The width of ellipsoids

Nicolau Sarquis Aiex

Abstract

We compute the k-width of a round 2 -sphere for $k=1, \ldots, 8$ and we use this result to show that unstable embedded closed geodesics can arise with multiplicity as a min-max critical varifold.

1 Introduction 251
2 Preliminaries 255
3 Geodesic networks 263
4 Almost minimising varifolds 267
5 The width of an ellipsoid 275
6 Further problems 281
Appendix A 282
References 284

1. Introduction

The aim of this work is to compute some of the k-width of the 2 -sphere and to provide a concrete counterexample to the Multiplicity One Conjecture in the case of closed geodesics on a surface. The conjecture appears on [13], by F. C. Marques and A. Neves, and it states that the two-sided unstable components of a closed minimal hypersurface obtained by a min-max method should have multiplicity one when the ambient dimension is $3 \leq n+1 \leq 7$. This was recently proved by X . Zhou in [21]. It is related to variational

[^0]approaches to show the existence of infinitely many closed minimal hypersurfaces on closed manifolds, originally conjectured by S.-T. Yau in the case of immersed surfaces in dimension 3.

Even in the simple case of the round 2 -sphere the full width spectrum is not known. One of the motivations to compute it was to prove a Weyl type law for the width as it was proposed in [9], where the author suggests that the width should be considered as a non-linear spectrum analogue to the spectrum of the laplacian. Recently the Weyl law for codimension one cycles on manifolds as well as arbitrary codimension on Lipschitz domains was proved by Y. Liokumovich, Marques and Neves on [11.

In a closed Riemannian manifold M of dimension n the Weyl law says that $\frac{\lambda_{p}}{p^{\frac{2}{n}}} \rightarrow c_{n} \operatorname{vol}(M)^{-\frac{2}{n}}$ for a known constant c_{n}, where λ_{p} denotes the $p^{t h}$ eigenvalue of the laplacian. In the case of curves in a 2 -dimensional manifold M we have that

$$
\frac{\omega_{p}}{p^{\frac{1}{2}}} \rightarrow C_{2} \operatorname{vol}(M)^{-\frac{1}{2}}
$$

where $C_{2}>0$ is a constant. Our computation suggests what should be the optimal constant in the case of the round 2 -sphere.

By making a contrast with classical Morse theory one could ask the following two naive questions about the index and nullity of a varifold that achieves the width:

Question 1. Let (M, g) be a Riemannian manifold and $V \in \operatorname{IV}(M)$ be a critical varifold for the k-width $\omega_{k}(M, g)$. Then

$$
k \leq \operatorname{index}(V)+\operatorname{null}(V)
$$

Question 2. Let (M, g) be a Riemannian manifold and $V \in \mathrm{I} \mathcal{V}_{l}(M)$ be a critical varifold for the k-width $\omega_{k}(M, g)$. Then

$$
\operatorname{index}(V) \leq k
$$

Where index (V) and $\operatorname{null}(V)$ are the index and nullity of the second variation $\delta^{(2)} V$ on the space of vectorfields in M. By a critical varifold we mean that V is obtained as the accumulation point of a min-max sequence.

To illustrate these questions let us present a situation in which Question 1 holds and compare to our context. Say we are studying closed geodesics by analyzing the energy functional E in the free loop space $\Lambda=$ $W^{1,2}\left(S^{1}, M\right)$, in which case we can apply infinite dimensional Morse theory. Take $a<b$ regular values and suppose we can find a non-trivial homology
class $\alpha \in H_{k}\left(\Lambda^{b}, \Lambda^{b}\right)\left(\Lambda^{a}=\{E \leq a\}\right)$ then we can find a closed geodesic γ satisfying

$$
E(\gamma)=\inf _{A \in \alpha} \sup _{x \in \operatorname{supp} A} E(x)
$$

In this case it is known that $\operatorname{index}(\gamma) \leq k \leq \operatorname{index}(\gamma)+\operatorname{null}(\gamma)$ (this is encoded in [8, §1 Lemma 2], alternatively see [5, Chapter 2 Corollary 1.3]). Compared to our case γ would correspond to V, a non-trivial k-dimensional homology class corresponds to a k-sweepout and the min-max quantity is analogue to the k-width.

In the Almgren-Pitts min-max set up we work with varifolds instead of parametrized curves, which allow degenerations. On the other hand we compute the index and nullity in the same way, by using vectorfield variations.

As an example, consider the union of two great circles in the 2 -sphere. It divides the sphere into four discs and for each of them we take a 1-parameter contraction to a point. If we follow the boundary of the contractions of two opposite disks simultaneously we would have a 1-parameter family of cycles that decreases length. However, this is not generated by an ambient vectorfield, so it does not contribute to the index of the stationary varifold.

Furthermore, classical Morse theory will always produce a closed geodesic as a critical point of energy, but Almgren-Pitts min-max only produces a geodesic network. In this paper we address this issue and show the following result (see Theorems 4.4 and 4.13 for precise statements).

Theorem. A stationary integral 1-varifold obtained by min-max method on cycles with coefficients \mathbb{Z}_{2} must have integer density everywhere.

This allow us to exclude networks with triple junctions as critical varifolds because the density at the singularity is $\frac{3}{2}$. However, this is not sufficient to prove that they correspond to closed geodesics. For example, we are not able to exclude a union of two triple junctions with a small angle between them. In this case the density at the singular point is 3 but it is not the union of 3 closed geodesics.

As a perturbation of our results we will show that Question 1 is false for 1-varifolds on a surface. Regarding Question 2, it was recently shown by Marques-Neves in [13] that index $(\operatorname{supp}(V)) \leq k$ in the case of codimension one and $3 \leq \operatorname{dim}(M) \leq 7$. The authors also prove the Multiplicity One Conjecture for min-max with one parameter. In the hypersurface case Pitts' min-max theorem gives us an embedded minimal hypersurface, whereas the dimension 1 case allows self-intersections. That is why they do not expected
the conjecture to hold for curves. This work provides a concrete example of how it fails to be true in the dimension 1 case.

Theorem (see Corollary 5.8). For ellipsoids sufficiently close to the round sphere it is possible to produce a multiplicity 2 unstable closed geodesic using min-max methods.

The idea of the proof is the following. Firstly observe that the width of such ellipsoid has to be close to the width of S^{2}. We use this estimate to show that a critical varifold produced with at most 8 parameters on an ellipsoid cannot have length greater than the union of two principle geodesics.

Secondly we use the fact that it cannot have triple junctions. Together with a simple density estimate we conclude that it must be a union of closed geodesics. If the ellipsoid is sufficiently close to the round sphere it is well known that the prime closed geodesics other than the equators must have arbitrarily large length. We conclude that the critical varifolds must be the union of at most two principle geodesics.

It follows from a Lusternik-Schnirelmann type result that critical varifolds obtained with different number of parameters must be distinct. The ones produced with 1,2 and 3 parameters will correspond exactly to the three principle geodesics with multiplicity 1 . Because all the possible combinations must be exhausted, we will have that either the min-max varifold produced with 4 or 5 parameters must have multiplicity 2 , that is, it is given by the union of two if the same geodesic. Since the index and nullity of the principle geodesics are well known, it also serves and an negative answer to Question 1.

This article is divided as follows. In section 2 we briefly overview properties of sweepouts, currents and varifolds. In section 3 we define geodesic networks and we prove a structure result for 1-dimensional stationary integral varifolds. In section 4 we define almost minimising varifolds and characterize its singularities. In section 5 we compute the k-width of S^{2} for $k=1, \ldots, 8$. Then we use the regularity results to find the critical varifolds for a generic ellipsoid.

Acknowledgements. I am thankful to my PhD adviser André Neves for his guidance and suggestion to work on this problem.

2. Preliminaries

In this section definitions and notations are established. Throughout this section M denotes a closed Riemannian manifold of dimension m isometrically embedded in \mathbb{R}^{n} for some $n>0$.

Let us denote by $\mathcal{Z}_{k}(M)$ the space of flat k-cycles in M with coefficients in \mathbb{Z}_{2} endowed with the flat topology. We write \mathcal{F} for the flat norm and $\underline{\underline{\mathbf{M}}}$ for the mass of a cycle.

We adopt the definition of varifolds in [15]. We denote the spaces of k varifolds, rectifiable varifolds and integral varifolds by $\mathcal{V}_{k}(M), \mathrm{R} \mathcal{V}_{k}(M)$ and $\mathrm{I} \mathcal{V}_{k}(M)$, respectively. These spaces are endowed with the weak topology induced by the metric $\underline{\underline{\mathbf{F}}}$.

Given a rectifiable varifold $V \in \mathrm{R} \mathcal{V}_{k}(M)$ we write $\mathscr{C}_{p} V$ for the tangent cone of V at the point $p \in \operatorname{supp}\|V\|$. We also denote by $G(k, n)$ the space of k-planes in \mathbb{R}^{n} and $G_{k}(M)=\left\{(x, P) \in \mathbb{R}^{n} \times G(k, n): x \in M, P \subset T_{x} M\right\}$ the k-Grassmanian bundle over M. For a rectifiable set $S \subset \mathbb{R}^{n}$ and θ and integrable function in $G_{k}\left(\mathbb{R}^{n}\right)$ we write $\underline{\underline{v}}(S, \theta)$ the varifold associated to S with density θ.

Now we establish a relation between currents and varifolds. Given a k-current T (not necessarily closed) we denoted by $|T| \in \mathcal{V}_{k}(M)$ the varifold induced by the support of T and its coefficients. Reversely, given a k-varifold V we denote by $[V]$ the unique k-current such that $\Theta^{k}(|[V]|, x)=$ $\Theta^{k}(V, x) \bmod 2$ for all $x \in \operatorname{supp}\|V\|($ see [18]).

2.1. Sweepouts and the width

In [3] Almgren proved, in particular, that $\pi_{i}\left(\mathcal{Z}_{k}(M)\right)=H_{i+k}\left(M ; \mathbb{Z}_{2}\right)$ for all $i>0$. We call it the Almgren isomorphism and denote it by F_{A}. It follows from the Universal Coefficient Theorem that $H^{n-k}\left(\mathcal{Z}_{k}(M) ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$, denote its generator by $\bar{\lambda}$ and $\bar{\lambda}^{p}$ the cup product with itself p times. For the next definition we follow [10] and [12].

Definition 2.1. Let $X \subset[0,1]^{N}$ be a cubical subcomplex for some $N>0$ and $f: X \rightarrow \mathcal{Z}_{k}(M)$ a flat continuous map. We say that f is a p-sweepout if

$$
f^{*}\left(\bar{\lambda}^{p}\right) \neq 0 \in H^{p(n-k)}\left(X ; \mathbb{Z}_{2}\right)
$$

Denote the set of p-sweepouts with no concentration of mass (see definition 4.3 in M by $\mathcal{P}_{p}(M)$.

We define the p-width of (M, g) as

$$
\omega_{p}(M, g)=\inf _{f \in \mathcal{P}_{p}} \sup _{x \in \operatorname{dmn}(f)} \underline{\underline{\mathbf{M}}}(f(x))
$$

where $\operatorname{dmn}(f)$ denotes the domain of f.

Note that $\omega_{p} \leq \omega_{p+1}$ since every $(p+1)$-sweepout is also a p-sweepout.

2.2. Varifolds in S^{n}

Let $\left(S^{n}, g_{S^{n}}\right)$ denote the round sphere of radius 1 in \mathbb{R}^{n+1}. Given a varifold $V \in \mathcal{V}_{k}\left(S^{n}\right)$ we can define the cone generated by V in \mathbb{R}^{n+1}. It is sufficient to define a positive functional in the space $C_{c}\left(G_{k+1}\left(\mathbb{R}^{n+1}\right)\right.$) (see for example [1, $\S 5.2(3)])$.

Definition 2.2. Given $V \in \mathcal{V}_{k}\left(S^{n}\right)$ define $C(V) \in \mathcal{V}_{k+1}\left(\mathbb{R}^{n+1}\right)$ to be the measure corresponding to the functional

$$
C(V)(f)=\int_{0}^{\infty} \tau^{k} V\left(f_{\tau}\right) d \tau
$$

where $f \in C_{c}\left(G_{k+1}\left(\mathbb{R}^{n+1}\right)\right)$ and $f_{\tau} \in C_{c}\left(G_{k}\left(\mathbb{R}^{n+1}\right)\right)$ is given by

$$
f_{\tau}(x, P)= \begin{cases}f(\tau x, P \oplus \mathbb{R}\langle x\rangle), & \text { if } x \in S^{n} \text { and } P \subset T_{x} S^{n} \\ 0, & \text { otherwise }\end{cases}
$$

Proposition 2.3. The cone map $C: \mathcal{V}_{k}\left(S^{n}\right) \rightarrow \mathcal{V}_{k+1}\left(\mathbb{R}^{k+1}\right)$ satisfy the following properties:
(i) $C(V)$ is a cone varifold;
(ii) If $a, b \in \mathbb{R}_{\geq 0}$ and $V, W \in \mathcal{V}_{k}\left(S^{n}\right)$ then $C(a V+b W)=a C(V)+b C(W)$;
(iii) If $V \in \mathrm{R} \mathcal{V}_{k}\left(S^{n}\right)$ then $C(V)$ is given by

$$
C(V)(f)=\int_{0}^{\infty} \tau^{k} \int_{S^{n}} f\left(\tau x, T_{V}(x) \oplus \mathbb{R}\langle x\rangle\right) \Theta^{k}(V, x) d \mathcal{H}_{x}^{k} d \tau
$$

where $f \in C_{c}\left(G_{k+1}\left(\mathbb{R}^{n+1}\right)\right)$ and $T_{V}(x) \subset T_{x} S^{n}$ is the tangent space of V defined $\|V\|$-almost everywhere in S^{n};

Proof. (i): We must show that $\eta_{0, \lambda_{\#}} C(V)=C(V)$ for all $\lambda>0$, where $\eta_{0, \lambda}(x)=\lambda x$ for $x \in \mathbb{R}^{n+1}$. Take any $f \in C_{c}\left(G_{k+1}\left(\mathbb{R}^{n+1}\right)\right)$ and compute

$$
\begin{aligned}
\eta_{0, \lambda \neq} C(V)(f) & =\int f(x, \tilde{P}) d\left(\eta_{0, \lambda} C(V)\right)_{x, \tilde{P}} \\
& =\int\left[J^{k+1} \eta_{0, \lambda}\right](x) f\left(\eta_{0, \lambda}(x),\left.D \eta_{0, \lambda}\right|_{x} \cdot \tilde{P}\right) d C(V)_{x, \tilde{P}} \\
& =\frac{1}{\lambda^{k+1}} \int f\left(\frac{x}{\lambda}, \tilde{P}\right) d C(V)_{x, \tilde{P}} \\
& =\frac{1}{\lambda^{k+1}} \int_{0}^{\infty} \tau^{k} V\left(f_{\frac{\tau}{\lambda}}\right) d \tau \\
& =\frac{1}{\lambda^{k+1}} \int_{0}^{\infty}(t \lambda)^{k} V\left(f_{t}\right) \lambda d t \\
& =C(V)(f) .
\end{aligned}
$$

Here it was used the definition of pushforward and change of variables $t=\frac{\tau}{\lambda}$ in the second last line.
(iii): This is straightforward from the definition.
(iiii): To prove this formula simply use that

$$
\left.V\left(f_{\tau}\right)=\int_{S^{n}} f_{\tau}\left(x, T_{V}(x)\right)\right) d\|V\|_{x}
$$

holds for rectifiable varifolds and $d\|V\|_{x}=\Theta^{k}(V, x) d \mathcal{H}_{x}^{k}$.
We now want to prove that this cone map is continuous with respect to the weak convergence.

Lemma 2.4. Let $\left\{V_{n}\right\} \subset \mathcal{V}_{k}\left(S^{n}\right)$ be a sequence of varifolds converging to $V \in \mathcal{V}_{k}\left(S^{n}\right)$ in the $\underline{\underline{\boldsymbol{F}}}$-metric. Then $C\left(V_{n}\right) \rightarrow C(V)$ with respect to $\underline{\underline{\boldsymbol{F}}}$.

Proof. It is enough to prove that $C\left(V_{n}\right)(f) \rightarrow C(V)(f)$ for any compactly supported function in $G_{k+1}\left(\mathbb{R}^{n+1}\right)$.

There exist $R_{0}>0$ such that $\operatorname{supp}(f) \subset B\left(0, R_{0}\right) \times G(k+1, n+1)$. For $\tau>R_{0}$ we have

$$
f_{\tau}(\tau x, P)=0,
$$

for all $x \in S^{n}$ and $P \in G(k, n+1)$. Thus, whenever $\tau>R_{0}$,

$$
V_{n}\left(f_{\tau}\right)=\int f(\tau x, P) d\left(V_{n}\right)_{x, P}=0
$$

for all $n>0$, and $V\left(f_{\tau}\right)=0$. This implies that the sequence $h_{n}(\tau)=\tau^{k} V_{n}\left(f_{\tau}\right)$ is uniformly bounded. By the Dominated Convergence theorem we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty} C\left(V_{n}\right)(f) & =\lim _{n \rightarrow \infty} \int_{0}^{R_{0}} h_{n}(\tau) d \tau=\int_{0}^{R_{0}} \lim _{n \rightarrow \infty} h_{n}(\tau) d \tau \\
& =\int_{0}^{R_{0}} \tau^{k} V\left(f_{\tau}\right) d \tau \\
& =C(V)(f)
\end{aligned}
$$

Next we show that the cone of a varifold associated to a rectifiable set in S^{n} is defined by the cone of the set, as one would expect.

Lemma 2.5. Let $R \subset S^{n}$ be a k-rectifiable set, $\theta: G_{k}\left(S^{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ a locally integrable function and $\underline{\underline{v}}(R, \theta) \in \mathrm{R} \mathcal{V}_{k}\left(S^{n}\right)$. Then

$$
C(\underline{\underline{v}}(R, \theta))=\underline{\underline{v}}(\tilde{R}, \tilde{\theta})
$$

where $\tilde{R}=\left\{\lambda x \in \mathbb{R}^{n+1} \mid \lambda \geq 0, x \in R\right\}$ and $\tilde{\theta}: G_{k+1}\left(\mathbb{R}^{n+1}\right) \rightarrow \mathbb{R}_{\geq 0}$ is a given by

$$
\tilde{\theta}(x, \tilde{P})= \begin{cases}\theta\left(\frac{x}{|x|}, P\right), & \text { if } x \neq 0 \text { and } \tilde{P}=P \oplus\langle x\rangle \\ 0, & \text { otherwise }\end{cases}
$$

Proof. It is easy to see that $\tilde{\theta}$ is locally integrable in $G_{k+1}\left(\mathbb{R}^{n+1}\right), \tilde{R}$ is $(k+1)$-rectifiable and its tangent space is given by $T_{\tilde{R}}(x)=T_{R}\left(\frac{x}{|x|}\right) \oplus\left\langle\frac{x}{|x|}\right\rangle$ for $x\left(\mathcal{H}^{k+1}\llcorner\tilde{R})\right.$-almost-everywhere. For $f \in C_{c}\left(G_{k+1}\left(\mathbb{R}^{n+1}\right)\right)$ compute

$$
\begin{align*}
\underline{\underline{v}}(\tilde{R}, \tilde{\theta})(f)= & \int_{\mathbb{R}^{n+1}} f\left(x, T_{\tilde{R}}(x)\right) \tilde{\theta}\left(x, T_{\tilde{R}}(x)\right) d\left(\mathcal{H}^{k+1}\llcorner\tilde{R})_{x}\right. \\
= & \int_{\mathbb{R}^{n+1} \backslash\{0\}} f\left(x, T_{R}\left(\frac{x}{|x|}\right) \oplus\left\langle\frac{x}{|x|}\right\rangle\right) \tag{}\\
& \times \theta\left(\frac{x}{|x|}, T_{R}\left(\frac{x}{|x|}\right)\right) d\left(\mathcal{H}^{k+1}\llcorner\tilde{R})_{x}\right.
\end{align*}
$$

We want to use the Co-area formula (see [7, §3.2.22]), we clarify notation and make some remarks.

Define the warped product metric on $(0,+\infty) \times S^{n}$ as $g_{(\tau, x)}=d \tau^{2}+$ $\tau^{2}\left(g_{S^{n}}\right)_{x}$, where $g_{S^{n}}$ is the round Riemannian metric on S^{n}. Let $d_{g}, d_{S^{n}}$ and d_{0} be the metrics induced by g on $(0,+\infty) \times S^{n}, g_{S^{n}}$ on S^{n} and the Euclidian metric g_{0} on \mathbb{R}^{n+1} respectively. Given any metric d we denote by $\mathcal{H}^{k}(d)$ the k-dimensional Hausdorff measure associated to d.

Claim 1. The metrics $g, g_{S^{n}}$ and g_{0} satisfy:
(a) $F:(\tau, z) \in\left((0,+\infty) \times S^{n}, g\right) \mapsto \tau z \in\left(\mathbb{R}^{n+1} \backslash\{0\}, g_{0}\right)$ is an isometry;
(b) $d_{g}((\tau, z),(\tau, y))=\tau d_{S^{n}}(z, y)$;
(c) $\left(\iota_{\tau}\right)_{*} \mathcal{H}^{k}\left(d_{S^{n}}\right)=\tau^{-k} \mathcal{H}^{k}\left(d_{g}\right)$, where $\iota_{\tau}: S^{n} \rightarrow(0,+\infty) \times S^{n}$ is the inclusion in the slice $\{\tau\} \times S^{n}$.

Firstly, (a) is a well known fact and (b) follows easily from the definition. Lastly, (b) implies that ι_{τ} is τ^{-1}-Lipschitz so (c) follows from basic properties of \mathcal{H}^{k}.

For simplicity denote $h(x)$ the integrand in (*). Applying a change of variables and the Co-area formula for the projection $(\tau, z) \mapsto \tau$ we obtain

$$
\begin{aligned}
\underline{\underline{v}}(\tilde{R}, \tilde{\theta})(f) & =\int_{\mathbb{R}^{n+1} \backslash\{0\}} h(x) d F_{*} F_{*}^{-1}\left(\mathcal{H}^{k+1}\left(d_{0}\right)\llcorner\tilde{R})_{x}\right. \\
& =\int_{(0,+\infty) \times S^{n}} h \circ F(\lambda, z) d\left(\mathcal{H}^{k+1}\left(d_{g}\right)_{\llcorner }(0,+\infty) \times R\right)_{(\lambda, z)} \\
& =\int_{(0,+\infty) \times R} h \circ F(\lambda, z) d \mathcal{H}^{k+1}\left(d_{g}\right)_{(\lambda, z)} \\
& =\int_{0}^{\infty}\left(\int_{\{\tau\} \times R} h \circ F(\lambda, z) d \mathcal{H}^{k}\left(d_{g}\right)_{(\lambda, z)}\right) d \mathcal{H}^{1}\left(d_{0}\right)_{\tau}
\end{aligned}
$$

Changing variables again and using (c) we conclude

$$
\begin{aligned}
\underline{\underline{v}}(\tilde{R}, \tilde{\theta})(f) & =\int_{0}^{\infty}\left(\int_{\{\tau\} \times R} h \circ F(\lambda, z) d\left(\tau^{k} \iota_{\tau *} \mathcal{H}^{k}\left(d_{S^{n}}\right)\right)_{(\lambda, z)}\right) d \mathcal{H}^{1}\left(d_{0}\right)_{\tau} \\
& =\int_{0}^{\infty}\left(\int_{R} h \circ F \circ \iota_{\tau}(z) \tau^{k} d \mathcal{H}^{k}\left(d_{S^{n}}\right)_{z}\right) d \tau \\
& =\int_{0}^{\infty} \tau^{k} \int_{S^{n}} h(\tau z) d\left(\mathcal{H}^{k}\llcorner R)_{z} d \tau .\right.
\end{aligned}
$$

The proof is finished by replacing h in the formula and 2.3 (iii).
Finally, we can prove the main properties of the cone $C(V)$.
Proposition 2.6. Let $V \in \mathcal{R}_{k}\left(S^{n}\right)$ and $C(V) \in \mathcal{V}_{k+1}\left(\mathbb{R}^{n+1}\right)$. Then the following is true:
(i) $C(V)$ is rectifiable;
(ii) if V is integral then so is $C(V)$;
(iii) $\operatorname{supp}\|C(V)\|=\left\{\lambda x \in \mathbb{R}^{n+1} \mid x \in \operatorname{supp}\|V\|\right.$ and $\left.\lambda \geq 0\right\}$;
(iv) if $y \neq 0$ then $\Theta^{k+1}(C(V), y)=\Theta^{k}\left(V, \frac{y}{|y|}\right)$;
(v) if $y \neq 0$ then

$$
\|V\|\left(S^{n}\right)=(k+1) \lim _{r \rightarrow \infty} \frac{\|C(V)\| B(y, r)}{r^{k+1}}
$$

(vi) if V is stationary and $k \geq 1$ then so is $C(V)$.

Proof. (i): Let $V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \underline{\underline{v}}\left(R_{i}, \theta_{i}\right)$, where $R_{i} \subset S^{n}$ is k-rectifiable and $\theta_{i}: G_{k}\left(S^{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ is locally integrable for all $i>0$. The result follows directly from 2.3 (iii, Lemma 2.4 and Lemma 2.5 .
(iii) : Just note in the proof of Lemma 2.5, if θ is integer-valued then so is $\tilde{\theta}$.
(iii): First show that supp $\|C(V)\| \supset\left\{\lambda x \in \mathbb{R}^{n+1} \mid x \in \operatorname{supp}\|V\|\right.$ and $\lambda \geq$ $0\}$. Take $y \notin \operatorname{supp}\|C(V)\|$ and a positive continuous function $\tilde{f}: \mathbb{R}^{n+1} \rightarrow$ $\mathbb{R}_{\geq 0}$ supported in $B(y, r)$, for some $r>0$. Define $f(x)=\tilde{f}(a x)$, where $a=$ $\min \{1,|y|\}$. So f is supported in $B\left(\frac{y}{|y|}, r\right)$. If we assume $\|C(V)\|(\tilde{f})=0$ then it is easy to check that $\|V\|(f)=0$, so $\frac{y}{|y|} \notin \operatorname{supp}\|V\|$. The other inclusion is similar.
(iv): for simplicity put $C=C(V)$. It is enough to show that

$$
\int_{\mathbb{R}^{n+1} \backslash\{0\}} g(y) d\|C\|_{y}=\int_{\mathbb{R}^{n+1} \backslash\{0\}} g(y) \Theta^{k}\left(V, \frac{y}{|y|}\right) d \mathcal{H}_{y}^{k+1}
$$

for every continuous function g compactly supported in $\mathbb{R}^{n+1} \backslash\{0\}$.
If $f \in C_{c}\left(G_{k+1}\left(\mathbb{R}^{n+1}\right)\right)$ satifies $f(0, \tilde{P})=0$ for all $\tilde{P} \in G(k+1, n+1)$ then, from rectifiability (property (i)), it follows that

$$
\begin{aligned}
C(f) & =\int_{G_{k+1}\left(\mathbb{R}^{n+1}\right)} f(y, \tilde{P}) d C_{(y, \tilde{P})} \\
& =\int_{\mathbb{R}^{n+1} \backslash\{0\}} f\left(y, T_{C}(y)\right) d\|C\|_{y}
\end{aligned}
$$

On the other hand, by property 2.3 (iii), we have

$$
C(f)=\int_{0}^{\infty} \tau^{k} \int_{S^{n}} f\left(\tau x, T_{V}(x) \oplus \mathbb{R}\langle x\rangle\right) \Theta^{k}(V, x) d \mathcal{H}_{x}^{k} d \tau
$$

Following a computation similar to the proof of Lemma 2.5 we conclude

$$
C(f)=\int_{\mathbb{R}^{n+1} \backslash\{0\}} f\left(y, T_{V}\left(\frac{y}{|y|}\right)\right) \Theta^{k}\left(V, \frac{y}{|y|}\right) d \mathcal{H}_{y}^{k+1}
$$

Take a continuous function $g: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ compactly supported in $\mathbb{R}^{n+1} \backslash$ $\{0\}$ and define $f(y, \tilde{P})=g(y)$ for all $y \in \mathbb{R}^{n+1}$ and $\tilde{P} \in G(k+1, n+1)$. The result follows by replacing such f in the previous formulas.
(v): Fix $y \neq 0, r>0$ and let $F: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow(0,+\infty) \times S^{n}$ be the isometry $F(z)=\left(|z|, \frac{z}{|z|}\right)$. Denote $A(r)=F(B(y, r)), \operatorname{pr}_{1}(\tau, x)=\tau$.

If $r>|y|$ then $0 \in B(y, r)$ and

$$
\begin{aligned}
\|C\| B(y, r) & =\int_{B(y, r)} d\|C\|_{z} \\
& =\int_{B(y, r) \backslash\{0\}} \Theta^{k+1}(C, z) d \mathcal{H}^{k+1}\left(d_{0}\right)_{z} \\
& =\int_{B(y, r) \backslash\{0\}} \Theta^{k}\left(V, \frac{z}{|z|}\right) d \mathcal{H}^{k+1}\left(d_{0}\right)_{z} \\
& =\int_{A(r)} \Theta^{k}(V, x) d \mathcal{H}^{k+1}\left(d_{g}\right)_{(\tau, x)} .
\end{aligned}
$$

Furthermore, $\operatorname{pr}_{1}(A(r))=(a(r), b(r))$, with $a(r)=\inf _{z \in B(y, r)}|z|=0$ and $b(r)=\sup _{z \in B(y, r)}|z|=|y|+r$. Note also that $\operatorname{pr}_{1}^{-1}(\tau)=\{\tau\} \times S^{n}$ for $\tau<$ $r-|y|$. Applying the Co-area formula with respect to pr_{1} we get

$$
\begin{aligned}
\|C\| B(y, r)= & \int_{0}^{|y|+r} \int_{\operatorname{pr}_{1}^{-1}(\tau)} \Theta^{k}(V, x) d \mathcal{H}^{k}\left(d_{g}\right)_{(\lambda, x)} d \tau \\
= & \int_{0}^{r-|y|} \int_{\{\tau\} \times S^{n}} \Theta^{k}(V, x) d \mathcal{H}^{k}\left(d_{g}\right)_{(\lambda, x)} d \tau \\
& +\int_{r-|y|}^{r+|y|} \int_{\operatorname{pr}_{1}^{-1}(\tau)} \Theta^{k}(V, x) d \mathcal{H}^{k}\left(d_{g}\right)_{(\lambda, x)} d \tau \\
= & \int_{0}^{r-|y|} \tau^{k} \int_{S^{n}} \Theta^{k}(V, x) d \mathcal{H}^{k}\left(d_{S^{n}}\right)_{(x)} d \tau \\
& +\int_{r-|y|}^{r+|y|} \int_{\operatorname{pr}_{1}^{-1}(\tau)} \Theta^{k}(V, x) d \mathcal{H}^{k}\left(d_{g}\right)_{(\lambda, x)} d \tau
\end{aligned}
$$

The first term in the sum is given by

$$
\int_{0}^{r-|y|} \tau^{k} \int_{S^{n}} \Theta^{k}(V, x) d \mathcal{H}^{k}\left(d_{S^{n}}\right)_{(x)} d \tau=\frac{(r-|y|)^{k+1}}{k+1}\|V\|\left(S^{n}\right)
$$

Since $\operatorname{pr}_{1}^{-1}(\tau) \subset\{\tau\} \times S^{n}$, the second term is bounded by

$$
\begin{aligned}
& \int_{r-|y|}^{r+|y|} \int_{\operatorname{pr}_{1}^{-1}(\tau)} \Theta^{k}(V, x) d \mathcal{H}^{k}\left(d_{g}\right)_{(\lambda, x)} d \tau \\
\leq & \frac{(r+|y|)^{k+1}-(r-|y|)^{k+1}}{k+1}\|V\|\left(S^{n}\right)
\end{aligned}
$$

When we divide by r^{k+1} and take the limit $r \rightarrow \infty$, the first term converges to $\frac{\|V\|\left(S^{n}\right)}{k+1}$ and the second term tends to zero.
(vi): Since we assume $k \geq 1$ it is enough to prove that $C(V)$ is stationary outside the origin.

Fix a vector field Y with compact $\operatorname{support} \operatorname{supp}(Y) \subset \mathbb{R}^{n+1} \backslash\{0\}$. We can write $Y(y)=h(y) y+X\left(\frac{y}{|y|}\right)$ where X is a compactly supported vector field in S^{n} and h is a compactly supported function. The first variation is given by $\delta C(Y)=\delta C(h(y) y)+\delta C\left(X\left(\frac{y}{|y|}\right)\right)$. Let us compute the first term:

$$
\begin{aligned}
\delta C(h(y) y) & =\int_{G_{k+1}\left(\mathbb{R}^{n+1}\right)} \operatorname{div}_{\tilde{P}}(h(y) y) d C_{(y, \tilde{P})} \\
& =\int_{0}^{\infty} \tau^{k} \int_{S^{n}} \operatorname{div}_{T_{V}(x) \oplus \mathbb{R}\langle x\rangle}(h(\tau x) \tau x) d\|V\|_{x} d \tau \\
& =\left.\int_{0}^{\infty} \tau^{k} \int_{S^{n}} D h\right|_{\tau x} \cdot \tau x+h(\tau x) \operatorname{div}_{T_{V}(x) \oplus \mathbb{R}\langle x\rangle}(\tau x) d\|V\|_{x} d \tau \\
& =\int_{0}^{\infty} \int_{S^{n}} \tau^{k}\left(\left.\tau D h\right|_{\tau x} \cdot x+h(\tau x)(k+1)\right) d\|V\|_{x} d \tau \\
& =\int_{S^{n}}\left[\int_{0}^{\infty}\left(\left.\frac{d}{d t}\right|_{t=\tau} t^{k} h(t x)\right) d \tau\right] d\|V\|_{x} \\
& =0
\end{aligned}
$$

In the last line we used that h has compact support away from 0 .
Using that X doesn't depend on the radial direction, that is, $\operatorname{div}_{\langle x\rangle}(X)=$ 0 , we compute the second term

$$
\begin{aligned}
\delta C\left(X\left(\frac{y}{|y|}\right)\right) & =\int_{G_{k+1}\left(\mathbb{R}^{n+1}\right)} \operatorname{div}_{\tilde{P}}\left(X\left(\frac{y}{|y|}\right)\right) d C_{(y, \tilde{P})} \\
& =\int_{0}^{\infty} \tau^{k} \int_{S^{n}} \operatorname{div}_{T_{V}(x) \oplus \mathbb{R}\langle x\rangle}(X(x)) d\|V\|_{x} d \tau \\
& =\int_{0}^{\infty} \tau^{k} \int_{S^{n}} \operatorname{div}_{T_{V}(x)}(X)+\operatorname{div}_{\mathbb{R}\langle x\rangle}(X) d\|V\|_{x} d \tau \\
& =\int_{0}^{\infty} \tau^{k} \delta V(X) d \tau=0 .
\end{aligned}
$$

Thus finishing the proof of the proposition.

3. Geodesic networks

In this section we are concerned with 1-dimensional varifolds whose support is represented by geodesic segments. Our aim is to prove that any stationary integral 1-varifold has this structure.

Definition 3.1. Let $U \subset M$ be an open subset. A varifold $V \in \operatorname{I\mathcal {V}_{1}}(M)$ is called a geodesic network in U if there exist geodesic segments $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ in M and $\left\{\theta_{1}, \ldots, \theta_{l}\right\} \subset \mathbb{Z}_{>0}$ such that
(a)

$$
V\left\llcorner G_{k}(U)=\sum_{j=1}^{l} \underline{\underline{v}}\left(\alpha_{j} \cap U, \theta_{j}\right)\right.
$$

(b) Let $\Sigma_{V}=\cup_{j=1}^{l}\left(\partial \alpha_{j}\right) \cap U$, we require each $p \in \Sigma_{V}$ to belong to exactly $m=m(p) \geq 3$ geodesic segments $\left\{\alpha_{j_{1}}, \ldots \alpha_{j_{m}}\right\}$ and

$$
\sum_{k=1}^{m} \theta_{j_{k}} \dot{\alpha}_{j_{k}}(0)=0
$$

Here we are taking the arc-length parametrization with start point at p.
We call a point in Σ_{V} a junction. We say that a junction is singular if there exist at least 1 geodesic segment $\alpha_{j_{k}}$ with $\theta_{j_{k}} \dot{\alpha_{k}}(0) \neq-\theta_{j_{k^{\prime}}} \alpha_{j_{k^{\prime}}}(0)$ for every other $j_{k} \neq j_{k^{\prime}}$ and regular otherwise. A triple junction is a point $p \in \Sigma_{V}$ such that p is the boundary of only 3 geodesic segments with multiplicity 1 each.

The following properties can be derived straightforwardly from the definition.

Proposition 3.2. Let V be a geodesic network in $U \subset M$. The following holds:
(i) V is stationary in U;
(ii) if $p \in \Sigma_{V}$ and $\left\{\left(\alpha_{j_{1}}, \theta_{j_{1}}\right), \ldots,\left(\alpha_{j_{m}}, \theta_{j_{m}}\right)\right\}$ define this junction then the tangent cone at p is given by

$$
\mathscr{C}_{p} V=\sum_{k=1}^{m} \underline{\underline{v}}\left(\operatorname{cone}\left(\dot{\alpha}_{j_{k}}(0)\right), \theta_{j_{k}}\right)
$$

where cone $\left(\dot{\alpha}_{j_{k}}(0)\right)=\left\{\lambda \dot{\alpha}_{j_{k}}(0) \in T_{p} M \mid \lambda \geq 0\right\}$ and $\alpha_{j_{k}}(0)=p$.
Corollary 3.3. Let $U \subset M$ be an open set. If V is a geodesic network in U and $\Theta^{1}(V, x)<2$ for all $x \in \operatorname{supp}\|V\|$, then every $p \in \Sigma_{V}$ is a triple junction.

Proof. First note that the condition $\Theta^{1}(V, x)<2$ at regular points imply that $\theta_{j}=1$ for all j. By proposition 3.2 (ii) the density is given by

$$
\Theta^{1}(V, p)=\Theta^{1}\left(\mathscr{C}_{p} V, 0\right)=\sum_{k=1}^{m} \frac{\theta_{j_{k}}}{2}
$$

Since $\theta_{j_{k}}=1$ we must have $m<4$ thus $m=3$.
In the two dimensional case we can infer further on the regularity of junctions.

Corollary 3.4. Let M be a surface and $V \in \mathrm{I} \mathcal{V}_{1}(M)$ be a geodesic network with density $\Theta^{1}(V, p) \leq 2$ for all $p \in \operatorname{supp}\|V\|$. Then either
(i) Σ_{V} contains at least one triple junctions or
(ii) Σ_{V} has no triple junctions, all junctions are regular and V is given by

$$
V=\sum_{i=1}^{l} \underline{\underline{v}}\left(\gamma_{i}, 1\right)
$$

where γ_{i} are closed geodesics (possibly repeated) and $\gamma_{i_{1}} \cap \gamma_{i_{2}} \cap \gamma_{i_{3}}=\emptyset$ for i_{1}, i_{2}, i_{3} all distinct.

Proof. In view of Corollary 3.3 all of the junctions with multiplicity less than 2 are triple junctions. Let us assume that (i) is false and we will show that V must satisfy (ii), that is, V has no triple junctions so all of the singular points have multiplicity 2 . If there is a geodesic segment of multiplicity 2 , then it cannot intersect any junction, because of the multiplicity bound.

The only possible junction is one formed by 4 distinct geodesic segments of multiplicity one each. We want to show that in this case it must be regular. That is, at least two of the segments must have opposite directions at the singular point, which implies that so do the other two.

Denote by $v_{1}, v_{2}, v_{3}, v_{4}$ the unitary tangent direction of each geodesic segment at the singularity. Let us suppose that at least 2 of these are distinct and not opposite to each other. Without loss of generality we may assume it is v_{1} and v_{2}. Since we are in dimension 2 we can use them as a basis and write v_{3} and v_{4} in terms of v_{1} and v_{2}. If one solves the system

$$
\left\{\begin{array}{l}
v_{1}+v_{2}+v_{3}+v_{4}=0 \text { (stationary condition) } \\
\left\|v_{i}\right\|=1 \text { (multiplicity one) }
\end{array}\right.
$$

then it is easy to see that, for example, v_{3} must be opposite to either v_{1} or v_{2}.

For the second part of $(i i)$, take $C \subset \operatorname{supp}\|V\|$ a connected component. If $V\llcorner C$ is given by a closed geodesic with multiplicity 2 then the density condition implies that it cannot have junctions and the statement is true. Otherwise, by what we showed above, each geodesic segment can be extended through the singular points. Again, because of the density hypothesis we cannot have 3 geodesics intersecting at the same point.

The main result is a structure theorem for 1-varifolds proved in [2]. Here we state a particular case and refer to the original article for a proof.

Theorem 3.5. Let M be a closed manifold and $U \subset M$ an open set. If $V \in \mathrm{I} \mathcal{V}_{1}(M)$ is stationary in U then V is a geodesic network in U.

Proof. Simply note that the definition of interval in [2, §1] is equivalent to being the image of a geodesic segment. The hypothesis for the theorem in [2, §3] are true because V is integral. Finally, note that the set S_{V} is the same as our set of junctions Σ_{V}.

Now we prove the property that we are mainly interested for geodesic networks in S^{n}

Proposition 3.6. Let $\left(S^{n}, g_{0}\right)$ be the round sphere of radius $1, U \subset S^{n}$ and $V \in \operatorname{I} \mathcal{V}_{1}\left(S^{n}, U\right)$ be stationary in U with total mass $\|V\|\left(S^{n}\right)<2 \pi d$ for some positive integer d. Then V is a geodesic network satisfying $\Theta^{1}(V, x)<d$ for all $x \in S^{n}$.

Proof. We know by Theorem 3.5 that V is a geodesic network. Let us prove that $\|V\|\left(S^{n}\right)<2 \pi d$ implies $\Theta^{1}(V, x)<d$ for every $x \in \operatorname{supp}\|V\|$.

Using proposition 2.6(iv) and (v), the Monotonicity formula for stationary varifolds (see [16, §17.8]) and $\alpha_{2}=\pi$ we compute

$$
\begin{aligned}
\Theta^{1}(V, x) & =\Theta^{2}(C(V), x)=\lim _{r \rightarrow 0} \frac{\|C\| B(x, r)}{\alpha_{2} r^{2}} \\
& \leq \lim _{r \rightarrow \infty} \frac{\|C\| B(x, r)}{\alpha_{2} r^{2}} \\
& =\frac{\|V\|\left(S^{n}\right)}{2 \alpha_{2}} \\
& <d .
\end{aligned}
$$

We can also prove a weaker version of this theorem for metrics that are sufficiently close to the round metric in S^{n}.

Theorem 3.7. Let g be a Riemannian metric in S^{n}. If g is sufficiently C^{∞}-close to the round metric then any varifold $W \in \operatorname{I\mathcal {V}_{1}}\left(S^{n}\right)$ stationary with respect to the metric g satisfying $\|W\|\left(S^{n}\right)<2 \pi\left(d+\frac{1}{3}\right)$ is a geodesic network such that $\Theta^{1}(W, x) \leq d$ for all $x \in \operatorname{supp}\|W\|$.

Proof. By Theorem 3.5 we know that W is a geodesic network with respect to the metric g. It remains to prove the second statement.

Assume false, that is, there exist a sequence of metrics g_{i} converging to g_{0} and a sequence of integral varifolds W_{i} stationary with respect to g_{i} satisfying $\left\|W_{i}\right\|\left(S^{n}\right)<2 \pi\left(d+\frac{1}{3}\right)$ and $\Theta^{1}\left(W_{i}, p_{i}\right)>d$ for some $p_{i} \in \operatorname{supp}\left\|W_{i}\right\|$. In fact we must have $\Theta^{1}\left(W_{i}, p_{i}\right) \geq\left(d+\frac{1}{2}\right)$ because W_{i} is a geodesic network.

Since the first variation is continuous with respect to the metric, we may assume that each W_{i} has bounded first variation in the metric g_{0}. By the Compactness Theorem we may suppose that W_{i} converges to an integral varifold V stationary in the round metric and p_{i} converges to $p \in \operatorname{supp}\|V\|$.

Furthermore, we have $\|V\|\left(S^{n}\right) \leq \liminf _{i \rightarrow \infty}\left\|W_{i}\right\|\left(S^{n}\right)<2 \pi\left(d+\frac{1}{3}\right)$ because the mass is lower semicontinuous with respect to varifold convergence. Following a computation similar to Proposition 3.6 we obtain that $\Theta^{1}(V, x)<\left(d+\frac{1}{3}\right)$ for all $x \in \operatorname{supp}\|V\|$. Since V is a geodesic network we must have $\Theta^{1}(V, x) \leq d$. On the other hand, the density is upper semicontinuous with respect to weak convergence of varifolds. Hence, $\left(d+\frac{1}{2}\right) \leq$ $\limsup { }_{i \rightarrow \infty} \Theta^{1}\left(W_{i}, p_{i}\right) \leq \Theta^{1}(V, p) \leq d$, which is a contradiction.

4. Almost minimising varifolds

In this section we define \mathbb{Z}_{2}-almost minimising varifolds and show that such 1-dimensional varifolds cannot admit triple junctions.

Definition 4.1. Let $U \subset M$ be an open set, $\varepsilon>0$ and $\delta>0$. We define

$$
\mathfrak{A}_{k}(U ; \varepsilon, \delta) \subset \mathcal{Z}_{k}(M)
$$

as the set $T \in \mathcal{Z}_{k}(M)$ such that any finite sequence $\left\{T_{1}, \ldots, T_{m}\right\} \subset \mathcal{Z}_{k}(M)$ satisfying
(a) $\operatorname{supp}\left(T-T_{i}\right) \subset U$ for all $i=1,2, \ldots, m$;
(b) $\mathcal{F}\left(T_{i}, T_{i-1}\right) \leq \delta$ for all $i=1,2, \ldots, m$ and
(c) $\underline{\underline{\mathbf{M}}}\left(T_{i}\right) \leq \underline{\underline{\mathbf{M}}}(T)+\delta$
must also satisfy

$$
\underline{\underline{\mathbf{M}}}\left(T_{m}\right) \geq \underline{\underline{\mathbf{M}}}(T)-\varepsilon .
$$

Roughly speaking, if T belongs to $\mathfrak{A}_{k}(U ; \varepsilon, \delta)$ then any deformation of T supported in U that does not increase mass at least ε must be δ-far from T in the \mathcal{F} metric. Note that we define the elements of \mathfrak{A}_{k} as closed cycles in M instead of relative cycles as defined in [15].

Definition 4.2. We say that a varifold $V \in \mathcal{V}_{k}(M)$ is \mathbb{Z}_{2}-almost minimising in U if for every $\varepsilon>0$ there exists $\delta>0$ and $T \in \mathfrak{A}_{k}(U ; \varepsilon, \delta)$ such that

$$
\underline{\underline{\mathbf{F}}}(V,|T|)<\varepsilon .
$$

A varifold $V \in \mathcal{V}_{k}(M)$ is said to be \mathbb{Z}_{2}-almost minimising in annuli if for every $p \in \operatorname{supp}\|V\|$ there exists $r>0$ such that V is \mathbb{Z}_{2}-almost minimising in the annulus $A=A(p ; s, r)$ for all $0<s<r$.

Definition 4.3. For a cubical subcomplex $X \subset I^{N}$, we say that a flat continuous map $f: X \rightarrow \mathcal{Z}_{k}(M)$ has no concentration of mass if

$$
\lim _{r \rightarrow 0} \sup \{\|f(x)\|(B(q, r)): x \in X \text { and } q \in M\}=0
$$

The next theorem shows the existence of \mathbb{Z}_{2}-almost minimising varifolds.

Theorem 4.4. Let $X \subset I^{N}$ be a cubical subcomplex and $f: X \rightarrow \mathcal{Z}_{k}(M)$ be a p-sweepout with no concentration of mass. Denote Π_{f} the class of all flat continuous maps $g: X \rightarrow \mathcal{Z}_{k}(M)$ with no concentration of mass that are flat homotopic to f and write

$$
L\left[\Pi_{f}\right]=\inf _{g \in \Pi_{f}} \sup _{x \in X} \underline{\underline{\boldsymbol{M}}}(g(x)) .
$$

If $L\left[\Pi_{f}\right]>0$ then there exists $V \in \mathcal{I}_{k}(M)$ such that
(i) $\|V\|(M)=L\left[\Pi_{f}\right]$;
(ii) V is stationary in M;
(iii) V is \mathbb{Z}_{2}-almost minimising in annuli.

This was first proven by Pitts (see [15, §4.10]), for another proof (when $k=\operatorname{dim}(M)-1)$ we refer to [12].

Note that this is a weaker statement than in [12], but it remains true for all dimensions and codimensions. This is because for every flat continuous homotopy class we can construct a discrete homotopy class just as in [12, Theorem 3.9] with the same width. The final statement then follows from [15, §4.10].

Definition 4.5. Let $T \in \mathcal{Z}_{k}(M)$ and $W \subset M$ be an open set. We say that T is locally mass minimising in W if for every $p \in \operatorname{supp}(T) \bigcap W$ there exists $r_{p}>0$ such that $B\left(p, r_{p}\right) \subset W$ and for all $S \in \mathcal{Z}_{k}(M)$ satisfying $\operatorname{supp}(T-$ $S) \subset B\left(p, r_{p}\right)$ we have

$$
\underline{\underline{\mathbf{M}}}(S) \geq \underline{\underline{\mathbf{M}}}(T)
$$

In the one dimensional case we have the following characterization:
Proposition 4.6. Let $W \subset M$ be an open set, $Z \subset W$ compact and $T \in$ $\mathcal{Z}_{1}(M)$ be locally mass minimising in W. Then each connected component of $\operatorname{supp}(T) \bigcap Z$ is the restriction of a geodesic segment with endpoints in $W \backslash Z$.

Proof. Let $A \subset \operatorname{supp}(T) \bigcap Z$ be a connected component. Cover A by finitely many balls $B_{i}=B\left(p_{i}, r\right), i=1, \ldots, m$ such that each ball is contained in a convex neighborhood and $r<r_{p_{i}}$ for all i. Denote $C=\operatorname{supp}(T) \bigcap\left(B_{1} \cup\right.$ $\cdots \cup B_{m}$), then each component $C \bigcap B_{i}$ is the unique minimising geodesic connecting the two points in $C \bigcap \partial B_{i}$. In particular the endpoints $A \bigcap \partial Z$ belong to the interior of a geodesic segment with endpoints in int (Z) and
$W \backslash Z$. We conclude that A is given by the image of a broken geodesic with singular points in the interior of Z.

Now, for each singular point $q \in A$ there exist r_{q} such that T ᄂ $B\left(q, r_{q}\right)$ is mass minimising relative to its boundary. Thus it must be a geodesic segment, that is, q is a smooth point in A. This implies that C is the image of a geodesic segment with endpoints in $W \backslash Z$. The proof finishes by simply noting that $A=\overline{C \bigcap Z}$.

Corollary 4.7. Let $W \subset M$ be an open set, $Z \subset W$ a compact set and $T \in \mathcal{Z}_{1}(M)$ be locally mass minimising in W. Then, viewing T as an integer coefficient current,

$$
T\left\llcorner Z=\sum_{i=1}^{k} \underline{\underline{\mathfrak{t}}}\left(\beta_{i},[1], \dot{\beta}_{i}\right),\right.
$$

where $\beta_{i}:[0,1] \rightarrow Z$ are geodesic segments for each $i=1, \ldots, k$ with endpoints in ∂Z.

In particular, the associated varifold $|T| \in \mathcal{V}_{1}(M)$ is stationary in W.
Proof. We simply need to apply the Constancy Theorem (see [16, §41]) to each connected component. Since we are working with \mathbb{Z}_{2} coefficients the density in each segment must be constant 1.

The replacement theorem for almost minimising varifolds can be stated as follows:

Theorem 4.8. Let $U \subset M$ be an open set, $K \subset U$ compact and $V \in \mathcal{V}_{k}(M)$ \mathbb{Z}_{2}-almost minimising in U. There exists a non-empty set $\mathcal{R}(V ; U, K) \subset$ $\mathcal{V}_{k}(M)$ such that every $V^{*} \in \mathcal{R}(V ; U, K)$ satisfy:
(i) $V^{*}\left\llcorner G_{k}(M \backslash K)=V\left\llcorner G_{k}(M \backslash K)\right.\right.$;
(ii) $\left\|V^{*}\right\|(M)=\|V\|(M)$;
(iii) V^{*} is \mathbb{Z}_{2}-almost minimising in U;
(iv) $V^{*}\left\llcorner G_{k}(\operatorname{int}(K)) \in \operatorname{I} \mathcal{V}_{k}(M)\right.$ and
(v) for each $\varepsilon>0$ there exists $T \in \mathcal{Z}_{k}(M)$ locally mass minimising in $\operatorname{int}(K)$ such that $\underline{\underline{\boldsymbol{F}}}\left(V^{*},|T|\right)<\varepsilon$.

Proof. The proof of (i)-(iv) is exactly as in [15, §3.11]. To show (v) one need to modify the construction in [15, §3.10] using our definition of almost minimising.

Remark. Note that if V is stationary on all of M then so is V^{*}.
In fact, V^{*} is almost-minimising in U (property 4.8(iii)) so it is also stationary in U. Since V^{*} coincides with V on $M \backslash K$ then it is also stationary in $M \backslash K$. That is, V^{*} is stationary in $U, M \backslash K$ and $U \cap(M \backslash K)$. Hence V^{*} is stationary in M.

4.1. Almost minimising geodesics networks

Here we will treat the particular case when V is a geodesic network. Our main goal is to prove that the almost minimising property excludes the existence of triple junctions.

The rough idea is to use the replacement theorem and approximate V^{*} by closed currents with coefficients in \mathbb{Z}_{2}. We will show that V^{*} can be described as a non-zero \mathbb{Z}_{2}-cycle but triple junctions always have boundary in \mathbb{Z}_{2}. From now on, given a varifold V we will denote by V^{*} a replacement given by Theorem 4.8 whenever V satisfies the conditions of the theorem.

To prove the next technical lemma we will need the following theorem proven in [19] by B. White and is used to prove a maximum principle for varifolds.

Theorem 4.9. Let N be a n-dimensional Riemannian manifold with boundary and $p \in \partial N$ such that $\kappa_{1}(p)+\cdots+\kappa_{m}(p)>\eta$, where $\kappa_{1} \leq \cdots \leq \kappa_{n-1}$ are the principal curvatures of ∂N with respect to the inward normal vectorfield ν_{N}. Then, given $\varepsilon>0$ there exists a supported vectorfield X on N such that $X(p) \neq 0$ is normal to ∂N and

$$
\left\langle X, \nu_{N}\right\rangle \geq 0 \text { in } \partial N
$$

and

$$
\delta V(X) \leq-\eta \int|X| d\|V\|
$$

for every $V \in \mathcal{V}_{m}(N)$.
We remark that the same theorem is true with all its inequalities reversed, the proof is exactly the same (see [19]).

Corollary 4.10. Let M be a closed Riemannian manifold and N an open set with strictly convex boundary with respect to the inward normal vectorfield ($\kappa_{1} \geq \eta>0$).

If $V \in \mathcal{V}_{1}(M)$ is stationary, $p \in \operatorname{supp}\|V\| \cap \partial N$ and $\operatorname{supp}\|V\| \cap B(p, \varepsilon) \cap$ $N \neq \emptyset$ then $\operatorname{supp}\|V\| \cap B(p, \varepsilon) \cap(M \backslash \bar{N}) \neq \emptyset$.

Proof. First suppose there exists $\varepsilon>0$ such that supp $\|V\| \cap B(p, \varepsilon) \subset \bar{N}$, that is, $W=V\left\llcorner G_{1}(B(p, \varepsilon)) \in \mathcal{V}_{1}(\bar{N})\right.$. Since ∂N is strictly convex, we can choose $\eta>0$ in Theorem 4.9 and obtain a vectorfield X in \bar{N} such that $\operatorname{supp}(X) \subset \bar{N} \cap B(p, \varepsilon)$ and

$$
\delta W(X)+\frac{\eta}{2} \int|X|<0
$$

This is not a contradiction yet because X is not a smooth vectorfield in M. However, we can construct a extension \tilde{X} such that $\operatorname{supp}(\tilde{X}) \subset B(p, \varepsilon), \tilde{X}$ is C^{1}-close to X and

$$
\delta W(\tilde{X})+\frac{\eta}{2} \int|\tilde{X}|<0
$$

By construction $\operatorname{supp}(\tilde{X}) \subset B(p, \varepsilon)$ hence $\delta V(\tilde{X})=\delta W(\tilde{X})<0$. This is a contradiction because V is stationary, thus supp $\|V\| \cap B(p, \varepsilon) \cap(M \backslash \bar{N}) \neq$ \emptyset.

We now show that an almost-minimising geodesic network is its own replacement. To simplify notation, from now on we write $V\left\llcorner U=V\left\llcorner G_{1}(U)\right.\right.$ whenever $V \in \mathrm{I} \mathcal{V}_{1}(M)$ and $U \subset M$ is an open set.

Lemma 4.11. Let M be a closed Riemannian manifold and $V \in \mathcal{I}_{1}(M)$ be a geodesic network and $p \in \Sigma_{V}$ be a junction point. If V is almost minimising in annuli at p then there exists $r>0$ and a compact set $K \subset A(p ; r, 3 r)$ such that
(i) V is almost minimising in $A(p ; r, 3 r)$ and
(ii) $\mathcal{R}(V ; A, K)=\{V\}$.

Proof. Since V is a geodesic network, then its singularities are isolated. That is, there exists $r_{p}>0$ such that p is the only singularity in $B\left(p, r_{p}\right)$.

Firstly choose $r>0$ such that $4 r<r_{p}, B=B(p, 4 r)$ is a convex ball and V is almost minimising in $A=A(p ; r, 3 r)$. It follows from the structure of a geodesic network that

$$
V\left\llcorner B=\sum_{j=1}^{m} \underline{\underline{v}}\left(\alpha_{j}, \theta_{j}\right)\right.
$$

where $\alpha_{j}:[0,4 r] \rightarrow \bar{B}$ is a minimising geodesic parametrized by arc-length for each $j=1, \ldots, m$. By abuse of notation we identify the curves α_{j} with its image.

Secondly, we can choose $\delta<r$ sufficiently small such that the balls $K_{j}=$ $\bar{B}\left(\alpha_{j}(2 r), \delta\right)$ have strictly convex boundary with respect to the inward normal vector and are pairwise disjoint. Define $a_{j}=\alpha_{j}(2 r-\delta), b_{j}=\alpha_{j}(2 r+\delta)$ and $K=K_{1} \cup \cdots \cup K_{m} \subset A$.

Finally we take $V^{*} \in \mathcal{R}(V ; A, K)$ a replacement for V and define $V_{j}^{*}=$ $V^{*}\left\llcorner\operatorname{int}\left(K_{j}\right)\right.$ and $V_{j}=V\left\llcorner\operatorname{int}\left(K_{j}\right)\right.$. By property 4.8(i) it is sufficient to show that $V_{j}^{*}=V_{j}$ for each j.

Claim 1. $\sum_{j=1}^{m}\left\|V_{j}^{*}\right\|(M)=\sum_{j=1}^{m}\left\|V_{j}\right\|(M)$
This follows directly from properties 4.8 (i) and (ii).
 tifiable curve connecting a_{j} to b_{j}.

Note that $\operatorname{supp}\left\|V_{j}^{*}\right\|$ only intersects bdry $\left(K_{j}\right)$ at the points a_{j} and b_{j}. In fact, suppose there is another point of intersection. Then, by the maximum principle (Corollary 4.10) it follows that $\operatorname{supp}\left\|V^{*}\right\| \backslash \operatorname{int}\left(K_{j}\right)=$ $\operatorname{supp} \| V^{*}\llcorner M \backslash K \|$ also contains that point, but this contradicts property 4.8(i).

Now, suppose supp $\left\|V_{j}^{*}\right\|$ contains no curve joining a_{j} and b_{j}. In that case, we can write supp $\left\|V_{j}^{*}\right\|=C_{a} \cup C_{b}$ where C_{a} and C_{b} are closed disjoint sets containing a_{j} and b_{j} respectively (these are not unique and not necessarily connected). Take U_{a} and U_{b} open and disjoint neighbourhoods of C_{a} and C_{b} in the interior of K_{j} respectively. We will show that $V_{j}^{*}\left\llcorner U_{a}=V_{j}^{*}\left\llcorner U_{b}=0\right.\right.$.

Take for example $V_{j}^{*}\left\llcorner U_{a}\right.$, which is stationary (see remark after Theorem 4.8). Now, consider $B(\sigma)=B(\alpha(2 r \sigma), \sigma \delta)$ then $V_{j}^{*}\left\llcorner U_{a}\right.$ is entirely contained in $B(1)=\operatorname{int}\left(K_{j}\right)$ and it only intersects the boundary at the point a_{j}. Since $\partial B(\sigma)$ is strictly convex for all σ, a maximum principle argument shows that $V_{j}^{*}\left\llcorner U_{a}\right.$ is contained in $B(\sigma)$ for all $\sigma<1$ thus proving that $V_{j}^{*}\left\llcorner U_{a}=0\right.$. The same argument shows that $V_{j}^{*}\left\llcorner U_{b}=0\right.$ and we prove the claim.

Claim 3. $V_{j}^{*} \neq 0$ for all $j=1, \ldots, m$
Consider $B_{j}^{\prime}=B\left(\alpha_{j}(2 r), \delta^{\prime}\right)$ with $\delta<\delta^{\prime}<r$ such that $K_{j} \subset B_{j}^{\prime} \subset A$ are still pairwise disjoint. Then property 4.8 (i) implies that

$$
V^{*}\left\llcorner B_{j}^{\prime} \backslash K_{j}=\underline{\underline{v}}\left(\alpha_{j} \cap\left(B_{j}^{\prime} \backslash K_{j}\right), \theta_{j}\right) .\right.
$$

If V_{j}^{*} was zero, then in particular $V_{j}^{*}=\underline{\underline{v}}\left(\alpha_{j}, 0\right)$. But

$$
V^{*}\left\llcorner B_{j}^{\prime}=V^{*}\left\llcorner B_{j}^{\prime} \backslash K_{j}+V_{j}^{*}\right.\right.
$$

is stationary and its support is contained in α_{j}. From the Constancy Theorem we conclude that $\theta_{j}=0$ which is a contradiction, thus $V_{j}^{*} \neq 0$.

This means that $\operatorname{supp}\left\|V_{j}^{*}\right\|$ contains a rectifiable curve C_{j} connecting a_{j} to b_{j} for all $j=1, \ldots, m$. In particular this implies that $l\left(C_{j}\right) \geq d\left(a_{j}, b_{j}\right)$. Since V_{j}^{*} is integral (see property 4.8 (iv)) it follows that $\left\|V_{j}^{*}\right\|(M) \geq d\left(a_{j}, b_{j}\right)$. However, $\alpha_{j} \cap K_{j}$ is a minimising geodesic connecting a_{j} to b_{j}, so $\left\|V_{j}\right\|(M)=$ $d\left(a_{j}, b_{j}\right)$. We conclude that $\left\|V_{j}^{*}\right\|(M) \geq\left\|V_{j}\right\|(M)$ for all $j=1, \ldots, m$. Claim 1 implies that we have in fact

$$
\left\|V_{j}^{*}\right\|(M)=\left\|V_{j}\right\|(M) \text { for all } j=1, \ldots, m
$$

On the other hand, we have $d\left(a_{j}, b_{j}\right)=\left\|V_{j}^{*}\right\|(M) \geq l\left(C_{j}\right) \geq d\left(a_{j}, b_{j}\right)$, that is, C_{j} is a minimising curve and it must be a geodesic. Since $\alpha_{j} \cap K_{j}$ is the unique geodesic connecting a_{j} to b_{j} we conclude that $C_{j}=\alpha_{j} \cap K_{j}$. Finally, this implies that $\operatorname{supp}\left\|V_{j}^{*}\right\|=\operatorname{supp}\left\|V_{j}\right\|$ because otherwise there would be more contribution of mass. Applying the Constancy Theorem again we show that $V_{j}^{*}=V_{j}$ and this finishes the proof.

The last result we need relates flat convergence of \mathbb{Z}_{2}-currents and the weak convergence of the associated varifold. This was proven in [18] by B. White.

Theorem 4.12. Let M be a Riemannian manifold, $\left\{W_{i}\right\} \subset \mathcal{I}_{k}(M)$ be a sequence converging to an integral varifold W. Suppose that:
(I) Each W_{i} has locally bounded first variation;
(II) $\partial\left[W_{i}\right]$ converges in the flat topology.

Then $\left[W_{i}\right]$ converges to $[W]$ in the flat topology.
Finally we prove our main result of this section.
Theorem 4.13. Let M be a Riemannian manifold, $V \in \mathcal{I}_{1}(M)$ a geodesic network and $p \in \Sigma_{V}$ a junction point. If V is \mathbb{Z}_{2}-almost minimising in annuli at p, then

$$
\Theta^{1}(V, p) \in \mathbb{N}
$$

In particular p is not a triple junction.
Proof. Let $r>0, B=B(p, 4 r), A=A(p ; r, 3 r)$ and $K \subset A$ as in Lemma 4.11. Applying property 4.8(v), Corollary 4.7 and the Compactness theorem for \mathbb{Z}_{2}-chains (see [18, Theorem 5.1]) we may assume there exists a convergent sequence $\left\{T_{i}\right\}_{i \in \mathbb{N}} \subset \mathcal{Z}_{1}(M)$ and $T \in \mathcal{Z}_{1}(M)$ such that
(a) $T_{i} \rightarrow T$ in the \mathcal{F}-norm;
(b) $V_{i}=\left|T_{i}\right|$ is stationary in $\operatorname{int}(K)$ and
(c) $V_{i} \rightarrow V$ in the $\underline{\underline{\mathbf{F}}-m e t r i c . ~}$

Even though convergence of chains in the flat norm do not correspond to weak convergence for varifolds, in the stationary case, with convergent boundary, it does.

We want to apply Theorem 4.12 for the sequence $\left\{V_{i} \text { ᄂ int }(K)\right\}_{i \geq 1}$. We know that $\partial\left[V_{i}\llcorner\operatorname{int}(K)] \rightarrow \partial T\right.$ ᄂint (K) by the definition of V_{i}. Together with property (b) it means that the sequence satisfies the hypothesis of the theorem. We conclude that

$$
T\llcorner\operatorname{int}(K)=[V\llcorner\operatorname{int}(K)] .
$$

Since $V\left\llcorner B=\sum_{j=1}^{m} \underline{\underline{v}}\left(\alpha_{j}, \theta_{j}\right)\right.$ for some geodesic segments α_{j} and $\theta_{j} \in$ $\mathbb{Z}_{>0}$, we have

$$
\left[V\llcorner\operatorname{int}(K)]=\sum_{j=1}^{m} \underline{\underline{v}}\left(\alpha_{j} \cap \operatorname{int}(K),\left[\theta_{j}\right]\right)\right.
$$

and $\left[\theta_{j}\right]$ is non-zero only when θ_{j} is odd.

If θ_{j} is even for all j then the density at p must be an integer and we finish our proof because geodesic segments with even multiplicity contribute to the density at p with an integer number.

In case some θ_{j} is odd we have that $T \neq 0$ and $\operatorname{supp}(T) \subset \operatorname{supp}\|V\|$. We can view $T\llcorner B$ as an integer chain and apply the Constancy theorem for integral currents (see [16, §26.27]) and the fact that T and $[V]$ coincide in $\operatorname{int}(K)$ to conclude that

$$
T\left\llcorner B=\sum_{j=1}^{m} \frac{\mathfrak{t}}{\underline{t}}\left(\alpha_{j},\left[\theta_{j}\right], \dot{\alpha}_{j}\right) .\right.
$$

Now we simply note that p is a boundary point for T unless the number of θ_{j} such that $\left[\theta_{j}\right] \neq 0$ is even. That is, there is an even number of geodesic segments α_{j} with odd multiplicity and in particular its density contribution is an integer number. This finishes the proof because T is a closed chain.

5. The width of an ellipsoid

Here we will apply the previous results to estimate some of the k-widths of ellipsoids sufficiently close to the round sphere.

5.1. Sweepouts of S^{2}

Let $\left(S^{2}, g_{0}\right)$ denote the round 2-dimensional sphere with radius 1 in \mathbb{R}^{3}. We will construct k-sweepouts of S^{2} as families of algebraic sets in \mathbb{R}^{3}. This is similar to how it is done in [10] for the unit ball.

Denote by x_{1}, x_{2}, x_{3} the coordinates in \mathbb{R}^{3} with respect to the standard basis. Let $p_{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ denote the following polynomials for $i=1, \ldots, 8$:

$$
\begin{aligned}
& p_{j}(x)=x_{j} \text { for } j=1,2,3 ; \\
& p_{4}(x)=x_{1}{ }^{2} \\
& p_{5}(x)=x_{1} x_{2} ; \\
& p_{6}(x)=x_{1} x_{3} ; \\
& p_{7}(x)=x_{2} x_{3} ; \\
& p_{8}(x)=x_{3}{ }^{2} .
\end{aligned}
$$

Note that we skipped the polynomial $x_{2}{ }^{2}$. The reason for this is because we are only interested in the zero set restricted to the sphere, which is given by the equation $x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}-1=0$. That is, p_{4}, p_{8} and $x \mapsto x_{2}{ }^{2}$ are
linearly dependent so their linear combinations will define the same algebraic sets.

Now, put $A_{k}=\operatorname{span}_{\mathbb{R}}\left(1 \cup_{j=1}^{k} p_{j}\right) \backslash\{0\}$ and define the relation $q \sim \lambda q$, for $\lambda>0$ and $q \in A_{k}$. Note that the zero set is invariant under this relation, that is, $\{\lambda q=0\}=\{q=0\}$ so it makes sense to define the map $F_{k}:\left(A_{k} / \sim\right.$ $) \rightarrow \mathcal{Z}_{1}\left(S^{2}\right)$ as

$$
F_{k}([q])=\partial\left[\{q<0\} \cap S^{2}\right]
$$

where $[R]$ denotes the mod 2 current associated with $R \subset S^{2}$. It is clear that F_{k} is well defined and it takes values in $\mathcal{Z}_{1}\left(S^{2}\right)$. Also, we can identify $\left(A_{k} / \sim\right)$ with $\mathbb{R} P^{k}$.

Lemma 5.1. F_{k} is continuous with respect to the flat topology.

Proof. Let p and q be two polynomials in A_{k}.
Observe that $\partial\left[\{p<0\} \Delta\{q<0\} \cap S^{2}\right]=\partial\left[\{p<0\} \cap S^{2}\right]-\partial[\{q<0\} \cap$ $\left.S^{2}\right]$ and $\{p<0\} \Delta\{q<0\}=\{p q \leq 0\}$, where Δ denotes the symmetric difference of sets. Now, note that $\underline{\underline{\mathbf{M}}}\left(\left[\{p q \leq 0\} \cap S^{2}\right]\right)=\underline{\underline{\mathbf{M}}}\left(\left[\{p q<0\} \cap S^{2}\right]\right)$ unless $\{p q=0\} \cap S^{2}$ is an open set of S^{2} with positive measure. In this case we must have $\{p q=0\} \cap S^{2}=S^{2}$ which implies that $\partial\left[\{p<0\} \cap S^{2}\right]-\partial[\{q<$ $\left.0\} \cap S^{2}\right]=0$, that is, $F_{k}([p])=F_{k}([q])$.

Finally, let $\left[q_{i}\right]$ converge to $[p]$ in A_{k} / \sim. Without loss of generality we can suppose q_{i} converges to λp, for some $\lambda>0$. We conclude that

$$
\mathcal{F}\left(\partial\left[\{p<0\} \cap S^{2}\right]-\partial\left[\left\{q_{i}<0\right\} \cap S^{2}\right]\right) \leq \underline{\underline{\mathbf{M}}}\left(\left[\left\{p q_{i}<0\right\} \cap S^{2}\right]\right)
$$

unless $F_{k}([p])=F_{k}\left(\left[q_{i}\right]\right)$. We can suppose that $F_{k}([p]) \neq F_{k}\left(\left[q_{i}\right]\right)$ for all i sufficiently large. If q_{i} tends to p then $\underline{\underline{\mathbf{M}}}\left(\left[\left\{p q_{i}<0\right\} \cap S^{2}\right]\right)$ converges to $\underline{\underline{\mathbf{M}}}\left(\left[\left\{\lambda p^{2}<0\right\} \cap S^{2}\right]\right)=0$. This proves that the flat norm converges to zero, that is, F_{k} is flat continuous.

Lemma 5.2. Let $F_{k}: \mathbb{R} P^{k} \rightarrow \mathcal{Z}_{1}\left(S^{2}\right), k=1, \ldots, 8$, be the family of cycles defined above. Then F_{k} has no concentration of mass.

Proof. Take $p \in S^{2}$ and $0<r<\pi$ and denote by α_{p} the equator given by $p^{\perp} \cap S^{2}$, where p^{\perp} is the plane normal to p in \mathbb{R}^{3}. Consider the ball $B(p, r) \subset$ S^{2}. We can parametrize the space of geodesics that go through $B(p, r)$ as $G(r)=\left\{q^{\perp} \cap S^{2}: d\left(q, \alpha_{p}\right)<r\right\}$. The set $G(r)$ defines a spherical segment whose area is $\operatorname{area}(G(r))=4 \pi \sin (r)$.

If $x \in \mathbb{R} P^{k}$ is such that $F_{k}(x) \cap B(p, r) \neq \emptyset$ then it follows from the Crofton formula that

$$
\underline{\underline{\mathbf{M}}}\left(F_{k}(x)\llcorner B(p, r))=\frac{1}{4} \int_{\Gamma \in G(r)} \#\left(\Gamma \cap F_{k}(x)\right) .\right.
$$

Since $\Gamma \cap F_{k}(x)$ is the intersection of a plane with S^{2} and $F_{k}(x)$ then it is the solution of a system of 3 polynomials of degree 1,2 and at most 2 (1 if $k=1,2,3$ or 2 if $k=4, \ldots, 8$), respectively. It follows that the intersection is generically $\#\left(\Gamma \cap F_{k}(x)\right) \leq 4$. Hence,

$$
\underline{\underline{\mathbf{M}}}\left(F_{k}(x)\llcorner B(p, r)) \leq 4 \pi \sin (r) .\right.
$$

If we take $r \rightarrow 0$ we conclude that F_{k} has no concentration of mass at p. Since p was arbitrary we conclude the proof.

Remark. Note that the same proof is valid for any family of algebraic curves in S^{2} with bounded degree.

Theorem 5.3. If S^{2} is the round 2 -sphere of radius 1 , then

$$
\begin{aligned}
& \text { (i) } \omega_{1}\left(S^{2}\right)=\omega_{2}\left(S^{2}\right)=\omega_{3}\left(S^{2}\right)=2 \pi \\
& \text { (ii) } \omega_{4}\left(S^{2}\right)=\omega_{5}\left(S^{2}\right)=\omega_{6}\left(S^{2}\right)=\omega_{7}\left(S^{2}\right)=\omega_{8}\left(S^{2}\right)=4 \pi
\end{aligned}
$$

Proof. (i): By the Crofton formula we have that, $\underline{\underline{\mathbf{M}}}\left(F_{k}(q)\right) \leq 2 \pi$ for all $q \in \mathbb{R} P^{k}$ and $k=1,2,3$. In fact, it is not hard to see that $\sup \underline{\underline{\mathbf{M}}}\left(F_{k}(q)\right)=2 \pi$. That is, $\omega_{k} \leq 2 \pi$.

Suppose $\omega_{k}<2 \pi$, then there exists another k-sweepout with no concentration of mass \tilde{F} such that $L\left[\Pi_{\tilde{F}}\right]<2 \pi$. Hence, Theorem 4.4 would give us a stationary \mathbb{Z}_{2}-almost minimising integral varifold with $\|V\|\left(S^{2}\right)<2 \pi$. This is a contradiction because Proposition 3.6 tells us that the density would be lower than 1 everywhere. So F_{k} is optimal and $\omega_{k}=2 \pi$ for $k=1,2,3$.

For the next item we need a lemma whose proof we give in the Appendix.
Lemma 5.4. Let S^{2} be the round 2 -sphere of radius 1 , then $\omega_{4}>2 \pi$.
(ii): When $k=4,5,6,7,8$ the degree of the polynomials are less than or equal to 2 , thus, using the Crofton formula again, $\underline{\underline{\mathbf{M}}}\left(F_{k}(q)\right) \leq 4 \pi$ for all $q \in \mathbb{R} P^{k}$. As before, it is trivial to check that $\sup \underline{\underline{\mathbf{M}}}\left(\underline{\left.\overline{F_{k}}(q)\right)=4 \pi \text { from which }}\right.$ we get $\omega_{k} \leq 4 \pi$.

By Lemma 5.4 and the previous item we already know that $\omega_{k} \geq \omega_{4}>$ 2π. Suppose $\omega_{k}<4 \pi$ then, as before, we have a k-sweepout \tilde{F} with no
concentration of mass such that $\omega_{k} \leq L\left[\Pi_{\tilde{F}}\right]<4 \pi$. From Theorem 4.4 we produce $V \in \mathrm{I} \mathcal{V}_{1}\left(S^{2}\right)$ stationary and \mathbb{Z}_{2}-almost minimising. It follows from Theorems 3.5 and 4.13 that V has constant density equal to 1 . Hence V corresponds to a closed regular geodesic, that is, $\|V\|\left(S^{2}\right)=2 \pi$, which is a contradiction.

5.2. Geodesics on ellipsoids

Our goal here is to find the varifold that realizes the k-width of an ellipsoid sufficiently close to the round sphere.

Let $E^{2}=E^{2}\left(a_{1}, a_{2}, a_{3}\right)$ be an ellipsoid defined by the equation $a_{1} x_{1}^{2}+$ $a_{2} x_{2}^{2}+a_{3} x_{3}^{2}-1=0$ in \mathbb{R}^{3}. If the parameters a_{1}, a_{2}, a_{3} are all sufficiently close to 1 then it is clear that the induced metric in E^{2} is C^{∞}-close to the round metric in S^{2}. We can assume other properties that we summarize here.

Proposition 5.5. Let $\gamma_{i}=\left\{x_{i}=0\right\} \cap E^{2}$ for $i=1,2,3$ be the three principal geodesics in $E^{2}, \gamma_{i}^{(r)}$ be the r-covering of γ_{i} for $r \in \mathbb{N}$ and $\omega_{k}\left(E^{2}\right)$ denote the k-width for $k \in \mathbb{N}$. If we choose $a_{1}<a_{2}<a_{3}$ sufficiently close to 1 then the following is true:
(i) $2 \pi\left(1-\frac{1}{4}\right)<L\left(\gamma_{1}\right)<L\left(\gamma_{2}\right)<L\left(\gamma_{3}\right)<2 \pi\left(1+\frac{1}{4}\right)$;
(ii) $\operatorname{index}\left(\gamma_{i}^{(r)}\right)=i+2(r-1)$ and $\operatorname{null}\left(\gamma_{i}^{(r)}\right)=0$ for $i=1,2,3$ and $r<100$;
(iii) if α is a smooth closed geodesic with $L(\alpha)<100 \pi$ then $\alpha=\gamma_{i}^{(r)}$ for some $i=1,2$ or 3 and $r>0$;
(iv) $\left|\omega_{k}\left(E^{2}\right)-\omega_{k}\left(S^{2}\right)\right|<\frac{1}{4}$ for all $k<100$;

By index (γ) and $\operatorname{null}(\gamma)$ we mean the Morse index and nullity as smooth closed geodesics, that is, critical points of the energy functional.

Proof. (i): Note, for example, that γ_{1} is a planar ellipsis with axes $\frac{1}{a_{2}}$ and $\frac{1}{a_{3}}$, similarly for the other two. So, as long as a_{i} are close to 1 each ellipsis is close to a circle of length 2π.
(ii): See [14, XI,Theorem 3.3].
(iii): See [14, XI,Theorem 4.1].
(iv): Note that every sweepout of E^{2} is also a sweepout for S^{2}, simply by the fact they are both diffeomorphic and the definition of sweepout does not depend on the metric. Since the metric in E^{2} can be chosen sufficently close to the round metric we can prove that each k-width is continuous by
simply using the same approximating sweepouts. The uniform convergence follows directly because we are considering only finitely many k-widths.

Given these three main ellipses we are able to define the varifolds that will be candidates to realize the first 8 widths of E^{2}. Define

$$
\begin{aligned}
& W_{j}=\underline{\underline{v}}\left(\gamma_{j}, 1\right), j=1,2,3 \\
& W_{4}=\underline{\underline{v}}\left(\gamma_{1}, 2\right) \\
& W_{5}=\underline{\underline{v}}\left(\gamma_{1}, 1\right)+\underline{\underline{v}}\left(\gamma_{2}, 1\right) \\
& W_{6}=\underline{\underline{v}}\left(\gamma_{2}, 2\right) \\
& W_{7}=\underline{\underline{v}}\left(\gamma_{1}, 1\right)+\underline{\underline{v}}\left(\gamma_{3}, 1\right) \\
& W_{8}=\underline{\underline{v}}\left(\gamma_{2}, 1\right)+\underline{\underline{v}}\left(\gamma_{3}, 1\right) \\
& W_{9}=\underline{\underline{v}}\left(\gamma_{3}, 2\right)
\end{aligned}
$$

Remark. Suppose E^{2} is sufficiently close to the round sphere of radius 1. Since these are all possible combinations of the three principal geodesic with density less than or equal to 2 , Theorems $3.7,4.13$ and Corollary 3.4 imply that these are also the only almost minimising geodesic networks with mass less than $2 \pi\left(2+\frac{1}{3}\right)$.

They also correspond to the zero set (counted with multiplicity) of the polynomials p_{j}, defined in the previous section, intersected with E^{2} (except for W_{6}).

Before proceeding to the main theorem we need a technical lemma that was proved in [12, §6] under a different context. We explain how to obtain our result from their proof in the Appendix.

Lemma 5.6. Let E^{2} be an ellipsoid as in Proposition 5.5. Then $\omega_{i}<\omega_{i+1}$ for $i=1, \ldots, 7$.

Theorem 5.7. Let E^{2} be an ellipsoid as in Proposition 5.5. The following holds:
(i) if $i=1,2$ or 3 then $\omega_{i}\left(E^{2}\right)=\left\|W_{i}\right\|\left(E^{2}\right)$;
(ii) if $i=4, \ldots 8$ then $\omega_{i}\left(E^{2}\right)=\left\|W_{l}\right\|\left(E^{2}\right)$ for some $l=4, \ldots, 9$ without repetition.

Proof. Firstly, it follows from Proposition 5.5(iv) and Theorem 5.3(i) that

$$
\begin{aligned}
& \omega_{i}\left(E^{2}\right)<2 \pi\left(1+\frac{1}{4}\right), \text { for } i=1,2,3 \text { and } \\
& \omega_{i}\left(E^{2}\right)<2 \pi\left(2+\frac{1}{4}\right), \text { for } i=4, \ldots, 8
\end{aligned}
$$

In either case we claim that there exists an optimal sweepout for ω_{i}. Indeed, if no such map existed for some i we would have a sequence of sweepouts $\left\{F_{k}\right\}$ satisfying $\omega_{i}<L\left[F_{k+1}\right]<L\left[F_{k}\right]<2 \pi\left(2+\frac{1}{4}\right)$. Each F_{k} provides us a distinct almost-minimising geodesic network with mass less than $2 \pi\left(2+\frac{1}{4}\right)$ by Theorem 4.4, and the characterization of stationary integral varifolds (Theorem 3.5). However, as we have already remarked, there only finitely many such varifolds (that is to say, the previously defined W_{j}) so we have a contradiction.

Secondly, Lemma 5.6 tells us that $\omega_{1}<\cdots<\omega_{8}$. Hence, each optimal sweepout gives us an almost-minimising geodesic network V_{i} satisfying

$$
\left\|V_{i}\right\|\left(E^{2}\right)=\omega_{i}\left(E^{2}\right) \quad \text { and } \quad\left\|V_{i}\right\|\left(E^{2}\right)<\left\|V_{i+1}\right\|\left(E^{2}\right) \quad \text { for } \quad i=1, \ldots, 8
$$

(i): For $i=1,2,3$ we have $\left\|V_{i}\right\|\left(E^{2}\right)<2 \pi\left(1+\frac{1}{4}\right)$ so each one of these must correspond to one $W_{j}, j=1,2,3$. Since their masses are ordered as

$$
\left\|W_{1}\right\|\left(E^{2}\right)<\left\|W_{2}\right\|\left(E^{2}\right)<\left\|W_{3}\right\|\left(E^{2}\right)
$$

we must have $V_{i}=W_{i}, i=1,2,3$.
(ii): For $j=4, \ldots, 8$ the W_{j} 's are not necessarily ordered by their mass. To be specific, we cannot guarantee for a general ellipsoid that $\left\|W_{6}\right\|\left(E^{2}\right)<$ $\left\|W_{7}\right\|\left(E^{2}\right)$ or vice-versa. However, we know that each V_{i} corresponds to one of the W_{j} 's and this correspondence must be one to one, which finishes the proof.

At last we construct an unstable min-max varifold with multiplicity 2 and give a counterexample to Question 1.

Corollary 5.8. Let E^{2} be as in Proposition 5.5, then Question 1 is false for E^{2}. Furthermore, out of W_{4}, W_{6} and W_{9} at least two must be a min-max varifold.

Proof. First of all we observe that if the support of V is given by a smooth closed geodesic γ then $\operatorname{index}(V)$ and $\operatorname{null}(V)$ as a varifold are the same as index (γ) and $\operatorname{null}(\gamma)$ as a critical point for the energy functional.

Now, Theorem 5.7(ii) tells us that $\omega_{4}\left(E^{2}\right)=\left\|W_{j}\right\|\left(E^{2}\right)$ for some $j=$ $4, \ldots, 9$. Where $W_{j}, j=1, \ldots, 8$ are as before. Since there are 6 varifolds to choose for 5 widths we know that one, and only one, will not correspond to a width. This proves the second statement.

The first 3 varifolds are ordered as $\left\|W_{4}\right\|\left(E^{2}\right)<\left\|W_{5}\right\|\left(E^{2}\right)<\left\|W_{6}\right\|\left(E^{2}\right)$ which implies that ω_{4} must correspond to either W_{4} or W_{5}. If $\omega_{4}\left(E^{2}\right)=$ $\left\|W_{4}\right\|\left(E^{2}\right)$ then the number of parameters is 4 but index $(V)+\operatorname{null}(V)=$ $3+0<4$, as given by property 5.5(ii).

If this is not the case, then W_{4} is the only varifold that does not correspond to any width and all the other ones must correspond to one, and only one, width. As we have already pointed out, the comparison between $\left\|W_{6}\right\|\left(E^{2}\right)$ and $\left\|W_{7}\right\|\left(E^{2}\right)$ is not known in general. In any case, W_{6} must correspond to either ω_{5} (if $\left\|W_{6}\right\|\left(E^{2}\right)<\left\|W_{7}\right\|\left(E^{2}\right)$) or ω_{6} (if $\left\|W_{7}\right\|\left(E^{2}\right)<$ $\left\|W_{6}\right\|\left(E^{2}\right)$). On the other hand, index $\left(W_{6}\right)+\operatorname{null}\left(W_{6}\right)=4+0<5$, which disproves the conjecture in either case.

Remark. If one picks the ellipsoid $E_{2}(1-\varepsilon, 1,1+\varepsilon)$ we have $\left\|W_{6}\right\|\left(E^{2}\right)=$ $\left\|W_{7}\right\|\left(E^{2}\right)$ thus forcing one of them to not be a critical varifold. In this case W_{4} must correspond to $\omega_{4}\left(E^{2}\right)$.

As a final remark we observe that W_{4}, W_{6} and W_{9} correspond to an unstable embedded closed geodesic with multiplicity 2 . This provides a concrete counterexample to the Multiplicity One Conjecture in the case of 1cycles on surfaces. The main difference to higher dimensions is that in the hypersurface case one could be able to de-singularize two minimal surfaces (for example two great spheres in S^{3} approaching a sphere with multiplicity 2) along their intersection and obtain an embedded "competitor" with less area, but with different topology. This cannot be done for curves.

6. Further problems

We would like to propose a general formula for the width of the round sphere S^{2}. First let us give our conjecture and then explain the motivation. We expect that

$$
\omega_{j}=2 \pi k, \text { if } j \in\left\{k^{2}, \ldots,(k+1)^{2}-1\right\} .
$$

A simple computation shows that this would imply the Weyl law for S^{2}. Of course, to prove the Weyl law it is not necessary to compute the width spectrum, one is only interested in its asymptotic behavior. This is a much stronger conjecture.

Denote by $P\left[\mathbb{R}^{3}, d\right]$ the space of real polynomials of degree less than or equal to d in 3 variables. For each $p \in P$ we can define $\{p=0\} \cap S^{2}$ as we have already done. However, any polynomial that contains the fact $\left(x_{1}{ }^{2}+\right.$ $x_{2}^{2}+x_{3}^{2}-1$) do not define a 1-cycle in S^{2} so we have to quotient these out. That is, we are interested in the space $A_{d}=P\left[\mathbb{R}^{3}, d\right] /\left\langle x_{1}^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}-1\right\rangle_{d}$, where $\left\langle x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right\rangle_{d}$ denotes the ideal generated by $\left(x_{1}{ }^{2}+x_{2}{ }^{2}+\right.$ $\left.x_{3}{ }^{2}-1\right)$ intersected with $P\left[\mathbb{R}^{3}, d\right]$.

Now, note that we can write $A_{k}=A_{k-1} \oplus H_{k}$ where H_{k} is the space of homogeneous polynomials in 3 variables of degree k. The space H_{k} is isomorphic to the eigenspace of the $k^{t h}$ eigenvalue of the Laplacian in S^{2} and its dimension is $2 k+1=(k+1)^{2}-k^{2}$. Using the polynomials in A_{k-1} and a basis for H_{k} we can construct j-sweepouts for $j=k^{2}, \ldots,(k+1)^{2}-1$ whose minmax values are $2 \pi k$ as given by the Crofton formula. We expect these sweepouts to be optimal for the round sphere.

This is motivated by Lusternik-Schnirelmann theory on manifolds. We believe that the width will be realised by a combination of great circles with possible multiplicities. Lusternik-Schnirelmann theory indicates that if $\omega_{k}=\omega_{k+N}$ then there exists a N-parameter family of varifolds with constant mass ω_{k}. More generally, one would expect the space of critical varifolds with mass ω_{k} to have Lusternik-Schnirelmann category greater or equal to N In the case of S^{2} the space of k-combinations of great circles is simply the space of unordered k-tuples of great circles, that is, it is given by $S P^{k}\left(\mathbb{R} P^{2}\right)$. We denote by $S P^{k}(X)$ the quotient of X^{k} by the action of the k-symmetry group S_{k}. It is known that $S P^{k}\left(\mathbb{R} P^{2}\right)=\mathbb{R} P^{2 k}$ (see [4]), whose LusternikSchnirelmann category is $2 k+1$. Finally our conjecture implies that the equality gaps in the width spectrum are given by $\omega_{k^{2}}=\omega_{(k+1)^{2}-1}$, which is consistent with the Lusternik-Schnirelmann motivation. As a brief remark we would like to point out the for higher dimensions the same ideas would violate the category of the critical set.

Unfortunately none of this has been proved. Neither the category ideas or the optimality of the polynomial sweepouts are known. The LusternikSchnirelmann theory for smooth functions on manifolds (see [6) does not carry over to our case directly.

Appendix A.

First let us extract a weaker version of the results in [12]. From the proof of [12, Theorem 6.1] we can obtain the following general, but weaker, proposition.

Proposition A.1. Let M be a closed Riemannian manifold and $\left\{\omega_{k}(M)\right\}_{k \in \mathbb{N}}$ be the width spectrum corresponding to 1-cycles in M. If $\omega_{k}(M)=\omega_{k+1}(M)$ for some k, then there exist infinitely many geodesic networks with mass $\omega_{k}(M)$ and that are almost-minimising in annuli at every point.

The proof is similar to [12, Theorem 6.1], however we cannot use SchoenSimon's Regularity Theorem or the Constancy Theorem (as in [12, Claim $6.2]$). To overcome this one notes that if a sequence of varifolds converges to a geodesic network then the sequence of associated currents converge to a subnetwork of the limit.

More precisely, let $\left\{T_{i}\right\}_{i \in \mathbb{N}} \subset \mathcal{Z}_{1}(M)$ be a sequence of flat cycles such that $\left|T_{i}\right| \rightarrow V$ and $T_{i} \rightarrow T$. If V is a geodesic network defined by geodesic segments $\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$ and its respective multiplicities, then T is a cycle (not necessarily stationary) defined by a subset of geodesics $\Omega \subset\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$ with multiplicity one each.

This is true because the support of the limit is contained in the varifold geodesic network, then we can apply the Constancy Theorem to each geodesic segment whose intersection is non-empty. If we assume that the set of geodesic networks is finite, then so is the set of all possible subnetworks (not necessarily stationary) and the rest of the proof is the same as in [12].

With this proposition we can prove Lemmas 5.4 and 5.6 .
Proof of Lemma 5.4. Suppose $\omega_{4}\left(S^{2}\right)<2 \pi\left(1+\frac{1}{6}\right)$ and choose an ellipsoid E^{2} sufficiently close to S^{2} so that Proposition 5.5 holds. In particular there are only 3 almost minimising geodesic networks with length less than $2 \pi(1+$ $\frac{1}{4}$) in E^{2} (namely, the three principal geodesics). Indeed, any such geodesic network must have density less than 2 by Theorem 3.7 and the almost minimising condition excludes triple junctions. Note also that $\omega_{4}\left(E^{2}\right)<$ $2 \pi\left(1+\frac{1}{3}\right)$.

We claim that there exist an optimal sweepout for $\omega_{4}\left(E^{2}\right)$. If that is not the case we would be able to produce a sequence of sweepouts F_{i} with no concentration of mass such that $L\left[\Pi_{F_{i+1}}\right]<L\left[\Pi_{F_{i}}\right]<2 \pi\left(1+\frac{1}{3}\right)$. Thus, each F_{i} would give us a distinct almost-minimising geodesic network with length less than $2 \pi\left(1+\frac{1}{3}\right)$ (Theorem 4.4), which is a contradiction.

It follows that there exists an almost-minimising geodesic network V such that $\|V\|\left(E^{2}\right)=\omega_{4}\left(E^{2}\right)$. Thus, V must be one of the three principal geodesics which implies that $\omega_{k}\left(E^{2}\right)=\omega_{k+1}\left(E^{2}\right)$ for some $k=1,2,3$. This is a contradiction because Proposition A. 1 would imply the existence of infinitely many almost-minimising geodesic networks with length $\omega_{k}\left(E^{2}\right)$ and we already know that this is not possible.

We conclude that our initial assumption is false, thus $\omega_{4}\left(S^{2}\right)>2 \pi$.

The next proof is very similar to the previous one.
Proof of Lemma 5.6. If the ellipsoid is sufficiently close to S^{2} then we can assume that $\omega_{i}\left(E^{2}\right)<2 \pi\left(2+\frac{1}{4}\right)$, by Theorem 5.3 . As we have already remarked, there are only 9 almost-minimising geodesic networks with mass less than $2 \pi\left(2+\frac{1}{4}\right)$ (namely the W_{j} previously described). If we had equality $\omega_{i}=\omega_{i+1}$ for any $i=1, \ldots, 7$ then Proposition A.1 would give us infinitely many almost-minimising geodesic networks with mass ω_{i}, which is a contradiction.

References

[1] W. K. Allard, On the first variation of a varifold, Annals of Mathematics 95 (1972), no. 3, 417-491.
[2] W. K. Allard and F. J. Almgren Jr., The structure of stationary one dimensional varifolds with positive density, Inventiones Math. 34 (1976), 83-97.
[3] F. J. Almgren Jr., The homotopy groups of the integral cycle groups, Topology 1 (1962), 257-299.
[4] V. Arnold, Topological content of the Maxwell theorem on multipole representation of spherical functions, Topological Methods in Nonlinear Analysis 7 (1996), 205-217.
[5] K. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Diff. Eq. and Their Applications 6 (1993).
[6] O. Cornea, et al., Lusternik-Schnirelmann Category, Math. Surveys and Monographs 103, AMS (2003).
[7] H. Federer, Geometric Measure Theory, Classics in Mathematics, Springer-Verlag (1969).
[8] D. Gromoll and W. Meyer, On differentiable functions with isolated critical points, Topology 8 (1968), 361-369.
[9] M. Gromov, Dimension, non-linear spectra and width, in: Geometric Aspects of Cuntional Analysis, Lecture Notes in Math. 1317 (1988), 132-184.
[10] L. Guth, Minimax problems related to cup powers and steenrod squares, Geom. Funct. Anal. 18 (2009), no. 6, 1917-1987.
[11] Y. Liokumovich, F. C. Marques, and A. Neves, Weyl law for the volume spectrum, Ann. of Math. (2) 187 (2018), no. 3, 933-961.
[12] F. C. Marques and A. Neves, Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, Invent. Math. 209 (2017), no. 2, 577-616.
[13] F. C. Marques and A. Neves, Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math. 4 (2016), no. 4, 463-511.
[14] M. Morse, The Calculus of Variations in the Large, AMS Colloquium Publications XVIII (1934).
[15] J. T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical Notes 27, Princeton University Press, Princeton (1981).
[16] L. M. Simon, Lectures on Geometric Measure Theory, Proc. Centre Math. Analysis 3, Australian National University, Canberra (1983).
[17] I. A. Taimanov, Closed extremals on two-dimensional manifolds, Russian Math. Surveys 47 (1992), no. 2, 163-211.
[18] B. White, Currents and flat chains associated to varifolds, with an application to mean curvature flow, Duke Math. J. 148 (2009), 213-228.
[19] B. White, The maximum principle for varieties of arbitrary codimension, Comm. Anal. Geom. 18 (2010), no. 3, 421-432.
[20] X. Zhou, Min-max minimal hypersurface in $\left(M^{n+1}, g\right)$ with Ric $_{g}>0$ and $2 \leq n \leq 6$, J. Differential Geom. 100 (2015), no. 1, 129-160.
[21] X. Zhou, On the Multiplicity One Conjecture in Min-max theory, arXiv:1901.01173 [math.DG], (2019).

UBC Mathematics Department
1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
E-mail address: nicolau.sarquis@gmail.com
Received August 2, 2016
Accepted March 23, 2017

[^0]: The author was supported by a CNPq-Brasil Scholarship.

