
i
i

“3-Sormani” — 2019/3/22 — 16:00 — page 1317 — #1 i
i

i
i

i
i

Communications in
Analysis and Geometry
Volume 26, Number 6, 1317–1373, 2018

Intrinsic flat Arzela-Ascoli theorems

Christina Sormani

One of the most powerful theorems in metric geometry is the
Arzela-Ascoli Theorem which provides a continuous limit for se-
quences of equicontinuous functions between two compact spaces.
This theorem has been extended by Gromov and Grove-Petersen
to sequences of functions with varying domains and ranges where
the domains and the ranges respectively converge in the Gromov-
Hausdorff sense to compact limit spaces. However such a powerful
theorem does not hold when the domains and ranges only con-
verge in the intrinsic flat sense due to the possible disappearance
of points in the limit.

In this paper two Arzela-Ascoli Theorems are proven for in-
trinsic flat converging sequences of manifolds: one for uniformly
Lipschitz functions with fixed range whose domains are converg-
ing in the intrinsic flat sense, and one for sequences of uniformly
local isometries between spaces which are converging in the in-
trinsic flat sense. A basic Bolzano-Weierstrass Theorem is proven
for sequences of points in such sequences of spaces. In addition
it is proven that when a sequence of manifolds has a precompact
intrinsic flat limit then the metric completion of the limit is the
Gromov-Hausdorff limit of regions within those manifolds. Appli-
cations and suggested applications of these results are described in
the final section of this paper.
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1. Introduction

When studying sequences of Riemannian manifolds, one may use a variety of
notions of convergence from Ck,α smooth convergence to Gromov-Hausdorff
convergence as metric spaces. One needs to understand whether points and
balls in the sequences converge to points and balls in limit spaces. So one
proves Bolzano-Weierstrass theorems to produce converging subsequences
of points. One needs to understand the limits of functions on these spaces
and local isometries between these spaces. So one proves Arzela-Ascoli the-
orems for sequences of uniformly Lipschitz functions between converging
spaces. Such theorems have been proven for Gromov-Hausdorff convergence
by Gromov and by Grove-Petersen [13] [12] [15]. They have been applied
in these works as well as that of Cheeger-Colding, Cheeger-Naber, the au-
thor, Wei, and numerous other papers including Perelman’s solution of the
Poincare Conjecture (c.f. [6] [8] [34] [35] and [27]).

There are many questions concerning Riemannian manifolds which can-
not be addressed using these relatively strong notions of convergence. The
intrinsic flat convergence is a more flexible notion allowing a larger class of
sequences of manifolds to converge. Gromov has proposed that this notion
would be natural to study questions arising in [14]. Lakzian has applied
intrinsic flat convergence to prove continuity of Ricci flow through a singu-
larity [18]. Dan Lee and the author have shown intrinsic flat convergence
is well adapted to questions arising in General Relativity [20]. Additional
applications of intrinsic flat convergence are described in the final section of
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this paper relating to work of Basilio, Burago, Ivanov, Ding, Fukaya, Gro-
mov, Huang, Lakzian, LeFloch, Lee, Li, Matveev, Munn, Perales, Portegies,
Sinaei and Wei [3] [5] [9] [11] [14] [16] [21] [24] [23] [25][22][26][22][30] [32]
[35].

The flexibility of intrinsic flat convergence is that it allows points to
disappear in the limit. As a consequence, many of the techniques used to
study Gromov-Hausdorff limits including the Arzela-Ascoli Theorem fail to
hold when the domains and ranges of the functions only converge in the in-
trinsic flat sense (c.f. Remark 6.3) . In this paper additional hypothesis are
provided to produce two Arzela-Ascoli Theorems [Theorems 6.2 and 8.1]
as well as a basic Bolzano-Weierstrass Theorem [Theorem 7.1]. A new re-
lationship between Gromov-Hausdorff and intrinsic flat convergence is also
proven [Theorem 5.1]. Direct applications of these theorems are described
in the final section of this paper.

Intrinsic flat convergence was introduced by Wenger and the author
in [39] building upon work of Ambrosio-Kirchheim in [2]. It is defined for
oriented Riemannian manifolds, Mm

j with boundary such that

(1) Vol(Mj) ≤ Vj and Vol(∂Mj) ≤ Aj .

The limit spaces obtained under this convergence are called integral current
spaces. They are either countably Hm rectifiable metric spaces of the same
dimension as the sequence of manifolds or possibly the 0 space. When there

is a Gromov-Hausdorff limit, Mm
j

GH−→ Y , and one has uniform bounds on
volume and boundary volume,

(2) Vol(Mj) ≤ V0 and Vol(∂Mj) ≤ A0,

then a subsequence has an intrinsic flat limit, Mji
F−→ X where X ⊂ Y with

the restricted distance, dX = dY [39]. It is possible that X is the 0 space
or a strict subset of Y either because the sequence is collapsing or due to
cancellation (see examples in [39]). When the sequence is collapsing to a GH
limit Y with a Hausdorff dimension that is strictly less than m, then X must
be the 0 space. Intrinsic flat limits may exist for sequences of manifolds with
no Gromov-Hausdorff limit [39]. In fact Wenger’s Compactness Theorem
implies that any sequenceMj satisfying (2) and a uniform bound on diameter
has a subsequence converging in the intrinsic flat sense possibly to the 0
space [41]. See Section 2 for a review.

This paper focuses on sequences of oriented Riemannian manifolds, Mm
j

satisfying (1), or more generally integral current spaces satisfying a similar
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condition, which converge in the intrinsic flat sense. The paper begins with
the definition of converging and disappearing sequences of points [Defini-
tions 3.1 and 3.2] and a proof that diameter is lower semicontinuous [The-
orem 3.6]. Viewing balls within integral current spaces as integral current
spaces themselves [Lemma 2.34] it is proven that, for almost every radius,
balls around converging points have subsequences which converge to balls
about their limit points [Lemma 4.1]. The necessity of taking a subsequence
is shown in Example 4.3. If a sequence of points disappears, the balls of small
radius about those points converge to the 0 space [Lemma 4.1]. Lemma 4.4
examines how the intrinsic flat distance may be estimated when the spaces
are rescaled. Although technical, these lemmas are key steps in the subse-
quent theorems.

It is shown in Theorem 5.1 that if Riemannian manifolds Mi converge
in the intrinsic flat sense to a nonzero precompact limit space, M , then

there are open submanifolds Ni ⊂Mi such that Ni
GH−→M . This theorem

and Remark 5.2 also describe the volumes of these submanifolds as well as
what happens when Mi are integral current spaces. Section 5 also contains
a few related open questions within remarks concerning possible extensions
and applications of this theorem.

Theorem 6.1 is the simplest Intrinsic Flat Arzela-Arzela Theorem. It

states that if a sequence of functions, Fi : Mi →W where Mi
F−→M∞ and

W is compact and Lip(Fi) ≤ K, then there is a converging subsequence Fi →
F∞ where F∞ : M∞ →W also has Lip(F∞) ≤ K. A precise description as
to exactly how Fi → F∞ is given. More general is Theorem 6.2 which allows
the target spaces to converge in the GH sense. Remark 6.3 explains the
impossibility of extending this theorem to allow the target spaces to converge
in the intrinsic flat sense.

Theorem 7.1 is an Intrinsic Flat Bolzano-Weierstrass theorem for points

pi ∈Mi such that Mi
F−→M∞. Since it is known that points may disappear

in the limit [Remark 3.3], it is necessary to add a condition to obtain a
subsequence with a limit point p∞. In Theorem 7.1, the extra condition is
that for almost every sufficiently small radius there is a uniform bound on
the intrinsic flat distance between the balls about pi and 0. Remark 2.38
discusses how one can obtain such a bound when needed.

Theorem 8.1 is the second Intrinsic Flat Arzela-Ascoli Theorem proven
here. In this theorem the domains and ranges of the functions converge
in the intrinsic flat sense and have uniform upper bounds as in (2). The
functions are assumed to be local isometries which are isometries on balls
of fixed radius. It is shown that a subsequence of the functions converges
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to a limit function which is also a local isometry. If the functions are sur-
jective, then so is the limit. The case where the limit spaces are possibly
the 0 space is also considered. Remark 8.4 discusses a possible extension of
this theorem to uniformly locally bi-Lipschitz functions or more simply uni-
formly bi-Lipschitz functions. Remark 8.2 discusses the necessity of various
conditions in Theorem 8.1.

In Section 9 an example is presented showing how these theorems can
be applied to prove certain sequences of Riemannian manifolds have no
intrinsic flat limit. Additional applications to construct examples which do
have specific limits will appear in joint work with Basilio [3].

Section 10 includes remarks describing the possible additional applica-
tions of the various theorems in this paper. In particular one may be able
to apply Theorem 8.1 to answer a question posed by Gromov in [14] con-
cerning the intrinsic flat limits of tori whose universal covers have almost
maximal volume growth in the sense described by Burago-Ivanov in [5]. See
Remark 10.1. Additional possible applications of Theorem 8.1 to extend
work of the author with Wei are described in Remarks 10.2 and 10.3. It may
also be possible to apply Theorem 6.2 to study the limits of harmonic func-
tions, eigenfunctions and heat kernels. See Remark 10.4. In Remark 10.5, it
is described how one may be able to apply Theorem 7.1 to prove that the
intrinsic flat and Gromov-Hausdorff limits of Riemannian manifolds with
uniform lower Ricci curvature bounds agree extending a theorem of the au-
thor with Wenger in [38]. Finally there are three remarks discussing how
various theorems in the paper may be applied to a variety of questions and
conjectures related to questions in General Relativity.

The author would like to thank Blaine Lawson (SUNYSB) for suggesting
that the basic properties of intrinsic flat convergence should appear in their
own paper separate from the more technical theorems involving the Gromov
Filling Volume which appear in [29]. That lead to the creation of this paper.
The author is also indebted to doctoral students, Jacobus Portegies and
Raquel Perales, and the referee for their careful reading of this paper and
their extensive feedback.

2. Background

Here the key definitions and theorems applied in this paper are reviewed.
Please keep in mind that this is by no means a complete introduction to
Gromov-Hausdorff convergence and Intrinsic Flat convergence. Only the no-
tions that are applied in this paper are reviewed. In fact, the primary reason
for combining Theorems 5.1, 6.2, 7.1, and 8.1 together into this paper is
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because these four theorems can be proven using the same background ma-
terial. Other related theorems appearing in [29] all require additional results
of Gromov and Ambrosio-Kirchheim.

Those who have already studied the notion of Intrinsic Flat convergence
in the initial paper by the author with Wenger [39], should still review Sub-
sections 2.1, 2.3 and 2.7 which cover material not presented there. Those
who have never studied Gromov-Hausdorff or Intrinsic Flat convergence will
find the entire background section useful as a very brief but self contained
introduction to the subjects. As the author sees no reason to restate theo-
rems, definitions and remarks, some of these statements have been repeated
exactly as stated in prior background sections written by the author else-
where.

2.1. A review of Gromov-Hausdorff convergence

Throughout this paper, Gromov’s definition of an isometric embedding will
be used:

Definition 2.1. A map ϕ : X → Y between metric spaces, (X, dX) and
(Y, dY ), is an isometric embedding iff it is distance preserving:

(3) dY (ϕ(x1), ϕ(x2)) = dX(x1, x2) ∀x1, x2 ∈ X.

Observe that this does not agree with the Riemannian notion of an
isometric embedding.

The following is one of the more beautiful definitions of the Gromov-
Hausdorff distance:

Definition 2.2 (Gromov). The Gromov-Hausdorff distance between two
compact metric spaces (X1, dX1

) and (X2, dX2
) is defined as

(4) dGH (X1, X2) := inf
{
dZH (ϕ1 (X1) , ϕ2 (X2)) | ϕi : Xi → Z

}
where the infimum is taken over compact metric spaces, Z, and isometric
embeddings, ϕi : Xi → Z, and where the Hausdorff distance in Z is defined
as

(5) dZH (A,B) = inf{ε > 0 |A ⊂ Tε (B) and B ⊂ Tε (A)}

where Tε(A) = {x ∈ Z : ∃ a ∈ A s.t. dZ(x, a) < ε}.
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Gromov proved that this is indeed a distance on compact metric spaces
in the sense that dGH (X,Y ) = 0 iff there is an isometry between X and Y
in [13]. Gromov proved the following embedding theorem in [12]:

Theorem 2.3 (Gromov). If a sequence of compact metric spaces, Xj,
converges in the Gromov-Hausdorff sense to a compact metric space X∞,

(6) Xj
GH−→ X∞

then in fact there is a compact metric space, Z, and isometric embeddings
ϕj : Xj → Z for j ∈ {1, 2, . . . ,∞} such that

(7) dZH (ϕj(Xj), ϕ∞(X∞))→ 0.

This theorem allows one to define converging sequences of points:

Definition 2.4. One says that xj ∈ Xj converges to x∞ ∈ X∞, if there is
a common space Z as in Theorem 2.3 such that ϕj(xj)→ ϕ∞(x) as points
in Z. If one discusses the limits of multiple sequences of points then one uses
a common Z and the same collection of ϕj to determine the convergence.
This avoids difficulties arising from isometries in the limit space. Then one
immediately has

(8) lim
j→∞

dXj
(xj , x

′
j) = dX∞(x∞, x

′
∞)

whenever xj → x∞ and x′j → x′∞ via a common Z.

One can apply Theorem 2.3 to see that for any x∞ ∈ X∞ there exists
xj ∈ Xj converging to x∞ in this sense. Also observe that whenever xj con-
verges to x∞ in this sense,

dGH (B(xj , r), B(x∞, r))(9)

≤ dZH (B(ϕj(xj), r), B(ϕ∞(x∞), r))→ 0 ∀r > 0

if one views the balls B(xj , r) ⊂ Xj as metric spaces endowed with the re-
stricted metric, dXj

, from Xj . See the appendix of joint work of the author
with Wei [37] for a theorem concerning the induced length metrics. Theo-
rem 2.3 also implies the following basic Bolzano-Weierstrass Theorem:

Theorem 2.5 (Gromov). Given compact metric spaces, Xj
GH−→ X∞, and

xj ∈ Xj then a subsequence also denoted xj converges to a point x∞ ∈ X∞
in the sense described above.
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In particular, one sees that

(10) Xj → X∞ =⇒ lim
j→∞

Diam(Xj) = Diam(X∞).

Gromov’s embedding theorem can also be applied in combination with
other extension theorems to obtain the following Gromov-Hausdorff Arzela-
Ascoli Theorem.

Theorem 2.6 (Gromov). Given compact metric spaces, Xj
GH−→ X∞ and

Yj → Y∞, and equicontinuous functions, fj : Xj → Yj, in the sense that

(11) ∀ε > 0 ∃δε > 0 such that dXj
(x, x′) < δε =⇒ dYj

(fj(x), fj(x
′)) ≤ ε.

Then there exists a subsequence, also denoted fj : Xj → Yj, which converges
to a continuous function, f∞ : X∞ → Y∞, in the sense that there exists com-
mon compact metric spaces, Z,W, and isometric embeddings, ϕj : Xj → Z,
ψj : Yj →W , such that

(12) lim
j→∞

ψj(fj(xj)) = ψ∞(f∞(x∞)) whenever lim
j→∞

ϕj(xj) = ϕ∞(x∞).

Furthermore, if Lip(fj) ≤ K then Lip(f∞) ≤ K.

Gromov used this idea to prove that geodesic metric spaces converge
to geodesic metric spaces but did not include a general proof in [13]. For
completeness of exposition, we include a proof here. One may also find a
discussion of the proof in a paper of Grove-Petersen [15] and a more general
statement in Theorem 2.3 of [34] by the author.

Proof. By Gromov’s Embedding Theorem, one has isometric embeddings
ϕj : Xj → Z and ψj : Yj →W such that

dZH(ϕj(Xj), ϕ∞(X∞))→ 0 and dWH (ψj(Yj), ψ∞(Y∞))→ 0.

Let X0 ⊂ X∞ be a countable dense subset. For each p∞ ∈ X0, there exists
pj ∈ Xj such that ϕj(pj)→ ϕ∞(p∞). Since W is compact, a subsequence of
ψj(fj(pj)) ∈W converges to some point w∞ ∈W .

We claim w∞ ∈ ψ∞(Y∞). If not, then there exists r > 0 such that

B(w∞, r) ∩ ψ∞(Y∞) = ∅.

Then for j sufficiently large

B(ψj(fj(pj)), r/2) ∩ ψ∞(Y∞) = ∅.
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This implies that

dH(ψj(Yj), ψ∞(Y∞)) ≥ r/2,

which is a contradiction.
Thus we have a point we call f∞(p∞) ∈ Y∞ such that ψ∞(f∞(p∞)) =

w∞. Applying a diagonalization process to choose a subsequence, we have
thus defined f∞ : X0 ⊂ X∞ → Y∞ satisfying (11). Extending this function
continuously to f∞ : X∞ → Y∞, it still satisfies (11).

To see that (12) holds consider xj ∈ Xj such that

lim
j→∞

ϕj(xj) = ϕ∞(x∞).

Taking p∞ = x∞ as in the top of the proof, there exists pj ∈ Xj such that
ϕj(pj)→ ϕ∞(p∞) and ψj(fj(pj))→ ψ∞(f∞(p∞)). Observe that

dXj
(xj , pj) = dZ(ϕj(xj), ϕj(pj))

≤ dZ(ϕj(xj), ϕ∞(x∞)) + dZ(ϕ∞(x∞), ϕj(pj))→ 0.

For any ε > 0 take j sufficiently large that dX(xj , pj) < δε of (11), then

lim
j→∞

dW (ψj(fj(xj)), ψ∞(f∞(x∞)))

≤ lim
j→∞

dW (ψj(fj(xj)), ψj(fj(pj))) + dW (ψj(fj(pj)), ψ∞(f∞(x∞)))

= lim
j→∞

dYj
(fj(xj), fj(pj)) + dW (ψj(fj(pj)), ψ∞(f∞(p∞)))

< ε+ 0 ∀ε > 0.

Thus ψj(fj(xj))→ ψ∞(f∞(x∞)). �

All these theorems are key ingredients in the many important works
applying Gromov-Hausdorff convergence to better understand Riemannian
Geometry. See the classic textbook of Burago-Burago-Ivanov [4], the work
of Cheeger-Colding [6] and the work of the author with Wei [35].

In this paper these theorems are extended, as far as possible, in the
setting where one only has intrinsic flat convergence. Of course it is known
that these theorems do not hold in their full strength in the setting where
sequences of Riemannian manifolds are converging in the intrinsic flat sense.
Examples in joint work of the author with Wenger in [39] demonstrate that
(10) fails in general and that geodesics need not converge to geodesics. Nev-
ertheless there are versions of these theorems which do hold.
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2.2. Review of Ambrosio-Kirchheim currents on metric spaces

In order to rigorously review the definition of the intrinsic flat distance, one
needs a few key results of Ambrosio-Kirchheim. These results will also be
applied later to prove the main theorems of the paper.

In [2], Ambrosio-Kirchheim extend Federer-Fleming’s notion of integral
currents on Euclidean space to an arbitrary complete metric space, Z. In
Federer-Fleming, currents were defined as linear functionals on differential
forms [10]. This approach extends naturally to smooth manifolds but not
to complete metric spaces which do not have differential forms. In the place
of differential forms, Ambrosio-Kirchheim use DiGeorgi’s m+ 1 tuples, ω ∈
Dm(Z),

(13) ω = fπ = (f, π1, . . . , πm) ∈ Dm(Z)

where f : X → R is a bounded Lipschitz function and πi : X → R are Lips-
chitz.

In [2] Definitions 2.1, 2.2, 2.6 and 3.1, an m dimensional current T ∈
Mm(Z) is defined. Here these are combined into a single definition:

Definition 2.7. On a complete metric space, Z, an m dimensional cur-
rent, denoted T ∈Mm(Z), is a real valued multilinear functional on Dm(Z),
with the following three required properties:

i) Locality:

T (f, π1, . . . , πm) = 0

if ∃i ∈ {1, . . . ,m} s.t. πi is constant on a nbd of {f 6= 0}.

ii) Continuity: Continuity of T with respect to the ptwise convergence of
πi such that Lip(πi) ≤ 1.

iii) Finite mass:

∃ finite Borel µ

s.t. |T (f, π1, . . . , πm)| ≤
m∏
i=1

Lip(πi)

∫
Z
|f | dµ ∀(f, π1, . . . , πm) ∈ Dm(Z).

In [2] Definition 2.6 Ambrosio-Kirchheim introduce their mass measure:
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Definition 2.8. The mass measure ‖T‖ of a current T ∈Mm(Z), is the
smallest Borel measure µ such that

(14)
∣∣∣T (f, π)

∣∣∣ ≤ ∫
X
|f |dµ ∀ (f, π) where Lip (πi) ≤ 1.

The mass of T is defined

(15) M (T ) = ||T || (Z) =

∫
Z
d‖T‖.

In particular

(16)
∣∣∣T (f, π1, . . . , πm)

∣∣∣ ≤M(T )|f |∞ Lip(π1) · · ·Lip(πm).

Ambrosio-Kirchheim then define restrictions and push forwards:

Definition 2.9. [2][Defn 2.5] The restriction T ω ∈Mm(Z) of a current
T ∈Mm+k(Z) by a k + 1 tuple ω = (g, τ1, . . . , τk) ∈ Dk(Z):

(17) (T ω)(f, π1, . . . , πm) := T (f · g, τ1, . . . , τk, π1, . . . , πm).

Given a Borel set, A,

(18) T A := T ω

where ω = 1A ∈ D0(Z) is the indicator function of the set. In this case,

(19) M(T ω) = ||T ||(A).

Definition 2.10. Given a Lipschitz map ϕ : Z → Z ′, the push forward of
a current T ∈Mm(Z) to a current ϕ#T ∈Mm(Z ′) is given in [2][Defn 2.4]
by

(20) ϕ#T (f, π1, . . . , πm) := T (f ◦ ϕ, π1 ◦ ϕ, . . . , πm ◦ ϕ).

Remark 2.11. Observe that

(21) (ϕ#T ) (f, π1, . . . , πk)) = ϕ#(T (f ◦ ϕ, π1 ◦ ϕ, . . . , πk ◦ ϕ))

and

(22) (ϕ#T ) A = (ϕ#T ) (1A) = ϕ#(T (1A ◦ ϕ)) = ϕ#(T ϕ−1(A)).
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In (2.4) [2], Ambrosio-Kirchheim show that

(23) ||ϕ#T || ≤ [Lip(ϕ)]mϕ#||T ||,

so that when ϕ is an isometric embedding

(24) ||ϕ#T || = ϕ#||T || and M(T ) = M(ϕ#T ).

The simplest example of a current is:

Example 2.12. Given a Lebesgue function h ∈ L1(A,Z) where A ⊂ Rm is
Borel, then we can define an m dimensional current in Rm, [h] ∈Mm(Rm),
as follows

(25) [h](f, π1, . . . , πm) =

∫
A⊂Rm

h · f dπ1 ∧ · · · ∧ dπm.

Here the mass measure and mass are

(26) ||[h]|| = |h| dLm M([h]) =

∫
A
|h| dLm

respectively. If one has a bi-Lipschitz map, ϕ : Rm → Z, then we can define
an m dimensional current in Z using the pushforward map

(27) ϕ#[h](f, π1, . . . , πm) =

∫
A⊂Rm

(h ◦ ϕ)(f ◦ ϕ)d(π1 ◦ ϕ) ∧ · · · ∧ d(πm ◦ ϕ)

where d(πi ◦ ϕ) is well defined almost everywhere by Rademacher’s Theorem.

In [2][Theorem 4.6] Ambrosio-Kirchheim define the following set associ-
ated with any integer rectifiable current:

Definition 2.13. The (canonical) set of a current, T , is the collection of
points in Z with positive lower density:

(28) set (T ) = {p ∈ Z : Θ∗m (‖T‖, p) > 0},

where the definition of lower density is

(29) Θ∗m (µ, p) = lim inf
r→0

µ(Bp(r))

ωmrm
.

In [2] Definition 4.2 and Theorems 4.5-4.6, an integer rectifiable current
is defined using the Hausdorff measure, Hm:
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Definition 2.14. Let m ≥ 1. A current, T ∈ Dm(Z), is rectifiable if set(T )
is countably Hm rectifiable and if ||T ||(A) = 0 for any set A ⊂ Z whose
Hausdorff measure is zero, Hk(A) = 0. One writes T ∈ Rm(Z).

One says T ∈ Rm(Z) is integer rectifiable, denoted T ∈ Im(Z), if for any
ϕ ∈ Lip(Z,Rm) and any open set A ⊂ Z, then

(30) ∃ θ ∈ L1(Rk, Z) s.t. ϕ#(T A) = [θ] as in (25).

In fact, T ∈ Im(Z) iff it has a parametrization. A parametrization ({ϕi}, {θi})
of an integer rectifiable current T ∈ Im (Z) is a collection of bi-Lipschitz
maps ϕi : Ai → Z with Ai ⊂ Rm precompact Borel measurable and with
pairwise disjoint images and weight functions θi ∈ L1 (Ai,N) such that

(31) T =

∞∑
i=1

ϕi#[θi] and M (T ) =

∞∑
i=1

M (ϕi#[θi]) .

A 0 dimensional rectifiable current is defined by the existence of count-
ably many distinct points, {xi} ∈ Z, weights θi ∈ R+ and orientation, σi ∈
{−1,+1} such that

(32) T (f) =
∑
h

σiθif(xi) ∀f ∈ B∞(Z).

where B∞(Z) is the class of bounded Borel functions on Z and where

(33) M(T ) =
∑
h

θi <∞

If T is integer rectifiable θi ∈ Z+, so the sum must be finite.

In particular, the mass measure of T ∈ Im(Z) satisfies

(34) ||T || =
∞∑
i=1

||ϕi#[θi]||.

Theorems 4.3 and 8.8 of [2] provide necessary and sufficient criteria for
determining when a current is integer rectifiable.

Note that the current in Example 2.12 is an integer rectifiable current.

Example 2.15. If one has a Riemannian manifold, Mm, and a bi-Lipschitz
map ϕ : Mm → Z, then T = ϕ#[1M ] is an integer rectifiable current of di-
mension m in Z. If ϕ is an isometric embedding, and Z = M then M(T ) =
Vol(Mm). Note further that set(T ) = ϕ(M).
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Definition 2.16. [2][Defn 2.3] The boundary of T ∈Mm(Z) is defined

(35) ∂T (f, π1, . . . , πm−1) := T (1, f, π1, . . . , πm−1) ∈Mm−1(Z)

When m = 0, set ∂T = 0.

Note that ϕ#(∂T ) = ∂(ϕ#T ).

Definition 2.17. [2][Defn 3.4 and 4.2] An integer rectifiable current T ∈
Im(Z) is called an integral current, denoted T ∈ Im(Z), if ∂T defined as

(36) ∂T (f, π1, . . . , πm−1) := T (1, f, π1, . . . , πm−1)

has finite mass. The total mass of an integral current is

(37) N(T ) = M(T ) + M(∂T ).

Observe that ∂∂T = 0. In [2] Theorem 8.6, Ambrosio-Kirchheim prove
that

(38) ∂ : Im(Z)→ Im−1(Z)

whenever m ≥ 1.
Recall Definition 2.10 of the push forward of a current. By (23) one can

see that if ϕ : Z1 → Z2 is Lipschitz, then

(39) ϕ# : Im(Z1)→ Im(Z2).

Recall Definition 2.9 of the restriction of a current. The restriction of
an integral current need not be an integral current except in special cir-
cumstances. For example, T might be integration over [0, 1]2 with the Eu-
clidean metric and A ⊂ [0, 1]2 could have an infinitely long boundary, so
that T A /∈ I2([0, 1]2) because ∂(T A) has infinite mass. The Ambrosio-
Kirchheim Slicing Theorem, presented next, allows one to prove T A is an
integral current for a large collection of open sets defined using Lipschitz
functions. See in particular (44) below.

2.3. Ambrosio-Kirchheim slicing theorem

As in the work of Federer-Fleming, Ambrosio-Kirchheim consider the slices
of currents:
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Theorem 2.18. [Ambrosio-Kirchheim] [2][Theorems 5.6-5.7] Let Z be
a complete metric space, T ∈ ImZ and f : Z → R a Lipschitz function. For
almost every s ∈ R one can define an integral current

(40) < T, f, s >:= −∂
(
T f−1(s,∞)

)
+ (∂T ) f−1(s,∞),

so that

(41) ∂ < T, f, s >=< −∂T, f, s >

and < T1 + T2, f, s >=< T1, f, s > + < T2, f, s >. In addition, one can in-
tegrate the masses to obtain:

(42)

∫
s∈R

M(< T, f, s >) ds = M(T df) ≤ Lip(f) M(T )

where

(43) (T df)(h, π1, . . . , πm−1) = T (h, f, π1, . . . , πm−1).

In particular, for almost every s > 0 one has

(44) T f−1(s,∞) ∈ Im−1 (Z) .

Remark 2.19. Observe that for any T ∈ Im(Z ′), and any Lipschitz func-
tions, ϕ : Z → Z ′ and f : Z ′ → R and any s > 0, one has

(45) < ϕ#T, f, s >= ϕ# < T, (f ◦ ϕ), s > .

2.4. Review of convergence of currents

Ambrosio Kirchheim’s Compactness Theorem, which extends Federer-
Fleming’s Flat Norm Compactness Theorem, is stated in terms of weak con-
vergence of currents. Definition 3.6 of [2] extends Federer-Fleming’s notion
of weak convergence (except that they do not require compact support):

Definition 2.20. A sequence of integral currents Tj ∈ Im (Z) is said to
converge weakly to a current T iff the pointwise limits satisfy

(46) lim
j→∞

Tj (f, π1, . . . , πm) = T (f, π1, . . . , πm)

for all bounded Lipschitz f : Z → R and Lipschitz πi : Z → R. One writes

(47) Tj → T
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One sees immediately that Tj → T implies

(48) ∂Tj → ∂T,

and

(49) ϕ#Tj → ϕ#T.

However Tj A need not converge weakly to T A as seen in the following
example:

Example 2.21. Let Z = R2 with the Euclidean metric. Let ϕj : [0, 1]→ Z
be ϕj(t) = (1/j, t) and ϕ∞(t) = (0, t). Let S ∈ I1([0, 1]) be

(50) S(f, π1) =

∫ 1

0
f dπ1.

Let Tj ∈ I1(Z) be defined Tj = ϕj#(S). Then Tj → T∞. Taking A = [0, 1]×
(0, 1), one has Tj A = Tj but T∞ A = 0.

Immediately below the definition of weak convergence [2] Definition 3.6,
Ambrosio-Kirchheim prove the lower semicontinuity of mass: If Tj converges
weakly to T , then

(51) lim inf
j→∞

M(Tj) ≥M(T ).

and for any open set, A ⊂ Z,

(52) lim inf
j→∞

||Tj ||(A) ≥ ||T ||(A).

Theorem 2.22 (Ambrosio-Kirchheim Compactness). Given any com-
plete metric space Z, a compact set K ⊂ Z and A0, V0 > 0. Given any se-
quence of integral currents Tj ∈ Im (Z) satisfying

(53) M(Tj) ≤ V0, M(∂Tj) ≤ A0 and set (Tj) ⊂ K,

there exists a subsequence, Tji, and a limit current T ∈ Im (Z) such that Tji
converges weakly to T .
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2.5. Review of integral current spaces

The notion of an integral current space was introduced by the author and
Stefan Wenger in [39]:

Definition 2.23. An m dimensional metric space (X, d, T ) is called an
integral current space if it has a integral current structure T ∈ Im

(
X̄
)

where
X̄ is the metric completion of X and set(T ) = X. Also included in the m
dimensional integral current spaces is the 0 space, denoted 0. The integral
current structure of the 0 space is T = 0 and it has an empty metric space.

Note that set (∂T ) ⊂ X̄. The boundary of (X, d, T ) is then the integral
current space:

(54) ∂ (X, dX , T ) := (set (∂T ) , dX̄ , ∂T ) .

If ∂T = 0 then one says (X, d, T ) is an integral current without boundary.
The 0 space has no boundary.

Definition 2.24. The space of m ≥ 0 dimensional integral current spaces,
Mm, consists of all metric spaces which are integral current spaces with
currents of dimension m as in Definition 2.23 as well as the 0 spaces. Then
∂ :Mm+1 →Mm.

Remark 2.25. Any m dimensional integral current space is countably Hm
rectifiable with oriented charts, ϕi and weights θi provided as in (31).

Example 2.26. A compact oriented Riemannian manifold with boundary,
Mm, is an integral current space, where X = Mm, d is the standard metric
on M and T is integration over M . In this case M(M) = Vol(M) and ∂M
is the boundary manifold. When M has no boundary, ∂M = 0.

2.6. Review of the intrinsic flat convergence

Recall that the flat distance between m dimensional integral currents S, T ∈
Im (Z) is given by

(55) dZF (S, T ) := inf{M (U) + M (V ) : S − T = U + ∂V }
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where U ∈ Im (Z) and V ∈ Im+1 (Z). This notion of a flat distance was
first introduced by Whitney in [42] for chains and later adapted to rectifi-
able currents by Federer-Fleming [10]. The flat distance between Ambrosio-
Kirchheim’s integral currents was studied by Wenger in [40]. In particular,
Wenger proved that if Tj ∈ Im(Z) has M(Tj) ≤ V0 and M(∂Tj) ≤ A0 then
Tj converges weakly to T as currents iff dZF (Tj , T )→ 0. A similar result was
proven by Federer-Fleming for currents in Euclidean space in [10].

The intrinsic flat distance between integral current spaces was first de-
fined in [39][Defn 1.1]:

Definition 2.27. For M1 = (X1, d1, T1) and M2 = (X2, d2, T2) ∈Mm let
the intrinsic flat distance be defined:

(56) dF (M1,M2) := inf dZF (ϕ1#T1, ϕ2#T2) ,

where the infimum is taken over all complete metric spaces (Z, d) and iso-
metric embeddings ϕ1 :

(
X̄1, d1

)
→ (Z, d) and ϕ2 :

(
X̄2, d2

)
→ (Z, d) and the

flat norm dZF is taken in Z. Here X̄i denotes the metric completion of Xi

and di is the extension of di on X̄i and φ#T denotes the push forward of T
by the map φ.

In [39], it is observed that

(57) dF (M1,M2) ≤ dF (M1, 0) + dF (0,M2) ≤M (M1) + M (M2) .

There it is also proven that dF satisfies the triangle inequality [39][Thm 3.2]
and is a distance [39][Thm3.27] on the class of precompact integral current
spaces up to current preserving isometries:

F : X1 → X2 s.t. F#T1 = T2 and d2(F (p), F (q)) = d1(p, q) ∀p, q ∈ X1.

In particular it is a distance on the class of oriented compact manifolds with
boundary of a given dimension.

In [39] Theorem 3.23 it is also proven that

Theorem 2.28. [39][Thm 3.23] Given a pair of precompact integral current
spaces, Mm

1 = (X1, d1, T1) and Mm
2 = (X2, d2, T2), there exists a compact

metric space, (Z, dZ), integral currents U ∈ Im (Z) and V ∈ Im+1 (Z), and
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isometric embeddings ϕ1 : X̄1 → Z and ϕ2 : X̄2 → Z with

(58) ϕ1#T1 − ϕ2#T2 = U + ∂V

such that

(59) dF (M1,M2) = M (U) + M (V ) .

Remark 2.29. The metric space Z in Theorem 2.28 has

(60) Diam(Z) ≤ 3 Diam(X1) + 3 Diam(X2).

This is seen by consulting the proof of Theorem 3.23 in [39], where Z is
constructed as the injective envelope of the Gromov-Hausdorff limit of a
sequence of spaces Zn with this same diameter bound.

The following theorem in [39] is an immediate consequence of Gromov
and Ambrosio-Kirchheim’s Compactness Theorems:

Theorem 2.30. Given a sequence of precompact m dimensional integral
current spaces Mj = (Xj , dj , Tj) such that

(61)
(
X̄j , dj

) GH−→ (Y, dY ) , M(Mj) ≤ V0 and M(∂Mj) ≤ A0

then a subsequence converges in the intrinsic flat sense

(62) (Xji , dji , Tji)
F−→ (X, dX , T )

where either (X, dX , T ) is the 0 current space or (X, dX , T ) is an m dimen-
sional integral current space with X ⊂ Y with the restricted metric dX = dY .

Immediately one notes that if Y has Hausdorff dimension less than m,
then (X, d, T ) = 0. There are many examples of sequences of Riemannian
manifolds which have no Gromov-Hausdorff limit but have an intrinsic flat
limit. The first is Ilmanen’s Example of an increasingly hairy three sphere
with positive scalar curvature described in [39] Example A.7.

The following three theorems are proven in work of the author with
Wenger [39]. These theorems with the work of Ambrosio-Kirchheim reviewed
are key ingredients in the proofs of the theorems in this paper.
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Theorem 2.31. [39][Thm 4.2] If a sequence of integral current spaces has

(63) Mj = (Xj , dj , Tj)
F−→M0 = (X0, d0, T0) ,

then there is a separable complete metric space, Z, and isometric embeddings
ϕj : Xj → Z such that

(64) dZF (ϕj#Tj , ϕ0#T0)→ 0

and thus ϕj#Tj converges weakly to ϕ0#T0 as well.

Theorem 2.32. [39][Thm 4.3] If a sequence of integral current spaces has

(65) Mj = (Xj , dj , Tj)
F−→ 0

then one may choose points xj ∈ Xj and a separable complete metric space,
Z, and isometric embeddings ϕj : Xj → Z such that ϕj(xj) = z0 ∈ Z and

(66) dZF (ϕj#Tj , 0)→ 0

and thus ϕj#Tj converges weakly to 0 in Z as well.

Theorems 2.31 and 2.32 combined with Ambrosio-Kirchheim’s lower
semicontinuity of mass [c.f. Remark 2.33] imply the following:

Theorem 2.33. If a sequence of integral current spaces Mj converges in
the intrinsic flat sense to an integral current space, M∞, then

(67) lim inf
i→∞

M(Mi) ≥M(M∞)

Note that Theorems 2.31, 2.32 and 2.33 do not require uniform bounds
on the masses or volumes of the Mj and ∂Mj .

2.7. Balls in integral current spaces

Many theorems in Riemannian geometry involve open and closed balls,

(68) B(p, r) = {x ∈ X : dX(x, p) < r} B̄(p, r) = {x ∈ X : dX(x, p) ≤ r}.

Here a few basic lemmas are proven about balls in integral current spaces.
These lemmas are new but so basic that they are best placed in this back-
ground section.
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Lemma 2.34. A ball in an integral current space, M = (X, d, T ), with the
current restricted from the current structure of M is an integral current
space itself,

(69) S(p, r) := ( set(T B(p, r)), d, T B (p, r).)

for almost every r > 0. Furthermore,

(70) B(p, r) ⊂ set(S(p, r)) ⊂ B̄(p, r) ⊂ X.

Proof. First one shows that S(p, r) = T B(p, r) is an integer rectifiable
current. Let ρp : X̄ → R be the distance function from p. Then by Ambrosio-
Kirchheim’s Slicing Theorem, applied to f(x) = −ρp(x), one has

∂(T B(p, r)) = ∂(T ρ−1
p (−∞, r))(71)

=< T,−ρp,−r > +(∂T ) ρ−1
p (−∞, r)(72)

=< T,−ρp,−r > +(∂T ) B(p, r)(73)

where the mass of the slice < T, ρp, r > is bounded for almost every r. Thus

M(∂(T B(p, r))) ≤M(< T,−ρp,−r >) + M((∂T ) B(p, r))(74)

≤M(< T,−ρp,−r >) + M(∂T ) <∞.(75)

So T B(p, r) is an integral current in X̄ for almost every r.
Next one proves (70). Recall that x ∈ set(S(p, r)) ⊂ X̄ iff

0 < lim inf
s→0

||S(p, r)||(B(x, s))

ωmsm
(76)

= lim inf
s→0

||T ||(B(p, r) ∩B(x, s))

ωmsm
(77)

If x ∈ B(p, r) ⊂ X, then eventually B(x, s) ⊂ B(p, r) and the liminf is just
the lower density of T at x. Since x ∈ X = set(T ), this lower density is
positive. If x ∈ X̄ \X, then the liminf is 0 because it is smaller than the
density of T at x, which is 0. If x /∈ B̄(p, r), then the liminf is 0 because
eventually the balls do not intersect. �

One may imagine that it is possible that a ball is cusp shaped and that
some points in the closure of the ball that lie in X do not lie in the set of
S(p, r). In a manifold, the set of S(p, r) is a closed ball:
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Lemma 2.35. When M is a Riemannian manifold with boundary we have

(78) S (p, r) =
(
B̄ (p, r) , d, T B (p, r)

)
is an integral current space for all r > 0.

Proof. In this setting,

∂(T B(p, r))(f, π1, . . . , πm) = (T B(p, r))(1, f, π1, . . . , πm)(79)

= T
(
χB(p,r), f, π1, . . . , πm

)
(80)

=

∫
M
χB(p,r)df ∧ dπ1 ∧ · · · ∧ dπm(81)

=

∫
B(p,r)

df ∧ dπ1 ∧ · · · ∧ dπm(82)

=

∫
∂B(p,r)

f dπ1 ∧ · · · ∧ dπm(83)

Thus for every r > 0 we have,

(84) M
(
∂(T B(p, r))

)
= Volm−1 (∂Bp(r)) <∞.

By (70) we need only show ∂B(p, r) ⊂ set(S(p, r)). If d(x, p) = r, then
let γ : [0, r]→M be a curve parametrized by arclength running minimally
from x to p. Then

(85) B(γ(s/2), s/2) ⊂ B(x, s) ∩B(p, r).

and

lim inf
s→0

||S(p, r)||(B(x, s))

ωmsm
= lim inf

s→0

||T ||(B(p, r) ∩B(x, s))

ωmsm
(86)

≥ lim inf
s→0

||T ||(B(γ(s/2), s/2)

ωmsm
(87)

≥ lim inf
s→0

Vol(B(γ(s/2), s/2)

2mωm(s/2)m
≥
Cγ(s/2)

2m
(88)

where Cq = 1/2 when q ∈ ∂M and Cq = 1 when q ∈M \ ∂M . In either case
we have a positive liminf and thus x ∈ set(S(p, r)). �

Example 2.36. There exist integral current spaces with balls that are not
integral current spaces.
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Proof. Suppose one defines an integral current space, (X, d, T ) where X =
S2 with the following generalized metric

(89) g = dr2 +
(
cos(r)/

√
r
)2
dθ2 r ∈ [−π/2, π/2].

The metric is defined as

(90) d(p1, p2) = inf {Lg(γ) : γ(0) = p1, γ(1) = p2}

where

(91) Lg(γ) =

∫ 1

0
g(γ′(t), γ′(t))1/2 dt

as in a Riemannian manifold. In fact this metric space consists of two open
isometric Riemannian manifolds diffeomorphic to disks whose metric com-
pletions are glued together along corresponding points. The current struc-
ture T is defined by

(92) T (f, π1, . . . , πm) =

∫ 0

−π/2

∫
S1

f dπ1 ∧ dπ2 +

∫ π/2

0

∫
S1

f dπ1 ∧ dπ2

so that ∂T = 0 and

M(T ) = Volm
(
r−1[−π/2, 0)

)
+ Volm

(
r−1(0, π/2]

)
(93)

= 2

∫ π/2

0
2π
(

cos(r)r−1/2
)
dr(94)

≤ 4π

∫ π/2

0
r−1/2 dr = 8π(π/2)1/2 <∞.(95)

Taking p such that r(p) = −π/2, then S(p, π/2) is a rectifiable current
but its boundary does not have finite mass. This can be seen by taking
q such that (r(q), θ(q)) = (0, 0), setting π1 = ρq and f = ρp = r + π/2 and
observing that∣∣∂(S(p, π/2))(f, π1)

∣∣ =
∣∣S(p, π/2)(1, f, π1)

∣∣(96)

=

∣∣∣∣∣
∫
B(p,π/2)

df ∧ dπ1

∣∣∣∣∣(97)

≥

∣∣∣∣∣
∫
B(p,π/2−δ)

df ∧ dπ1

∣∣∣∣∣(98)
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=

∣∣∣∣∣
∫
∂B(p,π/2−δ)

f dπ1

∣∣∣∣∣(99)

=

∣∣∣∣∫ π

θ=−π
(π/2− δ) dπ1

dθ
dθ

∣∣∣∣(100)

=

∣∣∣∣∫ π

θ=−π
(π/2− δ) cos(r)

r1/2
dθ

∣∣∣∣(101)

≥ 2π(π/2− δ) cos(−δ) δ−1/2(102)

which is unbounded as δ decreases to 0. �

Remark 2.37. Note that the outside of the ball, (M \B(p, r), d, T−S(p, r)),
is also an integral current space for almost every r > 0.

Remark 2.38. In some of the theorems in this paper, it will be important
to estimate dF (S(p, r),0). There are various ways to estimate this value.
First observe that

(103) dF (S(p, r),0) ≤ min {M(S(p, r)),, M(∂(S(p, r))} .

In addition, if one finds a comparison integral current space, N , such that

(104) dF (S(p, r), N) < dF (N,0)/2

then by the triangle inequality

(105) dF (S(p, r),0) > dF (N,0)/2.

Recall that in joint work with Wenger [39], in joint work with Lakzian [19],
and in joint work with Lee [20] various means of estimating the intrinsic flat
distance are provided.

3. Converging points and diameters

In this section the limits of points in sequences of integral current spaces
that converge in the intrinsic flat sense are examined. See Definitions 3.1
and 3.2 and Lemma 3.4. The diameter is then proven to be lower semi-
continuous. See Definition 3.5 and Theorem 3.6. The depth is proven to be
semicontinuous. See Definition 3.7 and Theorem 3.8. The section ends with
two open questions.
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First we define what it means for a sequence of points xi ∈Mi to con-
verge to a point x∞ ∈M∞. We imitate the definition used for points in
sequences of metric spaces with a Gromov-Hausdorff limit. That definition
was made rigorous using the Gromov Embedding Theorem which embeds
the Mi into a common metric space (cf. Theorem 2.3). Our definition is
made rigorous using the embedding theorem for F-converging integral cur-
rent spaces (cf. Theorem 2.31).

Definition 3.1. If Mi=(Xi, di, Ti)
F−→M∞=(X∞, d∞, T∞), then one says

xi ∈ Xi are a converging sequence that converges to x∞ ∈ X̄∞ if

(106) ∃ Z and ∃ ϕi : Xi → Z such that dZF (ϕi#Ti, ϕ∞#T∞)→ 0

where Z is a complete metric space and ϕi are isometric embeddings, and

(107) ϕi(xi)→ ϕ∞(x∞).

A collection of points, {p1,i, p2,i, . . . , pk,i}, converges to a corresponding
collection of points, {p1,∞, p2,∞, . . . , pk,∞}, if ϕi(pj,i)→ ϕ∞(pj,∞) for j ∈
{1, . . . , k}.

Note that as in Gromov-Hausdorff convergence (c.f. Definition 2.4), there
is the possibility that a constant sequence of points, xi = x, in a constant se-
quence of spaces, Xi = X, can converge to any point x∞ ∈ X such that there
exists an (orientation preserving) isometry Φ : X → X such that Φ(x) = x∞.
This is a natural consequence of the fact that both the Gromov-Hausdorff
distance and the Intrinsic Flat distance are only defined up to (orientation
preserving) isometries on Riemannian manifolds. See Remark 3.9.

Unlike in Gromov-Hausdorff convergence, there is a possibility of disap-
pearing sequences of points:

Definition 3.2. If Mi=(Xi, di, Ti)
F−→M∞=(X∞, d∞, T∞), then one says

xi ∈ Xi are Cauchy if one has (106) where

(108) ϕi(xi)→ z∞ ∈ Z.

One says the sequence is disappearing if one has (106) and (108) where
z∞ /∈ ϕ∞(X∞). One says the sequence has no limit in X̄∞ if one has (106)
and (108) where z∞ /∈ ϕ∞(X̄∞).

Note that in this definition we only require the existence of a sequence of
ϕi. A constant sequence of points, xi = x, in a constant sequence of spaces,
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Xi = X, is always Cauchy in this sense as can be seen by taking X = Z and
ϕi to be the identity map. If the space X has a current preserving isometry,
Ψ : X → X, then the sequence of points ϕi(Ψ

i(x)) ⊂ Z alternates between
x and Ψ(x). So one cannot expect Cauchy sequences to always be embedded
as Cauchy sequences in Z for any choice of converging embeddings. This is a
natural consequence of the fact that intrinsic flat convergence is only defined
up to current preserving isometries. See Remark 3.10.

Remark 3.3. Examples with disappearing splines from [39] demonstrate
that there exist Cauchy sequences of points which disappear. In fact z∞ may
not even lie in the metric completion of the limit space, ϕ∞(X̄∞).

Lemma 3.4. If a sequence of integral current spaces, Mi = (Xi, di, Ti), con-
verges to an integral current space, M∞ = (X∞, d∞, T∞), in the intrinsic flat
sense, then every point x in the limit space X∞ is the limit of points xi ∈Mi.
In fact given any sequence of embeddings ϕi : Xi → Z satisfying (106), we
can find xi ∈Mi satisfying (107).

Furthermore, for any such sequence of embeddings, ϕi, there exists a
sequence of maps Hi : X → Xi such that xi = Hi(x) converges to x in the
sense that

lim
i→∞

di(Hi(x), Hi(y)) = d∞(x, y) ∀x, y ∈ X

and

Hi(x) ∈ set(∂Ti) whenever x ∈ set(∂T ).

This sequence of maps Hi are not uniquely defined and are not even
unique up to isometry.

Proof. By Theorem 2.31 there exists a common metric space Z and isometric
embeddings ϕi : Xi → Z such that

ϕ∞#T∞ − ϕi#Ti = Ui + ∂Vi

where mi = M (Ui) + M (Vi)→ 0. So ϕi#Ti converges in the flat and the
weak sense to ϕ∞#T∞. Furthermore ϕi#∂Ti converges in the flat and the
weak sense to ϕ∞#∂T∞
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Let ρx be the distance function from ϕ∞ (x). Since x ∈ spt(T∞), for any
ε > 0,

||ϕ∞#T∞||(ρ−1
x [0, ε)) > 0.

By the lower semicontinuity of mass,

(109) lim inf
i→∞

||ϕi#Ti||
(
ρ−1
x [0, ε)

)
≥ ||ϕ∞#T∞||

(
ρ−1
x [0, ε)

)
> 0.

In particular,

(110) ∃N ′ε,x ∈ N s.t. ϕi#Ti
(
ρ−1
x [0, ε)

)
6= 0 ∀i ≥ N ′ε,x.

So for all x ∈ X and any j ∈ N

(111) ∃Nj,x s.t. ∃si,j,x ∈ set(ϕi#Ti) ∩B (x, 1/j) ∀i ≥ Nj,x.

Without loss of generality, assume Nj,x is increasing in j. For i ∈ {1, . . . ,
N1,x} take ji = 1. Then for i ∈ {Nj−1,x + 1, . . . , Nj,x} let ji = j. Thus i ≥
Nji,x. Let

(112) xi = ϕ−1
i (si,ji,x).

Then ϕi(xi) ∈ B(x, 1/ji) and ϕi(xi)→ ϕ(x). Note that if x ∈ set(∂T∞) then
these xi can be chosen in set(∂Ti) using the exact same argument.

Since this process can be completed for any x ∈ X∞, one has defined
maps Hi : X∞ → Xi such that

(113) ϕi(Hi(x))→ ϕ∞(x).

Finally, for all x, y ∈ X∞,

di(Hi(x), Hi(y)) = dZ(ϕi(Hi(x)), ϕi(Hi(y)))

→ dZ(ϕ∞(x), ϕ∞(y)) = d(x, y).

Now for x ∈ set(∂T∞) we may use the fact that

dZF (ϕi#∂Ti, ϕ∞#∂T∞)→ 0

and repeat the proof above to select Hi(x) ∈ set(∂Ti) satisfying (113). �
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Definition 3.5. Like any metric space, one can define the diameter of an
integral current space, M = (X, d, T ), to be

Diam(M) = sup {dX(x, y) : x, y ∈ X} ∈ [0,∞]} .

One explicitly defines the diameter of the 0 integral current space to be 0.
A space is said to be bounded if the diameter is finite.

Theorem 3.6. Suppose Mi
F−→M are integral current spaces then

(114) Diam(M) ≤ lim inf
i→∞

Diam(Mi) ⊂ [0,∞]

Proof. Note that by the definition, Diam(Mi) ≥ 0, so the liminf is always
≥ 0. Thus the inequality is trivial when M is the 0 space. Assuming M is
not the 0 space, for any ε > 0, there exists x, y ∈ X such that

(115) Diam(M) ≤ d(x, y) + ε.

By Lemma 3.4, there exists xi, yi ∈ Xi converging to x, y ∈ X so that

(116) Diam(M) ≤ lim
i→∞

di(xi, yi) + ε ≤ lim inf
i→∞

Diam(Xi) + ε.

�

The following notion of depth was introduced in joint work of the author
with LeFloch [21] as part of an intrinsic flat compactness theorem. In that
paper M always has a boundary. Here we extend the definition to include
M without boundary as suggested by the referee of this paper.

Definition 3.7. Like any metric space, one can define the depth of an
integral current space, M = (X, d, T ), to be

Depth(M) = sup {dX(x, y) : x ∈ X, y ∈ set(∂T ) } ∈ [0,∞].

One explicitly defines the depth of any space with ∂T = 0 to be 0.

Theorem 3.8. Suppose Mi
F−→M are integral current spaces then

Depth(M) ≤ lim inf
i→∞

Depth(Mi) ⊂ [0,∞]

Proof. Note that by the definition, Depth(Mi) ≥ 0, so the liminf is always
≥ 0. Thus the inequality is trivial when ∂M is the 0 space. Assuming ∂M
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is not the 0 space, for any ε > 0, there exists x ∈ X and y ∈ set(∂T ) such
that

(117) Depth(M) ≤ d(x, y) + ε.

By Lemma 3.4, there exists xi = Hi(x) ∈ Xi and yi = Hi(y) ∈ set(∂Ti) con-
verging to x and y respectively so that

(118) Depth(M) ≤ lim
i→∞

di(xi, yi) + ε ≤ lim inf
i→∞

Depth(Mi) + ε.

�

Remark 3.9. Suppose one has Mi = (Xi, di, Ti)
F−→M∞ = (X∞, d∞, T∞),

with isometric embeddings ϕi : Xi → Z such that

dZF (ϕi#Ti, ϕ∞#T∞)→ 0 and ϕi(xi)→ ϕ∞(x∞)

and also suppose there are isometric embeddings ϕ′i : Xi → Z such that

dZF (ϕ′i#Ti, ϕ∞#T∞)→ 0 and ϕ′i(xi)→ ϕ′∞(x′∞).

Is there a current preserving isometry F : X∞ → X∞ such that F (x∞) =
x′∞? It is possible that one of the Arzela-Ascoli or Bolzano-Weierstrass The-
orems proven below or in work of the author with Portegies [29] may be
useful towards proving this.

Remark 3.10. Suppose Mi = (Xi, di, Ti)
F−→M∞ = (X∞, d∞, T∞), and

xi ∈ Xi is a Cauchy sequence, can one prove that for any sequence of iso-
metric embeddings ϕ′i : Mi → Z such that

dZF (ϕ′i#Ti, ϕ
′
∞#T∞)→ 0

we have a sequence of isometries Fi : Xi → Xi such that ϕ′i(Fi(xi)) converges
to some point z ∈ Z∞? Can one prove that if the sequence is disappearing,
then z /∈ ϕ′∞(X∞) and if the sequence has no limit in X̄∞ then z /∈ ϕ′∞(X̄∞)
regardless of the original choice of ϕ′i? It is possible that Lemma 4.1 below
could be applied to prove this.

4. Convergence of balls and spheres

In this section the following key lemma concerning the convergence of balls
and spheres is proven. It is an essential ingredient when trying to prove
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intrinsic flat limits are not the zero space or that points do not disappear.
See Remark 4.2. It will be applied to prove Theorem 7.1, Theorem 8.1, and
Example 9.1.

Lemma 4.1. If Mj = (Xj , dj , Tj)
F−→M∞ = (X∞, d∞, T∞) and pj → p∞ ∈

X̄∞, then there exists a subsequence of Mj also denoted Mj such that for
almost every r > 0,

(119) S(pj , r) = (set(Tj B(pj , r)), dj , Tj B(pj , r))

are integral current spaces for j ∈ {1, 2, . . . ,∞} and

(120) S(pj , r)
F−→ S(p∞, r).

If pj are Cauchy with no limit in X̄∞ then there exists δ > 0 such that
for almost every r ∈ (0, δ) such that S(pj , r) are integral current spaces for
j ∈ {1, 2, . . . } and

(121) S(pj , r)
F−→ 0.

If Mj
F−→ 0 then for almost every r and for all sequences pj one has (121).

Example 4.3 demonstrates why it is necessary to choose a subsequence.
Observe that this lemma does not require a uniform upper bound on volume
and boundary volume.

Remark 4.2. Some parts of this lemma appeared in a paper by the author
and Stefan Wenger in [39]. However a few mathematicians voiced concern
that in [39] we did not adequately address the changing basepoints pj 6= p∞.
Here all details are provided.

Lemma 4.1 is now proven:

Proof. By Theorem 2.31 and 2.32 there exists a common complete metric
space, Z, and isometric embeddings, ϕj : Xj → Z and ϕ∞ : X∞ → Z, such
that

(122) ϕj#Tj − T = ∂Bj +Aj

where Aj ∈ Im(Z) and Bj ∈ Im+1(Z) with

(123) M(Aj) + M(Bj)→ 0
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and where

(124) T = ϕ∞#T∞ ∈ Im(Z) when M∞ 6= 0 and T = 0 when M∞ = 0.

Since pj are Cauchy,

(125) zj = ϕj(pj)→ z∞ ∈ Z.

When pj → p∞ then z∞ = ϕ∞(p∞). Then for almost every r

(126) (ϕj#Tj) B(zj , r) = ϕj#Tj B(pj , r).

and

(127) T B(z∞, r) = ϕ∞#T∞ B(p∞, r).

If pj has no limit in X̄∞, then z∞ /∈ ϕ∞(X̄∞) and so there exists δ > 0 such
that for all r < δ,

(128) B(z∞, r) ∩ ϕ∞(X̄∞) = 0.

So

(129) T B(z∞, r) = 0.

If Mj
F−→ 0, then one has this as well without requiring r < δ.

So to prove the lemma in all cases one need only show that one can find
a subsequence of the Mj also denoted Mj such that for almost every r, the
S(pj , r) are integral current spaces and

(130) dZF

(
(ϕj#Tj) ρ−1

j (−∞, r), T ρ−1
∞ (−∞, r)

)
→ 0

where ρj(z) = dZ(zj , z).
By Lemma 2.34 for almost every r these are integral current spaces.
Observe that by (122), for almost every r:

(ϕj#Tj) ρ−1
j (−∞, r)− T ρ−1

j (−∞, r)(131)

= (∂Bj) ρ−1
j (−∞, r) +Aj ρ−1

j (−∞, r)(132)

=< Bj ,−ρj ,−r > +∂
(
Bj ρ−1

j (−∞, r)
)

(133)

+Aj ρ−1
j (−∞, r).(134)
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Thus dZF

(
ϕj#Tj ρ−1

j (−∞, r), T ρ−1
j (−∞, r)

)
≤

≤ fj(r) + M(Bj ρ−1
j (−∞, r)) + M(Aj ρ−1

j (−∞, r))(135)

≤ fj(r) + M(Bj) + M(Aj)(136)

where

(137) fj(r) = M(< Bj ,−ρj ,−r >).

By the Ambrosio-Kirchheim Slicing Theorem∫ ∞
−∞

fj(r) dr =

∫ ∞
−∞

M(< Bj , ρj , r >) dr(138)

= M(Bj dρj) ≤ Lip(ρj)M(Bj) ≤M(Bj)→ 0.(139)

Since fj converge in L1 to 0, there exists a subsequence, also denoted fj ,
such that for almost every r > 0, fj(r) converge to 0 pointwise (c.f. [31]
Theorem 3.12).

Thus there is a subsequence such that for almost every r > 0

(140) lim
j→∞

dZF

(
ϕj#Tj ρ−1

j (−∞, r), T ρ−1
j (−∞, r)

)
= 0.

Next observe that the set

(141) K =
(
ρ−1
j (−∞, r) \ ρ−1

∞ (−∞, r)
)
∪
(
ρ−1
∞ (−∞, r) \ ρ−1

j (−∞, r)
)

satisfies

(142) K ⊂ ρ−1
∞ (r − δj , r + δj)

where

(143) δj = dZ(zj , z∞).

Then

dZF

(
T ρ−1

j (−∞, r), T ρ−1
∞ (−∞, r)

)
≤M

(
T ρ−1

j (−∞, r) − T ρ−1
∞ (−∞, r)

)
≤M(T K)

≤ ||T ||
(
ρ−1
∞ (r − δj , r + δj)

)
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Since limj→∞ δj = 0, one has

lim
j→∞

||T ||
(
ρ−1
∞ (r − δj , r + δj)

)
= lim

j→∞
||ρ∞#T ||

(
ρ−1
∞ (r − δj , r + δj)

)
(144)

= ||ρ∞#T ||{r}(145)

Since ||ρ∞#T || is a finite measure on R, ||ρ∞#T ||{r} = 0 except on a count-
able set of values of r. Thus, for almost every r,

(146) lim
j→∞

dZF (T ρ−1
j (−∞, r), T ρ−1

∞ (−∞, r)) = 0.

Combining this with (140) one has (130) and the proof is complete. �

Example 4.3. There exists a sequence of Riemannian manifolds Mj diffeo-

morphic to a sphere with vol(Mj) ≤ V0 such that Mj
F−→ 0 but there exists

a Cauchy sequence pj ∈Mj such that S(pj , r) does not have an intrinsic flat
limit for any r ∈ (0, π).

Proof. Take the metric

(147) gj = dr2 + f2
j (r)dθ2 r ∈ [0, π]

with fj(0) = 0, fj(π) = 0, f ′j(0) = 1, f ′j(π) = −1 so that Mj is a smooth
Riemannian manifold. Choose fj > 0 smooth on (0, π) such that

(148)

∫ π

0
f2
j (r) dr → 0

and such that

(149) fj(r) > 1 for r ∈ [j mod π, j + 1/j mod π] ∩ (1/j2, π − 1/j2)

and

(150) fj(r) < 1/j for r ∈ [j + 2/j mod π, j + 3/j mod π] ∩ (1/j2, π − 1/j2)

and fj smoothly decreasing in between. Since

(151) Vol(Mj) = 4π

∫ 2π

0
f2
j (r) dr → 0
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one has Mj
F−→ 0. Take pj to be the point where r = 0. Suppose one has r′

such that the balls converge to the zero integral current space, S(pj , r
′)
F−→

0, then the spheres also converge to the zero space, ∂S(pj , r
′)
F−→ 0.

However there exists a subsequence j′ →∞ such that r ∈ [j′ mod π, j′ +
1/j′ mod π]. On this set ∂S(pj′ , r) is bi-Lipschitz close to a circle S1 endowed
with the restricted metric from the disk. So

(152) ∂S(pj′ , r)
F−→
(
S1, dD2 ,

∫
S1

)
.

�

Also useful for some applications is the following lemma:

Lemma 4.4. Let Mj = (Xj , dj , Tj) be precompact and let R > 0. Then one
has rescaled integral current spaces, M ′j = (Xj , dj/R, Tj), one of which may
possibly be 0, and

(153) dF (M1,M2) ≤ dF (M ′1,M
′
2)Rm(1 +R).

In particular taking almost any r = R ∈ (0, δ) and pj ∈ Xj one can rescale

(154) S(pj , r) = (set(Tj B(pj , r)), dj , Tj B (pj , r))

by r to obtain

(155) S′(pj , 1) = (set(Tj B(pj , 1)), dj/R, Tj B (pj , r))

and

(156) dF (S(p1, r), S(p2, r)) ≤ dF (S′(p1, 1), S′(p2, 1))rm(1 + δ).

Proof. By the Theorem 2.28, there exists isometric embeddings ϕj : Xj → Z

(157) dZ(ϕj(x), ϕj(y))/R = dj(x, y)/R ∀x, y ∈ Xj

and A ∈ Im(Z), B ∈ Im+1(Z) such that

(158) ϕ1#T1 − ϕ2#T2 = A+ ∂B

and

(159) dF (M ′1,M
′
2) = M(A) + M(B)
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where these masses are defined using dZ/R. Then ϕj : Xj → Z

(160) dZ(ϕj(x), ϕj(y)) = dj(x, y) ∀x, y ∈ Xj

and so by definition of intrinsic flat distance

(161) dF (M1,M2) ≤M′(A) + M′(B)

where these masses are defined using dZ . Thus

dF (M1,M2) ≤M(A)Rm + M(B)Rm+1(162)

≤ (M(A) + M(B))Rm(1 +R)(163)

≤ dF (M ′1,M
′
2)Rm(1 +R).(164)

It is easy to see this argument also works when M2 = 0 taking ϕ2#T2 =
0. �

5. Flat convergence to Gromov-Hausdorff convergence

In this subsection, Theorem 5.1 is proven:

Theorem 5.1. If a sequence of precompact integral current spaces, Mi =
(Xi, di, Ti), converges to a nonzero precompact integral current space, M =
(X, d, T ), in the intrinsic flat sense, then there exists Si ∈ Im

(
X̄i

)
such that

Ni = (set (Si) , di) converges to
(
X̄, d

)
in the Gromov-Hausdorff sense

(165) dGH(Ni,M)→ 0

and

(166) lim inf
i→∞

M(Si) ≥M(M).

When the Mi are Riemannian manifolds, the Ni can be taken to be settled
completions of open submanifolds of Mi.

Remark 5.2. If in addition it is assumed that limi→∞M(Mi) = M(M),
then by (166),

(167) lim
i→∞

M(set(Ti − Si), di, Ti − Si) = 0.

In the Riemannian setting,

(168) lim
i→∞

Vol(Mi \Ni) = 0.
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Remark 5.3. In Ilmanen’s example [39] of a sphere with increasingly many
splines, the Si may be chosen to be integration over the spherical part of
Mi with balls around the tips removed. Then set(Si) are manifolds with
boundary converging to the sphere in the Gromov-Hausdorff and intrinsic
flat sense.

Remark 5.4. The precompactness of the limit integral current spaces is
necessary in this theorem because a noncompact limit space can never be the
Gromov-Hausdorff limit of precompact spaces. In fact there are sequences
of compact Riemannian manifolds, Mj , whose intrinsic flat limit is an un-
bounded complete Riemannian manifold of finite volume [39][Ex A.10] and
another example of such spaces whose Intrinsic Flat limit is a bounded non-
compact integral current space [39][Ex A.11].

Remark 5.5. Gromov’s Compactness Theorem combined with Theorem 5.1
implies that that any sequence of xi ∈ Ni ⊂Mi has a subsequence converging
to a point x in the metric completion of M . Other points need not have limit
points, as can be seen when the tips of thin splines disappear in the examples
from [39]. A more general Bolzano-Weierstrass Theorem precisely identifying
those points which do not disappear is proven later in Section 7 and in joint
work with Portegies appearing in [29].

Theorem 5.1 is now proven:

Proof. By Theorem 2.31 there exists a common metric space Z and isometric
embeddings ϕi : Xi → Z and ϕ : X → Z such that

(169) ϕ#T − ϕi#Ti = Ui + ∂Vi

where mi = M (Ui) + M (Vi)→ 0. So ϕi#Ti converges in the flat and thus
the weak sense to ϕ#T .

Since M is precompact, ϕ (X) is precompact. Let ρ : Z → R be the dis-
tance function from ϕ (X).

By the Ambrosio-Kirchheim Slicing Theorem [Theorem 2.18] applied to
f(s) = −ρ(s), one has

(170) Si,ε := ϕi#Ti ρ−1 ([0, ε)) ∈ Im (Z)

for almost every ε > 0. Fix any such ε.
Before choosing the Si mentioned in the statement of the theorem, one

may examine the mass of Si,ε and the Hausdorff distance between set(Siε)
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and ϕ(X). Note that ϕ#T = ϕ#T ρ−1[0, ε). So

(171) ||T ||(ρ−1[0, ε)) = M(T ).

By lower semicontinuity of mass one has

(172) lim inf
i→∞

||ϕi#Ti||(ρ−1[0, ε)) ≥ ||ϕ#T ||(ρ−1[0, ε)).

Combining this with (170) and (171) and the definition of liminf one has:

(173) for a.e. ε > 0 ∃N ′ε ∈ N such that M(Si,ε) ≥M(T )− ε ∀i ≥ N ′ε.

To see that the Hausdorff distance between Si,ε and ϕ(X) is small,

dZH(Si,ε, ϕ(X)) < 2ε,

first immediately observe that

(174) set(Si,ε) ⊂ T̄ε(ϕ(X)) ⊂ T2ε(ϕ(X)).

One needs only show

(175) ϕ (X) ⊂ T2ε (set (Si,ε)) ∀i ≥ Nε.

To prove (175), first note that for any x ∈ X, one can let ρx be the distance
function from ϕ (x). By the lower semicontinuity of mass of open sets one
has,

(176) lim inf
i→∞

||ϕi#Ti||(ρ−1
x [0, ε)) ≥ ||ϕ#T ||(ρ−1

x [0, ε)) > 0 ∀ε > 0.

Thus one has

(177) for a.e. ε > 0 ∃Nε,x ≥ N ′ε s.t. ϕi#Ti ρ−1
x [0, ε) 6= 0 ∀i ≥ Nε,x.

Recall N ′ε was defined in (173). Combining this with (170), and the fact that

(178) ρ−1
x [0, ε) = B(x, ε) ⊂ ρ−1[0, ε) = Tε(ϕ(X))

one has

(179) ∀x ∈ X for a.e. ε > 0 ∃Nε,x ≥ N ′ε and si,ε,x ∈ set(Si) ∩B(ϕ(x), ε).
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By the precompactness of X, there is a finite ε net, Xε = {x1, . . . , xN} on
ϕ (X) (i.e. the union of B(xi, ε) contains Xε). Define

(180) Nε = max
{
Nε,xj

: xj ∈ Xε

}
≥ N ′ε

then taking sx := si,ε,xj
∈ set (Si,ε) we have

(181) ∀x ∈ X ∃xj ∈ Xε s.t. ∀i ≥ Nε ∃sx ∈ set (Si,ε) s.t. dZ (sx, ϕ(x)) < 2ε.

So (175) has been proven.
Combining (175) with (174), the Hausdorff distance satisfies

(182) dZH (set (Si,ε) , ϕ (X)) ≤ 2ε ∀i ≥ Nε.

Recall the definition of Si as in the statement of the theorem. One must
prove (165) and (166).

Let εk → 0 be a decreasing sequence of ε for which all these currents are
defined. Let Nk := Nεk . Let

Si = Ti ∈ Im (Xi) for i = 1 to N1(183)

Si = ϕ−1
i#Si,ε1 ∈ Im (Xi) for i = N1 + 1 to N2(184)

and so on:

(185) Si = ϕ−1
i#Si,εj ∈ Im (Xi) for i = Nj + 1 to Nj+1

Then by (182),

(186) dZH (ϕi(set (Si)), ϕ (X)) ≤ 2εi.

This implies (165).
By (173) and Nk = Nεk ≥ N ′εk one has, one has

(187) M(Si) ≥M(T )− εi

which gives us (166) and completes the proof of the theorem. �

Remark 5.6. One could construct a common metric space Z for Exam-
ples A.10 and A.11 of [39] and find Si,ε as in the above proof satisfying
(174). However, in that example, (175) will fail to hold. This is where the
precompactness of the limit space is essential in the proof.
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Remark 5.7. Examples in [39] demonstrate that the metric space of a
current space need not be a length space. In general, when a sequence of
Riemannian manifolds converges in the intrinsic flat sense to an integral
current space it need not be a geodesic length space. If the set(Si) are length
spaces or approximate length spaces, then the limit current space is in fact
a length space. This occurs for example in Ilmanen’s example of [39]. It
also occurs whenever the Gromov-Hausdorff limits and flat limits of length
spaces agree. It might be interesting to develop a notion of an approximate
length space that suffices to give a geodesic limit space. What properties
must hold on Mi to guarantee that their limit is a geodesic length space?

Remark 5.8. It is not immediately clear whether the integral current
spaces, Ni, constructed in the proof of Theorem 5.1 actually converge in
the intrinsic flat sense to M . One expects an extra assumption on total
mass would be needed to interchange between flat and weak convergence,
but even so it is not completely clear. One would need to uniformly control
the masses of ∂Ni using a common upper bound on M(N) which can be
done using theorems in Section 5 of [2], but is highly technical. It is only
worth investigating if one has an application in mind.

6. Arzela-Ascoli theorem for equicontinuous functions

In this section we prove Theorems 6.1 and 6.2. See also Remark 6.3.

Theorem 6.1. Fix K > 0. Suppose Mi = (Xi, di, Ti) are integral current

spaces for i ∈ {1, 2, . . . ,∞} and Mi
F−→M∞ and Fi : Xi →W are Lipschitz

maps into a compact metric space W with

(188) Lip(Fi) ≤ K,

then a subsequence converges to a Lipschitz map F∞ : X∞ →W with

(189) Lip(F∞) ≤ K.

More specifically, there exists isometric embeddings of the subsequence, ϕi :
Xi → Z, such that dZF (ϕi#Ti, ϕ∞#T∞)→ 0 and for any sequence xi ∈ Xi

converging to x ∈ X∞ as in

(190) dZ(ϕi(xi), ϕ∞(x))→ 0,
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one has converging images,

(191) dW (Fi(xi), F∞(x))→ 0.

This theorem is an immediate consequence of the following more general
theorem which is proven using only Theorem 2.31 and Lemma 3.4.

Theorem 6.2. Suppose Mi = (Xi, di, Ti) are integral current spaces with

Mi
F−→M∞, suppose Yi are compact metric spaces where Yi

GH−→ Y∞, and
suppose fi : Xi → Yi are equicontinuous maps satisfying,

(192) dXj
(x, x′) < δ =⇒ dYj

(fj(x), fj(x
′)) ≤ ε(δ)

for some function such that limδ→0 ε(δ) = 0. Then a subsequence converges
to a map f∞ : X∞ → Y∞ satisfying (192) with the same function ε(δ). More
specifically, there exists isometric embeddings of the subsequence, ϕi : Xi →
Z, and ψi : Yi →W such that

(193) dZF

(
ϕi#Ti, ϕ∞#T∞

)
→ 0

and

(194) dWH

(
ψi(Yi), ψ∞(Y∞)

)
→ 0

such that

(195) dZ

(
ϕi(xi), ϕ∞(x)

)
→ 0,

implies

(196) dW

(
ψi(fi(xi)), ψ∞(f∞(x))

)
→ 0.

Proof. By Theorem 2.31, ∃ϕi : Xi → Z satisfying (193). By Gromov’s Em-
bedding Theorem (cf. Theorem 2.3), ∃ψi : Yi →W with W compact such
that (194) holds. Take any p∞ ∈ X∞. By Lemma 3.4, there exists pi ∈ Xi

such that limi→∞ ϕi(pi) = ϕ∞(p∞). Since ψi(fi(pi)) ∈W and W is compact,
there is a subsequence which converges to some w ∈W .
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We claim w∞ ∈ ψ∞(Y∞). If not, then there exists r > 0 such that

(197) B(w∞, r) ∩ ψ∞(Y∞) = ∅.

Then for j large

(198) B(ψj(fj(pj)), r/2) ∩ ψ∞(Y∞) = ∅

which implies that

(199) dH(ψj(Yj), ψ∞(Y∞)) ≥ r/2,

which is a contradiction.
Thus we have a point we call f∞(p∞) ∈ Y∞ such that ψ∞(f∞(p∞)) =

w∞. Applying a diagonalization process to choose a subsequence, we have
thus defined f∞ : X0 ⊂ X∞ → Y∞ satisfying (192). Extending this function
continuously to f∞ : X∞ → Y∞, it still satisfies (192).

To see that (195) implies (196), consider xj ∈ Xj satisfying (195). Taking
p∞ = x∞ as in the top of the proof, there exists pj ∈ Xj such that ϕj(pj)→
ϕ∞(p∞) and ψj(fj(pj))→ ψ∞(f∞(p∞)). Observe that

dXj
(xj , pj) = dZ(ϕj(xj), ϕj(pj))(200)

≤ dZ(ϕj(xj), ϕ∞(x∞)) + dZ(ϕ∞(x∞), ϕj(pj))→ 0.(201)

For any ε > 0 take δε sufficiently small that ε(δε) < ε and j sufficiently large
that dX(xj , pj) < δε of (192), then

D = lim
j→∞

dW

(
ψj(fj(xj)), ψ∞(f∞(x∞))

)
(202)

≤ lim
j→∞

dW

(
ψj(fj(xj)), ψ∞(fj(pj))

)
(203)

+ dW

(
ψj(fj(pj)), ψ∞(f∞(x∞))

)
= lim

j→∞
dYj

(
fj(xj), fj(pj)

)
+ dW

(
ψj(fj(pj)), ψ∞(f∞(p∞))

)
(204)

< ε+ 0 ∀ε > 0.(205)

Thus ψj(fj(xj))→ ψ∞(f∞(x∞)). �

Remark 6.3. If we allow both Xi
F−→ X and Yi

F−→ Y in the above theo-
rem statements, then they are false. For example, one may have a sequence of
compact connected manifolds, Yi, which converge in the intrinsic flat sense to
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a compact metric space, Y , that is not connected [39]. In that setting one has
a sequence of Lipschitz maps which are unit speed geodesics, Fi : [0, 1]→ Yi

where Yi
F−→ Y with no limiting function F : [0, 1]→ Y . One key step in the

proof above where we used the Gromov-Hausdorff convergence of the target
spaces was in (199). It is also crucial that the Gromov Embedding Theo-
rem produces a common compact metric space W . The Ilmanen Example
in [39] shows that F converging sequences may be impossible to embed in a
common compact metric space.

7. Basic Bolzano-Weierstrass theorem

In this section, Theorem 7.1 is proven. Recall Lemma 2.34 states that for
almost every radius S(p, r) of (69) is an integral current space. Recall also
that, like any integral current space, dF (S(p, r),0) = 0 iff S(p, r) = 0 [38].
If one considers a sequence of integral current spaces, Mi with points pi,
then for almost every r, S(pi, r) is an integral current space for all i in
the sequence. In this basic Bolzano-Weierstrass Theorem one assumes these
S(pi, r) are kept a definite distance away from 0 where this distance depends
upon on the radius. A different Bolzano-Weierstrass Theorem which involves
the Gromov Filling Volume appears in [29].

Theorem 7.1. Suppose Mm
i = (Xi, di, Ti) are integral current spaces which

converge in the intrinsic flat sense to a nonzero integral current space Mm
∞ =

(X∞, d∞, T∞). Suppose there exists r0 > 0, a positive function h : (0, r0)→
(0, r0), and a sequence pi ∈Mi such that for almost every r ∈ (0, r0)

(206) lim inf
i→∞

dF (S(pi, r), 0) ≥ h(r) > 0.

Then there exists a subsequence, also denoted Mi, such that pi converges to
p∞ ∈ X̄∞.

Remark 7.2. Note that Mi and M∞ are not required to be precompact.
The Mi are not required to have uniformly bounded mass or volume. The

key hypothesis is that the Mi
F−→M∞ and that M∞ has finite mass. For

this reason there is not enough room to fit too many balls of mass h(r) in
M∞. This allows us to produce a converging subsequence in the style of a
classical Bolzano-Weierstrass Theorem.

Remark 7.3. It is possible that p∞ /∈ X∞ as can be seen by taking all
the Mi = M∞ a manifold M with a cusp singularity at p∞ so that M∞ =
M \ p∞ and pi a sequence of points approaching p∞.
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Proof. By Theorem 2.31 there exists a common metric space Z and isometric
embeddings ϕj : Xj → Z and ϕ∞ : X∞ → Z such that

(207) ϕj#Tj − ϕ∞#T = ∂Bj +Aj

where Aj ∈ Im(Z) and Bj ∈ Im+1(Z) with

(208) M(Aj) + M(Bj)→ 0

and where

(209) T = ϕ∞#T∞ ∈ Im(Z).

One needs only show that a subsequence of ϕi(pi) is a Cauchy sequence.
Once this is done, one can apply Lemma 4.1 to the subsequence. In that
lemma, it is shown that a Cauchy sequence, pi, converges to p∞ ∈ X̄∞ unless

there is a radius r sufficiently small that S(pi, r)
F−→ 0. Since this is not

allowed by the hypothesis of the theorem being proven, one sees that the
subsequence converges to p∞ ∈ X̄∞ as desired.

So one needs only prove that a subsequence ϕi(pi) converges in Z. This
is not immediate because Z is only complete and need not be compact.

Assume on the contrary that

(210) ∃δ > 0 s.t. dZ(ϕi(pi), ϕj(pj)) ≥ δ ∀i, j ∈ N.

Let ρi(x) = dZ(ϕi(pi), x), then for almost every r ∈ (0, r0) ∩ (0, δ/2),

(211) ρ−1
i (−∞, r) ∩ ρ−1

j (−∞, r) = ∅ ∀i, j ∈ N.

Now

(ϕi#Ti) ρ−1
j (−∞, r)− ϕ∞#T∞ ρ−1

j (−∞, r)(212)

= (∂Bi) ρ−1
j (−∞, r) +Ai ρ−1

j (−∞, r)(213)

=< Bi, ρj , r > +∂
(
Bi ρ−1

j (−∞, r)
)

(214)

+Ai ρ−1
j (−∞, r).(215)

Thus dZF

(
ϕi#Ti ρ−1

j (−∞, r), ϕ∞#T∞ ρ−1
j (−∞, r)

)
≤

≤ fij(r) + M(Bi ρ−1
j (−∞, r)) + M(Ai ρ−1

j (−∞, r))(216)

≤ fij(r) + M(Bi) + M(Ai)(217)
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where

(218) fij(r) = M(< Bi, ρj , r >).

By the Ambrosio-Kirchheim Slicing Theorem, for fixed j ∈ N,∫ ∞
−∞

fij(r) dr =

∫ ∞
−∞

M(< Bi, ρj , r >) dr(219)

= M(Bi dρj) ≤ Lip(ρj)M(Bi) ≤M(Bi)(220)

which converges to 0 as i→∞. Thus for fixed j and almost every r there is a
subsequence i′ →∞ such that limi′→∞ fi′j(r) = 0 pointwise. Diagonalizing,
there is a subsequence i” such that for all j, limi′→∞ fi′′j(r) = 0 pointwise.

Thus for almost every r ∈ (0, r0) ∩ (0, δ/2), there is a subsequence i′′

such that for all j ∈ N,

(221) dZF

(
ϕi′′#Ti′′ ρ−1

j (−∞, r), ϕ∞#T∞ ρ−1
j (−∞, r)

)
→ 0

Since the balls are disjoint,

(222) M(T∞) ≥
N∑
j=1

M
(
ϕ∞#T∞ ρ−1

j (−∞, r)
)
.

Thus

(223) lim sup
j→∞

M
(
ϕ∞#T∞ ρ−1

j (−∞, r)
)

= 0.

So

(224) lim sup
j→∞

dZF

(
ϕ∞#T∞ ρ−1

j (−∞, r),0
)

= 0.

In particular, for j sufficiently large

(225) dZF

(
ϕ∞#T∞ ρ−1

j (−∞, r),0
)
< h(r)/2.

Combining this with (221), for i” sufficiently large

(226) dF (S(pi”, r),0) ≤ dZF
(
ϕi”#Ti” ρ−1

j (−∞, r),0
)
< h(r)/2

which contradicts the hypothesis. Thus there is a subsequence ϕi(pi) which
converges to some point z∞ ∈ Z exactly as needed. �
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8. Limits of uniformly local isometries

In this section we prove an Arzela-Ascoli Theorem which allows both the
domain and the target spaces to converge in the intrinsic flat sense. This
theorem applies to sequences of oriented Riemannian manifolds Mi with

(227) Vol(Mi) ≤ Vi and Vol(∂Mi) ≤ Ai

and functions Fi : Mi →M ′i which are orientation preserving local isometries
that are isometries on balls of a fixed radius, δ > 0 which is uniform for the
sequence.

Theorem 8.1. Let Mi = (Xi, di, Ti) and M ′i = (X ′i, d
′
i, T
′
i ) be integral cur-

rent spaces such that

(228) Mi
F−→M∞ and M ′i

F−→M ′∞.

Fix δ > 0. Let Fi : Mi →M ′i be continuous maps which are current pre-
serving isometries on balls of radius δ in the sense that:

(229) ∀x ∈ Xi, Fi : B̄(x, δ)→ B̄(Fi(x), δ) is an isometry

and

(230) Fi#(Ti B(x, r)) = T ′i B(F (x), r) for almost every r ∈ (0, δ).

Then, when M∞ 6= 0, one has M ′∞ 6= 0 and there is a subsequence, also
denoted Fi, which converges to a (surjective) local isometry

(231) F∞ : X̄∞ → X̄ ′∞.

To be more precise, there exists isometric embeddings of the subsequence
ϕi : Xi → Z and ϕ′i : X ′i → Z ′, such that

(232) dZF (ϕi#Ti, ϕ∞#T∞)→ 0 and dZ
′

F (ϕ′i#T
′
i , ϕ
′
∞#T

′
∞)→ 0

such that for any sequence xi ∈ Xi converging to x ∈ X∞ as in

(233) lim
i→∞

ϕi(xi) = ϕ∞(x) ∈ Z,

one has

(234) lim
i→∞

ϕ′i(Fi(xi)) = ϕ′∞(F∞(x∞)) ∈ Z ′.
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When M∞ = 0 and Fi are surjective, one has M ′∞ = 0.

Remark 8.2. Example 8.5 describes the necessity of the uniformity con-
dition (229) in Theorem 8.1.

Remark 8.3. It may be possible to prove that the limit map here is also
current preserving on balls of radius less than δ. This is technical and not
needed for present applications but might be an interesting investigation in
the future.

Remark 8.4. It may be possible to prove a similar theorem replacing
the surjective uniformly local isometries with surjective uniformly local uni-
formly bi-Lipschitz maps but the proof would be fairly technical and there
is no immediate application for this at this time.

Theorem 8.1 is now proven:

Proof. By Theorem 2.31 there exists ϕi : Mi → Z such that

(235) dZF (ϕi#Ti, ϕ∞#T∞)→ 0

and ϕ′i : M ′i → Z ′ such that

(236) dZ
′

F (ϕ′i#T
′
i , ϕ
′
∞#T

′
∞)→ 0.

Assuming M ′∞ 6= 0, one must first find a subsequence and construct the
limit function F∞ : P → X ′∞ satisfying (234) for all p ∈ P where P is a
countably dense collection of points in X∞.

Take any p ∈ P . Recall S(p, r) = (set(T∞ B(p, r)), d∞, T∞ B(p, r)) is
defined for almost every r. Since p ∈ X∞, and X∞ = set(T∞),

(237) lim inf
r→0

M(S(p, r))/rm = lim inf
r→0

||T∞||(B(p, r))/rm > 0.

In particular

(238) S(p, r) 6= 0.

By Lemma 3.4 there exists pi ∈ Xi such that

(239) lim
i→∞

ϕi(pi) = ϕ∞(p).
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By Lemma 4.1, for almost every r∞ > 0, there is a subsequence (also denoted
i) such that

(240) dF (S(pi, r∞), S(p, r∞))→ 0.

Taking r∞ < δ, applying (230) one has

(241) Fi#S(pi, r∞) = S(p′i, r∞) where p′i = Fi(pi)

so

(242) dF
(
S(p′i, r∞), S(p, r∞)

)
→ 0.

Combining via the triangle inequality with (238),

(243) lim inf
i→∞

dF
(
S(p′i, r∞),0

)
> 0.

Thus applying the basic Bolzano-Weierstrass Theorem [Theorem 7.1] to
S(p′i, r∞), one sees that there is a p∞ ∈ X̄ ′∞ and a further subsequence (also
denoted i) such that p′i → p′∞ in the sense that

(244) ϕ′i(p
′
i)→ ϕ′∞(p′∞) ∈ Z ′.

Define F∞(p) = p∞.
Repeat this process to choose subsequences and p∞ for each p in the

countable collection P ⊂ X∞. Diagonalize to obtain the subsequence in that
statement of the theorem (also denoted Mi). Thus F : P → X̄ ′∞ is defined
such that

(245) ϕ∞(F∞(p)) = lim
i→∞

ϕ′i(Fi(pi)) ∈ Z ′.

To see that F is distance preserving for any p, q in a ball of radius δ in X∞:

dX̄∞ (F∞(p), F∞(q)) = dZ′ (ϕ∞(F∞(p)), ϕ∞(F∞(q)))(246)

= lim
i→∞

dZ′
(
ϕ′i(Fi(pi)), ϕ

′
i(Fi(qi))

)
(247)

= lim
i→∞

dZ (ϕi(pi), ϕi(qi))(248)

= dZ(ϕ∞(p), ϕ∞(q)) = dX∞(p, q).(249)

In particular F : P → X̄ ′∞ is continuous and can be extended to the metric
completion, F∞ : X̄∞ → X̄ ′∞ which is an isometry on balls of radius δ.
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To see that (233) implies (234), consider xi ∈ Xi satisfying (233). Taking
p∞ = x∞ as in the top of the proof where we define F∞, there exists pi ∈ Xi

such that ϕi(pi)→ ϕ∞(p∞) with ϕ′i(Fi(pi))→ ϕ′∞(F∞(p∞)). Let

(250) Di = dZ′(ϕ
′
i(Fi(xi)), ϕ

′
∞(F∞(x∞)) )

then we have (233) as follows:

lim
i→∞

Di ≤ lim
i→∞

dZ′(ϕ
′
i(Fi(xi)), ϕ

′
i(Fi(pi)) )(251)

= lim
i→∞

dX′i(Fi(xi), Fi(pi))(252)

= lim
i→∞

dXi
(xi, pi)(253)

= lim
i→∞

dZ(ϕi(xi), ϕi(pi))(254)

≤ lim
i→∞

dZ(ϕi(xi), ϕ∞(x∞)) + dZ(ϕ∞(x∞), ϕi(pi)) = 0.(255)

To see that F∞ is surjective when Fi are surjective, take any x ∈ X ′∞.
so

(256) lim inf
r→0

M(S(x, r))/rm > 0.

In particular

(257) ∃rx > 0 s.t. S(x, r) 6= 0 a.e. r < rx.

By Lemma 3.4 there exists xi ∈ X ′i such that

lim
i→∞

ϕ′i(xi) = ϕ′∞(x)

and by Lemma 4.1, for almost every r > 0 there is a subsequence (also
denoted i) such that

(258) dF (S(xi, r), S(x, r))→ 0.

Since Fi are surjective, there exists pi ∈ Xi such that Fi(pi) = xi. However,
for almost every r < δ,

(259) Fi#S(pi, r) = S(xi, r)

so

(260) dF (S(pi, r), S(x, r))→ 0.
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and

(261) lim inf
i→∞

dF (S(pi, r),0) = h(r) > 0.

Thus applying the basic Bolzano-Weierstrass Theorem [Theorem 7.1], there
is a further subsequence of the pi which converges to a p∞ ∈ X∞. To see
that F∞(p∞) = x observe that

ϕ∞(F∞(p∞)) = lim
i→∞

ϕi(Fi(pi))(262)

= lim
i→∞

ϕi(xi) = ϕ∞(x∞).(263)

Now suppose M∞ = 0. One needs only show that M ′∞ = 0. If not there
exists x ∈ X ′∞ such that (256)-(261) hold. However by Lemma 4.1

(264) lim
i→∞

dF (S(pi, r),0) = 0

which contradicts (261). �

Example 8.5. The hypothesis that a uniform δ > 0 exists such that (229)
holds is necessary. This can be seen by taking Mi to be standard flat 1× 1
tori and M ′i to be flat 1× (1/i) tori. Let Fi : Mi →M ′i be the i fold covering
maps which are surjective local isometries on balls of radius δi = 1/(2i).
Then Mi converges in the intrinsic flat sense to a standard flat torus while
M ′i converges in the intrinsic flat sense to the 0 integral current space. Thus
there cannot be any limit map F∞.

9. Example with no intrinsic flat limit

The theorems in this paper may be applied to prove certain sequences of
Riemannian manifolds do not converge or converge to specific Riemannian
manifolds. One such example is provided here. Further examples will appear
in joint work with Basilio [3].

Example 9.1. There exists a sequence of smooth Riemannian manifolds
with boundary with constant sectional curvature such that Volm−1(∂Mj) ≤
A0, Diam(Mj) ≤ D0 such that no subsequence converges in the intrinsic flat
or Gromov-Hausdorff sense not even to 0.
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Proof. Let Mj be the j fold covering space of

(265) Nj = S2 \
(
Bp+(1/j) ∪Bp−(1/j)

)
where S2 is endowed with the standard metric tensor gS2 which is lifted to
Mj and p+ and p− are opposite poles. Let dj be the length metric on Mj

defined by this metric tensor.
Then

(266) Diam(Mj) ≤ π + j2π(1/j) + π = 4π

and

(267) Volm−1(∂Mj) ≤ jVolm−1(∂Nj) ≤ j2(2π/j) = 4π

but

(268) lim
j→∞

Volm(Mj)

j
= lim

j→∞
Vol(Nj) = Vol(S2) = 4π.

Suppose on the contrary that a subsequence converges Mj′
F−→M∞.

Case I: M∞ = 0. If so, then by Lemma 4.1, any sequence qj ∈Mj and

almost every r > 0, there is a subsequence S(qj′′ , r)
F−→ 0. Take qj lying on

the equator and choose an r < 1/2. Then by the convexity of balls one has

(269) S(qj , r) =

(
B(p0, r), dS2 ,

∫
B(p0,r)

)

are all isometric to one another. Thus they do not converge to 0 and there
is a contradiction.

Case II: M∞ 6= 0. Let xj,1, xj,2, . . . , xj,j lie on the equator of Xj so that

(270) dXj
(xj,i, xj,k) ≥ π ∀i, k ∈ {1, 2, . . . , j}.

Observe also that B(xj,k, π/4) are disjoint and are all isometric to a ball
B(x, π/4) in a standard sphere. Thus

(271) dF (S(xj,k, π/4), S(x, π/4)) = 0 ∀k ∈ {1, 2, . . . , j}.

and

(272) dF (S(xj,k, π/4),0) = h0 = dF (S(x, π/4),0) > 0 ∀k ∈ {1, 2, . . . , j}.



i
i

“3-Sormani” — 2019/3/22 — 16:00 — page 1367 — #51 i
i

i
i

i
i

Intrinsic flat Arzela-Ascoli theorems 1367

Applying Theorem 7.1, there is a subsequence of each xj,k must converge
to some xk ∈ X̄∞. Diagonalizing, there is a subsequence (also denoted Mj)
such that xj,k → xk for all k: so that

(273) dX∞(xk, xk′) ≥ π

so that B(xj,k, π/4) are disjoint. Applying Lemma 4.1,

(274) lim
j→∞

dF (S(xj,k, π/4), S(xk, π/4)) = 0.

and so

(275) dF (S(xk, π/4), S(x, π/4)) = 0.

Thus M∞ contains infinitely many balls of the same mass, which contradicts
the fact that M(T∞) is finite. �

10. Applications

In this section, we describe some existing and potential applications for the
results in this paper.

Remark 10.1. In [5], Burago and Ivanov prove that the volume growth of
the universal cover of a Riemannian manifold homeomorphic to a torus is at
least that of Euclidean space. If it is exactly equal, then they have a rigidity
theorem stating that the Riemannian manifold is flat. Theorem 8.1 may
be useful in the study of questions arising in Gromov’s work [14] analyzing
the almost rigidity of Burago-Ivanov’s Theorem (where the volume growth is
close to that of Euclidean space). Examples related to this question applying
Theorem 8.1 will appear in upcoming work of the author with her doctoral
student, Jorge Basilio [3].

Remark 10.2. Theorem 8.1 should be useful when wishing to study limits
of covering maps and analyzing the existence of a universal cover of an
intrinsic flat limit. Recall that in joint work with Guofang Wei, the author
has conducted such an analysis of Gromov-Hausdorff limits [35]. Zahra Sinaei
and the author have completed applications in this direction in [33]. More
work may be done in this direction.

Remark 10.3. Theorem 8.1 should also be useful when studying how cov-
ering spectra behave under intrinsic flat convergence. See joint work of the
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author with Guofang Wei in which it was shown that covering spectra be-
have continuously under Gromov-Hausdorff convergence [36]. Zahra Sinaei
and the author have completed applications in this direction in [33], but
more work may be done in this direction as well.

Remark 10.4. Theorem 6.2 may possibly be applied to study the limits of
harmonic functions, eigenfunctions and heat kernels. Recall that Cheeger-
Colding proved the convergence of eigenfunctions and eigenvalues when the
Riemannian manifolds are converging in the measured Gromov-Hausdorff
sense with a uniform lower bound on Ricci curvature [7]. Ding has proved the
convergence of heat kernels in this setting [9]. Building on work of Fukaya
[11], Sinaei has proven the convergence of harmonic maps in this setting
with additional conditions [32]. Portegies has shown that eigenvalues need
not converge when one only has intrinsic flat convergence without a vol-
ume bound, but building on work of Fukaya [11] has shown the eigenvalues
semiconverge as long as the volume converges [30]. It would be interesting to
examine what happens to the eigenfunctions and heat kernels in this setting.

Remark 10.5. Under certain conditions one may prove intrinsic flat and
Gromov-Hausdorff limits of noncollapsing sequences of manifolds agree by
demonstrating that no points disappear in the limit. For example in [38],
the author and Wenger proved that these limits agree when the sequence
of manifolds has nonnegative Ricci curvature and no boundary. In that pa-
per, Gromov’s filling volumes and a contractibility theorem of Perelman
was required to complete the argument. The theorems in this paper enable
mathematicians to control the disappearance of points without using such
powerful theorems. These theorems are applied by Munn to prove F and
GH limits agree for noncollapsing sequences with two sided Ricci curvature
bounds in [24] and by Matveev-Portegies to prove these results for sequences
with uniform lower Ricci curvature bounds in [23]. Perales has applied these
theorems to study noncollapsing sequences of manifolds with boundary and
various curvature bounds in [25]. In joint work with Li, Perales has applied
these theorems to Alexandrov spaces in [22], It would be interesting to study
the limits of sequences of spaces with RCD bounds as in Ambrosio-Gigli-
Savare [1] or integral Ricci curvature bounds as in Petersen-Wei [28].

Remark 10.6. In joint work with Dan Lee [20], it has been conjectured
that sequences of manifolds with nonnegative scalar curvature and no inte-
rior minimal surfaces whose ADM mass converges to 0 must converge in the
pointed intrinsic flat sense to Euclidean space. The conjecture is proven in
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that paper in the rotationally symmetric case. In [16], Huang, Lee and the
author have applied the Arzela-Ascoli theorems from this paper to prove
this conjecture when the manifolds are graphs satisfying various technical
conditions. One should be able to apply these theorems towards proving this
conjecture in far more general settings.

Remark 10.7. It can be very difficult to prove a sequence of manifolds
converges in the intrinsic flat sense to a particular limit. In the original pa-
per introducing intrinsic flat convergence [39], the author and Stefan Wenger
had to construct sequences of filling manifolds explicitly to prove these ex-
amples converged. In joint work of the author with Sajjad Lakzian, theo-
rems were proven to allow one to construct intrinsic flat limits as long as
the manifolds were converging smoothly on sufficiently nice subregions [19].
Additional such theorems were proven by Lakzian in [17] and applied to
Ricci flow through singularities by Lakzian in [18]. Theorem 7.1 may now
be applied to prove sequences converge in the intrinsic flat sense to limits
even when there is no smooth convergence anywhere. In joint work of the
author with Jorge Basilio [3], Theorem 7.1 is applied to prove a collection of
examples of sequences of manifolds with nonnegative scalar curvature that
have surprising limits.

Remark 10.8. In joint work of the author with LeFloch [21] it is proven
that sequences of rotationally symmetric regions with nonnegative scalar
curvature, no interior minimal surfaces and uniformly bounded Hawking
mass have subsequences which converge in the Intrinsic Flat sense. The
proof consists of first proving a Sobolev limit of the metric tensors exist for
a well chosen gauge and then showing the sequence converges in the intrinsic
flat sense to the Sobolev limit. In order to extend this relationship between
Sobolev limits and intrinsic flat limits to the nonrotationally symmetric
setting, one may try to apply theorems from this paper in the same way
that they are being applied as described in Remark 10.7.

Remark 10.9. In early work, the author studied the stability of the space-
like Friedmann model of cosmology using the Gromov-Hausdorff distance
[34]. The Arzela-Ascoli Theorem for Gromov-Hausdorff convergence was a
key ingredient in this work. In order to apply Gromov-Hausdorff conver-
gence, one could not allow the universes under consideration to develop
thin deep wells. However in work with Dan Lee [20], it is seen that thin
deep gravity wells naturally occur even in regions of small mass. In order
to study the stability of the spacelike Friedmann model of cosmology in a
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way which permits thin deep gravity wells, one needs to use the intrinsic
flat distance (otherwise there are counterexamples). The new Arzela-Ascoli
Theorems provided in this paper should now allow one to extend the tech-
niques in [34] to prove a new intrinsic flat stability theorem for the spacelike
Friedmann model which allows for gravity wells.

If a reader is interested in studying any of these questions, please contact
the author. More details can be provided and the author can coordinate the
research of those working on these problems. Funding to visit the author
may be available.
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