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Let M be an open Riemann surface. It was proved by Alarcón and
Forstnerič [2] that every conformal minimal immersion M → R3 is
isotopic to the real part of a holomorphic null curve M → C3. In
this paper, we prove the following much stronger result in this di-
rection: for any n ≥ 3, the inclusion ι : <N∗(M,Cn) ↪→M∗(M,Rn)
of the space of real parts of nonflat null holomorphic immersions
M → Cn into the space of nonflat conformal minimal immersions
M → Rn satisfies the parametric h-principle with approximation
(see Theorem 4.1). In particular, ι is a weak homotopy equivalence
(see Theorem 1.1). We prove analogous results for several other
related maps (see Theorems 1.2 and 5.6 and Corollary 1.3), and
we describe the rough shape of the space of all holomorphic im-
mersions M → Cn (Theorem 1.4). For an open Riemann surface
M of finite topological type, we obtain optimal results by showing
that ι and several related maps are inclusions of strong deforma-
tion retracts; in particular, they are homotopy equivalences (see
Corollary 6.2 and Remark 6.3).

1 Introduction 2

2 Preliminaries 10

3 An application of Gromov’s convex integration lemma 13

4 Parametric h-principle for the inclusion
<N∗(M,Cn) ↪→ M∗(M,Rn) 19

5 Parametric h-principle for directed immersions of
Riemann surfaces 29

1



i
i

“1-Larusson” — 2019/5/7 — 20:49 — page 2 — #2 i
i

i
i

i
i

2 F. Forstnerič and F. Lárusson

6 Strong parametric h-principles for sources of finite
topological type 36

References 43

1. Introduction

This paper brings together four diverse topics from differential geometry,
holomorphic geometry, and topology; namely the theory of minimal sur-
faces, Oka theory, convex integration theory, and the theory of absolute
neighborhood retracts. Our goal is to determine the rough shape of several
spaces of maps of great geometric interest. It turns out that they all have
the same rough shape.

We start by recalling some basic definitions and establishing notation.
Let M be an open Riemann surface, and let n ≥ 3 be an integer. It is a
well known elementary observation (see e.g. Osserman [18]) that a smooth
immersion u = (u1, . . . , un) : M → Rn is conformal (i.e., angle preserving) if
and only if its (1, 0)-differential ∂u = (∂u1, . . . , ∂un) satisfies the following
nullity condition:

(1.1) (∂u1)2 + (∂u2)2 + · · ·+ (∂un)2 = 0.

Furthermore, a conformal immersion u : M → Rn is minimal (i.e., it param-
eterizes a minimal surface in Rn) if and only if it is harmonic, 4u = 0, and
this holds if and only if ∂u is a holomorphic (1, 0)-form. Such an immersion
u is said to be nonflat if, for each connected component M ′ of M , the image
u(M ′) ⊂ Rn is not contained in any affine 2-plane. We denote by M(M,Rn)
the space of all conformal minimal immersions M → Rn with the compact-
open topology, and by

M∗(M,Rn) ⊂M(M,Rn)

the subspace of M(M,Rn) consisting of all nonflat conformal minimal im-
mersions.

A holomorphic immersion F : M → Cn (n ≥ 3) is a null curve if the
differential dF = ∂F = (dF1, . . . , dF1) satisfies the nullity condition (1.1).
Such an immersion F is said to be nonflat if for each connected compo-
nent M ′ of M , the image F (M ′) is not contained in an affine complex line.
Since dF = 2∂(<F ), the real part <F of a (nonflat) null curve is a (nonflat)
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The parametric h-principle for minimal surfaces 3

conformal minimal immersion M → Rn; the converse holds if M is simply
connected. Hence, we have inclusions

<N(M,Cn) ↪→M(M,Rn), <N∗(M,Cn) ↪→M∗(M,Rn),

where N∗(M,Cn) ⊂ N(M,Cn) is the space of all (nonflat) null holomorphic
immersions M → Cn with the compact-open topology. Here, <F stands for
the set of real parts of maps in a space F .

The following is our first main result.

Theorem 1.1. Let M be an open Riemann surface. For every n ≥ 3, the
inclusion

(1.2) <N∗(M,Cn) ↪−→M∗(M,Rn)

of the space of real parts of nonflat null holomorphic immersions M → Cn
into the space of nonflat conformal minimal immersions M → Rn is a weak
homotopy equivalence.

This means that the inclusion induces a bijection of path components
and an isomorphism of homotopy groups

πk (<N∗(M,Cn))
∼=−→ πk (M∗(M,Rn))

for every k ≥ 1 and every choice of base point.
Theorem 1.1 is an immediate consequence of Theorem 4.1 which shows

that the inclusion (1.2) enjoys the parametric h-principle with approxima-
tion. Theorem 4.1 is an analogue of the parametric Oka property with approx-
imation for the inclusion O(X,Y ) ↪→ C (X,Y ), where X is a Stein manifold
and Y is an Oka manifold (see [5, Theorem 5.4.4]). This relationship plays
an important role in the proof of Theorem 1.1 which relies on techniques of
modern Oka theory, combined with Gromov’s convex integration theory.

The basic case of Theorem 1.1, with P = {p} a singleton and Q = ∅ (see
the notation in Theorem 4.1), was proved by Alarcón and Forstnerič in [2,
Theorem 1.1]. In this case, the result says that every nonflat conformal min-
imal immersion M → Rn is isotopic through a family of nonflat conformal
minimal immersions M → Rn to the real part of a holomorphic null curve
M → Cn. In fact, Theorem 1.1 gives an affirmative answer to the second
question in [2, Problem 8.1].

In this paper, we shall systematically use the term isotopy instead of
the more standard regular homotopy when speaking of smooth 1-parameter
families of immersions.
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4 F. Forstnerič and F. Lárusson

We do not know whether the inclusion <N(M,Cn) ↪→M(M,Rn) (i.e.,
with the flat conformal minimal immersions included) is also a weak ho-
motopy equivalence. The main problem is that flat conformal minimal im-
mersions (and flat null curves) are critical points of the period map (see
(4.4)), and hence they may be singular points of the space M(M,Rn). This
phenomenon was already observed in the papers [1, 2].

Let us recall the classical Weierstrass representation of conformal min-
imal immersions and null curves; see e.g. [18]. Choose a nowhere vanish-
ing holomorphic 1-form θ on M . (Such a form exists by the Oka-Grauert
principle, cf. [5, Theorem 5.3.1].) Given a conformal minimal immersion
u : M → Rn, the map

f = 2∂u/θ = (f1, . . . , fn) : M → Cn

is holomorphic since u is harmonic, and the nullity condition (1.1) shows
that it has range in the punctured null quadric A∗ = A \ {0}, where

(1.3) A = An−1 = {(z1, . . . , zn) ∈ Cn : z2
1 + z2

2 + · · ·+ z2
n = 0}.

Clearly, the choice of θ is immaterial since A is a complex cone. Conversely,
a holomorphic map f : M → A∗ such that the (1, 0)-form fθ has vanishing
real periods (i.e.,

∫
γ <(fθ) = 0 for every closed curve γ in M) determines a

conformal minimal immersion u : M → Rn defined by

u(x) =

∫ x

<(fθ), x ∈M.

Similarly, if fθ has vanishing complex periods, then it integrates to a holo-
morphic null curve F (x) =

∫ x
fθ.

Theorem 1.2. Let M be an open Riemann surface and let n ≥ 3. The
maps

(1.4) M∗(M,Rn) −→ O(M,A∗), N∗(M,Cn) −→ O(M,A∗),

given by u 7→ 2∂u/θ and F 7→ ∂F/θ, respectively, are weak homotopy equiv-
alences.

We use the standard notation O(M,Y ) for the space of all holomorphic
maps from M to a complex manifold Y with the compact-open topology.

Before commenting on the proof of Theorem 1.2, let us indicate a corol-
lary.
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The parametric h-principle for minimal surfaces 5

Recall (cf. [1, Example 4.4]) that the punctured null quadric A∗ is elliptic
in the sense of Gromov [9], and hence an Oka manifold (see [5, Corollary
5.5.12]). This is also seen by observing that A∗ is a homogeneous space of
the complex Lie group C∗ ×O(n,C), where

O(n,C) = {A ∈ GL(n,C) : AAt = I}

is the orthogonal group over C. Recall that every complex homogeneous
manifold is an Oka manifold by Grauert’s theorem [6]; see also [5, Proposi-
tion 5.5.1]. Hence, it follows from Grauert’s Oka principle (see [7]) that the
inclusion

O(M,A∗) ↪−→ C (M,A∗)

of the space of holomorphic maps M → A∗ into the space of continuous
maps is a weak homotopy equivalence. (See also [5, Corollary 5.4.8].) Since
the composition of weak homotopy equivalences is again a weak homotopy
equivalence, we have the following corollary to Theorem 1.2, generalizing [2,
Corollary 8.3].

Corollary 1.3. Let M be an open Riemann surface, and let A be the null
quadric in Cn for some n ≥ 3. Then the maps

M∗(M,Rn) −→ C (M,A∗), N∗(M,Cn) −→ C (M,A∗),

defined as in Theorem 1.2, are weak homotopy equivalences.

Let us return to Theorem 1.2. Consider the following commuting dia-
gram:

(1.5) N∗(M,Cn)
φ //

��

O(M,A∗)

<N∗(M,Cn) �
� //M∗(M,Rn)

ψ

OO

The inclusion at the bottom is a weak homotopy equivalence by Theorem 1.1.
The left vertical map is the projection F 7→ <F of a null curve to its real part.
By continuity in the compact-open topology of the Hilbert transform that
takes u ∈ <N∗(M,Cn) to its harmonic conjugate v with v(p) = 0, where p ∈
M is any chosen base point, the left vertical map is a homotopy equivalence.
The map φ is given by F 7→ ∂F/θ, and the map ψ is given by u 7→ 2∂u/θ.
Hence, if one of the maps φ, ψ is a weak homotopy equivalence, then so is
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6 F. Forstnerič and F. Lárusson

the other one. To prove Theorem 1.2, it thus suffices to consider only one of
them.

The fact that the map φ : N∗(M,Cn)→ O(M,A∗) is a weak homotopy
equivalence is a special case of Theorem 5.6. The latter result establishes
the weak homotopy equivalence principle for the space IA,∗(M,Cn) of non-
degenerate holomorphic immersions M → Cn directed by any conical com-
plex subvariety A ⊂ Cn such that A∗ = A \ {0} is an Oka manifold; the null
quadric A defined by (1.3) is a special case. The technical result behind it is
Theorem 5.3 which establishes the parametric h-principle with approxima-
tion in this context, generalizing the basic h-principle [1, Theorem 2.6].

These results also hold in the special case when the cone A equals Cn.
This deserves particular attention, so let us explain it in some details. For
any integer n ≥ 1, we denote by

I(M,Cn)

the subset of O(M,Cn) consisting of all holomorphic immersions M → Cn.
(Note that every immersion M → Cn is nondegenerate in the sense of Defi-
nition 5.2.) Fix a nowhere vanishing holomorphic 1-form θ on M . For every
F ∈ I(M,Cn), the map

ϑF = dF/θ : M → Cn∗ = Cn \ {0}

is holomorphic and its range avoids the origin. This defines a continuous
map

ϑ : I(M,Cn)→ O(M,Cn∗ ).

The natural inclusion ι : O(M,Cn∗ ) ↪→ C (M,Cn∗ ) is a weak homotopy
equivalence by the Oka-Grauert principle [5, Theorem 5.3.2]; if M has finite
topological type, then it is even a homotopy equivalence [13]. Further, the
projection Cn∗ → S2n−1, z 7→ z/|z|, of Cn∗ onto the unit sphere S2n−1 ⊂ Cn
induces a homotopy equivalence τ : C (M,Cn∗ )→ C (M,S2n−1). In summary,
we have maps

I(M,Cn)
ϑ−→ O(M,Cn∗ )

ι
↪−→ C (M,Cn∗ )

τ−→ C (M,S2n−1),

where ι and τ are known to be (weak) homotopy equivalences.
The following Oka principle for holomorphic immersions from open Rie-

mann surfaces to Euclidean spaces is a special case of Theorem 5.6.
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The parametric h-principle for minimal surfaces 7

Theorem 1.4. For every open Riemann surface M , the maps ϑ : I(M,Cn)
→ O(M,Cn∗ ) and

ϑ/|ϑ| = τ ◦ ι ◦ ϑ : I(M,Cn) −→ C (M,S2n−1)

are weak homotopy equivalences; they are homotopy equivalences if the sur-
face M has finite topological type.

The underlying technical result (the parametric Oka principle with ap-
proximation) is Theorem 5.3. For the last statement concerning homotopy
equivalences, see Corollary 6.2 and Remark 6.3. From Theorem 1.4 and stan-
dard homotopy theory we obtain the following corollary. (Compare with
Corollary 1.6.)

Corollary 1.5. The path components of the space I(M,C) are in bijective
correspondence with the elements of H1(M ;Z) = Z`, and I(M,Cn) is (2n−
3)-connected if n > 1.

Holomorphic immersions from an open Riemann surface M to C were
treated by Gunning and Narasimhan [11]. They proved that every continuous
map M → C∗ = C \ {0} is homotopic to the derivative dF/θ of a holomor-
phic immersion F : M → C. (Note that such F is a holomorphic function
on M without critical points.) However, to the best of our knowledge, the
homotopy type of the space of holomorphic immersions M → Cn has not
been considered in the literature.

The basic (nonparametric) case of Theorem 1.4 is a special case of the
following basic h-principle for holomorphic immersions of Stein manifolds to
complex Euclidean spaces, due to Eliashberg and Gromov [8, Sec. 2.1.5]:

Suppose that the cotangent bundle T ∗X of a Stein manifold X is point-
wise generated by (1, 0)-forms φ1, . . . , φn for some n > dimX. Then the n-
tuple φ = (φ1, . . . , φn) can be changed by a homotopy of such n-tuples gener-
ating T ∗X to the differential df = (df1, . . . , dfn) of a holomorphic immersion
f = (f1, . . . , fn) : X → Cn.

A detailed proof of this result and an extension to the 1-parametric case
was given by Kolarič [12, Theorem 1.1]. He also provided a parametric ver-
sion in which the parameter space is a Stein manifold [12, Theorem 1.3].
However, his result does not seem to give the full parametric h-principle
(and, by extension, the weak homotopy equivalence principle) for holomor-
phic immersions X → Cn when n > dimX. The main problem is that the
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8 F. Forstnerič and F. Lárusson

parametric h-principle concerns the existence of certain homotopies for suit-
able pairs of compact parameter spaces Q ⊂ P , where the homotopy is fixed
on Q.

It is still an open problem whether the Eliashberg-Gromov theorem re-
mains true for n = dimX (see [5, Problem 8.11.3 and Theorem 8.12.4]),
except in the case n = 1 when the problem was solved affirmatively by Gun-
ning and Narasimhan [11].

Although we have stated our results for an open Riemann surface, we
wish to point out that the analogous results hold when M is a compact
bordered Riemann surface and we consider null curves M → Cn and con-
formal minimal immersions M → Rn of class C r(M) for some r ≥ 1. This
will be clear from the proofs which proceed by induction over an exhausion
of the given open Riemann surface by compact smoothly bounded Runge
domains. We refer to [2, Theorem 4.1] for the basic (nonparametric) case in
this setting.

In the final section of the paper, we assume that the open Riemann sur-
face M has finite topological type. This means that the fundamental group
of M is finitely generated or, equivalently, that M can be obtained from a
compact Riemann surface by removing a finite number of mutually disjoint
points and closed discs. Using the theory of absolute neighborhood retracts
as in [13] and results, originating in [4], on certain spaces of maps being Ba-
nach manifolds, we are able to upgrade the inclusion in Theorem 1.1, not only
to a homotopy equivalence, but in fact to the inclusion of a strong deforma-
tion retract. The same holds for the maps in Theorem 1.2 and Corollary 1.3
with their sources and targets appropriately modified (see Corollary 6.2 and
Remark 6.3).

Recall the theorem of Alarcón and Forstnerič [2, Theorem 1.1] that every
nonflat conformal minimal immersion u : M → Rn is isotopic through such
maps to the real part of a holomorphic null curve M → Cn. By Corollary 6.2,
when M has finite topological type, this deformation can be carried out for
all u at once, in a way that depends continuously on u and leaves u un-
changed if it is the real part of a holomorphic null curve to begin with. The
key to this result is the fact that the spaces <N∗(M,Cn) and M∗(M,Rn)
are absolute neighborhood retracts when M has finite topological type (see
Theorem 6.1). The proof requires a parametric h-principle with approxima-
tion on suitable compact subsets of M . It is for this purpose that we have
included approximation in the parametric h-principles in Theorems 4.1, 5.3
and 5.4.

We conclude the introduction by indicating an application of Corol-
lary 1.3 to the question of identifying path connected components of the
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The parametric h-principle for minimal surfaces 9

mapping spaces under consideration. This question was raised in [2, Sec-
tion 8] where a partial answer was provided.

Recall that the first homology group H1(M ;Z) of an open Riemann
surface is a free abelian group on countably many generators: H1(M ;Z) ∼= Zl
with l ∈ Z+ ∪ {∞}. (Here, Z+ = {0, 1, 2, . . .}.) On the target side, it is easily
seen that the punctured null quadric An−1

∗ ⊂ Cn is simply connected when
n ≥ 4, while π1(A2

∗)
∼= Z2 (see [2, Equation (8.3)]). The latter fact is also

seen by observing that A2
∗ admits the unbranched two-sheeted holomorphic

covering

(1.6) π : C2
∗ = C2 \ {0} → A2

∗, π(u, v) =
(
u2 − v2, i(u2 + v2), 2uv

)
from the simply connected space C2

∗. (Here, i =
√
−1.) The map π, or its

variants, is called the spinorial representation formula for the null quadric
in C3. It follows that the path connected components of the space C (M,A2

∗)
are in one-to-one correspondence with the elements of the free abelian group
(Z2)l (see [2, Proposition 8.4]), and C (M,An−1

∗ ) is path connected if n ≥ 4.
Hence, Corollary 1.3 implies the following result. (A partial result in this
direction is given by [2, Proposition 8.4].)

Corollary 1.6. Let M be a connected open Riemann surface with H1(M ;Z)
∼= Zl for some l ∈ Z+ ∪ {∞}. Then the path connected components of each of
the spaces M∗(M,R3) and N∗(M,C3) are in one-to-one correspondence with
the elements of the abelian group (Z2)l. If n ≥ 4, then the spaces M∗(M,Rn)
and N∗(M,Cn) are path connected.

We illustrate Corollary 1.6 by a few examples in dimension n = 3.
Let π : C2

∗ → A∗ be the universal covering map (1.6). Let M be C∗ =
C \ {0} or an annulus. Since A∗ is an Oka manifold and π1(A∗) = Z2, there
are precisely two homotopy classes of holomorphic maps f : M → A∗. Note
that f is nullhomotopic if and only if it factors through π (by a continuous,
or equivalently holomorphic, map). Assume now that f = (f1, f2, f3) is the
derivative of a holomorphic null curve F : M → C3 and f1 6= if2. Consider
the Weierstrass representation (see Osserman [18, Lemma 8.1, p. 63]):

f1 = (1− g2)η, f2 = i(1 + g2)η, f3 = 2gη,

where g is meromorphic and η is holomorphic on M . Assume for simplicity
that g is holomorphic or, equivalently, that η has no zeros. Then f factors
through π if and only if η has a square root on M . Indeed, if η has a square
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10 F. Forstnerič and F. Lárusson

root then f = π(
√
η, g
√
η); conversely, if f = π(σ, τ) for some holomorphic

map (σ, τ) : M → C2
∗, then σ2 = η.

Example 1.7. 1. A flat null curve: Let M = C∗, and let f : C∗ → A∗ ⊂ C3

be the holomorphic map f(ζ) = ζ(1, i, 0) onto the ray of A∗ spanned by the
null vector (1, i, 0). In this case, g = 0 and η(ζ) = ζ does not have a square
root on M . Thus, the flat null curve F (ζ) = 1

2(ζ2, iζ2, 0) (ζ ∈ C∗) lies in the
nontrivial isotopy class.

2. The catenoid:M = C∗, g(ζ) = ζ, and η(ζ) = 1/ζ2. Since η has a square
root on M , we are in the trivial isotopy class. The same holds for the helicoid
which is parameterized by C.

3. Henneberg’s surface (see the formulas in López and Mart́ın’s survey
paper [14]):

M = C \ {0, 1,−1, i,−i}, g(ζ) = ζ, η(ζ) = 1− ζ−4.

On a small punctured disc centered at one of the points 1, −1, i, or −i, the
function η does not have a square root, so we are in the nontrivial isotopy
class. On the punctured disc D∗ = D \ {0}, η has a square root, so we are in
the trivial isotopy class. Here, D = {ζ ∈ C : |ζ| < 1}.

4. Two-sheeted covering of Meeks’s minimal Möbius strip (see Meeks [16,
Theorem 2]):

M = C∗, g(ζ) = ζ2 ζ + 1

ζ − 1
, η(ζ) = i

(ζ − 1)2

ζ4
.

Note that η has a square root on M . Despite the pole of g at 1, we get a
holomorphic factorization through π and we are in the trivial isotopy class.
Let F = u+ iv : C∗ → C3 be the null curve with this Weierstrass data. Then
u is invariant with respect to the fixed-point-free antiholomorphic involution
I(ζ) = −1/ζ̄ on C∗, and hence it induces a conformal minimal immersion
ũ : C∗/I→ R3. This is Meeks’s complete minimal Möbius strip in R3 with
finite total curvature −6π.

2. Preliminaries

Let M be an open Riemann surface. As we have already mentioned in the
Introduction, a smooth immersion u = (u1, . . . , un) : M → Rn is conformal
and minimal if and only if its (1, 0)-differential ∂u = (∂u1, . . . , ∂un) is a
Cn-valued holomorphic 1-form satisfying the nullity condition (1.1). The
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The parametric h-principle for minimal surfaces 11

conjugate differential of the map u is defined by

dcu = i(∂u− ∂u) = =(2∂u).

We have

2∂u = du+ idcu, ddcu = 2i ∂∂u = ∆u· dx ∧ dy,

where the second formula holds in any local holomorphic coordinate x+ iy
on M . Thus, u is harmonic if and only if dcu is a closed 1-form on M , and
in such case the equation dcu = dv holds for any local harmonic conjugate
v of u.

Let H1(M ;Z) denote the first homology group of M . The flux of a har-
monic immersion u : M → Rn is the group homomorphism

Flux(u) : H1(M ;Z)→ Rn

which is defined on any homology class [γ] ∈ H1(M ;Z) by

(2.1) Flux(u)([γ]) =

∫
γ
dcu =

∫
γ
=(2∂u).

Since the integrals are independent of the choice of a path in a given homol-
ogy class, we shall simply write Flux(u)(γ) = Flux(u)([γ]) in the sequel.

A compact set K in an open Riemann surface M is said to be O(M)-
convex if for every point x ∈M \K there is a holomorphic function f ∈
O(M) such that |f(x)| > supK |f |. It is classical that this holds if and only
if M \K does not have any relatively compact connected components, and
in this case, the Runge approximation theorem holds on K [17, 19]. For this
reason, we also say that such a set K is Runge in M .

We recall the notion of an admissible set (cf. [3, Definition 5.1]).

Definition 2.1. A compact subset S of an open Riemann surface M is
said to be admissible if S = K ∪ Γ, where K = ∪jKj is a union of finitely
many pairwise disjoint, compact, smoothly bounded domains Kj in M and
Γ = ∪iΓi is a union of finitely many pairwise disjoint smooth arcs or closed
curves that intersect K only in their endpoints (or not at all), and such that
their intersections with the boundary bK are transverse.

Note that an admissible set S ⊂M is Runge in M (i.e., O(M)-convex)
if and only if the inclusion map S ↪→M induces an injective homomorphism
H1(S;Z) ↪→ H1(M ;Z) of the first homology groups. If this holds, then we
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12 F. Forstnerič and F. Lárusson

have the classical Mergelyan approximation theorem (cf. [17]): continuous
functions on S that are holomorphic in the interior S̊ can be approximated
uniformly on S by functions holomorphic on M .

Recall that A = An−1 ⊂ Cn denotes the null quadric (1.3) and A∗ =
A \ {0}. Given an admissible set S = K ∪ Γ ⊂M , we denote by

O(S,A∗)

the set of all smooth maps S → A∗ which are holomorphic on an unspecified
open neighborhood of K (depending on the map). We say that a map f ∈
O(S,A∗) is nonflat if it maps no component of K and no component of Γ to
a ray in the null quadric A∗. We denote by O∗(S,A∗) the subset of O(S,A∗)
consisting of all nonflat maps.

Definition 2.2. Let M be an open Riemann surface, θ be a nowhere van-
ishing holomorphic 1-form on M , and S = K ∪ Γ ⊂M be an admissible
subset (Definition 2.1). A generalized conformal minimal immersion on S is
a pair (u, fθ), where f ∈ O(S,A∗) and u : S → Rn is a smooth map which is
a conformal minimal immersion on an open neighborhood of K, such that
the following properties hold:

• fθ = 2∂u on an open neighborhood of K in M , and

• on any smooth curve α parameterizing a connected component of Γ
we have that <(α∗(fθ)) = α∗(du) = d(u ◦ α).

A generalized conformal minimal immersion (u, fθ) is nonflat if f ∈ O(S,A∗)
is nonflat.

Note that a generalized conformal minimal immersion on a curve C is
nothing else than a 1-jet of a conformal immersion along C.

The flux homomorphism can also be defined for a generalized conformal
minimal immersion ũ = (u, fθ) on an admissible set S: for each closed curve
γ ⊂ S we take

Flux(ũ)(γ) =

∫
γ
=(fθ).

Clearly, this notion coincides with (2.1) for curves γ contained in the interior
of S.

We denote by GM(S,Rn) the set of all generalized conformal minimal
immersions S → Rn and by

GM∗(S,Rn) ⊂ GM(S,Rn)
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The parametric h-principle for minimal surfaces 13

the subset consisting of all nonflat ones.
When K is a compact set in a complex manifold X, we shall say that

a map f : K → Y to another complex manifold Y is holomorphic on K if f
extends to a holomorphic map U → Y on an open neighborhood U ⊂ X of
K (depending on the map). Two such maps are considered the same if they
agree on some neighborhood of K. For maps in a continuous family fp : K →
Y (p ∈ P ), we shall assume that the neighborhood U is independent of p.

3. An application of Gromov’s convex integration lemma

Given a closed, embedded, real analytic curve C in a Riemann surface
M , there are an open neighborhood W ⊂M of C and a biholomorphic
map z : W → Ω onto an annulus Ω = {z ∈ C : r−1 < |z| < r} taking C onto
the circle S1 = {z ∈ C : |z| = 1}. The exponential map C 3 ζ = x+ iy 7→
exp(2πi ζ) ∈ C∗ provides a universal covering of Ω by Σ = {x+ iy : x ∈ R,
|y| < (2π)−1 log r} ⊂ C, mapping R = {y = 0} onto S1. We take ζ = x+ iy
as a uniformizing coordinate on W , with C = {y = 0}.

Let n ≥ 3 be an integer. Assume that u : M → Rn is a conformal har-
monic immersion. The restriction u|W is given in this coordinate by a 1-
periodic conformal harmonic immersion U : Σ→ Rn. Along the line y = 0,
we have that

U(x+ iy) = h(x)− g(x)y +O(y2)

where h(x) = U(x+ i0) and g(x) = −Uy(x+ i0) are smooth 1-periodic maps
R→ Rn and the remainder term satisfies |O(y2)| ≤ cy2 for some constant
c > 0 independent of x ∈ R. It follows that

2
∂

∂ζ
U(x+ iy)|y=0 = (Ux − iUy) |y=0 = h′(x) + ig(x).

Conformality of the map U implies that

(3.1) g(x)·h′(x) = 0 and |g(x)| = |h′(x)| > 0 hold for all x ∈ R.

We also have that dcU = i(∂u− ∂u) = −Uydx+ Uxdy, and hence

∫
C
dcu =

∫ 1

0
dcU = −

∫ 1

0
Uy(x+ i0) dx =

∫ 1

0
g(x) dx.
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14 F. Forstnerič and F. Lárusson

Condition (3.1) means that the 1-periodic map σ = h′ + ig : R→ A∗ is a
loop in the null quadric (1.3) whose real part has vanishing period:∫ 1

0
<(σ(x)) dx =

∫ 1

0
h′(x) dx = 0.

In [2, Section 3] it is proved that for every such map σ and any vector w ∈ Rn
there exists an isotopy of 1-periodic maps σt : R→ A∗ (t ∈ [0, 1]) such that
σ0 = σ and

(3.2)

∫ 1

0
<(σt(x)) dx = 0 for all t ∈ [0, 1],

∫ 1

0
=(σ1(x)) dx = w.

In particular, we can obtain
∫ 1

0 =(σ1(x)) dx = 0. (See [2, Lemmas 3.2 and
3.4].)

The analogous description and results hold if C is a real analytic arc. In
this case, we may omit the periodicity condition on σt and replace the real
period vanishing condition in (3.2) by the condition that

∫ 1
0 <(σt(x)) dx = vt,

where vt ∈ Rn (t ∈ [0, 1]) is a given path.
We shall prove the following lemma which generalizes the above men-

tioned result from [2] to the parametric case, i.e., for a family of paths
σp : [0, 1]→ A∗ depending continuously on a parameter p ∈ P in a compact
Hausdorff space. For technical reasons, we replace (3.2) by approximate con-
ditions; see property (iii) in Lemma 3.1. We can also get the exact condition
provided that each path σp : [0, 1]→ A∗ in the given family is nonflat, i.e.,
its image is not contained in a complex ray of A. We shall arrange the latter
condition to hold when applying Lemma 3.1 in the proof of Theorem 1.1
given in the following section.

Lemma 3.1. Let Q ⊂ P be compact Hausdorff spaces and let σ : P × [0, 1]→
A∗ be a continuous map. Consider σp = σ(p, · ) : [0, 1]→ A∗ as a family of
paths in A∗ depending continuously on the parameter p ∈ P . Set

(3.3) αp =

∫ 1

0
σp(s) ds ∈ Cn, p ∈ P.

Given a continuous family αtp ∈ Cn (p ∈ P, t ∈ [0, 1]) such that

(3.4) αtp = αp for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]),

there exists for every ε > 0 a homotopy of paths σtp : [0, 1]→ A∗ (p ∈ P, t ∈
[0, 1]) satisfying the following conditions:
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The parametric h-principle for minimal surfaces 15

(i) σtp = σp for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]);

(ii) σtp(0) = σp(0) and σtp(1) = σp(1) for all p ∈ P and t ∈ [0, 1];

(iii)
∣∣∣∫ 1

0 σ
t
p(s) ds− αtp

∣∣∣ < ε for all p ∈ P and t ∈ [0, 1].

Proof. We shall reduce the proof to a parametric version of Gromov’s one-
dimensional convex integration lemma (see [10, 2.1.7. One-Dimensional
Lemma]).

By [1, Lemma 3.1], the convex hull Co(A) ⊂ Cn of the null quadric A ⊂
Cn (1.3) equals Cn. Hence, there exists a number r1 > 0 such that

{αtp : p ∈ P, t ∈ [0, 1]} ⊂ Co(A ∩ r1Bn).

Here, Bn is the open unit ball in Cn; we sometimes omit the superscript.
By increasing r1 if necessary and choosing r0 ∈ (0, r1) small enough, we can
ensure that

σ(P × [0, 1]) ⊂ Ar0,r1 := A ∩ r1B \ r0B.

Note that Co(Ar0,r1) = Co(A ∩ r1B). For any δ > 0, set

Ωδ =
{

(z1, . . . , zn) ∈ Cn : |z2
1 + · · ·+ z2

n| < δ, r0 < |z1|2 + · · ·+ |zn|2 < r1

}
.

Then we have that

σ(P × [0, 1]) ⊂ Ar0,r1 ⊂ Ωδ and {αtp : p ∈ P, t ∈ [0, 1]} ⊂ Co(Ωδ).

Let ρ : U → A∗ be a smooth retraction from an open neighborhood U ⊂
Cn of A∗. Pick δ > 0 small enough such that Ωδ ⊂ U and for every path
γ : [0, 1]→ Ωδ we have

(3.5)

∣∣∣∣∫ 1

0
γ(s) ds−

∫ 1

0
ρ(γ(s)) ds

∣∣∣∣ < ε/4.

We fix a number δ satisfying these conditions.
Our construction proceeds in three steps. In the first step, we shall find

a continuous family of paths

τ tp : [0, 1]→ Co(Ωδ), (p, t) ∈ P × [0, 1]

satisfying conditions (i)–(iii) in Lemma 3.1, with τ tp in place of σtp and with
ε replaced by ε/2. In the second step, we shall deform the family τ tp to a
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16 F. Forstnerič and F. Lárusson

family of paths τ̃ tp : [0, 1]→ Ωδ, keeping the deformation fixed on the set

(3.6) R := (P × {0}) ∪ (Q× [0, 1]),

such that the integrals change by less than ε/4. It is here that Gromov’s
convex integration lemma will be used. In the last step, we shall apply to
τ̃ tp the retraction ρ : Ωδ → A∗ in order to get the desired family of paths
σtp = ρ ◦ τ̃ tp : [0, 1]→ A∗.

Choose a continuous function χ : P × [0, 1]→ [0, 1] supported in a small
neighborhood of the set R (3.6) and satisfying χ = 1 on R. Consider the
continuous family of paths

σ̃tp : [0, 1]→ Co(Ωδ), (p, t) ∈ P × [0, 1]

given by

(3.7) σ̃tp(s) = χ(p, t)σp(s) + (1− χ(p, t))αtp, s ∈ [0, 1].

Clearly, σ̃tp = σp for (p, t) ∈ R (see (3.6)) and hence condition (i) holds. By
(3.3), we have ∫ 1

0
σ̃tp(s) ds = χ(p, t)αp + (1− χ(p, t))αtp.

Since χ = 1 on the set R given by (3.6) and αtp = αp for all (p, t) ∈ R in
view of (3.4), the above expression is arbitrarily close to αtp uniformly on
(p, t) ∈ P × [0, 1], provided that the support of χ is contained in a sufficiently
small neighborhood of R. Thus, we may arrange by a suitable choice of the
cut-off function χ that

(3.8)

∣∣∣∣∫ 1

0
σ̃tp(s) ds− αtp

∣∣∣∣ < ε/4, (p, t) ∈ P × [0, 1].

In order to obtain condition (ii), we make a small correction near the
two endpoints s = 0 and s = 1 of the parameter interval [0, 1] of our paths.
Pick a number 0 < η < 1/3 close to 0 and define the path

(3.9) τ tp : [0, 1]→ Co(Ωδ), (p, t) ∈ P × [0, 1]

as follows:

• on s ∈ [0, η] we follow the straight line segment from σp(0) to σ̃tp(0);
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The parametric h-principle for minimal surfaces 17

• on s ∈ [η, 1− η] we follow the path σ̃tp (see (3.7)) reparameterized to
this interval. Explicitly, we take τ tp(s) = σ̃tp((s− η)/(1− 2η));

• on s ∈ [1− η, 1] we follow the straight line segment from σ̃tp(1) to σp(1).

Clearly, the path τ tp satisfies conditions (i) and (ii) (with τ tp in place of σtp).
Since the above modification does not change the integrals very much, we
have that

(3.10)

∣∣∣∣∫ 1

0
τ tp(s) ds−

∫ 1

0
σ̃tp ds

∣∣∣∣ < ε/4, (p, t) ∈ P × [0, 1]

provided that the number η > 0 is chosen small enough.
Our next goal is to deform the family of paths τ tp with range in Co(Ωδ)

(see (3.9)) to a family of paths σtp : [0, 1]→ Ωδ and with approximately the
same integrals, keeping the deformation fixed on the set

(3.11) K := (P × [0, 1]t × {0, 1}s) ∪ (R× [0, 1]s) ⊂ P × [0, 1]t × [0, 1]s.

(Recall that R ⊂ P × [0, 1] is the set given by (3.6). The subscripts s and t
in (3.11) are included to help the reader understand which variable we have
in mind.) This will be accomplished by applying a parametric version of
Gromov’s one-dimensional convex integration lemma (see [10, Lemma 2.1.7,
p. 337]). The precise result that we shall use is given by [21, Theorem 3.4,
p. 39] where the reader can find a complete proof.

Consider the family of C 1 paths f tp : [0, 1]→ Cn (p ∈ P, t ∈ [0, 1]) given
by

f tp(s) =

∫ s

0
τ tp(ξ) dξ, s ∈ [0, 1].

Set

βtp = σp : [0, 1]→ Ar0,r1 ⊂ Ωδ, (p, t) ∈ P × [0, 1].

The family (f tp, β
t
p) (p ∈ P, t ∈ [0, 1]) satisfies the hypotheses of [21, Theo-

rem 3.4, p. 39]. Indeed, for every (p, t) ∈ P × [0, 1] we have that

∂sf
t
p(s) =

{
τ tp(s) ∈ Co(Ωδ), s ∈ [0, 1];

σp(s) ∈ Ωδ, s ∈ {0, 1}.

(See also Remark 3.2.) Applying the cited theorem to the family (f tp, β
t
p),

keeping the deformation fixed on the set K given by (3.11), furnishes a
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18 F. Forstnerič and F. Lárusson

continuous family of paths

τ̃ tp : [0, 1]→ Ωδ, (p, t) ∈ P × [0, 1]

satisfying conditions (i), (ii) and also the following estimate:

(3.12)

∣∣∣∣∫ 1

0
τ̃ tp(s) ds−

∫ 1

0
τ tp(s) ds

∣∣∣∣ < ε/4, (p, t) ∈ P × [0, 1].

Recall that ρ : Ωδ → A∗ is the retraction chosen at the beginning of the
proof. Set

σtp = ρ ◦ τ̃ tp, (p, t) ∈ P × [0, 1].

Clearly, σtp(s) = τ̃ tp(s) = σp(s) for (p, t, s) ∈ K (3.11) since these values be-
long to A∗. Thus, σtp satisfies conditions (i) and (ii). Furthermore, the esti-
mate (3.5) shows that

(3.13)

∣∣∣∣∫ 1

0
σtp(s) ds−

∫ 1

0
τ̃ tp(s) ds

∣∣∣∣ < ε/4, (p, t) ∈ P × [0, 1].

By combining the estimates (3.8), (3.10), (3.12) and (3.13) we see that σtp
also satisfies condition (iii). This proves Lemma 3.1. �

Remark 3.2 (On pairs of parameter sets Q ⊂ P in Lemma 3.1).
We wish to clarify a certain technical point concerning the use of [21, The-
orem 3.4, p. 39] in the proof of Lemma 3.1.

In the cited theorem, the author assumes that the parameter sets C and
B = C × [0, 1] (in his notation) are compact C 1 manifolds. (Note that C
corresponds to our parameter set P , while the second factor [0, 1] is the pa-
rameter interval of the paths fp : [0, 1]→ Cn for p ∈ C. In [21, Theorem 3.4]
the letter t ∈ [0, 1] is used for this parameter; here we used the letter s, re-
serving t ∈ [0, 1] for the parameter of the homotopy.) An inspection of the
proof shows that the assumption of C being C 1 manifolds can be avoided
in our situation. Indeed, the only place in [21, proof of Theorem 3.4] where
this assumption is used is on top of page 41 where the author chooses a
certain cut-off function λ of class C 1, supported in a small neighborhood of
a certain compact set K in B = C × [0, 1] and agreeing with 1 on a smaller
neighborhood of K. (The role of K is that the homotopy should be fixed
in a small neighborhood of K. In our proof of Lemma 3.1, K corresponds
to the set (P × {0, 1}) ∪ (Q× [0, 1]) ⊂ P × [0, 1]. By including both copies
P × {0} and P × {1}, we ensure that the deformations of paths made in the
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process are fixed near the endpoints s = 0, 1 of the parameter interval. Fur-
thermore, by also including the parameter t ∈ [0, 1] of the homotopy into the
picture, the relevant set K ⊂ P × [0, 1]t × [0, 1]s is given by (3.11), where R
is the set (3.6).) Our point is that the cut-off function λ used in [21, proof
of Theorem 3.4] only needs to be of class C 1 in the s variable (the param-
eter on the path) and its derivative ∂sλ must be continuous in all variables
(p, t, s). Such λ obviously exists in our situation if P is an arbitrary compact
Hausdorff space. �

4. Parametric h-principle for the inclusion
<N∗(M,Cn) ↪→ M∗(M,Rn)

In this section, we prove the parametric h-principle with approximation for
the inclusion

<N∗(M,Cn) = {u ∈M∗(M,Rn) : Flux(u) = 0} ↪−→M∗(M,Rn)

considered in Theorem 1.1.

Theorem 4.1. Assume that M is an open Riemann surface, Q ⊂ P are
compact Hausdorff spaces, D bM is a smoothly bounded domain whose clo-
sure D̄ is O(M)-convex, and u : M × P → Rn (n ≥ 3) is a continuous map
satisfying the following conditions:

(a) up = u(· , p) : M → Rn is a nonflat conformal minimal immersion for
every p ∈ P ;

(b) up|D̄ : D̄ → Rn has vanishing flux for every p ∈ P ;

(c) Flux(up) = 0 for every p ∈ Q.

Given a number ε > 0, there exists a homotopy ut : M × P → Rn (t ∈ [0, 1])
such that the map utp := ut(· , p) : M → Rn is a nonflat conformal minimal
immersion for every (p, t) ∈ P × [0, 1] satisfying the following conditions:

(1) utp = up for every (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]);

(2) |utp(x)− up(x)| < ε for all x ∈ D̄ and (p, t) ∈ P × [0, 1];

(3) utp|D̄ has vanishing flux for every (p, t) ∈ P × [0, 1];

(4) Flux(u1
p) = 0 for every p ∈ P .
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Let us explain the content of the theorem in nontechnical terms. The
assumption (b) is equivalent to saying that the restriction up|D̄ is the real
part of a holomorphic null curve D̄ → Cn for every p ∈ P , while (c) says
that for every p ∈ Q, up : M → Rn is the real part of a globally defined holo-
morphic null curve Fp : M → Cn. The conclusion of the theorem is that we
can deform u through a homotopy ut : M × P → Rn (t ∈ [0, 1]) consisting of
nonflat conformal minimal immersions utp := ut(· , p) : M → Rn such that the
homotopy is fixed for p ∈ Q (condition (1)), it approximates u uniformly on
D̄ × P for every t ∈ [0, 1] (condition (2)), the restrictions utp|D̄ are real parts
of null curves D̄ → Rn (condition (3)), and at t = 1 the family u1

p : M → Rn
consists of real parts of null curves Fp : M → Cn (condition (4)).

Assuming for a moment that Theorem 4.1 holds, we now give:

Proof of Theorem 1.1. Let k ∈ Z+. Applying Theorem 4.1 with P = Sk (the
real k-sphere) and Q = ∅ shows that the map

(4.1) πk(<N∗(M,Cn)) −→ πk(M∗(M,Rn)),

induced by the inclusion, is surjective. Applying Theorem 4.1 with P = Bk+1

(the closed ball in Rk+1) and Q = Sk = bBk+1 shows that the map (4.1) is
also injective. �

Proof of Theorem 4.1. Pick a smooth strongly subharmonic Morse exhaus-
tion function ρ : M → R and exhaust M by sublevel sets

Dj = {x ∈M : ρ(x) < cj}, j ∈ N

where c1 < c2 < c3 < . . . is an increasing sequence of regular values of ρ such
that limj→∞ cj =∞. We may assume in addition that D1 = D is the domain
in Theorem 4.1 and each interval [cj , cj+1] contains at most one critical value
of the function ρ. Let ε > 0 be as in the theorem. Pick a sequence εj > 0
with

∑∞
j=1 εj < ε. Set

utp,1 := up|D̄1
, (p, t) ∈ P × [0, 1].

We shall recursively construct a sequence of homotopies of conformal mini-
mal immersions

utp,j : D̄j −→ Rn, (p, t) ∈ P × [0, 1], j ∈ N

satisfying the following conditions for every j = 2, 3, . . .:
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The parametric h-principle for minimal surfaces 21

(aj) u
t
p,j = up|D̄j for every (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]);

(bj) ‖utp,j − utp,j−1‖D̄j−1
< εj for all (p, t) ∈ P × [0, 1];

(cj) Flux(utp,j |D̄j−1
) = Flux(utp,j−1) for every (p, t) ∈ P × [0, 1];

(dj) Flux(u1
p,j) = 0 on D̄j for every p ∈ P .

Note that condition (d1) holds by the definition of utp,1, while the other
conditions are vacuous for j = 1. Clearly, these conditions imply that the
limit

utp = lim
j→∞

utp,j : M −→ Rn, p ∈ P, t ∈ [0, 1]

exists and satisfies the conclusion of Theorem 4.1. Indeed, (aj) ensures that
all homotopies are fixed on the parameter set (P × {0}) ∪ (Q× [0, 1]) which
will give condition (1) in the theorem. Condition (bj) ensures that the se-
quence converges uniformly on compacts in M × P × [0, 1] and the limit utp
satisfies condition (2) in the theorem. Condition (3) follows from (cj), and
condition (4) is a consequence of (dj).

We shall now describe the recursion. We distinguish two topologically
different cases: (a) the noncritical case, and (b) the critical case.

(a) The noncritical case. Let K and L be smoothly bounded com-
pact domains in M such that D̄ ⊂ K ⊂ L̊ and K is a strong deformation
retract of L. In the recursive scheme, this corresponds to the case K = D̄j ,
L = D̄j+1, and ρ has no critical values in [cj , cj+1]. However, in the criti-
cal case considered below we shall have to use the noncritical case also for
certain noncritical pairs K ⊂ L that are not sublevel sets of this particular
function ρ.

Let u : M × P → Rn (n ≥ 3) be as in Theorem 4.1, satisfying conditions
(a), (b) and (c). As before, we shall write up = u(· , p) : M → Rn for p ∈ P .
Assume also that we are given a continuous family of nonflat conformal
minimal immersions

(4.2) utp : K −→ Rn, (p, t) ∈ P × [0, 1]

satisfying the following conditions:

(a’) utp = up|K for every (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]);

(b’) utp has vanishing flux on D̄ for every (p, t) ∈ P × [0, 1];

(c’) u1
p has vanishing flux on K for every p ∈ P .
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22 F. Forstnerič and F. Lárusson

Given a number ε > 0, we shall find a homotopy of conformal minimal im-
mersions

(4.3) ũtp : L −→ Rn, (p, t) ∈ P × [0, 1]

satisfying the following conditions:

(α) ũtp = up|L for every (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]);

(β) ‖ũtp − utp‖K < ε for every (p, t) ∈ P × [0, 1];

(γ) Flux(ũtp|K) = Flux(utp|K) for every (p, t) ∈ P × [0, 1].

In particular, it follows from properties (b’) and (γ) that ũtp has vanishing
flux on D̄ for every (p, t) ∈ P × [0, 1], and ũ1

p has vanishing flux on K for
every p ∈ P in view of properties (c’) and (γ). Since the set K contains all
the topology of L, we also get that

(δ) ũ1
p has vanishing flux on L for every p ∈ P .

In the recursive scheme used in the proof of Theorem 4.1, with Kj = D̄j and
L = D̄j+1, the family utp = utp,j : Dj → Rn satisfies the inductive hypotheses
(aj), (bj), (cj) and (dj), and we may take the family utp,j+1 := ũtp as the
new homotopy of conformal minimal immersions L = D̄j+1 → Rn. Indeed,
conditions (α)–(δ) for ũtp exactly correspond to the respective conditions
(aj+1)–(dj+1) for the next term utp,j+1 in the recursion.

The construction of a family ũtp (4.3) satisfying (α)–(γ) is accomplished
in a similar way as was done in the nonparametric case in [3, Section 5], but
the details are somewhat more involved in the present situation involving
parameters; we now explain the details.

Pick a nowhere vanishing holomorphic 1-form θ on M . By classical re-
sults, there is a Runge homology basis B = {γi : i = 1, . . . , l} for H1(K;Z),
i.e., the union |B| = ∪li=1|γi| of supports of the curves γi is an O(K)-convex
subset of K, such that the curves B′ = {γ1, . . . , γm} for some m ∈ {0, . . . , l}
form a homology basis for H1(D̄;Z). Note that B is then also a homology
basis for H1(L;Z). We denote by P the period map associated to B:

P(f) =

(∫
γi

fθ

)
i=1,...,l

∈ (Cn)l, f ∈ A(K,A∗).

Also, P ′ : A(D̄,A∗)→ (Cn)m will denote the period map with respect to B′.
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Consider the continuous family of nonflat holomorphic maps

f tp := 2∂utp/θ : K −→ A∗, p ∈ P, t ∈ [0, 1].

Conditions (α)–(γ) on utp imply the following:

<P(f tp) = 0, (p, t) ∈ P × [0, 1];

P ′(f tp|D̄) = 0, (p, t) ∈ P × [0, 1];

P(f1
p ) = 0, p ∈ P.

Since utp is nonflat on K for each (p, t) ∈ P × [0, 1] by the assumption, we
can apply [1, Lemma 5.1] (see also [2, Lemma 3.6] for the parametric case)
to embed the family f tp as the core f tp = f tp,0 of a period dominating spray of
holomorphic maps

f tp,ζ : K −→ A∗, ζ ∈ B, p ∈ P, t ∈ [0, 1]

depending holomorphically on a parameter ζ = (ζ1, . . . , ζN ) in a ball 0 ∈
B ⊂ CN for some N ∈ N. The period domination property means that the
period map

(4.4) B 3 ζ 7−→ P(f tp,ζ) =

(∫
γi

f tp,ζθ

)
i=1,...,l

∈ (Cn)l,

associated to the homology basis B = {γi}i=1,...,l of H1(K;Z), is submersive
at ζ = 0, i.e., its differential at ζ = 0 is surjective for every (p, t) ∈ P × [0, 1].

Since A∗ is an Oka manifold and K is a deformation retract of L, the
parametric Oka property with approximation (see [5, Theorem 5.4.4, p. 193])
allows us to approximate the spray f tp,ζ : K → A∗ uniformly on K and uni-

formly with respect to the parameters (p, t, ζ) (allowing the ζ-ball B ⊂ CN
to shrink a little) by a holomorphic spray

gtp,ζ : L −→ A∗, (p, t) ∈ P × [0, 1], ζ ∈ rB

for some r ∈ (1/2, 1). More precisely, gtp,ζ is holomorphic on (a neighborhood
of) L and in ζ ∈ rB, and it is continuous with respect to (p, t) ∈ P × [0, 1].
In the cited theorem, the parameter spaces Q ⊂ P are Euclidean compacts.
However, since A∗ is an elliptic manifold in the sense of Gromov (see [5,
Definition 5.5.11, p. 203] and [1, Example 4.4]), we can also apply [5, Theo-
rem 6.2.2, p. 243] that holds for every pair of compact Hausdorff parameter
spaces Q ⊂ P .
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If the approximation of f tp,ζ by gtp,ζ is sufficiently close, the implicit func-
tion theorem gives (in view of the period domination property of the spray
f tp,ζ) a continuous map

(4.5) ζ : P × [0, 1] −→ rB ⊂ CN

that vanishes on the set (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]) such that the ho-
motopy of holomorphic maps

f̃ tp := gtp,ζ(p,t) : L −→ A∗, (p, t) ∈ P × [0, 1]

satisfies the following period conditions:

P(f̃ tp) = P(f tp), (p, t) ∈ P × [0, 1].

We are using the period map P (4.4) for the set K which is a deformation
retract of L, so it contains all the topology of L. In particular, we have that

<P(f̃ tp) = 0, (p, t) ∈ P × [0, 1];

P ′(f̃ tp|D̄) = 0, (p, t) ∈ P × [0, 1];

P(f̃1
p ) = 0, p ∈ P.

Note also that

f̃ tp = f tp, (p, t) ∈ (P × {0}) ∪ (Q× [0, 1])

since the function ζ = ζ(p, t) (see (4.5)) vanishes on (P × {0}) ∪ (Q× [0, 1]).
Assume that the set K (and hence L) is connected. Choose a point

x0 ∈ K and set

ũtp(x) := utp(x0) +

∫ x

x0

<(f̃ tpθ), x ∈ L, (p, t) ∈ P × [0, 1].

Since the 1-form <(f̃ tpθ) has vanishing periods for all (p, t) ∈ P × [0, 1], the
integral is independent of the choice of the path in L, and hence ũtp : L→ Rn
is a continuous family of conformal minimal immersions. If K is discon-
nected, we can apply the same argument on every connected component.
It is immediate that this family satisfies conditions (α)–(γ). This closes the
induction step in the noncritical case.

(b) The critical case. Now, K and L are smoothly bounded compact
subsets of M such that D̄ ⊂ K ⊂ L, and L admits a strong deformation
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retraction onto a compact set of the form S = K ∪ E, where E is an embed-
ded arc in the complement of K which is attached with both endpoints to
K. (In the recursive scheme, this case occurs when K = D̄j , L = D̄j+1 and
ρ contains a critical point x0 ∈ Dj+1 \ D̄j . The arc E corresponds to the
stable manifold of the critical point x0 with respect to the gradient flow.)
We may assume that E is real analytic and intersects bK transversely at
both endpoints.

Let utp : K → Rn be as in (4.2), satisfying conditions (a’), (b’) and (c’). It
suffices to construct a new homotopy ũtp (4.3) satisfying conditions (α)–(δ)
on a neighborhood of the admissible set S := K ∪ E; the noncritical case
explained above then allows us to extend it from a suitable neighborhood of
S to L, with approximation on S, so that all required properties are satisfied.

There are two topologically different cases to consider.
Case 1: the arc E closes inside the domain K to a Jordan curve C such

that E = C \K. This happens when the endpoints of E belong to the same
connected component of K. In this case, the curve C is a new element of
the homology basis for H1(L;Z).

Case 2: the endpoints of the arc E belong to different connected com-
ponents of K. In this case, no new element of the homology basis appears,
and the number of connected components of the domain decreases by one.

The treatment of both cases is similar; we begin by considering the first
one.

Thus, let C ⊂M be a real analytic Jordan curve which intersects K in
a closed arc C3. (As pointed out in [2], real analyticity of C is used merely
for the convenience of exposition; one may equally well work with smooth
curves.) Note that the set

S := K ∪ C = K ∪ E ⊂M

is admissible (cf. Definition 2.1).
Recall that u0

p = up : M → Rn (p ∈ P ) is a continuous family of nonflat
conformal minimal immersions. Consider the continuous family of nonflat
smooth maps

fp = (2∂up/θ)|S : S −→ A∗, p ∈ P.

Then (up, fpθ) ∈ GM∗(S) (p ∈ P ) is a continuous family of nonflat gen-
eralized conformal minimal immersions on the set S (see Definition 2.2).
Similarly, we introduce the family of nonflat holomorphic maps

(4.6) f tp = (2∂utp/θ)|K : K −→ A∗, (p, t) ∈ P × [0, 1].
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Note that f0
p = fp|K for all p ∈ P . Recall that Flux(utp|K) = 0 for all (p, t) ∈

P × [0, 1] by the inductive hypothesis.

Claim: there exist continuous families of smooth maps

(4.7) f tp : S −→ A∗, utp : S −→ Rn, (p, t) ∈ P × [0, 1]

satisfying the following conditions:

(a) utp and f tp agree with the already given maps on K for each (p, t) ∈
P × [0, 1];

(b) f tp = fp and utp = up|S for each (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]);

(c) the pair U tp := (utp, f
t
pθ) ∈ GM∗(S) is a generalized conformal minimal

immersion on S = K ∪ C for each (p, t) ∈ P × [0, 1]. In particular,∫
C
<(f tpθ) =

∫
C
dutp = 0;

(d) at t = 1, Flux(U1
p )(C) =

∫
C =(f1

p θ) = 0 for all p ∈ P .

Assume for a moment that a family U tp = (utp, f
t
pθ) ∈ GM∗(S) satisfying

conditions (a)–(d) exists. We can then complete the induction step as in [3,
proof of Theorem 5.3]. Indeed, the cited result says that we can approximate
the family of generalized conformal minimal immersions U tp = (utp, f

t
pθ) arbi-

trarily closely in the C 1(S) topology by a continuous family Ũ tp = (ũtp, 2∂ũ
t
p),

where

ũtp : V −→ Rn, (p, t) ∈ P × [0, 1]

is a continuous family of conformal minimal immersions in an open neigh-
borhood V ⊂M of S, such that

ũtp = utp for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1])

and

Flux(ũtp) = Flux(utp) on H1(S;Z) for all (p, t) ∈ P × [0, 1].

In particular, we have that

Flux(ũ1
p) = 0 on H1(S;Z) for all p ∈ P .
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We may choose a smaller neighborhood W b V of K ∪ E such that W is a
strong deformation retract of L. Hence, this reduces Case 1 (of the critical
case) to the noncritical case and thereby closes the induction step.

It remains to prove the Claim, i.e., to find a continuous family of pairs
U tp = (utp, f

t
p) as in (4.7). To this end, we shall use Lemma 3.1.

We parameterize the closed curve C ⊂ S by a real analytic map γ : [0, 3]
→ C such that C = C1 ∪ C2 ∪ C3, where Ci = γ([i, i+ 1]) for i = 0, 1, 2 and
C3 = C ∩K. Hence, E = C1 ∪ C2. We extend the family of maps f tp : K →
A∗ given by (4.6) to S = K ∪ C so that the extension is continuous in all
variables and it satisfies properties (a) and (b) for f tp. Choose a small number
η > 0 and set

I1 = [η, 1− η], I2 = [1 + η, 2− η], C ′j = γ(Ij) for j = 1, 2.

By using a smooth cut-off function in the parameter of the homotopy, we can
arrange that f tp is independent of t ∈ [0, 1] on C ′1 ∪ C ′2 for each p ∈ P , so it
equals fp there. These curves are nonflat on C ′1 and on C ′2 by the assumption
on up, a property that will be used in the sequel for the construction of period
dominating sprays.

Denote the parameter on [0, 3] by s. Then

(4.8) γ∗(f tpθ)(s) = f tp(γ(s)) θ(γ(s), γ′(s)) ds = σtp(s) ds,

where the map σtp : C → A∗ is defined by the above equation. It suffices to
explain how to modify the paths σtp to ensure properties (a)–(d) for the
corresponding pairs (utp, f

t
pθ). Explicitly, we shall modify σtp on I1 ∪ I2 in

order to get

(4.9)

∫
C
<(f tpθ) =

∫ 3

0
<(σtp(s)) ds = 0, (p, t) ∈ P × [0, 1]

(see condition (c)) and

(4.10)

∫
C
=(f1

p θ) =

∫ 3

0
=(σtp(s)) ds = 0, p ∈ P

(see condition (d)). The value of σtp on [0, 3] \ I1 ∪ I2 will not change in these
modifications. Note that σtp is independent of t on I1 ∪ I2, and on [0, 3] if
p ∈ Q, so it will be denoted σp there.
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On I1, we apply Lemma 3.1 to the family of paths {σp|I1 : p ∈ P} for a
small ε > 0 to get paths

σtp : I1 → A∗, p ∈ P, t ∈ [0, 1]

which agree with σp near the endpoints of I1 and satisfy

(4.11)

∣∣∣∣∫ 3

0
<(σtp(s))ds

∣∣∣∣ < ε for (p, t) ∈ P × [0, 1],∣∣∣∣∫ 3

0
σ1
p(s)ds

∣∣∣∣ < ε for p ∈ P .

Furthermore, we may take

σtp = σp for all (p, t) ∈ (P × {0}) ∪ (Q× [0, 1])

since the integrals in (4.11) vanish for such values of (p, t) by the assump-
tions.

We shall now change the integrals in (4.11) to zero by another deforma-
tion of our paths that is supported on the segment I2 = [1 + η, 2− η]. Since
σp is nonflat on I2 for every p ∈ P , we can apply [1, Lemma 5.1] (see also [2,
Lemma 3.6]) in order to embed the family of paths {σp|I2 : I2 → A∗, p ∈ P}
into a period dominating spray of paths

τp,ζ : I2 −→ A∗, p ∈ P, ζ ∈ BN

depending holomorphically on a parameter ζ ∈ BN ⊂ CN for some big N ∈
N, such that

• τp,0 = σp for all p ∈ P , and

• τp,ζ(s) is independent of ζ for all s ∈ I2 sufficiently near the endpoints
of I2.

Assuming that the number ε > 0 in (4.11) was chosen small enough, the
implicit function theorem furnishes a continuous function ζ : P × [0, 1]→ BN
that vanishes on (P × {0}) ∪ (Q× [0, 1]) such that, setting

σtp(s) = τp,ζ(p,t)(s), s ∈ I2, (p, t) ∈ P × [0, 1]
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and keeping the already defined values of σtp(s) for s ∈ [0, 3] \ I2, we have
that ∫

C
<(σtp(s)) ds = 0 for (p, t) ∈ P × [0, 1];(4.12) ∫

C
=(σ1

p(s)) ds = 0 for p ∈ P .(4.13)

Clearly, the associated maps f tp : S → A∗, given by (4.8), satisfy conditions
(4.9) and (4.10). Finally, we define the maps utp : C → Rn for (p, t) ∈ P ×
[0, 1] by setting

utp(γ(s)) = utp(γ(0)) +

∫ s

0
σtp(τ) dτ, s ∈ [0, 3].

It is clear from the construction that the family (utp, f
t
pθ) ∈ GM∗(S) satisfies

the Claim.
The details in Case 2 (of the critical case) are similar. In this case, we

do not have any new element of the homology basis for the set L. Choose
a regular parameterization γ : [0, 1]→ E of the arc E that is attached with
its endpoints x = γ(0) and y = γ(1) to the set K. The period vanishing
condition (4.12) is now replaced by the condition∫

E
<(f tpθ) =

∫ 1

0
σtp(s) ds = utp(y)− utp(x),

while the condition (4.13) becomes irrelevant.
This complete the induction step and hence the proof of Theorem 4.1.

�

5. Parametric h-principle for directed immersions of
Riemann surfaces

In this section, we prove the parametric h-principle for immersions of open
Riemann surfaces into Cn directed by certain conical subvarieties A ⊂ Cn, in
the sense that the derivative of the immersion belongs to A∗ = A \ {0}; see
Theorem 5.3. A crucial condition for this result is that A∗ be an Oka mani-
fold. The basic h-principle in this context was provided by [1, Theorem 2.6].
As a corollary, we show that the natural map IA,∗(M,Cn)→ O(M,A∗) from
the space of all nondegenerate holomorphic immersions M → Cn directed
by A to the space of all holomorphic maps M → A∗ is a weak homotopy
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equivalence (see Theorem 5.6). These results apply in particular to null
holomorphic curves in Cn and give the corresponding part of Theorem 1.2.

Let n ≥ 1. We emphasize that in this section, n may be 1 or 2. Assume
that A ⊂ Cn is a closed conical complex subvariety of Cn such that A∗ =
A \ {0} is nonsingular. By conical, we mean that A is a union of complex lines
passing through the origin. Any such subvariety A is algebraic by Chow’s
theorem. Without loss of generality for the results to be presented, we may
assume that A is irreducible, i.e., its regular part A∗ is connected, and that
A is not contained in any proper complex subspace of Cn. The following is
[1, Definition 2.1].

Definition 5.1. Let M be an open Riemann surface, and let θ be a nowhere
vanishing holomorphic 1-form on M . A holomorphic immersion

F = (F1, . . . , Fn) : M → Cn

is said to be directed by A, or to be an A-immersion, if the holomorphic map
f = dF/θ = (f1, . . . , fn) : M → Cn has range in A∗.

If A is the null quadric (1.3), then an A-immersion is just a holomorphic
null curve.

Observe that a holomorphic map f : M → A∗ determines anA-immersion
F : M → Cn with dF = fθ if and only if the holomorphic 1-form fθ has
vanishing periods, i.e.,

∫
γ fθ = 0 for every closed curve γ ⊂M . In this case,

F (x) =
∫ x

fθ for x ∈M .

Definition 5.2. A holomorphic map f : M → A∗ is nondegenerate if the
tangent spaces Tf(x)A ⊂ Tf(x)Cn ∼= Cn over all points x ∈M span Cn; see
[1, Definition 2.2]. If M is not connected, we ask that this holds on every
connected component. An A-immersion F : M → Cn is nondegenerate if the
map f = dF/θ : M → A∗ is nondegenerate.

We shall prove the following parametric h-principle with approximation
for directed immersions of Riemann surfaces with an Oka directional mani-
fold.

Theorem 5.3. Assume that M is an open Riemann surface, θ is a nowhere
vanishing holomorphic 1-form on M , D bM is a smoothly bounded domain
whose compact closure K := D̄ is O(M)-convex, A ⊂ Cn is a closed conical
complex subvariety of Cn such that A∗ = A \ {0} is an Oka manifold, and
Q ⊂ P are compact sets in a Euclidean space.
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Assume that f : M × P → A∗ is a continuous map satisfying the follow-
ing conditions:

(a) fp = f(· , p) : M → A∗ is a nondegenerate holomorphic map for every
p ∈ P ;

(b) the 1-form fpθ has vanishing periods over all closed curves in K for
every p ∈ P ;

(c) fpθ has vanishing periods over all closed curves in M for every p ∈ Q.

Given a number ε > 0, there exists a homotopy f t : M × P → A∗ (t ∈ [0, 1])
such that f tp := f t(· , p) : M → A∗ is a nondegenerate holomorphic map for
every (p, t) ∈ P × [0, 1] and the following conditions hold:

(1) f tp = fp for every (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]);

(2) ‖f t − f‖K×P < ε for all t ∈ [0, 1];

(3) f tpθ has vanishing periods on K for every (p, t) ∈ P × [0, 1];

(4) f1
p θ has vanishing periods on M for every p ∈ P .

The same result holds if we replace the condition vanishing periods in parts
(b), (c), (3), (4) by the condition vanishing real periods.

Proof. We shall use the tools developed in Sections 3 and 4. The proof is
similar to that of Theorem 4.1; we indicate the essential points and leave
out the details.

We may assume that A is not contained in any proper complex subspace
of Cn. By [1, Lemma 3.1], its convex hull Co(A) ⊂ Cn then equals Cn. This
gives the analogue of Lemma 3.1 for loops in A∗. Choose an exhaustion of M

K = K1 ⊂ K2 ⊂ · · · ⊂ ∪∞j=1Kj = M

by compact regular sublevel sets Kj = {x ∈M : ρ(x) ≤ cj} of a strongly
subharmonic exhaustion function ρ : M → R, with K1 = D̄. We recursively
build a sequence of homotopies

F tp,j : Kj = D̄j −→ Cn, j = 1, 2, . . . ,

consisting of nondegenerate A-immersions, such that all relevant conditions
hold (cf. conditions (α)–(γ) in the proof of Theorem 4.1). The homotopy F t,
satisfying the conclusion of Theorem 5.3, is obtained as the locally uniform
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limit

F tp = lim
j→∞

F tp,j , (p, t) ∈ P × [0, 1].

The noncritical case in the induction step is done exactly as in the proof
of Theorem 4.1.

In the critical case, we begin by extending the continuous family of
holomorphic maps

f tp,j := dF tp,j/θ : Kj −→ A∗, (p, t) ∈ P × [0, 1]

from the set Kj to an embedded arc E, attached with endpoints to Kj , such
that, if E closes inside Kj to a loop C, then the periods of the extended
maps vanish for t = 1: ∫

C
f1
p,j θ = 0, p ∈ P.

At the same time, we keep the already given values of these maps for the
parameter values p ∈ Q. This is accomplished as in the proof of Theorem 4.1
by applying the analogue of Lemma 3.1 for loops in A∗. The rest of the proof
goes through just as in Theorem 4.1, using a period dominating spray with
values in A∗, Mergelyan’s approximation theorem for maps to A∗, etc. (See
the paper [1] for these techniques.) We leave out further details. �

Let us denote by O∗(M,A∗) the subset of O(M,A∗) consisting of all non-
degenerate maps M → A∗ (see Definition 5.2). We have the following general
position theorem, which we state in the form of parametric h-principle with
approximation for the inclusion O∗(M,A∗) ↪→ O(M,A∗).

Theorem 5.4. Assume that M is an open Riemann surface, K is a com-
pact set in M , A ⊂ Cn is a closed conical complex subvariety of Cn such
that A∗ = A \ {0} is an Oka manifold, and Q ⊂ P are compact sets in a
Euclidean space. Assume that f : M × P → A∗ is a continuous map satisfy-
ing the following two conditions:

(a) fp = f(· , p) : M → A∗ is a holomorphic map for every p ∈ P ;

(b) fp ∈ O∗(M,A∗) is a nondegenerate holomorphic map for every p ∈ Q.

Given a number ε > 0, there exists a homotopy f t : M × P → A∗ (t ∈ [0, 1])
such that f tp := f t(· , p) ∈ O(M,A∗) for every (p, t) ∈ P × [0, 1] and the fol-
lowing conditions hold:
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(1) f tp = fp for every (p, t) ∈ (P × {0}) ∪ (Q× [0, 1]);

(2) f1
p ∈ O∗(M,A∗) is nondegenerate for every p ∈ P ;

(3) ‖f t − f‖K×P < ε for every t ∈ [0, 1].

If A∗ is not assumed to be an Oka manifold, then the same result still holds
if M is a compact bordered Riemann surface.

Proof. We may assume that K is O(M)-convex and has nonempty interior.
Consider first the case when there exist finitely many C-complete holomor-
phic vector fields V1, . . . , Vm tangent to A∗ which span the tangent space of
A∗ at every point. (This holds if A is the null quadric A, cf. [1, Example 4.4].)
Consider a map Ψ: M × P × CN → A∗ of the form

(5.1) Ψ(x, p, ζ) = φ1
ζ1h1(x,p) ◦ · · · ◦ φ

N
ζNhN (x,p)(f(x)),

where N is a large integer, (x, p) ∈M × P , ζ ∈ CN , every φjζ is the flow
of one of the vector fields V1, . . . , Vm (which may appear with repetitions),
and the functions hj ∈ C (M × P ) are such that hj(· , p) ∈ O(M) for every
p ∈ P and hj(· , p) = 0 for every p ∈ Q. A suitable choice of the functions hj
ensures (by a standard transversality argument) that for a generic choice of
ζ ∈ CN the homotopy

(5.2) f t := Ψ(· , · , tζ) : M × P → A∗, t ∈ [0, 1]

has the stated properties. The approximation in (3) is achieved by choosing
the point ζ close to 0. The details are similar as in [1, proof of Theorem 3.2
(a)], except that the present situation is simpler since we need not fulfil any
period conditions.

In general, the tangent bundle of A∗ is spanned by finitely many holo-
morphic vector fields (not necessarily complete) in view of Cartan’s theorem
A. By using their local holomorphic flows, we can obtain a deformation fam-
ily (5.1) with the desired properties over the compact subset K ⊂M and
with the parameter ζ in a small ball B ⊂ CN . This furnishes a homotopy
(5.2) defined on K × P such that every map f1

p : K → A∗ (p ∈ P ) is non-
degenerate on K. Since A∗ is an Oka manifold, the parametric Oka prop-
erty with approximation (see [5, Theorem 5.4.4]) shows that the homotopy
(f t)t∈[0,1] can be approximated uniformly on K × P × [0, 1] by a homotopy
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F t : M × P → A∗, t ∈ [0, 1] such that every map F t(· , p) : M → A∗ is holo-
morphic and the two homotopies agree at t = 0 and for the parameter val-
ues q ∈ Q. If the approximation is sufficiently close, then clearly the map
F 1
p : M → A∗ is nondegenerate for every p ∈ P . �

The following is an immediate corollary to Theorem 5.4.

Corollary 5.5. Assume that M is an open Riemann surface and A ⊂ Cn is
a closed conical subvariety of Cn such that A∗ = A \ {0} is an Oka manifold.
Then the inclusion

(5.3) O∗(M,A∗) ↪−→ O(M,A∗)

is a weak homotopy equivalence.

Let us denote by

IA,∗(M,Cn)

the space of all nondegenerate A-immersions M → Cn with the compact-
open topology (see Definition 5.2). By [3, Lemma 2.3], a holomorphic null
curve M → Cn is nondegenerate if and only if it is nonflat. Thus,

IA,∗(M,Cn) = N∗(M,Cn)

is the space of all nonflat null holomorphic curves M → Cn. (Note that, in
[3], the space of nonflat holomorphic null curves is denoted by Nnf(M,Cn),
and likewise for the space of conformal minimal immersions. The definition
of nondegeneracy in [3, Definition 2.2] is different from our Definition 5.2
and will not be used here.)

Theorem 5.6. (The weak homotopy equivalence principle forA-immersions.)
Let M be an open Riemann surface, and let A ⊂ Cn be a closed conical
complex subvariety of Cn such that A∗ = A \ {0} is an Oka manifold. Fix a
nowhere vanishing holomorphic 1-form θ on M . Then the map

IA,∗(M,Cn) −→ O(M,A∗), F 7−→ dF/θ

is a weak homotopy equivalence.

Since the inclusion O(M,A∗) ↪→ C (M,A∗) is a weak homotopy equiva-
lence when A∗ is an Oka manifold (cf. [5, Corollary 5.4.8]), Theorem 5.6 is
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equivalent to saying that the map

IA,∗(M,Cn) −→ C (M,A∗), F 7−→ dF/θ

is a weak homotopy equivalence. Note that Theorem 5.6 generalizes [1, The-
orem 2.6], the latter result providing the basic h-principle in this context.

Proof of Theorem 5.6. Note that the map F 7→ dF/θ takes IA,∗(M,Cn) into
O∗(M,A∗). In view of Corollary 5.5, we only need to show that it induces
a weak homotopy equivalence IA,∗(M,Cn)→ O∗(M,A∗), i.e., the induced
map

(5.4) πk(IA,∗(M,Cn)) −→ πk(O∗(M,A∗))

is bijective for every k ∈ Z+. We proceed as in the proof of Theorem 1.1. We
begin by proving that the map (5.4) is surjective. Let P = Sk be the real
k-sphere and Q = ∅. A map f : P → O∗(M,A∗) is naturally identified with
a map f : M × P → A∗ such that fp = f(· , p) ∈ O∗(M,A∗) for every p ∈ P .
Theorem 5.3 shows that we can deform the family (fp)p∈P in O∗(M,A∗) to a
family (f1

p )p∈P in O∗(M,A∗) such that the 1-form f1
p θ has vanishing periods

for every p ∈ P . By choosing a base point x0 ∈M and setting

(5.5) Fp(x) =

∫ x

x0

f1
p θ, x ∈M, p ∈ P

we obtain a continuous family of nondegenerate A-immersions Fp : M → Cn
(p ∈ P ). This proves that the map (5.4) is surjective.

It remains to shows that the map (5.4) is also injective. Let P = Bk+1
be

the closed ball in Rk+1 and Q = Sk = bBk+1. Consider a continuous family of
nondegenerate holomorphic maps fp : M → A∗ (p ∈ P ) such that, for every
p ∈ Q, the 1-form fpθ has vanishing periods over all closed curves in M . (The
latter property implies that the integral

∫ x
fpθ (x ∈M) is a nondegenerate

A-immersion for every p ∈ Q.) By Theorem 5.3 we can deform the family
(fp)p∈P in O∗(M,A∗) to a family (f1

p )p∈P in O∗(M,A∗) by a deformation
that is fixed for p ∈ Q and such that f1

p θ has vanishing periods on M for
all p ∈ P . Their integrals given by (5.5) then form a continuous family of
nondegenerate A-immersions. �

Proof of Theorem 1.2. Since the null quadric A∗ (1.3) is an Oka manifold,
Theorem 5.6 includes the second claim in Theorem 1.2 as a special case. The
first claim concerning the map M∗(M,Rn)→ O(M,A∗) then follows from
the observation that the maps φ, ψ in the diagram (1.5) are weak homotopy
equivalences at the same time. �
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6. Strong parametric h-principles for sources of finite
topological type

Let M be an open Riemann surface and n ≥ 3. We might as well assume
that M is connected. By now we know that the maps in the commuting
diagram

(6.1) N∗(M,Cn)
φ //

<
��

O∗(M,A∗)
� � j1 // O(M,A∗)

� � j2 // C (M,A∗)

<N∗(M,Cn) �
� ι //M∗(M,Rn)

ψ

OO

are weak homotopy equivalences. Recall that all these spaces carry the
compact-open topology. As noted earlier, the left vertical map is a ho-
motopy equivalence by continuity of the Hilbert transform that takes u ∈
<N∗(M,Cn) to its harmonic conjugate v with v(p) = 0, where p ∈M is any
chosen base point.

In this final section, we assume that M has finite topological type. This
means that the fundamental group of M is finitely generated or, in other
words, that M has the homotopy type of a finite wedge of circles. Equiva-
lently, by a theorem of Stout [22, Theorem 8.1], M can be obtained from a
compact Riemann surface by removing a finite number of mutually disjoint
points and closed discs. Thus, equivalently, M has a strictly subharmonic
Morse exhaustion with finitely many critical points.

By [13, Theorem 9], when M has finite topological type, O(M,A∗) is an
absolute neighborhood retract (in the category of metrizable spaces). This
relies on A∗ being Oka. Also, C (M,A∗) is an ANR. This follows from work
of Milnor and of Smrekar and Yamashita [20] and was formulated as [13,
Proposition 7]. As an open subspace of an ANR, O∗(M,A∗) is an ANR.

An ANR has the homotopy type of a CW complex. By a theorem of
Whitehead [15, p. 74], a weak homotopy equivalence between CW complexes
is a homotopy equivalence. Hence, as weak homotopy equivalences between
ANRs, the inclusions j1 and j2 are homotopy equivalences. In fact, j2 is
the inclusion of a strong deformation retract [13, Theorem 1]. Namely, the
inclusion of a closed subspace is a cofibration (in the sense of Hurewicz) when
both spaces are ANRs. Being a cofibration and a homotopy equivalence, j2
is the inclusion of a strong deformation retract.

We conclude the paper by proving that when M has finite topological
type, the maps ι, φ and ψ (the latter suitably restricted) are inclusions of
strong deformation retracts. In particular they are homotopy equivalences.
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In addition to the theory of ANRs, recent results in [1] and [3] on certain
spaces of maps being Banach manifolds and therefore locally contractible
play a key role. For spaces of holomorphic maps from strongly pseudoconvex
Stein domains to complex manifolds, such results first appeared in [4]. We
need to open up the proofs of these results and develop them further (see
Lemma 6.4).

Theorem 6.1. Let M be a connected open Riemann surface of finite topo-
logical type. Let n ≥ 3. Then the metrizable spaces M∗(M,Rn), N∗(M,Cn)
and <N∗(M,Cn) are absolute neighborhood retracts.

Before proving the theorem, we state and prove the following corollary.

Corollary 6.2. Let M be a connected open Riemann surface of finite topo-
logical type. Let n ≥ 3. The six maps in the diagram (6.1) are homotopy
equivalences. Moreover, the inclusion ι and the injections

ψ : {u ∈M∗(M,Rn) : u(p) = 0} → O∗(M,A∗),

φ : {F ∈ N∗(M,Cn) : F (p) = 0} → O∗(M,A∗),

where p ∈M is any chosen base point, are inclusions of strong deformation
retracts.

Proof. By the above, all that remains to observe is that ι, ψ and φ have
closed images, and that the subspaces {u ∈M∗(M,Rn) : u(p) = 0} and {F ∈
N∗(M,Cn) : F (p) = 0} of M∗(M,Rn) and N∗(M,Cn), respectively, are
ANRs. The obvious homeomorphism N∗(M,Cn)→ {F ∈ N∗(M,Cn) :
F (p) = 0} × Cn, F 7→ (F − F (0), F (0)), with inverse (G, a) 7→ G+ a, shows
that {F ∈ N∗(M,Cn) : F (p) = 0} is an ANR since N∗(M,Cn) is (and con-
versely). Similarly, {u ∈M∗(M,Rn) : u(p) = 0} is an ANR. �

Remark 6.3. Analogous results hold for the maps

IA,∗(M,Cn)
φ // O∗(M,A∗)

� � // O(M,A∗)
� � // C (M,A∗)

whenever A is a closed irreducible conical subvariety of Cn such that A∗ =
A \ {0} is an Oka manifold. This holds in particular when A = Cn for any
n ∈ N and gives a homotopy equivalence I(M,Cn) −→ C (M,S2n−1) in The-
orem 1.4.
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Before proceeding, we introduce some notation. Let A ⊂ Cn be a closed
conical complex subvariety of Cn such that A∗ = A \ {0} is smooth. Let M
be an open Riemann surface. We shall write O∗,0(M,A∗) for the space of
nondegenerate holomorphic maps M → A∗ (in the sense of Definition 5.2)
with vanishing periods. If M is a compact bordered Riemann surface, we
shall use the notation

A∗,0(M,A∗) ⊂ A∗(M,A∗) ⊂ A (M,A∗),

where A (M,A∗) is the space of continuous maps M → A∗ that are holo-
morphic in the interior of M , A∗(M,A∗) is the subspace of nondegenerate
maps, and A∗,0(M,A∗) is the subspace of nondegenerate maps with vanish-
ing periods.

When M is a compact C 1-bordered Riemann surface, A∗,0(M,A∗) is
a complex Banach manifold; more precisely, it is a locally closed complex
Banach submanifold of finite codimension in the complex Banach manifold
A (M,A∗) [1, Theorem 2.3(b)]. The analogous theorem for vanishing real
periods for A = A is [3, Theorem 3.1(b)].

To prove Theorem 6.1, we need the following lemma.

Lemma 6.4. Assume that A is a closed irreducible conical subvariety of
Cn such that A∗ = A \ {0} is smooth. Let M be an open Riemann surface
and let ρ : M → [0,∞) be a smooth exhaustion. Let L0 ⊃ L1 ⊃ · · · ⊃ K be
compact smoothly bordered subsurfaces of M of the form ρ−1([0, c]), such
that K contains all the critical points of ρ. Let f ∈ A∗,0(M,A∗) and let
W be a neighborhood of f |K in A∗,0(K,A∗). Then there are contractible
neighborhoods Cm of f |Lm in A∗,0(Lm, A∗) such that Cm|Lm+1

⊂ Cm+1 and
Cm|K ⊂W for all m ≥ 0.

Proof. We must examine the proof of [1, Theorem 2.3(b)] concerning the
Banach manifold structure of A∗,0(M,A∗) when M is a compact bordered
Riemann surface.

Let θ be a nowhere vanishing holomorphic 1-form on M . Since K con-
tains all the critical points of ρ, there is a homology basis B = {γi}i=1,...,l of
H1(M ;Z) whose support |B| = ∪lj=1|γj | is contained in K and is Runge in

M . Let P : O(M,A∗)→ (Cn)l denote the period map associated to B and
θ:

P(f) =

(∫
γj

fθ

)
j=1,...,l

∈ (Cn)l, f ∈ O(M,A∗).
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Fix a map f ∈ O∗,0(M,A∗). Let M0 be a compact smoothly bounded
domain in M (a sublevel set of ρ) with the same topology as M and contain-
ing L0. By [1, Lemma 5.1], there exist an integer N ∈ N and a dominating
and period dominating holomorphic spray map Ψ: M0 × BN → A∗ of class
A (M0) with the core Ψ(· , 0) = f . (More precisely, Ψ is continuous and is
holomorphic on M̊0 × BN .) Consider the partial differential

Θx = ∂ζΨ(x, ζ)
∣∣
ζ=0

: CN −→ Tf(x)A∗, x ∈M0.

The domination property of Ψ means that Θx is surjective for each x ∈M0.
Hence, we have M0 × CN = ker Θ⊕ E where E is a complex vector subbun-
dle of class A (M0) and rank k = dimCA∗. (See [4, proof of Theorem 1.2],
where the reader can also find the relevant references.) Note that E, be-
ing a complex vector bundle over a nonclosed Riemann surface, is trivial,
E ∼= M0 × Ck as complex vector bundles of class A (M0), so we simply iden-
tify E with M0 × Ck in the sequel. We now restrict Ψ to E = M0 × Ck and
denote it by the same letter.

By the implicit function theorem, there is ε0 ∈ (0, 1) such that Ψ(x, · ) :
ε0Bk → A∗ is an injective holomorphic map for every x ∈M0, hence biholo-
morphic onto its image. It follows that the map

(6.2) Φ: A (M0, ε0Bk)→ A (M0, A∗), Φ(g)(x) := Ψ(x, g(x)) (x ∈M0)

takes A (M0, ε0Bk) bijectively onto an open neighborhood of f |M0
= Φ(0) in

A (M0, A∗). Since f is nondegenerate, we may decrease ε0 > 0 to ensure that
the range of Φ is contained in the open subset A∗(M0, A∗) of A (M0, A∗)
consisting of nondegenerate maps.

Consider now the subset

{g ∈ A (M0, ε0Bk) : P(Φ(g)) = 0}

of A (M0, ε0Bk) which corresponds via Φ to maps M0 → A∗ with vanishing
periods. By the period domination property of the spray Ψ (and hence of
the map Φ (6.2)), the differential of the period map

A (M0, ε0Bk) 3 g 7−→ P(Φ(g)) ∈ (Cn)l

at g = 0 is surjective. Let us denote this differential by

(6.3) D = d0(P ◦ Φ) : A (M0,Ck) −→ (Cn)l.
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Pick h1, . . . , hnl ∈ A (M0, ε0Bk) such that the vectors D(h1), . . . , D(hnl) ∈
(Cn)l span (Cn)l. Note that the map Φ given by (6.2) also applies to con-
tinuous maps g : L→ ε0Bk defined on a subset L ⊂M0, and the period map
P(Φ(g)) is defined whenever the domain L of g contains the support |B|
of the homology basis. Hence, the map D (6.3) is well defined on C (L,Ck)
whenever |B| ⊂ L ⊂M0. Taking L = |B|, it follows that the Banach space
C (|B|,Ck) decomposes as a direct sum of closed complex Banach subspaces

C (|B|,Ck) =
(
kerD|C (|B|,Ck)

)
⊕ spanC{h1||B|, . . . , hnl||B|} = Λ⊕H.

By the implicit function theorem in Banach spaces, there is a number ε1 ∈
(0, ε0) such that for every g ∈ Λ = kerD|C (|B|,Ck) with ‖g‖0,|B| < ε1, there
exists an element of the form

(6.4) g̃ = g +

nl∑
j=1

cj(g)hj ∈ C (|B|, ε0Bk)

satisfying the period vanishing equation

(6.5) P(Φ(g̃)) = 0.

Here, cj are smooth bounded complex functions on the set {g ∈ Λ : ‖g‖0,|B| <
ε1} furnished by the implicit function theorem. Note that (6.4) is a local
representation of the solution set of (6.5) as a graph over the linear subspace
Λ near the origin.

Recall that h1, . . . , hnl∈A (M0,Ck). Hence, if L is any smoothly bounded
compact set with |B| ⊂ L ⊂M0 and g ∈ A (L, ε1Bk), then the formula (6.4)
yields a map

g̃ = ψL(g) := g +

nl∑
j=1

cj(g||B|)hj |L ∈ A (L,Ck)

satisfying the period vanishing condition (6.5) provided that ‖g̃‖0,L < ε0
(so that Φ(g̃) is defined). Note that for any pair of compacts L,L′ with
|B| ⊂ L ⊂ L′ ⊂M0, we have

(6.6) ψL(g|L) = ψL′(g)
∣∣
L

for every g ∈ A (L′, ε1Bk).

Since the functions cj are bounded on a neighborhood of the origin in
Λ, there is a number ε with 0 < ε < ε1 such that

V0 :=
{
ψM0

(g) : g ∈ A (M0, εBk), D(g) = 0
}
⊂ A (M0, ε0Bk).
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Note that V0 is a neighborhood of the origin in the space of solutions of
(6.5) over M0. Furthermore, being a smooth graph over the convex set {g ∈
A (M0, εBk) : D(g) = 0}, V0 is contractible. Similarly, for every m ≥ 0, the
set

Wm :=
{
ψLm(g) : g ∈ A (Lm, εBk), D(g) = 0

}
⊂ A (Lm, ε0Bk)

is a contractible neighborhood of the origin in the space of solutions of
(6.5) over Lm. Taking into account that for any g ∈ A (Lm,Ck) we have
‖g‖Lm+1

≤ ‖g‖Lm by the maximum principle, the formula (6.6) shows that
the restriction map associated to the inclusion Lm ⊃ Lm+1 maps Wm into
Wm+1 for every m ≥ 0. It follows that

Cm := {Φ(g̃) : g̃ ∈Wm} ⊂ A∗,0(Lm, A∗)

is a contractible neighborhood of f |Lm in A∗,0(Lm, A∗), and the restric-
tion map associated to Lm ⊃ Lm+1 takes Cm into Cm+1 for every m ≥ 0.
By choosing ε > 0 small enough, we can also ensure that the restriction
map associated to Lm ⊃ K maps Cm into a given neighborhood of f |K in
A∗,0(K,A∗). �

The analogous lemma for vanishing real periods is proved similarly.

Proof of Theorem 6.1. As noted in the proof of Corollary 6.2, N∗(M,Cn) is
an ANR if and only if {F ∈ N∗(M,Cn) : F (p) = 0} is. We identify the latter
space with X = O∗,0(M,A∗) and prove that X is an ANR.

Let U be an open cover of X. We need to produce a refinement V of U
such that if P is a simplicial complex with a subcomplex Q containing all
the vertices of P , then every continuous map φ0 : Q→ X such that for each
simplex σ of P , φ0(σ ∩Q) ⊂ V for some V ∈ V , extends to a continuous map
φ : P → X such that for each simplex σ of P , φ(σ) ⊂ U for some U ∈ U .
This is the Dugundji-Lefschetz property, which is equivalent to X being an
ANR (see [23, Theorem 5.2.1]).

Let ρ : M → [0,∞) be a strictly subharmonic Morse exhaustion with
finitely many critical points. Let f ∈ X and choose U ∈ U with f ∈ U .
There are compact C 1-bordered subsurfaces L0 ⊃ K0 ⊃ L1 ⊃ K1 ⊃ · · · ⊃ K
of M of the form ρ−1([0, c]), such that for every m ≥ 0, Km ⊂ L̊m, Km is
O(M)-convex, and K contains all the critical points of ρ, so M deformation-
retracts onto Lm. By choosing K large enough, we may assume that f |K
has a neighborhood W in A∗,0(K,A∗) such that if g ∈ X and g|K ∈W , then
g ∈ U .
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By Lemma 6.4, there is a contractible neighborhood Cm of f |Lm in
A∗,0(Lm,A∗) such that Cm|Lm+1

⊂ Cm+1 and Cm|K ⊂W for all m ≥ 0. Let
Vm be the neighborhood of f in X consisting of all g ∈ X with g|Lm ∈ Cm.
Then V0 ⊂ V1 ⊂ · · · ⊂ U . Let the refinement V of U consist of all such open
sets V0, one for each f ∈ X.

Let P , Q, and φ0 be as above, so for each simplex σ of P , φ0(σ ∩Q) ⊂ V σ
0

for some V σ
0 ∈ V associated to some f ∈ X as above. Adorn the other

associated sets Km, Lm, Cm, and Vm with a superscript σ as well. Let
Pm = Pm ∪Q, where Pm is the m-skeleton of P . We shall construct contin-
uous maps φm : Pm → X, m ≥ 1, such that φm|Pm−1

= φm−1 and for every
simplex σ of P , φm(σ ∩ Pm) ⊂ V σ

m. The map φ : P → X with φ|Pm = φm for
each m ≥ 0 will then be continuous with respect to the Whitehead topology
on P , and for each simplex σ of P , φ(σ) ⊂ U for some U ∈ U .

Suppose φm, m ≥ 0, is given. Let σ be an (m+ 1)-simplex of P but not
of Q. The interior σ \ ∂σ of σ does not intersect Pm. Also, the interiors
of distinct (m+ 1)-simplices do not intersect. We need to suitably extend
φm|∂σ to σ. We have φm(∂σ) ⊂ φm(σ ∩ Pm) ⊂ V σ

m. Since Cσm is contractible,
the composition of φm : ∂σ → V σ

m and the restriction map V σ
m → Cσm extends

by the cofibration ∂σ ↪→ σ to a continuous map α : σ → Cσm.
We may view α as a continuous map M × ∂σ ∪ Lσm × σ → A∗. Now Lσm

is a deformation retract of M , so M × ∂σ ∪ Lσm × σ is a deformation retract
of M × σ. Thus α extends to a continuous map α : M × σ → A∗. Note that
α(·, t) ∈ X for all t ∈ ∂σ, and α(·, t)|Lσm ∈ A∗,0(Lσm,A∗) for all t ∈ σ.

By combining the parametric h-principles with approximation in Theo-
rems 5.3 and 5.4 and the parametric Oka property with approximation of the
Oka manifold A∗, α may be deformed to a continuous map β : X × σ → A∗
such that β(·, t) = α(·, t) for all t ∈ ∂σ, β(·, t) ∈ X for all t ∈ σ, and β uni-
formly approximates α as closely as desired on Kσ

m × σ. If the approximation
is close enough, then defining φm+1(t) = β(·, t) for t ∈ σ gives a continuous
extension of φm|∂σ to σ with φm+1(σ) ⊂ V σ

m+1.
The proof that M∗(M,Rn) is an ANR is analogous. Finally, <N∗(M,Cn)

is an ANR because by continuity of the Hilbert transform, the map

N∗(M,Cn)→ <N∗(M,Cn)× Rn, F 7→ (<F,=F (p)),

where p ∈M is any chosen base point, is a homeomorphism, so <N∗(M,Cn)
is a retract of N∗(M,Cn). �

Once again, let M be an open Riemann surface and n ≥ 3. Returning
to the first paragraph of the introduction, we have seen that the spaces
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M∗(M,Rn) and N∗(M,Cn), as well as the other four spaces in the dia-
gram (6.1), have the same “rough shape”. More precisely, they all have the
same weak homotopy type, and when M has finite topological type even
the same strong homotopy type, as the space H of continuous maps from a
wedge of circles to An−1

∗ . The real part projection Cn → Rn gives An−1
∗ the

structure of a fibre bundle, whose fibre is the (n− 2)-sphere, over Rn \ {0},
which is homotopy equivalent to the (n− 1)-sphere. The structure of H can
therefore be understood in terms of spheres and their loop spaces. In par-
ticular, the homotopy groups of H can be calculated in terms of homotopy
groups of spheres. We leave this for another day.
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[2] A. Alarcón and F. Forstnerič, Every conformal minimal surface in R3

is isotopic to the real part of a holomorphic null curve, J. reine angew.
Math. 740 (2018), 77–109.
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