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We compute the k-width of a round 2-sphere for k = 1, . . . , 8 and
we use this result to show that unstable embedded closed geodesics
can arise with multiplicity as a min-max critical varifold.
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1. Introduction

The aim of this work is to compute some of the k-width of the 2-sphere and
to provide a concrete counterexample to the Multiplicity One Conjecture in
the case of closed geodesics on a surface. The conjecture appears on [13], by
F. C. Marques and A. Neves, and it states that the two-sided unstable com-
ponents of a closed minimal hypersurface obtained by a min-max method
should have multiplicity one when the ambient dimension is 3 ≤ n+ 1 ≤ 7.
This was recently proved by X. Zhou in [21]. It is related to variational
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approaches to show the existence of infinitely many closed minimal hyper-
surfaces on closed manifolds, originally conjectured by S.-T. Yau in the case
of immersed surfaces in dimension 3.

Even in the simple case of the round 2-sphere the full width spectrum
is not known. One of the motivations to compute it was to prove a Weyl
type law for the width as it was proposed in [9], where the author suggests
that the width should be considered as a non-linear spectrum analogue to
the spectrum of the laplacian. Recently the Weyl law for codimension one
cycles on manifolds as well as arbitrary codimension on Lipschitz domains
was proved by Y. Liokumovich, Marques and Neves on [11].

In a closed Riemannian manifold M of dimension n the Weyl law says
that λp

p
2
n
→ cnvol(M)−

2

n for a known constant cn, where λp denotes the pth

eigenvalue of the laplacian. In the case of curves in a 2-dimensional manifold
M we have that

ωp

p
1

2

→ C2vol(M)−
1

2 ,

where C2 > 0 is a constant. Our computation suggests what should be the
optimal constant in the case of the round 2-sphere.

By making a contrast with classical Morse theory one could ask the
following two naive questions about the index and nullity of a varifold that
achieves the width:

Question 1. Let (M, g) be a Riemannian manifold and V ∈ IVl(M) be a
critical varifold for the k-width ωk(M, g). Then

k ≤ index(V ) + null(V ).

Question 2. Let (M, g) be a Riemannian manifold and V ∈ IVl(M) be a
critical varifold for the k-width ωk(M, g). Then

index(V ) ≤ k.

Where index(V ) and null(V ) are the index and nullity of the second variation
δ(2)V on the space of vectorfields in M . By a critical varifold we mean that
V is obtained as the accumulation point of a min-max sequence.

To illustrate these questions let us present a situation in which Ques-
tion 1 holds and compare to our context. Say we are studying closed
geodesics by analyzing the energy functional E in the free loop space Λ =
W 1,2(S1,M), in which case we can apply infinite dimensional Morse theory.
Take a < b regular values and suppose we can find a non-trivial homology
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class α ∈ Hk(Λ
b,Λb) (Λa = {E ≤ a}) then we can find a closed geodesic γ

satisfying

E(γ) = inf
A∈α

sup
x∈suppA

E(x).

In this case it is known that index(γ) ≤ k ≤ index(γ) + null(γ) (this is en-
coded in [8, §1 Lemma 2], alternatively see [5, Chapter 2 Corollary 1.3]).
Compared to our case γ would correspond to V , a non-trivial k-dimensional
homology class corresponds to a k-sweepout and the min-max quantity is
analogue to the k-width.

In the Almgren-Pitts min-max set up we work with varifolds instead of
parametrized curves, which allow degenerations. On the other hand we com-
pute the index and nullity in the same way, by using vectorfield variations.

As an example, consider the union of two great circles in the 2-sphere. It
divides the sphere into four discs and for each of them we take a 1-parameter
contraction to a point. If we follow the boundary of the contractions of
two opposite disks simultaneously we would have a 1-parameter family of
cycles that decreases length. However, this is not generated by an ambient
vectorfield, so it does not contribute to the index of the stationary varifold.

Furthermore, classical Morse theory will always produce a closed geodesic
as a critical point of energy, but Almgren-Pitts min-max only produces a
geodesic network. In this paper we address this issue and show the following
result (see Theorems 4.4 and 4.13 for precise statements).

Theorem. A stationary integral 1-varifold obtained by min-max method on
cycles with coefficients Z2 must have integer density everywhere.

This allow us to exclude networks with triple junctions as critical vari-
folds because the density at the singularity is 3

2 . However, this is not sufficient
to prove that they correspond to closed geodesics. For example, we are not
able to exclude a union of two triple junctions with a small angle between
them. In this case the density at the singular point is 3 but it is not the
union of 3 closed geodesics.

As a perturbation of our results we will show that Question 1 is false
for 1-varifolds on a surface. Regarding Question 2, it was recently shown
by Marques-Neves in [13] that index(supp(V )) ≤ k in the case of codimen-
sion one and 3 ≤ dim(M) ≤ 7. The authors also prove the Multiplicity One
Conjecture for min-max with one parameter. In the hypersurface case Pitts’
min-max theorem gives us an embedded minimal hypersurface, whereas the
dimension 1 case allows self-intersections. That is why they do not expected
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the conjecture to hold for curves. This work provides a concrete example of
how it fails to be true in the dimension 1 case.

Theorem (see Corollary 5.8). For ellipsoids sufficiently close to the
round sphere it is possible to produce a multiplicity 2 unstable closed geodesic
using min-max methods.

The idea of the proof is the following. Firstly observe that the width of
such ellipsoid has to be close to the width of S2. We use this estimate to show
that a critical varifold produced with at most 8 parameters on an ellipsoid
cannot have length greater than the union of two principle geodesics.

Secondly we use the fact that it cannot have triple junctions. Together
with a simple density estimate we conclude that it must be a union of closed
geodesics. If the ellipsoid is sufficiently close to the round sphere it is well
known that the prime closed geodesics other than the equators must have
arbitrarily large length. We conclude that the critical varifolds must be the
union of at most two principle geodesics.

It follows from a Lusternik-Schnirelmann type result that critical vari-
folds obtained with different number of parameters must be distinct. The
ones produced with 1, 2 and 3 parameters will correspond exactly to the
three principle geodesics with multiplicity 1. Because all the possible com-
binations must be exhausted, we will have that either the min-max varifold
produced with 4 or 5 parameters must have multiplicity 2, that is, it is given
by the union of two if the same geodesic. Since the index and nullity of the
principle geodesics are well known, it also serves and an negative answer to
Question 1.

This article is divided as follows. In section 2 we briefly overview proper-
ties of sweepouts, currents and varifolds. In section 3 we define geodesic net-
works and we prove a structure result for 1-dimensional stationary integral
varifolds. In section 4 we define almost minimising varifolds and characterize
its singularities. In section 5 we compute the k-width of S2 for k = 1, . . . , 8.
Then we use the regularity results to find the critical varifolds for a generic
ellipsoid.

Acknowledgements. I am thankful to my PhD adviser André Neves for
his guidance and suggestion to work on this problem.
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2. Preliminaries

In this section definitions and notations are established. Throughout this
section M denotes a closed Riemannian manifold of dimension m isometri-
cally embedded in Rn for some n > 0.

Let us denote by Zk(M) the space of flat k-cycles in M with coefficients
in Z2 endowed with the flat topology. We write F for the flat norm and M
for the mass of a cycle.

We adopt the definition of varifolds in [15]. We denote the spaces of k-
varifolds, rectifiable varifolds and integral varifolds by Vk(M), RVk(M)
and IVk(M), respectively. These spaces are endowed with the weak topology
induced by the metric F.

Given a rectifiable varifold V ∈ RVk(M) we write CpV for the tangent
cone of V at the point p ∈ supp‖V ‖. We also denote by G(k, n) the space
of k-planes in Rn and Gk(M) = {(x, P ) ∈ Rn ×G(k, n) : x ∈M,P ⊂ TxM}
the k-Grassmanian bundle over M . For a rectifiable set S ⊂ Rn and θ and
integrable function in Gk(Rn) we write υ(S, θ) the varifold associated to S

with density θ.
Now we establish a relation between currents and varifolds. Given a

k-current T (not necessarily closed) we denoted by |T | ∈ Vk(M) the var-
ifold induced by the support of T and its coefficients. Reversely, given a
k-varifold V we denote by [V ] the unique k-current such that Θk(|[V ]|, x) =
Θk(V, x)mod 2 for all x ∈ supp‖V ‖ (see [18]).

2.1. Sweepouts and the width

In [3] Almgren proved, in particular, that πi(Zk(M)) = Hi+k(M ;Z2) for all
i > 0. We call it the Almgren isomorphism and denote it by FA. It follows
from the Universal Coefficient Theorem thatHn−k(Zk(M);Z2) = Z2, denote
its generator by λ̄ and λ̄p the cup product with itself p times. For the next
definition we follow [10] and [12].

Definition 2.1. Let X ⊂ [0, 1]N be a cubical subcomplex for some N > 0
and f : X → Zk(M) a flat continuous map. We say that f is a p-sweepout
if

f∗(λ̄p) 6= 0 ∈ Hp(n−k)(X;Z2).

Denote the set of p-sweepouts with no concentration of mass (see defini-
tion 4.3) in M by Pp(M).
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We define the p-width of (M, g) as

ωp(M, g) = inf
f∈Pp

sup
x∈dmn(f)

M(f(x)),

where dmn(f) denotes the domain of f .

Note that ωp ≤ ωp+1 since every (p+ 1)-sweepout is also a p-sweepout.

2.2. Varifolds in Sn

Let (Sn, gSn) denote the round sphere of radius 1 in Rn+1. Given a varifold
V ∈ Vk(Sn) we can define the cone generated by V in Rn+1. It is sufficient
to define a positive functional in the space Cc(Gk+1(Rn+1)) (see for example
[1, §5.2(3)]).

Definition 2.2. Given V ∈ Vk(Sn) define C(V ) ∈ Vk+1(Rn+1) to be the
measure corresponding to the functional

C(V )(f) =

∫ ∞
0

τkV (fτ )dτ

where f ∈ Cc(Gk+1(Rn+1)) and fτ ∈ Cc(Gk(Rn+1)) is given by

fτ (x, P ) =

{
f (τx, P ⊕ R〈x〉) , if x ∈ Sn and P ⊂ TxSn;

0, otherwise.

Proposition 2.3. The cone map C : Vk(Sn)→ Vk+1(Rk+1) satisfy the fol-
lowing properties:

(i) C(V ) is a cone varifold;

(ii) If a, b ∈ R≥0 and V,W ∈ Vk(Sn) then C(aV + bW ) = aC(V ) + bC(W );

(iii) If V ∈ RVk(Sn) then C(V ) is given by

C(V )(f) =

∫ ∞
0

τk
∫
Sn
f (τx, TV (x)⊕ R〈x〉) Θk(V, x)dHkxdτ,

where f ∈ Cc(Gk+1(Rn+1)) and TV (x) ⊂ TxSn is the tangent space of
V defined ‖V ‖-almost everywhere in Sn;
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Proof. (i): We must show that η0,λ#C(V ) = C(V ) for all λ > 0, where

η0,λ(x) = λx for x ∈ Rn+1. Take any f ∈ Cc(Gk+1(Rn+1)) and compute

η0,λ#C(V )(f) =

∫
f(x, P̃ )d(η0,λ#C(V ))x,P̃

=

∫
[Jk+1η0,λ](x)f(η0,λ(x), Dη0,λ

x
· P̃ )dC(V )x,P̃

=
1

λk+1

∫
f
(x
λ
, P̃
)
dC(V )x,P̃

=
1

λk+1

∫ ∞
0

τkV (f τ
λ
)dτ

=
1

λk+1

∫ ∞
0

(tλ)kV (ft)λdt

= C(V )(f).

Here it was used the definition of pushforward and change of variables t = τ
λ

in the second last line.
(ii): This is straightforward from the definition.
(iii): To prove this formula simply use that

V (fτ ) =

∫
Sn
fτ (x, TV (x)))d‖V ‖x

holds for rectifiable varifolds and d‖V ‖x = Θk(V, x)dHkx. �

We now want to prove that this cone map is continuous with respect to
the weak convergence.

Lemma 2.4. Let {Vn} ⊂ Vk(Sn) be a sequence of varifolds converging to
V ∈ Vk(Sn) in the F-metric. Then C(Vn)→ C(V ) with respect to F.

Proof. It is enough to prove that C(Vn)(f) → C(V )(f) for any compactly
supported function in Gk+1(Rn+1).

There exist R0 > 0 such that supp(f) ⊂ B(0, R0)×G(k + 1, n+ 1). For
τ > R0 we have

fτ (τx, P ) = 0,

for all x ∈ Sn and P ∈ G(k, n+ 1). Thus, whenever τ > R0,

Vn(fτ ) =

∫
f(τx, P )d (Vn)x,P = 0
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for all n>0, and V (fτ )=0. This implies that the sequence hn(τ)=τkVn(fτ )
is uniformly bounded. By the Dominated Convergence theorem we obtain

lim
n→∞

C(Vn)(f) = lim
n→∞

∫ R0

0
hn(τ)dτ =

∫ R0

0
lim
n→∞

hn(τ)dτ

=

∫ R0

0
τkV (fτ )dτ

= C(V )(f). �

Next we show that the cone of a varifold associated to a rectifiable set
in Sn is defined by the cone of the set, as one would expect.

Lemma 2.5. Let R ⊂ Sn be a k-rectifiable set, θ : Gk(S
n)→ R≥0 a locally

integrable function and υ(R, θ) ∈ RVk(Sn). Then

C
(
υ(R, θ)

)
= υ

(
R̃, θ̃

)
,

where R̃ = {λx ∈ Rn+1|λ ≥ 0, x ∈ R} and θ̃ : Gk+1(Rn+1)→ R≥0 is a given
by

θ̃(x, P̃ ) =

{
θ
(
x
|x| , P

)
, if x 6= 0 and P̃ = P ⊕ 〈x〉;

0, otherwise.

Proof. It is easy to see that θ̃ is locally integrable in Gk+1(Rn+1), R̃ is
(k + 1)-rectifiable and its tangent space is given by TR̃(x) = TR( x

|x|)⊕ 〈
x
|x|〉

for x (Hk+1
⨽ R̃)-almost-everywhere. For f ∈ Cc(Gk+1(Rn+1)) compute

(*)

υ
(
R̃, θ̃

)
(f) =

∫
Rn+1

f
(
x, TR̃(x)

)
θ̃(x, TR̃(x))d(Hk+1

⨽ R̃)x

=

∫
Rn+1\{0}

f

(
x, TR

(
x

|x|

)
⊕ 〈 x
|x|
〉
)

× θ
(
x

|x|
, TR

(
x

|x|

))
d(Hk+1

⨽ R̃)x.

We want to use the Co-area formula (see [7, §3.2.22]), we clarify notation
and make some remarks.

Define the warped product metric on (0,+∞)× Sn as g(τ,x) = dτ2 +
τ2(gSn)x, where gSn is the round Riemannian metric on Sn. Let dg, dSn

and d0 be the metrics induced by g on (0,+∞)× Sn, gSn on Sn and the
Euclidian metric g0 on Rn+1 respectively. Given any metric d we denote by
Hk(d) the k-dimensional Hausdorff measure associated to d.
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Claim 1. The metrics g, gSn and g0 satisfy:

(a) F : (τ, z) ∈ ((0,+∞)× Sn, g) 7→ τz ∈ (Rn+1 \ {0}, g0) is an isometry;

(b) dg ((τ, z), (τ, y)) = τdSn(z, y);

(c) (ιτ )∗Hk(dSn) = τ−kHk(dg), where ιτ : Sn → (0,+∞)× Sn is the inclu-
sion in the slice {τ} × Sn.

Firstly, (a) is a well known fact and (b) follows easily from the definition.
Lastly, (b) implies that ιτ is τ−1-Lipschitz so (c) follows from basic properties
of Hk.

For simplicity denote h(x) the integrand in (*). Applying a change of
variables and the Co-area formula for the projection (τ, z) 7→ τ we obtain

υ
(
R̃, θ̃

)
(f) =

∫
Rn+1\{0}

h(x)dF∗F
−1
∗ (Hk+1(d0)⨽ R̃)x

=

∫
(0,+∞)×Sn

h ◦ F (λ, z)d
(
Hk+1(dg)⨽ (0,+∞)×R

)
(λ,z)

=

∫
(0,+∞)×R

h ◦ F (λ, z)dHk+1(dg)(λ,z)

=

∫ ∞
0

(∫
{τ}×R

h ◦ F (λ, z)dHk(dg)(λ,z)

)
dH1(d0)τ .

Changing variables again and using (c) we conclude

υ
(
R̃, θ̃

)
(f) =

∫ ∞
0

(∫
{τ}×R

h ◦ F (λ, z)d
(
τkιτ ∗Hk(dSn)

)
(λ,z)

)
dH1(d0)τ

=

∫ ∞
0

(∫
R
h ◦ F ◦ ιτ (z)τkdHk(dSn)z

)
dτ

=

∫ ∞
0

τk
∫
Sn
h(τz)d(Hk⨽R)zdτ.

The proof is finished by replacing h in the formula and 2.3(iii). �

Finally, we can prove the main properties of the cone C(V ).

Proposition 2.6. Let V ∈ RVk(Sn) and C(V ) ∈ Vk+1(Rn+1). Then the fol-
lowing is true:

(i) C(V ) is rectifiable;
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(ii) if V is integral then so is C(V );

(iii) supp‖C(V )‖ = {λx ∈ Rn+1|x ∈ supp‖V ‖ and λ ≥ 0};

(iv) if y 6= 0 then Θk+1(C(V ), y) = Θk(V, y|y|);

(v) if y 6= 0 then

‖V ‖(Sn) = (k + 1) lim
r→∞

‖C(V )‖B(y, r)

rk+1
;

(vi) if V is stationary and k ≥ 1 then so is C(V ).

Proof. (i): Let V = limn→∞
∑n

i=1 υ(Ri, θi), where Ri ⊂ Sn is k-rectifiable

and θi : Gk(S
n)→ R≥0 is locally integrable for all i > 0. The result follows

directly from 2.3(ii), Lemma 2.4 and Lemma 2.5.
(ii): Just note in the proof of Lemma 2.5, if θ is integer-valued then so

is θ̃.
(iii): First show that supp‖C(V )‖ ⊃ {λx ∈ Rn+1|x ∈ supp‖V ‖ and λ ≥

0}. Take y 6∈ supp‖C(V )‖ and a positive continuous function f̃ : Rn+1 →
R≥0 supported in B(y, r), for some r > 0. Define f(x) = f̃(ax), where a =
min{1, |y|}. So f is supported in B( y

|y| , r). If we assume ‖C(V )‖(f̃) = 0 then

it is easy to check that ‖V ‖(f) = 0, so y
|y| 6∈ supp‖V ‖. The other inclusion

is similar.
(iv): for simplicity put C = C(V ). It is enough to show that∫

Rn+1\{0}
g(y)d‖C‖y =

∫
Rn+1\{0}

g(y)Θk

(
V,

y

|y|

)
dHk+1

y

for every continuous function g compactly supported in Rn+1 \ {0}.
If f ∈ Cc(Gk+1(Rn+1)) satifies f(0, P̃ ) = 0 for all P̃ ∈ G(k + 1, n+ 1)

then, from rectifiability (property (i)), it follows that

C(f) =

∫
Gk+1(Rn+1)

f(y, P̃ )dC(y,P̃ )

=

∫
Rn+1\{0}

f(y, TC(y))d‖C‖y.

On the other hand, by property 2.3(iii), we have

C(f) =

∫ ∞
0

τk
∫
Sn
f(τx, TV (x)⊕ R〈x〉)Θk(V, x)dHkxdτ.
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Following a computation similar to the proof of Lemma 2.5 we conclude

C(f) =

∫
Rn+1\{0}

f

(
y, TV

(
y

|y|

))
Θk

(
V,

y

|y|

)
dHk+1

y

Take a continuous function g : Rn+1 → R compactly supported in Rn+1 \
{0} and define f(y, P̃ ) = g(y) for all y ∈ Rn+1 and P̃ ∈ G(k + 1, n+ 1). The
result follows by replacing such f in the previous formulas.

(v): Fix y 6= 0, r > 0 and let F : Rn+1 \ {0} → (0,+∞)× Sn be the
isometry F (z) = (|z|, z|z|). Denote A(r) = F (B(y, r)), pr1(τ, x) = τ .

If r > |y| then 0 ∈ B(y, r) and

‖C‖B(y, r) =

∫
B(y,r)

d‖C‖z

=

∫
B(y,r)\{0}

Θk+1(C, z)dHk+1(d0)z

=

∫
B(y,r)\{0}

Θk

(
V,

z

|z|

)
dHk+1(d0)z

=

∫
A(r)

Θk(V, x)dHk+1(dg)(τ,x).

Furthermore, pr1(A(r)) = (a(r), b(r)), with a(r) = infz∈B(y,r) |z| = 0 and

b(r) = supz∈B(y,r) |z| = |y|+ r. Note also that pr−1
1 (τ) = {τ} × Sn for τ <

r − |y|. Applying the Co-area formula with respect to pr1we get

‖C‖B(y, r) =

∫ |y|+r
0

∫
pr−1

1 (τ)
Θk(V, x)dHk(dg)(λ,x)dτ

=

∫ r−|y|

0

∫
{τ}×Sn

Θk(V, x)dHk(dg)(λ,x)dτ

+

∫ r+|y|

r−|y|

∫
pr−1

1 (τ)
Θk(V, x)dHk(dg)(λ,x)dτ

=

∫ r−|y|

0
τk
∫
Sn

Θk(V, x)dHk(dSn)(x)dτ

+

∫ r+|y|

r−|y|

∫
pr−1

1 (τ)
Θk(V, x)dHk(dg)(λ,x)dτ.

The first term in the sum is given by∫ r−|y|

0
τk
∫
Sn

Θk(V, x)dHk(dSn)(x)dτ =
(r − |y|)k+1

k + 1
‖V ‖(Sn).
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Since pr−1
1 (τ) ⊂ {τ} × Sn, the second term is bounded by∫ r+|y|

r−|y|

∫
pr−1

1 (τ)
Θk(V, x)dHk(dg)(λ,x)dτ

≤ (r + |y|)k+1 − (r − |y|)k+1

k + 1
‖V ‖(Sn).

When we divide by rk+1 and take the limit r →∞, the first term converges
to ‖V ‖(S

n)
k+1 and the second term tends to zero.

(vi): Since we assume k ≥ 1 it is enough to prove that C(V ) is stationary
outside the origin.

Fix a vector field Y with compact support supp(Y ) ⊂ Rn+1 \ {0}. We
can write Y (y) = h(y)y +X( y

|y|) where X is a compactly supported vector
field in Sn and h is a compactly supported function. The first variation is
given by δC(Y ) = δC(h(y)y) + δC(X( y

|y|)). Let us compute the first term:

δC(h(y)y) =

∫
Gk+1(Rn+1)

divP̃ (h(y)y)dC(y,P̃ )

=

∫ ∞
0

τk
∫
Sn

divTV (x)⊕R〈x〉(h(τx)τx)d‖V ‖xdτ

=

∫ ∞
0

τk
∫
Sn
Dh

τx
· τx+ h(τx)divTV (x)⊕R〈x〉(τx)d‖V ‖xdτ

=

∫ ∞
0

∫
Sn
τk
(
τDh

τx
· x+ h(τx)(k + 1)

)
d‖V ‖xdτ

=

∫
Sn

[∫ ∞
0

(
d

dt t=τ
tkh(tx)

)
dτ

]
d‖V ‖x

= 0

In the last line we used that h has compact support away from 0.
Using that X doesn’t depend on the radial direction, that is, div〈x〉(X) =

0, we compute the second term

δC(X(
y

|y|
)) =

∫
Gk+1(Rn+1)

divP̃ (X(
y

|y|
))dC(y,P̃ )

=

∫ ∞
0

τk
∫
Sn

divTV (x)⊕R〈x〉(X(x))d‖V ‖xdτ

=

∫ ∞
0

τk
∫
Sn

divTV (x)(X) + divR〈x〉(X)d‖V ‖xdτ

=

∫ ∞
0

τkδV (X)dτ = 0.
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Thus finishing the proof of the proposition. �

3. Geodesic networks

In this section we are concerned with 1-dimensional varifolds whose support
is represented by geodesic segments. Our aim is to prove that any stationary
integral 1-varifold has this structure.

Definition 3.1. Let U ⊂M be an open subset. A varifold V ∈ IV1(M) is
called a geodesic network in U if there exist geodesic segments {α1, . . . , αl}
in M and {θ1, . . . , θl} ⊂ Z>0 such that

(a)

V ⨽Gk(U) =

l∑
j=1

υ(αj ∩ U, θj).

(b) Let ΣV = ∪lj=1(∂αj) ∩ U , we require each p ∈ ΣV to belong to exactly
m = m(p) ≥ 3 geodesic segments {αj1 , . . . αjm} and

m∑
k=1

θjk α̇jk(0) = 0.

Here we are taking the arc-length parametrization with start point at p.

We call a point in ΣV a junction. We say that a junction is singular if there
exist at least 1 geodesic segment αjk with θjk ˙αjk(0) 6= −θjk′ ˙αjk′ (0) for every
other jk 6= jk′ and regular otherwise. A triple junction is a point p ∈ ΣV

such that p is the boundary of only 3 geodesic segments with multiplicity 1
each.

The following properties can be derived straightforwardly from the def-
inition.

Proposition 3.2. Let V be a geodesic network in U ⊂M . The following
holds:

(i) V is stationary in U ;
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(ii) if p ∈ ΣV and {(αj1 , θj1), . . . , (αjm , θjm)} define this junction then the
tangent cone at p is given by

CpV =

m∑
k=1

υ(cone(α̇jk(0)), θjk)

where cone(α̇jk(0)) = {λα̇jk(0) ∈ TpM |λ ≥ 0} and αjk(0) = p.

Corollary 3.3. Let U ⊂M be an open set. If V is a geodesic network
in U and Θ1(V, x) < 2 for all x ∈ supp‖V ‖, then every p ∈ ΣV is a triple
junction.

Proof. First note that the condition Θ1(V, x) < 2 at regular points imply
that θj = 1 for all j. By proposition 3.2(ii) the density is given by

Θ1(V, p) = Θ1(CpV, 0) =

m∑
k=1

θjk
2
.

Since θjk = 1 we must have m < 4 thus m = 3. �

In the two dimensional case we can infer further on the regularity of
junctions.

Corollary 3.4. Let M be a surface and V ∈ IV1(M) be a geodesic network
with density Θ1(V, p) ≤ 2 for all p ∈ supp‖V ‖. Then either

(i) ΣV contains at least one triple junctions or

(ii) ΣV has no triple junctions, all junctions are regular and V is given by

V =

l∑
i=1

υ(γi, 1)

where γi are closed geodesics (possibly repeated) and γi1 ∩ γi2 ∩ γi3 = ∅
for i1, i2, i3 all distinct.

Proof. In view of Corollary 3.3 all of the junctions with multiplicity less than
2 are triple junctions. Let us assume that (i) is false and we will show that
V must satisfy (ii), that is, V has no triple junctions so all of the singular
points have multiplicity 2. If there is a geodesic segment of multiplicity 2,
then it cannot intersect any junction, because of the multiplicity bound.
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The only possible junction is one formed by 4 distinct geodesic segments
of multiplicity one each. We want to show that in this case it must be regular.
That is, at least two of the segments must have opposite directions at the
singular point, which implies that so do the other two.

Denote by v1, v2, v3, v4 the unitary tangent direction of each geodesic
segment at the singularity. Let us suppose that at least 2 of these are distinct
and not opposite to each other. Without loss of generality we may assume
it is v1 and v2. Since we are in dimension 2 we can use them as a basis and
write v3 and v4 in terms of v1 and v2. If one solves the system{

v1 + v2 + v3 + v4 = 0 (stationary condition)

‖vi‖ = 1 (multiplicity one)

then it is easy to see that, for example, v3 must be opposite to either v1

or v2.
For the second part of (ii), take C ⊂ supp‖V ‖ a connected component.

If V ⨽C is given by a closed geodesic with multiplicity 2 then the density
condition implies that it cannot have junctions and the statement is true.
Otherwise, by what we showed above, each geodesic segment can be extended
through the singular points. Again, because of the density hypothesis we
cannot have 3 geodesics intersecting at the same point. �

The main result is a structure theorem for 1-varifolds proved in [2]. Here
we state a particular case and refer to the original article for a proof.

Theorem 3.5. Let M be a closed manifold and U ⊂M an open set. If
V ∈ IV1(M) is stationary in U then V is a geodesic network in U .

Proof. Simply note that the definition of interval in [2, §1] is equivalent to
being the image of a geodesic segment. The hypothesis for the theorem in
[2, §3] are true because V is integral. Finally, note that the set SV is the
same as our set of junctions ΣV . �

Now we prove the property that we are mainly interested for geodesic
networks in Sn

Proposition 3.6. Let (Sn, g0) be the round sphere of radius 1, U ⊂ Sn and
V ∈ IV1(Sn, U) be stationary in U with total mass ‖V ‖(Sn) < 2πd for some
positive integer d. Then V is a geodesic network satisfying Θ1(V, x) < d for
all x ∈ Sn.
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Proof. We know by Theorem 3.5 that V is a geodesic network. Let us prove
that ‖V ‖(Sn) < 2πd implies Θ1(V, x) < d for every x ∈ supp‖V ‖.

Using proposition 2.6(iv) and (v), the Monotonicity formula for station-
ary varifolds (see [16, §17.8]) and α2 = π we compute

Θ1(V, x) = Θ2(C(V ), x) = lim
r→0

‖C‖B(x, r)

α2r2

≤ lim
r→∞

‖C‖B(x, r)

α2r2

=
‖V ‖(Sn)

2α2

< d.
�

We can also prove a weaker version of this theorem for metrics that are
sufficiently close to the round metric in Sn.

Theorem 3.7. Let g be a Riemannian metric in Sn. If g is sufficiently
C∞-close to the round metric then any varifold W ∈ IV1(Sn) stationary with
respect to the metric g satisfying ‖W‖(Sn) < 2π(d+ 1

3) is a geodesic network
such that Θ1(W,x) ≤ d for all x ∈ supp‖W‖.

Proof. By Theorem 3.5 we know that W is a geodesic network with respect
to the metric g. It remains to prove the second statement.

Assume false, that is, there exist a sequence of metrics gi converging to
g0 and a sequence of integral varifolds Wi stationary with respect to gi satis-
fying ‖Wi‖(Sn) < 2π(d+ 1

3) and Θ1(Wi, pi) > d for some pi ∈ supp‖Wi‖. In
fact we must have Θ1(Wi, pi) ≥ (d+ 1

2) because Wi is a geodesic network.
Since the first variation is continuous with respect to the metric, we may

assume that each Wi has bounded first variation in the metric g0. By the
Compactness Theorem we may suppose that Wi converges to an integral
varifold V stationary in the round metric and pi converges to p ∈ supp‖V ‖.

Furthermore, we have ‖V ‖(Sn) ≤ lim infi→∞ ‖Wi‖(Sn) < 2π(d+ 1
3) be-

cause the mass is lower semicontinuous with respect to varifold conver-
gence. Following a computation similar to Proposition 3.6 we obtain that
Θ1(V, x) < (d+ 1

3) for all x ∈ supp‖V ‖. Since V is a geodesic network we
must have Θ1(V, x) ≤ d. On the other hand, the density is upper semicon-
tinuous with respect to weak convergence of varifolds. Hence, (d+ 1

2) ≤
lim supi→∞Θ1(Wi, pi) ≤ Θ1(V, p) ≤ d, which is a contradiction. �
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4. Almost minimising varifolds

In this section we define Z2-almost minimising varifolds and show that such
1-dimensional varifolds cannot admit triple junctions.

Definition 4.1. Let U ⊂M be an open set, ε > 0 and δ > 0. We define

Ak(U ; ε, δ) ⊂ Zk(M)

as the set T ∈ Zk(M) such that any finite sequence {T1, . . . , Tm} ⊂ Zk(M)
satisfying

(a) supp(T − Ti) ⊂ U for all i = 1, 2, . . . ,m;

(b) F(Ti, Ti−1) ≤ δ for all i = 1, 2, . . . ,m and

(c) M(Ti) ≤M(T ) + δ

must also satisfy

M(Tm) ≥M(T )− ε.

Roughly speaking, if T belongs to Ak(U ; ε, δ) then any deformation of
T supported in U that does not increase mass at least ε must be δ-far from
T in the F metric. Note that we define the elements of Ak as closed cycles
in M instead of relative cycles as defined in [15].

Definition 4.2. We say that a varifold V ∈ Vk(M) is Z2-almost min-
imising in U if for every ε > 0 there exists δ > 0 and T ∈ Ak(U ; ε, δ) such
that

F(V, |T |) < ε.

A varifold V ∈ Vk(M) is said to be Z2-almost minimising in annuli if
for every p ∈ supp‖V ‖ there exists r > 0 such that V is Z2-almost minimising
in the annulus A = A(p; s, r) for all 0 < s < r.

Definition 4.3. For a cubical subcomplex X ⊂ IN , we say that a flat con-
tinuous map f : X → Zk(M) has no concentration of mass if

lim
r→0

sup{‖f(x)‖(B(q, r)) : x ∈ X and q ∈M} = 0.

The next theorem shows the existence of Z2-almost minimising varifolds.



i
i

“1-Aiex” — 2019/8/9 — 18:41 — page 268 — #18 i
i

i
i

i
i

268 Nicolau Sarquis Aiex

Theorem 4.4. Let X ⊂ IN be a cubical subcomplex and f : X → Zk(M)
be a p-sweepout with no concentration of mass. Denote Πf the class of all
flat continuous maps g : X → Zk(M) with no concentration of mass that are
flat homotopic to f and write

L[Πf ] = inf
g∈Πf

sup
x∈X

M(g(x)).

If L[Πf ] > 0 then there exists V ∈ IVk(M) such that

(i) ‖V ‖(M) = L[Πf ];

(ii) V is stationary in M ;

(iii) V is Z2-almost minimising in annuli.

This was first proven by Pitts (see [15, §4.10]), for another proof (when
k = dim(M)− 1) we refer to [12].

Note that this is a weaker statement than in [12], but it remains true for
all dimensions and codimensions. This is because for every flat continuous
homotopy class we can construct a discrete homotopy class just as in [12,
Theorem 3.9] with the same width. The final statement then follows from
[15, §4.10].

Definition 4.5. Let T ∈ Zk(M) and W ⊂M be an open set. We say that
T is locally mass minimising in W if for every p ∈ supp(T )

⋂
W there exists

rp > 0 such that B(p, rp) ⊂W and for all S ∈ Zk(M) satisfying supp(T −
S) ⊂ B(p, rp) we have

M(S) ≥M(T ).

In the one dimensional case we have the following characterization:

Proposition 4.6. Let W ⊂M be an open set, Z ⊂W compact and T ∈
Z1(M) be locally mass minimising in W . Then each connected component
of supp(T )

⋂
Z is the restriction of a geodesic segment with endpoints in

W \ Z.

Proof. Let A ⊂ supp(T )
⋂
Z be a connected component. Cover A by finitely

many balls Bi = B(pi, r), i = 1, . . . ,m such that each ball is contained in
a convex neighborhood and r < rpi for all i. Denote C = supp(T )

⋂
(B1 ∪

· · · ∪Bm), then each component C
⋂
Bi is the unique minimising geodesic

connecting the two points in C
⋂
∂Bi. In particular the endpoints A

⋂
∂Z

belong to the interior of a geodesic segment with endpoints in int (Z) and
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W \ Z. We conclude that A is given by the image of a broken geodesic with
singular points in the interior of Z.

Now, for each singular point q ∈ A there exist rq such that T⨽B(q, rq)
is mass minimising relative to its boundary. Thus it must be a geodesic
segment, that is, q is a smooth point in A. This implies that C is the image
of a geodesic segment with endpoints in W \ Z. The proof finishes by simply
noting that A = C

⋂
Z. �

Corollary 4.7. Let W ⊂M be an open set, Z ⊂W a compact set and
T ∈ Z1(M) be locally mass minimising in W . Then, viewing T as an integer
coefficient current,

T⨽Z =

k∑
i=1

t(βi, [1], β̇i),

where βi : [0, 1]→ Z are geodesic segments for each i = 1, . . . , k with end-
points in ∂Z.

In particular, the associated varifold |T | ∈ IV1(M) is stationary in W .

Proof. We simply need to apply the Constancy Theorem (see [16, §41]) to
each connected component. Since we are working with Z2 coefficients the
density in each segment must be constant 1. �

The replacement theorem for almost minimising varifolds can be stated
as follows:

Theorem 4.8. Let U ⊂M be an open set, K ⊂ U compact and V ∈ Vk(M)
Z2-almost minimising in U . There exists a non-empty set R(V ;U,K) ⊂
Vk(M) such that every V ∗ ∈ R(V ;U,K) satisfy:

(i) V ∗⨽Gk(M \K) = V ⨽Gk(M \K);

(ii) ‖V ∗‖(M) = ‖V ‖(M);

(iii) V ∗ is Z2-almost minimising in U ;

(iv) V ∗⨽Gk(int (K)) ∈ IVk(M) and

(v) for each ε > 0 there exists T ∈ Zk(M) locally mass minimising in
int (K) such that F(V ∗, |T |) < ε.

Proof. The proof of (i)-(iv) is exactly as in [15, §3.11]. To show (v) one
need to modify the construction in [15, §3.10] using our definition of almost
minimising. �
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Remark. Note that if V is stationary on all of M then so is V ∗.
In fact, V ∗ is almost-minimising in U (property 4.8(iii)) so it is also sta-

tionary in U . Since V ∗ coincides with V on M \K then it is also stationary
in M \K. That is, V ∗ is stationary in U , M \K and U ∩ (M \K). Hence
V ∗ is stationary in M .

4.1. Almost minimising geodesics networks

Here we will treat the particular case when V is a geodesic network. Our
main goal is to prove that the almost minimising property excludes the
existence of triple junctions.

The rough idea is to use the replacement theorem and approximate V ∗

by closed currents with coefficients in Z2. We will show that V ∗ can be
described as a non-zero Z2-cycle but triple junctions always have boundary
in Z2. From now on, given a varifold V we will denote by V ∗ a replacement
given by Theorem 4.8 whenever V satisfies the conditions of the theorem.

To prove the next technical lemma we will need the following theorem
proven in [19] by B. White and is used to prove a maximum principle for
varifolds.

Theorem 4.9. Let N be a n-dimensional Riemannian manifold with bound-
ary and p ∈ ∂N such that κ1(p) + · · ·+ κm(p) > η, where κ1 ≤ · · · ≤ κn−1

are the principal curvatures of ∂N with respect to the inward normal vec-
torfield νN . Then, given ε > 0 there exists a supported vectorfield X on N
such that X(p) 6= 0 is normal to ∂N and

〈X, νN 〉 ≥ 0 in ∂N

and

δV (X) ≤ −η
∫
|X|d‖V ‖

for every V ∈ Vm(N).

We remark that the same theorem is true with all its inequalities re-
versed, the proof is exactly the same (see [19]).

Corollary 4.10. Let M be a closed Riemannian manifold and N an open
set with strictly convex boundary with respect to the inward normal vector-
field (κ1 ≥ η > 0).

If V ∈ V1(M) is stationary, p ∈ supp‖V ‖ ∩ ∂N and supp‖V ‖ ∩B(p, ε) ∩
N 6= ∅ then supp‖V ‖ ∩B(p, ε) ∩ (M \N) 6= ∅.
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Proof. First suppose there exists ε > 0 such that supp‖V ‖ ∩B(p, ε) ⊂ N ,
that is, W = V ⨽G1(B(p, ε)) ∈ V1(N). Since ∂N is strictly convex, we can
choose η > 0 in Theorem 4.9 and obtain a vectorfield X in N such that
supp(X) ⊂ N ∩B(p, ε) and

δW (X) +
η

2

∫
|X| < 0.

This is not a contradiction yet because X is not a smooth vectorfield in M .
However, we can construct a extension X̃ such that supp(X̃) ⊂ B(p, ε), X̃
is C1-close to X and

δW (X̃) +
η

2

∫
|X̃| < 0.

By construction supp(X̃) ⊂ B(p, ε) hence δV (X̃) = δW (X̃) < 0. This is a
contradiction because V is stationary, thus supp‖V ‖ ∩B(p, ε) ∩ (M \N) 6=
∅. �

We now show that an almost-minimising geodesic network is its own
replacement. To simplify notation, from now on we write V ⨽U = V ⨽G1(U)
whenever V ∈ IV1(M) and U ⊂M is an open set.

Lemma 4.11. Let M be a closed Riemannian manifold and V ∈ IV1(M) be
a geodesic network and p ∈ ΣV be a junction point. If V is almost minimising
in annuli at p then there exists r > 0 and a compact set K ⊂ A(p; r, 3r) such
that

(i) V is almost minimising in A(p; r, 3r) and

(ii) R(V ;A,K) = {V }.

Proof. Since V is a geodesic network, then its singularities are isolated. That
is, there exists rp > 0 such that p is the only singularity in B(p, rp).

Firstly choose r > 0 such that 4r < rp, B = B(p, 4r) is a convex ball and
V is almost minimising in A = A(p; r, 3r). It follows from the structure of a
geodesic network that

V ⨽B =

m∑
j=1

υ(αj , θj)

where αj : [0, 4r]→ B is a minimising geodesic parametrized by arc-length
for each j = 1, . . . ,m. By abuse of notation we identify the curves αj with
its image.
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Secondly, we can choose δ < r sufficiently small such that the balls Kj =
B̄(αj(2r), δ) have strictly convex boundary with respect to the inward nor-
mal vector and are pairwise disjoint. Define aj = αj(2r − δ), bj = αj(2r + δ)
and K = K1 ∪ · · · ∪Km ⊂ A.

Finally we take V ∗ ∈ R(V ;A,K) a replacement for V and define V ∗j =
V ∗⨽ int (Kj) and Vj = V ⨽ int (Kj). By property 4.8(i) it is sufficient to show
that V ∗j = Vj for each j.

Claim 1.
∑m

j=1 ‖V ∗j ‖(M) =
∑m

j=1 ‖Vj‖(M)

This follows directly from properties 4.8(i) and (ii).

Claim 2. For each j = 1, . . . ,m either V ∗j = 0 or supp‖V ∗j ‖ contains a rec-
tifiable curve connecting aj to bj.

Note that supp‖V ∗j ‖ only intersects bdry (Kj) at the points aj and
bj . In fact, suppose there is another point of intersection. Then, by the
maximum principle (Corollary 4.10) it follows that supp‖V ∗‖ \ int (Kj) =
supp‖V ∗⨽M \K‖ also contains that point, but this contradicts property
4.8(i).

Now, suppose supp‖V ∗j ‖ contains no curve joining aj and bj . In that case,
we can write supp‖V ∗j ‖ = Ca ∪ Cb where Ca and Cb are closed disjoint sets
containing aj and bj respectively (these are not unique and not necessarily
connected). Take Ua and Ub open and disjoint neighbourhoods of Ca and Cb
in the interior of Kj respectively. We will show that V ∗j ⨽Ua = V ∗j ⨽Ub = 0.

Take for example V ∗j ⨽Ua, which is stationary (see remark after Theo-
rem 4.8). Now, consider B(σ) = B(α(2rσ), σδ) then V ∗j ⨽Ua is entirely con-
tained in B(1) = int (Kj) and it only intersects the boundary at the point
aj . Since ∂B(σ) is strictly convex for all σ, a maximum principle argument
shows that V ∗j ⨽Ua is contained in B(σ) for all σ < 1 thus proving that
V ∗j ⨽Ua = 0. The same argument shows that V ∗j ⨽Ub = 0 and we prove the
claim.

Claim 3. V ∗j 6= 0 for all j = 1, . . . ,m

Consider B′j = B(αj(2r), δ
′) with δ < δ′ < r such that Kj ⊂ B′j ⊂ A are

still pairwise disjoint. Then property 4.8(i) implies that

V ∗⨽B
′
j \Kj = υ(αj ∩ (B′j \Kj), θj).
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pαj

2r3r4r r
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ajbj

B(σ) Ca

If V ∗j was zero, then in particular V ∗j = υ(αj , 0). But

V ∗⨽B
′
j = V ∗⨽B

′
j \Kj + V ∗j

is stationary and its support is contained in αj . From the Constancy Theo-
rem we conclude that θj = 0 which is a contradiction, thus V ∗j 6= 0.

This means that supp‖V ∗j ‖ contains a rectifiable curve Cj connecting
aj to bj for all j = 1, . . . ,m. In particular this implies that l(Cj) ≥ d(aj , bj).
Since V ∗j is integral (see property 4.8(iv)) it follows that ‖V ∗j ‖(M) ≥ d(aj , bj).
However, αj ∩Kj is a minimising geodesic connecting aj to bj , so ‖Vj‖(M) =
d(aj , bj). We conclude that ‖V ∗j ‖(M) ≥ ‖Vj‖(M) for all j = 1, . . . ,m. Claim
1 implies that we have in fact

‖V ∗j ‖(M) = ‖Vj‖(M) for all j = 1, . . . ,m.

On the other hand, we have d(aj , bj) = ‖V ∗j ‖(M) ≥ l(Cj) ≥ d(aj , bj),
that is, Cj is a minimising curve and it must be a geodesic. Since αj ∩Kj is
the unique geodesic connecting aj to bj we conclude that Cj = αj ∩Kj . Fi-
nally, this implies that supp‖V ∗j ‖ = supp‖Vj‖ because otherwise there would
be more contribution of mass. Applying the Constancy Theorem again we
show that V ∗j = Vj and this finishes the proof. �

The last result we need relates flat convergence of Z2-currents and the
weak convergence of the associated varifold. This was proven in [18] by
B. White.
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Theorem 4.12. Let M be a Riemannian manifold, {Wi} ⊂ IVk(M) be a
sequence converging to an integral varifold W . Suppose that:

(I) Each Wi has locally bounded first variation;

(II) ∂[Wi] converges in the flat topology.

Then [Wi] converges to [W ] in the flat topology.

Finally we prove our main result of this section.

Theorem 4.13. Let M be a Riemannian manifold, V ∈ IV1(M) a geodesic
network and p ∈ ΣV a junction point. If V is Z2-almost minimising in annuli
at p, then

Θ1(V, p) ∈ N.
In particular p is not a triple junction.

Proof. Let r > 0, B = B(p, 4r), A = A(p; r, 3r) and K ⊂ A as in Lemma
4.11. Applying property 4.8(v), Corollary 4.7 and the Compactness theo-
rem for Z2-chains (see [18, Theorem 5.1]) we may assume there exists a
convergent sequence {Ti}i∈N ⊂ Z1(M) and T ∈ Z1(M) such that

(a) Ti → T in the F-norm;

(b) Vi = |Ti| is stationary in int (K) and

(c) Vi → V in the F-metric.

Even though convergence of chains in the flat norm do not correspond
to weak convergence for varifolds, in the stationary case, with convergent
boundary, it does.

We want to apply Theorem 4.12 for the sequence {Vi⨽ int (K)}i≥1. We
know that ∂[Vi⨽ int (K)]→ ∂T⨽ int (K) by the definition of Vi. Together
with property (b) it means that the sequence satisfies the hypothesis of the
theorem. We conclude that

T⨽ int (K) = [V ⨽ int (K)].

Since V ⨽B =
∑m

j=1 υ(αj , θj) for some geodesic segments αj and θj ∈
Z>0, we have

[V ⨽ int (K)] =

m∑
j=1

υ(αj ∩ int (K), [θj ])

and [θj ] is non-zero only when θj is odd.
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If θj is even for all j then the density at p must be an integer and we
finish our proof because geodesic segments with even multiplicity contribute
to the density at p with an integer number.

In case some θj is odd we have that T 6= 0 and supp(T ) ⊂ supp‖V ‖. We
can view T⨽B as an integer chain and apply the Constancy theorem for
integral currents (see [16, §26.27]) and the fact that T and [V ] coincide in
int (K) to conclude that

T⨽B =

m∑
j=1

t(αj , [θj ], α̇j).

Now we simply note that p is a boundary point for T unless the number
of θj such that [θj ] 6= 0 is even. That is, there is an even number of geodesic
segments αj with odd multiplicity and in particular its density contribution
is an integer number. This finishes the proof because T is a closed chain. �

5. The width of an ellipsoid

Here we will apply the previous results to estimate some of the k-widths of
ellipsoids sufficiently close to the round sphere.

5.1. Sweepouts of S2

Let (S2, g0) denote the round 2-dimensional sphere with radius 1 in R3. We
will construct k-sweepouts of S2 as families of algebraic sets in R3. This is
similar to how it is done in [10] for the unit ball.

Denote by x1, x2, x3 the coordinates in R3 with respect to the standard
basis. Let pi : R3 → R denote the following polynomials for i = 1, . . . , 8:

pj(x) = xj for j = 1, 2, 3;

p4(x) = x1
2;

p5(x) = x1x2;

p6(x) = x1x3;

p7(x) = x2x3;

p8(x) = x3
2.

Note that we skipped the polynomial x2
2. The reason for this is because we

are only interested in the zero set restricted to the sphere, which is given
by the equation x1

2 + x2
2 + x3

2 − 1 = 0. That is, p4, p8 and x 7→ x2
2 are
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linearly dependent so their linear combinations will define the same algebraic
sets.

Now, put Ak = spanR

(
1 ∪kj=1 pj

)
\ {0} and define the relation q ∼ λq,

for λ > 0 and q ∈ Ak. Note that the zero set is invariant under this relation,
that is, {λq = 0} = {q = 0} so it makes sense to define the map Fk : (Ak/ ∼
)→ Z1(S2) as

Fk([q]) = ∂[{q < 0} ∩ S2],

where [R] denotes the mod 2 current associated with R ⊂ S2. It is clear
that Fk is well defined and it takes values in Z1(S2). Also, we can identify
(Ak/ ∼) with RP k.

Lemma 5.1. Fk is continuous with respect to the flat topology.

Proof. Let p and q be two polynomials in Ak.
Observe that ∂[{p < 0}∆{q < 0} ∩ S2] = ∂[{p < 0} ∩ S2]− ∂[{q < 0} ∩

S2] and {p < 0}∆{q < 0} = {pq ≤ 0}, where ∆ denotes the symmetric differ-
ence of sets. Now, note that M([{pq ≤ 0} ∩ S2]) = M([{pq < 0} ∩ S2]) un-
less {pq = 0} ∩ S2 is an open set of S2 with positive measure. In this case we
must have {pq = 0} ∩ S2 = S2 which implies that ∂[{p < 0} ∩ S2]− ∂[{q <
0} ∩ S2] = 0, that is, Fk([p]) = Fk([q]).

Finally, let [qi] converge to [p] in Ak/ ∼. Without loss of generality we
can suppose qi converges to λp, for some λ > 0. We conclude that

F(∂[{p < 0} ∩ S2]− ∂[{qi < 0} ∩ S2]) ≤M([{pqi < 0} ∩ S2]),

unless Fk([p]) = Fk([qi]). We can suppose that Fk([p]) 6= Fk([qi]) for all i
sufficiently large. If qi tends to p then M([{pqi < 0} ∩ S2]) converges to
M([{λp2 < 0} ∩ S2]) = 0. This proves that the flat norm converges to zero,
that is, Fk is flat continuous. �

Lemma 5.2. Let Fk : RP k → Z1(S2), k=1,. . . ,8, be the family of cycles
defined above. Then Fk has no concentration of mass.

Proof. Take p ∈ S2 and 0 < r < π and denote by αp the equator given by
p⊥ ∩ S2, where p⊥ is the plane normal to p in R3. Consider the ball B(p, r) ⊂
S2. We can parametrize the space of geodesics that go through B(p, r) as
G(r) = {q⊥ ∩ S2 : d(q, αp) < r}. The set G(r) defines a spherical segment
whose area is area(G(r)) = 4π sin(r).
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If x ∈ RP k is such that Fk(x) ∩B(p, r) 6= ∅ then it follows from the
Crofton formula that

M(Fk(x)⨽B(p, r)) =
1

4

∫
Γ∈G(r)

#(Γ ∩ Fk(x)).

Since Γ ∩ Fk(x) is the intersection of a plane with S2 and Fk(x) then it is
the solution of a system of 3 polynomials of degree 1, 2 and at most 2 (1 if
k = 1, 2, 3 or 2 if k = 4, . . . , 8), respectively. It follows that the intersection
is generically #(Γ ∩ Fk(x)) ≤ 4. Hence,

M(Fk(x)⨽B(p, r)) ≤ 4π sin(r).

If we take r → 0 we conclude that Fk has no concentration of mass at p.
Since p was arbitrary we conclude the proof. �

Remark. Note that the same proof is valid for any family of algebraic
curves in S2 with bounded degree.

Theorem 5.3. If S2 is the round 2-sphere of radius 1, then

(i) ω1(S2) = ω2(S2) = ω3(S2) = 2π;

(ii) ω4(S2) = ω5(S2) = ω6(S2) = ω7(S2) = ω8(S2) = 4π.

Proof. (i): By the Crofton formula we have that, M(Fk(q)) ≤ 2π for all
q ∈ RP k and k = 1, 2, 3. In fact, it is not hard to see that sup M(Fk(q)) = 2π.
That is, ωk ≤ 2π.

Suppose ωk < 2π, then there exists another k-sweepout with no concen-
tration of mass F̃ such that L[ΠF̃ ] < 2π. Hence, Theorem 4.4 would give us a
stationary Z2-almost minimising integral varifold with ‖V ‖(S2) < 2π. This
is a contradiction because Proposition 3.6 tells us that the density would be
lower than 1 everywhere. So Fk is optimal and ωk = 2π for k = 1, 2, 3.

For the next item we need a lemma whose proof we give in the Appendix.

Lemma 5.4. Let S2 be the round 2-sphere of radius 1, then ω4 > 2π.

(ii): When k = 4, 5, 6, 7, 8 the degree of the polynomials are less than or
equal to 2, thus, using the Crofton formula again, M(Fk(q)) ≤ 4π for all
q ∈ RP k. As before, it is trivial to check that sup M(Fk(q)) = 4π from which
we get ωk ≤ 4π.

By Lemma 5.4 and the previous item we already know that ωk ≥ ω4 >
2π. Suppose ωk < 4π then, as before, we have a k-sweepout F̃ with no
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concentration of mass such that ωk ≤ L[ΠF̃ ] < 4π. From Theorem 4.4 we
produce V ∈ IV1(S2) stationary and Z2-almost minimising. It follows from
Theorems 3.5 and 4.13 that V has constant density equal to 1. Hence V
corresponds to a closed regular geodesic, that is, ‖V ‖(S2) = 2π, which is a
contradiction. �

5.2. Geodesics on ellipsoids

Our goal here is to find the varifold that realizes the k-width of an ellipsoid
sufficiently close to the round sphere.

Let E2 = E2(a1, a2, a3) be an ellipsoid defined by the equation a1x
2
1 +

a2x
2
2 + a3x

2
3 − 1 = 0 in R3. If the parameters a1, a2, a3 are all sufficiently

close to 1 then it is clear that the induced metric in E2 is C∞-close to the
round metric in S2. We can assume other properties that we summarize
here.

Proposition 5.5. Let γi = {xi = 0} ∩ E2 for i = 1, 2, 3 be the three princi-

pal geodesics in E2, γ
(r)
i be the r-covering of γi for r ∈ N and ωk(E

2) denote
the k-width for k ∈ N. If we choose a1 < a2 < a3 sufficiently close to 1 then
the following is true:

(i) 2π(1− 1
4) < L(γ1) < L(γ2) < L(γ3) < 2π(1 + 1

4);

(ii) index(γ
(r)
i ) = i+ 2(r − 1) and null(γ

(r)
i ) = 0 for i = 1, 2, 3 and r < 100;

(iii) if α is a smooth closed geodesic with L(α) < 100π then α = γ
(r)
i for

some i = 1, 2 or 3 and r > 0;

(iv) |ωk(E2)− ωk(S2)| < 1
4 for all k < 100;

By index(γ) and null(γ) we mean the Morse index and nullity as smooth
closed geodesics, that is, critical points of the energy functional.

Proof. (i): Note, for example, that γ1 is a planar ellipsis with axes 1
a2

and
1
a3

, similarly for the other two. So, as long as ai are close to 1 each ellipsis
is close to a circle of length 2π.

(ii): See [14, XI,Theorem 3.3].
(iii): See [14, XI,Theorem 4.1].
(iv): Note that every sweepout of E2 is also a sweepout for S2, simply

by the fact they are both diffeomorphic and the definition of sweepout does
not depend on the metric. Since the metric in E2 can be chosen sufficently
close to the round metric we can prove that each k-width is continuous by
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simply using the same approximating sweepouts. The uniform convergence
follows directly because we are considering only finitely many k-widths. �

Given these three main ellipses we are able to define the varifolds that
will be candidates to realize the first 8 widths of E2. Define

Wj = υ(γj , 1), j = 1, 2, 3;

W4 = υ(γ1, 2);

W5 = υ(γ1, 1) + υ(γ2, 1);

W6 = υ(γ2, 2);

W7 = υ(γ1, 1) + υ(γ3, 1);

W8 = υ(γ2, 1) + υ(γ3, 1);

W9 = υ(γ3, 2).

Remark. Suppose E2 is sufficiently close to the round sphere of radius 1.
Since these are all possible combinations of the three principal geodesic with
density less than or equal to 2, Theorems 3.7, 4.13 and Corollary 3.4 imply
that these are also the only almost minimising geodesic networks with mass
less than 2π(2 + 1

3).
They also correspond to the zero set (counted with multiplicity) of the

polynomials pj , defined in the previous section, intersected with E2 (except
for W6).

Before proceeding to the main theorem we need a technical lemma that
was proved in [12, §6] under a different context. We explain how to obtain
our result from their proof in the Appendix.

Lemma 5.6. Let E2 be an ellipsoid as in Proposition 5.5. Then ωi < ωi+1

for i = 1, . . . , 7.

Theorem 5.7. Let E2 be an ellipsoid as in Proposition 5.5. The following
holds:

(i) if i = 1, 2 or 3 then ωi(E
2) = ‖Wi‖(E2);

(ii) if i = 4, . . . 8 then ωi(E
2) = ‖Wl‖(E2) for some l = 4, . . . , 9 without

repetition.
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Proof. Firstly, it follows from Proposition 5.5(iv) and Theorem 5.3(i) that

ωi(E
2) < 2π

(
1 +

1

4

)
, for i = 1, 2, 3 and

ωi(E
2) < 2π

(
2 +

1

4

)
, for i = 4, . . . , 8.

In either case we claim that there exists an optimal sweepout for ωi.
Indeed, if no such map existed for some i we would have a sequence of
sweepouts {Fk} satisfying ωi < L[Fk+1] < L[Fk] < 2π(2 + 1

4). Each Fk pro-
vides us a distinct almost-minimising geodesic network with mass less than
2π(2 + 1

4) by Theorem 4.4, and the characterization of stationary integral
varifolds (Theorem 3.5). However, as we have already remarked, there only
finitely many such varifolds (that is to say, the previously defined Wj) so we
have a contradiction.

Secondly, Lemma 5.6 tells us that ω1 < · · · < ω8. Hence, each optimal
sweepout gives us an almost-minimising geodesic network Vi satisfying

‖Vi‖(E2) = ωi(E
2) and ‖Vi‖(E2) < ‖Vi+1‖(E2) for i = 1, . . . , 8.

(i): For i = 1, 2, 3 we have ‖Vi‖(E2) < 2π(1 + 1
4) so each one of these must

correspond to one Wj , j = 1, 2, 3. Since their masses are ordered as

‖W1‖(E2) < ‖W2‖(E2) < ‖W3‖(E2)

we must have Vi = Wi, i = 1, 2, 3.

(ii): For j = 4, . . . , 8 the Wj ’s are not necessarily ordered by their mass. To
be specific, we cannot guarantee for a general ellipsoid that ‖W6‖(E2) <
‖W7‖(E2) or vice-versa. However, we know that each Vi corresponds to one
of the Wj ’s and this correspondence must be one to one, which finishes the
proof. �

At last we construct an unstable min-max varifold with multiplicity 2
and give a counterexample to Question 1.

Corollary 5.8. Let E2 be as in Proposition 5.5, then Question 1 is false
for E2. Furthermore, out of W4, W6 and W9 at least two must be a min-max
varifold.

Proof. First of all we observe that if the support of V is given by a smooth
closed geodesic γ then index(V ) and null(V ) as a varifold are the same as
index(γ) and null(γ) as a critical point for the energy functional.
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Now, Theorem 5.7(ii) tells us that ω4(E2) = ‖Wj‖(E2) for some j =
4, . . . , 9. Where Wj , j = 1, . . . , 8 are as before. Since there are 6 varifolds to
choose for 5 widths we know that one, and only one, will not correspond to
a width. This proves the second statement.

The first 3 varifolds are ordered as ‖W4‖(E2) < ‖W5‖(E2) < ‖W6‖(E2)
which implies that ω4 must correspond to either W4 or W5. If ω4(E2) =
‖W4‖(E2) then the number of parameters is 4 but index(V ) + null(V ) =
3 + 0 < 4, as given by property 5.5(ii).

If this is not the case, then W4 is the only varifold that does not cor-
respond to any width and all the other ones must correspond to one, and
only one, width. As we have already pointed out, the comparison between
‖W6‖(E2) and ‖W7‖(E2) is not known in general. In any case, W6 must
correspond to either ω5 (if ‖W6‖(E2) < ‖W7‖(E2)) or ω6 (if ‖W7‖(E2) <
‖W6‖(E2)). On the other hand, index(W6) + null(W6) = 4 + 0 < 5, which
disproves the conjecture in either case. �

Remark. If one picks the ellipsoid E2(1− ε, 1, 1 + ε) we have ‖W6‖(E2) =
‖W7‖(E2) thus forcing one of them to not be a critical varifold. In this case
W4 must correspond to ω4(E2).

As a final remark we observe that W4, W6 and W9 correspond to an
unstable embedded closed geodesic with multiplicity 2. This provides a con-
crete counterexample to the Multiplicity One Conjecture in the case of 1-
cycles on surfaces. The main difference to higher dimensions is that in the
hypersurface case one could be able to de-singularize two minimal surfaces
(for example two great spheres in S3 approaching a sphere with multiplicity
2) along their intersection and obtain an embedded “competitor” with less
area, but with different topology. This cannot be done for curves.

6. Further problems

We would like to propose a general formula for the width of the round
sphere S2. First let us give our conjecture and then explain the motivation.
We expect that

ωj = 2πk, if j ∈ {k2, . . . , (k + 1)2 − 1}.

A simple computation shows that this would imply the Weyl law for S2.
Of course, to prove the Weyl law it is not necessary to compute the width
spectrum, one is only interested in its asymptotic behavior. This is a much
stronger conjecture.
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Denote by P [R3, d] the space of real polynomials of degree less than or
equal to d in 3 variables. For each p ∈ P we can define {p = 0} ∩ S2 as we
have already done. However, any polynomial that contains the fact (x1

2 +
x2

2 + x3
2 − 1) do not define a 1-cycle in S2 so we have to quotient these out.

That is, we are interested in the space Ad = P [R3, d]/〈x1
2 + x2

2 + x3
2 − 1〉d,

where 〈x1
2 + x2

2 + x3
2 − 1〉d denotes the ideal generated by (x1

2 + x2
2 +

x3
2 − 1) intersected with P [R3, d].

Now, note that we can write Ak = Ak−1 ⊕Hk where Hk is the space
of homogeneous polynomials in 3 variables of degree k. The space Hk is
isomorphic to the eigenspace of the kth eigenvalue of the Laplacian in S2

and its dimension is 2k + 1 = (k + 1)2 − k2. Using the polynomials in Ak−1

and a basis for Hk we can construct j-sweepouts for j = k2, . . . , (k + 1)2 − 1
whose minmax values are 2πk as given by the Crofton formula. We expect
these sweepouts to be optimal for the round sphere.

This is motivated by Lusternik-Schnirelmann theory on manifolds. We
believe that the width will be realised by a combination of great circles
with possible multiplicities. Lusternik-Schnirelmann theory indicates that if
ωk = ωk+N then there exists a N -parameter family of varifolds with constant
mass ωk. More generally, one would expect the space of critical varifolds with
mass ωk to have Lusternik-Schnirelmann category greater or equal to N In
the case of S2 the space of k-combinations of great circles is simply the space
of unordered k-tuples of great circles, that is, it is given by SP k(RP 2). We
denote by SP k(X) the quotient of Xk by the action of the k-symmetry
group Sk. It is known that SP k(RP 2) = RP 2k (see [4]), whose Lusternik-
Schnirelmann category is 2k + 1. Finally our conjecture implies that the
equality gaps in the width spectrum are given by ωk2 = ω(k+1)2−1, which is
consistent with the Lusternik-Schnirelmann motivation. As a brief remark
we would like to point out the for higher dimensions the same ideas would
violate the category of the critical set.

Unfortunately none of this has been proved. Neither the category ideas
or the optimality of the polynomial sweepouts are known. The Lusternik-
Schnirelmann theory for smooth functions on manifolds (see [6]) does not
carry over to our case directly.

Appendix A.

First let us extract a weaker version of the results in [12]. From the proof of
[12, Theorem 6.1] we can obtain the following general, but weaker, proposi-
tion.
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Proposition A.1. Let M be a closed Riemannian manifold and {ωk(M)}k∈N
be the width spectrum corresponding to 1-cycles in M . If ωk(M) = ωk+1(M)
for some k, then there exist infinitely many geodesic networks with mass
ωk(M) and that are almost-minimising in annuli at every point.

The proof is similar to [12, Theorem 6.1], however we cannot use Schoen-
Simon’s Regularity Theorem or the Constancy Theorem (as in [12, Claim
6.2]). To overcome this one notes that if a sequence of varifolds converges
to a geodesic network then the sequence of associated currents converge to
a subnetwork of the limit.

More precisely, let {Ti}i∈N ⊂ Z1(M) be a sequence of flat cycles such
that |Ti| → V and Ti → T . If V is a geodesic network defined by geodesic
segments {γ1, . . . , γm} and its respective multiplicities, then T is a cycle (not
necessarily stationary) defined by a subset of geodesics Ω ⊂ {γ1, . . . , γm}
with multiplicity one each.

This is true because the support of the limit is contained in the vari-
fold geodesic network, then we can apply the Constancy Theorem to each
geodesic segment whose intersection is non-empty. If we assume that the set
of geodesic networks is finite, then so is the set of all possible subnetworks
(not necessarily stationary) and the rest of the proof is the same as in [12].

With this proposition we can prove Lemmas 5.4 and 5.6.

Proof of Lemma 5.4. Suppose ω4(S2) < 2π(1 + 1
6) and choose an ellipsoid

E2 sufficiently close to S2 so that Proposition 5.5 holds. In particular there
are only 3 almost minimising geodesic networks with length less than 2π(1 +
1
4) in E2 (namely, the three principal geodesics). Indeed, any such geodesic
network must have density less than 2 by Theorem 3.7 and the almost
minimising condition excludes triple junctions. Note also that ω4(E2) <
2π(1 + 1

3).
We claim that there exist an optimal sweepout for ω4(E2). If that is not

the case we would be able to produce a sequence of sweepouts Fi with no
concentration of mass such that L[ΠFi+1

] < L[ΠFi ] < 2π(1 + 1
3). Thus, each

Fi would give us a distinct almost-minimising geodesic network with length
less than 2π(1 + 1

3) (Theorem 4.4), which is a contradiction.
It follows that there exists an almost-minimising geodesic network V

such that ‖V ‖(E2) = ω4(E2). Thus, V must be one of the three principal
geodesics which implies that ωk(E

2) = ωk+1(E2) for some k = 1, 2, 3. This
is a contradiction because Proposition A.1 would imply the existence of
infinitely many almost-minimising geodesic networks with length ωk(E

2)
and we already know that this is not possible.
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We conclude that our initial assumption is false, thus ω4(S2) > 2π. �

The next proof is very similar to the previous one.

Proof of Lemma 5.6. If the ellipsoid is sufficiently close to S2 then we can
assume that ωi(E

2) < 2π(2 + 1
4), by Theorem 5.3. As we have already re-

marked, there are only 9 almost-minimising geodesic networks with mass
less than 2π(2 + 1

4) (namely the Wj previously described). If we had equal-
ity ωi = ωi+1 for any i = 1, . . . , 7 then Proposition A.1 would give us in-
finitely many almost-minimising geodesic networks with mass ωi, which is a
contradiction. �
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