t, z) =
(1− t)z + t(F (z)− y)

|(1− t)z + t(F (z)− y)|
ρ

yields a well defined homotopy of G and the identity map on the sphere
∂Bm(0, ρ). Hence G has mod 2 degree 1. On the other hand, one can extend
G to the continuous mapping

G̃ : Bm(0, ρ)→ ∂Bm(0, ρ) , G̃(z) =
F (z)− y
|F (z)− y|

ρ .

Thus G has mod 2 degree 0, a contradiction. For the relevant results on the
mod 2 degree one may, e.g., consult [22, pp. 124,125]. �

3. Compactness

Each manifold Σ ∈ C 1,α
m,n(R,L, d) is assembled from standard graph patches

that have controlled bending at length scales . R. Thus, intuitively, if
two such manifolds Σ1,Σ2 ∈ C 1,α

m,n(R,L, d) are sufficiently close in Haus-
dorff distance, their tangent planes at points x ∈ Σ1, y ∈ Σ2 with |x− y| .
dH(Σ1,Σ2) must be close, too, for otherwise the Hausdorff distance of the
manifolds would be too large. Before giving the precise quantitative state-
ment, let us mention two simple consequences of Definition 1 valid for each
Σ ∈ C 1,α

m,n(R,L, d): For any r ∈ (0, R] one finds x+ v + fx(v) ∈ Bn(x,
√

2r)
for all x ∈ Σ, v ∈ TxΣ ∩ Bn(0, r), since |fx(v)| = |fx(v)− fx(0)| ≤ |v| < r so
that

|x− (x+ v + fx(v))|2 = |v|2 + |fx(v)|2 < 2r2.
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Secondly, one can improve the estimate for |fx(v)| for such x, v, and r ∈
(0, R] as follows.

|fx(v)| =
∣∣∣∣∫ 1

0

d

dt
fx(tv) dt

∣∣∣∣ =

∣∣∣∣∫ 1

0
(Dfx(tv)−Dfx(0))v dt

∣∣∣∣(14)

≤ L|v|1+α < Lr1+α.

Lemma 3.1 (proximity of tangent planes). Let R,L, d > 0, α ∈ (0, 1],
A ≥ 1, and Σ1,Σ2 ∈ C 1,α

m,n(R,L, d) such that

dH(Σ1,Σ2) < min
{

2−6A−2R2, L−2/α, 1
}
,

and let x ∈ Σ1 and y ∈ Σ2 be such that |x− y| ≤ AdH(Σ1,Σ2). Then there
exists a constant Cang = Cang(L,A) such that

<)(TxΣ1, TyΣ2) ≤ CangdH(Σ1,Σ2)α/2 .(15)

In fact, one can take Cang(L,A) = L
(
1 + (4A)2

)
+ 2A.

Proof. For dH(Σ1,Σ2) = 0 we have x = y and Σ1 = Σ2 as C1-manifolds, so
that TxΣ1 = TyΣ2; hence both sides of (15) are zero. So, let us assume that
dH(Σ1,Σ2) > 0. The following arguments hold for all u ∈ TxΣ1 with

0 < |u| = dH(Σ1,Σ2)1/2 < min
{

2−3A−1R, L−1/α, 1
}
.(16)

Since Σ1 ∈ C 1,α
m,n(R,L, d) we find

p := x+ u+ fx(u) ∈ Σ1 ∩ B(x,R)

by our remark preceding this lemma, since |u| < R/(23A) < R/
√

2. We thus
infer

(TxΣ1)\(p− x) = (TxΣ1)\(u+ fx(u)) = u,

and

dist(p− x, TxΣ1) = dist(u+ fx(u), TxΣ1)(17)

= |fx(u)|
(14)

≤ L|u|1+α
(16)
< L|u| 1

L
= |u|.

In particular,

|p− x|2 = |u|2 + |fx(u)|2 = |u|2 + dist2(p− x, TxΣ1) < 2|u|2.
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Next choose a point q ∈ Σ2 such that |p− q| ≤ dH(Σ1,Σ2) and set v :=
(TyΣ2)\(q − y). Then one finds

|v| ≤ ‖(TyΣ2)\‖|q − y| = |q − y|
≤ |q − p|+ |p− x|+ |x− y| ≤ dH(Σ1,Σ2) +

√
2|u|+AdH(Σ1,Σ2)

≤ |u|
[
(1 +A)|u|+

√
2
]
≤ A|u|

[
2|u|+

√
2
] (16)
< 4A|u|

(16)
<

1√
2
R,

so that y + v + fy(v) ∈ Bn(y,R) and q − y = v + fy(v) ∈ graph(fy), by virtue
of our remark preceding this lemma. Employing the identities

dist(p− x, TxΣ1) = |fx(u)| = |p− (x+ u)| and

dist(q − y, TyΣ2) = |fy(v)| = |q − (y + v)|

we can write

dist(u, TyΣ2) ≤ |u− v| ≤ |u+ (x− p)|+ |p− q|+ |q − (y + v)|+ |y − x|
≤ |fx(u)|+ dH(Σ1,Σ2) + |fy(v)|+A|u|2
(14)

≤ L
(
|u|1+α + |v|1+α

)
+ (1 +A)dH(Σ1,Σ2)

(16)
<
[
L
(
1 + (4A)2

)
+ 2A

]
|u|1+α =: Cang(L,A)|u|1+α.

Since dist(u, TyΣ2) = |(TyΣ2)⊥\ (u)| = |u|
∣∣(TyΣ2)⊥\

(
u
|u|
)∣∣ = |u| dist

(
u
|u| , TyΣ2

)
we arrive at dist

(
u
|u| , TyΣ2

)
≤ Cang(L,A)|u|α = Cang(L,A)dH(Σ1,Σ2)α/2.

Since the requirement (16) on u ∈ TxΣ1 does not depend on the direction
e := u/|u| ∈ Sn−1 = S we obtain by Remark 2.1

<)(TxΣ1, TyΣ2) = sup
e∈TxΣ1∩S

|(TyΣ2)⊥\ e|

= sup
e∈TxΣ1∩S

dist(e, TyΣ2) ≤ CangdH(Σ1,Σ2)α/2 .

�

To prove Theorem 3, one applies the Arzelà–Ascoli theorem to graph
patches of the sequence Σj . To make this possible, it is necessary to tilt
all the graphs (of a subsequence of the Σj ’s intersected with a fixed ball
of radius ≈ R) so that they are all defined over the same plane. Here is a
technical lemma that we shall use.
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Lemma 3.2 (graph tilting). Let V ∈ G(n,m), α ∈ (0, 1], ϑ ∈ (0, 1
100),

L > 0, v ∈ V , r ∈ (0,∞] and f ∈ C1,α(V, V ⊥) is such that Lip(f) ≤ 1 and

‖Df(x)−Df(y)‖ ≤ L|x− y|α for x, y ∈ V ∩ B(v, r) .

Then the following holds. For each U ∈ G(n,m) with <)(U, V ) ≤ ϑ there ex-
ists a function g ∈ C1,α(U,U⊥) such that for ω := U\(v + f(v)),

graph(f) = graph(g) and

‖Dg(ξ)−Dg(η)‖ ≤ Lg(L, ϑ, α)|ξ − η|α for ξ, η ∈ U ∩ B(ω, 1
1+3ϑr) ,

where Lg(L, ϑ, α) := L(1 + 12ϑ)(1 + 3ϑ)α / (1− 4ϑ). Moreover, Lip(g) ≤
(1 + 2ϑ)/(1− 2ϑ), and g(0) = 0 if f(0) = 0. If f(0) = 0 and Df(0) = 0 then

(18) ‖Dg(0)‖2 ≤ ϑ2

1− ϑ2
.

Remark. By taking r =∞ we mean B(v, r) = Rn.

Proof. If U = V simply set g := f , and we are done. So assume <)(U, V ) ∈
(0, ϑ] in the following.

Step 1: defining g. Set Σ := graph(f) and for p1, p2 ∈ Σ define x1 := V\(p1),
x2 := V\(p2), z1 := U\(p1), and z2 := U\(p2). Then pi = xi + f(xi) for i =
1, 2, and since Lip(f) ≤ 1 and <)(U, V ) ≤ ϑ < 1

100 we have

|(x2 − x1)− (z2 − z1)| = |(V\ − U\)(p2 − p1)|(19)

≤ ‖V\ − U\‖|p2 − p1| ≤ ϑ|p2 − p1|
= ϑ

∣∣(x2 − x1) + (f(x2)− f(x1))
∣∣

≤ 2ϑ|x2 − x1| < 1
50 |x2 − x1|,

where only the very last inequality is restricted to the case x1 6= x2. If z1 =
U\(p1) = U\(p2) = z2 then (19) implies 0 ≤ (1−2ϑ)|x2−x1| ≤ 0, hence x1 =
V\(p1) = V\(p2) = x2, so that

p1 = x1 + f(x1) = x2 + f(x2) = p2.

In other words, if p1 6= p2 then U\(p1) 6= U\(p2), or U\|Σ : Σ→ U is injective.
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Setting q := U\(0 + f(0)) ∈ U ,

φ1 : V 3 x 7−→ x+ f(x) ∈ Σ, φ2 : Σ 3 p 7−→ U\(p)− q,

we find that φ := φ2 ◦ φ1 : V → U is injective, since both φ1 and φ2 are
injective. Moreover, φ is continuous, and φ(0) = φ2(φ1(0)) = φ2(0 + f(0)) =
0. Letting x1 := 0 in (19), and setting x := x2, z := z2 = φ(x2) = φ(x) we
infer from (19)

(20) |x− φ(x)| ≤ 2ϑ|x| for all x = V\(x+ f(x)) ∈ V\(graph(f)) = V.

Notice that the restricted projection V\|U : U → V is bijective, since
<)(U, V ) ≤ ϑ < 1. Indeed, since dimU = dimV it suffices to check that V\|U
is injective. But V\(u1) = V\(u2) for u1, u2 ∈ U with u1 6= u2 would imply
that 0 6= u1 − u2 ∈ U would be contained in the kernel of V\, so that we
would arrive at the contradictory inequality

‖V\ − U\‖ ≥
∣∣∣∣V\( u1 − u2

|u1 − u2|

)
− U\

(
u1 − u2

|u1 − u2|

)∣∣∣∣
=

∣∣∣∣ u1 − u2

|u1 − u2|

∣∣∣∣ = 1 > ‖V\ − U\‖ > 0.

To show that φ is also surjective (hence bijective) consider a linear isometry
IV : V → Rm, define F ∈ C0(Rm,Rm) to be F := IV ◦ V\|U ◦ φ ◦ I−1

V , and
estimate for ξ ∈ Rm

|ξ − F (ξ)| = |IV ◦ V\
(
I−1
V (ξ)

)
− IV ◦ V\ ◦ φ

(
I−1
V (ξ)

)
|

= |V\
(
I−1
V (ξ)

)
− V\ ◦ φ

(
I−1
V (ξ)

)
|

≤ |I−1
V (ξ)− φ

(
I−1
V (ξ)

)
|

(20)

≤ 2ϑ|I−1
V (ξ)| = 2ϑ|ξ|.

Thus, F satisfies the assumptions of Proposition 2.5 for each ρ > 0 and σ :=
2ϑ < 1, which implies that F : Rm → Rm is surjective. Therefore V\|U ◦ φ :
V → V is surjective, and finally also φ : V → U is surjective, hence bijective.

We are now in the position to define g := U⊥\ ◦ φ1 ◦ φ−1 ◦ τ−q : U → U⊥,
where τq(x) = x+ q for x ∈ Rn is the usual translation. Since φ1 is of class
C1,α one finds φ ∈ C1,α, and so φ−1 ∈ C1,α, and hence g ∈ C1,α(U,U⊥);
see, e.g., [7, Section 2.2] for a brief self-contained argument showing that
the class C1,α is closed under composition and inversion. Moreover, if p ∈ Σ,
V\p = x and U\p = z, then z = φ(x) + q and x+ f(x) = p = z + g(z); hence,
graph(f) = Σ = graph(g). In particular, if f(0) = 0 then 0 = 0 + f(0) = z +
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g(z) for z = U\(0) = 0; hence g(0) = 0. Since x 7→ x+ f(x) parameterises
Σ = graph(f), one has in the point p = x+ f(x) ∈ Σ the m-dimensional
tangent plane TpΣ = (Id +Df(x))(TxV ) = (Id +Df(x))(V ), and likewise,
TpΣ = (Id +Dg(z))(U) if p = z + g(z). Thus, if f(0) = 0 and Df(0) = 0,
then we find

T0Σ = (Id +Df(0))(V ) = V = (Id +Dg(0))(U) and

<)(U, (Id +Dg(0)(U)) = <)(U, V ) ≤ ϑ,

so that we can apply [2, 8.9(5)] with S ≡ S2 := U and S1 := (Id +Dg(0))(U),
η2 := 0, η1 := Dg(0), to obtain (18).

Step 2: Lipschitz continuity of g and oscillation of Dg. By definition, z +
g(z) = x+ f(x) for z = φ(x) + q ∈ U , x ∈ V , so that by (19) and by the
assumption Lip(f) ≤ 1,

|g(z2)− g(z1)| = |(z2 + g(z2)− (z1 + g(z1))− (z2 − z1)|
= |(x2 + f(x2)− (x1 + f(x1))− (φ(x2)− φ(x1)|
≤ |f(x2)− f(x1)|+ |(x2 − φ(x2))− (x1 − φ(x1))|
≤ |x2 − x1|+ |U\(f(x1)− f(x2)) + U⊥\ (x2 − x1)|

Rem. 2.1
≤ |x2 − x1|+<)(U, V )(|f(x1)− f(x2)|+ |x2 − x1|)
(19)

≤ 1 + 2ϑ

1− 2ϑ
|z2 − z1| .

With TpΣ = (Id +Df(x))(V ) for p := x+ f(x) ∈ Σ we obtain for any v ∈ V,
v 6= 0,∣∣∣∣V ⊥\ ( v +Df(x)v

|v +Df(x)v|

)∣∣∣∣2 =
|Df(x)v|2

|v|2 + |Df(x)v|2
≤ ‖Df‖2∞|v|2

|v|2 + ‖Df‖2∞|v|2
≤ 1

2
,

since ‖Df‖∞ = Lip(f) ≤ 1, and by the fact that for c > 0 the function ξ 7→
ξ/(c+ ξ) is non-decreasing on [0,∞). Thus, according to Remark 2.1,

(21) <)(TpΣ
⊥, V ⊥) = <)(TpΣ, V ) ≤ 1√

2
< 1,

which implies

(22) <)(TpΣ
⊥, U⊥) = <)(TpΣ, U) ≤ <)(TpΣ, V ) +<)(V,U) ≤ 1√

2
+ ϑ < 1.
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Consequently, the oblique projections Fp : Rn → X := TpΣ along V ⊥ with
kerFp = V ⊥, and Gp : Rn → X along U⊥ with kerGp = U⊥ are well-defined,
and satisfy ‖Fp‖ = maxe∈S |Fp(e)| ≤

√
2 < 2, and ‖Gp‖ < 2, which can be

seen as follows. Assume without loss of generality ‖Fp‖ > 0. Since

|Fp(e)|2 = |Fp(V\(e)) + Fp(V
⊥
\ (e))|2(23)

= |Fp(V\(e))|2 < ‖Fp‖2
(
|V\(e)|2 + |V ⊥\ (e)|2

)
= ‖Fp‖,

if V ⊥\ (e) 6= 0. But S = Sn−1 is compact, so that there exists e∗ ∈ S (not

necessarily unique) with ‖Fp‖2 = |Fp(e∗)|2, which then necessarily means
that V ⊥\ (e∗) = 0, i.e., e∗ ∈ S ∩ V. For any such e∗ we can write

|Fp(e∗)|2 = |e∗ + Fp(e
∗)− e∗|2 (13)

= 1 + |Fp(e∗)− e∗|2 = 1 + |V ⊥\ (Fp(e
∗))|2,

since Fp(e
∗)− e∗ ∈ V ⊥ and e∗ ∈ V ; see (13). Now, with

|V ⊥\ (Fp(e
∗))| ≤ <)(V,X)|Fp(e∗)|

(21)

≤ 1√
2
|Fp(e∗)|

one finds |Fp(e∗)|2 ≤ 1 + 1
2 |Fp(e

∗)|2, which immediately gives

‖Fp‖ = |Fp(e∗)| ≤
√

2.

A similar argument for Gp using (22) instead of (21) leads to ‖Gp‖2 ≤
1 + ((1/

√
2) + ϑ)2‖Gp‖2, and hence

‖Gp‖ ≤
1√

1− ((1/
√

2) + ϑ)2

<
1√

1− ((1/
√

2) + (1/100))2

< 2.

For z1, z2 ∈ U and pi := zi + g(zi), i = 1, 2, let x1, x2 ∈ V be those unique
points with pi = xi + f(xi) for i = 1, 2. With TpiΣ = (Id +Df(xi))(V ) =
(Id +Dg(zi))(U), and Df(xi)(V ) ⊂ V ⊥, Dg(zi)(U) ⊂ U⊥ for i = 1, 2, one
obtains for v ∈ V and u ∈ U

v +Df(xi)v , u+Dg(zi)u ∈ TpiΣ for i = 1, 2,

which implies v +Df(xi)v = Fpi(v) and u+Dg(zi)u = Gpi(u) for i = 1, 2.
Thus, it suffices to estimate

‖Dg(z1)−Dg(z2)‖ = sup
e∈U∩S

|(Gp1 −Gp2)(e)|.
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Figure 2: A unit vector e ∈ U ∩ S and its corresponding ae, be, ce and āe.

For any given unit vector e ∈ U ∩ S, we set

ae = Fp1e− Fp2e ∈ V ⊥ , be = Gp1e−Gp2e ∈ U⊥ ,
ce = Fp1e−Gp1e ∈ Tp1Σ ,

and āe = Fp1(Gp1e)− Fp2(Gp1e) = Gp1e− Fp2(Gp1e) ∈ V ⊥ .

Since Fp1e ∈ e+ V ⊥, we have e+ V ⊥ = Fp1e+ V ⊥, which means that
Fp2(Fp1e) = Fp2e. In consequence we may write

|āe| ≤ |(Fp1 − Fp2)(Gp1e− Fp1e)|+ |Fp1(Fp1e)− Fp2(Fp1e)|(24)

≤ ‖Fp1 − Fp2‖|ce|+ |(Fp1 − Fp2)e| .

Recall that <)(U⊥, V ⊥) ≤ ϑ by assumption, and by (22) for p := p1 ∈ Σ that

<)(U⊥, Tp1Σ
⊥) = <)(U, Tp1Σ) ≤ 1√

2
+ ϑ <

3

4
,
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so that we can apply Proposition 2.4 to the subspaces X := V ⊥, Y :=
U⊥, Z := Tp1Σ, and to the points x := Fp1(e)− e ∈ V ⊥, and z := ce ∈ Tp1Σ
(hence z − x = −(Gp1(e)− e) ∈ U⊥) to arrive at

(25) |ce| ≤ 4ϑ|Fp1(e)− e| ≤ 4ϑ
(
‖Fp1‖+ |e|

)
< 12ϑ.

Combining (25) and (24) we get

|āe| < ‖Fp1 − Fp2‖(1 + 12ϑ) .

Observe that āe − be = Gp2(e)− Fp2
(
Gp1(e)

)
∈ Tp2Σ. Applying Prop. 2.4

to z := be − āe ∈ Tp2Σ =: Z, x := be ∈ U⊥ =: X (with z − x = −āe ∈ V ⊥ =:
Y , so that <)(X,Y ) = <)(U⊥, V ⊥) ≤ ϑ =: θ, and <)(Y, Z⊥) = <)(V, Tp2Σ) ≤
1/
√

2 =: λ < 3/4 by (21)) yields |be − āe| < 4ϑ|be|, and in consequence,
|Gp1(e)−Gp2(e)| = |be| ≤ |be − āe|+ |āe| ≤ 4ϑ|be|+ |āe|, i.e.,

|be| ≤ 1
1−4ϑ |āe| ≤

1+12ϑ
1−4ϑ ‖Fp1 − Fp2‖.

Since e ∈ U ∩ Sn−1 was arbitrary, we conclude

‖Dg(z1)−Dg(z2)‖ ≤ 1+12ϑ
1−4ϑ ‖Fp1 − Fp2‖ = 1+12ϑ

1−4ϑ ‖Df(x1)−Df(x2)‖ .(26)

At this point we know already that Σ = graph(f) = graph(g) and that

(27) Lip(g) ≤ 1 + 2ϑ

1− 2ϑ
.

Exchanging U with V and f with g, and using (27) (instead of Lip(f) ≤ 1)
in the derivation of (19) one shows

|(x2 − x1)− (z2 − z1)| ≤ ϑ
(

1 + 1+2θ
1−2θ

)
|z2 − z1| ≤ 3ϑ|z2 − z1| ,(28)

whenever xi = V\(pi), zi = U\(pi) and pi = zi + g(zi) ∈ Σ for i = 1, 2. Set s =
1

1+3ϑr. If v ∈ U , x = V\(v + g(v)), zi ∈ U ∩ B(v, s) and xi = V\(zi + g(zi))
for i = 1, 2, then |xi − x| ≤ (1 + 3ϑ)|zi − v| < (1 + 3ϑ)s = r by (28). Hence,
employing (26), (28), and our assumption on the oscillation of Df on V ∩
B(v, r) one obtains

‖Dg(z1)−Dg(z2)‖
(26)

≤ 1+12ϑ
1−4ϑ ‖Df(x1)−Df(x2)‖

≤ 1+12ϑ
1−4ϑ L|x1 − x2|α

(28)

≤ (1+12ϑ)(1+3ϑ)α

1−4ϑ L|z1 − z2|α ,

for all z1, z2 ∈ U ∩ B(v, 1
1+3ϑr). �
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Proof of Theorem 3. Applying Blaschke’s selection theorem (cf. [33]) to the
sequence (Σj)j contained in the class C 1,α

m,n(R,L, d) we obtain a subsequence
(still denoted by (Σj)j) that converges in the Hausdorff metric to a com-
pact set Σ0 ⊂ B(0, d) ⊂ Rn. Up to possibly choosing another subsequence we
can assume that dH(Σ0,Σj+1) ≤ 1

2dH(Σ0,Σj) for each j ∈ N∼{0}. Then, by
induction,

dH(Σ0,Σj+k) ≤ 2−kdH(Σ0,Σj)

and in consequence, by the triangle inequality,

dH(Σj ,Σj+k) ≥ (1− 2−k)dH(Σ0,Σj)(29)

for j, k ∈ N∼{0}.
We will prove in the first step that Σ0 ∈ C 1,α

m,n(R,L, d), that is, Σ0 sat-
isfies Definition 1, and then in the second step that the sequence (Σj)j∈N
converges to Σ0 in C 1,α

m,n, i.e., converges in the sense of Definition 2. Note
that condition (i) of Definition 1 for Σ0 and condition (i) of Definition 2
for (Σj)j∈N are automatically satisfied.

Step 1: Σ0 ∈ C 1,α
m,n(R,L, d). The convergence of the Σj in the Hausdorff

metric implies that there is an index j0 ∈ N such that

dH(Σj ,Σl) < min
{

2−10R2 , L−2/α , 1
}
∀j, l ≥ j0 .(30)

Fix a point in the limit set x0 ∈ Σ0. Choose points xj ∈ Σj which realise the
distance from x0, i.e.

|x0 − xj | = dist(x0,Σj) ≤ dH(Σ0,Σj) for j ∈ N.(31)

Then xj → x0 as j →∞ and

|xj − xj+k| ≤ |xj − x0|+ |x0 − xj+k|(32)

(31)

≤ 2dH(Σ0,Σj)

(29)

≤ 4dH(Σj ,Σj+k) for all j, k ≥ 1.

Recalling (30), we may apply Lemma 3.1 with A := 4 to deduce, for the
above xj ∈ Σj and xl ∈ Σl with j, l ≥ j0, the angle estimate

(33) <)(TxjΣj , TxlΣl) ≤ Cang(L, 4)dH(Σj ,Σl)
α/2 .
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Consequently, (TxjΣj)j is a Cauchy sequence in G(n,m) that converges to
some T ∈ G(n,m), i.e.,

(34) ϑj := <)(TxjΣj , T )→ 0 as j →∞ .

Recall that by Definition 1 we find for each j ∈ N a function fj ∈
C1,α(TxjΣj , TxjΣ

⊥
j ) with fj(0) = 0, Dfj(0) = 0, such that

(35) Σj ∩ B(xj , R) = (xj + graph(fj)) ∩ B(xj , R),

with the uniform estimates Lip(fj) ≤ 1 and ‖Dfj(x)−Dfj(y)‖ ≤ L|x− y|α
for all x, y ∈ TxjΣj . We can assume by (33) that ϑj ∈ (0, 1/100) for all j ≥ j0,
so that Lemma 3.2 applied to the radius r =∞ leads to functions gj ∈
C1,α(T, T⊥) such that graph(fj) = graph(gj), gj(0) = 0 and

(36) ‖Dgj(ξ)−Dgj(η)‖ ≤ Lj |ξ − η|α for all ξ, η ∈ T and j ≥ j0,

where Lj := Lgj (L, ϑj , α)→ L as j →∞. Moreover,
(37)

Lip(gj) ≤
1 + 2ϑj
1− 2ϑj

→ 1 on T , and ‖Dgj(0)‖2 ≤
ϑ2
j

1− ϑ2
j

→ 0 as j →∞.

In addition, (35) translates into

(38) Σj ∩ B(xj , R) = (xj + graph(gj)) ∩ B(xj , R) for all j ≥ j0.

Because of the uniform estimates (36) and (37) we can repeatedly ap-
ply Arzela-Ascoli’s theorem to successively choose subsequences (ji+1)i+1 ⊂
(ji)i for i ∈ N, such that gji converges in C1 to a function Gi ∈ C1,α(T ∩
B(0, i), T⊥) with Gi(0) = 0, such that

(39) ‖DGi(ξ)−DGi(η)‖ ≤ L|ξ − η|α for all ξ, η ∈ T ∩ B(0, i),

and with

(40) Lip(Gi) ≤ 1 on T ∩ B(0, i) and DGi(0) = 0.

In addition, one has Gi+1|B(0,i) = Gi for all i ∈ N. Then the diagonal se-

quence gjj converges in C1
loc(T, T

⊥) to some limit function G ∈ C1,α(T, T⊥)
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satisfying G(0) = 0, DG(0) = 0, Lip(G) ≤ 1 on T , and the estimate

(41) ‖DG(ξ)−DG(η)‖ ≤ L|ξ − η|α for all ξ, η ∈ T.

Applying (38) to the diagonal sequence (gjj )jj ⊂ (gj)j combined with (31)
one finds

(42) Σ0 ∩ B(x0, R) = (x0 + graph(G)) ∩ B(x0, R),

which concludes Step 1 since Σ0 is represented near the arbitrarily chosen
point x0 ∈ Σ0 as a graph of the C1,α function G : T → T⊥ satisfying all the
requirements in Definition 1 observing, in addition, that since x 7→ x0 + x+
G(x) parameterises Σ0 locally near x0 one has Tx0

Σ0 = (Id +DG(0))(T ) =
T since DG(0) = 0, which a posteriori shows that the m-plane T does not
depend on the sequence xj → x0.

Step 2: Σj converges in C 1,α
m,n to Σ0. It suffices to check condition (iii)

of Definition 2. Let j2 ∈ N, j2 ≥ 200 be such that

dH(Σj ,Σ0) < min
{

2−10R2, L−2/α, 2−8R,
(
2−7Cang(L, 4)−1

)2/α
, 2−8

}
(43)

for j ≥ j2 .

Fix x ∈ Σ0 and set T = TxΣ0. As before for each j ∈ N find xj ∈ Σj such that
|x− xj | = dist(x,Σj) ≤ dH(Σ0,Σj) and let fj : TxjΣj → TxjΣ

⊥
j and f0 :=

fx : T → T⊥ be the functions whose existence is guaranteed by condition (ii)
of Definition 1. According to Lemma 3.1 (generously for A = 4), we get
by (43)

<)(TxΣ0, TxjΣj) ≤ Cang(L, 4)dH(Σ0,Σj)
α/2

(43)
< 2−7 < 1

100 for j ≥ j2.(44)

An application of Lemma 3.2 yields now functions gj ∈ C1,α(T, T⊥) such
that graph(gj) = graph(fj) and Lip(gj) ≤ 51

49 < 2 for each j ≥ j2, or j = 0
where g0 = f0. Set hj(η) = gj(η − T\(xj − x)) + T⊥\ (xj − x) for η ∈ T and
j ≥ j2, and for j = 0 we have h0 = g0 = f0, so that xj + graph(gj) = x+
graph(hj) and consequently, recalling (43),

Σj ∩ B(x, (1− 2−8)R) = (x+ graph(hj)) ∩ B(x, (1− 2−8)R)(45)

for j ≥ j2 or j = 0.

Set ρ := min{ 1
12R,

1
2(2−7/L)1/α} and note that

{x+ η + hj(η) : η ∈ T ∩ B(0, 3ρ)} ⊆ Σj for j ≥ j2 or j = 0,(46)
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because Lip(gj) = Lip(hj) < 2. Let η ∈ T ∩ B(0, 2ρ), j ∈ N, j ≥ j2 and set
p := x+ η + h0(η) ∈ Σ0 and q := x+ η + hj(η) ∈ Σj . There exists z ∈ Σj

with |z − p| ≤ dH(Σ0,Σj). By (43) we have dH(Σ0,Σj) < ρ, and if we write
z = x+ ξ + hj(ξ), then η − ξ = T\(p− x)− T\(z − x) so that |η − ξ| ≤ |z −
p| ≤ dH(Σ0,Σj), and therefore ξ ∈ T ∩ B(0, 3ρ). Since Lip(hj) < 2 we obtain

|h0(η)− hj(η)| = |p− q| ≤ |p− z|+ |z − q|(47)

≤ dH(Σ0,Σj) + |η − ξ|+ |hj(η)− hj(ξ)|
< 4dH(Σ0,Σj) .

We already know that Σ0 ∈ C 1,α
m,n(R,L, d) so employing Lemma 3.1 for A =

4, we get

<)(TpΣ0, TqΣj) ≤ Cang(L, 4)dH(Σ0,Σj)
α/2 for j ≥ j2 or j = 0.(48)

Apply [2, 8.9(5)] with η1 := Dhj(η), η2 := Dh0(η), S1 := TqΣj , S2 := TpΣ0,
and S := T to obtain, recalling (44) and Lip(h0) = Lip(f0) ≤ 1,

‖Dhj(η)−Dh0(η)‖2 ≤ <)(TqΣj , TpΣ0)2

1−<)(TqΣj , T )2

(
1 + ‖Dh0(η)‖2

)
(49)

≤ 2

1−<)(TqΣj , T )2
Cang(L, 4)2dH(Σj ,Σ0)α .

To analyze the term in the denominator we estimate using (48) and (43)

<)(TqΣj , T ) ≤ <)(TqΣj , TpΣ0) +<)(TpΣ0, T )
(48),(43)

≤ 2−7 +<)(TpΣ0, T ).

For the last summand we again use [2, 8.9(5)], this time for S := T , η1 :=
Dh0(η), S1 := TpΣ0 = (Id + η1)(T ), η2 := 0, and S2 := (Id + η2)(T ) = T , to
deduce by virtue of Dh0(0) = Df0(0) = 0 the angle estimate

<)(TpΣ0, T ) ≤ ‖Dh0(η)‖ ≤ L|η|α
(43)

≤ 2−7

by our choice of ρ. Therefore we can insert the resulting estimate <)(TqΣj , T )2

≤ 2−12 into (49) to obtain

(50) ‖Dhj(η)−Dh0(η)‖2 ≤ 3Cang(L, 4)2dH(Σj ,Σ0)α.

Since η ∈ T ∩ B(0, 2ρ) and j ≥ j2 were chosen arbitrarily, the estimates
(47) and (50) hold for any η ∈ T ∩ B(0, 2ρ) and j ≥ j2. Fix a smooth cut-
off function ϕ : T → R such that ϕ(η) = 1 for η ∈ T ∩ B(0, ρ) and ϕ(η) = 0
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for η ∈ T ∼B(0, 2ρ). For j ≥ j2 and for j = 0 define fx,j ∈ C1,α(T, T⊥) by
fx,j(η) := hj(η)ϕ(η) for η ∈ T ∩ B(0, 2ρ) and fx,j(η) = 0 for η ∈ T ∼B(0, 2ρ).
Estimates (47) and (50) show that the sequence (fx,j)j∈N converges in
C1(T, T⊥) to the function fx,0. Since the limit function fx,0 = ϕh0 is of class
C1,α, it follows that (fx,j)j∈N actually converges in C1,α′ for any α′ ∈ (0, α).
Moreover, by (45) and (46) one sees that

Σj ∩ B(x, ρ) = (x+ graph(fx,j)) ∩ B(x, ρ) for j ≥ j2 or j = 0.

Therefore, (Σj)j∈N satisfies condition (iii) of Definition 2 and the proof is
complete. �

4. Isotopies, tubular neighbourhoods and diffeomorphisms

To prove Theorem 4 we proceed as in [22, Chapter 4, Section 5].
We assign to each V ∈ G(n, n−m) an orthogonal projection V\ ∈

Hom(Rn,Rn) onto V . By [17, 3.1.19(2)] the set

G = {P ∈ Hom(Rn,Rn) : P ◦ P = P, P ∗ = P, traceP = n−m}

is a C∞-submanifold of Rn2

, and the mapping V 7→ V\ is a C∞-diffeo-
morphism and an isometry.

Definition 4.1. Let Σ ⊂ Rn be an m-dimensional C1-submanifold of Rn
and ε > 0. A map Φ : Σ→ G is called an ε-normal map for Σ if Φ is C1-
smooth, Lip(Φ) <∞ and if

‖Φ(x)− (TxΣ)⊥\ ‖ ≤ ε ∀x ∈ Σ .

Lemma 4.2 (nearly normal spaces of class C1). Let L,R, d > 0, α ∈
(0, 1], and Σ ∈ C 1,α

m,n(R,L, d). Then there exists a constant

C = C(L,R, α,m, n) ≥ 1

such that for each ε ∈ (0, 1] there is an ε-normal map Φε[Σ] : Σ→ G for Σ
satisfying, in addition, Lip(Φε[Σ]) ≤ Cε−1/α.

Remark. A similar statement for smooth manifolds (including the C1-
case) can be found in [44, Thm. 10A, p.121], but for the convenience of the
reader, and to emphasise how the constants depend quantitatively on the
parameters determining the class C 1,α

m,n(R,L, d) we provide the full argument
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here. We are going to construct Φε[Σ] simply by mollifying the map x 7→
(TxΣ)\. Note that since Σ is embedded we do not need to use the center of
mass tool known from Riemannian geometry, which was used in [8].

Proof. For Φ0 : Σ→ G given by Φ0(x) := (TxΣ⊥)\ for x ∈ Σ, we first prove
a simple Hölder estimate as follows. For x, y ∈ Σ we find

‖Φ0(x)− Φ0(y)‖ = ‖(TxΣ)⊥\ − (TyΣ)⊥\ ‖ ≤
2|x− y|α

min{Rα, (L
√

2)−1}
(51)

if |x− y|α ≥ min{Rα, (L
√

2)−1}. If not, then y ∈ B(x,R) so that we can use
the local graph representation

Σ ∩ B(x,R) = (x+ graph(f)) ∩ B(x,R)

to express the point y as y = x+ ξ + f(ξ) for some ξ ∈ TxΣ and the function
f := fx ∈ C1,α(TxΣ, TxΣ⊥) with f(0) = 0, Df(0) = 0, Lip(f) ≤ 1, and the
Hölder estimate on Df as in Definition 1. In other words, the mapping
F (ξ) := x+ ξ + f(ξ) for ξ ∈ TxΣ parameterises Σ over the tangent plane
TxΣ locally near x, so that its differential DF (ξ) : TxΣ→ TyΣ can be used
to estimate for an orthonormal basis {e1, . . . , em} of TxΣ

dist(ei, TyΣ) ≤ |ei −DF (ξ)ei| = |ei − (Id +Df(ξ))ei|
≤ ‖Df(ξ)−Df(0)‖ ≤ L|ξ|α ≤ L|(x+ ξ + f(ξ))− x|α

= L|y − x|α ∀i = 1, . . . ,m,

where we also used that f(ξ) ⊥ ξ by definition of f . Since |y − x|α <
min{Rα, (L

√
2)−1} ≤ (L

√
2)−1 in the present case, we can apply a quan-

titative linear algebra estimate [25, Prop. 2.5] to find a constant C = C(m)
such that

‖Φ0(x)− Φ0(y)‖ = <)(TxΣ, TyΣ) ≤ C(m)L|x− y|α.

Combining both cases leads to the desired Hölder estimate for Φ0 with
Hölder constant

C0 = C0(L,R, α,m) := max

{
2

min{(L
√

2)−1, Rα}
, C(m)L

}
.

Notice that the constant C0 does not depend on R or α if Rα ≥ (L
√

2)−1.
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Choosing an orthonormal coordinate system in Rn we can represent Φ0

as an (n× n)-matrix of functions (Φij
0 )ni,j=1 and extend each Φij

0 to all of Rn
by setting

Φij
1 (x) = inf

z∈Σ
{Φi,j

0 (z) + C0|z − x|α}

preserving the same Hölder exponent α and Hölder constant C0 for each
i, j = 1, . . . , n (cf. for the proof of [15, Theorem 1, p.80] which carries over
to all α ∈ (0, 1]). The matrix (Φij

1 )ni,j=1 represents the Hölder continuous
mapping Φ1 : Rn → Hom(Rn,Rn) with Φ1|Σ = Φ0 and the estimate

‖Φ1(x)− Φ1(y)‖ ≤ C1|x− y|α ∀x, y ∈ Rn ,(52)

where C1 = C1(L,R, α,m, n) := nC0(L,R, α,m). Now let φ ∈ C∞0 (B(0, 1))
with φ(x) = 1 for all x ∈ B(0, 1/2)), 0 ≤ φ(x) ≤ 1 and |∇φ(x)| ≤ 4 for all
x ∈ B(0, 1), and

∫
Rn φ(x) dx = 1, and consider for r > 0 the usual scaling

φr(x) := r−nφ(x/r) to define the convolution Φ2,r : Rn → Hom(Rn,Rn) as

Φ2,r(x) = φr ∗ Φ1(x) =

∫
Rn
φr(x− z)Φ1(z) dz .

Since

‖Φ1(z)‖ ≤ ‖Φ1(x)‖+ C1|x− z|α

= ‖Φ0(x)‖+ C1|x− z|α ≤ 1 + C1r
α ≤ 1 + 2C1

for all x ∈ Σ, z ∈ B(x, r), r ∈ (0, 2], we find

(53) ‖Φ1(·)‖ ≤ 1 + 2C1 on Σ + B(0, 2),

where the constant on the right-hand side depends on L,R, α,m, and n.
Therefore, we can estimate for x, y ∈ Σ + B(0, 1), e ∈ Sn−1, r ∈ (0, 1),

|Φ2,r(x)e| =
∣∣∣∣∫

Rn
φr(x− z)Φ1(z)e dz

∣∣∣∣(54)

≤
∫
B(x,r)

‖Φ1(z)‖φr(x− z) dz ≤ 1 + 2C1,

because dist(z,Σ) ≤ |z − x|+ 1 < 2 for all z ∈ B(x, r), whence

(55) ‖Φ2,r(x)− Φ2,r(y)‖ ≤ 2(1 + 2C1) ≤ 2(1 + 2C1)
|x− y|
r
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for all x, y ∈ Σ + B(0, 1) with |x− y| ≥ r, r ∈ (0, 1). On the other hand, for
x, y ∈ B(0, 1) + Σ with |x− y| < r and for e ∈ Sn−1 one estimates

∣∣(Φ2,r(x)− Φ2,r(y)
)
e
∣∣(56)

=

∣∣∣∣∫ 1

0
∇Φ2,r(tx+ (1− t)y) · (x− y)e dt

∣∣∣∣
≤ 1

rn+1

∫ 1

0

∫
B(tx+(1−t)y),r)

∣∣∇φ( tx+(1−t)y−z
r

)∣∣‖Φ1(z)‖ dzdt|x− y|.

Since dist(tx+ (1− t)y,Σ) ≤ dist(x,Σ) + (1− t)|x− y| for all t ∈ [1/2, 1]
and dist(tx+ (1− t)y,Σ) ≤ dist(y,Σ) + t|x− y| for all t ∈ [0, 1/2] we find
dist(tx+(1−t)y,Σ) < 1+r/2 for all t ∈ [0, 1]; hence dist(z,Σ) < 1+3r/2 <
2 for all z ∈ B(tx+ (1− t)y, r), r ∈ (0, 2/3), which implies ‖Φ1(z)‖ ≤ 1 +
2C1 for such z by virtue of (53), which inserted in (56) gives

‖Φ2,r(x)− Φ2,r(y)‖ ≤ 4(1 + 2C1)
ωn
r
|x− y| ≤ 24(1 + 2C1)

|x− y|
r

(57)

=: C2(L,R, α,m, n)
|x− y|
r

for all x, y ∈ Σ + B(0, 1) and r ∈ (0, 2/3). (We have used that the volume ωn
of the n-dimensional unit ball is at most 6 for all n = 1, 2, . . .)

Furthermore, for x ∈ Σ,

Φ0(x)− Φ2,r(x) =

∫
Rn

(
Φ0(x)− Φ1(z)

)
φr(x− z) dz

=

∫
B(x,r)

(
Φ1(x)− Φ1(z)

)
φr(x− z) dz,

since Φ1|Σ = Φ0, so that by (52)

‖Φ0(x)− Φ2,r(x)‖ ≤ C1

∫
B(x,r)

|x− z|αφr(x− z) dz(58)

≤ C1r
α < C2r

α ∀x ∈ Σ, r > 0.

Since G is a C∞-submanifold of Hom(Rn,Rn) ' Rn2

, it has positive reach
rG = rG(m,n) > 0 in the sense of Federer [16, Definition 4.1] such that the
nearest point projection PG : G + B(0, rG)→ G is C∞-smooth; see, e.g., [18,
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Lemma, p. 153]3. In addition, for any δ ∈ (0, rG/2] it follows from [16, The-
orem 4.8(8)] that PG has Lipschitz constant Lip(PG) ≤ 2 on G + B(0, δ).

According to (58) the map Φ3,r := PG ◦ Φ2,r|Σ maps Σ into G if C2r
α ≤

rG/2. Now choose for a given ε ∈ (0, 1] first

(59) δ0 = δ0(L,R, α,m, n) := min{rG , (2/3)αC2, 1},

and then rε := (δ0/(2C2))1/αε1/α ∈ (0, 2/3). Then Φε[Σ] := Φ3,rε : Σ→ G as
a composition of C1-maps is also of class C1, and according to (57) with
Lipschitz constant

Lip(Φε[Σ]) ≤ Lip(PG)C2/rε(60)

≤ (2C2)1+(1/α)(δ0ε)
−1/α =: C(L,R, α,m, n)ε−1/α

Finally, Φε[Σ] is an ε-normal map for Σ, since by (58)

‖Φε[Σ](x)− (TxΣ)⊥\ ‖ = ‖PG ◦ Φ2,rε(x)− PG ◦ Φ0(x)‖

≤ Lip(PG)‖Φ2,rε(x)− Φ0(x)‖
(58)
< 2C2r

α
ε ≤ ε.

�

Remark 4.3. An inspection of the proof yields C0 ≤ C(m)L+ 2R−α ≤
c(m,n, l, p)(L+ 1), α = 1− p0(E)/p, whenever R,L are given by (10) for an
energy threshold E ≥ E(Σ) for a particular energy E ∈ {E lp, Tp, T Gp }. This

gives C2 ≤ c(m,n, l, p)(E1/p + 1). Assuming w.l.o.g. that C2 ≥ 3
2 , we obtain

δ0 in (59) unrelated to C2, and finally, for a fixed ε ∈ (0, 1
100) and α = α(p) =

1− p0(E)/p,

Lip(Φε[Σ]) ≤ c(m,n, l, p)(E1/p + 1)1+(1/α)δ
−1/α
0 , where δ0 = min{rG , 1}.

Definition 4.4. Let R,L, d > 0, and α ∈ (0, 1], Σ ∈ C 1,α
m,n(R,L, d), and for

some ε ∈ (0, 1/100) let Φ : Σ→ G be an ε-normal map for Σ. For δ > 0 define
the δ-normal neighbourhood

Nδ(Σ,Φ) := {(x, v) ∈ Σ× Rn : Φ(x)v = v, |v| < δ}
and the map Ψδ[Σ,Φ] : Nδ(Σ,Φ)→ Rn , Ψδ[Σ,Φ](x, v) := x+ v .

3Formally, Foote [18, Lemma, p. 153] mentions only a neighbourhood of the man-
ifold M . However, this neighbourhood is defined via an application of the inverse
function theorem, which — in light of Federer [16, Theorem 4.8(13)] — is possible
on the whole G + B(0, rG).
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Lemma 4.5 (tubular neighbourhoods for C1,α manifolds). Assume
R,L, d > 0, α ∈ (0, 1], and let Σ ∈ C 1,α

m,n(R,L, d), and for ε ∈ (0, 1/100) let
Φ : Σ→ G be an ε-normal map for Σ. Then there is a constant δtub =
δtub(R,L, α, ε,Lip(Φ)) > 0 such that for all δ ∈ (0, δtub]

(i) Ψ = Ψδ[Σ,Φ] is a C1-embedding,

(ii) (1/4)|(x− y, u− v)| ≤ |Ψ(x, u)−Ψ(y, v)| ≤
√

2|(x− y, u− v)| for all
(x, u), (y, v) ∈ Nδ(Σ,Φ),

(iii) dist(Ψ(x, v),Σ) > 1
4 |v| for all (x, v) ∈ Nδ(Σ,Φ), v 6= 0,

(iv) Σ + B(0, δ/2) ⊂ Ψδ[Σ,Φ](Nδ(Σ,Φ)).

Proof. For any δ > 0 the mapping Ψ = Ψδ[Σ,Φ] is the restriction of the
smooth function

Rn × Rn 3 (x, v) 7→ x+ v ∈ Rn

to the C1-submanifold

N := Nδ(Σ,Φ)) =
⋃
x∈Σ

[
{x} ×

(
ker (Φ(x)− Id) ∩ B(0, δ)

)]
;

hence Ψ is of class C1. To show that Ψ is an embedding it suffices to prove
that it is bilipschitz, i.e., that (ii) holds, for sufficiently small δ. For any
(x, u), (y, v) ∈ N one has

|Ψ(x, u)−Ψ(y, v)| = |(x− y) + (u− v)| ≤
√

2|(x− y, u− v)| ,(61)

and therefore it is enough to prove the estimate from below in (ii). Set

δtub := min

{
R

4
,
1

4

( ε
L

)1/α
,

ε

4 Lip(Φ)
, 1

}
.(62)

Assume 0 < δ ≤ δtub. For (x, u), (y, v) ∈ N define the subspaces U := im Φ(x)
and V := im Φ(y) and observe that if |x− y| ≥ 4δ then, on the one hand,

|Ψ(x, u)−Ψ(y, v)| ≥ |x− y| − |u| − |v| ≥ |x− y| − 2δ ≥ |x− y|/2,

and, on the other hand,

|(x− y, u− v)| ≤ |x− y|+ |u− v| ≤ |x− y|+ 2δ ≤ 3
2 |x− y|,
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so that

|Ψ(x, u)−Ψ(y, v)| ≥ 1

3
|(x− y, u− v)| .(63)

Thus we have to treat the case |x− y| < 4δ. Since Σ ∈ C 1,α
m,n(R,L, d) and

|x− y| < 4δ ≤ R, we can use the local graph representation

Σ ∩ B(x,R) = (x+ graph(fx)) ∩ B(x,R)

for a function f := fx ∈ C1,α(TxΣ, TxΣ⊥) satisfying f(0) = 0, Df(0) = 0,
Lip(f) ≤ 1, and the Hölder estimate for Df as in Definition 1, to find for
y = x+ η + f(η) ∈ x+ graph(f), η ∈ TxΣ, by means of (14)

dist(y, x+ TxΣ) = |f(η)|
(14)

≤ L|η|1+α ≤ L|x− y|1+α ≤ L(4δ)α|x− y|,

so that we obtain by our choice of δtub in (62)

|(TxΣ⊥)\(y − x)| = dist(y, x+ TxΣ)
(62)

≤ ε|x− y| .(64)

Using this estimate together with the fact that Φ is an ε-normal map for Σ
we can write

|U⊥\ (x− y)| ≥ |(TxΣ)\(x− y)| − ‖U⊥\ − (TxΣ)\‖|x− y|(65)

≥ (1− ε)|x− y| − ‖Φ(x)− (TxΣ)⊥\ ‖|x− y|
≥ (1− 2ε)|x− y| ,

which implies by means of |U\(x− y)|2 = |x− y|2 − |U⊥\ (x− y)|2 the in-

equality |U\(x− y)|2 ≤
(
1− (1− 2ε)2

)
|x− y|2 ; hence,

(66) |U\(x− y)| ≤ 2
√
ε|x− y|.

Recall our choice of δtub in (62) to estimate for u = Φ(x)u ∈ U ∩ B(0, δ) and
v = Φ(y)v ∈ V ∩ B(0, δ)

|U⊥\ (u− v)| = |U⊥\ v| = |(U\ − V\)v|(67)

≤ |v|‖Φ(x)− Φ(y)‖ ≤ δ Lip(Φ)|x− y|
(62)

≤ ε|x− y| ,

so that

|U\(u− v)| = |(Id− U⊥\ )(u− v)| ≥ |u− v| − ε|x− y| .(68)
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1286 S. Kolasiński, P. Strzelecki, and H. von der Mosel

Combining (65), (66), (67), (68) with the triangle inequality, we arrive at

|Ψ(x, u)−Ψ(y, v)| = |(U⊥\ + U\)
(
(x− y) + (u− v)

)
|

≥ |U⊥\ (x− y) + U\(u− v)| − |U\(x− y)| − |U⊥\ (u− v)|
(66),(67)

≥ 1√
2

(
|U⊥\ (x− y)|+ |U\(u− v)|

)
− (2
√
ε+ ε)|x− y|

(68),(65)

≥
(

1√
2

(1− 3ε)− 2
√
ε− ε

)
|x− y|+ 1√

2
|u− v|

≥ 1

4
|(x− y, u− v)| ,(69)

since ε ∈ (0, 1/100). So, part (ii) of Lemma 4.5 follows from (61), (63), and
(69), which — as observed above — implies part (i) as well.

We now turn to the proof of part (iii). For (x, v) ∈ Nδ(Σ,Φ) with v 6= 0,
denote u := (TxΣ)⊥\ v and note that by definition of N and the fact that Φ
is an ε-normal map for Σ,

(70) |u− v| =
∣∣(TxΣ)⊥\ − Φ(x)

)
v
∣∣ ≤ ‖(TxΣ)⊥\ − Φ(x)‖|v| < ε|v|.

Since Σ ∈ C 1,α
m,n(R,L, d), we find for any y ∈ Σ with |y − x| < 4δtub

(62)

≤ R as
in (64)

dist(y, x+ TxΣ) ≤ L|y − x|1+α ≤ ε|y − x| .(71)

On the other hand, if y ∈ B(x+ u, 1
2 |v|), then

|y − x| ≤ |y − (x+ u)|+ |u| ≤ 1
2 |v|+

∣∣(TxΣ
)⊥
\
v
∣∣ ≤ 3

2 |v|,(72)

and by (70)

dist(y, x+ TxΣ) =
∣∣(TxΣ

)⊥
\

(y − x)
∣∣(73)

≥
∣∣(TxΣ

)⊥
\
u
∣∣− ∣∣(TxΣ

)⊥
\

(y − (x+ u))|

= |u| −
∣∣(TxΣ

)⊥
\

(y − (x+ u))
∣∣

(70)

≥ |v| − |u− v| − |y − (x+ u)| ≥
(

1
2 − ε

)
|v| .
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Combining (71), (72) and (73) would yield for y ∈ Σ ∩ B(x+ u, 1
2 |v|) ∩

B(x, 4δtub)

(
1
2 − ε

)
|v|

(73)

≤ |TxΣ⊥\ (y − x)| = dist(y, x+ TxΣ)
(71)

≤ ε|y − x|
(72)

≤ 3
2ε|v|

contradicting ε∈(0, 1/100) because |v| 6=0. Since B(x+u, 1
2 |v|)⊂B(x, 4δtub)

because |u| ≤ |v| < δ < δtub, this can only mean that B(x+ u, 1
2 |v|) ∩ Σ = ∅,

which implies by (70)

dist(Ψ(x, v),Σ) ≥ dist(x+ u,Σ)− |u− v|

≥ 1
2 |v| − |u− v|

(70)

≥
(

1
2 − ε

)
|v| > 1

4 |v| .

Finally we prove part (iv). For x ∈ Σ ∈ C 1,α
m,n(R,L, d) there exists a function

f = fx ∈ C1,α(TxΣ, TxΣ⊥) with f(0) = 0, Df(0) = 0, Lip(f) ≤ 1, and the
Hölder condition for Df in Definition 1, such that by (62)

B(x, 4δtub) ∩ Σ = (x+ graph(f)) ∩ B(x, 4δtub).

For any ξ ∈ TxΣ ∩ B(0, 4δtub) one can use (14) and (62) to estimate

|f(ξ)|
(14)

≤ L|ξ|1+α ≤ L(4δtub)
α|ξ| ≤ ε|ξ| .(74)

Again by (62) in combination with Definition 4.1 we have for ζ ∈ B(x, 4δtub)
∩ Σ

‖Φ(ζ)−
(
TxΣ

)⊥
\
‖ ≤ ‖Φ(ζ)− Φ(x)‖+ ‖Φ(x)−

(
TxΣ

)⊥
\
‖(75)

< Lip(Φ)4δtub + ε ≤ 2ε .

For fixed δ ∈ (0, δtub] consider the C1-functions

ψ : B(0, δ)→ Σ given by ψ(w) := x+ (TxΣ)\w + f
(
(TxΣ)\w

)
,

F : B(0, δ)→ Nδ(Σ,Φ) defined by F (z) :=
(
ψ(z),Φ(ψ(z))

(
TxΣ

)⊥
\
z
)
,

and G =
(
Ψδ[Σ,Φ] ◦ F

)
− x : B(0, δ)→ Rn .
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Employing (74) and (75) we obtain for z ∈ B(0, δ)

|G(z)− z| = |ψ(z) + Φ(ψ(z))(TxΣ)⊥\ z − x− (TxΣ)\z − (TxΣ)⊥\ z|
≤ |ψ(z)− (TxΣ)\z − x|+ |Φ(ψ(z))(TxΣ)⊥\ z − (TxΣ)⊥\ z|
≤ |f

(
(TxΣ)\z

)
|+ ‖Φ(ψ(z))− (TxΣ)⊥\ ‖|(TxΣ)⊥\ z|

(74),(75)

≤ ε|(TxΣ)\z|+ 2ε|(TxΣ)⊥\ z| ≤ 2
√

2ε|z| < 2
√

2εδ,

so that we can apply Proposition 2.5 to get

B(0, δ/2) ⊂ B(0, (1− 2
√

2ε)δ) ⊂ G(B(0, δ)) = Ψδ[Σ,Φ](F (B(0, δ)))− x;

hence

x+ B(0, δ/2) ⊂ Ψδ[Σ,Φ](F (B(0, δ))) ⊂ Ψδ[Σ,Φ](Nδ(Σ,Φ)). �

Proposition 4.6. Let θ ∈ [0, 1], λ, γ ∈ [0, 1) and k ∈ {1, . . . , n− 1} and
suppose that W,T ∈ G(n, k) and U, V ∈ G(n, n− k) satisfy <)(W,T ) ≤ θ,
<)(T,U⊥) ≤ λ, <)(T, V ⊥) ≤ λ, and <)(U, V ) ≤ γ. Given any vectors w ∈W ,
t ∈ T , u ∈ U and v ∈ V such that u + t = w + v the following holds:(

|u| − θ
1−λ |w|

)(
1− γ

1−λ

)
≤ |v| ≤

(
|u|+ θ

1−λ |w|
)(

1 + γ
1−λ

)
(76)

and |u− v| ≤ γ
1−λ

(
|u|+ θ

1−λ |w|
)

+ θ
1−λ |w| .(77)

Proof. Let P : Rn → U be the oblique projection onto U with kerP = T and
set ū = P (u−w) ∈ U, so that

w + (ū− u) = w + (P (u−w)− u)

= w − Pw + Pu− u = w − Pw ∈ kerP = T.

Thus we can apply Proposition 2.4 to z := u− ū ∈ U =: Z and x := w ∈
W =: X (with Y := T implying <)(X,Y ) ≤ θ, <)(Y, Z⊥) ≤ λ, and z− x ∈ Y )
to obtain |ū− u| ≤ θ|w|/(1− λ) which directly leads to

|u| − θ

1− λ
|w| ≤ |u| − |ū− u| ≤ |ū| ≤ |u|+ |ū− u| ≤ |u|+ θ

1− λ
|w| .(78)

Applying Proposition 2.4 now to x := ū ∈ U =: X and to

z := ū− v = P (u−w)− v = u− v − Pw = w − t− Pw ∈ T =: Z
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Figure 3: The situation in Proposition 4.6: the vectors u−w and v − t are
equal.

(so that z− x = −v ∈ V =: Y, and hence <)(X,Y ) = <)(U, V ) ≤ γ and
<)(Y,Z⊥) = <)(V, T⊥) = <)(V ⊥, T ) ≤ λ) to arrive at |ū− v| ≤ γ|ū|/(1− λ),
and in consequence

|ū|
(
1− γ

1−λ
)
≤ |ū| − |ū− v| ≤ |v| ≤ |ū|+ |v − ū| ≤ |ū|

(
1 + γ

1−λ
)
.

This together with (78) gives the first part of the proposition. To get the
second we use (78) to write

|u− v| ≤ |ū− v|+ |ū− u|

≤ θ
1−λ |w|+

γ
1−λ |ū|

(78)

≤ θ
1−λ |w|+

γ
1−λ
(
|u|+ θ

1−λ |w|
)
.

�

Definition 4.7. For t ∈ R we define the continuous map

mt : Rn × Rn → Rn × Rn , mt(x, v) := (x, tv) .



i
i

“2-Kolasinski” — 2019/3/26 — 0:33 — page 1290 — #40 i
i

i
i

i
i

1290 S. Kolasiński, P. Strzelecki, and H. von der Mosel

Lemma 4.8 (bilipschitz diffeomorphisms). For R,L, d ∈ (0,∞), α ∈
(0, 1], ε ∈ (0, 10−2) let Σ1,Σ2 ∈ C 1,α

m,n(R,L, d) with ρ := dH(Σ1,Σ2) < δtub/8,
and with ε-normal map Φ1 : Σ1 → G for Σ1, where

δtub = δtub(R,L, α, ε,Lip(Φ1))

is the radius of the tubular neighbourhood of Σ1 established in Lemma 4.5.
Set Ψ := Ψδtub [Σ1,Φ1] and define

F : Σ2 → Rn by F := Ψ ◦m0 ◦Ψ−1|Σ2
,

G : Σ2 → Rn by G := F − Id .

Then Σ1 ⊂ im(F ), and there exist Cl = Cl(L,Lip(Φ1)) ≥ 1 and ρG =
ρG(R,L, α, ε,Lip(Φ1)) ∈ (0, δtub/8] such that for all ρ = dH(Σ1,Σ2) ∈ (0, ρG)

(i) Lip(G) ≤ Clρα/2,

(ii) |G(x)| ≤ 4 dist(x,Σ1) for all x ∈ Σ2,

(iii) F is a bilipschitz diffeomorphism onto its image Σ1 satisfying(
1− Clρα/2

)
|x− y| ≤ |F (x)− F (y)| ≤

(
1 + Clρ

α/2
)
|x− y| ∀x, y ∈ Σ2 .

Figure 4: The definition of F : Σ2 → Σ1. Thin nearly vertical lines represent
ε-normal spaces to Σ1. We have x = Ψ(a, v), so that Ψ−1|Σ2

(x) = (a, v) ∈
R2n. Next, m0(a, v) = (a, 0), and Ψ(a, 0) = a+ 0 = a. This yields F (x) = a.
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Proof. Notice that Ψ−1 is well-defined on a neighbourhood of Σ2 by virtue
of Lemma 4.5 (iv), since dH(Σ1,Σ2) < δtub/8, so that for x ∈ Σ2 we find a
unique pair (ξ, v) ∈ Nδtub(Σ1,Φ1) such that x = ξ + v = Ψ(ξ, v).

By definition of the map F it is clear that im(F ) ⊂ Σ1, however, the
converse Σ1 ⊂ im(F ) is not so obvious. To establish that we use a topological
argument by means of the degree mod 2 as follows. For the l-plane P ∈
G(n, l) denote the l − 1-dimensional sphere

Sl−1(ξ, r, P ) := ξ + {v ∈ P : |v| = r} for ξ ∈ Rn, r > 0,

and observe that for ξ ∈ Σ1, r ∈ (0, δtub),

Sn−m−1(ξ, r, im(Φ1(ξ))) = Ψ(ξ, im(Φ1(ξ))) ∩ ∂B(0, r),

so that by virtue of Lemma 4.5 (iii) Sn−m−1(ξ, r, im(Φ1(ξ))) ∩ Σ1 = ∅ and,
in addition, Sn−m−1(ξ, r, im(Φ1(ξ))) and Σ1 are nontrivially linked for all
r ∈ (0, δtub), that is, the map

Σ1 × Sn−m−1(ξ, r, im(Φ1(ξ))) 3 (w, z) 7→ w − z
|w − z|

∈ Sn−1

has non-vanishing degree mod 2, for each ξ ∈ Σ1 and r ∈ (0, δtub), since
Σ1 is a compact m-dimensional C1-submanifold without boundary. Since
dH(Σ1,Σ2) < δtub/8 also Σ2 and Sn−m−1(ξ, r, im(Φ1(ξ))) are non-trivially
linked for each ξ ∈ Σ1 and for all r ∈ (δtub/2, δtub), because dH(Σ1,Σ2) <
dH(Σ1,Sn−m−1(ξ, r, im(Φ1(ξ)))), again by virtue of Lemma 4.5 (iii). There-
fore, each n−m-dimensional disk

Dn−m(ξ, r, im(Φ1(ξ))) := ξ + {v ∈ im(Φ1(ξ)) : |v| ≤ r}(79)

= im
(
Ψ(ξ, im(Φ1(ξ)) ∩ B(0, r))

)
for ξ ∈ Σ1 and r ∈ (δtub/2, δtub) contains at least one point of Σ2; see [25,
Lemma 3.5]. Take for fixed ξ ∈ Σ1 and r = 3δtub/4 one of those points

z ∈ Σ2 ∩ Dn−m(ξ, 3δtub/4, im(Φ1(ξ))),

and use (79) to express z as z = ξ + v = Ψ(ξ, v) for some v ∈ im(Φ1(ξ)) with
|v| < 3δtub/4 to find

F (z) = Ψ ◦m0 ◦Ψ−1(z) = Ψ ◦m0(ξ, v) = Ψ(ξ, 0) = ξ,

which establishes Σ1 ⊂ im(F ).
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Remark. One can also prove that Σ1 ⊆ imF later, right after proving that
F is bilipschitz (i.e. after proving that G is Lipschitz): once this is estab-
lished, F is a C1,α diffeomorphism onto its image. Thus, the image of F
is a submanifold of Rn — actually it is a submanifold of Σ1, of the same
dimension as Σ1. Hence, it is open in Σ1, which can be seen using a local
graph representation; it is also closed in Σ1 as a continuous image of a com-
pact set. Therefore, Σ1∼ imF is a connected component of Σ1; assuming
Σ1∼ imF is not empty and using the definition of C 1,α

m,n(R,L, d) one sees that
Σ1∼ imF is at least R away from imF which contradicts the assumption
dH(Σ1,Σ2) ≤ δtub.

Proof of (i): If ρ = dH(Σ1,Σ2) = 0 then Σ1 = Σ2 and F = Id, and there is
nothing to prove. Assume ρ > 0 from now on. Let x, y ∈ Σ2 and set

a := F (x) , b := F (y) , X = Φ1(a) , Y = Φ1(b) .

Observe that, by Lemma 4.5(iii), |x− a| ≤ 4 dist(Ψ(a, x− a),Σ1) ≤ 4ρ for
Ψ(a, x− a) = x ∈ Σ1, and in the same way, |y − b| ≤ 4ρ, so that we infer
immediately

|G(x)−G(y)| ≤ |a− x|+ |b− y|(80)

≤ 8ρ ≤ 8
√
ρ|x− y| for all x, y∈Σ2 with |x− y|≥√ρ .

Assume now that x, y ∈ Σ2 satisfy |x− y| < √ρ. Note that by Lemma 4.5(ii)

Lip(F ) ≤ Lip(Ψ) Lip(m0) Lip(Ψ−1) ≤ 4
√

2 ;(81)

hence, |a− b| = |F (x)− F (y)| ≤ 4
√

2|x− y| < 4
√

2ρ .

Set

ρ0 := min
{

2−3δtub, (2L)−2/α, 2−6R2, 2−12/αCang(L, 4)−2/α, 2−9 Lip(Φ1)−2
}
.

As δtub ≤ 1, cf. (62) in the proof of Lemma 4.5, we have ρ0 ≤ 1
8 . If we require

(82) dH(Σ1,Σ2) = ρ < ρ0 ,

then, as |a− x| < 4ρ, we can use Lemma 3.1 with A := 4 to write

(83) <)(TaΣ1, TxΣ2) ≤ Cang(L, 4)ρα/2 .
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Moreover, by (81) and the choice of ρ0 above,

<)(X,Y ) = ‖Φ1(a)− Φ1(b)‖ ≤ Lip(Φ1)|a− b|(84)

≤ 4
√

2 Lip(Φ1)|x− y| ≤ 4
√

2ρLip(Φ1) < 1
4 .

Thus, by (84), (83), and our choice of ρ0

<)(Y ⊥, TxΣ2) ≤ <)(Y ⊥, X⊥) +<)(X⊥, TaΣ1) +<)(TaΣ1, TxΣ2)(85)

(84)

≤ 4
√

2ρLip(Φ1) + ‖Φ1(a)− (TaΣ1)⊥\ ‖+<)(TaΣ1, TxΣ2)

(83)

≤ 4
√

2ρLip(Φ1) + ε+ Cang(L, 4)ρα/2 < 1
2 .

Similarly,

<)(Y ⊥, TaΣ1) ≤ <)(Y ⊥, X⊥) +<)(X⊥, TaΣ1)(86)

(84)

≤ 4
√

2ρLip(Φ1) + ε < 1
2 .

These angle conditions imply by Lemma 2.2 that

Y ∩ TaΣ1 = Y ∩ TxΣ2 = {0},

Therefore, there exist points b̄, ȳ ∈ Rn (see Figure 5) such that

(y + Y ) ∩ (a+ TaΣ1) = {b̄} , and (y + Y ) ∩ (x+ TxΣ2) = {ȳ} .(87)

Indeed, the characterisation {P (y − a)} = ((y − a) + Y ) ∩ TaΣ1 of the well-
defined oblique projection P : Rn → TaΣ1 along Y (see Remark 2.3) imme-
diately gives b̄ := P (y − a) + a, and similarly one finds ȳ.

To prove that G is Lipschitz we need to estimate |G(x)−G(y)| = |(x−
a)− (y − b)|. To this end, we shall first estimate |(x− a)− (ȳ − b̄)| treating
|(ȳ − b̄)− (y − b)| ≤ |b̄− b|+ |ȳ − y| as a small error term. Employing (77)
of Proposition 4.6 with

U := Y, V := X, W := TxΣ2, T := TaΣ1,

u := ȳ − b̄, v := x− a, w := ȳ − x, t := b̄− a,
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Figure 5: Enlarged fragment of Figure 4. We have G(x) = a− x, G(y) =
b− y. However, to prove that G is Lipschitz, we do not deal with (a− x)−
(b−y) directly. Instead, we use Proposition 4.6 to estimate |(a−x)−(b̄−ȳ)|,
and add an error term |b− b̄|+ |y − ȳ|, which is small as both Σ1 and Σ2

are of class C 1,α
m,n(R,L, d). The final dependence of Lip(G) on a power of ρ

is due to this error term.

in combination with (83), (84), (85), (86) to estimate the angles by our
choice of ρ0

<)(W,T ) ≤ θ := Cang(L, 4)ρα/2, <)(U, V ) ≤ γ := 4
√

2 Lip(Φ1)|x− y|,

max
{
<)(T,U⊥), <)(T, V ⊥)

}
≤ λ :=

1

2
,

we obtain

|(x− a)− (ȳ − b̄)|(88)

(77)

≤ 8
√

2 Lip(Φ1)|x− y|
(
|ȳ − b̄|+ 2Cang(L, 4)ρα/2|ȳ − x|

)
+ 2Cang(L, 4)ρα/2|ȳ − x| .

By (81) and the choice of ρ0 we have

|a− b| < 4
√

(2ρ) < 4(2−5R2)1/2 < R ,

|a− b|1+α ≤ (4
√

2)2|x− y|1+α = 25|x− y|1+α .
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Thus, since ȳ − y ∈ Y and b̄− b = (b̄− y) + (y − b) ∈ Y (we use (87) and
note that y = Ψ(b, y − b) with y − b ∈ Φ1(b) = Y ), it follows from (81), (85)
and (86) that

|ȳ − y| ≤ 2 dist(y, x+ TxΣ2) ≤ 2L|x− y|1+α

and |b̄− b| ≤ 2 dist(b, a+ TaΣ1) ≤ 2L|a− b|1+α ≤ 26L|x− y|1+α ,
(89)

where we estimated similarly as in (17). Hence, since we observed |y − b| ≤
4ρ earlier, and |x− y| < √ρ ≤ 1√

8
< 1, we obtain

|ȳ − b̄| ≤ |ȳ − y|+ |y − b|+ |b̄− b| ≤ 27L|x− y|1+α + 4ρ < (27L+ 4)ρα/2 ,

|ȳ − x| ≤ |ȳ − y|+ |y − x| ≤ |y − x|
(

1 + 2Lρα/2
)
≤ 2|x− y| < 2

√
ρ < 1 .

Therefore, plugging these two estimates into (88), and adding the error |ȳ −
y|+ |b̄− b| which can be estimated by (89), we compute

|G(x)−G(y)|
= |(x− a)− (y − b)| ≤ |(x− a)− (ȳ − b̄)|+ |ȳ − y|+ |b̄− b|
(88),(89)

≤ |x− y|ρα/2
{

8
√

2 Lip(Φ1)
[
27L+ 4 + 2Cang(L, 4)

]
+ 4Cang(L, 4) + 2L+ 26L

}
.

As ρ < 1, taking into account Cang(L, 4) = 257L+ 8 (cf. Lemma 3.1), we
finally obtain an estimate of the Lipschitz constant of G,

(90)
|G(x)−G(y)| ≤ Clρα/2|x− y|,
Cl = Cl(L,Lip(Φ1)) := 104(Lip(Φ1) + 1)(L+ 1) .

Proof of (ii): Directly from the definition of Ψ we infer Ψ(F (x), x− F (x)) =
F (x) + x− F (x) = x for any x ∈ Σ2, so that we obtain from Lemma 4.5(iii)

dist(x,Σ1) = dist(Ψ(F (x), x− F (x)),Σ1)

L.4.5(iii)

≥ 1
4 |x− F (x)| = 1

4 |G(x)| ∀x ∈ Σ2 .

Proof of (iii): Since F is a composition of C1-smooth functions it is C1-
smooth. We can find ρG = ρG(R,L, α,Lip(Φ1)) ∈ (0, ρ0) so small that

(91) Clρ
α/2 < 1 for all ρ ∈ (0, ρG),
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and then

|F (x)− F (y)| ≤ |x− y|+ |F (x)− x− (F (y)− y)|

= |x− y|+ |G(x)−G(y)|
(90)

≤
(
1 + Clρ

α/2
)
|x− y|.

The lower estimate in (iii) follows in the same manner; hence F is bilipschitz
and, in consequence, a diffeomorphism. �

As a corollary we can can establish a bound on the Hausdorff-distance
dH(Σ1,Σ2) under which two submanifolds Σ1,Σ2 ∈ C 1,α

m,n(R,L, d) are actu-
ally ambient isotopic. Moreover, in Lemma 4.10 we construct a global dif-
feomorphism of the ambient space mapping Σ2 onto Σ1. Both results will
be essential ingredients in the proof of Theorem 4.

Corollary 4.9 (ambient isotopies). For R,L, d ∈ (0,∞), α ∈ (0, 1], and
ε ∈ (0, 1/100) let Σ1,Σ2 ∈ C 1,α

m,n(R,L, d) with ε-normal map Φ1 for Σ1, such
that dH(Σ1,Σ2) ∈ (0, ρG), where ρG = ρG(R,L, α, ε,Lip(Φ1)) is the constant
of Lemma 4.8. Then Σ1 and Σ2 are C1-ambient isotopic.

Proof. According to [5, Theorem 1.2] it suffices to come up with a C1-isotopy
h : Σ2 × [0, 1]→ Rn, i.e., a family of C1-embeddings ht(·) := h(·, t) : Σ2 →
Rn, with

(92) Σ1 = h(Σ2 × {0}) and h(Σ2 × {1}) = Σ2.

Indeed, the map h(x, t) := Ψ ◦mt ◦Ψ−1|Σ2
(x) for (x, t) ∈ Σ2 × [0, 1], and

with mt(y, v) = (y, tv) and Ψ := Ψδtub [Σ1,Φ1] for y, v ∈ Rn will do. Here
δtub is the constant from Lemma 4.5 defined in (62), and Φ1 is an ε-normal
map for Σ1.

Observe that part (iv) of Lemma 4.5 implies that Σ2 ⊂ Ψ(Nδtub(Σ1,Φ1)),
since we have dH(Σ1,Σ2) < ρG < δtub/8 (see Lemma 4.8). Therefore, Ψ−1 is
a well-defined C1-map in an open neighbourhood of Σ2, which implies that
h itself as a composition of C1-maps is of class C1. With Lemma 4.8 (iii) we
obtain h(Σ2 × {0}) = F (Σ2) = Σ1, and h(·, 0) is a bilipschitz diffeomorphism
from Σ2 onto Σ1. Moreover, one immediately sees that h(x, 1) = Ψ ◦m1 ◦
Ψ−1(x) = x for all x ∈ Σ2 by the very definition of mt for t = 1, so that
h(Σ2 × {1}) = Σ2, which proves (92).

So, it remains to be shown that h(·, t) : Σ→ Rn is an embedding for each
t ∈ (0, 1). Note that Ψ : Nδ(Σ1,Φ1)→ Rn is bilipschitz for all δ ∈ (0, δtub]
by Lemma 4.5 (ii), and hence so is Ψ−1 on Ψ(Nδtub(Σ1,Φ1)). In addition,
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mt is bilipschitz for t ∈ (0, 1), and mt(Nδ(Σ1,Φ1)) ⊂ Nδ(Σ1,Φ1) for all t ∈
[0, 1], δ ∈ (0, δtub]. Recall again from Lemma 4.5 (iv) that dH(Σ1,Σ2) < ρG <
δtub/8 implies that Σ2 ⊂ Ψ(N2dH(Σ1,Σ2)(Σ1,Φ1)), so that Ψ−1|Σ2

is just the
restriction of a C1-bilipschitz map, and in consequence h(·, t) is bilipschitz
and C1-smooth, and therefore a C1-diffeomorphism onto its image h(Σ2, t)
for each t ∈ [0, 1]. Consequently, h(·, t) : Σ2 → Rn is an embedding for each
t ∈ [0, 1]. �

Lemma 4.10 (diffeomorphisms of the ambient space). For R,L, d >
0, α ∈ (0, 1] there exist constants ρg := ρg(R,L, α, n,m) and CJ = CJ(R,L,
α, n,m) ≥ 0, such that for any two manifolds Σ1,Σ2 ∈ C 1,α

m,n(R,L, d) with
ρ := dH(Σ1,Σ2) ∈ (0, ρg] there exists a bilipschitz C1-diffeomorphism J :
Rn → Rn satisfying

1) J(Σ2) = Σ1,

2) J(x) = x for x ∈ Rn∼(Σ2 + B(0, ρg)),

3) (1− CJρα/2)|z1 − z2| ≤ |J(z1)− J(z2)| ≤ (1 + CJρ
α/2)|z1 − z2| for all

z1, z2 ∈ Rn.

The constant ρG was introduced in Lemma 4.8.

Proof. Set ε := 1/200. Lemma 4.2 guarantees the existence of ε-normal maps
Φi : Σi → G for Σi, i = 1, 2. Define Ψ2 = Ψδtub [Σ2,Φ2] as in Definition 4.4.

Choose ρ0 = ρ0(R,L, α,Lip(Φ1),Lip(Φ2)) ∈ (0,min{δtub/16, ρG/2}) so
small that

4Clρ
α/2 < ε =

1

200
for all ρ ∈ (0, ρ0],(93)

where we denote by δtub = δtub(R,L, α,Lip(Φ2)) the tubular radius for Σ2 es-
tablished in Lemma 4.5 for our fixed ε = 1/200. Moreover, ρG = ρG(R,L, α,
Lip(Φ1)) and Cl = Cl(L,Lip(Φ1)) are the constants estimating the maps
F,G : Σ2 → Rn in Lemma 4.8 for ε = 1/200. Consider the projections π1, π2 :
N2 := Nδtub/2(Σ2,Φ2)→ Rn via π1(x, v) := x and π2(x, v) := v for (x, v) ∈
N2, define the map λ : N2 → Rn by λ(x, v) := F (x) + v, and finally,

J̃ : Σ2 + B(0, ρ0)→ Rn , J̃ = λ ◦Ψ−1
2

and the map I : Σ2 + B(0, ρ0)→ Rn , I(z) = J̃(z)− z .
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measuring the deviation of J̃ from the identity. According to Lemma 4.8(ii)
one has for x ∈ Σ2

|G(x)| = |F (x)− x| ≤ 4 dist(x,Σ1)(94)

≤ 4dH(Σ2,Σ1) = 4ρ ≤ 4ρ0 < δtub/4 for all ρ ∈ (0, ρ0] ,

and therefore, for z ∈ Σ2 + B(0, ρ0) with Ψ−1
2 (z) = (x, v),

I(z) = J̃(z)− z = (F (x) + v)− (x+ v)(95)

= F (x)− x = G(x) = G ◦ π1 ◦Ψ−1
2 (z) ,

so

(96) |I(z)| ≤ 4ρ < δtub/4,

whence J̃(Σ2 + B(0, ρ0)) ⊂ Σ2 + B(0, δtub/2). The identity (95) together with
Lemma 4.5(ii) applied to Σ2 and Ψ2 and Lemma 4.8(i) implies

Lip(I) ≤ Lip(G) Lip(Ψ−1
2 ) ≤ 4Clρ

α/2 .(97)

Thus, we can estimate the difference J̃(z1)− J̃(z2) = I(z1)− I(z2) + z1 − z2

using (95) for z1, z2 ∈ Σ2 + B(0, ρ0) as

(1− 4Clρ
α/2)|z1 − z2| ≤ |J̃(z1)− J̃(z2)| ≤ (1 + 4Clρ

α/2)|z1 − z2| ,(98)

so that by our choice of ρ0 in (93), J̃ turns out to be bilipschitz, and since
Ψ−1

2 is C1 on Ψ2(N2) and

Σ2 + B(0, ρ0) ⊂ Σ2 + B(0, δtub/4)
Lem.4.5
⊂ Ψ2(N2),

and λ is C1 on N2, the map J̃ is a C1-diffeomorphism from Σ2 + B(0, ρ0)
onto its image. Note that this image J̃(Σ2 + B(0, ρ0)) contains Σ1, since by
Lemma 4.8, F maps Σ2 diffeomorphically onto Σ1. In particular, for any
ξ ∈ Σ1 there is exactly one x ∈ Σ2 such that F (x) = ξ, so that for z = x+ 0
one has J̃(z) = λ(x, 0) = F (x) + 0 = ξ. This also shows that J̃(Σ2) = Σ1.

To construct the global diffeomorphism we smoothly extend J̃ to all of
Rn by the identity in the following way. Let φ ∈ C1(R) be a cut-off func-
tion satisfying 0 ≤ φ ≤ 1 on R, φ(t) = 0 for t ≤ ρ0/8, φ(t) = 1 for t ≥ ρ0/4,
and |φ′(t)| ≤ 16/ρ0 for all t ∈ R. Define η : Σ2 + B(0, ρ0)→ R as η(z) :=
|π2 ◦Ψ−1

2 (z)|, and the transition term T : Σ2 + B(0, ρ0)→ Rn as T (z) :=



i
i

“2-Kolasinski” — 2019/3/26 — 0:33 — page 1299 — #49 i
i

i
i

i
i

Compactness and finiteness of isotopy types 1299

φ(η(z))I(z), which is of class C1 since φ(η(z)) vanishes for 0 ≤ η(z) ≤ ρ0/8.
In addition, we can estimate the Lipschitz constant of the transition term
using Lemma 4.5(ii) for Σ2 and Ψ2, (96), and (97) as

Lip(T ) ≤ Lip(φ ◦ η)‖I‖∞ + ‖φ ◦ η‖∞ Lip(I)(99)

≤ 162

ρ0
ρ+ 4Clρ

α/2 ≤ CTρα/2, ρ ∈ (0, ρ0]

for CT := 162/ρ
α/2
0 + 4Cl. The global diffeomorphism J : Rn → Rn can now

be defined as

J(z) :=

{
J̃(z)− T (z) for z ∈ Σ2 + B(0, ρ0)

z otherwise ,

which is of class C1 since T (z) = I(z) (and hence J̃(z)− T (z) = z) if z
is contained in the transition zone Σ2 + B(0, ρ0)∼B(0, ρ0/2). Indeed, then
z = x+ v for some (x, v) ∈ N2 satisfying, by Lemma 4.5(ii),

ρ0

2
≤ dist(z,Σ2) = dist(Ψ2(x, v),Σ2)

≤ |Ψ2(x, v)−Ψ2(x, 0)| ≤
√

2|(x− x, v − 0)| =
√

2|v|,

so that |v| ≥ ρ0/(2
√

2) > ρ0/4, from which η(z) = |π2 ◦Ψ−1
2 (z)| = |π2(x, v)|

= |v| > ρ0/4 follows, and thus φ(η(z)) = 1 for such z in the transition zone.
Combining (98) with (99) we arrive at the desired bilipschitz estimate(

1− (4Cl + CT )ρα/2
)
|z1 − z2| ≤ |J(z1)− J(z2)|

≤
(
1 + (4Cl + CT )ρα/2

)
|z1 − z2| ,

which establishes Part (3) of Lemma 4.10 if we set CJ := 4Cl + CT , and if we
choose ρg = ρg(R,L, α,Lip(Φ1),Lip(Φ2)) ∈ (0, ρ0) so small that CJρ

α/2 < 1
for all ρ ∈ (0, ρg]. Recall that we have fixed ε = 1/200 and that Lip(Φ1)
and Lip(Φ2) depend only on ε,R, L, α,m, n according to Lemma 4.2, which
means that ρ0 and hence also ρg and CJ actually depend on R,L, α,m, n
only. �

Remark 4.11. Inspecting the above proof one can see that

Lip(J − Id) = Lip(I − T ) = Lip(I(1− φ ◦ η)) ≤ 162Cl
ρ0

ρα/2 .
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Proof of Theorem 4. According to Definition 2 we have dH(Σ0,Σj)→ 0 as
j →∞, so that we can choose j0 such that dH(Σ0,Σj) ≤ ρg < ρG/2 for all
j ≥ j0, where ρG is the constant from Lemma 4.8 for fixed ε := 1/200. There-
fore, by Corollary 4.9, Σj is ambient isotopic to Σ0 for all j ≥ j0. Moreover,
by means of Lemma 4.10 we can find for each j ≥ j0 a C1-diffeomorphism of
the ambient space Jj : Rn → Rn such that biLip(Jj) ≤ 1 + CJdH(Σ1,Σ2)α/2

and Jj(Σj) = Σ0. �

5. Semicontinuity

5.1. Preliminaries

Before passing to the proof of Theorem 2, we set up some notation, and prove
two technical lemmata which explain how our discrete curvatures change
under small bilipschitz perturbations of the identity map.

Definition 5.1. Let N ∈ N and µ, ν ∈M (RN ) be Radon measures. We set

D(ν, µ, x) = lim
r↓0

ν(BN (x, r))

µ(BN (x, r))
,

where we interpret 0/0 = 0.

Definition 5.2. For any function F : X → Y and any l ∈ N, we define
F×l : X l → Y l by the formula F×l(x1, . . . , xl) = (F (x1), . . . , F (xl)).

Definition 5.3. Let l ∈ {1, 2, . . . ,m+ 2} and Σ ∈ C 1,α
m,n. For l ≤ m+ 1, we

define

Kl[Σ](y0, . . . , yl−1) = sup
yl,...,ym+1∈Σ

K(y0, . . . , ym+1) for y0, . . . , yl−1 ∈ Σ

forK given in the introduction by formula (2). We additionally setKm+2[Σ] ≡
K.

Definition 5.4. Let A ⊂ Rn and l ∈ N. We define the l-diagonal of A

∆lA = {(x0, . . . , xl) ∈ Al : x0 = x1 = · · · = xl} .

Formally, the integrands K and R−1
tp are defined only off the diagonal

∆lΣ. It does not matter how one defines them on the diagonal: it does
not affect the integral, since Hml(∆lΣ) = 0. Below, we also freely use the
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equivalence of measures Hml xΣl ' (Hm xΣ)l which holds as long as Σ is
an embedded submanifold due to [17, 3.2.23]. (Actually, it holds even if Σ
is just a subset of the image of a single Lipschitz function.)

Remark 5.5. Let N ∈ N and µ, ν be Radon measures on RN . The Radon-
Nikodym theorem (cf. [27, Theorem 2.12]) implies that if ν is absolutely
continuous with respect to µ, then for any f ∈ L1(RN , ν)∫

f(x) dν(x) =

∫
f(x)D(ν, µ, x) dµ(x) .

Lemma 5.6. Let Σ1,Σ2 ∈ C 1,α
m,n, F : Rn → Rn be a bilipschitz homeomor-

phism such that F (Σ1) = Σ2. Set µ = Hml xΣl
2 and ν = (F×l)∗(Hml xΣl

1).
Then µ and ν are mutually absolutely continuous and

D(ν, µ, x) ≤ Lip(F−1)ml and D(µ, ν, x) ≤ Lip(F )ml

for all x ∈ Rnl.

Proof. If x ∈ Rnl∼Σl
2, then dist(x,Σl

2) > 0, so for 0 < r < dist(x,Σl
2) we

have µ(Bml(x, r)) = 0 = ν(Bml(x, r)) and, according to Definition 5.1,
D(µ, ν, x) = D(ν, µ, x) = 0.

Note that Lip(F×l) = Lip(F ) and (F×l)−1 = (F−1)×l. Furthermore, ob-
serve that for x ∈ Σl

2 and 0 < r <∞

Σl
1 ∩ (F×l)−1(Bml(x, r)) = Σl

1 ∩ (F×l)−1(Σl
2 ∩ Bml(x, r))

= (F×l)−1(Σl
2 ∩ Bml(x, r)) ;

hence

ν(Bml(x, r))
µ(Bml(x, r))

=
Hml((F×l)−1(Σl

2 ∩ Bml(x, r)))
Hml(Σl

2 ∩ Bml(x, r))
≤ Lip(F−1)ml

and consequently D(ν, µ, x) ≤ Lip(F−1)ml. The estimate for D(µ, ν, x) is
obtained by writing

Σl
2 ∩ Bml(x, r) = F×l((F×l)−1(Σl

2 ∩ Bml(x, r))) .
�

Lemma 5.7. Let Σ1,Σ2 ∈ C 0,1
m,n, 0 < ε < 1/2. Assume F : Σ1 → Rn is bilip-

schitz and satisfies F (Σ1) = Σ2, F (z) = z +G(z) for z ∈ Σ1 and some
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G : Σ1 → Rn having Lip(G) ≤ ε. Then for any T ∈ Σl
1∼∆lΣ1 and l ∈ {2, . . . ,

m+ 2} ∣∣∣Kl[Σ2](F×l(T ))−Kl[Σ1](T )
∣∣∣ ≤ εC5.7 diam(4T )−1 ,

where C5.7 = C5.7(m) > 0.

Proof. First we treat the case l=m+ 2. Let T =(x0, . . . , xm+1)∈Σl
1∼∆lΣ1.

Set ui = xi − x0, vi = F (xi)− F (x0) and ei = G(xi)−G(x0) for i = 1, 2,
. . . ,m+ 1. Observe that vi = ui + ei and that |ei| ≤ ε|ui|. We compute∣∣∣Hm+1(4F×l(T ))−Hm+1(4T )

∣∣∣
= 1

(m+1)!

∣∣|v1 ∧ · · · ∧ vm+1| − |u1 ∧ · · · ∧ um+1|
∣∣

≤ 1
(m+1)! diam(4T )m+1

m+1∑
i=1

(
m+1
i

)
εi ≤ 2m+1

(m+1)! diam(4T )m+1ε .

Since (1− ε) diam(4T ) ≤ diam(4F×l(T )) ≤ (1 + ε) diam(4T ) and recall-
ing ε < 1/2, we obtain∣∣∣K(F×l(T ))−K(T )

∣∣∣ ≤ ε
1−ε

(
K(T ) + 2m+1ε

(m+1)!(1−ε)
1

diam(4T )

)
(100)

≤ Cεdiam(4T )−1 ,

where C = C(m) > 0.
In case 2 ≤ l < m+ 2 for T = (x0, . . . , xl−1) ∈ Σl

1∼∆lΣ1 we employ the
assumption that F is bilipschitz, so that we can write

(Kl[Σ2] ◦ F×l)(T ) = sup
yl,...,ym+1∈Σ2

K(F (x0), . . . , F (xl−1), yl, . . . , ym+1)

= sup
xl,...,xm+1∈Σ1

K(F (x0), . . . , F (xm+1))

and using (100)

sup
xl,...,xm+1∈Σ1

K(F (x0), . . . , F (xm+1))

≤ sup
xl,...,xm+1∈Σ1

(
K(x0, . . . , xm+1) + Cεdiam({x0, . . . , xm+1})−1

)
≤ Kl[Σ1](T ) + Cεdiam(4T )−1 .
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In the same way we obtain the lower bound

sup
xl,...,xm+1∈Σ1

K(F (x0), . . . , F (xm+1)) ≥ Kl[Σ1](T )− Cεdiam(4T )−1 .

�

A similar lemma does hold for the Rtp function.

Lemma 5.8. Let Σ1,Σ2 ∈ C 0,1
m,n, 0 < ε < 1/2. Assume F : Σ1 → Rn is bilip-

schitz and satisfies F (Σ1) = Σ2, F (z) = z +G(z) for z ∈ Σ1 and some G :
Σ1 → Rn having Lip(G) ≤ ε. Then for Hm-almost all x1, y1 ∈ Σ1, x1 6= y1,
we have ∣∣∣∣ 1

Rtp[Σ1](x1, y1)
− 1

Rtp[Σ2](F (x1), F (y1))

∣∣∣∣ ≤ C5.8 ε

|x1 − y1|
,(101)

where C5.8 = C5.8(m) > 0.

Proof. Set x2 = F (x1), y2 = F (y1). Without loss of generality, by the classic
Rademacher theorem, assume that G is differentiable at x1 and the tangent
spaces to both manifolds, Ui := TxiΣi, are well defined for i = 1, 2. Then,

1

Rtp[Σi](xi, yi)
=

2di
|xi − yi|2

, i = 1, 2,

where di = dist(yi − xi, Ui). By the triangle inequality,∣∣∣∣ 1

Rtp[Σ1](x1, y1)
− 1

Rtp[Σ2](F (x1), F (y1))

∣∣∣∣(102)

≤ 2|d1 − d2|
|x1 − y1|2

+ 2d2

∣∣∣∣ 1

|x1 − y1|2
− 1

|x2 − y2|2

∣∣∣∣ .
We shall show that each of these two terms is controlled by a constant
multiple of ε|x1 − y1|−1. Indeed, since di ≤ |xi − yi| and

(1− ε)|x1 − y1| ≤ |x2 − y2| = |F (x1)− F (y1)| ≤ (1 + ε)|x1 − y1| ,

we easily estimate the second term on the right hand side of (102),

2d2

∣∣∣∣ 1

|x1 − y1|2
− 1

|x2 − y2|2

∣∣∣∣ ≤ 2|x2 − y2|
|x1 − y1|2|x2 − y2|2

∣∣|x1 − y1|2 − |x2 − y2|2
∣∣

≤ 2

(1− ε)|x1 − y1|3
· ε(2 + ε)|x1 − y1|2

<
10ε

|x1 − y1|
as ε ∈ (0, 1

2).(103)
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To estimate the first term on the right hand side of (102), it is enough to
check that |d1 − d2| ≤ Cε|x1 − y1|. Note that di = dist(xi − yi, Ui) = |(xi −
yi)− (Ui)\(xi − yi)|, so that

|d1 − d2| ≤ |(x1 − y1)− (x2 − y2)|+ |(U1)\(x1 − y1)− (U2)\(x2 − y2)|
≤ ε|x1 − y1|+

∣∣(U1)\
(
(x1 − y1)− (x2 − y2)

)∣∣
+ |((U1)\ − (U2)\)(x2 − y2)|
≤ 2ε|x1 − y1|+ ‖(U1)\ − (U2)\‖ · (1 + ε)|x1 − y1| .(104)

By the assumption on F and x1, we have

U2 = DF (x1)(U1) = (Id +DG(x1))(U1) , ‖DG(x1)‖ ≤ ε

The estimate of the angle between m-planes, see [25, Prop. 2.5], yields
‖(U1)\ − (U2)\‖ ≤ Cε for some constant C = C(m), and the lemma follows.

�

5.2. Semicontinuity, compactness and existence of minimisers

We are now ready to give the proof of Theorem 2 and Corollary 1. We begin
with lower semicontinuity which is crucial for the compactness of sublevel
sets of geometric curvature and the existence of energy minimisers in isotopy
classes.

Remark. There are several more or less equivalent ways to phrase the ar-
gument which yields semicontinuity. If the curvature integrand contains no
supremum, then the aim can be achieved by (a) localization, (b) parametriza-
tion of all integrals by the same domain, (c) an application of Fatou’s lemma
which is enabled by the C1 convergence of the parameterisations. Such an
argument is presented in [40, pp. 2297–2298]. However, even in the case
of curves the integrands involving a supremum are by no means continuous
(see e.g. [39, Section 3]) with respect to C1 convergence, which requires more
care, cf. e.g. the proof of Thm. 3 in [39]. In order to avoid a case by case
study of the appropriately understood lower semicontinuity of all the inte-
grands considered, we present here a general argument which is streamlined
so that all the cases can be included into the same scheme.

Let us note that the proof is flexible enough to show that all the energies
are in fact lower semicontinous w.r.t. the bilipschitz convergence of (not
necessarily C1) submanifolds also in the case p ≤ p0, when we have no C1,α–
regularization effect.
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Proof of part (i) of Theorem 2. Fix l ∈ {1, 2, . . . ,m+ 2}. For j ∈ N ∪ {0} let
Σj ∈ AEm,n(E, d). Assume that Σj converges in Hausdorff distance to Σ and,
without loss of generality, such that

(105) lim
j→∞

E(Σj) = lim inf
j→∞

E(Σj).

Hence for some fixed x ∈ Σ we find a sequence of points xj ∈ Σj such that
xj → x as j →∞, so that the shifted submanifolds Σ̃j := Σj − xj converge
in Hausdorff-distance to Σ̃ := Σ− x. Hence 0 ∈ Σ̃ and 0 ∈ Σ̃j , and by trans-
lation invariance of the geometric curvature energies, E(Σ̃j) = E(Σj) ≤ E for
all j ∈ N. Thus, by the Regularity Theorem, Σ̃j ∈ C 1,α

m,n(R,L, d), for appro-
priate R,L given by (10) depending only on the fixed p and on the uniform
energy threshold E. Hence, by the compactness result in C 1,α

m,n(R,L, d), The-
orem 3, we find a subsequence still denoted by Σ̃j and some submanifold
Σ̃0 ∈ C 1,α

m,n(R,L, d) such that Σ̃j → Σ̃0 in C 1,α
m,n (see Definition 2), which im-

mediately implies that Σ̃ = Σ̃0 is contained in C 1,α
m,n(R,L, d), so that we can

apply all results of Section 4 to Σ̃j and Σ̃, and, in addition, we may evaluate
the energy at Σ = Σ̃ + x to obtain E(Σ) = E(Σ̃), so it is enough to establish
E(Σ̃) ≤ limj→∞ E(Σ̃j). To simplify notation, we identify Σ̃ with Σ, and Σ̃j

with Σj from now on.
We may also assume that for each j

dH(Σj ,Σ) < ρg, where ρg is given by Lemma 4.10.

Now, for j ∈ N set µj := Hml xΣl
j , µ := Hml xΣl, and let Jj : Rn → Rn be

the diffeomorphism constructed in Lemma 4.10 such that Jj(Σ) = Σj .
Observe that, by Lemma 4.10, biLip(Jj) ≤ 1 + CJdH(Σ,Σj)

α/2. More-
over, the restriction Fj : = Jj |Σ satisfies

(106) Fj(x) = x+Gj(x) on Σ, Lip(Gj) =: εj , εj → 0 as j →∞,

since by Lemma 4.8 εj ≤ CldH(Σj ,Σ)α/2.
Now, the reader who is not overly keen to follow all the technical details

can skim the lines from here to (116), thinking that, roughly, Step 1 below
involves the reparameterisations and the control of Jacobians, Step 2 is the
place where ‘Fatou does the job’, and Step 3 is the price to pay for the
flexibility of the argument (in the case where the integrand contains too
many suprema).

Step 1 (fixing the domain of integration). We shall first check that if F ∈
{E lp, Tp, T Gp } is one of the energies considered, then — in order to check that
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F(Σ) ≤ lim inf F(Σj) — we can consider the limes inferior of a sequence of
integrals over a fixed domain Σ, with appropriately perturbed integrands.
(In our application we could write actual limits because of (105), but that
does not affect any of the following arguments.)

Indeed, in each of the cases considered we have

(107) F(Σ) =

∫
Σl

(KΣ)p dHml for an integrand KΣ : Σl → [0,∞] .

(To fix the ideas, we assume in all cases KΣ ≡ ∞ on ∆lΣ; this does not
affect the value of F as Hml(∆lΣ) = 0.) Thus, changing the variables and
using Lemma 5.6, for a sequence of Σj ’s with supj F(Σj) finite we obtain∣∣∣∣F(Σj)−

∫ (
KΣj ◦ J×lj

)p
dµ

∣∣∣∣ =

∣∣∣∣∫ (KΣj

)p
dµj −

∫ (
KΣj ◦ J×lj

)p
dµ

∣∣∣∣
=

∣∣∣∣∫ (KΣj

)p
dµj −

∫ (
KΣj

)p
d((J×lj )∗µ)

∣∣∣∣
=

∣∣∣∣∫ (KΣj

)p (
1−D

(
(J×lj )∗µ, µj , ·)

)
dµj

∣∣∣∣
≤ C

(
sup
j
F(Σj)

)
dH(Σj ,Σ)α/2

j→∞−−−→ 0 .

The last inequality follows from the fact that by Lemma 5.6 applied to
ν = (J×lj )∗µ and µ = µj we have the density estimate

1(
Lip Jj

)ml ≤ D((J×lj )∗µ, µj , ·) ≤
(

Lip J−1
j

)ml
Therefore, as biLip(Jj) ≤ 1 + CJdH(Σ,Σj)

α/2 → 1, we have

(108)
∣∣∣1−D((J×lj )∗µ, µj , ·)

∣∣∣ ≤ CdH(Σj ,Σ)α/2 .

All this yields

lim inf
j→∞

∫ (
KΣj ◦ J×lj

)p
dµ = lim inf

j→∞
F(Σj) .(109)

Below, we work with the left hand side of (109).
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Step 2 (energies with at least two integrals over the manifold). Suppose now
that l ≥ 2. If F = E lp, l ≥ 2, with the integrand

KΣ = Kl[Σ] : Σl → [0,∞)

being the discrete curvature from Definition 5.3, then, by Lemma 5.7, we
have

(110) KΣ(T ) ≤ KΣj

(
F×lj (T )

)
+
C(m) εj
diamT

, T ∈ Σl∼∆lΣ .

If on the other hand F = Tp (so that l = 2), and

KΣ =
1

Rtp[Σ]
: Σ× Σ→ [0,∞],

with the tangent–point radius Rtp defined on Σ2∼∆2Σ by (4), then inequal-
ity (110) holds by Lemma 5.8. Thus, in both cases we can use (110) to write,
for a fixed T ∈ Σl∼∆lΣ,

KΣ(T )p ≤ lim inf
j→∞

(
KΣj

(
F×lj (T )

)
+
C(m) εj
diamT

)p
= lim inf

j→∞
KΣj

(
J×lj (T )

)p
(as Jj = Fj on Σ).

Since Hml(∆lΣ) = 0, we can now ingrate both sides w.r.t. µ and invoke
Fatou’s lemma (cf. [17, 2.4.6]) to obtain

F(Σ) =

∫
KΣ(T )p dµ ≤

∫
lim inf
j→∞

KΣj

(
J×lj (T )

)p
dµ

≤ lim inf
j→∞

∫
KΣj

(
J×lj (T )

)p
dµ

= lim inf
j→∞

F(Σj)

by (109). This concludes the proof of Theorem 1 for F = E lp with l ≥ 2 and
for F = Tp.

Step 3 (energies with a single integral). The case l = 1, i.e. when F = E1
p ,

resp. F = T Gp , needs a separate treatment. We shall now work with the
auxiliary integrands

KΣ : Σ× Σ→ [0,∞) ,

using KΣ = K2[Σ] for F = E1
p , resp. KΣ = 1/Rtp[Σ] for F = T Gp .
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The argument from Step 2 does not work here, as for l = 1 we deal with
simplices T that degenerate to one point, and (110) would yield nothing. To
avoid this problem, we remove a small neighbourhood of the diagonal, and
pass to the limit twice. Here are the details.

For a fixed s ∈ N, set

(111) KΣ,s(x) = sup
y∈Σ

|y−x|≥1/s

KΣ(x, y) , x ∈ Σ .

Define

Fs(Σ) =

∫
Σ
Kp

Σ,s dH
m .

Note that 0 ≤ Kp
Σ,1 ≤ K

p
Σ,2 ≤ . . ., K

p
Σ,s ↗ Kp

Σ as s→∞, so that by the

monotone convergence theorem, we have in each of the two cases (F = E1
p

or F = T Gp ) that are being considered

(112) F(Σ) = sup
s∈N
Fs(Σ) = lim

s→∞
Fs(Σ) .

Repeating Step 1 for each of the Fs, we obtain

(113) lim inf
j→∞

∫ (
KΣj ,s ◦ Jj

)p
dµ = lim inf

j→∞
Fs(Σj) .

Rewriting (110) for l = 2, T = (x, y), x 6= y ∈ Σ, for the auxiliary integrands
KΣ, we obtain

(114) KΣ(x, y) ≤ KΣj

(
Fj(x), Fj(y)

)
+
C(m) εj
|x− y|

.

We shall use this estimate for s fixed and j > 1 so large that εj <
1
s+1 (keep

in mind that εj → 0 as j →∞). Then, for points x, y ∈ Σ with |x− y| ≥ 1
s ,

we have

|Fj(x)− Fj(y)| ≥ (1− εj)|x− y| ≥
(

1− 1

s+ 1

)
1

s
=

1

s+ 1
,

and upon taking the suprema of both sides of (114) with respect to y ∈ Σ,
|x− y| ≥ 1

s , we obtain

(115) KΣ,s(x) ≤ KΣj ,s+1(Fj(x)) + C(m)s · εj .
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Thus, for each x ∈ Σ,

KΣ,s(x)p ≤ lim inf
j→∞

KΣj ,s+1(Fj(x))p .

Integration and Fatou’s lemma yield now

Fs(Σ) ≤ lim inf
j→∞

∫
KΣj ,s+1(Fj(x))p dµ(116)

(113)
= lim inf

j→∞
Fs(Σj) ≤ lim inf

j→∞
F(Σj) ,

as Fs ≤ F for all s ∈ N. Upon taking the supremum of the left-hand sides
with respect to s ∈ N, in light of (112), we conclude the proof for F = E1

p

and for F = T Gp . �

Proof of part (ii) of Theorem 2. By the Regularity Theorem, Σj ∈ C 1,α
m,n(R,

L, d) for all j ∈ N, where the parameters R,L are given by (10) and do not
depend on j. Thus, Theorem 3 implies that there is a subsequence (still
denoted by Σj) and a submanifold Σ ∈ C 1,α

m,n(R,L, d), such that Σj → Σ in
C 1,α
m,n, i.e., in the sense of Definition 2, which implies in particular that Σj →

Σ in Hausdorff-distance, that diam Σ ≤ d, and that Σ ∈ C 0,1
m,n. Therefore, we

may evaluate the energy E on Σ. Part (i) implies that Σ ∈ AEm,n(E, d). �

Proof of Corollary 1. Notice that the class

C := {Σ ∈ AEm,n(E, d) : Σ is ambient isotopic to M0}

contains the reference manifold M0, so that we can find a minimising se-
quence (Σj)j ⊂ C with E(Σj)→ infC E as j →∞. The uniform energy bound
E implies by the Regularity Theorem that Σj ∈ C 1,α

m,n(R,L, d) for all j ∈ N,
where the parameters R,L depend only on the energy bound and on the
integrability parameter p, so that we can apply the improved compactness
result, Theorem 3, to deduce the existence of a subsequence (still denoted
by Σj) that converges to a limit submanifold Σ0 ∈ C 1,α

m,n(R,L, d) in C 1,α
m,n.

Then the isotopy result, Theorem 4, implies that Σj is ambient isotopic to
Σ0 for j sufficiently large, which implies that Σ0 ∈ C. Part (i) of Theorem 2
finally leads to

inf
C
E ≤ E(Σ0) ≤ lim inf

j→∞
E(Σj) = inf

C
E ,

which concludes the proof. �
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6. Bounds on the number of diffeomorphism and
isotopy types

Proof of Theorem 1. Fix an energy E ∈ {E lp, Tp, T Gp } and a p > p0(E). Let

Σ ∈ AEm,n(E, d) be a manifold with controlled energy and diameter, cf. (1).

Translating Σ if necessary, we have Σ ∈ C 1,α
m,n(R,L, d) by the Regularity

Theorem, where the parameters R and L depend only on E and p. Thus,
Σ ⊂ [−d, d]n.

Now fix ε := 1/200 and let F = {Q1, Q2, . . . QN} be a minimal collec-
tion of closed cubes of edge e := ρG/(2

√
n) covering [−d, d]n; here ρG > 0

is the constant of Lemma 4.8 and Corollary 4.9 for ε = 1/200. Notice that
the dependence of ρG on the Lipschitz constant of an ε-normal map for Σ
boils down to ρG = ρG(R,L, α,m, n) since we have fixed ε; see Lemma 4.2.
Clearly, the cardinality of F satisfies

(117) H0(F) = N ≤ kn, with k =
⌈2d
√
n

ρG

⌉
.

Following Durumeric [14, Section 5] (see also the remarks in Peters [29,
Section 5]), to each Σ ∈ C 1,α

m,n(R,L, d) we assign the subset P (Σ) ⊂ F which
consists of those cubes Q ∈ F that intersect Σ, i.e.

Q ∈ P (Σ) ⊂ F ⇐⇒ Q ∩ Σ 6= ∅ .

If P (Σ1) = P (Σ2), then obviously dH(Σ1,Σ2) does not exceed the diam-
eter of all the Qi which equals e

√
n = ρG/2. Hence, by Corollary 4.9, Σ1 and

Σ2 are ambient isotopic. Therefore, the number of distinct isotopy classes
of manifolds Σ ∈ AEm,n(E, d) is not larger than K = 2N , the number of all
subsets of F.

Finally, since ρG = ρG(R,L, α,m, n) depends only on R and L which
are given, for a particular energy E and an upper energy bound E, by (10)
in the Regularity Theorem, and on α = 1− p0(E)/p, it is clear that K =
K(E, d,m, n, p). �

Remark 6.1. The estimate K ≤ 2N is obviously not optimal for connected
manifolds. If Σ is connected, then the union of all cubes in P (Σ) is connected,
too; thus, one only needs to count those subsets of F which have connected
unions. (For n = 1 there are 2k subsets of the family of intervals and only
O(k2) connected subsets!) One can prove [32] that the number Kcon of such
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subsets of F satisfies

(118) (2− a(n))N ≤ Kcon ≤ (2− b(n))N , N ≤ kn ,

where a, b : N→ (0,∞) are positive (but go to zero as the dimension n→
∞).

Here is the gist of the argument. Assume for the sake of simplicity that
the closed cubes in F have disjoint interiors, and that k = 2d/ε is divisible
by 3.

To obtain the upper bound, divide [−d, d]n into larger cubes Q̃, each of
them consisting of 3n of the initial Qj ’s. In each Q̃0, one Qj0 — call it central

— contains the center of Q̃0 and is separated from other Q̃i’s by a layer of
small Qj ’s. Now, if for a connected Σ the subset P (Σ) contains one of the
small central Qj ’s, then it must contain at least one small cube from the
layer around this Qj unless the whole P (Σ) = {Qj}. This limits the number
of possible choices of P (Σ) and yields the upper bound in (118).

To obtain the lower bound, one constructs a specific family of subsets
of F with connected unions, e.g. as follows. Let X ⊂ F consist of kn−1 little
cubes adjacent to a fixed (n− 1)-dimensional face of [−d, d]n (think of it as
the bottom face) and of (k/3)n−1 thin vertical, symmetrically placed ‘towers’
standing on the bottom face, each of these towers consisting of k − 1 little
cubes and reaching to the top of the whole box [−d, d]n. Thus,

the number of cubes in X = kn−1 +
1

3n−1
kn−1(k − 1) .

Note that adding to X any subset of F∼X, we obtain a family of cubes
with connected union (because each of the cubes in F∼X touches one of
the towers in X). From this, one obtains the lower bound for Kcon.

It is however clear that (118) does not take into account any global
information on Σ (e.g., it does not exclude those subsets of F that are too
small or too flat to cover a Σ with E(Σ) ≤ E).

Remark 6.2 (Explicit bounds). One can track an estimate of N (the
number of little cubes in F) in terms of the energy bounds E(Σ) ≤ E etc. as
follows.

(i) Note that R and L given by (10) in the Regularity Theorem satisfy
RαL = c(m,n, l, p).

(ii) Lemma 3.1 with A = 4 yields Cang(L, 4) = 257L+ 8.
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(iii) Lemma 4.2 gives the Lipschitz constant of the ε-normal map, cf. (60)
and Remark 4.3.

(iv) The number ρG for fixed ε = 1/200 emerges in Lemma 4.8 and Corol-
lary 4.9, via the constant Cl; a combination of (90)–(91) with (i) above
shows that we can have, e.g.,

1

ρG
= C

2/α
l ≤ c(m,n, l, p)(L+ 1)2(2α+1)/α2

≤ c̃(m,n, l, p)
(
E1/p + 1

)2(2α+1)/α2

, α = 1− p0(E)

p
.

Plugging the last estimate into log logK ≤ logN ≤ n log
(
1 + 2d

√
n/ρG

)
,

one obtains the bound (9) stated in the Introduction.
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