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In this article, we study the regularity of minimizing and station-
ary p-harmonic maps between Riemannian manifolds. The aim is
obtaining Minkowski-type volume estimates on the singular set
S(u)={x s.t. u is not continuous at x}, as opposed to the weaker
and non quantitative Hausdorff dimension bounds currently avail-
able in literature for generic p.

The main technique used in this paper is the quantitative strat-
ification, which is based on the study of the approximate symme-
tries of the tangent maps of u. In this article, we generalize the
study carried out in [4] for minimizing 2-harmonic maps to generic
p ∈ (1,∞). Moreover, we analyze also the stationary case where
the lack of compactness makes the study more complicated.

In order to understand the degeneracy intrinsic in the behaviour
of stationary maps, we study the defect measure naturally associ-
ated to a sequence of such maps and generalize the results obtained
in [10].

By using refined covering arguments, we also improve the es-
timates in the case of isolated singularities and obtain a definite
bound on the number of singular points. This result seems to be
new even for minimizing 2-harmonic maps.
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1. Introduction

In this article, we study the regularity of minimizing and stationary p-
harmonic maps between Riemannian manifolds, for p ∈ (1,∞). That is,
given two compact Riemannian manifolds M and N , where N has empty
boundary, we consider the critical points of the functional

Ep(u) =

∫
M
|∇u|p ,

and focus on the local regularity of u. The singular set of such a function is
defined as

S(u) = {x ∈M s.t. u is not continuous at x} .

Similar to the 2-harmonic case [10] we will introduce the notion of a de-
fect measure for limits of such mappings. We will use this in conjunction
with the quantitative stratification technique to prove effective Minkowski-
type estimates not only on S(u), but also on the regularity scale of u (see
Definition 2.9), which roughly speaking controls the regularity of u in a
neighborhood of every point. As a corollary we obtain sharp integrability
conditions for ∇u. See Theorems 1.2 and 1.4 for complete statements.

1.1. Definitions and notation

For the reader’s convenience, we recall the standard definitions of p-harmonic
maps. Let M and N be two smooth compact Riemannian manifolds, N
without boundary, and M of dimension m. We will always assume that
N is isometrically embedded in some Euclidean space Rn (note that n is
not the dimension of N), and we will denote by W 1,p(M,N) the Sobolev
space of maps u ∈W 1,p(M,Rn) such that u(x) ∈ N a.e. in M . A map u ∈
W 1,p(M,N) is said to be a weakly p-harmonic map if it (weakly) satisfies
the equation

∆p(u) = div
(
|∇u|p−2∇u

)
= − |∇u|p−2 II(u)(∇u,∇u) ,

where II is the second fundamental form of N . Equivalently, such a map has
the property that for every smooth vector field ξ : M → Rn with compact
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Quantitative regularity for p-harmonic maps 113

support

d

dt

∣∣∣∣
t=0

∫
M
|∇ (Π(u+ tξ))|p = 0 ,

where Π is the nearest point projection on N defined on a tubular neighbor-
hood of the manifold inside the ambient Euclidean space. If in addition, u
is a critical point with respect to variations in its domain of definition, then
it is called a stationary p-harmonic map. In particular, a stationary map is
a weakly p-harmonic map satisfying

d

dt

∣∣∣∣
t=0

Ep(u(expx(tχ(x)))) =
d

dt

∣∣∣∣
t=0

∫
M
|∇u(expx(tχ(x)))|p dV = 0

for all smooth compactly supported χ : M → TM . Here by expx(·) we mean
the exponential map centered at x which sends Tx(M) into M . If M ⊂ Rm,
then evidently expx(tχ(x)) = x+ tχ(x). Note that a weakly p-harmonic map
in C1(M,N) is necessarily stationary.

Finally, we define u to be a minimizing p-harmonic map, or more simply
a p-minimizer, if u minimizes the p-energy in the class of W 1,p maps with
the same trace on ∂M .

An important tool in the study of such maps is the normalized energy,
defined as

θu(x, r) = rp−m
∫
Br(x)

|∇u|p .

This quantity turns out to be monotone (or almost monotone) for stationary
maps.

Throughout the paper, we will use the standard notation bpc to denote
the integral part of a real number, i.e., the biggest integer ≤ p.

1.2. Background

The regularity of p-harmonic maps has been extensively studied in litera-
ture, in particular when p = 2. One should also be careful in separating the
minimizing and the stationary case. Note that by Sobolev embedding u is
continuous if p > m, making p ≤ m the only interesting case.

In [15] it was proved that the singular set S(u) for 2-minimizers has
Hausdorff dimension at most m− 3, and outside the singular set the map
u is actually smooth. Their proof is based on a dimension reduction ar-
gument and on an important ε-regularity theorem according to which if
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θ(x, 2r) < ε(m,N), then u is smooth on Br(x). Additionally, under the ad-
ditional assumption that there exist no continuous 2-minimizers u : Si → N
for i = 2, . . . , k, they can improve the Hausdorff dimension estimates to
m− k − 2.

For generic p 6= 2, the situation is similar, although in this case the lack
of uniform ellipticity makes C1,α estimates the best regularity one can hope
for, as opposed to smooth estimates. Indeed, in [8] the authors extend the
ε-regularity theorem to this case and prove that S(u) is a set of Hausdorff
dimension ≤ m− bpc − 1 outside of which u is C1,α.

More recently, in [4] the Hausdorff dimension estimates of [15] were im-
proved to Minkowski dimension estimates in the p = 2 case. Indeed, the esti-
mates of [4] allow for the first Lq estimates on the gradient and Hessian of so-
lutions to be proved, and more importantly the first Lq estimates on the reg-
ularity scale of solutions. In particular, given a 2-minimizer u : B2(0)→ N
with

∫
B2(0) |∇u|

2 ≤ Λ, [4] shows that for every ε > 0

Vol(Br(S(u) ∩B1(0))) ≤ C(m,N,Λ, ε)r3−ε .(1)

The key new ingredient for the proof in [4] was the introduction of the
quantitative stratification.

The goal of this paper is to introduce the quantitative stratification
techniques to the generic p context, and to use these results to prove similar
effective estimates for p-harmonic maps between Riemannian manifolds. To
do this it will be necessary for us to develop the notion of a defect measure,
which will allow us to study limits of p-harmonic maps.

Indeed, note that many arguments in the proofs of these results rely on
some compactness properties enjoyed by the family of p-minimizers. That
is, if a sequence ui of p-minimizers converges weakly in the W 1,p sense to
some u, then the convergence is actually strong and u is a p-minimizer (see
[11] or [17, section 2.9]).

Stationary maps do not enjoy this compactness property, and thus are
in general worse behaved than minimizing ones. Regardless Bethuel proved
in [1] an ε-regularity theorem for stationary 2-harmonic maps. This makes
it possible to estimate that Hm−2(S(u)) = 0. A sharp estimate in this case
is still an interesting open problem.

The technique used by Bethuel is difficult to generalize for arbitrary p,
and in fact a full-blown ε-regularity theorem is not available in literature.
To the best of our knowledge, the most general result is the one in [21],
which assumes that the target space N is a homogeneous space with a
left invariant metric. In this case, the authors are able to generalize the
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ε-regularity theorem and obtain as a corollary that Hm−p(S(u)) = 0, where,
as in the minimizing case, u is C1,α outside of its singular set.

Just as Bethuel’s result, this result is based on the duality between BMO
and Hardy spaces, and on a special choice of gauge which allow to exploit this
duality to conclude a polynomial decay for θ(x, r) when θ(x, 1) ≤ ε. How-
ever, when p 6= 2, finding this gauge presents nontrivial technical difficulties,
which are easily overcome if the target space has some special structure.

Note that similar results are available when N is a round sphere, see for
example [7], [20], [18], [12], [19], [14].

Regarding the lack of compactness for stationary maps, an interesting
study has been carried out in [10] when p = 2. Given a W 1,2 weakly conver-
gent sequence of stationary maps ui ⇀ u, one can define

|∇ui|2 dx ⇀ |∇u|2 dx+ ν ,

where the convergence is in the weak sense of measures. The nonnegative
measure ν is the defect measure, and it is clear that ui converges strongly
in W 1,2 to u if and only if ν is null. In [10], the author studies the measure-
theoretical properties of the measure ν, focusing in particular on its relation
with the n− 2 Hausdorff measure and its rectifiability, and via dimension
reduction arguments he is able to prove that if such a measure exists, then
there exists also a smooth nonconstant stationary 2-harmonic map h : S2 →
N . Thus in case such a map did not exist, stationary maps would enjoy
the same compactness properties of minimizers, and thus also the same
regularity properties. This fact is used in [2, corollary 1.26] to prove an
estimate similar to (1) for 2-stationary maps.

In this paper we will similarly introduce the defect measure for limits of
stationary p-harmonic maps, and we will see it enjoys all the same properties
enjoyed by the defect measure for 2-harmonic maps. We will use it as in [2,
corollary 1.26] to give regularity estimates for some stationary harmonic
maps.

1.3. Main results

In this article, we generalize the quantitative stratification technique intro-
duced in [4] to generic p ∈ (1,∞), and use it to obtain regularity estimates
for both minimizers and stationary maps. To do this we introduce and study
the defect measure associated to a sequence of stationary p-harmonic maps.
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For the sake of convenience, we will assume that the base manifold M
is a smooth Riemannian manifold with

|sec(M)| ≤ 1 , inj(M) ≥ 2 .(2)

Before stating the results, we define two conditions on the target mani-
fold N under which we will be able to obtain improved regularity results.

Definition 1.1. We say that a compact manifold N satisfies condition (A)
if

6 ∃ nonconstant continuous p-minimizing maps(A)

u : Si → N i = bpc, . . . , a .

We say that a compact manifold N satisfies condition (B) if

6 ∃ nonconstant continuous p-stationary maps(B)

u : Si → N i = bpc, . . . , b .

1.3.1. Results for minimizers. In the minimizing case, by combining
the quantitative stratification with the ε-regularity theorem in [8] we obtain
the following Minkowski-type estimates

Theorem 1.2. Let u be a p-minimizing map u : B2(0) ⊂M → N , where
N is compact (without boundary) and∫

B2(0)
|∇u|p dV ≤ Λ .

If m ≥ bpc+ 1, then for every η > 0, there exists a constant C(m,N,Λ, p, η)
such that for every r ≥ 0

Vol (Br(S(u)) ∩B1(0)) ≤ Crbpc+1−η .

Under the additional assumption (A), we can improve the result to

Vol (Br(S(u)) ∩B1(0)) ≤ Cra+2−η .

As a corollary of the proof, we will obtain the following integrability
properties.
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Corollary 1.3. Under the hypotheses of the previous theorem, for all ε > 0,
∇u ∈ Lbpc+1−ε(B1(0)) with∫

B1(0)
|∇u|bpc+1−ε ≤ C(m,Λ, N, p, ε) .

Moreover, under the additional assumption (A), ∇u ∈ La+2−ε(B1(0)) with∫
B1(0)

|∇u|a+2−ε ≤ C(m,Λ, N, p, ε) .

In the borderline case m = bpc+ 1, it is known that the singularities are
isolated (see for example [8, 15]). Using a refined covering argument, we are
able to improve the previous estimate to an effective finiteness of the number
of singularities for the map u. This result appears to be new even if p = 2.

Theorem 1.4. Let u be a p-minimizing map u : B2(0) ⊂M → N , where
N is compact (without boundary) and∫

B2(0)
|∇u|p dV ≤ Λ .

Suppose that m = bpc+ 1 or that, under the additional assumption (A),
m = a+ 2. Then there exists a constant C(p,N,Λ) such that

#S(u) ∩B1(0) ≤ C(p,Λ, N) .

Remark 1.5. As it is evident, the lower bound on the injectivity radius
and the sectional curvature of the manifold M in (2) are arbitrary. Indeed,
by scaling and covering it is immediate to see that all the results in this
section hold for a generic smooth manifold, up to letting C depend also on
the lower bounds on curvature and injectivity radius.

Remark 1.6. As mentioned before, the case m < p is not interesting since
Sobolev embedding implies immediately Holder continuity, and by standard
arguments one gets effective C1,α regularity from it. The borderline case
m = p is also not very difficult to deal with ([17, section 3.6]). For the reader’s
convenience, we will briefly sketch a quick self-contained argument to prove
these statements in Theorem 2.19.

1.3.2. Results for stationary maps. As for the stationary case, we
will start by generalizing the study of the defect measure in [10] to a generic
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p ∈ (1,∞). An essential tool in this study is the ε-regularity theorem, and
given that for p 6= 2 such a theorem has been proved only if the target N
is a compact homogeneous space with a left invariant metric (see [21]), we
will restrict our study to this case. It is worth noticing that the ε-regularity
theorem is the only part where the homogeneity of N plays a role, the rest
of the arguments are valid for any compact target manifold.

Using blow-ups and dimension reduction arguments, we will prove that
the defect measure can be nonzero only if p is an integer and if there exists a
C1,α stationary p-harmonic map from Sp to N . Thus if we assume that p is
not an integer or that such a map doesn’t exist, we recover all the regularity
results proved in the minimizing case. In particular, we obtain

Theorem 1.7. Let u : B2(0)→ N be a stationary p-harmonic map, where
N is a smooth compact homogeneous space with a left invariant metric. If p
is not an integer, then for all ε > 0:

Vol (Br(S(u)) ∩B1(0)) ≤ C(m,N, p, ε)rbpc+1−ε .

Moreover, for all p and under the additional assumption (B), we can improve
the previous estimate to

Vol (Br(S(u)) ∩B1(0)) ≤ Crb+2−η .

As in the minimizing case, we also prove the following integrability re-
sults.

Corollary 1.8. Under the hypotheses of the previous theorem, for all ε > 0,
∇u ∈ Lbpc+1−ε(B1(0)) with∫

B1(0)
|∇u|bpc+1−ε ≤ C(m,Λ, N, p, ε) .

Moreover, under the additional assumption (B), ∇u ∈ Lb+2−ε(B1(0)) with∫
B1(0)

|∇u|b+2−ε ≤ C(m,Λ, N, p, ε) .

Also the estimates for the borderline case carry over immediately.

Theorem 1.9. Under the hypothesis of the previous theorem, suppose that
p is not an integer and m = bpc+ 1, or that, for any p, m = b+ 2 under
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the additional assumption (B). Let u be a stationary p-harmonic map u :
B2(0)→ N , where ∫

B2(0)
|∇u|p dV ≤ Λ .

Then

#S(u) ∩B1(0) ≤ C(p,Λ, N) .

Remark 1.10. For the sake of simplicity, we will only deal with the case u :
B2(0) ⊂ Rm → N . Given the local nature of the quantitative stratification,
with simple modifications the results hold verbatim also for Riemannian
manifolds with (2). The most important modifications needed for the general
case will be pointed out in the study of p-minimizing maps (Section 2), while
for p-stationary maps we refer to the analysis made by Lin for p = 2, see
[10], Section 5.

1.4. Sketch of the proof

In this section, we will briefly sketch the main ideas involved in the quanti-
tative stratification.

It is well known that the monotonicity of the normalized energy θu(x, ·)
implies the existence of (not necessarily unique) tangent maps for u at ev-
ery point (see for example [17]). Tangent maps are necessarily homogeneous
weakly harmonic maps, and one says that a tangent map is k-symmetric if
it is homogeneous and invariant wrt a k-dimensional subspace of Rm (for
precise definitions, see Section 1.5). This allows to define a standard strat-
ification of the domain of u based on the number of symmetries of tangent
maps. More precisely, for any integer k ∈ [0,m] we define Sk as the set of
points x such that all tangent maps at x are not k + 1 symmetric.

In a manner similar to [3] and [4], we will define a quantitative stratifi-
cation which refines the standard one. Roughly speaking, for fixed r, η > 0
the quantitative stratification separates the points x based on the number
of η-almost symmetries of an approximate tangent map of u at scales ≥ r;
for a more precise statement see Definition 1.22.

The essential point of this paper is to prove Minkowski-type volume
estimates on the quantitative strata, as opposed to the weaker Hausdorff
estimates on the standard ones.
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The key ideas involved in proving the estimates for the quantitative
stratification are the energy decomposition, the ε-regularity theorem and
cone-splitting.

In general, cone-splitting is the principle that, in the presence of conical
structure, an object which is symmetric with respect to two distinct points
automatically enjoys a higher order symmetry.

For example, in the setting of this article homogeneity with respect to
a point plays the role of conical structure. A function h is said to be ho-
mogeneous wrt to a point, or equivalently 0-symmetric at a point, if it is
constant on the rays through that point. It is immediate to see that if h is
homogeneous with respect to two distinct points, then it is automatically
constant on all lines parallel to the one joining these points.

In our terminology, we can rephrase this by saying that if a function is 0-
symmetric at two distinct points, then the function is actually 1-symmetric.
Using a simple compactness argument, it is possible to turn this statement
into a quantitative cone-splitting for p-harmonic maps (see Proposition 2.1).
Roughly speaking, we will prove that if a function is almost 0-symmetric at
two reasonably distant points, then it is actually almost 1-symmetric.

The ε-regularity theorem provides a link between the strata Sk and the
singular set S(u). Indeed, we will show that if a minimizing map u is close
enough in the appropriate sense to an (m− bpc)-symmetric function, then
∇u is bounded, and u does not have singular points in its domain. Equiva-
lently, S(u) ⊂ Sm−bpc−1.

The energy decomposition will exploit this by decomposing the space
B1(0) based on which scales u looks almost 0-symmetric. On each such
piece of the decomposition, nearby points automatically either force higher
order symmetries or an improved covering of the space. By the ε-regularity
theorem, if a function has enough approximate symmetries then it is regular,
and thus we obtain a good covering of the singular set in each piece of the
decomposition. The final theorem is obtained by noting that, thanks to the
monotonicity properties of the normalized energy, there are far fewer pieces
to the decomposition than might apriori seem possible.

The volume estimates on the singular points are an easy corollary of the
estimates on the quantitative strata and a ε-regularity type theorems from
[8, 15] for the minimizing case, and from [1, 21] for the stationary one. Note
that in the stationary case and for generic p, the ε-regularity theorem has
been proved only for homogeneous target manifolds. For this reason, we will
restrict our study to this setting.
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1.4.1. Regularity scale. Actually the main estimates will not just be on
S(u), but on Br(u), an even bigger set. Indeed, we will be able to bound
not only the size of the singular points, but also the size of the points where
the gradient is big. Since the precise definition of Br(u) is rather technical
(see 2.11), here we only point out that

S(u) ⊂ Br(u) ⊂
{
x s.t. |∇u| (y) ≤ r−1 ∀y ∈ Br(x)

}C
.

Since the techniques described above are quantitative in nature, it should not
be surprising that we are able to obtain these kind of quantitative results.

By using a refined covering, we will also improve the estimates in the
case of isolated singularities and obtain a definite bound on the number of
singular points.

1.5. Preliminary properties

In this section we recall some of the basic properties related to normalized
energy and homogeneous maps.

Definition 1.11. For u∈W 1,p(B1(0), N), and for all x, r such that Br(x)⊂
B1(0), define

θu(x, r) = rp−m
∫
Br(x)

|∇u|p dV .

A crucial property of stationary (and thus also of minimizing) p-harmonic
maps is the monotonicity of θ(x, r) wrt r. The monotonicity follows from
this well-known first variational formula (see for example [10, eq. 1.3]).

Proposition 1.12. Let u be a stationary p-harmonic map u : B1(0)⊂Rm→
N . Then for all smooth compactly supported vector fields ξ ∈ C∞c (B1(0),Rm),∫

Br(x)
|∇u|p−2

[
|∇u|2 δij − p∇iu∇ju

]
∂iξ

jdV = 0 .(3)

Proposition 1.13. Let u be a stationary p-harmonic map u : B1(0)⊂Rm→
N , then the normalized p-energy is monotone nondecreasing in r. In partic-
ular for a.e. r > 0:

d

dr
θ(x, r) = prp−m

∫
∂Br(x)

|∇u|p−2

∣∣∣∣∂u∂n
∣∣∣∣2 dS ≥ 0 .(4)
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Remark 1.14. If u is defined on a Riemannian manifold, then θ(x, r) is not
monotone but only “almost” monotone in the following sense: there exists a
constant C depending on m, N and p such that eCrθ(x, r) is monotone for
all r ≤ inj(M). See [8, section 7] for details in the minimizing case (the sta-
tionary case is completely analogous). This version of almost monotonicity
is enough for all our purposes.

As it is clear from equation (4), the normalized energy is very much
related to homogeneous maps, of which we recall the definition here.

Definition 1.15. We say that h ∈W 1,p(Rm, N) is a homogeneous function
of degree zero wrt the origin if for a.e. λ > 0 and x ∈ Rm:

h(λx) = h(x) ,

or equivalently if ∂h
∂n = 0. We say that h is a k-symmetric function if h is ho-

mogeneous of degree zero and there exists a subspace V of Rm of dimension
k such that

h(x+ y) = h(x)

for a.e. x ∈ Rm and y ∈ V .

Remark 1.16. For simplicity, from now on we will use the terms 0-sym-
metric, homogeneous and homogeneous of degree zero as equivalent.

Evidently, h is m-symmetric if and only if it is a.e. constant.

Remark 1.17. By simple considerations, it is easy to see that the class of
homogeneous functions h : Rm → N is closed in the Lp topology for any p <
∞. Moreover, if h is homogeneous wrt the points {xi}, then h is symmetric
wrt the affine space spanned by these points.

We define also almost homogeneous functions according to their close-
ness to homogeneous functions. Before doing so, we define the blow-ups T ux,r.

Definition 1.18. For x ∈ B1(0) and r ≤ 1, define T ux,r : B1(0) ⊂ Rm → N
by

T ux,r(y) ≡ u(x+ ry) .

For ease of notation we will write Tx,r instead of T ux,r when no ambiguity is
possible.
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Remark 1.19. In case M is a Riemannian manifold, it is natural to re-
place the Euclidean blow-up with the one given by the exponential map. In
particular, in this case we would define T ux,r : B1(0) ⊂ Tx(M)→ R by

T ux,r(y) ≡ u (expx(ry)) .

Remark 1.20 (Scale invariance). From the definition of normalized en-
ergy, it is immediate to see that θ is scale-invariant. In other words

θu(x, r) = θTux,r(0, 1) .

Definition 1.21. We say that u is (k, ε, r, x)-symmetric if there exists a
k-symmetric map h such that∫

–
B1(0)

d
(
T ux,r, h

)p
dV < ε .

With this definition, we can define the strata Skη,r by:

Definition 1.22. Given a p-minimizing map u, an integer k ≥ 0 and r, η >
0, we define

Skη,r = {x ∈ B1(0) s.t. ∀s ∈ [r, 1] , u is NOT (k + 1, η, s, x) -symmetric} .

2. Minimizing maps

The aim of this chapter is to prove the volume estimates on the strata
Skη,r for p-minimizers, and use them to prove regularity results. We start by
proving a quantitative cone-splitting theorem (one could call it an “almost”
cone-splitting).

2.1. Cone-splitting theorem

The cone-splitting theorem is the quantitative version of Remark 1.17. Us-
ing a simple compactness argument, we see that if u is almost symmetric
with respect to a set of points, and if this set of points “almost spans” a k
dimensional space, then u is almost k symmetric.

Proposition 2.1. Let u be a p-minimizing map with
∫
B2(0) |∇u|

p ≤ Λ, and

fix some η, τ > 0. Then there exists ε = ε(m,N,Λ, p, η, τ) such that if

1) u is NOT (k + 1, η, r, x)-symmetric;
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2) u is (0, ε, 2r, x)-symmetric;

then there exists a k-dimensional plane V such that

{y s.t. u is (0, ε, 2r, y)-symmetric} ∩Br(x) ⊂ Bτr(V ) ,

where Br(S) = {x s.t. d(x, S) < r} is the tubular neighborhood of radius r
around the set S.

Proof. For convenience, we fix x = 0 and r = 1. Suppose by contradiction
that the proposition is false. Then for each fixed η and τ , we can find a

sequence of p minimizing maps ui and a sequence of points x
(i)
0 , . . . , x

(i)
k+1 ∈

B1(0) such that

1) x0 = 0,

2) ui is (0, i−1, 2, x
(i)
j ) symmetric for all j,

3) for all j = 1, . . . , k + 1, d
(
x

(i)
j , span

(
x

(i)
0 , x

(i)
1 , . . . , x

(i)
j−1

))
≥ τ ,

4)
∫
B2(0) |∇ui|

p ≤ Λ .

By compactness, ui (sub)converges weakly in the W 1,p sense to a function
u. According to [8, Corollary 2.8], since ui are p-minimizers the convergence
is also strong W 1,p sense, and it is a minimizer by [11] (see also [17, section
2.9]).

Moreover, by passing to a subsequence if necessary, we have limi→∞ x
(i)
j =

xj , and span(xj)
k+1
j=0 is a k + 1 dimensional subspace.

The almost homogeneity properties of ui imply that u is homogeneous
with respect to all xj on B2(xj) ⊃ B1(0), and thus it is k + 1 symmetric
on B1(0). Since ui converges to u, for i sufficiently large ui has to be (k +
1, η, 1, 0) symmetric, which is a contradiction. �

2.2. Energy pinching and almost homogeneity

An immediate consequence of the monotonicity property (or better, of equa-
tion (4)), is that if θu(x, r1) = θu(x, r2), then u is homogeneous wrt x on the
annulus Br2(x) \Br1(x). By a simple compactness argument, we can prove
that if the normalized energy is sufficiently pinched, i.e. if θ(x, r)− θ(x, χr)
is small enough, then u is almost homogeneous. This gives a very powerful
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characterization of almost homogeneous functions, specially given the mono-
tonicity of θ. Indeed, if we consider a sequence of scales rk = χ−k, by mono-
tonicity only for a bounded number of k the difference θ(x, rk)− θ(x, rk+1)
can be big. This proves that, for each x, p-minimizers are almost homoge-
neous wrt x at all but a bounded number of scales.

Theorem 2.2. Let u be a p-minimizer with
∫
B2(0) |∇u|

p dV ≤ Λ, x ∈ B1(0)

and r ≤ 1. Then for every ε > 0, there exists δ = δ(m,N,Λ, p, ε) and 0 <
χ = χ(m,N,Λ, p, ε) ≤ 1/2 such that

θ(x, r)− θ(x, χr) ≤ δ

implies that u is (0, ε, r, x)-symmetric.

Proof. Given the scale-invariant nature of this statement, we can assume
without loss of generality that x = 0 and r = 1. Consider a sequence of p-
minimizers ui with

∫
B2(0) |∇ui|

p ≤ Λ and

θui(0, 1)− θui(0, i−1) ≤ i−1 .

By weak compactness, we can assume that ui (sub)converges weakly in
W 1,p(B1(0)) to some u.

In order to prove that u is homogeneous, consider that ui are p-minimizers.
Thus ui converge strongly to u, and in particular θu0 (r) is constant for
r ∈ (0, 1). Thus u is homogeneous on B1(0).

Alternatively, one can use an argument similar to the proof of [15,
Lemma 2.5] to prove the homogeneity of the tangent map. �

In case of a Riemannian manifold, the previous statement needs to be
tweaked a little. Indeed, the limit function u in the previous proof is de-
fined on B1(0) ⊂ Tx(M) and it minimizes the p-energy with respect to the
metric on the manifold, not with respect to the standard Euclidean met-
ric. Moreover, since θ in this case is only almost monotone, u need not be
homogeneous. For these reasons, we also need r in the previous theorem to
be effectively small, so that the geodesic ball Br(0) is close enough to the
Euclidean ball with the same radius.
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Theorem 2.3. Let u : B2(0) ⊂M → N be a p-minimizer with∫
B2(0)

|∇u|p dV ≤ Λ, x ∈ B1(0)

and r ≤ 1. Then for every ε > 0, there exists

δ = δ(m,N,Λ, p, ε), r0 = r0(m,N,Λ, p, ε)

and 0 < χ = χ(m,N,Λ, p, ε) ≤ 1/2 such that r ≤ r0 and

θ(x, r)− θ(x, χr) ≤ δ

implies that u is (0, ε, r, x)-symmetric.

Proof. The proof proceeds as in the Euclidean case. In particular, by con-
tradiction we build a sequence ui which minimize the Riemannian p-energy
on Bi−1(0). By the almost monotonicity of θ, and by the assumptions (2),
the sequence Ti = T ui0,i−1 has a uniform W 1,p(B1(0)) bound. Thus Ti has a
weakly convergent subsequence.

The strong convergence of Ti and the fact that T is a Euclidean p-
minimizer can be proved by a simple adaptation of [15, Proposition 4.7
and Proposition 5.2]. Alternatively, one can use the technique of ε-almost
minimizers developed in [11] (see also [17, section 2]). �

Remark 2.4. Since r0 depends only on m,N,Λ, p, the extra assumption
r ≤ r0 does not change in a significant way any of the volume estimates we
want to prove.

2.3. ε-regularity theorem

The last important ingredient needed for the proof of our main theorems
is the so-called ε-regularity theorem for p-minimizers. This theorem states
that if u is close enough to a constant in the Lp sense, then u is regular.
More precisely we have

Theorem 2.5 (ε-regularity theorem). [8, Corollary 2.7, Theorem 3.1]
Let u be a p-minimizing map u : B2(0)→ N . Then for every Λ > 0, there
exists constants δ(Λ,m,N, p) > 0, α(m,N, p) > 0 and C(m,N, p) > 0 such
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that if ∫
B2(0)

|∇u|p dV ≤ Λ and

∫
B2(0)

d(u,w)pdV ≤ δ ,

where w is any fixed point w ∈ N , then f is (1, α)-Holder continuous on
B1(0) and

‖f‖C1,α(B1(0)) ≤ C .

The authors is [8] use the ε-regularity theorem and the monotonicity of
θ to prove that the Hausdorff dimension of S(u) is bounded above by m−
bpc − 1. In particular, this implies that all m− bpc symmetric p-minimizers
are constant. Using this and a simple compactness argument, we can improve
the ε-regularity theorem to the following version.

Theorem 2.6. Let u be a p-minimizing map u : B2(0)→ N with∫
B2(0)

|∇u|p dV ≤ Λ.

There exists constants ε(Λ,m,N, p) > 0 and α(m,N, p) > 0 such that if u
is (m− bpc, ε, 1, 0)-symmetric then u is (1, α)-Holder continuous on B1(0)
and

‖u‖C1,α(B1(0)) ≤ 1 .

Proof. This theorem follows from the previous one and an easy compactness
argument.

Suppose by contradiction that this theorem is false. Then there exists
a sequence of p-minimizing maps ui and a sequence of m− bpc symmetric
maps hi such that∫

B1(0)
|∇ui|p dV ≤ Λ and

∫
B1(0)

d(ui, hi)
pdV ≤ i−i ,

but for which
∫
B1(0) d(ui, w)pdV ≥ ε for all w ∈ N .

Given the compactness of N , hi has a subsequence which converges
strongly in Lp(B1(0)) to an m− bpc symmetric function h. Moreover, ui has
a subsequence which converges strongly in W 1,p(B1(0)) to a p-minimizer u.

Thus h = u is an m− bpc symmetric p-minimizer, which is necessarily
constant by [8]. The previous theorem then ensures that ui converges to h
also in the sense of C1,α/2, and this concludes the proof. �
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Under the additional assumptions (A), we can improve the previous
results and show that any almost m− a− 1 symmetric map is constant.

Corollary 2.7. Suppose that condition (A) holds, and let u be a p-mini-
mizing map u : B2(0)→ N with

∫
B2(0) |∇u|

p dV ≤ Λ. There exists constants

ε(Λ,m,N, p) > 0 and α(m,N, p) > 0 such that if u is (m− a− 1, ε, 1, 0)-
symmetric then u is (1, α)-Holder continuous on B1(0) and

‖∇u‖C1,α(B1(0)) ≤ 1 .

Proof. A key element in the proof of the previous theorem is that all mini-
mizing p-harmonic maps which are (m− bpc)-symmetric are necessarily con-
stant. In the next lemma, we show using a standard argument that under
assumption (A) any (m− a− 1)-symmetric minimizing map is constant.
The rest of the proof carries over immediately. �

Lemma 2.8. Under the additional assumptions (A), all (m− a− 1)-sym-
metric p-minimizing maps h : Rm → N are constant.

Proof. Suppose by contradiction that there exists such a map h with a sin-
gularity, and let S be its invariant subspace of dimension ≥ m− a− 1. By
invariance, the map h induces a minimizing map h̃ : Ra+1 → N . If the origin
is the only isolated singularity of h̃, then it is immediate to obtain a contin-
uous p-minimizing map ĥ : Sa → N , which is trivial by assumption, thus h
would be constant.

We finish the proof by induction. If h has a singularity at x 6∈ S, then by
the ε-regularity theorem θh(x, 0) > ε. Let h′ be a tangent map at x, thus h′ is
a nonconstant minimizing map which is easily seen to be invariant both with
respect to S and with respect to the subspace generated by x. In other words
h′ is (m− a)-symmetric. By the previous argument, h′ induces a minimizing
map from Ra to N , and this map cannot have an isolated singularity at the
origin. If this map had other singularities, by induction we would obtain a
minimizing map with one more symmetry. Since m− bpc symmetric maps
are necessarily constant, the proof is finished. �

2.4. Regularity scale

Given the scale-invariant properties of the problem we are focusing on, it is
convenient to define some scale-invariant quantities measuring the regularity
of the function u.
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Definition 2.9. Let α = α(m,N, p) > 0 be the one given by Theorem 2.6.
We define the scale-invariant norm ‖u‖x,r of u at the point x at scale r as

‖u‖x,r =


r supy∈Br(x) {|∇u(y)|}

+r1+α supz 6=y∈Br(x)

{
|∇u(y)−∇u(z)|
|y−z|α

}
, if u ∈ C1,α(Br(x))

+∞, otherwise.

We define also the regularity scale by

ru(x) = sup
r≥0

{
‖u‖x,r ≤ 1

}
.

Remark 2.10. Note that this definition is scale-invariant, in the sense that∥∥T ux,r∥∥0,1
= ‖u‖x,r. Moreover ‖·‖x,r is monotone in r. In particular, if r ≤ s,

then

‖u‖x,r ≤ ‖u‖x,s .

Definition 2.11. Let u be a p-minimizing map as in the statement of
Theorem 2.13, and r > 0. Define the set

Br(u) =
{
x ∈ B1(0) s.t. ‖Tx,r‖0,1 = ‖u‖x,r > 1

}
= {x ∈ B1(0) s.t. ru(x) < r} .

We can restate the ε-regularity theorem in the following form.

Theorem 2.12. Let u be a p-minimizing map u : B2(0)→ N , where N is
compact (without boundary) and∫

B2(0)
|∇u|p dV ≤ Λ .

Then there exists a positive ε = ε(m,N,Λ, p) such that, for all r ≤ 1,

S(u) ∩B1(0) ⊂ Br(u) ∩B1(0) ⊂ Sm−bpc−1
ε,r (u) ∩B1(0) .

Under the additional assumption (A), we can improve the previous result to

S(u) ∩B1(0) ⊂ Br(u) ∩B1(0) ⊂ Sm−a−2
ε,r (u) ∩B1(0) .
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Proof. The inclusion S(u) ∩B1(0) ⊂ Br(u) ∩B1(0) is immediate, while the
inclusion [

Sm−bpc−1
ε,r (u) ∩B1(0)

]C
⊂ [Br(u) ∩B1(0)]C

is just a scale-invariant form of Theorem 2.6 and Corollary 2.7. �

2.5. Volume estimates on the strata

By applying the quantitative stratification technique (see [4]), we now prove
effective volume bounds on the singular strata Sη,r. In the next section, we
will see how these bounds imply effective regularity estimates on the map u.

Theorem 2.13. Let u be a p-minimizing map as in the statement of Theo-
rem 2.12. Then for every η > 0, there exists a constant C(m,N,Λ, p, η) such
that

Vol
(
Br(S

k
η,r(u)) ∩B1(0)

)
≤ Crm−k−η .

The scheme of the proof is the following: fix γ = c
−2/η
0 > 0, where c0 =

c0(m) is the dimensional geometrical constant appearing in the proof of
Lemma 2.18. Up to increase the value of c0, we can suppose that γ < 1/10.
We will prove that there exists a covering of Skη,γj made of nonempty open

sets in the collection {Ckη,γj}. Each set Ckη,γj is the union of a controlled

number of balls of radius γj .
This will give the desired volume bound. In particular:

Lemma 2.14 (Decomposition Lemma). There exists c0(m), c1(m) > 0
and D(m,N, γ,Λ, p, η) > 1 such that for every j ∈ N:

1) Skη,γj ∩B1(0) is contained in the union of at most jD nonempty open

sets Ckη,γj

2) Each Ckη,γj is the union of at most (c1γ
−m)D(c0γ

−k)j−D balls of radius

γj

Once this lemma is proved, Theorem 2.13 follows easily.

Proof of Theorem 2.13. Since we have a covering of Skη,γj ∩B1(0) by balls

of radius γj , it is easy to get a covering of Bγj
(
Skη,γj

)
∩B1(0). In fact it is



i
i

“4-Naber” — 2019/5/7 — 18:01 — page 131 — #21 i
i

i
i

i
i

Quantitative regularity for p-harmonic maps 131

sufficient to double the radius of the original balls. Now it is evident that:

Vol
[
Bγj

(
Skη,γj

)
∩B1(0)

]
≤ jD

(
(c1γ

−m)D(c0γ
−k)j−D

)
ωm2m

(
γj
)m

where ωm is the volume of the m-dimensional unit ball. By plugging in the
simple rough estimates

jD ≤ c(m,N,Λ, p, η)
(
γj
)−η/2

,

(c1γ
−m)D(c0γ

−k)−D ≤ c(m,N,Λ, p, η) ,

and using the definition of γ, we obtain the desired result. �

2.5.1. Proof of the decomposition Lemma. Now we turn to the proof
of the Decomposition Lemma. In order to do this, we define a new quantity
which measures the non-homogeneity of u at a certain scale.

Given u as in Theorem 2.13 and ε > 0, we divide the set B1(0) into
two subsets according to the behaviour of the points with respect to their
quantitative symmetry. In particular, define

Lr,ε(u) = {x ∈ B1(0) s.t. u is (0, ε, r/ (5γ) , x)-symmetric} ,
Hr,ε(u) = Lr,ε(u)C .

Next, to each point x ∈ B1(0) we associate a j-tuple T j(x) of numbers {0, 1}
in such a way that the i-th entry of T j(x) (which will be denoted by T ji (x))
is 1 if x ∈ Hγi,ε(u), and zero otherwise. Then, for each fixed j-tuple T̄ j , set:

E(T̄ j) = {x ∈ B1(0) s.t. T j(x) = T̄ j}

Also, we denote by T j−1, the (j − 1)-tuple obtained from T j by dropping the
last entry, and set

∣∣T j∣∣ to be number of 1 in the j-tuple T j , i.e.,
∣∣T j(x)

∣∣ =∑j
i=1 T

j
i (x).

We will build the families {Ckη,γa} by induction on a = 0, . . . , j in the

following way. For a = 0, {Ckη,γ0} consists of the single ball B1(0).

2.5.2. Induction step. For fixed a ≤ j, suppose that by induction we

have already built the family
{
Ckη,γa−1

}
, and consider all the 2a a-tuples

T̄ a. Label the sets of balls in the family {Ckη,γa} by all the possible a-tuple

T̄ a. We will build Ckη,γa(T̄
a) inductively as follows. For each ball Bγa−1(y)

in {Ckη,γa−1(T̄ a−1)} take a minimal covering of Bγa−1(y) ∩ Skη,γj ∩ E(T̄ a) by

balls of radius γa centered at points in Bγa−1(x) ∩ Skη,γj ∩ E(T̄ a). Note that
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it is possible that for some a-tuple T̄ a, the set E(T̄ a) is empty, and in this
case {Ckη,γa(T̄ a)} is the empty set.

Now we need to prove that the minimal covering satisfies points 1 and
2 in Lemma 2.14. We will do this in the next three lemmas.

Remark 2.15. For the moment let ε > 0 be an arbitrary fixed small quan-
tity. Its value will be chosen in order to apply Proposition 2.1 with η as in
the statement of Theorem 2.13 and τ = 10−1γ.

2.5.3. Point 1 in Lemma. As we will see below, we can use the mono-
tonicity of θ to prove that for every T̄ j , E(T̄ j) is empty if

∣∣T̄ j∣∣ ≥ D. Since for

every j there are at most
(
j
D

)
≤ jD choices of j-tuples which do not satisfy

such a property, the first point will be proved.

Lemma 2.16. There exists D=D(ε, γ,m,N,Λ, p) such that E(T̄ j) is empty
if
∣∣T̄ j∣∣ ≥ D.

Proof. For s < r, we set

Ws,r(x) = θ(x, r)− θ(x, s) ≥ 0 .

If (si, ri) are disjoint intervals with max{ri} ≤ 1/3, then by monotonicity of
θ ∑

i

Wsi,ri(x) ≤ θ(x, 1/3)− θ(x, 0) ≤ C(m, p,Λ) .(5)

Let χ = χ(m,N,Λ, p, ε) be given by Theorem 2.2 and let A ∈ N be
such that γA ≤ χ. Consider intervals of the form (γi−1/5, γi+A−1/5) for
i = 1, 2, ...∞. By Theorem 2.2, there exists a δ independent of x such that

Wγi−1/5,γi+A−1/5(x) ≤ δ =⇒ u is (0, ε,
γi−1

5
, x)-symmetric .

in particular x ∈ Lγi,ε, so that, if i ≤ j, the i-th entry of T j is necessarily
zero. By equation (5), there can be only a finite number of i’s such that
Wγi−1/5,γi+A−1/5(x) > δ, and this number D is bounded by:

D ≤ AC(m, p,Λ)

δ
.(6)

This completes the proof. �
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2.5.4. Point 2 in Lemma. The proof of the second point in Lemma 2.14
is mainly based on Proposition 2.1. In particular, for fixed k and η in the
definition of Skη,γj , ε is chosen in such a way that Proposition 2.1 can be

applied with τ = 10−1γ. Then we can restate the lemma as follows:

Lemma 2.17. Let T̄ ja = 0. Then the set G = Skη,γj ∩Bγa−1(x) ∩ E(T̄ j) can

be covered by c0(m)γ−k balls centered in G of radius γa.

Proof. First of all, note that since T̄ ja = 0, all the points in E(T̄ j) are in
Lε,γa(u).

The set G is contained in B10−1γa(V
k) ∩Bγa−1(x) for some k-dimensional

subspace V k. Indeed, if there were a point x∈G, such that x 6∈B10−1γa(V
k) ∩

Bγa−1(x), then by Proposition 2.1 (applied with τ=10−1γ and r=10−1γa−1)
the map u would be (k + 1, η, 10−1γa−1, x)-symmetric. Since 10−1γa−1 > γj ,
this contradicts x ∈ Skη,γj . It is standard geometry that V k ∩Bγa−1(x) can

be covered by c0(m)γ−k balls of radius 9
10γ

a, and by the triangle inequality
it is evident that the same balls with radius γa cover the whole set G. �

If instead T̄ ja = 1, then without any effort we can say that G = Skη,γj ∩
Bγa−1(x) ∩ E(T̄ j) can be covered by c1(m)γ−m balls of radius γa. Now by a
simple induction argument the proof is complete.

Lemma 2.18. Each (nonempty) Ckη,γj is the union of at most

(c1γ
−m)D(c0γ

−k)j−D

balls of radius γj.

Proof. Fix a sequence T̄ j and consider the set Ckη,γj (T̄
j). By Lemma 2.16,

we can assume that
∣∣T̄ j∣∣ ≤ D, otherwise there is nothing to prove since

Ckη,γj (T̄
j) would be empty.

Consider that for each step a, if T̄ ja = 0, in order to get a (minimal)
covering of Bγa−1(x) ∩ Skη,γi ∩ E(T̄ j) for Bγa−1(x) ∈ Ckη,γa−1(T̄ j), we require

at most (c0γ
−k) balls of radius γa. If T̄ ja = 1, we need (c1γ

m) balls. Since
the latter situation can occur at most D times, the proof is complete. �

2.6. Regularity estimates

In this section, we collect the main theorems for minimizing maps. As antic-
ipated in the introduction, we obtain estimates not only on the singular set,
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but also quantitative estimates on the regularity scale and, as a corollary,
sharp integrability conditions for the minimizers u.

First of all, we stress that the regularity properties of the minimizers
strongly depend on p and m. For example, it is well known that if m ≤ bpc,
then all p-minimizers have no singular points, and thus are C1,α functions.
Moreover, as shown in [17, section 3.6], one can prove that there exist uni-
form C1,α bounds on u depending only onm,Λ, N .. In the following theorem,
we give a short proof of this statement.

Theorem 2.19. If m ≤ bpc, then there exists a constant C(p,Λ, N) such
that ∫

B2(0)
|∇u|p ≤ Λ =⇒ ‖∇u‖C0,α(B1(0)) ≤ C .

Under the additional assumption (A), if m ≤ a+ 1, then there exists a con-
stant C(p,Λ, N) and an exponent α(m,N, p) > 0 such that∫

B2(0)
|∇u|p ≤ Λ =⇒ ‖∇u‖C0,α(B1(0)) ≤ C .

Proof. By Theorem 2.6, there exist ε and α such that if u is (0, ε, r, x) sym-
metric, then ‖u‖x,r ≤ 1. By Theorem 2.2, we can rephrase this last property
as follows: there exist δ, χ > 0 such that

θ(x, r)− θ(x, χr) ≤ δ =⇒ ‖u‖x,r ≤ 1 .

Now we argue in a way similar to the proof of Lemma 2.16. Consider the
sequence of scales rk = χk. By monotonicity, there exists a K(p,Λ, N) <∞
such that θ(x, rk)− θ(x, rk+1) ≤ δ for some 0 ≤ k ≤ K. This implies that
‖u‖x,rK ≤ 1, and thus we obtain the desired bounds.

Using Corollary 2.7 instead of Theorem 2.6, we prove the second state-
ment. �

Naturally, the interesting case is when m ≥ bpc+ 1. As a corollary of the
estimates obtained in the previous section, we can prove the main theorem.

Theorem 2.20. Let u : B2(0)→ N be a minimizing p-harmonic map with∫
B2(0) |∇u|

p dV ≤ Λ. For every η > 0, there exists a constant C(m,Λ, N, p, η)
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such that

Vol (Br(S(u)) ∩B1(0)) ≤ Vol (Br(Br(u)) ∩B1(0)) ≤ Crbpc+1−η .(7)

Moreover, under the additional assumption (A), we can improve the previous
estimate to

Vol (Br(S(u)) ∩B1(0)) ≤ Vol (Br(Br(u)) ∩B1(0)) ≤ Cra+2−η .

This theorem is a corollary of the estimates in Theorem 2.12 and The-
orem 2.13. With this estimate, it is immediate to prove the following sharp
integrability theorem.

Corollary 2.21. Let u : B2(0)→ N be a minimizing p-harmonic map with∫
B2(0) |∇u|

p dV ≤ Λ. For all ε > 0, ∇u ∈ Lbpc+1−ε(B1(0)) with∫
B1(0)

|∇u|bpc+1−ε ≤ C(m,Λ, N, p, ε) .

Moreover, under the additional assumption (A), ∇u ∈ La+2−ε(B1(0)) with∫
B1(0)

|∇u|a+2−ε ≤ C(m,Λ, N, p, ε) .

Proof. The proof is an immediate corollary of the regularity scale estimates.
Indeed, let η = ε/2 > 0 and consider that for all r > 0 we have by (7)

Vol
({
x s.t. |∇u(x)| > r−1

})
≤ Crbpc+1−ε/2 = Crbpc+1−εrε/2 .

This immediately gives the desired integral estimates on |∇u|. �

Note that the integrability is sharp. Indeed, consider the map u : B1(0) ⊂
Rm → Sm−1 defined by u(x) = x/ |x|. This map is p-harmonic if m > p, but
|∇u| 6∈ Lm(B1(0)). Thus we cannot improve the integrability to bpc+ 1.

2.7. Improved regularity for m = bpc + 1

In this section, we focus on the special case m = bpc+ 1 (or m = a+ 2
under the additional assumptions (A)). In this situation, it is known that
singular points are isolated (see for example [8]). We improve this result to
an effective finiteness, which is new even in the case p = 2. The next lemma
describes the property that makes this case special.
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Lemma 2.22. Let m = bpc+ 1, or let m = a+ 2 under the additional as-
sumption (A). There exists η(p,Λ, N) such that if u is (0, η, r, x)-symmetric
and (2r)2−m ∫

B2r(x) |∇u|
p ≤ Λ, then u does not have singular points in the

annulus Ar(x) = B r

2
(x) \B r

4
(x).

Proof. We will only deal with the case m = bpc+ 1, the other being com-
pletely analogous. Moreover, by scale and translation invariance, we can
assume that x = 0 and r = 1.

Consider by contradiction a sequence of minimizers ui which are (0, η,
1, 0)-symmetric and such that

∫
B2(0) |∇u|

2 ≤ 2n−2Λ, and let xi be a singular

point of ui inside the annulus B1(0) \B1/2(0). By passing to a subsequence,
we can assume that ui → u in the strong W 1,p sense and that xi → x, where
x is a singular point for u. Since u is a homogeneous minimizing map, and
since m = bpc+ 1, it cannot have a singular point away from the origin. �

As an immediate corollary, we can prove that all points in S(u) are
isolated.

Lemma 2.23. Under the hypothesis of the previous lemma, the singular
points of u are locally finite.

Proof. Given the monotonicity of θ, for each x there exists an rx such that

θ(x, rx)− θ(x, 0) ≤ δ .

Then by applying the previous lemma to all r ≤ rx, we obtain that u is
continuous on Brx(x) \ {x}. This proves that the S(u) is an isolated close
set, thus locally finite. �

By refining this lemma, we prove a uniform upper bound on the number of
singular points.

Theorem 2.24. Suppose that m = bpc+ 1, or that m = a+ 2 under the
additional assumption (A). Let u be a p-minimizing map u : B1(0)→ N ,
where ∫

B1(0)
|∇u|p dV ≤ Λ .

Then

#S(u) ∩B1(0) ≤ C(p,Λ, N) .
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Proof. Consider the sequence of scales rk = 2−k. By an argument similar to
the one in Lemma 2.16, for each fixed x there exists at most C(p,Λ, N) “bad
scales”, i.e., scales for which u is not continuous on Ark(x).

For any fixed u, the number of singular points in B1(0) is finite by the
previous lemma. Let S0 be this number, we will prove by induction a uniform
upper bound on S0.

2.7.1. Induction step. Define Ti to be an infinite vector of zeros and
ones, and let |T | =

∑∞
i=1 T (i).

For i = 1, consider all the balls of radius 2−1 centered at x ∈ S(u) ∩
B1(0), and refine this covering of S(u) by considering only a maximal sub-
covering such that B2−2(xj) are disjoint. By simple volume estimates the
number of balls in this covering is at most c(m).

Consider a ball in this covering that contains the largest number of
singular points, say B2−1(x1), containing S1 singular points. If S1 = S0 ≡
#S(u), equivalently if B2−1(x1) contains all the singular points, then set
T1 = 0, otherwise set T1 = 1. In this second case,

S0 > S1 ≥ c(m)−1S0 .

Moreover there exists y1 ∈ S(u) ∩B1(0) \B2−1(x1). Thus for each z ∈
B2−1(x1), either x1 or y1 are in B2(z) \B 1

4
(z).

We repeat the process by covering B2−i(xi) ∩ S(u) with balls of radius
2−i−1. Since singular points are finite, in a finite number ī of steps we obtain
Sī = 1, hence we stop. Evidently we have the estimate:

S0 ≤ c(m)|T |

In order to get a bound on |T |, consider the singular point xī. If T (i) = 1,
then by construction there exists a singular point zi such that

2−i−1 ≤ d(zi, xī) ≤ 2−i+2 .

The bound on the number of bad scales ensures that |T | ≤ 3C(p,Λ, N). This
concludes the proof. �

3. Stationary maps

The study of the regularity of p-stationary harmonic maps is a little more
complicated than in the minimizing case. There are two important differ-
ences: first of all, a sequence of p-stationary maps which is W 1,p weakly
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convergent may not converge strongly (as opposed to the minimizing case).
For this reason, we generalize the study of the defect measure carried out in
[10].

It is worth mentioning also the work [9], where the author studies the
regularity of a class of p-minimizing functions. Some of the results available
in this article are similar to the results we get here, for example the fact
that the defect measure can be nonzero only if p is an integer.

Moreover, in the stationary case a full-blown ε-regularity theorem like
2.5 has not been proved yet, even though it seems very plausible to be
valid. Note that, only for p = 2, this problem has been completely solved
by Bethuel in [1] (see also [13]), however the gauge techniques used in these
papers are not easily adapted for generic p.

3.1. ε-regularity theorem

Some partial results are available in literature under stricter assumptions.
For example, see [7], [20], [18], [12], [19], [14]. In [20] an ε-regularity theorem
is proved assuming that the target the standard sphere, and in [14] under
the strong assumption that the map is W 2,p. To the best of our knowledge,
the most general result in this direction is the following, which assumes
homogeneity of the target space.

Theorem 3.1. [21, Corollary 3.2] Let N be a smooth compact homogeneous
space with a left invariant metric. Then there exists ε(m,N, p), α(m,N, p) >
0 such that if u is a p-stationary harmonic map with θ(x, 2r) < ε, then u ∈
C1,α(Bx(r)).

As an immediate corollary, we can obtain also estimates on the (scale-
invariant) C1,α norm of u.

Corollary 3.2. Let N be as above, and let u : B2(0) ⊂ Rm → N be a p-
stationary harmonic map. There exist positive constants ε(m,N, p) and
α(m,N, p) such that if θ(x, 2r) < ε, then

‖u‖x,r = r ‖∇u‖C0(Br(0)) + r1+α sup
x,y∈Br(x)

{
|∇u(x)−∇u(y)|
|x− y|α

}
≤ 1 .

Proof. The proof is obtained through a simple contradiction and compact-
ness argument. �

Using a simple covering argument (see [5, section 2.4.3]), we can obtain
the following regularity theorem.
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Theorem 3.3. [21, Theorem 2] Let u be a stationary p-harmonic map
u : B2(0)→ N , where N is a compact homogeneous manifold with a left
invariant metric. Then for some α(n, p,N) > 0, u ∈ C1,α(B1(0) \ Z), where
Z is a closed set with Hm−p(Z) = 0. In particular, if p ≥ n, then u is a C1,α

function on the whole domain.

Remark 3.4. Note that this result is not quantitative, meaning that there
is no upper bound on |∇u| of any kind.

Indeed, even if u ∈ C1,α(B \ Z), there is no uniform local bound on |∇u|
on B \ Z. A counterexample can be found in [10, Example 1.1]. Let u be a
a nonconstant stationary m-harmonic map from Rm, which has no singular
points. Since such maps are conformal invariant in Rm, it is easy to build a
sequence ui with m-energy independent of i such that ui ⇀ const in W 1,m

but

|∇u|m dV ⇀ cδ0 ,

where the convergence is weak in the sense of measure. Evidently, in such a
situation there can be no uniform upper bound on |∇ui|.

However, one can easily tweak the previous argument to get effective
C1,α away from a set of Minkowski dimension m− p.

Theorem 3.5. Let u : B2(0)→ N be a stationary p-harmonic map, where
N is a compact homogeneous manifold with a left invariant metric. Then

Vol (Br(u)) ≤ C(m,N, p)rp
∫
B2(0)

|∇u|p .

Proof. The theorem is an easy consequence of the inclusion

Br(u) ⊂ {x ∈ B1(0) s.t. θ(x, r) ≥ ε} .

Let Br(xi) be pairwise disjoint balls with centers in Br(u) such that Br(u) ⊂⋃
iB5r(xi). Then the number N of such balls is bounded above by

Nεrm−p ≤
∑
i

∫
Br(xi)

|∇u|p dV ≤ Λ ,

and the thesis follows immediately. �

The example before shows that this result is in some sense sharp.
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The aim of the following sections is to prove that the following result
can be improved if p is not an integer, or else if there exists no continuous
nonconstant stationary p-harmonic map from Sp into N .

Since stationary m-harmonic maps into symmetric targets are regular
if the domain has dimension m, the following theorem about removable
singularities should not be surprising.

Theorem 3.6. [12, Theorem 5.1] Let u : B1(0) \ {0} ⊂ Rm → N be an m-
harmonic map in C1(B1(0) \ {0}). If u ∈W 1,m(B1(0)), the singularity in 0
is removable.

3.2. The defect measure

As we have seen, weak convergence of stationary maps does not imply strong
convergence. The defect measure studied in [10] gives a quantitative tool to
measure how far the convergence is from being strong. In this section we
study some of the properties of the defect measure. Most of the results are
easy generalizations of the equivalent results available in [10, section 1] for
the p = 2 case, thus sometimes we will refer the reader to this article for the
proofs.

The aim of this section is to show that the defect measure is absolutely
continuous wrt the Hm−p Hausdorff measure, and that it satisfies all the
properties needed in order to apply the Federer’s dimension reduction argu-
ment (see [16, Appendix A]).

Remark 3.7. Throughout this section the ε-regularity theorem 3.1 will
be an essential tool. Thus we will always assume to work with p-stationary
maps u : B3(0)→ N , where the target space N is a compact homogeneous
manifold with a left invariant metric.

Let H(Λ) be the set of stationary p-harmonic maps u : B2(0)→ N such
that θu(x, 2) ≤ Λ for all x ∈ B1(0), and H(Λ) be its weak closure in the
W 1,p sense (recall that in this case the weak closure coincides with the weak
sequential closure). Since θ(x, 2) ≤ (3/2)m−pθ(0, 3), it is easy to see that

θu(0, 3) ≤
(

2

3

)m−p
Λ =⇒ u ∈ H(Λ) .

Consider a sequence ui ∈ H(Λ) and the corresponding sequence of mea-
sures |∇ui|p dV . Given the uniform bound on the p-energies of ui, up to
passing to a subsequence, we can write that ui ⇀ u in the weak W 1,p sense,
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and also that |∇ui|p dV ⇀ dµ in the sense of weak convergence of measures.
Note that by Fatou’s lemma we can write

|∇ui|p dV ⇀ dµ = |∇u|p dV + dν ,

where ν, a nonnegative Radon measure, is defined to be the defect measure.
Let M(Λ) be the set of Radon measures dµ which can be obtained in

this way. Note that M(Λ) is closed under weak convergence in the sense of
measures.

Following the study of the defect measure in [10], we generalize the
results of this article to generic p ∈ (1,∞), and not only p = 2. Since all the
proofs in this section are similar to the ones in [10], we will sketch only the
more complex ones.

Theorem 3.8. Let ui be a sequence in H(Λ) such that ui ⇀ u in W 1,p and
|∇ui| dV ⇀ dµ. Define the set

Σ =
⋂
r>0

{
x ∈ B1(0) s.t. lim inf

i→∞
rp−m

∫
Br(x)

|∇ui|p dV > ε

}
,

where ε = ε(m,N, p) is chosen according to Theorem 3.1. Then

1) Σ is a closed subset of B1(0),

2) Σ has bounded m− p Minkowski content, more precisely

Vol (Br(Σ)) ≤ C(m,N, p,Λ)rm−p ,

3) Σ = supp(ν) ∪ sing(u), where

sing(u) =
{
x ∈ B1(0) s.t. u is not C1,α around x

}
is the singular set of u,

4) dν is absolutely continuous wrt Hm−p. Moreover for almost all x ∈ Σ
wrt Hm−p, dν = f(x)Hm−p|Σ where ε ≤ f(x) ≤ C(n,Λ),

Proof. The proof of this theorem is based on standard covering arguments
and the monotonicity of the normalized p-energy for stationary harmonic
maps, which in turn easily yields the monotonicity of the quantity θµ(x, r) =
rp−mdµ(Br(x)). In the following, we sketch the main arguments in the proof.
For more details, we refer the reader to [10, Lemma 1.5 and Lemma 1.6].
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Point (1) follows easily from the ε-regularity theorem. Indeed, if x 6∈ Σ,
then there exists a positive rx such that θµ(x, 2rx) < ε. This implies that ui
has uniform C1,α bounds on Brx(x), and thus Brx(x) ∩ Σ = ∅.

The uniform volume bound can be obtained by the same covering argu-
ment used in the proof of Theorem 3.5.

As for point (3), if x ∈ B1(0) \ Σ, then the uniform C1,α bounds given by
the ε-regularity theorem imply that ui converge in the C1 sense to u. Thus
u is C1,α around x and x 6∈ supp(ν) ∪ sing(u). On the other hand, if x ∈ Σ \
sing(u), then there exists a radius rx small enough such that for all s ≤ rx,
sp−m

∫
Bs(x) |∇u|

p < ε/4. Thus sp−mν(Bs(x)) > 0, and so x ∈ supp(ν).
The last point follows from the monotonicity of the energy. Indeed, for

all x ∈ B1(0) and r < 1, we have rp−mµ(Br(x)) ≤ µ(B1(x)) ≤ Λ, thus µ is
absolutely continuous wrt Hm−p. In particular, there exists a function f
such that µ = f(x)Hm−p|Σ.

Moreover, by [5, section 2.4.3], lim supr→0 r
p−m ∫

Br(x) |∇u|
p=0 for Hm−p

a.e. x ∈ Σ. Thus we obtain the thesis. �

By Proposition 1.13, it is easy to see that if θu(x, r) = θu(x, 0), then u is
a homogeneous function on Br(x). The next lemma, which is an immediate
generalization of [10, Lemma 1.7], shows that the same property holds for
any measure dµ ∈M(Λ).

Lemma 3.9. Let ui be a sequence in H(Λ) such that ui ⇀ u in W 1,p and
|∇ui|p dx ⇀ dµ = |∇u|p dx+ dν. Suppose also that for some ri → 0,

θui(0, 1)− θui(0, ri)→ 0 .

Then both µ and ν are homogeneous measures, meaning that

dµ = rm−p−1drdσ(θ) ,

where the measure σ is invariant wrt r, and ∂ru = 0 for a.e. r ∈ (0,∞).

Proof. Consider the measures

|∇uk|p dV = |∇uk|p rm−1drdθ ≡ rm−p−1drdσk(r, θ).

By the monotonicity formula, the limit function u is homogeneous because
∂ru = 0 a.e. away from the origin. Thus µ is homogeneous if and only if ν
is homogeneous.
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We want to prove that for almost every r,R, and every smooth test
function φ : Sm−1 → R

∫
Sm−1

φ(θ)dσ(r, θ) =

∫
Sm−1

φ(θ)dσ(R, θ) .

In order to do that, let ψ a standard mollifier, i.e., let ψ be a function
such that supp(ψ) ⊂ [−1, 1], ψ ≥ 0 and

∫
R ψ = 1.

For a > ε, define the functions

ψa,ε(x) =
1

ε
ψ

(
|x| − a
ε

)
,

Ek(a, ε) =

∫ ∞
0

∫
Sn−1

φ(θ)ψa,εdσk(r, θ)dr .

Note that, for a.e. r ∈ (0,∞),

lim
ε→0

Ek(a, ε) =: Ek(a) =

∫
Sn−1

φ(θ)dσk(a, θ) .

In order to prove that dσ(r, θ) is invariant wrt r, we will show that its
derivative in r is zero, at least in a weak sense. Consider that

d

da
Ek(a, ε) =

∫ ∞
0

∫
Sn−1

φ(θ)
d

da
ψa,εdσk(r, θ)dr(8)

= −
∫ ∞

0

∫
Sn−1

φ(θ)∂rψa,εdσk(r, θ)dr .

Set for simplicity ϕ(r, θ) = ψa,ε(r)φ(θ), and consider the vector field
(which is smooth for ε < a)

ξj(x) = ϕ(x) |x|p−m xj .

By equation (3),

∫
|∇uk|p−2

(
|∇uk|2 δij − p∇iuk∇juk

)
∂iξ

jdV = 0 ,
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which immediately yields∫
|∇uk|p−2

(
|∇uk|2 δij − p∇iuk∇juk

)
×
(
∂iϕ |x|p−m xj + (p−m)ϕ |x|p−m−2 xixj + ϕ |x|p−m δij

)
dV = 0 ,

∫∫
|∇uk|p ∂rϕrp−m+1rm−1drdθ

− p
∫∫
|∇uk|p−2 〈∇uk|∇ϕ〉 rp−m+1∂rukr

m−1drdθ

− p(p−m)

∫∫
ϕrp−m |∇uk|p−2 |∂ruk|2 rm−1drdθ

+ 0

∫∫
ϕrp−m |∇uk|p rm−1drdθ = 0 .

Equivalently∫∫
|∇uk|p rp∂rψa,εφ(θ)drdθ

= p(p−m)

∫∫
ψa,εφ(θ)rp−1 |∇uk|p−2 |∂ruk|2 drdθ

+ p

∫∫
|∇uk|p−2 |∂ruk|2 ∂rψa,εφ(θ)rpdrdθ

+ p

∫∫
|∇uk|p−2 〈∇Sm−1uk|∇Sm−1φ(θ)〉Sm−1 ∂rukψa,εr

p−2drdθ .

By equation (8), the derivative of E can be expressed as

d

da
Ek(a, ε) = p(m− p)

∫∫
ψa,εφ(θ)rp−1 |∇uk|p−2 |∂ruk|2 drdθ

− p
∫∫
|∇uk|p−2 ∂θuk∂rukψa,ε∂θφ(θ)rp−2drdθ

+ p
d

da

∫∫
|∇uk|p−2 |∂ruk|2 ψa,εφ(θ)rpdrdθ .

Integrating this equation on [s, t] we get

Ek(s, ε)− Ek(t, ε) = p(m− p)
∫ s

t
da

∫∫
ψa,εφ(θ)rp−1 |∇uk|p−2 |∂ruk|2 drdθ

− p
∫ s

t
da

∫∫
|∇uk|p−2 ∂θuk∂rukψa,ε∂θφ(θ)rp−2drdθ

+ p

[∫∫
|∇uk|p−2 |∂ruk|2 ψa,εφ(θ)rpdrdθ

]t
s

.
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By letting ε→ 0, we obtain (at least a.e. in s and t):

Ek(s)− Ek(t) = p(m− p)
∫ s

t
da

∫
φ(θ)ap−1 |∇uk|p−2 |∂ruk|2 dθ

− p
∫ s

t
da

∫
|∇uk|p−2 ∂θuk∂ruk∂θφ(θ)ap−2dθ

+ p

[∫
|∇uk|p−2 |∂ruk|2 φ(θ)rpdθ

]t
s

.

Note that, by (4),

0 ≤ p(m− p)
∫ s

t
da

∫
φ(θ)ap−1 |∇uk|p−2 |∂ruk|2 dθ(9)

≤ ‖φ‖∞ (m− p)[θk(t)− θk(s)] ,∣∣∣∣∫ s

t
da

∫
|∇uk|p−2 ∂θuk∂ruk∂θφ(θ)ap−2dθ

∣∣∣∣(10)

≤

(∫
Bt(0)\Bs(0)

dV rp−m |∇uk|p−2 |∂ruk|2
)1/2

×

(∫
Bt(0)\Bs(0)

dV rp−m |∇uk|p−2 r−2 |∂θuk|2 |∂θφ|2
)1/2

≤ s(p−m)/2 ‖∇φ‖∞ Λ1/2 (θk(t)− θk(s))1/2 ,∣∣∣∣∣
[∫
|∇uk|p−2 |∂ruk|2 φ(θ)rpdrdθ

]t
s

∣∣∣∣∣ ≤ ‖φ‖∞ (∣∣θ′k(t)∣∣+
∣∣θ′k(s)∣∣) .(11)

Thus we obtain that, for a.e. s, t > 0,

lim
k→∞

∫
φ(θ) (dσk(t, θ)− dσk(s, θ)) = 0.

Let τa be a translation in the radial coordinate by a. This implies that for
every a:

lim
k→∞

τa(dσkdr)− dσkdr = 0 =⇒ τa(dσdr) = dσdr .

Thus we have proved the invariance of the measure dσ, and in turn the
homogeneity of dµ and dν. �
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This lemma will play a crucial role in proving a generalization of Theo-
rem 2.6 for stationary functions and in the dimension reduction properties
of the space M(Λ) explained in the following section.

3.3. Dimension reduction arguments

In this section, we show that the dimension reduction argument proved in
[16, Theorem A.4] can be applied to the measures in M(Λ). As a corollary,
we will prove that if p is not an integer, then there cannot be any defect
measure, and if p is an integer, M(Λ) contains a constant multiple of Hm−p|L,
where L is some m− p dimensional subspace of Rm.

Definition 3.10. Given µ ∈M(Λ), y ∈ B1(0) and r ≤ 2, we define the
Radon measure

µy,r(A) = rm−pµ(y + rA) .

It is clear from the definition that µy,r ∈M(Λ) for every r > 0 sufficiently
small, and since M(Λ) is closed under weak convergence of measure, given
any sequence rk → 0, there always exists a subsequence such that µy,rki ⇀
µy,0 ∈M(Λ) (note that µy,0 may depend on the sequence rki).

Definition 3.11. Let F be the set of closed subsets of B1(0) ⊂ Rm. Define
the map π : M(Λ)→ F by π(µ) = Σ, where Σ is the set defined in Theo-
rem 3.8.

The following lemma generalizes [10, Lemma 1.7] and is the key to prov-
ing the dimension reduction properties.

Lemma 3.12. Let µ ∈M(Λ), y ∈ B1(0) and λ ≤ 2. Then

1) M(Λ) is closed under rescaling, meaning that µy,λ belongs to M(Λ),

2) given any sequence λk → 0, there exists a subsequence λki such that

µy,λki ⇀ µ̄ ∈M(Λ) with µ̄0,r = µ̄ ∀r > 0 ,

3) π(µy,λ) = λ−1 (π(µ)− y),

4) if µ is absolutely continuous wrt the n-dimensional Lebesgue measure,
then π(µ) = ∅
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5) if µk ⇀ µ, then for every ε > 0, there exists k̄(ε) such that for k ≥ k̄:

π(µk) ⊂
{
x ∈ B1(0) s.t. d(x, π(µ)) < ε

}
.

Remark 3.13. Note that properties 1 to 5 coincide with properties A.1,
A.2 and A.3 in [16].

Proof. Properties 1 and 3 follow directly from the definitions given above,
while property 4 is an easy consequence of the definition of π(µ) = Σ given
in Theorem 3.8.

Property 2 is a direct consequence of Lemma 3.9 and the monotonicity
of θ. First of all, observe that

θµ(x, r) = rp−mµ(Br(x))

is a monotone nondecreasing quantity for all µ ∈M(Λ). Moreover θµ(x, r) =
θµx,r(0, 1), and thus θµ̄(0, r) = θµ̄(0, 0) for all r > 0.

Consider a sequence of functions wi ∈ H(Λ) such that |∇wi|p dV ⇀ µ̄.
The weak convergence implies that for all ε and r > 0

lim
i→∞

θwi(0, 1) = lim
i→∞

∫
B1(0)

|∇wi|p dV

≤ µ̄(B1+ε(0)) = (1 + ε)m−pθµ̄(0, 0) ,

lim
i→∞

θwi(0, r) = lim
i→∞

rp−m
∫
Br(0)

|∇wi|p dV

≥ rp−mµ̄(Br(1−ε)(0)) = (1− ε)m−pθµ̄(0, 0) .

In other words, for every r > 0 limi→∞ θwi(0, 1)− θwi(0, r) = 0, and property
2 follows directly from Lemma 3.9.

As for property 5, the proof is a simple application of the ε-regularity
theorem. Let µi be a sequence of measures in M(Λ), and consider the se-
quence of compact sets π(µi). By Hausdorff compactness principle, up to
passing to a subsequence, π(µi)→ E, where E is a closed set and the con-
vergence is the Hausdorff convergence in Rm. This in particular implies that
for every ε > 0, there exists k̄(ε) such that for k ≥ k̄:

π(µk) ⊂
{
x ∈ B1(0) s.t. d(x,E) < ε

}
.

We are left to prove that E ⊂ π(µ). Let x ∈ E, then there exists a sequence
xi ∈ π(µi) such that xi → x in the usual Euclidean sense. By definition of
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π(µ), θµi(x, 0) > ε, and by monotonicity of θ, for all r > 0 and for all i,
θµi(xi, r) > ε.

This immediately implies that for all δ > 0 and for all r > 0:

θµ̄(x, r + δ) = (r + δ)p−mµ̄(Br+δ(x))

≥
(
r + δ

r

)p−m
lim
i→∞

θµi(xi, r) >

(
1 +

δ

r

)p−m
ε .

Thus we can conclude that θµ̄(x, 0) > 0 ⇐⇒ θµ̄(x, 0) > ε, and thus x ∈
π(µ̄). �

As an application of this lemma, we can apply the dimension reduction
argument in [16, Appendix A] and prove that if there exists a nonzero de-
fect measure, then M(Λ) contains a measure µ which is exactly a constant
multiple of the m− p Hausdorff measure on an m− p dimensional subspace
of Rm. As a corollary, we obtain that there cannot be any nonzero defect
measure if p is not an integer.

Proposition 3.14. Suppose that there exists some sequence ui ∈ H(Λ)
such that |∇ui|p dV ⇀ |∇u|p dV + dν, where dν 6= 0. Then p must be an
integer, and there exists a sequence wi ∈ H(Λ) such that

wi ⇀ const , |∇wi|p dV ⇀ dν ,

where dν is a constant multiple of the m− p Hausdorff measure on a m− p
subspace of Rm.

Proof. By point (4) in Theorem 3.8, the measure dν is absolutely continuous
wrt Hm−p and nonzero. Thus there exists a point x ∈ Σ with positive m− p
density (see [6, 2.10.19]). Specifically we have

lim sup
r→0

H
m−p
∞ (Σ ∩Br(x))

rm−p
> 0(12)

=⇒ ∃λk → 0 s.t. lim
k→∞

H
m−p
∞ (Σ ∩Bλk(x))

λm−pk

> 0 ,

where

Hm−p
r (A) = inf

{ ∞∑
j=1

ωm−p

(
diam(Cj)

2

)m−p
s.t. Cj ⊂ Rm and A ⊂ ∪jCj and diam(Cj) ≤ r

}
.



i
i

“4-Naber” — 2019/5/7 — 18:01 — page 149 — #39 i
i

i
i

i
i

Quantitative regularity for p-harmonic maps 149

By Lemma 3.12, up to passing to a subsequence, µx,λk ⇀ µ̄, where µ̄ is
homogeneous (and thus we can extend the definition of µ̄ to the whole Rm).

Let Σ̄ = π(µ̄) be the singular set of µ̄. We are going to show that this
set must have positive m− p Hausdorff measure. Indeed, suppose by contra-
diction that Hm−p(Σ̄) = 0, which is equivalent to H

m−p
∞ (Σ̄) = 0. Then for

every δ > 0 there exists a family of balls Bρi(zi) = Bi such that Σ̄ ⊂ ∪iBi
and

∑
i ρ
m−p
i ≤ δ. Note that Σ̄ is a compact set, thus, by Lemma 3.12, for all

k sufficiently large such that also Σk = π(µx,λk) is contained in ∪iBi. Since
π(µx,λk) = λ−1

k (π(µ)− x) = λ−1
k (Σ̄− x), this contradicts (12).

Define the set S to be the invariant subspace of µ̄, i.e.,

S = {y ∈ Rm s.t. µ̄y,λ = µ̄ ∀λ > 0} .

It is evident that 0 ∈ S. Moreover, by homogeneity of µ̄, S is a vector sub-
space of Rm.

Let d ∈ N be its dimension. If d < m− p, then there exists a point x ∈
Σ̄ \ S with positive m− p density. Let rk → 0 be such that µ̄x,rk converges
weakly to some measure µ′ with Hm−p(π(µ′)) > 0.

For all y ∈ S, µ̄x+y,λ = µ̄x,λ, and so µ′1,λ = µ′. This proves that S is an
invariant subspace for µ′ as well. Moreover, also x belongs to the invariant
space of µ′. Indeed

µ′x,1 = lim µ̄x+rkx,rk = lim µ̄x,rk/(1+rk) = µ′ ,

where the limits are in the weak measure sense. Note that θµ′(0, r) =
θµ̄(x, 0) > ε for all r, thus 0 is a singular point for µ′.

Thus, if d < m− p, then there exists µ′ ∈M such that its invariant sub-
space S′ has dimension d+ 1 and all points in S are singular points.

3.3.1. If p is not an integer. By applying induction on d to the previous
argument, we can find a measure µ ∈M with an invariant set S of dimension
m− bpc > m− p containing only singular points. This contradicts the fact
that the singular set of µ′ must have Hausdorff dimension m− p. Thus, as
long as p is not an integer, there cannot be any nonzero defect measure.
Moreover, the singular set of all µ ∈M must have zero m− p Hausdorff
measure, and actually its Hausdorff dimension must be ≤ m− dpe.

3.3.2. If p is an integer. By applying induction on d to the previous
argument, we can find a measure µ ∈M with an invariant set S of dimension
d = m− p containing only singular points. Note that the singular set Σ of µ
coincides with S. Indeed, S ⊂ Σ, and if there existed some x ∈ Σ \ S, then we
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could apply the blow-up arguments discussed above to obtain a homogeneous
measure µ′ ∈M with invariant subspace S′ of dimension d+ 1 with S′ ⊂ Σ′,
which is impossible.

Now consider a sequence ui ∈ H(Λ) with |∇ui|p dV ⇀ dµ and ui ⇀ u in
the weak W 1,p sense. It is easy to see that for every ε, r > 0 and every x ∈ S:

lim sup
k

θuk(x, 1) ≤
∫
B1+ε(x)

dµ

= (1 + ε)m−pθµ(x, r) = (1 + ε)m−pθµ(0, 0) ,

lim inf
k

θuk(x, r) ≥ rm−p
∫
Br(1−ε)(x

dψ

= (1− ε)m−pθµ(x, 0) = (1− ε)m−pθµ(0, 0) .

Thus for each x ∈ S, there exists a sequence rk → 0 such that θuk(x, 1)−
θuk(x, rk)→ 0. By Lemma 3.9, both u and the defect measure ν are homo-
geneous wrt every point x ∈ S, and thus S is an invariant set for both u
and dν.

In particular, u induces a homogeneous p-harmonic map u : Rp \ {0} →
N with finite p-energy. By the removable singularity Theorem 3.6, u can
be extended to a C1,α map on the whole Rp. Moreover, since this map is
continuous and homogeneous, it has to be constant.

As for the measure dν, its support must be the invariant subspace S,
and thus dν(A) = cHm−p(A ∩ S), where c is either 0 or some constant > ε.

�

3.4. Defect measure and p-harmonic spheres for integer p

Here we study the case where p is an integer, following the analysis made
by Lin in [10].

We want to show that

Proposition 3.15. If there exists a nonzero defect measure, then there
exists a nonconstant C1,α p-harmonic map v : Sp → N . As a corollary, if
such a map does not exist then regularity of stationary p-harmonic maps
improves.

Remark 3.16. As the referee pointed out to us, this proposition has al-
ready been proved in [22], where the author studies limits of solutions to the
generalized Ginzburg-Landau functional. Also in this article, the technique
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is based on [10]. For the sake of completeness, here we present a similar
proof.

Proof. Let wi be one of the sequences of maps in H(Λ) given by Proposi-
tion 3.14, such that wi ⇀ const and |∇wi|p dV ⇀ dν, where dν is a constant
multiple of the m− p Hausdorff measure on a m− p subspace of Rm (say
Rm−p ⊂ Rm−p × Rp). Let x0 = 0 and xi, i = 1, . . . ,m be the canonical basis
for Rm. Since the defect measure is a constant multiple of Hm−p|Rm−p , for
all 0 < r < R and k = 0, . . . , (m− p) it holds

θν(xk, r) = θν(xk, R).

Accordingly, the monotonicity formula (1.13) gives

lim
i→∞

θwi(x
k, R)− θwi(xk, r)(13)

= lim
i→∞

p

∫
BR(xk)\Br(xk)

∣∣∣y − xk∣∣∣p−m |∇wi|p−2

∣∣∣∣∂wi∂nk

∣∣∣∣2 dV (y) = 0,

where ∂nk is the exterior normal derivative with respect to the point xk.
For any k = 1, . . . , (m− p), it is easy to see that for all f :

∂f

∂xk
(y) = |y − x0|

∂f

∂n0
u(y)−

∣∣∣y − xk∣∣∣ ∂f
∂nk

u(y) .

Fix any r > 0, then∫
B1(0)

|∇wi|p−2

∣∣∣∣∂wi∂xk

∣∣∣∣2 dV =

∫
Ar

|∇wi|p−2

∣∣∣∣∂wi∂xk

∣∣∣∣2 dV
+

∫
Br(0)

|∇wi|p−2

∣∣∣∣∂wi∂xk

∣∣∣∣2 dV
+

∫
Br(xk)

|∇wi|p−2

∣∣∣∣∂wi∂xk

∣∣∣∣2 ,
where Ar = B1(0) \

(
Br(0) ∪Br(xk)

)
. As i goes to infinity, the first integral

converges to zero because by (13)

1

2

∫
Ar

|∇wi|p−2

∣∣∣∣∂wi∂xk

∣∣∣∣2 dV ≤ ∫
B2(0)\Br(0)

|∇wi|p−2 |y − 0|2 |∂n0
wi|2 dV

+

∫
B2(xk)\Br(xk)

|∇wi|p−2
∣∣∣y − xk∣∣∣2 |∂nkwi|2 dV → 0 .
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As for the second integral, we can estimate∫
Br(0)

|∇wi|p−2

∣∣∣∣∂wi∂xk

∣∣∣∣2 dV
≤
∫
Br(0)

|∇wi|p−2 |y − 0|2 |∂n0
wi|2 dV

+

∫
Br(0)

|∇wi|p−2
∣∣∣y − xk∣∣∣2 |∂nkwi|2 dV

≤ r2

∫
Br(0)

|∇wi|2 + 4

∫
B2(xk)\Br(xk)

|∇wi|p−2 |∂nkwi|
2 dV .

In a similar way, we can estimate the third integral. Since r > 0 is arbitrary,
we obtain that for every k = 1, . . . , (m− p)

lim
i→∞

∫
B1(0)

|∇wi|p−2

∣∣∣∣∂wi∂xk

∣∣∣∣2 dV = 0 .(14)

We now proceed as in in [10, Lemma 3.1]. Set X1 = (x1, . . . , xm−p),
X2 = (xm−p+1, . . . , xm), and

fi(X1) =

m−p∑
k=1

∫
Bp(0,1/2)

|∇wi|p−2

∣∣∣∣∂wi∂xk

∣∣∣∣2 (X1, X2)dX2,

defined on Bm−p(0, 1/2). By (14) fi → 0 in L1(Bm−p(0, 1/2)). Theorem 3.3
ensures that wi is C1,α in a neighborhood of {X1} ×Bp(0, 1/2) for Hm−p-a.e.
point X1 ∈ Bm−p(0, 1/2). In particular we can choose a sequence {Xi

1}∞i=1

of such points. The weak-L1 estimate for the Hardy-Littlewood maximal
function says that∣∣∣∣∣

{
sup
r>0

1∣∣Bm−p(Xi
1, r)

∣∣ ∫
Bm−p(Xi

1,r)
fi(X1)dX1 > λ

}∣∣∣∣∣
<
C(m− p)

λ
‖fi‖L1(Bm−p(0,1/2))

for all positive λ. Then

sup
r>0

rp−m
∫
Bm−p(Xi

1,r)
fi(X1)dX1 → 0, as i→∞.(15)

Let ε0 > 0 be such that Corollary 3.2 works on B3(0) with r = 3/2 and
let c(n) be a dimensional constant chosen in such a way that Bm−p(0, 3)×
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Bp(0, 3) can be covered with c(n)/2 balls of radius 1/2. Fix δ > 0. Since there
exists a nonzero defect measure, then |∇wi| can not be uniformly bounded
on Bm−p(Xi

1, δ/2)×Bp(0, δ). Hence by Corollary 3.2

max
X2∈Bp(0,1/2)

δp−m
∫
Bm−p(Xi

1,δ)×Bp(X2,δ)
|∇wi|p dV ≥ ε0,

for all i large enough. On the other hand, since wi is C1,α in a neighbor-
hood of {Xi

1} ×Bp(0, 1/2), the ε-regularity gives that for every i there exists
δ(i) > 0 such that

δp−m
∫
Bm−p(Xi

1,δ)×Bp(X2,δ)
|∇wi|p dV ≤

ε0
2c(n)

,

∀0 < δ < δ(i), ∀X2 ∈ Bp(0, 1/2).

Then for i large enough we can find a sequence {δi} of positive numbers,
δi → 0 as i→∞, such that

max
X2∈Bp(0,1/2)

δp−mi

∫
Bm−p(Xi

1,δi)×Bp(X2,δi)
|∇wi|p dV =

ε0
c(n)

.(16)

Moreover the maximum is achieved at some Xi
2 ∈ Bp(0, 1/4), since otherwise

for all i large enough (such that δi < 1/8),∫
Bm−p(0,1)×(Bp(0,1/2)\Bp(0,1/8))

|∇wi|p dV ≥ C(n, p, ε0) > 0,

contradicting the assumption that wi → const in

C1,α(Bm−p(0, 1)× (Bp(0, 1/2) \Bp(0, 1/8))).

Now, set Qi = (Xi
1, X

i
2), Ri = 1/(4δi) (so that Ri →∞ as i→∞) and

define the p-stationary maps vi(y) = wi(Qi + δiy) on

Bm−p(0, Ri)×Bm−p(0, Ri).

The convergence in (15) can be read as

Vi := sup
0<R<2Ri

Rp−m
∫
Bm−p(0,R)×Bp(0,2Ri)

m−p∑
k=1

|∇vi|p−2

∣∣∣∣ ∂vi∂xk

∣∣∣∣2 dV → 0,(17)

as i→∞.
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From (16) we deduce that∫
Bm−p(0,1)×Bp(0,1)

|∇vi|p dV =
ε0
c(n)

(18)

= max
Y2∈Bp(−4RiXi

2,2Ri)

∫
Bm−p(0,1)×Bp(Y2,1)

|∇vi|p dV

= max
Y2∈Bp(0,Ri−1)

∫
Bm−p(0,1)×Bp(Y2,1)

|∇vi|p dV

Finally, since wi ∈ H(Λ) for all i, then for every 0 < R < Ri,

sup
i

∫
Bm−p(0,R)×Bp(0,R)

|∇vi|p dV ≤ ΛRm−p.(19)

Since Ri is increasing, this latter ensures that, for every positive R, up to ex-
tract a subsequence vi weakly converges in W 1,p on Bm−p(0, R)×Bp(0, R).
Hence by a diagonalisation process we can find a map v ∈W 1,p

loc (Rm, N) such
that, up to extract a subsequence, vi ⇀ v in W 1,p(Bm−p(0, R)×Bp(0, R))
for all R > 0. Moreover, thanks to the lower semicontinuity of the p-energy∫

Bm−p(0,R)×Bp(0,R)
|∇v|p dV ≤ ΛRm−p ∀R.(20)

Let φ∈C∞c (Bm−p(0, 1)×Bp(0, 1)) such that 0≤φ≤1, φ≡1 inBm−p(0, 3/4)×
Bp(0, 1/2) and |∇φ| < 8. Set

Fi(a) =

∫
Bm−p(0,1)×Bp(0,1)

|∇vi|p (x+ a)φ(x)dV (x),

for a ∈ Bm−p(0, 3)×Bp(0, Ri − 1). The divergence formula (3), Hölder in-
equality, (18) and (17) give that∣∣∣∣∂Fi∂ak

∣∣∣∣ =

∣∣∣∣∣
∫
Bm−p(0,1)×Bp(0,1)

∂

∂xk
|∇vi|p (x+ a)φ(x)dV (x)

∣∣∣∣∣
= p

∣∣∣∣∣
∫
Bm−p(0,1)×Bp(0,1)

|∇vi|p−2 (x+ a)∇lvi(x+ a)∇kvi(x+ a)∇lφ(x)dV (x)

∣∣∣∣∣
≤ 8p

∫
Bm−p(0,1)×Bp(0,1)

|∇vi|p (x+ a)dV

×
∫
Bm−p(0,1)×Bp(0,1)

m−p∑
k=1

|∇vi|p−2 (x+ a)

∣∣∣∣ ∂vi∂xk

∣∣∣∣2 (x+ a)dV → 0, as i→∞,
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uniformly on compact sets, for each k = 1, . . . , (m− p). Then, for i large
enough∫

Bn(a,1/2)
|∇vi|p (x)dV (x) ≤ 2Fi(0) ≤ 2ε0

c(n)
, ∀ a ∈ Bm−p(0, 3)×Bp(0, 3),

and by the choice of c(n)∫
Bm−p(0,3)×Bp(0,3),

|∇vi|p (Y1, Y2 + b)dV (Y,1 , Y2) ≤ ε0, ∀ b ∈ Bp(0, Ri − 3).

Hence Corollary 3.2 yields that for all positive R, as i→∞, vi → v up to
a subsequence in C1,α′(Bnp(0, 3/2)×Bp(0, R)). The limit map v is a C1,α′

p-harmonic map defined on Bm−p(0, 3/2)× Rp which is non-constant since
by strong convergence∫

Bm−p(0,1)×Bp(0,1)
|∇v|p (x)dV (x) =

ε0
c(n)

.

Moreover taking limits in (17) and (19) it is clear that∫
Bm−p(0,R)×Rp

m−p∑
k=1

|∇v|p−2

∣∣∣∣ ∂v∂xk
∣∣∣∣2 dV = 0,

i.e., v induces a nonconstant C1,α′ p-harmonic maps from Rp to N which,
thanks to (20), has finite p-energy. By a conformal change, v can be seen as
a nonconstant, C1,α p-harmonic map from Sp \ 0 to N with finite p-energy.
Given the removable singularity theorem 3.6, v is a C1,α p-harmonic map
from the entire Sp into N . �

3.5. Regularity estimates

As we have seen, an important difference between stationary and minimizing
maps is that a weakly convergent sequence of stationary maps need not
converge strongly, while this is true in the minimizing case. However, by
analyzing the defect measure, we have concluded that

Lemma 3.17. Let ui be a W 1,p weakly convergent sequence of stationary
p-harmonic maps ui : B2(0)→ N , where N is a compact homogeneous space
with a left invariant metric. If p is not an integer, or if there are no non-
constant C1 stationary p-harmonic maps from Sp → N , then ui converges
strongly to its limit, which is a stationary p-harmonic map.
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This lemma allows us to reproduce all the results studied in the mini-
mizing case, in particular Propositions 2.1, 2.2, 2.6, 2.7. Thus, under these
assumptions, stationary p-harmonic maps enjoy the same regularity proper-
ties of minimizing maps.

Theorem 3.18. Let u : B2(0)→ N be a stationary p-harmonic map, where
N is a smooth compact homogeneous space with a left invariant metric. If p
is not an integer, then for all ε > 0:

Vol (Br(S(u)) ∩B1(0)) ≤ Vol (Br(Br(u)) ∩B1(0)) ≤ C(m,N, p, ε)rbpc+1−ε .

Moreover, for any p under the additional assumption (B), we can improve
the previous estimate to

Vol (Br(S(u)) ∩B1(0)) ≤ Vol (Br(Br(u)) ∩B1(0)) ≤ Crb+2−η .

As in the minimizing case, we get the following sharp integrability re-
sults.

Corollary 3.19. Under the hypothesis of the previous theorem, if p is not
an integer then for all ε > 0, ∇u ∈ Lbpc+1−ε(B1(0)) with∫

B1(0)
|∇u|bpc+1−ε ≤ C(m,Λ, N, p, ε) .

Moreover, for all p and under the additional assumption (B), ∇u ∈
Lb+2−ε(B1(0)) with ∫

B1(0)
|∇u|b+2−ε ≤ C(m,Λ, N, p, ε) .

Also the improved covering arguments of Section 2.7 carry over imme-
diately to the stationary case.

Theorem 3.20. Under the hypothesis of the previous theorem, suppose that
p is not an integer and m = bpc+ 1, or that m = b+ 2 under the additional
assumption (B). Let u be a stationary p-harmonic map u : B2(0)→ N ,
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where ∫
B2(0)

|∇u|p dV ≤ Λ .

Then

#S(u) ∩B1(0) ≤ C(p,Λ, N) .
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